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Relisbiity Anslysis of a Communication Netwerk
with Multimode Components'

Shen-Neng Chiou and Victor OK U
Department of Electrical Enginesring
University of Southern California
Los Angeles, CA 90080-0272

Abstract

This paper presents a model to caiculste the
reliability of communicstion networks with multimode
components. Previous research on network reiiability has
focused on modeis in which sach component may be in
one of two modes, namely, operative or failed. In reslity. &
component may undergo degradations in performance
before a compiete outage. snd will therefore operate in
more than two modes. Traditions! network reliability
measures, such as the probability that 8 pair of nodes is
connected, are not meaningful in 8 muitimode model.
Theretfore. the mean message delsy of the network is
defined as the performance measure. An exsct
calculation of this relisbility measure is not feasible due
to the lsrge number of network states, corresponding to
network components being in different modes. We have
developed an approximation method to ceiculste this
reliability measure. This method requires us to work with
the states of the network in order ©of decressing
probability. An algorithm ORDER-M is developed to
oonor.ou these states in the proper order.

1. introductien

in snalyzing the performsnce of s communication
network with unreliable components, it is usually assumed
that esch failure-prone component can be in one of two
modes. either operstive or failed. In the aperative mode.
the component can handle load at its capacity, while in

the failed mode, It is not availsble st ol  Network
reliability measures such as the probsbility that a given
peir of nodes sre connected. the probability that all pairs
of d are ¢ cted, the expected number of
communicating node pairs, and 3o on may then be
defined. Numerous sigorithms have Deen proposed (see,
eg.[1)) for computing the sforementioned network
reliability measures. However, the computstion time is
enormous except for smali-size networks. In fact. it has

‘Tm: research is supported in pert by the Air Force
Oftice of Scientitic Resesrch under Contract No.
AFOSR-84-0269

been proved that the exact computations of these
relisdility measures are NP-hard [2] [10) Other
researchers [3) have proposed asn approsch that
enumaerstes sll possibie network states snd ceiculstes the
quantities of interest in aach state. The relisbility measure
of interest is then calculsted as a weighted ( by the
probabiiity of that state ) average of these quantities.
Agein, this approach is impractical in genersl because the
number of network ststes grows exponentially, le., i
there are n unrelisble components. there are 2" states for
the network. We therefors seek an approximation method
to minimize the computation time. In [l an approximation
approach is proposed. To find a relisbility messure, only
the most probable states of the network are snslyzed.
The idea is that when the states considered account tor 8
farge fraction of the state space (in terms of probability),
we Can get a good aspproximation to this reliability
measure. This approach is practical because some of the
network states may have very small probabilities, and the
network rarely operates at these states.

While two-mode component models have received
a great deal of attention, in reality. 8 component may
operste n one of N (N>3} modes, ie., 8 component may
undergo degradstions before s complete outage. For
exampile, if 8 radio channel is being jammed, one may try
to combet this jamming by using 8 more powerful error-
corretting code, with a corresponding reduction in the
effective deta rate or channel capacity {11] Therefore. the
channel will operste in multipie modes. with ssch mode
corresponding to @ different channel cepacity. In [S] Ei-
Neweihi, ot. al. consider an N-stete system which is @
function of N-state (-mode) components and they are
interasted in the structure of the system function. They
have not. however, indicsted how one may define the N
states of the network in 8 mesningful way in terms of the
N modes of esch link in this paper. a multimode mode!
for network relisbility will be presented end used to
compute some properly chosen reliability measures

2. A Multimode Model!

We assume a point-to-point network in which onty
links may fail or degrade and nodes sre failsafe The
modes of a link correspond to different communication
capecities of that link i.e. esch mode corresponds to &
diftsrent capacity. Therefore, when a ink is not operating

Approved for publie release ?
distribution unlimit. d.

IEEE INFOCOM,

Miami Florida, April 7-10,1986

36 6




W 4T d.tgn

P I 4

LR L LA

a_ o g & ¢ ¢

A TSR

st B8 full capecity. & may operate at » lower. degreded
service rate.  Each mode of the component is sssociated
with & known probebility. There sre M links in the network
and N modes for esch Hnk cafted modes 0.12. . N-1
{(We can handie componems with less then N modes by
defining the probabilities of extransous modes #s 26r0)
The [th mode of link | is denoted C,). and the sssocisted
probabliity is denoted pje PriC/). We furtner sssume that
sli link failures are independent. Note that there is @
constraint for sach i

