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The Madelung energies of simple metal spheres are calculated for bcc, fcc, and hcp

structures as well as for fully relaxed structures. It is found that for clusters of up to
40 atoms the structure generally does not have the symmetry of any simple lattice. The
variation of the structural part of the total energy is shown to be slightly smaller than
the variation arising from the filling of discrete single-electron energy levels.
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-- Recent experiments' - on the 'magic numbers' of
small sodium clusters suggest that variation of the binding
energy of clusters as a function of their size is dominated
by the filling of ~~rgy levels of electrons moving in a
spherical potential . This simple interpretation is sup-
ported also by good agreement of the calculated e!ec-
tronic polarizabilities 4 with the experimentally measured
ones 5. Ab initio calculations 6'7 of the structures of the
Olusters have been performed only for the smallest clus-

ters. These give the striking result that for up to six atoms
the ground-state structure of the cluster -is planar. How-
ever, these nonspherical structures are not entirely in con-
tradiction with the spherical jetlium picture, since the
structures can be well understood by studying the single
electron wave functions in a spherical potential: in the
case of a partly filled shell the charge density wiJ1 be
nonspherical and the total electrostatic energy can be
reduced by relaxing the ions to a configuration which has
the shape of the electron density distribution.

_>For large clusters it is expected that the electron den-

sity distribution starts to be more and more spherical as
the cluster increases. It is then appealing to make a
spherical approximation in determining the cluster struc-
tures. Recently, Ifiiguez et a18 have used this approxima-
tion and the density functional scheme to calculate the
binding energies of sodium clusters in some bcc and fcc
configurations. A related calculation was published ear-
lier by Buttet et a19. The results show large variations in
the cluster binding energy as a function of the cluster
size, and Ifiigues et a18 conclude that the actual clusters
have "disordered" structures which are more spherical
than those that can be formed from simple bcc and fcc
lattices.

the purpose of this communication is to show that if
the electron density distribution is assumed to be spheri-
cally symmetric, the resulting ionic configuration is deter-
mined mainly due a classical Madelung energy. Further-
more it is shown that the ground state structures of the

clusters are generally not small pieces of simple lattices
(bcc, fcc, or hcp), but take always a more spherical shape
(e.g. icosahedral in the case of a 13 atom cluster). The
variation of the structural energy as a function of the

cluster size is found to be somewhat smaller than the
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variation arising from the filling of single electron energy 6
shells giving support to the idea that the dominant magic 16

numbers are determined by the electronic shell structure
of a square well potentiaf--

In the density functionai method, the total energy of
the cluster is written as8

ET = Tin] + Ec[n] + -lfdrfdr n(r)n(r')
2 jr1rIr-r'l

+1E RI + drVPs(r-ri)n(r), (1)2+ j IR,--R i ,

where T and Exc are the kinetic and exchange-correlation
energies, n(r) is the electron density, R i the ion site, and
Vp, the electron-ion pseudopotential. Now we define a
fictitious charge density distribution no as a step function

no(r) = noO(Rc-r), (2)

where Rc is the cluster radius, and no is the average con-

duction electron density in an infinite metal. no(r) is equal
to the compensating positive background density in a jel-
lium cluster. By adding and subtracting electrostatic
energy terms in Eq. (1) we can write the total energy as

ET = Tin] + Exc[n] + EM

1 n(r)n(r')-n0 (r)n0 (r')
2 Jdjdr' Ir-r'I

no(r)
+ Xfdr1/,(r-Rj)n(r) + ZJdrn (3)

Ir-Ril

where the Madelung energy EA, is defined as
Eq m -- fdrfdr' no(r)no(r')

-jfdfdr' r-r'i

+ I _ I . _ _ __or

__ E (4)
2 i ~ il~ _Rjj 7JIr-RiJ

The advantage in writing the total energy in this form is
that most of the structural dependence of the energy is
included in the Madclung energy. This is analogous to the
classical cleavage energy in calculating the surface energy
in the same method °. The two last terms in Eq. (3) also
depend explicitly on the structure. Using for example a
llcine-Abarenkov t  or Ashcroft - type psetdopotential
which equals the 1r potential beyond a core radius, say
ro, it is easy the see that the structure dependent parts of
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the two last terms in Eq. (3) roughly cancel each other.
These two terms can be written as

YfdrV (r-Ri)[n(r)-no(r)
i

+2 f dr VP(r-Ri)no(r) + r(5)
i jr-RI<r,

The structural dependence of the first term comes only
due to the difference n-n O which is markedly nonzero
only in a narrow region at the surface. The structural
dependence of the second term is also small since the
integral is limited only over the core regions of the pseu-
dopotentials. Since the other terms of Eq. (3) also
depend only weakly on the structure13 it is reasonable to
assume that only the Madelung energy depends strongly
on the structure. Thus in determining the structure of the
clusters, the calculation of the electronic structure is not
needed at all (note that all this is based on the assumption
that the resulting electron density distribution as a result
of a self-consistent density functional calculation is spher-
ical). This fact, that the structural dependence of the total
energy is dominated by the Madelung energy, has been
noticed earlier in calculating surface energies14- 16 and
void formation energies 6 in simple metals.

