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SUMMARY

This Memorandum is a draft version of a review paper which will be
submitted to the Bulletin of the Institute of Mathematics and its
Applications.

Three new approaches to combinatorial optimisation have been described
recently. They are based on analogies with physical and biological systems.
The first, Kirkpatrick's Optimisation by Simulated Annealing method, has
already proved useful in engineering optimisation problems such as Layout and

." routing in VLSI chip design. At present, this is probably the most powerful
* general optimisation method for use on conventional serial computers. , The

second, Brady's evolution-based approach, has yet to receive a thorough
numerical study, However,,it seems likely to provide powerful optimisation
methods for parallel SIMD computer architectures of which the most widely
distributed example in the UK is the ICL DAP. The third method, Hopfield and
Tank's Optimisation via networks of amplifiers, is the most revolutionary and
may lead to a new generation of chips with mixed analog/digital functions for
rapid optimisation. -.
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1. INTRODUCTION

Optimisation problems are ubiquitous: they arise in science and
engineering, in industry and commerce, and in the physical world around us.
Many, perhaps most, interesting optimisation problems are hard because they
correspond to decision problems which are known to be NP complete, i.e. an
exact solution requires a number of computational steps that grows faster than
any finite power of the size of the problem. A classic example is the
Travelling Salesman Problem (TSP) which consists of finding the shortest tour
between N cities visiting each once only and ending at the starting
point. There are several varients of this problem; the best known (Dutch?)
version can be stated more formally: construct the polygon of minimum
perimeter through a given set of points in the plane. For N cities, there are
(N-1)!/2 possible tours. An exhaustive search, which is the only certain way
to locate the global minimum, therefore requires evaluating (N-1)!/2
alternatives - a number which grows faster than any finite power of N. -.

However, Sales Managers do not require perfection; only that their
staff don't go to Birmingham by way of Beachy Head! Usually a near-optimal
solution is satisfactory, if such a solution exists. We shall show later in
this paper that there are physical grounds for believing that at least some NP .

complete problems do have many local optima with values close to the global
optimum (see fig. 1 for an example). In these problems there is little to
choose between many solutions and any one of them will be a reasonable
estimate of the global optimum value. One can take this argument further.
In practical optimisation problems the cost function is usually some rough L
approximation to the real problem and is designed to include, though in an
arbitrary way, the main variables on which the solution depends. Since the
cost function is arbitrary, it is more important to find good solutions
quickl, than to find the global minimum.

j (X) 3

Figure 1: A two-dimensionaL representation of a cost function f(X)

f(x IJXI,...x") which has many Local minima with values of f
,S close to the global minimum value. X defines an allowed-.
" ~configuration. In the N-city TSP f(X) is the Length of a"'':

2° 2

-'. tour and X is a N-dimensional vector which defines to order that -'
"" cities occur in a tour; for example the permutation "-P.- x=i , ... h labels the cities Point 1 is the.

g lost mnhmum shortest tour); points 2 are Low-cost local minima

which are good enough for many practical problems (short tours);
points 3 are high-cost local minima from which minimisation
methods must be able to escape.
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Much of mathematics has been developed in order to describe natural
phenomena. I believe that combinatorial optimisation may now benefit from the
same source. Three recent pieces of work in apparently unrelated areas of
physics seem likely to lead to much better algorithms; and certainly suggest
novel ways to think about suLh problems. The first, optimisation by simulated
annealing (OSA), originated in spin-glass physics. The second is based on
ideas from biological evolution. The third was stimulated by neurophysiology
and models of neural networks. One aim in writing this article is to bring
this novel work to the attention of mathematicians in the hope that it
stimulates further rigorous dlevelopments. This paper is really about
combinatorial optimisation and not TSP's per se: however the TSP is a well
characterised problem and is therefore convenient for investigating the new
methods.

- 2. OPTIMISATION BY SIMULATED ANNEALING: THE SPIN-GLASS PROBLEM

Historically, the origins of OSA lie in spin-glass physics. Although
the method has now been developed to the point where it is no longer necessary
to understand something of the spin-glass problem first, it is still useful to
do so because spin-glass techniques may yield useful information about
combinatorial optimisation problems in addition to the OSA algorithm.

