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- GENERAL SOLUTIONS TO MAXWELL’S EQUATIONS
- FOR A TRANSVERSE FIELD
v;t.
"“: INTRODUCTION AND STATEMENT OF RESULTS
.‘ul.
Wy Introduction
15
Suppose one is presented with a physical problem in which some surface or family of surfaces §
. plays a prominent role. If S is a sphere, then one generally finds it convenient to use spherical coordi-
.\‘_'\. nates in the analysis; if S is a cylinder, one uses cylindrical coordinates; and so on. In the general case,
- we propose using a system of surface-normal coordinates, by which we mean a triple (u',u?,z), where
‘_*-',1 (u',u?) is a system of surface coordinates on S and z is the perpendicular distance from a general point
Ny in space to S.
2
Our interest lies in obtaining solutions to certain scattering problems. As a first step we shall
&::.,- examine the propagation of a (strictly) transverse electromagnetic wave having a given wavefront sur-
a face S. When surface-normal coordinates are used, we find two things: First, that Maxwell’s equations
..:-: and the corresponding wave equations reduce to very simple forms involving space derivatives in only
W the single variable z. Second, Maxwell’s equations also provide boundary conditions on S, namely, that
- the E and B fields are harmonic tangent fields on S.
'_*_-'.‘_, According to certain well-known topological generalities, a closed spheroidal surface (topological '

R sphere) cannot support a harmonic tangent field. Hence the boundary conditions have as an immediate
consequence the fact that transverse fields with spheroidal wavefronts cannot exist. !

We also find that solutions can exist only if the E and B fields satisfy a certain first order partial

\)' differential equation (PDE) whose coefficients involve the curvature of S. It then can be shown that

=y this PDE cannot be satisfied if S is a noncircular cylinder or a surface of revolution. Hence transverse
. solutions to Maxwell’s equations cannot exist in these cases, and we conjecture that transverse solutions

Lo can only exist if S is a circular cylinder or a (flat) plane.

b In the foregoing discussion, it is assumed that the fields are smooth, singularity-free functions of

time and position. If singularities are allowed, then the solution set is enlarged, but the solutions thus
obtained do not appear to have any physical significance.

':}" In this report, we describe our methods and results, but detailed proofs invoiving complicated cal-
';‘_\- culations with tensors are presented elsewhere [1].
)
AN

- Statement of the Main Results

®1

.:-’:' We shall consider an electromagnetic wave propagating in free space along lines normal to a fam-
--,»:: ily of wavefront surfaces, each of which is given by z = constant, where z is a function that satisfies
?::.. the eikonal equation | ¥ z | = 1. Then for a general point P, z(P) is equal to the signed perpendicu-
\-&ﬂ- lar distance from P to the wavefront S, given by z = 0 (2, p. 30]. Let v = (4',u?) be a system of sur-
’ face coordinates on S, and let = % (1) be the unit normal vector to S,, which will be taken to point
> along the direction of propagation. If X denotes the position vector of a general point on
"
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WILLIAM B. GORDON

S, then X = X (1) for some vector-valued function X (u) with values in £} (= Euclidean 3-space).
The position vector R = R (u,z) of a general point P in E? can then be written in the form

R=XWw)+zqn (). (1)

The correspondence that assigns to each point P the triple (1.z) = (u'.u?,z) will be referred to as a
surface-normal coordinate system and the wavefront obtained by setting z = constant in Fig. (1) will
be denoted by S.. Thus Eq. (1) has two uses: the first being a description of a surface-normal coordi-
nate system for E?, and the second—obtained by setting z = constant—being a parametric representa-
tion for the wavefront surface S..

The E and B fields are always required to satisfy Maxwell’s equations, viz.,
V xE= —B, V-E=0. (M)
V x B = (1/)E, V-B=0.

In addition, it is assumed that the fields are transverse, and it turns out that a necessary (but not suffi-
cient) condition for (M) is that, considered as tangent fields to S, the fields E and B are harmonic in
the sense of Hodge theory. This implies that

V!E=0, VB=0, (2)

where V2 is the Hodge operator, a certain second order differential operator on the tangent vector
fields to S, that is the analogue to (but different from) the ordinary Laplace operator V2 in 3-space.
These results are formalized in the following two propositions.