We have calculated the Madelung energies of clusters
up to 40 atoms. The cluster structures considered are bcc,
fcc, and hcp lattice structures and the fully relaxed struc-
ture which minimizes the Madelung energy. The results
for the binding energy (i.e. negative of the Madclung
energy) is shown in Fig. 1. The relaxed ground state
always has a much higher binding energy than any simple
lattice configuration. In calculating the Madelung ener-
gies of bcc, fcc, and hcp clusters the lattice constant was
fixed to correspond to the electron density no. The calcu-
lations were repeated for all three lattices by taking the
center of the cluster to be a lattice site, tetrahedral inter-
stitial site, octahedral interstitial site, midpoint of two
nearest atoms, or the center of a equilateral triangle of
three closest atoms. The optimal lattice structures (bcc,
fcc, or hcp) for clusters from I to 40 atoms are given in
Table 1. These structures are generally very different
from the actual ground state structures, which were
obtained by letting the ions relax to positions which



minimize the Madelung energy. Some of these structures
are shown in Fig. 2. Many of these also have a high
symmetry, but different from any simple lattice sym-
metry. Generally, up to the size of 12 atom cluster, all
the atoms are evenly distributed on a shell having roughly
the same distance from the center of the cluster (there is
no atom in the center of the cluster). The 13 atom cluster
is an icosahedron with an atom in the center, but again in
the 14 atom cluster all the atoms are on one shell, the
center being empty. From 15 to 21 atom clusters there is
one atom in the center and the rest of the atoms are
evenly distributed on the surface, nearly the same dis-
tance from the center. Larger clusters start to have more
atoms also inside the cluster, but the surface always
seems to take as spherical a shape as possible.

From Figure 1 it is obvious that for only a few cluster
sizes does the lattice structure come even close to the
binding energy of the fully relaxed optimal configuration.
The large variation as a function of the cluster size disap-
pears almost totally when the ions are allowed to relax
from the lattice sites to the optimal ground state
configuration. The remaining variation is slightly smaller
than the variation of the purely electronic part of the
energy in the jellium model 17 (coming essentially from
the first three terms of Eq. (2)). This is clearly seen in
Fig. 3 where the second derivative of the energy versus
cluster size curve is shown for the Madelung energy and
for the energy of the jellium model. This result has the
important consequence that even if the actual interactions

between the electrons and the ions are taken into account,
magic numbers may still be determined by the filling of
the single particle energy levels in a spherical potential.
The results of surface energy calculations in a related
model show that tie structure dependence will be reduced
if the electron density is allowed to relax from the jellium
result14. It is then expected that the variation of the
structural part of the energy is overestimated if only the
Madclung energy is considered. The noncry'stallinc clus-
ter structures seem to persist up to cluster sizes of several
hundreds of atoms. This is indicated by the results of
lMiiues et al8 which show that the binding energies of the
crystalline structures remain lower than those of the
optimal structures even at cluster sizes of more than 90



atoms. Also the calculations of the reconstruction of sim-
ple metal surfaces 18 indicate that the registration shift

extends several layers below the surface and originates
from the same electrostatic forces as the noncrystalline
cluster structures. (The cluster size has to be larger than
about 500 atoms before more than half of the atoms are
not in the surface layer). For very large clusters, of
course, the strictly spherical shape will be modified by
faceting which will eventually make the crystalline struc-
ture more stable than the (disordered) spherical one.

In conclusion, we have shown that the main part of
the structural dependence of the total energy of small
simple metal clusters comes from the classical Madelung
energy. The calculations for ground state structures show
that this Madelung energy varies as a function of the
cluster size less than the electronic contribution which

shows the shell structure. This result gives further under-
standing why the magic numbers can be understood in
terms of a spherical jellium model, and predicts that clus-

ter structures differ from crystalline structures up to clus-
ter sizes of hundreds of atoms.
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FIGURE CAPTIONS

Fig. 1. Calculated Madelung energies as a function of the
cluster size. The upper curve shows the results for the
fully relaxed structures and the lower curve is the result
for the most stable bcc, fcc or hcp structures. The
Madelung energy for the bulk bcc and fcc lattices is also
shown in the figue. EM1 is given in atomic units for a
density, no, corresponding to rs=l.

Fig. 2. Examples of cluster structures determined by
minimizing the Madelung energy.

Fig. 3. The variation of the Madelung energy (in atomic
units) as a function of the cluster size (a) as compared to
the variation of the total energy of the jellium model 17

(b). The results are for lithium (r,=3.25).
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Table 1. Optimal structures of spherical clusters assum-
ing them to have bcc, fcc, or hcp structujres,. The center
of the cluster has been chosen to be lattice sixe (lat). mnid-
point of two atoms (mid), tetrahedral interstitial sire (ter).
octahedral interstitial site (ocr), or the center of (Zn equi-
lateral triangle (tri..

Size Lattice (c ener) Size Lattice(center)

I I 2 hcp(tet)
2 bcc(riid) 22 hcp(tet)
3 fcc(tri) 23 hcp~mid)
4 fcc(tet) 24 hcp(tet)
5 fcc(oct) 25 hicp(tri)
6 fcc(oct) 2 6 hcp(t-i)
7 fcc(oct) 27 hcp(tri)
8 fcc(Oct) 2 S hcpoict)
9 fcc(Oct) 29 hcp~tet)

10 hcp(mid) 30 hcp(tet)
I1I bcc(lat) 31 bcc(tet)
12 fcc(lat) 32 h1cptet)
13 fcc(lat) 33 hcp~oct)
14 bcc(lat) 34 bcc(mid)
15 bcc(lat) 35 hicp(oct)
16 bcc(lat) 36 fcc,,oct)
17 hcp(lat) 37 fc c(oc t)
IS bcc(lauO 3S fcc(oct)
19 fcc(lat) 39 fccwoct)
20 hcp(tet) 40 fc c (0c0
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