A spin-glass is simple in concept. Consider a lattice of magnetic
ions. At high temperatures the thermal energy is sufficient to overcome the
interactions between magnetic moments which tend to make the spins align. The
spins are therefore able to rotate; the lattice has no net magnetic moment,
and the system is paramagnetic. Below a critical temperature, the Curie
temperature, the thermal energy is not large enough to overcome the magnetic
interactions: the system then adopts an ordered ferromagnetic phase with a net
magnetic moment. However, if the magnetic interactions are weakened by
replacing most of the magnetic atoms by atoms of a non-magnetic metal, a
different behaviour occurs. At low temperatures the thermal energy is not
sufficient to prevent spins freezing into particular orientations, but the
magnetic interactions are too weak to force the long-range order of a
ferromagnet. This frozen disordered state is believed to be the structure of
the spin glass phase.

Despite this simple picture, the theoretical treatment of spin-glasses
is an active field of research where most of the major issues have only just
become tractable. Progress has been reminiscent of peeling onions: as one
layer of difficulty is removed new and deeper questions appear. It has taken
several years to obtain a satisfactory mean field theory of one of the
simplest models, the Sherrington-Kirkpatrick infinite range model, and some
unusual new physics has emerged in the process. For optimisation problems the
relevant features are these. 

A
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The HamiLtonian of a system of N spins is given (in the
Sherrington-Kirkpatrick model) by

N N

=- JLJLJS s 's 1),.

i:I ji+1 t'

where the spin variables s take values tl and the interaction Jj's are
Gaussian random variables. The energy surface defined by eqn (1) is similar
to that shown in figure 1. There are many minima of similar energy separated
by barriers whose height increases with N. For large N, a system prepared with
some set of JLJ 's, that is in the region of one energy minimum (an energy
"valley"), requires a very long relaxation time to move to a different valley.
In the thermodynamic limit when N-),O0, the barriers become infinite; the
energy valleys are termed "pure phases"; and the system is non-ergodic (the
ensemble average of any observable is not the same as the time average).
There are two key features which lead to multiple minima in spin glasses:
disorder and frustration. The disorder arises because there is no long
range order of spins on the lattice sites. Frustration Ell is easily
understood from figure 2 which shows a section of a two-dimensional square
lattice with spins at each vertex, nearest neighbour interactions only, and
IJLJI =1. The signs on the bonds are the sign of Jij

,"+ + +:+-

+

(a) (b)

':*. .,

Figure 2: Section of a 2-dimensional lattice with spins sj, (not shown)
at each vertex. The sign on the bonds show the signs of J ..
(a) is a ferromagnetic combination of J .j ; (b), an J

antiferromagnetic combination; (c), a frustrated (spin glass)
combination.
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From eqn (1), the lowest energy configuration for fig. l(a) is when all sq are
equal, which is a ferromagnetic state. For fig. l(b) the lowest energy is
obtained when si =-sL; an anti-ferromagnet. However, for fig. 1(c) there is
no combination 5f spins which makes all energy terms negative; at least one
bond must be "frustrated". A two-valued frustration function can be defined
El) on closed contours (c) as

0= IT j~ (2)
(c)

and the system is frustrated if =-1 for any closed contour. In general
frustration occurs in any system where there are local interactions which
favour incompatible types of ordering.

This picture would probably not have emerged without extensive
numerical simulations which have guided the development of analytic theories.
The principal tool for numerical work is the Monte Carlo method due to
Metropolis et al. [2) for estimating ensemble averages such as the expectation
value of eqn(l) at some temperature T. A central question in these systems
is whether or not some freezing transition to a spin glass phase really occurs
as the temperature is lowered. It was natural, therefore, to carry out Monte
Carlo calculations with Metropolis sampling at a range of temperatures. A
time-varying temperature T(t) can be viewed as an "annealing schedule".
Kirkpatrick and co-workers [3) have proposed the same method as a general
optimisation technique to find the minimum values of arbitrary cost functions,
and the method is now known as Optimisation by Simulated Annealing (OSA). It
has been used successfully for a number of combinatorial optimisation problems