Proposition A — Suppose there exists an open interval of z values such that, for each value of - in
this interval, both E (u.z,t) and B (u,z,¢) are tangent to S, over some interval of s values. Then (M)
is satisfied only if E and B are harmonic on each of the surfaces S,.

Propousition B — For monochromatic fields, the tangency condition can be relaxed to require that it
hold over some interval of z values, but only for a single value of r.

Suppose now that the wavefront surfaces are "closed” in the technical sense of modern differential
geometry, i.e., they are compact (hence finitely extended) surfaces without boundury curves. Recal!
that the topological type of a closed surface is determined by its genus g ( = number of holes). i.e.,
two surfaces with the same genus are "topologically equivalent” in the sense that one can be smoothly
deformed into the other. A “sphercid" is any surface topologicu'ly equivalent to a sphere. For
spheroids we have g = 0, for tori we have g = 1, for double tori w2 have g = 2, etc. Moreover, for
closed surfaces it is known from deRham cohomology theory that the space of harmonic tangent vector
fields has dimension 2g. In particular, this dimension is zero if the wavefronts are .pheroids; henes
transverse fields with spheroidal wavefronts cannot satisfy Maxwell’™s equations (except for the trivial
casc when E and B are identically equal to 0).

We have already mentioned that the same result holds if the wevefronts are noncircular cylinders
or surfaces of revolution. and we conjecture that transverse solutions to (M) exist only if the wave-
fronts are (flat) planes or circular cylinders. However, the fields in our discussiop are always assumed
to be smooth, singularity-free functions of time and position, and the wavefronts are always assumed to
be closed submanifolds of 3-space. If either of these conditions is removed, then the solution set (o
{M) is enlarged and our results must be modified.

General Discussion

Comparison with Luneburg's Work

As discussed by Luneburg in Ref. 2, a "wavefront” is the furthest-on position of an cxpanding
pulse of clectromagnetic energy and is taken to correspond to a “vudden discontinuity” in the field
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quantities. At any instant of time, such a wavefront occupies only a single surface position, and Lune-
burg shows that at this instant, the E and B fields are tangent to this surface. The wavefronts discussed
by Luneburg can be spheroidal. but there is no contradiction between Luneburg's results and ours since
in our discussion, the field quantities are assumed to be smooth functions of time and position, and the
tangency condition is required to hold over an interval of z values. The "wavefronts" discussed in this
report are more akin to those discussed in Geometrical Optics {3] and perhaps might be described as
the "ghosts” of a departed Luneburg front. The space in a neighborhood of an instantaneous wavefront
surface position S will remain excited for some time after the Luneburg front passes through S and if
S is spheroidal, at least one of the fields E or B will lose its tangency property immediately after the
time of passage. In fact, in the examples of spheroidal waves given by Luneburg in Ref. 2, (sec. 13),
one of the fields remains tangent to S while the other does not.

Comparison with Geometrical Optics

Geometrical optics provides a description of how a field attenuates as it recedes from its source.
Assuming that the power density is proportional to |E|2 (or |B{?), and that energy is conserved along
tubes of rays that span two surface patches on Sj and §,, one obtains the representation of Ref. 3.

Eo(u) exp (i k z)
1123
[1 +2H) z + K (u) z]

where Eg = Eg(u) are the values of E on Sy, k is the wavenumber, H = H(u) is the mean curvature
on S, and K = K(u) is the total (or Gaussian) curvature on S;. A similar expression holds for B,
and we now ask whether these fields can be made to satisfy (M) by an appropriate choice of the
boundary data E; and By. It turns out that the answer is "no." However, it will be shown that when
transverse fields with a given wavefront exist, Eq. (3) is essentially correct in the far field, i.e., for
values of z that are large with respect to the radii of curvature and the wavelength.

