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INTRODUCTION

Application of the Parabolized Navier-Stokes (PNS) technique to predict
the three-dimensional viscous flow about slender bodies of revolution a*
supersonic speeds and small angles of attack has been performed in the past
with a considerable degree of success.! Of particular significance to the
U.S. Army is the capability that this technique provides in the prediction of
the Magnus force and moment for spinning shell at small angles of attack,2 3
Current efforts in the prediction of the aerodynamics of U.S. Army projectiles
in supersonic flight are directed towards extending the applicability of the
PNS technique for the calculation of more complicated flows. Two such appli-
cations are discusses in this report; the first involves solution of the flow
about a spinning axisymmetric projectile at six degrees angle of attack with a
region of lee side crossflow separation, and, the second, the calculation of
the flow around long L/D finned bodies.

Previous studies! 2 “ have presented accurate predictions of pitch plane
aerodvnanic coefficients for axisymmetric projectiles to angles of attack
greater than ten degrees. However, accurate predictions of Magnus (side)
force and moment have been limited to angles of attack between zero and six
degrees. This is due, in part, to the inability of the Baldwin-Lomax turbu-
lence model® to properly mode] regions of lee side crossflow separation.
Degan® and Schiff,® who applied the PNS technique to examine the high angle of

Io W.B, Sfrturel, D7, Mylin and C.C. Bush, "Computational Parametric Study of
the Aerodynamics of Spimning Bodies at Supersonic Speeds," U.S. Army
3allistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-
TR-02855, Auzuet 1981. (AD A106074)

e

. W.B. Sturel ani L.R. Schiff, "Computations of the Magnus Fffect for
Siender Boiies in Supersonic Flaw," U.S. Army Ballistic Resezarch
Laborutory, Aherieen Proving Grouni, Maruland, ARBRL-TR-02384, Decermber
1851, (AC AIZ J16!

&N}

. L.B. Schiff and W.B. Sturek, "Numzrical Simulation of Steady Supersonic
Flow Jver ax 0zive Cylinder Boattail Body," U.S. Army Ballistic Research
Laboratory, Aberleev Proving Ground, Marylani, ARBRL-TR-02363, September
1881, [(AD Al1060%50.

$. ¥M. MzWerter, R.W. Noack and W.L. Oberkamp,, "Evaluation of Inviseii’
Boundary Layer and Parabolized Navier-Stokes Solutioms ’or Design o~
Reentry Vehizles," AITAA Paper No. §4-0486, 22nd Aerospace Seiences
Yeetinz, January 1964.

cr

- B.S. Baldyir ani H. Lomax, "Thir Laver Approximation and Algebrals Vole!
For Sepiratel Turbulewr Tlowe," AIA. Faper No. 78-287, 16th Aerosyar:
Sciences Yeotivy, Janvuary 1978,

Fo Do Dezani ani LJFE. Seniff, "Computatior of Supersonis Vieo

Poivsel 3odies at Large Incidence,” AlAA Faper Nc. 83-0034,

Sciences Meetiv:, JanuarJ 1383,

Flowve d»zue:

-
Zls: Aerospacze

9
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attack flow about cones and a Secant-Ogive-Cylinder (SOC) projectile configur-
ation, concluded that near regions of crossflow separation the values of the
eddy viscnsity obtained from the Baldwin and Lomax model were much ton high.
To overcome this problemn, they applied, with a significant degree of success,
an approach which limits the eddy viscosity to values that are more realis-
tic. In this report, modifications similar to those of Degani and Schiff are
applied to computations for a Secant-0Ogive-Cylinder-Boattail (SOCBT) projec-
tile confiquration at (.3 degrees angle of attack, Mach 3, with and without
spin. The results are compared to predictions obtained with the original
Baldwin and Lomax turbulence model and to wind tunnel measurements.

The second set of results presented in this report concerns the applica-
tion of the PNS technique to predict the aerodynamics of long L/D finned
bodies. Quite recently, several papers have reported the application of the
PHS technique to examine the aerodynamic of finned body configurations.’ 10
The computations for the finned body configuration examined in Reference 10,
reserhbling a long L/D kinetic energy (KE) penetrator projectile, were, in the
opinion of the authors, not fully successful. Solutions over the finned por-
tion of the bordy were only ohtained using large amounts of smoothing and a
coarse qrid near the fin surface. Additionally, it was later discovered that
increased circurferential grid resolution is required over the long L/D
axisymetric forebody. The results presented in this report address these
areas of deficiency in the previous calculation. Predicted pitch-plane aero-
dynaric coefficients for long L/D (20-35 caliber) axisymmetric kinetic energy
penetrator forehodies at Mach 4 and 5, and two degrees angle of attack, are
presented and compared with available wind tunnel data. Significantly 1im-
proved results are then presented for a complete finned body confiquration at
fach numhers 3, 4 and 5, and two degrees angle of attack.