• ; arising in computer chip design, computer vision, and the TSP. The method was
proposed independently by lerny who used it for the TSP [4]. The connection.
between the Metropolis method and minimisation was first noted by Pincus £5]

OSA operates thus. An optimisation problem involves a cost function
f(X)=f(x,,x,...,x ,) to be minimised and a set of candidate solutions
generated by trial moves. Gradient methods such as steepest descent accept
only those moves which reduce the cost function. Such algorithms have no way
to escape from local minima, which is not the behaviour required. To avoid • -
this one can choose new configurations randomly and take the lowest value
found after a large number of choices. Randomising algorithms accept moves
that results in higher values of the cost function, but these are accepted
indiscriminately. Since the probability of finding a near-optimal solution is
proportional to the number of near-optimal solutions divided by the total
number of possible solutions, randomising algorithms perform less well as the

footnote: I am grateful to B Ripley for bringing this work to my attention.
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dimensionality of the search space increases. In contrast, OSA also allows
some moves which increase the cost function, but in a controlled manner. If a
trial move decreases the cost function, it is accepted. If a trial move
increases the cost function, it is accepted with probability exp[-Af(X)/T]
where, f(X) is the increase in the cost function and T is a control parameter
(Boltzmann's constant times the temperature for a spin glass - hence the term
"temperature" in the OSA literature regardLess of what cost function is
involved). 4,P

A system evolving under these rules eventually reaches thermal
equiLibrium at any given temperature, and the relative probabilities of two
global states a and is then given by the Boltzmann distribution

(P ,/P) exp-f(XL)-f (X)) 3

where PL is the probability of being in state 04 of cost f(X .). At high
temperatures the probability of accepting uphill moves is greater and
equilibrium is reached more quickly. At low temperatures equilibration takes
longer but the system is more heavily weighted towards low cost states. The
strategy therefore is to do a coarse search of the space at high temperature
and then reduce T to focus on the low cost states. Note that OSA is unlike
gradient descent algorithms in that it does not find a minimum and then stay
there. The algorithm merely spends Longer nearer the minimum as T is Lowered.
To stay in the global minimum would require T=O in which case it would take
an infinite time to reach equilibrium. The T--O limit cannot be reached,

* therefore. However, it is possible to anneal to a low temperature and then
use gradient descent to locate the nearest minimum more precisely.

Apart from designing a suitable cost function, the most difficult part
of OSA is to choose an annealing schedule which ensures that the system has a
Boltzmann distribution of states at low temperatures. It is obvious that this
is required if one is modelling a classical liquid or solid; and in learning
algorithms such as the Boltzmann Machine [6] which depend upon the
mathematical properties of the Boltzmann distribution. However, it is no less
necessary for other cost functions. In order to achieve a BoLtzmann
distribution, it is necessary to keep the system close to equilibrium
throughout the annealing process. Therefore it is necessary to reach, or at
least come close to, equilibrium at each temperature, and to change the
temperature slowly through regions where large decreases in the cost function
are observed. The rate of cooling can be quite critical, as the physical
analogy on which OSA is based suggests. As metallurgists know well, it is
necessary to cool a melt slowly near the freezing temperature in order to grow
near-perfect crystals (which are global minimum states). Too rapid cooling
results in amorphous structures (metastable states), while lowering T too
slowly may result in supercooling (the system approaches the ground state very
slowly). The first approach adopted by statistical physicists, notably
Kirkpatrick, was to apply methods from condensed matter physics. There it is
useful to monitor the specific heat, C(T):

C(T) =var(E(T))/k T~ (4),
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where ka is BoLtzmann's constant. An increase in C(T) signals the onset of a
phase transition whence a slower cooling rate is necessary. This approach was
used in the original work [3). More recent practice is described in [7). V.
However, statisticians have attempted a more rigorous approach to determining ,
the optimum annealing rate. Geman and Geman [8) provided the first
convergence proof for the algorithm in a paper on image processing.
Unfortunately, the annealing schedule which guarantees convergence is too slow
for practical applications. Gidas has also investigated the conditions under
which the annealing algorithm converges and has proposed a rigorous procedure
for choosing the optimum schedule [9]. Unfortunately for the majority of
people using OSA, who are not statisticians, the results are contained in
sixty pages of mathematics; a fact which suggests that the Kirkpatrick
procedure is likely to be widely used for some time.