E (u.: Z,0) = 3)

Physical Considerations

One does not expect to find strictly transverse fields generated by a physically realizable system of
sources located in a finite region of space. Such fields generally contain longitudinal components whose
amplitudes vary as 1/r2, whereas the transverse components vary as 1/r (where r is range from source
to observer). For example, considering this matter at its most "elementary” level, we note that
Feynman’s formula for the field generated by a moving charge contains two longitudinal components,
(one being the Coulomb field [4, vol. I sec. 28-2, vol. 11 sec. 21-1]). However, theoretical fields gen-
erated by infinitely extended sources, such as Sommerfeld's solution to scattering from an infinite half
plane, can still provide insight into real physical problems. These classical solutions can also be used to
estimate high-order scattering effects from finitely extended bodies. For a recent account of this sub-
ject, we refer the reader to Ref. §.

METHODS AND ANALYSIS
Vector Operators in General Coordinates

The formalism of tensor analysis will be used to obtain formulas for the calculation of vector
operators in a general coordinate system. In the discussion below, we follow the notation and conven-
tions given in Refs. 6,7.

Let u = (u',u?,u’) be a general coordinate system whose metric tensors and Christoffel symbols
are denoted by g,.g”, and I';,. Let R = R(«) denote the position vector of a general point in 3-space,
set R, = 9 R/§ u’, and let {R' R2, R? be the basis that is dual to {R;, Ry, R;} | so that

-~ ‘.*- .\ .r
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WILLIAM B. GORDON

R/ - R; = 8/ (= Kroenecker delta)

Then employing the tensor summation convention for a general vector field E = E(u) we have
dE

V'E-R"Eu—'-, 4)
VxE-R"x%, )
and
i1 9*E JE
V2E =gV W-F,’jm )

In Ref. 1, we give the specialization of these formulas for transverse fields in surface-normal
coordinates. These specializations are obtained by differentiating Eq. (1) with respect to the surface
coordinates and by using the classical differential geometry of surfaces to express the derivatives of 5 in
terms of the second fundamental form of the surface Sj.

Harmonicity of Transverse Fields

The elements of Hodge theory are discussed in many texts in modern differential geometry, but
we shall only refer to Ref. 8 for definitions and notation. Roughly speaking, a tangent vector field is
harmonic (in the sense of Hodge theory) if locally (in the neighborhood of any point) it is the gradient
of a hamonic function. More precisely, a tangent field is harmonic if its surface curl and surface diver-
gence vanish. These two conditions together imply Eq. (2), but the converse is oniy true on compact
surfaces.

To prove the harmonicity of transverse fields, we write out (M) in surface-normal coordinates. It
turns out that the surface divergence of a transverse field is equal io its ordinary space divergence, and
hence the former vanishes by the divergence equations in (M). By decomposing the curl equations in
(M) into normal and tangential components, we find that surface curl of a transverse field also van-
ishes. Hence it follows that transverse fields satisfying (M) are necessarily harmonic. The details of
the derivation are given in Ref. 1, and we conclude this discussion by emphasizing that the derivation
requires that both the E and the B fields be tangent to the surfaces S, over some interval of z values.

The Wave Equations

For the remainder of this report, we only consider the case of monochromatic radiation, but our
results can be applied to the more general case via the Fourier transform. A vector field is said to be
"harmonic" if it is a harmonic tangent field to S, for every z within a given interval of z values, (which
by convention is assumed to contain the value z = 0). Hence, from the results of tne previous para-
graph, every transverse solution to (M) is harmonic.

In standard field theory, the solutions to (M) are shown to satisfy the wave equations, which in
the monochromatic case take the form

VE = - k'E, VB= - k!B. (W)

Conversely, every solution to (W) is a solution to (M), provided that one of the fields—for example—E
satisfies the divergence equation div(E) = 0.