IT. COMPUTATIONAL TECHNIQUE

Calzulation of the flow field over the body is accomplished using the
Parabolized havier-Stokes technique. The PNS technique allows the solution to

7. MM, Rai and D.S. Chaussee, "New Implicit Boundary Procedurees: Theory
ani Applications,"” AIAA Paper No. 83-0123, 21st Aerospace Sciences
Mog+inr 7, ,Iawuqm/ 1887

5. MM, Rai, P.S. Chaugssee and Y.M. Risk, "Calculation of Viscous Supersonic
Flows Over Finned Bodies," ATAA Paper No. 8§3-1687, Danvers, MA, Julu
1883,

Nn 17

a, JJ. Jettmar, "Taleculations of Vigeous Supersonic Flow Over Fimned Bolies
giva a 'Thin-Fix' A""rv*LmitLon," ATAA Paper No, 84-2114, AlAA
dtmoerhepla Fliqk+s Yerlpiiose Jovferense, Ausust 1884,

1. E. W-"lﬂk‘, EoTe Tudtidne, Z.F. Kauser and W,E, Sturek, "PN5 Torpitatione
For Srivviv: anl Fiv-S=aklline Ppajertiles at Supersonis Velcoolties,
AIAA Pap:r Ne. 64— 2118, AIA4 Atmospheric Flight Mechanics Conferevce,
Aurqat Ja85,  (RE V°wnr7r u~ Repart to be publighed!
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he spacially marched along the bhody in the main flow direction due to the par-
abolic nature of the governing equations. An initial plane of data is re-
quired to begin the space marching procedure and may be obtained either from
an auxiliary calculation or from a conical starting procedure, as has beer
done for the results presented here. Both the space marching and conical
starting procedures are outlined below.

)

A.  Space Marching Procedure

The thin-layer Parabolized MNavier-Stokes computational technique devel-
oped by Schiff and Steqeri! has been ernloyed to ca’~ulate the flow downstrean
of the nose tip. The governing steady thin-layer equations in strong conser-
vative form and generalized coordinates are written below:

ot SF a6 1 S
S o J=__
N UM T T )

where €, n, ¢ are the generalized coordinate variables as displayed in Figure
1 and defined below.

€ = &(x) is the longitudinal (marching) coordinate
n = n{x,y,z) is the circurferential coordinate

¢ = ¢fx,y,z) is the near normal coordinate.

This vector equation represents the thin-layer approximation to the equa-
tions of mass, momentum and enerny conservation in the three coordinate direc-

tions. The inviscid flux vectors Es’ F and G and the matrix of viscous terms,

S, are functions of the dependent variables represented by the vector,
qle, pu, Pv, pw, €), where p is the density; u, v and w are the velocity corm-
ponents 1in the three spacial directions x, y and z; and e is the total energy
per unit volume.

The paraholized Navier-Stokes equations are solved using a conservative,
approximately factored, implicit, finite-difference numerical algorithm as
formulated by Beam and Warming.!2 Further details of the numerical method nay
be found in Reference 11. Fitting of the outer bow shock has been performed

21, L.B. Scwiff and J.L. Stezer, "Numerical Simulation of Steady Supersonic
Viszous Flow," AIAA Paper No. 78-0130, 17th Aerospace Sziences eetin:
Javuars 1878,

3

2. R, Bear ani R.7. Warmin:, "4x Implicit Factored Scheme for th

toxes Fquations," AIAA Jourmal, Vol. 1%, No. 4,

~

(3
-

<

[
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in these calcula*tions, and details of the implicit boundary procedure as
inplemented by Rai and Chaussee may he found in Reference 7.

F. Conical Starting Scolutions

The initiel plane of data required to begin the marching procedure is ob-
tained using the marching code by assuming conical flow at the tip of the pro-
jectile. By selecting a conical grid and initially setting the flow field
variables to the free strear values, the solution is marched one step down the
hody. The solution is then scaled back to the original station according to
the conical flow assumptiorn and again marched a single step. This procedure
is repeated until a converged solution is obtained. The convergence criterion
for the conical starting solutions applied here was that the change in density
between successive iterations was less than 107° times the free stream value
for each of the points on the body. This converged solution is then used as
the initial plane of data in the marching procedure.