In summary, the great advantages of OSA are simplicity and generality.
Though it may need ingenuity to choose an appropriate cost function and move
set, the method is simple to implement and it has been used successfully on a
variety of problems. The main disadvantage is that choosing an annealing
schedule for practical purposes is still something of a black art.

Several studies of the travelling salesman problem have been carried
out using OSA [3,4,10,11). In addition to choosing an annealing schedule, it
is necessary to define the set of moves allowed. Most studies of the TSP make
use of a move set suggested by Lin [12). A tour is specified by the

permutation P=(i. , with an associated length L = d* * + d'' 3 +-. + dNlI
where dLJ is the distance between cities i and j. Lin defines a tour to be
")-OPT" if no shorter tours can be obtained by replacing X steps of the tour
(bonds) with any other set of X bonds. This provides a natural set of
increasingly restrictive constraints to satisfy since:

(1) any tour is I-OPT;

(2) a tour is optimal if and only if it is N-OPT;

(3) a A-OPT tour is also A-OPT for A'<X [12).

This suggests that one simple move is the interchange of two bonds. Two steps
d, ~ and dj,,j.l on the tour are replaced by d.j and dZtl, | as"

illustrated in figure 3. A 2-OPT tour is optimal w.r.t all such interchanges.
Most of the annealing studies have used two-bond moves, and it is found that

for N>50 OSA compares favourably with exhaustive two-bond and three-bond
searches, and is progressively better at finding short tours as N increases.
This is shown in figure 4 which is reproduced from Kirkpatrick and Toulouse
[10). For N>250 it has been concluded that OSA is the best procedure known
[11]; though this statement was made before the methods outlined in sections 3

and 4 were presented! Whether this remains true is a matter for further .

research.
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Figure 3: A two-bond move which converts the dashed tour ADBEFC into
the solid tour ABEFCD.
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Figure 4: TSP results from Kirkpatrick and Toulouse [103. This figure
shows the optimal tour Length for random distance TSP's of up
to N = 400 cities, as obtained from various algorithms. The dashed
line is the upper bound provided by the greedy algorithm ("Choose
a city at random. The next city on the tour is the closest one").
The solid points are from iterative improvement using exhaustive
search for 2-bond rearrangements (squares) and 3-bond
rearrangements (dots). The open points for N > 24 are OSA results
using 2-bond moves (squares) and 3-bond moves (circles). The open
data for N < 12 are exact results. Reproduced with permission
of the publisher.
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However, in addition to providing a useful simulation tool, it seems
likely that spin glass physics will reveal much deeper insights into
combinatorial optimisation problems. The most exciting results are yet to
come. Just as in the spin glass problem numerical studies led to new analytic

results, so a deeper understanding of the TSP is beginning to emerge via spin
glass techniques. First, we note that the problem of finding the ground state
of a 3-dimensional spin glass and the TSP are now known to be of the same
computational complexity, since Bachas [13), building on earlier work of
Barahona [14], has shown that the former problem is NP complete. This
provides some justification for the application of spin glass methods to other
NP complete problems. Second, several workers have formulated the TSP in
statistical mechanical terms. Orland [15) has presented a mean field version
of the TSP, and has conjectured that NP completeness is associated with a
concept called replica symmetry breaking which is well known in spin glass
physics where it was first introduced by Edwards and Anderson [16]. A
connection between replicas and P class optimisation problems has also been

suggested by Mezard and Parisi [17], and their results hp,/e recently been
extended to the NP case [18]. When the TSP is transformed to a statisticaL
physics problem, quantities such as the average length of tours become
thermodynamic quantities; and one is interested in their behaviour as a
function of temperature. Vannimenus and Mezard [19] have shown the existence
of two different temperature regimes which exhibit quite different behaviour
in the way such properties vary as a function of N. They have also obtained
the exact asymptotic behaviour of the tour of optimal length; though only for

a TSP in infinite dimension! Kirkpatrick and Toulouse [10] have introduced a
simplified version of the TSP in which the symmetric distances (d- =dL ) are
random variables in the interval (0,1). The reason for studying this mdel is
that it may prove anaLytically soluble, as did the Sherrington-Kirkpatrick
model for spin glasses. I can do no more here than point to the rapid
progress in this area; for a deeper discussion of the relationship between
spin glass phenomena and TSP's the reader is urged to consult the pioneering

paper of Kirkpatrick and Toulouse [10]. Among the tantalising possibilities
is that a new, more refined characterisation of computational complexity may
emerge. Some work has been reported in this direction [20].