Using surface-normal coordinates to express the Laplacians in terms of surface invariants, (W)
becomes

- . - . 2
~KE=VE+DRR1-20QIE +2/%E 4+ &E
9z 9z
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with a similar equation fo_r B, where V'~ is the Hodge operator that occurs in Eq. (2), K is the Gaussian
(total) curvature of S,, H is the mean curvature, I is the identity matrix, and Q is the second funda-
mental form—the matrix operator, whose eigenvalues are the principal curvatures of S, and whose
eigenvectors are the principal directions. But the first term on the right-hand side vanishes for har-
monic fields, and therefore transverse solutions to (M) satisfy the transverse wave equations

~ - -9E . 9E
— kE = - +2H—— + —
KE = K 1- 20 QIE+2A% + 3%
. - - 2
— kB = 2R 1-2AQI B + 2738 + 3B (WT)
9z 922

Conversely, harmonic solutions to (WT) are solutions to (M), but as we shall later see, solutions to
(WT) are not necessarily harmonic, even if harmonic initial data are prescribed on Sj.

Analysis of the Transverse Wave Equation
We shall now hold the u variables fixed and consider how the solutions to (WT) vary with z. We
write (WT) in terms of components by resolving the E vector along the principal directions €, §,:
E=E & +E¢

The principal dirertions are orthogonal since they are the eigenvectors of Q. By direct substitution into
(WT), we get the following result, where apostrophes are uscd to denote differentiation with respect to
z and y,, y, denote the principal curvatures,

—KE =Gy~ yD E + (i +y) E'V + EY
—KEy=(yyy2~ y§)Es + (y, + y)E + E",. 7
The variation of the principal curvatures with z is given by
Yo (2) =y, (0/[1 4+ zy, (O], (@ =1,2),

where the dependence of the curvatures on the u variables has been suppressed in the notation. There
are then three cases to consider, depending on whether both, one, or none of the principal curvatures
vanishes.

Case 1. Both curvatures vanish — In this case Eq. (7) reduces to the scalar wave equation in the
variable z, and E propagates as a pure sinusoid in kz with no attenuation with increasing z.

Case 2. y,=0and y; # 0 — In this case, Eq. (7) reduces to the system
E+ 4 EV+ Kk E =0,
P2

pzz E"z +p2E'2 + (kzpzz— ]) E2= 0,

where p,(z) = 1/y,(z) are the radii of curvature. Then expressing £, and £, as functions of p,,
the general solution is given by

E)= b Jolk p3) + ¢, Yolk p3),
Ez = b21|(kp2) + Cy Y| (kpz).

where the b's and ¢’s are independent of z and the J's and Y’s are Bessel functions of the indi-
cated order and type. From the asymptotic properties of the Bessel functions, it follows that the
components of E vary as exp (£ i k z)/Vz for large values of z.

Case 3. Neither curvature vanishes — Although we suspect that transverse solutions to (M) do not
exist when neither of the principal curvatures is identically zero, a discussion of this casc is
included for theoretical completeness. Setting
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Fi=p E\, F=p,E,

and substituting into Eq. (7), we eventually get

Frr- 28 F k2 F =0,
£1p2

Fy+ -2 P4 k2 Fy=0,
Pp2

where 2a = p,(0) — p,(0) is a constant. The solutions are easily shown to be sinusoidal in the far
field, from which it follows that in the far field the components of E have the form exp
(i k 2)/z.

Solutions with Planar or Circular-Cylindrical Wavefronts

The discussion in the last paragraph was concerned with the z-variation of solutions for fixed
values of the u coordinates. We shall now allow 4 to vary and consider the global behavior of fields
whose wavefronts are planes or circular cylinders. Special solutions E to (W) in these cases are usually
obtained by the method of separation of variables, and solutions to (M) are then obtained by imposing
the additional condition, div(E) = 0. Using the structure theory for harmonic fields, one can establish
rigorously that these are the only transverse solutions to (M) in these cases. Details are given in Ref.
1.