It should be noted tha* for calculations involving spinning projectiles,
the conical starting procedure introduces a small error since the circumferen-
tial velocity a* the body surface changes with longitudinal position, viola-
ting the conical flow assumption. This error is small, however, and the cor-
rect circunferential velocitv at the body surface is accounted for as the so-
lution is marcherd downstrean.

C. Turhilence Mode!

A fully turbulent bhoundary laver has been simulated in each of the re-
ported PLS calculations using a two-layer eddy viscosity model. For the Tong
L/0 forebody and the finned body configurations, the original turbulence model
0f Baldwin and Lomax® was applied. Moderate angle of attack solutions for the
axisyrmetric shell configuration were obtained using both the original Baldwin
and Lomix model and the modified model. Both of these models are described
belowv.

1. Baldwin an? Lomax Model. The two-layer, Cebeci-type, algebraic tur-
bulence rode] reported by Baldwin and Lomax® been used with considerable suc-
cess throughout many applications of the thin-layer Navier-Stokes codes. The
rmodel accounts for the effects of turbulence through an eddy viscosity coeffi-
cient, i and utilizes a purely local analysis of the turbulent region.

In the original formulation of the Baldwin-Lomax turbulence model,
the turbulent eddy viscosity coefficient, Hyo is defined separately in an

inner region, close to the body, and an outer region, as shown below;

(“t) inner y <y
- : (2)

H
S )

outer yc <y

where y is the raedial distance from the body surface and y. is the sralles:

valie of y at which the ianer and outer values of Wy are equal.
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Within the 1inner reaion, the turbulent eddy viscosity coefficient is
defined using a mixing length model

- 2
(”t)1nner =0 2% vl (3)
where the length scele, £, iz defined as
L= ky [1 - exp(-y'/A") ] (4)

k and A* are constants, |w| is the magnitude of the local vorticity vector,
and y° is the nondimensional boundary layer coordinate defined below,

The subscript "w" represents the values at the body surface.

In the outer region, for attached boundary layers, the turbulent eddy
viscosity is defined

(o) oueer = K CopPPuake Fries(y) (6)

vhere K and C., are constants, and Freer(y) is the Klebanoff intermittency
factor, which is equal to 1 at the wall, and decreases out from the wall.
Fyarc is given by

FWAKE = Ymax Fmax (7)

where Fo.. and ynax @re determined from the function

Fly) = y lwl [1. - exp (-y*/A*)] (8)

F is the maximun value of F(y) along a radial profile from the wall to the

max

...................
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boundary layer edge. The value of y at which this maximum occurs is defined
as Ymaxe rurther details of the model can be found in Reference 5.

For analysis of the turbulent boundary layer along projectiles at
small angles of attack (0 < a < 4), the Baldwin-Lomax model performs satisfac-
torily due, in part, to the well-behaved variations of Fmax and Ynaxs both

axially and circumferentially. The lack of crossflow separation allows a
local profile of F(y) to attain a single, well-defined peak. Accuracy in the
selection of the exact location of a peak in F(y) is enhanced by fitting a
curve between three radial grid points at every body location.

2. Turbulence Model Modification. In order to obtain successful pre-
dictions of flow fields containing regions of crossflow separation, modifica-
tions to the original Baldwin and Lomax model have been necessary. The ap-
proach reported by Degani and Schiff® has been adopted here in an initial
attempt to compute the complex flow behavior associated with crossflow separa-
tion and to determine the extent to which such a strategy may be applied to
spinning and nonspinning boattailed projectiles.

In Reference 6, computations for a nonspinning Secant-0give-Cylinder
(no hozttail) projectile configuration revealed that the values of the outer
eddy viscosity celculated by the original Baldwin-Lomax model were much too
high in the regions of crossflow separation. The cause was determined to be
an ambigquity in determining the peak in F(y) (Equation 8). Over much of the
leeward side of the projectile, the radial profile of F(y) developed a second,
extraneous peak due to the shedding of a vortex sheet associated with cross-
flow separation at six degrees anqgle of attack and greater. The behavior of
the function F(y) caused a meaningless length scale to be chosen. This same
behavior of the function F(y) was also repeatedly observed during the course
of the current study.

The strategy implemented here is similar to that of Degani and
Schiff: limit the values of F.., and yg,, obtained by the original model by

anticipating the uncontrolled growth of the function F(y). For each axial
station, a maximum value of the scaling length yp,, is defined as 1.8 times
the value of Ymax on the windward ray.