3. OPTIMISATION STRATEGIES FROM BIOLOGY

Brady has recently suggested a different approach to the TSP motivated
by the idea that biological evolution overcomes the local "fitness maxima"
which correspond to stagnant species [21]. Since evolution has been going on
for a long time, one would expect to find efficient evoLutionary strategies in
modern flora and fauna. A study of those mechanisms might therefore be useful
for other optimisation problems.

Consider an arbitrary tour of N cities. In the biological terms

adopted by Brady, a random alteration to the tour is identified as a mutatio-;

and simulated annea'ing may be viewed as a method for accepting unfavouratLe ..
mutations with non-zero probability. Brady further restricts his study to
local mutations which consist of swapping the order of two cities in the touw.
Such mutations belong to a subset of the set of two-bond moves, originally
suggested by Lin [12], which were utilised in the annealing studies. The
baseline on which all other methods improve (Brady's method A, results show-
in figure 5) is to choose trial two-bond moves at random but accept only those
which shorten the tour. This single random quench is merely an inefficient way

-8-
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Figure 5: Brady's results for the TSP [21]. A comparison of eight different
optimisation strategies. In each case, data were averaged over
100 separate optimisations. A, quenching by random attempted
mutations. B, the best of two independent quenches. C,

competition between two quenches. D, mating between two quenches.
E, mating between two quenches obtained by systematic search.
F, mating between 12 quenches obtained by systematic search.
G, best of n independent quenches obtained by systematic search,
n = 1, 2, 3,..., 26. H, simulated annealing; 20,000 random
attempted mutations per temperature (statistics from 20
optimisations only, with mean time 5.6 s). Reproduced by
permission from [21]. Copyright (C) 1985 Macmillan Journals Ltd.

to find the nearest local minimum. Brady suggests that a lineage developing
in a similar manner would be at an evolutionary disadvantage since it is

destined to stagnate and be unable to adapt to changing circumstances.
Prospects of survival are improved by diversification into several independent
species, at the cost that evolution may be slower since resources must be
shared. For optimisation, this suggests dividing the available computer time
into two or more independent starting tours and quenching each separately
(method B). As expected, this produces shorter tours on average than a single
random quench. The effect of competition between species may be modelled by

taking two independent tours, carrying out random quenches, but every'v 0
attempted mutations the longer tour is discarded, a second copy of the shorter
tour is made and the quenches are continued (method C). Since this forces the
two lines back to a common point, it is not surprising that on average this
method performs no better than a single random quench. A more promising

-- 9 -



varient, which does not decrease diversity, is suggested by sexual species
where genes are swapped during mating and competition occurs on a smaller
scale between genes instead of individuals. This might translate to an
optimisation strategy (method D) similar to method C but instead of discarding
all of the longer tour after 'V attempted mutations, the tours are searched for
subroutes where some common subset of cities are visited in a different order
(see figure 6). The shorter subroute is then copied over to replace the longer
one and the quenches continue. One would expect this method to produce

4 shorter tours than A and C; and also to be some improvement on B, which has
two independent paths, since some of the best features of both paths are
included in D. This is observed. Method D bears some resemblance to the
partitioning strategy of Karp [22) for the TSP.

