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Abstract. For neurophysiologists not normally engaged in modeling and simulation, we

introduce the subjects. The availability of low-cost, high-performance digital computer sys-

tems allows the development of detailed models, and their simulations, which can greatly aid

the progress of experimentation. We review the ready-to-use simulation routines on IMSL

Inc. libraries. Problems of error analysis in numerical methods are discussed. The virtues of

general-purpose workstations for computer-aided-engineering are listed, and the application of

such workstations to neural modeling is pointed out. This paper is the first of two--the

second provides a detailed look at a particular example of modelling: Plasticity in kitten

visual cortex.
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Introduction

A neurophysiologist takes pride in understanding how at least a small part of an animal's

nervous system functions. The understanding ultimately is built upon knowledge gained by

direct observation and experimentation with animals. In this and a subsequent paper, we

address an important adjunct to direct experimentation -- expressing hypotheses as quantitative

relationships (models) and simulating the models to verify or predict in detail the outcome of

experimental tests.

This first paper discusses:

(1) When modeling and simulation are appropriate,
(2) tlow to begin the process of modeling and what features a good model will have,(3) A guide to simulation techniques and error analysis.
(4) General-purpose layout and simulation packages for logic circuit design and their possible '
value in neurophysiological modeling and simulation.

The first paper is intended to interest experimentalists who normally do little or no model-

in- in connection with their research. In the se( ond paper, we explain in detail a model for

development of single neuron plasticity in the mammalian visual cortex. By focusing on

development, our model naturally features the use of differential equations to describe growth

processes. By considering the simultaneous responses of many neurons, our model requires the

use of matrix algebra to describe the strengths of interconnections in a network. More experi-

enced modelers may be engaged by the second paper; we hope they will not be slighted by our

omission of other, classic and well-known neurophysiological models, from Hodgkin & Hluxley's

to Schwartz' and Grossberg's work.

Distinction between modeling and simulation. A model is a representation of some-

thing important by something convenient. For us, "convenient" will mean a mathematical

..-....-......-....... -....- ,.. .... ............-.........-........-..........-.......-... %. .- ................... ;-



Guidelines for Modeling

relationship, presumably based on an underlying mechanism which explains the "important"

results of experiments. In some cases, solution of a model's differential equations, for an initial

condition and a definite input, will provide an analytical formula, which will show once a par-

ticular relationship between variables and parameters. The analytical solution is desirable, but

the sometimes not feasible, or can be obtained only in limited contexts or with unwarranted

assumptions. In such cases simulation helps. Simulation is an algorithmic search for the

answer to a modeling problem, given a particular starting point and driving function. Numeri-

cal analysis embodies the set of general techniques for implementing the simulation, usually on

a digital computer.

." Relevance. Beyond their obvious usefulness in hypothesis testing, two other phenomena

help make modeling and simulation relevant for all neurophysiologists:

(1) The continuing decline in the price of fast computing machines with large memories,

friendly operating systems, and good graphic capabilities, make simulations of large or complex

systems feasible to more researchers. We think complex models are best built with simple com-

ponents (modules). however numerous and interconnected the components may be. The temp-

tation to use compiuting power to simulate ad hoc arrangements of empirical relationships

should be resiste(I. Later in this paper (Part 4) we will indicate that computer-aided-

engineering (('A') syst( is for digital circuit design offer features which help organize modeling

around hicrar'hiC:1l mo(Ules.

(2) The growing demands of animal rights activists, and some politicians, to encourage

researchers to substitute comjputer simulations for direct experimentation on mammals make

simulation seen m)re valuabhe than it really is. Much emotional prose has been written about

animal rights and unfriendly (iuestions will continue to be asked about the necessity of animal

•.. 2
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Guidelines for Modeling

experimentation. It will behoove researchers involved in mammalian experimentation at least

to be aware of the limitations and virtues of simulation, if for no other reason than to answer

the inevitable questions. Researchers should appreciate, however, that demands often go

beyond relatively straight-forward issues of animal care and surgical anesthesia; rather the

matter for many seems to be justification for any use of mammals in research 37 . We can note
.'5

that research done only by simulation is not science at all but an exercise in precision specula-

tion. In such a case, the frustrations of researchers seeking to test their models on animals will

be matched only by the hypocrisy of people who rally against the use of cats, dogs and mon-

keys in biomedical research while those same people are willing to accept medical diagnoses

and treatments developed in animal experimentation research.

1. When should modeling be attempted?

Careful unbiased observation, often with the aid of elaborate equipment, generates raw

data. Computer graphics can help in the presentation of data, allowing the researcher to view

it from different perspectives. Statistical summaries can help compress the data presentations.