The implementation proceeds for each roll angle, starting from the
windward ray and ending along the leeward ray. When the local yp,x exceeds
the maximun allowed y .., it is "clipped" to the maximum allowed value. Fmax
and ypax are then frozen with respect to roll angle until the local value of
Ymax 1S again found to lie within the maximum allowed value. A peak in F(y)

is defined if the value of F(y) drops below 90% of the local maxirmum. Where
two separate, distinct peaks in F(y) exist, the peak closer to the body is
chosen. If the two peaks in F(y) merge into one abnormally large peak (or a
peak cannot be found at all), the value of Fp,, is frozen at the value used

for the previous roll angle and the value of y.,, is set equal to 1.8 times
the value on the winduard side.
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Figures 2 and 3 show the representative behavior of F..  and y.,4

for the original and modified Baldwin-Lomax formulations for the nonspinning
SOCRT at six degrees angle of attack. At each longitudinal position, constant
values of Fr.. and yg,, are assigned over much of the leeward face of the

projectile. The Tlongitudinal variation, although not shown here, varies
snoothly since it is controlled by the smooth behavior on the windward side.
It is worth noting here that the cutoff points for Frax and Ymay in Figure 2

do not necessarily represent the roll angles where crossflow separation actu-
ally occurs; they merely reflect the factor of 1.8 being introduced into the
selection process. Furthermore, interpolating between three radial points to
increase the accuracy of the peak locations of F(y) was discontinued where-
ever the cutoff strategy was applied.

ITI. RESULTS

A. Shell Configuration at Moderate Angle of Attack

Pesults were ohtained primarily for the six caliter SOCBT configuration
shown in Figure 4 at Mach 3, €.3 degrees angle of attack, with and without
spin, for flow conditions dunlicating that of the experiments.!3715 Addition-
al results were also computed for the same projectile with no boattail (SOC)
to establish effects of presence of a 7° boattail.

The grid for these computations consisted of 45 exponentially stretched
points between the body and the shock and an equal spacing of points circum-
ferentially at 5° increments. For the case of zero spin, calculations were
performed in a half plane by applying a symmetry boundary condition along the
nidplane of the body, while the computations with spin were carried out in a
full circumferential plane. To properly resolve the viscous effects, the ra-
dial grid resolution at the body surface was controlled such that the nondi-
mensional boundary layer coordinate, y*, was approximately 5 at the first
point above the wall for all roll angles. This was accomplished through the

13. R.P. Reklis and W.B. Sturek, "Surface Pressure Measurements on Slender
Bodies at Anzle of Attack at Supersonic Speeds,"” U.S. Army Ballistic
Research Laboratory, Aberdeev Proving Ground, Maryland, ARBRL-MR-02876,
November 1978. (AD A0640897)

14. C.J. Nietubicz and K.C. Opalka, "Supersonic Wind Tunnel Measurements of
Static and Magnus Aerodynamic Coefficients for Projectile Shapes with
Tangent and Secant Ogive Noses," U.S. Army Ballistic Research Laboratory,
Aberdeer. Proving Ground, Marylandi, ARBRL-MR-02991, February 1980. (AD
AD83287 )

15, L.D. Kayser ani W.5. Sturek, "Turbulent Boundary Lawer Measuremevrts o
the Boattail Section of a Yawed, Spinnin: Projectile Shape at “zok 2.0,"
U.5. Army Ballistic Research Laboratory, Aberdeen Provinz Ground,
Maryland, ARBRL-MR-02880, Novermber 1978. (AD ADE5355)
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adaptive grid technique first reported in Reference 2. The computational grid
was generated algebraically for this axisymmetric configuration.

The marching step size and smoothing parameters employed for the SOC and
SOCBT configurations were chosen according to the results presented in Refer-
ence 10. The marching step size at the nose tip was .01 calibers and was
increased by 5% every 15 steps to a value of .03 calibers at the tail end of
the projectile. Only fourth-order explicit smoothing was applied in these
computations and was set equal to 5 times the step size. Al1 SOC and SOCBT
results were generated on a CDC 7600 computer with a speed of .00247 CPU
sec/step/grid point. The total run times were approximately 30 minutes for a
nonspin case and 60 minutes for a spin case.

Computations were performed by applying either the original Baldwin-Lomax
turbulence model or the modified turbulence model over the entire length of
the projectile.

1. Nonspin Case. For the case of zero spin, the initial appearance and
downstrean growth of the separated region on the lee side of the SOC and SOCBT
projectiles can be clearly traced in Figures 5a and 5b. The circumferential
location of crossflow separation is defined as the roll angle(s) at which the
circurnferential shear at the wall changes sign. The region of crossflow sepa-
ration appears on the leeward side at an axial location of approximately 4
calibers and immediately begins to widen circumferentially around the projec-
tile. The preticted axial position where crossflow separation initially
appears and the size of the separated region is somewhat sensitive to whether
the original or modified model is applied. It is also apparent that a major
effect of the hoattail is to cause this separated region to broaden further
around the projectile.