B B

(I) (2)
/40 F ~ m  .4 F

W . . .-

C0,~~ --- O

B B

(3)

Figure 6: "Gene swapping during mating". (1) and (2) show two independent
tours after T mutations. The subset of cities (A G) occurs
in both tours, but they are visited in a different order. Since
the subroute ABCDEFG is shorter than ACBDFEG, the dashed segment of
tour (2) is replaced with that of tour (1) to give a new tour (3).
Tour (2) is discarded and optimisation continues from (1) and (3).
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In the methods described above mutations were chosen randomly. The
Last two methods suggested by Brady utilise the mating strategy of method D
but replace the random quench with a systematic search for favourable
mutations. In method E, mating is only carried out between two independent
tours when each is optimum in the sense that all pair interchanges of cities
would give Longer tours. Such tours are 2-OPT, and mating provides an escape
route from 2-OPT local minima. Finally, method F is very similar to method E
but there are twelve independent paths instead of two. Six matings are
carried out between randomly chosen partners after all twelve tours are 2-OPT, N"
and the six altered individuals are systematically quenched to new 2-OPT tours
before randomly chosen pairs mate again. Method F produces the shortest tours
found, and Brady suggests that it is more successful than mating between a
single pair of individuals (E) because there is a wider gene pool from which
to choose subroutes.

Method F, systematic quenching to local 2-OPT minima followed by
mating to escape, is claimed to produce shorter tours than simulated annealing
and to require less computer time. However, on the limited numerical data
presented so far it is not certain that this is true even for the 64 city TSP.
The calculations consist of 100 different runs for each method (with the
exception of the OSA algorithm for which there are only 20) for a single
configuration of 64 cities. To reach any firm conclusions would require
averaging not only over a larger number of runs for a given instance of the 64
city TSP, but over many different instances as well. In spin glass terms, it
is vital to average over bond sets {JI ) in order to get quantitative
information. Furthermore, even if one of these methods does perform better
than OSA for 64 cities, it is not certain to do so for larger problems, as
noted by Bonomi and Lutton for other heuristic algorithms. Indeed, since the
most successful of Brady's methods require finding 2-OPT local minima, and the -.
number of 2-OPT tours grows as O(N'), this may well be the case.

Notwithstanding these comments, Brady has produced an interesting new
approach to optimisation which may yield useful algorithms, particularly for
some classes of parallel computers.

4. OPTIMISATION BY "NEURAL NETWORKS"

It has often been suggested that optimisation problems form an
important part of biological perception tasks such as the early pattern
recognition stages of vision and speech perception. In view of the massive
amounts of data to be processed at any instant, and the rapidity with which
solutions to such highly complicated problems are found, it is clear that
biological information processing systems are fast, powerful computers for
pattern recognition tasks. Can one make highly simplified models of neural
networks which retain this computational power and speed for other
optimisation problems?

- 11 - :



Despite an enormous amount of neurophysiological research, the 'V

mechanisms of biological computations are largely a mystery. Perhaps this is

not surprising. One might learn something about the structure of a computer
by taking one apart, but Little about the algorithms which the computer is
able to execute. The biological status is similar: some of the circuits are
known, and so are the characteristics of some components, but the
computational mechanisms are unclear. However, three key features have
emerged. '

First, for at least some processes, parts of the neural system are
believed to carry out highly parallel computations. Second, the connectivity
of neural networks is much higher than in VLSI (Very Large Scale Integration)
devices. Each neuron is connected, typically, to 10'--) 10 others, while
connections between ceLLs on VLSI chips are usually between nearest neighbours
only. The third feature, which has long been known but the significance of
which has only recently been exploited, is that the biological system operates
in an analog manner. Clusters of neurons adjust their outputs simultaneously
and self-consistently in response to the inputs from hundreds or thousands of
other neurons. It is thought to be the combination of high connectivity and
analog behaviour which provides the speed. As Hopfield and Tank have pointed
out in their seminal paper [23), a network of non-linear neural processors
(artificial neurons) works in parallel and computes a collective solution on
the basis of simultaneous interactions between all the devices. The solution
is found within a few timesteps, where time is measured in the characteristic
response times of the neurons. For real neurons the characteristic times are
in the millisecond range while for electronic "neurons" the time constants
could be much faster - perhaps a few nanoseconds. The fact that analog
computation is less accurate than digital computation is unimportant for hard
optimisation problems for reasons outlined in the introduction.

For simple optimisation problems, i.e. those with convex cost
functions, networks of analog processors can find the global optimum. Tank
and Hopfield [24) have shown how to design networks to solve several important
examples of this type including an A/D (analog/digital) converter; and the use
of analog networks for various early vision problems which can be formulated
in terms of convex cost functions has been described by Poggio [25). However,
a major step forward was the demonstration by Hopfield and Tank [23) that
networks of analog devices with non-linear responses can also find
near-optimal solutions for NP-hard optimisation problems such as the TSP.