The researcher spots a pattern and further organizes the data into relationships which accentu-

ate the pattern. An inderlying cause for the pattern is postulated. How precisely a cause-

and-cffel relationship can be formulated determines if the idea becomes a model. If the

* research is at such a preliminary stage that major qualitatire issues are undecided, then modcl-

ing is i)reiature 9 . Some researchers prefer to generate alternative qualitative hypotheses as a

basis for furlher experiments. If competition rs cooperation, or pump vs diffusion, or genctics

vs environment are the sorts of issues at stake, then perhaps simple yes-no experiments are all

that are ne(led. I lowever, even u,hen the focus is on choosing betwreen alternative hypotheses,

3
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Guidelines for Modeling

it is often possible to express each alternative quantitatively. For example, suppose you postu-

late that motoneuron death during development is due to either a fixed genetic program or to

lack or target tissue to innervate. Then experiments in which target tissue is decreased or

increased from normal can help decide the issue, and show perhaps a linear relationship

between amount of target tissue and number of surviving motoneurons t .

Curve fitting. The process of modeling will generally result in one or more equations or

graphs, to describe relationships between variables in the experiment. It is appropriate to use

likelihood estimation techniques (often the least squares method) for finding the best values of r.

parameters in the equations. There is a considerable literature on the subject of curve fitting

(see Daniel -" Wood8 . for example). The reader should be cautioned, however, about sonic of

the more ambitious aims of curve fitting, beyond parameter estimation. In particular, it is pos-

sible to work with a set of input-output data by making the data fit a linear, logarithmic, or

power relationship, or finding some polynomial to approximate it. We think that this latter

use of curve fitting is to be avoided, because if a researcher must resort to devising model equa-

tions directly from the data, without a mechanism for supporting explanation, then the model-

ing process may again be premature. This is not to say that much literature on mathematical

mo(eling does not emlphasize such mechanism-independent exercises in problem solving, often

for the good reason that some urgent need exists to predict the future course of some (usually

economi.) process -- see 1, 2, 3, 26, for example. Because modeling is applied to such a wide

range of ihenomuena, from sociology to physics, some judgment--often common sense--is needed

to choose approaches useful for neurophysiology research.

Statistical testing of hypotheses. None of the above remarks should be construed as

discour:ement from examining the quality of output data by use of various statistical tests,

4
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such as Chi-square. The reader should bear in mind,' however, that, in general, such tests have

little to do with formulating models, and that the hypotheses they test are often the computa-

tional result of generating simulation data from a true model. In the case of statistical ana-

lyses, computational formulas are necessarily independent of particular models. Of course,

there are borderline cases. For example in deciding about the quantal nature of transmitter

release from vesicles the Poisson probability calculation served as a test for the mechanism, not

just as a means of analyzing the data".

Linear System Theory. This is a category of formalism which can tempt modelers of

the CNS3 8. By collecting responses to step and sinusoidal inputs, then finding what combina-

tions of linear differentiail elements can approximate the transient and steady state responses.

researchers can fill in the "black box". Linear system theory emphasizes creating a set of first

order differenl tial equations to describe a process 2 '3 5 . Once such a system is devised, the need

is created to seek neural integrators, differentiators, filters and amplifiers in the neural tissue.

To its credit, linear system theory has provided a number of useful models, especially in motor

control, particularly eye movements5'24. On the whole, we view this black box approach as

1useful onlv if basic m'echanisms suggest that reasonably linear elements may actually be part of

a neuronal assembly.

Control of Stimuli. In some cases (for example, determining whether a certain general

environimeni has a positive effect on development of cortical thickness 31 ) the researcher has

relativelv little control over all the stimuli directly relevant to the output observed. Even pre-

ciselv controll:hblh. sensor% stimuli, such as visual patterns on a screen i, may be several

synapses away from tlie input fibers to neocortex the experimenter may really want to control.

Those contenwnlatinag a model for a process should have at least some hope that the immediate

25 V.



Guidelines for Modeling

inputs to the process can be known, and controlled. Otherwise, time may be better spent

achieving such control, instead of inferring or guessing about the inputs to a model.

Modeling should be attempted when a mechanism (or at least a simple relationship) sug-

gests itself as an explanation for trends in output data. Modeling is a way to move beyond

linguistic labels for phenomena, beyond curve fitting of results, beyond black boxes, to an

understanding and a way to test that understanding. Perhaps a model's highest calling is not L

to attempt. premature explanations of too little data, but to synthesize new meaning from too
much, conflicting, (ata 2 2 . Whether an attempt at modeling is successful may be decided by

some of the issues addressed in the next section.