For the planar case, let S be the plane x* = 0. Then the most general solutions to (M) must be
of the form

E (x'.x3,x’1) = e’ grad (U) + e ik’ grad (V) ,

where U = U (x',x?) and ¥ = ¥ p(x',x?) are harmonic functions on S, and grad denotes the surface
gradient. In Ref. 1 we also illustrate with an example how the solution set to {M) niust be enlarged
and our conclusions modified if the fields are allowed to have singularities or if the wavefronts are not
required to be closed submanifolds of 3-space. In the example, S, is an annular region in the x! x?2
-plane that excludes the origin; setting

r = [(xl)z + (xz)zll/z‘
the most general solution is now given by

E (x',x2.x%) = e grad (U) + e=* grad (V) + (a/r?) (x' e, — x%e;p),
where a is an arbitrary constant and e;.e; are unit basis vectors in the plane.
Other Cases for Which Transverse Fields Do Not Exist

We have seen that the nonexistence of transverse fields with spheroidal wavefronts is a simple
consequence of the fact that a spheroidal surface cannot support a nonzero harmonic tangent field. We
recall that a solution to (WT) is also a solution to (M) if and only if it is harmonic. As previously
mentioned, a field E = E(u,z) is said to be harmonic if it is a harmonic tangent field on each S, for
some interval of z values. We shall now give examples of surfaces Sy that do support harmonic tangent
fields, but for which (WT) has no harmonic solution. In other words, one can assign harmonic initial
data for (WT) with no guarantee that the solution will propagate as a harmonic ficld. The examples are
noncircular cylinders and surfaces of revolution; as previously mentioned, we suspect that with the pro-
viso given at the end of the section titled, Statement of the Main Results, iransverse solutions to (M)
are only possible when the wavefronts are planes or circular cylinders.




Ly T YT A BSa Ak ate e aAd il s s ot S I R ot i i a el - M Al B sl o L i o St Re® S R T i R R Y R = -u1
19
3 -:‘f.‘
‘ . ' NRL REPORT 8973
..1
n".j
»::-ij To establish these results, we resolve E into components with respect to the tangent basis vectors
-; R!, R?, so that we now write
i E=E R'+ ER2.
[
o Then (WT) resolves into two equations—one for E; and one for E,. Differentiating the first equation
el with respect to #? and the second with respect to u!, subtracting the results, and assuming that E is har-
s monic and therefore closed, one obtains
- ‘s
o dE, + dEy=0,
L
oy where |
Y d =y, v, dy = 3d/3u', and d, ~ 3d/du?.
']
] :‘- But for the special coordinate systems described above, the principal curvatures and hence 4 depend on
-, only one of the surface coordinates. If we call this coordinate u?, then d; = 0; from the above equa-
tion, we get
\.." dz E'l = 0
-:::' For the cylinder, d is the curvature of the base curve and is nonconstant for noncircular cylinders.
';.'— Hence d; = 0 in this case, and it can be shown that the same result holds for surfaces of revolution.
% We therefore conciude that E’; = 0, from which it follows that E; = 0 since (WT) has no nonzero
< » solutions whose derivatives are identically zero in z. The same arguments apply to the B vector, and
Y we conclude that B’ = 0 and B; = 0. But using (M), the vanishing of E', implies the vanishing of B,,
- and the vanishing of B'| implies the vanishing of E;. Hence E, = E, = B, = B, = 0. In other words,
' :}.: for noncircular cylinders and surfaces of revolution, we have shown that E = 0 and B = 0 are the only
s solutions to (M).
\':'
¢ SUMMARY
e |
ﬂ .‘- . . . .
) ® We consider a transverse electromagnetic wave propagating along rays normal 1o a given wave- J
N front surface S. ;
:"::.: e By using surface-normal coordinates, Maxwell’s equations and the corresponding wave equ: . a 5
\)‘ reduce to forms involving derivatives in only a single space variable z, where z is the perpen-
- dicular distance from a general point in space to S.
':'_-:' ® We also show that the E and B fields are harmonic (in the sense of Hodge theory).
::-: ® [t is known that a (closed) spheroidal surface cannot support a harmonic tangent field; it fol-
o lows that smooth, singularity-free transverse fields with spheroidal wavefronts cannot exist.
F . "q . . . . " -
s ® An analysis of the wave equation shows that the same result holds if S is a noncircular cylinder
o or a surface of revolution.
TR
'::-j' From these results and from general physical principles, we conjecture that smooth singularity-
b free transverse solutions to Maxwell’s equations can only exist if S is a plane or a circular cylinder.
&
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