We shall describe first the general implementation of an analog
"neural network in terms of normal electronic components. The mathematical
behaviour of these networks is compatible with gross features of the
physiology of real biological neural networks [23); though they are, of
course, much simpler. The basic element (neuron) is an amplifier with a
non-linear response function. Indeed, the interesting behaviour of these
networks depends upon the non-linearity of the response. Each amplifier j
gives an output voltage Vj which depends upon its input voltage u:

V. = gjCu3 ) (5).

The form of the response function is shown in figure 7(a), and the basic
circuit for a pair of artificial neurons appears in figure 8. Associated with

- 12 -
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Figure 7: Response function V = g(u) for artificial neurons (amplifiers).
(a) general form - see text for notation; (b) high-gain limit.

Inputs

______'721

, 
2

U#

Neuron

VAmplifer 7 Inverting Amplifer
e Resistor en T1j network

Figure 8: Basic analog circuit. The output of any neuron can in principle
be connected to the input of any other neuron. Black circles at
intersections represent resistive connections (TLI's) between
outputs and inputs. Connections between inverted outputs and
inputs represent negative (inhibitory) connections. Reproduced
from [23) with permission.
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each amplifier is an input resistor Q leading to a reference ground, and an
input capacitor C'. The synaptic Line between neurons i and j is modelled by
a conductance TL; . Since real neural networks have both excitatory and
inhibitory connections, it is necessary to give each amplifier two outputs: a
normal output (Vj in the range 0-l1) and an inverted output (V j: 0-1-1). For
excitatory links (T-j >0) the connection is made between the normal output of
amplifier j and the input of amplifier i; inhibitory Links (Ti <0) are made
via the inverted output. Finally, each amplifier has an externally supplied
input current I which essentially shifts the response curve along the u axis.

The time evolution of such circuits is described by the equations of
motion [231:

N

C~ (dluj/dt) T TjV1  (u /RL) + IL(6)

j =1

where

RL R.j

and R = 1/IT*j" * For simplicity, all amplifiers can be given the same
characteristics; which removes the subscripts from C', RG and g'. Redefining
T* as T.J/C, and IL as Ij/C gives a new set of equations of motion:

(duldt) = -Tu--) Tj Vj + I (7)

j =.

where = RC, and V = g(u).

Given some initial set of conditions (the values of (u) at t=O)
integration of equation (7) by any suitable method allows the network to be
simulated. If the connections are symmetric, T- = T- , Hopfield has shown
£26) that these networks converge to stable states at "which dV-/dt = 0 for
all j. Furthermore, in the high gain limit (see figure 7(b)) tle stable
states are local minima of the function

• N N N -"~

E -(12) V. Tj Vj Vi VL (8)

i=I j=1 i=-

-14-
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which is a familiar function in discrete two-state neural network models where
VL = 0 or 1 [26). This is the relation between stable states in the discrete
and continuous cases, and shows how a discrete problem can be embedded in a
continuous space. The minima of the discrete case occur at the corners of an
N dimensional hypercube; the state space for the analog circuit is the
interior of the same hypercube; and in the high gain limit the stable states

* approach the corners of the hypercube.

To use an analog network of the type shown in figure 8 to solve some ,p

optimisation problem, one first chooses {TLI) and the external input currents
(IL) to represent the cost function. Some initial input voltages (uL) are
then provided; the network is allowed to evolve to a stable state; and the
final state is interpreted as a low-cost configuration.

Hopfield and Tank model the TSP thus. n cities are mapped onto a
network of N=ns neurons. Each city is associated with a vector of n neurons,
all except one of which has zero value. The non-zero (=1) value indicates the
position of the city in the tour. The whole tour is then described by a
matrix. For example, the matrix:

position in tour

1 2 3 4 5 6

A 1 0 0 0 0 0..