2. To Begin Modeling.

On the one hand, modeling can conjure visions of large-scale or small-scale replicas of the

object tinder stu(y. Even if mechanical or biochemical versions are replaced by electronic com-

ponents, the resulting hardware model represents an extreme philosophy -- that the model

should realistically duplicate as many features as possible of the object or process of interest.

On the other hand. the power of mathematical thinking to deal in abstractions can be car-

ried to extreme. The process to be modeled can be considered an example of a general concept,

requiring all as)ects of the process to be converted to the formalism of the theory, often caus-

ing the original o)ject to be greatly distorted. Linear system or sequential computer theory are

often the distorting forma li sms.
J%

In neurophy iolog ical inodeling, it is perhaps unwise to drift to either extreme before more

balanced approaches are worked with. To model the exact cable properties of every branch of

everv dendrite iII a neuronal awsemnblv, or to consider that some region of neo-cortex satisfies all
a.
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Guidelines for Modeling

the axioms of an algebraic vector field may be justified only if the input-output relationships of

the relevant individual neurons have become well understood.

In this section we will consider the modest goal of starting a modeling project at one level,

and in section 1 we will develop the notion of hierarchically modeling two or more levels. Here

we first discuss mathematical formulations, especially differential equation forms; then we

look at fluctuations in data, mechanisms for explanation, and end with a caution about

anatomical limitations in modeling.

Models can be started in two ways, which are basically equivalent, and which should con-

verge to the same final form. First consider the data from experiments. If variability is (at

least temporarily) removed, some satisfaction can be gained by finding a simple mathematical

function to describe the dependent and independent variable's relationship. We will hope that

the mathematical function describes some physiological process or mechanism which generated

the data in the first place. Second, consider starting with a list of such processes, and perhaps

a "wiring diagrain" which may sequence the action of the processes. A mathematical descrip-

tion of these processes, plus their arrangement in a wiring diagram, should produce a model

similar to the data-driven one.

Unfortunately, either approach, especially the first, suffers from an embarrassment of

riches. With regard to finding a function to represent a graphic or tabular or time series set of

(lata it is a cliche to say that there are infinite possibilities. Even if there is only a finite set of

ortho gonal functions, the choice is still great. Suppose, for example, our output shows a

damped oscillation as a funct'iofn of time. We could choose a function which is a product of a

decayiIfg eXponential, and a sinusoi(d (and gain factor C):

Y(t) G * exp(-ti'a) * sin( . t)

5- 7



Guidelines for Modeling

Or we could choose a linear second order differential equation:

a d-y  -ib +c=f(input, initial conditions)
dt'  dt

What's the difference? Y(t) can be a solution to the equation. Generally, however, it is not

explicit how the expression Y(t) depends on the particular input or initial conditions in the

experiment. Presumably this could be dealt with by making G, a, and w more complicated

functions. On a more important level, the second order differential equation is appealing

because it implies that (1) several different input-output curves, or separate experiments, con-

*" tributed to the formulation, and (2) known rate relationships for underlying biological

processes can simply be added together (linearity assumption).

Let us address the notion of assumptions. Critics of particular models search for unstated,

unrealistic, assumptions the modeler may have made to achieve simplicity. But if if the goal is

to model only one of the responses of a generally complicated neural tissue, simplifying

assumptions made in setting up the model can be crucial to the generality of its success. There

are three levels of assumptions:

(1) that the observed output is at least partly caused or controlled by a particular mechanism;
P

(2) that a particular mechanism can be (lescribed by a certain equation; (3) that some terms in

an equation may be inconsequential for computational purposes. The first two kinds of

assumplt ins are cert ainly important in the beginning of the modeling process. The third kind

of assumption is dealt with in s,,ction 3.

Our emlphasis on differential (or difference) equation (DE) models has its own assumption:

that we are ioldeling processes whose outputs (if not )arameters) vary as a function of time,

even 'iven steady inputs. This is what we expect from processes, such as growth, decay,

8
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diffusion, and oscillation 4',3 . Expressing relationships in the form of DE's has more physical

descriptive value, but has less of the immediate predictive value of a formula which is a solu-
d£

lion to a DE. Eventually both the DE's and their solutions should be derived and generated,

but the DE is more properly called a model and the solution is a particular answer.

Fluctuations. Besides uncertainty about underlying processes, biological modelers often

have another problem not usually seen in physical science modeling: physical modeler-

counterparts often do not: considerable variability in data. Much could be written about. vari-

ability -- that one person's noise is another person's signal, etc., but it is inevitable that in

much neurophysiological research, an experiment performed identically in two preparations can

yields two different results. In beginning a modeling project, then, you must decide what to do

about this variability. The simplest procedure is to average results over trials until noise is

significantly less than signal. This has the disadvantage that you may end up ignoring time

trends or functional subcategories. The specialty of statistical modeling, can be invoked to deal

more carefully with assumptions about variability in results; Gilchrist"8 provides a good intro-

duction. Essentially, you can make a decision to treat input or output as a random variable.