The computed longitudinal surface pressure distributions on the wind
and lee sides of the SOCBT at a = 6.3° are compared to experiment in Figure
6. The modified turbulence model was used for these computations. The agree-
ment is quite good, most notaply in the vicinities of discontinuities in
strean wise surface curvature. The well-behaved longitudinal variation of
surface pressures is used here as an indicator of the suitability of the
marching step size and the smoothing parameters chosen.

The corputed circumferential surface pressure distributions upstream
of the boattail agree well with experiment with or without the modifications
to the turbulence model, as was previously reported in Reference 6. In con-
trast, Figure 7 shows a comparison of circumferential surface pressure distri-
bution near the end of the boattail configuration for the original and modi-
fied turbulence models compared with experimental measurement. The improve-
ment in agreement due to the modified turbulence model is twofold. First, the
agreement in trend on the leeward side is much improved; and second, the mag-
nitude of the pressure on the windward side agrees within 1%.

The general effect of the modified turbulence model on longitudinal
velocity profiles is shown in Figure 8. For zero spin, at roll angles where
the turbulence scaling lengths are "clipped", a distinct deficit in the pro-
file is consistently generated.
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For zero spin, Figures 9a, 9b and 9c show longitudinal velocity pro-
files near the end of the boattail for the original and modified turbulence
models compared to experiment. These three roll angles are included in the
region of separation as defined in Figure 5h. t roll angles 120° and 150°,
the modified turbulence model gives acceptable agreement with experiment and
shows favorable trends compared to the original turbulence model. At roll
angle 180°, however, the modified model gives a less favorable agreement with
experiment. This implies that the modified turbulence model, as implemented
here, does not provide an appropriate length scale near roll angle 180°.

Very 1little difference in the predicted aerodynamic forces and
moments was observed using either the original or modified turbulence model
for the nonspinning shell.

2. Spin Case. A more sensitive test of the performance of the modified
turbulence model is the prediction of the Magnus effect for a spinning shell.
Application of the modified turbulence rodel to the spin case, it was hoped,
would follow directly from the case of zero spin. However, initial results
indicated that the cutoff distance for Ymax (1.8 times the value on the wind-

ward side) was too strict for the case of spin. By relaxing the cutoff dis-
tance to 3.7 times the value on the windward side, better agreement was ob-
tained between computation and experiment.

The development of Magnus force (sign convention given in Figure 10)
over the spinning SOCBT projectile is shown in Figure 11. Both the original
and rodified turbulence models yield good agreement with experiment. If, when
applying the modified model, the cutoff distance factor for yn,, had been set

to 1.8 rather than 3.0, the Magnus force would have been overpredicted by 20%.

The effect of the modified turbulence model on the longitudinal ve-
locity profiles for the spin case compared to experiment is shown in Figures
12a thru 12c. As for the nonspin case, the nodified turbulence model causes a
velocity deficit compared to the original model. At roll angle 213°, the
modified model agrees substantially better with experiment than the original
model. At roll angles 120° and 240°, the overall agreement is satisfactory.
At roll angle 180° (not shown here) the agreement is less favorable.

B. Long L/D Finned Body Configurations

The results for long L/D finned body configurations are presented in two
parts. First, results are presented for smooth axisymmetric forebodies of a
shape typical of kinetic energy penetrators and comparisons made with wind
, tunnel data. Results are then presented for a complete finned body configura-
tion (forebody plus fins) and comparisons made with inviscid code predictions
and with free-flight range data.

1. Forebodies. Computations have been performed using the PNS technique

to examine the effect of length to dianeter ratio (./D) on the aerodynarics of
axisymnetric liinetic energy penetrator forehodies and the results compared
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with wind tunnel data.l® Figure 13 shows the forehody shape as modeled in the
wind tunnel tests. The primary difference between the computational model and
the wind tunnel model is that the small step decrease in diameter over the aft
portion of the wind tunnel model forebody has been neglected in the cormputa-
tional model. This difference, it is felt, should not have a significant
effect on the prediction of pitch-plane aerodynamic coefficients.

The aridding for these calculations consisted of 60 points from the
body to the shock and 37 points circumferentially around the body in the half
plane of symmetry. The circumferential gridding was chosen after performing
a study exanining the effect of circurferential resolution on an eight degree
cone-cylinder configuration, for free-flight conditions, Mach 4, and free
strean Reynold's number (based on body diameter) of 3.2 million. Figure 14
shows the development of the normal force over the body for varying degrees of
circunferentia’ resolution. VWhile 19 circumferential points may be adequate
for calculations of short L/D bodies, such as shell configurations, long L/D
bodies require rmore resolution for accurate solution. Circumferential resclu-
tion of 37 points and above appears to g3ive adequate resolution for these long
axisymmetric bhodies.