B 0 1 0 0 0 0

city C 0 0 0 0 1 0

D 0 0 0 0 0 1

E 0 0 1 0 0 0

F 0 0 0 1 00

represents the tour ABEFCD shown in figure 3. (Note that the TSP is
inherently discrete if elements of the matrix are identified as output
voltages, so the high gain limit is required.) A cost function for this .
problem must satisfy two conditions:

.° (1) minima must correspond to permutation matrices like the one shown above;

- (2) of these n! valid permutations, the function must have minima which
correspond to the few shortest tours. . '.

.15
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The first condition can be satisfied by the function ".

E = (A/2) V v + (B/2) v,

x i f i x #

S(C/2) VX n (9)

X i z

where A,B and C are positive constants and VxL is the element of the matrix "".-

for city X and position i. This gives a minimum value of E=O if and only if i i,

V is a permutation matrix because

Mi the first triple sum is zero if and only if each row contains only one '

unit element (the rest being zero). .

(ii) The second triple sum is zero if and only if each column contains a .
single unit element (ditto). {'_.":

(iii) The third term is zero if and only if there are n unit elements in the L

whole matrix. '?"

These three terms strongly favour valid tours: i.e. they embody constraints.?.'
which apply to any TSP.

To meet the second condition, a fourth data-dependent term is added-'."
which describes which particular TSP is to be solved: .:'

This term gives E equal to the Length of the tour, for valid tours selected by.,-

'-.?.

the first condition. Thus if A,B and C are Large enough, all Low energyi
states described by eqns (9) and (10) are valid tours, and the value of E is
the tour Length. Given suitable starting conditions and values for the atri

constants, a network should be able to compute near-optimal tours•...''

f iHopfield and Tank tested this method on a 10 city TSP, and further

details can be found in their paper [233. The evolution of a network to a
itstable solution is shown in figure 9. For a chosen set of parameters onl

A,B,C,D, and given the initial conditions, the calculation is deterministic.
However, slightly different initial conditions Lead to different solutions.

In 20 simulations starting from different initial states, Hopfield and Tank

%- ~16 -" "
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Figure 9: HopfieLd and Tank's TSP results [233. This shows the convergence
of the 10-city analog circuit to a tour. The Linear dimension
of each square is proportional to the value of .X (a), (b)
and Cc) show intermediate times; (d) is the final state. The
indices in (d) show how the final state is decoded into a tour.
Reproduced by permission from £23).

found that 16 converged to valid tours, and about half of the trials produced
* one of the two shortest tours found by exhaustive search. This is impressive

performance: for 10 cities there are (n-l)!/2 = 181,440 different tours.
* Furthermore, convergence to a stable solution is rapid in term of the time

.constant T . :2

Clearly, future applications of the method will depend on building
circuits in hardware rather than solving the corresponding dlifferential
equations on a serial computer. A key question is therefore how the behaviour
of the network scales with size. One potential problem is that in simulations
of a 900 neuron network for the 30 city TSP, Hopfield and Tank found that the
choice of parameters was more critical than in the 100 neuron network. It
will require much simulation work, and building real circuits, before the
scaling behaviour of these systems for model problems such as the TSP is

* understood in dletail. There is also much work to be done in order to discover
the range of computations for which such networks are efficient. However, it
seems plausible that networks of simple analog devices have the potential to
carry out powerful optimisations more quickly than any other method known.
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5. SUMMARY

In this paper I have described several novel approaches to

combinatorial optimisation which have been prompted by models of natural
phenomena. All are in their infancy; and each has much to offer.

Optimisation by Simulated Annealing has already been established as a powerful
tool for many practical problems. There are basic unsolved questions, about .

the choice of near-optimal anneaLing schedules for practical applications,
which should exercise mathematicians!. Apart from such immediate matters, the

close links with spin glass physics promises new insights into what makes some
optimisation problems hard; and possibly a new classification of computational

complexity. Brady's approach, or other strategies gleaned from evolution, may
or may not prove to be useful optimisation tools: further calculations are
needed. However, such lateral thinking may well stimulate further .1

developments. The most exciting prospect of all is the possibility that we '

may be able to build novel sorts of computers, based on networks of reLatively

simple non-linear analog devices, which will be capable of quite different
computations from those performed by digital computers. Will the next few
years see the birth of the Hopfield computer?
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