What distribution your random variable takes then determines the subsequent statistical

modeling. However, we advise that modelers be cautious about introducing random variables

into their explanations, and instead make an effort to follow a deterministic pathway -- this

should yield simplicity, in the beginning.

What mechanisms and basic laws can be called upon to model neural processes?

Ideally, for reductionists at any rate, everything biological could be explained by fundamental

physics and chemistry--there would be no need even to resort to membrane or synapse or nerve

cell models as basic assumptions. In the absence of this ideal, consider four approaches:

-p,



Guidelines for Modeling

(1) Analogy. Assume the process to be modeled is like some well-defined mechanical or electr-
ical element, like a spring or a capacitor.

(2) Function-from-structure. Usually the physiological or behavioral process can be recorded
only at a level less microscopic than the underlying anatomical structure, and one can
devise models, using those substructures, which account for the grosser responses meas-
ured in the experiment. We will see this approach in the second paper, when assumptions
about synaptic function are called upon to explain responses of whole nerve cells.

(3) Physiological sub-units. Assume all the important inputs or projections to a certain pro-
cess can be accounted for. If the physiological operations of these inputs in response to
the relevant stimuli can be measured and quantified, then these operations can become the
mechanisms for the model. This last procedure provides the most hope that the model
can be tested without devising new, more microscopic methods of analysis. We will see it
at work also in the second paper.

(4) Bottom-up direction. Some neural processes have been well characterized, and are now
textbook examples--generation and prupagation of action potential, release of transmitter,
characteristics of channels, postsynaptic action of certain transmitters (including potentia-
tion and habituation) etc. By restricting sub-units of the model to these relatively well
understood mechanisms, the foundation of assumptions becomes more solid.

Further considerations about anatomical knowledge in neural modeling. In the

experiment considered especially in the second paper, a nerve cell or group of cells responds to

a stimulus, and that response serves as the object of our modeling effort. Being able to inter-

pret. the results of such an experiment depends on knowing something about the input to the

cells in question. Ideally we would like to know every cell projecting to our target: where their

synapses land in the dendritic tree, whether synapses are excitatory or inhibitory, and whether

the target cell has any reciprocal connections with its input. In developmental modeling, the

job may be to predict changes over time in the strength and arrangement of these connections.

A modeler may encounter frustration if such basic anatomical knowledge is lacking. For exam-

pies, all annoyance of working with invertebrate CNS neurons is that connections must often

be inferred from two-electrode stimulate-and-record experiments instead of direct anatomical

tracing--small caliber fibers tangle together in dense neuropils which challenge the skill of neu-

roanatomists to unravel- 0 .

10"9 10
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Once a wiring diagram is reasonably in hand, one can begin its description by labeling

nodes and branches. The nodes can index the rows and columns of a square matrix, and the

branches can fill in the magnitudes and signs of the matrix elements. For example, if node 3

connects with strength 4 to node 6, element M 36 =4. For further details, see any text on

linear algebra, such as Hoffman & Kunze.

Other help with modeling. Besides the books on case studies 1, 2, 3, 26 cited in Sec-

tion 1, there is a modest literature on basic principles of modeling, for biological and other

fields. We have found Saaty & Alexander3 3 and Cross & Moscardini 7 worthwhile introduc-

tions. Note that, especially if a new technique is involved, experiments will seem to generate

new data which require a fresh approach to their understanding. However, the best first step

in starting your model may be not to work with your own results, but to review what others

have done in analogous situations. While this may seem mundane advice, and even frustrat-

ing, considering how fragmented the neural modeling literature is, it should be worthwhile.

Additionally, once your model has been mathematically formulated you may find that other,

different systems have been similarly structured, and solution techniques in those other systems

may be userul to you.

What to hope for as the modeling proceeds. If mechanisms or subunits (primitives)

have been identified, and an approach selected to model them, then the primitives can be

linked together, with structural (anatomical) considerations. The result will be a set of vari-

ables and parameters. Values of the parameters need to be estimated. With even modest suc-

cess constructing a tentative model, one becomes ready either for proving theorems about the

model's solutions, stability, etc., or for simulating its performance. The modeler should keep in
of 2
.mind the relevance of his work to experimentation. As MacGregor & Lewis25 say, "...the

1V
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modeler who does not spell out how his model can be contradicted experimentally has not lived

up to his responsibility..." (page 391).