Results are presented here for Mach numbers of 4 and 5, 2° angle of
attack, ant turbulent flow conditions over the body. Free stream conditions
corresponding to the wind tunnel test conditions have been used. Constant
wall tenperature boundary conditions, (wall tenmperature = 294K) were also
applied at the body surface.

After obtaining the initial plane of data from the conical marching
procedure at a position 02.53 calihers from the nose, the solution was marched
down the body using a step size of .021 calibers, The spacing from the wall
to the first point above the wall was adjusted so that the first point above
the wall was within the laminar sublaver; the boundary layer coordinate, v*,
was maintained less than five.

Figure 15 and 1¢ show the development of the normal force and pitch-
ing moment (referenced to the projectile nose) over the body at Mach 4 and 2°
angle cf attack. Good agreement is seen between the computation and the ex-
periment at 25 calibers. Scatter in the experimental data at 35 calibers is
evident, enphasizing the difficulties in performing such a test for these long
bodies.

Similar agreement is seen for the results at Mach 5 and 2° angle of
attack, shown in Fiqures 17 and 18. Again, scatter in the experimental data
is evident at the higher L/D's.

Figure 13 shows the effect of Mach numher and Reynold's number on
the development of normal force over the body. Here, the results discussed
above for Mach 4 (Re = 0.41 million, based on body diameter) and Mach 5 (Re =
0.54 million) are shown along with a free-flight calculation at Mach 4 (Re

. F. Brandox, "private communications,"”

unpublished wind tummel data, U.S5.
Arm. Ezllietl2 Pesearcn Lakorator., sberieer. Provin: Sround, Mir.la..
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2.2 million). Evidently ir this Mach number and Reynold's number regime, both
Mach number and Reynold's number are significant parameters to be simulated.
While cormputations can, .o some degree, Simulate both Reynold's and itach nun-
bers, such simulation is difficul®t in the wind tunnel and suggests the need to
scale the wind tunnel data to free flight conditions for these long L/D
bodies.

The effect of leagth to diameter ratio on the development of normal
force can also be deduced from Figure 19. For shorter bodies, L/D < 12, the
development of normal force increases significantly with L/D, and the vari-
ation is due almost purely to inviscid effects. For larger L/D's, the vari-
ation of normal force with L/D is smaller, and is dominated primarily by
viscous effects. For lenqgth to diameter ratios greater than about 20, the
normal force, in the range of Reynold's numbers of interest, shows a small
increase due to the thickening of the boundary layer.

2. Finned Projectile Configuration. The finned body confiquration for
which calculations have been performed closely resembles the M735 Army projec-
tile. The modeled finned body configuration is characterized by a conical
nose section joined teo a2 smnath cvl<ndrical main body with six synmetrical
swert fins a*“ache? 2o the aft section of the nrojectile. Figure 20 depicts
the basic dimensions of this configuration. The actual projectile differs
from the modeled projectile in that the actual projectile has: (1) circumfer-
ential grooves over nuch of the cylindrical portion of the body to prevent the
sabot from sliding off the body in the gun tube; (2) fins which have a non-
synmetrical sectional geometry to dinduce roll, and (3) a slightly rounded
nose. Modeling the projectile with a sharp nose and symmetrical fin section
are not the result of inherent limitations of the computational model, but
rather a matter of convenience for these initial calculations. While modeling
of the sabot grooves may be possible using surface blowing, wind tunnel re-
sults have shown that such grooves have almost no effect on the value of nor-
mal force and pitching moment. These grooves do, however, have a noticeable

e‘fect on drag, particularly at higher angle of attack.

A shadowgraph of the actual projectile in flight at Mach 4.3 is
shown in Figure 21 and displays some of the relevant features of the flow
field; a bow shock wave emanating from the nose of the projectile, shocks at
the leading edge of the fins, expansion waves at the cone-cylinder Jjunction,
and a houndary layer which increases along the body.

Results are presented here for Mach number of 3, 4 and 5, 2° angle
of attack, and turbulent flow conditions over the body. Atmospheric flight
conditions were simulated by maintaining the body temperature at the free
stream value of 294, Calculations were made with two of the fins oriented
vertically, enabling a half plane of symmetry to he applied.