Let us conclude this section with an example illustrating limitations in modelling. Con-

sider a problem in neural development, but not one having to do with single unit recording:

how to explain the migration of neural crest cells, in the embryo. A considerable amount of

information is known about the timing and movement of newly generated cells, and their desti-

nations in various parts of the emerging peripheral nervous system and other sites23 . Even

congenital deformities of the face, due to improper development of the neural crest, are known.

What we would like to know, in order to model this activity, is a sequential (and perhaps

recursive) algorithm which instructs the migrating cells. In fact, progress has been made in a

number of regards--structural cues, such as arrangement of glial cells, are known, and chemical

signals, including cell adhesion molecules, seem to have influence. Yet, this information does

not seem to be sufficient to suggest any particular growth algorithm. Important qualitative

issues remain unsolved: Is the movement active or passive? What role does genetics play,

independent of environment? What are the signals for stopping movement? Partly the prob-

lem is that simulation of the model would have to generate a three dimensional pattern of cell

movement,, a difficult enough problem in computer graphics, where an instruction set is pro-

vided, and a virtually hopeless problem when, in the neural crest case, the instruction set can

only be guessed at.. Another limitation for neural modellers is that migrating crest cells have

not formed a synaptic information network, and the understandings from dealing with such a

network are not available.

Basically, attempts to quantitatively model neural crest cell migration would be prema-

ture g. The best research direction is toward further observations of migration, while

12
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systematically manipulating the environment in which the migration takes place. In vitro sys-

tems which mimic the embryo in vivo would, according to LeDourain 23 , provide the necessary

breakthrough.

3. A Guide to Simulation Techniques and Error Analysis

Modeling by itself is worthwhile because the effort to model will require a researcher to

confront the data and devise mechanistic explanations. However, the value of a model will

increase when it is used to determine results from hypothetical inputs. If the model's output

can be easily calculated by hand, so much the better; but often the model's performance must

be simulated. How much effort should the researcher devote to methods of simulation? We

think the effort should be minimal. This means, in practice, that almost anyone can avoid

excessive programming by using general purpose simulation packages. In this section we are

not going to review the simulation techniques themselves -- rather we will offer a brief guide to

software available on various levels of hardware. It should be noted that some of the software

- especially at the workstation level - is user-friendly: once a model has been laid out and an

input specified, the computer will do everything required to give a graphical output without the
4

user having to specify or understand the simulation technique.

The most succinct advice we can offer about simulation is this: Nearly all main-

frame systems in scientific establishments have available the IMSL Inc. library of

routines. The documentation for IMSL should be investigated as a first step"* . The

main INISL ,Library has over 500 Fortran subroutines, organized into three categories:

t *This is not meant to sound like an uncritical advertisement for IMSL, use of their routines has its own limitations. However, IMSL

standb alone as the main commercial:er of this 'penal software

13
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(1) Mathematics
Interpolation, approximation & smoothing
Differential equation solvers
Eigensystem analysis
Linear Algebraic equations--solutions
Linear Programming
Non-linear equations
Optimization
Transforms--FFT and inverse Laplace
Vector & Matrix arithmetic

(2) Statistics
Basic statistics--estimates of mean & variance, correlation, etc.
Analysis of variance
Categorized data analysis--contingency tables, life tables
Non-parametric statistics
Multivariate statistics, including maximum likelihood estimation
Regression analysis
Sampling (random) with inferences regarding mean
Time series: time and frequency domain

(3) General Applications
Generation and testing of random numbers
Special functions--Gamma, Bessel, elliptical integrals, etc.
Utility routines--sorting, printing etc.

The full library can be used on machines as small as Apollo 320's and DEC PDP-11's

which support Fortran. All the user need worry about is the presence of a standard Fortran

compiler on the machine 2.

Once routines have been selected to simulate a model, a user needs to choose how the

input will be presented to the simulator. In some cases the input may be created internally by

a random number generator. Morgan 27 has useful advice about this statistical technique,

including an introduction to Monte Carlo methods. In other cases, if the modeler wishes to use

9IMSI, has selected two subsets of frequently used subroutines for the IBM PC One, called MATH/PC, has subroutines from all of the
categoones of section (1) of the table above, except for linear programming, plus some special functions and utility routines The other, called
STAT/PC. has a selection from each of the section (2) categories, plus some random number and utility routines
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.'

real data from an experiment, there will be need for a communications interface between the

data-collecting apparatus and the computer for simulation.

Error Analysis. Using pre-packaged routines for numerical analysis removes the user

from the algorithms and code underpinning the routines. Ideally the commercial packages will

be well-tested modules. However, there is the drawback that difficult-to-detect errors may

arise in the simulation process. Here we don't mean errors which can be corrected by debug-

ging code, but errors intrinsic to the use of a digital computer to approximate functions 3 .

Numerical analysis errors are of three sorts:

(1) data representation errors: roundoff, chopping, base conversion, floating point.

(2) functional approximation errors: transcendental functions must be approxiniated by

operations involving only addition and multiplication, or by table look-up. In either case,

the approximation itself, even if perfect data is used, will result in some error. -'

(3) truncation errors: continuous processes, especially differential equations, are approxi-

mated by discrete difference methods. Truncation errors are expressed as the lowest

power of the step size neglected by the numerical scheme. For example, the differential

equation y' = f(x,y) can be approximated by the Euler method as

Yn+I = Yn ; hf(x, Y n),

which has a truncation error of order h, since the Taylor series

2a

y(x+h) =y(x) + hy ' (x) - y' ' (x) +

becomesh 2

y, +I y, + hf(xn, Yn) + r. ' (xn, Y) +

14 'i

I.i
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upon substitution of

xn+ n = xn + h, y. = y(xn) and y' = f(x,y).

The Euler method simply neglects all but the first two terms, so (assuming f is smooth)

the error between the approximate and the exact solutions falls off quadratically as the

step size h is decreased.

The subtraction of two nearly equal numbers is an operation notorious for introducing

error. Because subtraction is used in it, numerical differentiation is sensitive to rounding errors

and more difficult to work with than numerical integration.

In a limited way, the accuracy of a numerical routine can be improved at a sacrifice in

speed of execution. Representing numbers by "double precision" is the start of this more accu-

rate approach; giving the pre-packaged routines smaller stopping criteria 4' continues it. If a

numerical method is of order h5 (such as the Runge-Kutta method), halving the step size of the

search gives a 32-fold reduction in the truncation error at a cost of twice the run-time. How-

ever, the routines themselves often give you only limited information about the build-up of

errors in computation. There is no substitute for learning at least a little about errors

in numerical analysis. We have found Vandergraft4 ' particularly helpful. Also, references 3,

6, 13, 28, -10 are worthwhile.

When one considers that a model is an approximation to a real physical situation, and

that a simulation is an ap)roximation to a model, a bit of cautious humility will be instilled.

Beyond the textbook methods of calculating accumulated error in numerical techniques, the

a *If you try to improve your control over these sources of error by writing your own code, you are likely to use less optimal techniques
thati tho.se in the commercially available libraries, and so be no better off

" eTbiv- i the size of the difference between computed and desired values at which an approximation procedure is topped The smaller
the stopping criteria size. the more steps required to achieve the approximation
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modeler of experimental data has another, empirical, method of investigating the model's simu-

lation sensitivity. The response of the simulation to small changes in inputs (whose outputs

are known) can be examined. If the outputs do not fluctuate more than expected, then the

modeler may have confidence that a "stable" simulation has been found.

AI techniques for simulation, and modeling. It is often claimed that human thought

processes, and, presumably, animal nervous systems in general, have less in common with com-

puting machines, than with fuzzy logic 43 thinking machines. To model and simulate such cog-

nitive systems, researchers in artificial intelligence (Al) use the LISP language. A growing

number of companies (Symbolics, Lisp Machines Inc., Texas Instruments, Xerox and Tektronix

nowv in the market) are selling workstations specialized for LISP programming. We consider

that, for the neural modeling discussed in this series of papers, such machines, at present, have

only liited vahe. They are relatively weak in computing ability, compared to their capabili-

ties in manipulating strings of linguistic labels. We think that by the end of the decade,

though, such capabilities will become more important to neural modelers. Even now, isolated

aspects of the modeling and simulation process can be help by Al-type programs. Witness

SNIP (Symbol Nanipulation Program) created by Stephen Wolfram 42 and marketed by Infer-

ence Corp. SNIPi helps the modeler seek analytical solutions by dealing directly with variables

in expressions. SNIP factors, integrates, solves linear and nonlinear equations, and works with

com)lex variablhs and matrices. It is available for VAX and Apollo installations. SNIP should,

in some circunmstances, give modelers the freedom to combine together various expressions for

primiives together in large awkward expressions, then use SNIP to find a reduced form.