An initial plane of data was generated using the conical step back
procedure at position 9.36 calibers from the nose. The solution was then
marched down the hody to & position near the beginning of the fins using a
step size of 0.014 calibers, 60 points from the body to the shock, and 121
points circunferentially about the body in the half plane of symmetry. Over
the cone-cylinder portion of the body only fourth-order explicit smoothing was
used. Spacing from the wall to the first point above the wall was again main-
tained so that at least one point was in the laminar sublayer.

o



"f
a

At 124N

Nnce on the finned portion of the body, the grid was obtained
through the use o an elliptic grid generator.’ Points on the body surface
were clustered near the leading edge of the fins, as shown in Figure 22.
Fiqures 233 and b show a cross section of the grid on the finned portion of
the body at an axial Tlocation on X/D = 13.2. Grid points are clustered near
the body to resolve the boundary layer.

Substantial difficulty had been encountered in previous calcula-
tionst? in marching the solution over the finned portion of the body. Prior
solutions were only obtained using large amounts of smoothing and a coarse
grid which did not properly resolve the viscous layer over the fins. For the
current set of calculations, a small fillet was applied axially from the cone-
cylinder onto the leading edge of the fins. The fillet, of constant radius,
began 0.07 calibers in front of the fins and ended at a position where it be-
cane tangent to the leading edge of the fins. This allowed a solution to be
obtained with significantly improved resolution of the boundary layer over the
fins and with only 5% of the previously applied smoothing. Current values of
smoothinat? used for these calculations are shown in Table 1. In marching the
solution over the finned portion of the body, the step size was reduced from
N.014 calibers to 0.0072 calibers.

Table 1. Snwothing Tarameters for Finned Body Calculations

SMASTHING FINS

PARAMETEPS CONE-CYLINDER Mo=3 M=4 M=5
SM 0.015 0.05 0.05 0.025
SMUIM 0. 0.1 0.1 0.05
EPSA c. 0.05 0.05 0.025
LrSE 0. 0.05 0.05 0.025

Figure 24 displays the pressure along the body on the wind and lee
sides and at a roll angle of 90° at Mach 4. A sharp rise in pressure on the
leading edge of the wind and lee fins is seen, followed by a sharp drop at the
axial location where the fin reaches 1its maximum span. Over the finned por-
tion of the body the ¢ = 90° line shows a jump in pressure due to the inter-
action of the shocks from the adjacent fins. It is interesting to note that,
due to the significant reduction in smoothing required to generate a solution,
the pressure predicted on the leading edge of the fins is smaller than that

nzeers,, Jul FPatrerson, Py Kutier, T, Pulliam ani .0, Stearr, Vi
Numericzl Simdlazion of Hypersonice Viscous Flow Over Apbitrary Seometries

1t Hinw Aecle of Atta M ATAA Paper Noo 81-0050, January 18°7,
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previously calculated, and the jump in pressure due to the interaction of the
shocks is more pronounced.

Figure 25 shows the developnent of the normal force coefficient over
the body. The normal force coefficient shows a moderate contribution due to
the conical nose and cylindrical portion of the body and a larger contribution
due to the finned portion of the body. In this figure comparison is made with
results obtained with the NSWC inviscid code (SWINT)!® and range datal® for
the actual projectile configuration. The SWINT code solves the Euler equa-
tions for the supersonic flow over bodies with fins and/or wings and for the
external flow about bodies with inlets. The code makes use of the thin fin
approximation, collapsing each fin along a single radial plane in the grid.
The fin leading edges must be sharp and cannot extend beyond the bow shock.
Variations in the fin cross section geometry can be accounted for in the code
by the application of appropriate local analysis such as shock compression and
Prandtl-Meyer expansion theories, though this has not been utilized in the
computations presented here. For the current SHWINT computations, the fins
have been modeled as a flat plate of zero thickness.

Developrment of the normal force as predicted by the PHNS and SWINT
codes compare well, particularly over the cone-cylinder portion of the body.
For forebodies with L/D's greater than the current configuration, differences
in the viscous (PXS) and inviscid (SWINT) code predictions can be expected due
to viscous effects. (Figure 12, previously presented, shows little effect of
Reyncld's numher at L/0's less than about 12.) Over the finned portion of the
body, slightly more 1ift is being predicted in PNS computations. Good agree-
ment between the total value of normal force for both procedures is seen com-
pared with the range data.