Analog Computers. In this paper, and in the next, we emphasize the use of differential

equations to model neural processes of development. It may appear somewhat inefficient, then,

*m 17
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to call for the use of digital computers in the simulation of such models, since numerical tech-

niques on digital computers require approximating methods such as the trapezoid rule and

difference equations for integration and differentiation. Why not use analog computers, where

the proper placement of capacitors and resistors around op amps automatically creates ele-

ments which are almost exact counterparts of differentiators and integrators? Once the circuit

is assembled, it will simulate without any need for programming. However appealing they may

appear at first glance, we do not recommend simulation with analog computers, for the follow-

ing reasons: L,

(1) Worse than programming, an analog computer designed to mimic a particular differential
equation requires manual wiring of components and connections. Every change requires
re-wiring. The physical routing of wires may be important, to avoid unwanted oscillations

- in amplifiers.

(2) The accuracy of the simulation depends on the tolerance range of the components, and the
gain-bandwidth and noise characteristics of the amplifiers used. Such attributes may vary
with temperature and age. Components and amplifiers with improved characteristics cost
more money.

(3) Output is simply the time-varying voltages on selected op-amps--no graphic capability is
normally present to display data in convenient ways. Even providing input may present

* problems. If input signals with random or noisy components are desired, special genera-
tors may have to be hooked into the system.

Basically, consideration of an analog computer's shortcomings, even with a natural system

like differential equations, reminds us that analog computers are not "general purpose". They

cannot be easily re-programmed to imitate a wide variety of systems, and therein lies the use-

fulne-s of a high-speed digital computer, whether in simulation or any other task.

In the next section we consider programs and supporting hardware designed to mimic digi-

tal (and linear) elenents and circuits, and note how these computer-aided-engineering worksta-

tions may provide value to neural modelers.
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4. Computer-aided layout and simulation packages for circuit design: Their poten-

tial applications to neural modeling.

Even though we have encouraged the use of differential equations to model neural

processes, we have noted a tension between the equations' forms and the numerical techniques

employed by digital computers to simulate them. To eliminate some of this tension, consider

describing neural mechanisms in terms of computer logic elements -- counters, inverters, etc. If

this is done, then we may be able to use some helpful modeling and simulation systems,

namely today's generation of computer-aided-engineering (CAE) workstations for gate level

logic design. We list features of these workstations:

(1) The modeler does not need to learn a programming language in order to use a CAE sys-
tern. It's hardly even necessary to use a keyboard --A mouse or puck beside the terminal
can be used to move a pointer on the screen. The user points to a command on a screen
menu, then presses a button on the puck to execute the command.

(2) Unless an idiosyncratic part is required, the modeler does not have to define the functions
of basic gates. These and other elements are stored in data base libraries accessible to the
user through more menus to be called up on the screen.

(3) Computer techniques for drawing in elements and connecting them to each other have
been refined by commercial development: First a menu of library components is placed on
one screen window. The modeler moves the pointer to a desired component name and
presses a puck button to highlight that component. Next the modeler moves the pointer
to another window, to be used for drawing the model. In this window, when the user
presses the puck button, a symbol of the previously-selected component will pop onto the
screen. More components can be placed in this way. Beyond component placement, input
and output pins on the components can be connected, in a drawing mode. A puck button
is pressed at the start of a connection, and a different button is pressed when the pointer
is at the end. As soon as the end button is pressed, a wire is routed between start and
end points.

(4) Once a model drawing in the window is finished, it can be saved by passing the drawing
through a compiler, which will generate a data-base description. If any primary wiring
errors have been made, such as connecting two outputs together, the compiler can return
error messages to help the user affect repairs.

(5) The description of the model, now stored in a data-base file, can be used as input to a
simulator, which has acce:... to algorithms defining the action of each primitive. To drive
the simulator the user defines input waveforms and tells the simulator to what level of
timing resolution output waveforms should be displayed.
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(6) Simulators are given features of hardware logic analyzers -- breakpoints can be set, many
waveforms viewed at once, with state or timing output format.

(7) If modeling and simulation are finished for one level of process, say a complete nerve cell,
then the user can declare the nerve cell to be a new primitive and can begin using the new
primitive at one level higher in a hierarchy. On the other hand, if, to finish the nerve cell I
model, a special "axon component" is needed, the user can descend to a lower level of
hierarchy, construct and define the new component, and return to the original level to use
it.

Simulator features. What distinguishes the use of computers for digital circuit design

in the 1980's from the previous decade is the simulator. Previously, computers had helped

manufacturers layout PC boards, generate net lists for wire wrapping machines, and perform

other "anatomical" tasks. Finally software engineers began solving simulation problems on a

-, large enough scale to be useful to designers of VLSI chips, where thousands of gates can be
I,
'

involved. To be effective, the simulators had to have internal models which take account of

gate delay, fanout, and other characteristics of real logic gates. In some cases, where complex

chips cannot be mathematically modeled, examples of actual chips could be plugged into sock-

ets in the simulator hardware and accessed when their parts were required in the larger simula-

tion. Speed is an important factor for any simulator, and digital logic simulators have helped

push the state of the art in hardware accelerators. Simulator attachments which can perform

over 100 million instructions per second are not uncommon now. It should be noted, however,

that even with their speed, simulators hardly approaches real time, and waiting for the output

of a simulator, or even a circuit diagram compiler, can take several minutes.

Analog simulation. The state of the art in making digital simulations of analog com-

put ers is not nearly as advanced as digital circuit simulation. Most companies offer SPICE, a %

progeam originating from U'C Berkeley; SI(' is good for designing op amps from basic

transistor elements, but not so useful for putting op amps in analog designs, as neural modelers

20
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might want to do. SPICE is not well integrated with the digital part of CAD (Computer-

Aided Design) systems, nor with sophisticated graphic outputs.

The Marketplace. Three start-up companies were mainly responsible for creating the

commercial interest in simulator-based CAE for circuit design--Daisy, Mentor and Valid

(DMV). The three still have about 80% of the market. We have surveyed products from

about 15 other small firms offering "second generation" systems. The main competition for

DMV, however, will come from large companies like IBM, Hewlett Packard and Tektronix, who

realize that if engineers can layout and simulate circuits inside computers, then tile market for

traditional test equipment (like oscilloscopes and function generators) will have a limited

future.

A system similar to what we described in this section is likely to cost about S 50,000. The

hardware can be either custom built, like Valid's S-32 or Daisy's Logician, or it can be a stan-

dard workstation, like the Apollos that Mentor uses for its Id-a 1000 software. All these sys-

tems are capable of storing schematics for and simulating systems of several thousand logic

gates. If a modeler had more modest needs one of the CAE systems which can reside on an

" IBM PC might seem attractie. However in the tests we have given such systems (from p-

CAD, FutureNet and Chancellor), they had frustratingly fewer features than the DMV types;

we found them awkward to use.

Because the market for digital circuit CAD systems is growing (toward S1 billion per

year), new machines, with more features, are regularly introduced. What may be lacking this

year, for example in op amp and interface modeling, may be standard on next year's models.

One way to keep up with this field is to read VLSI Design magazine, which has become a
,'B

. forum in the CAE field, for both ads and technical papers.
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Summary

In this paper, we

(1) distinguish between modeling and simulation,

(2) offer general advice about when and how to model a process, and caution about simply
curve-fitting data to find quantitative relationships,

(3) suggest the use of general purpose simulation libraries, such as IMSL, and discuss the
problem of error analysis in numerical methods, perhaps the only problem the researcher
need worry about in a fundamental way, once the process of simulation has begun,

(4) describe the features of computer workstation systems for laying out and simulating large
scale digital circuit designs, and point out the usefulness of these systems to nerve cell
modeling,

How will you know your exercise in modeling and simulation has been successful? There
are two stages:

(1) Compare the results from experiments already performed, to the output of simulations
intended to mimic those experiments. If there are discrepancies, adjust parameters in the
model, or reformulate the model itself.

(2) Once classic results can be accounted for, use untested inputs to predict new results. If
simulation is efficient, we may be able to test a great many novel inputs, perhaps using
statistical techniques, to search for particularly important forms of output. For example,
in the case to be analyzed in the second paper, we can vary the duration of input (visual
experience) until we find a minimum time before which no plasticity (ocular dominance
shift) occurs.

What are the limitations to success in modeling and simulation? We have already
provided a number of cautions in the paper:

(1) There should be sufficient data to work with;

(2) Variability should be accounted for;

(3) Mechanisms should suggest themselves;

(4) The wiring diagram should be understood;

(5) The simulation should be examined for representation, calculation and truncation errors;
it should not be too time-consuming for the available computer.

The reader should be reminded again that a model's job is to account for a small part of a
nervous system's behavior. By similification, it will do this in an approximate way. Likevise
the simulation will approximate the model itself. If, after these restrictions from full reality,
the model can reasonably predict behavior, it will be successful. Filially, we paraphrase
Feynman' sis caution that, once formulated, equations can take on a life of their own. A good
modeler will not become enam( 'red of a particular formalism, and will thus avoi(d excessive
frustration when the time comes inevitably to revise the model.
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Appendix: Software sources.

(1) IMSL Inc., NBC Building, 7500 Bellaire Boulevard, Houston, TX 77036, 713-772-1927

(2) Inference Corp., Computer Mathematics Group, 5300 W Century Boulevard, Los Angeles,
CA 90045, 213-417-7997

i.,
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