The variation of the predicted values of the slope of the normal
force and pitching moment coefficients with Mach number are compared with the
values predicted by the SWINT code and with range data in Figures 26 and 27.
(Pitching moment here has been referenced to the center of gravity shown in
Figure 20.) The PiS code is seen to predict slightly larger values of normal
force and pitching moment compared with the range data and inviscid code pre-
dictions at Mach 3 and 4. PNS and inviscid code predictions agree very well
at Mach 5. Differences in agreement between the PNS and inviscid code predic-
tions at Mach 3 and 4 occur almost entirely over the finned portion of the
body, though a%t this point such differences can not be attributed entirely to
viscous effects. It should be noted again that the exact fin geometry has not
heen modeled in either the PNS or SWINT computations. Efforts to model the
fin geometry as closely as possible are underway.

16, AE, Wardlav, Jr., F.P. Baltatie, J.M. Solomow and L.B. Hackermar, "An
Ivviseid Computational Method for Tactical Missile Configurations," NSW2
TR £l1-457,

18, Unpubiished range data, U.S. Army Ballistic Research Laboratory, Aberdeex
Provin: Sround, Marylavi.
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An additional calculation at Mach 3 was run over the finned portion
of the body using 121 points circumferentially in the half plane. Variations
in the predicted values of normal force between the computations with 121 and
181 circumferential points was less than a tenth of a percent. Comparisons of
the circumferential pressure distribution at several axial stations showed
very little difference. This result established that the current circumferen-
tial resolution of 121 points was adequate.

IV. CONCLUSIONS

A. Computations at Moderate Angle of Attack

Computational results for SOC and SOCBT shell configurations with and
without spin have been generated at angle of attack 6.3°. One set of results
employs a modification to the Baldwin-Lomax turbulence model; the other set of
results uses the model in its original form. Both sets of results were com-
pared to available wind tunnel data in order to assess the predictive capa-
bility for flows with crossflow separation at this angle of attack.

For the case of zero spin, the modified turbulence model significantly
imoroved the agreement of circumferential pressure distributions where cross-
flow separation is present. Velocity profile comparisons on the hoattail were
generally improved, with the modified model consistently generating a velocity
deficit compared to the original model. The variation between the predicted
pitch plane and drag coefficients using the original and modified turbulence
nodels was very small, and the coefficients were in good agreement with
experiment.

For the case with spin (PD/V = .19), the modified turbulence model had to
be relaxed to obtain good agreement with experimental Magnus force and veloc-
ity profile data. The need to allow larger scaling lengths for the case of
spin is evidence that characteristic differences may exist in the turbulence
rmodeling requirements for spinning and nonspinning bodies with crossflow
separation.

B. Computations for Long L/D Finned Body Configurations

Results of the computations for the long L/D axisymmetric forebodies show
good agreement with the wind tunnel data for pitch-plane aerodynamic coeffi-
cients at L/D's of 20 and 25. Scatter in the experimental data at higher
L/D's makes comparisons difficult. The computations demonstrate the impor-
tance of considering viscous effects for these long bodies.

Computations were performed for the finned body configuration and show
encouraging agreement with range data and inviscid code predictions. Compute-
tions were ohtained with significantly improved resolution of the viscous
layer on the fins and without the need for large amounts of smoothing over
this portion of the bodv, compared to results previously obtained.
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Figqure 1. Grid Coordinates and Notation
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Figure 2. Circumferential Variation of F .. for SOC and SOCBT
Configurations; M = 3, a = 6,3°, PD/V = 0,
Re = 2,13 x 107/m, X/D = 4.29
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Figure 22. Grid on Body Surface on Finned Portion of Projectile
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LIST OF SYMBOLS

a = speed of sound
Ch = pitching moment coefficient
Cm = de/da, slope of the pitching moment coefficient
a
Cn = normal force coefficient
CN = dCN/da, slope 2f the normal force coefficient
x
Cy = Magnus (side) force coefficient
D = diameter of model
e = total energy per unit volume of fluid, normalized by pwai
ES,E,G = flux vectors of transformed gas dynamic equation
L = projectile length
M = Mach number
p = pressure normalized by p_a2
PD/V = nondimensicnal spin rate about model axis
Re = Reynold's number per unit length, o M a_/u_
ﬁe = Reynold's number, po_a_D/u_
ReD = Reynold's number based on diameter p M_a D/u_
5 = viscous flux vector
U,V,W = Cartesian velocity components along the x, y, z axis,
respectively, normalized by a_
Xy¥ 2 = physical Cartesian coordinates
y* = distance from wall in law of the wall coordinates
a = angle of attack
" = coefficient of viscosity, normalized by free stream value
My = turbulent eddy viscosity coefficient

€,N,¢ = computational coordinates in the axial, circumferential, and
radial directions
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LIST OF SYMBOLS (Cont'd)

p = density, normalized by free-stream density
T = shear stress

¢ = circumferential angular coordinate

w = local vorticity vector

- © = free-stream conditions
P4

. W = body surface values
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