N-Y
i,.l-l. *12..M
0

Given the network topology and the set of probabilities
for link modes. we want to define 8 quantity to measure
the relisbility of the network if we want the probability
that & given pair of nodes sre connected by s path of
censin capacity, we may transform this problem to o
typical problem in the two-mode model by calling the link
modes which have st least thet capscity as operstive and
other modes as feiled. Therefore computing the
probsability of the existence of such a path may be
obtsined by the algorithms described in [1} We therefore
seok other performance maeasures which are mesningful
tor multimode models, snd which require solutions
significantly different from those for two-mode models.
There have been attempts to use the probability
distribution function of the maximum flow between »
given source-destination pair as the performance
messure in the multimode model. For example. Evans
(6] studied this measure for a network in which the
capecity of any edge is a finite-state integer-valued
random veriable. Kulkarni and Adiskha [8) considersd »
similar  problemm on (s.t)-planar  networks  with
exponentisily distributed link capacities. In this paper, the
network mean maessage delay is chosen as the religbifity
measure since it is relsted to the degradation in chsnnel
capacity for the links in the network. With 8 given node-
to-node traflic requirement. we ere interasted in the
probability-that the network can support the traffic with a
given svérsge delsy. When the mean message deisy is
grester than this threshold at a wwven network state. we
say that the network cann-  sstisfy the traffic
requirements st that state. Hence we need to compute
the probability that the mean network maessage delay
does not exceed some finite value For each state of the
network (Charactenized by a sat of link modes). we can
compute the mean message delay T using Kieinrock's
model (7]

1 "N
Te- §
Y =t uC-},

where y is the sum of the srrival rates between all pairs
of nodes 17y 15 the mean packet length, X, is the trafhic
1o8d on link | and C, is the capacity of link st that state
We assume that the components change states relatively
siowly 30 that the Qqueueing phenomena st these links
reach equilibrium and the sversge message delay “st @

given state of the network” ia mesningful.

Having defined network message delay as the
reliability measure., we neesd an efficient way to compute
. Since there sre N™ network states in our model, we
decide to use sn approsch which enumerstes only the
most probable stastes snd analyzes the performance for
these states. We have developed an sigorithm to generate
network states in order of decreasing probsbility for our
muitimode model.

3. Algerithm ORDER-M

Thers are M links end N modes for ssch link in the
network. The modes sre renamed such that the mode
probabilities are in decressing order, i.e.. p; _>pi‘ > ..>
pi"" for sll .. Each network state S is represented by sn
M-vector, S=(jyiz.- - -im) where j; denotes the mode of
Hnk ). The most probable state is (00. . .0) with
probability ni_‘p,". We want to gensrate the m most
probable states in order of decreasing probabilities. Our
approach is s modification of the algorithm ORDER (9L
which is designed for two-mode networks.

Lot Q=M+(N-1). For pl. 1<i< M, 1<<N-1. we
arrange these QO parameters in decreasing order snd use
Q3. - -Gq to denote this ordersd sequence so that each
qy corresponds to a different pl. Note that py. . Py

are not required n the algorithm and are not included in
this set of Q parameters. Wae first describe the way new
states are genersted. Let A={S, S, .. -Sc} be an ordered
set of network states such that Pr(S,)>. . .>Pr(S.). Detine
an operstion repiace (i.j). denoted R?. as foliows: RJS,
means thet the ith element of state S, is changed to
mode | and the other elements remain the same. The
probability of the new stste genersted is easy to
compute:

PriRS, ePrS, ]+ pl/PriS il M

where S (i) is the ith element of S_ This replace operation
may 8iso be defined on the whoie set of states Thus
8=RjA=(RjS,. . RS }. WNote that the size of set 8 may
be smailer than that of set A because two states S, and
Sp of A may differ only in element i and so ars changed
to the same state by R) in order to svoid generating
duplicate new states Dy this repiace operstion, we need
to record the identities of those components whose
modes have siready been changed in previous steps We
use a set 'k to record the components used to generate
new states thus far if the ith component has been used
before, then only those ststes in A whose ith element is [}
will be used to generate new states in RJA Define an
operation insert, denoted B+ A as follows: C=B8+ A =the
ordered set which results when every state of B s
inserted into the ordered set A. Define an operation
select. denaoted T(A). as follows: T(A)=the ordered set
which contains the first m states of the ordered set
A The sigorithm consists of two phases and Q stages
with stage k corresponding to psrameter q, We stan
with state $,=(00. . .0) To generste new states we
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successively take §y. Q3. - Qg and the corresponding
p)'s and replace the ith slement of previousiy generated
stetes Dy |. When the total number of stetes generated is
st least M, we QO to phase 2. In phase 2. we generate
new states by 8 similar procedure. but will retain onty the
m most probable states.

Ws now give the algorithm ORDER-M:
Phase 1:

1. Initislize: $¢~(0. . .0). Ag=(Sq}. ig=¢
2. For k=12 . .m-1, repest 3456
3. Find the pij corresponding to q,.
if icly . then fiag=1. slse flag=0
4. For r=), . JAg_ 4l do:
it Hag=1 and S.[(i)s 0, then
no new state is genersted from S,

eise generate new state niis, and compute
nts probability.

(The set of new states generated in this step
is denoted 8, _y)

5. AgBy_ 1> Ay-y a0 =l UG

6. 1t [A|>m, go to phase 2

Phase 2:

7. mitistize: A=T(A,) where L is the loop index k
when we lsave phase 1. The new set A is
then renamed A, .

8. For k=L+1.. . Q. repest 8,10.11,12

8. Take q, and the corresponding p;.

Hicl .y then flag=1. slse flag=0.

10. For r=1. . JAy_4l do:

! flag=3 anad S(i}» 0. then
O new state 13 generated from §,.

eise generste new state aiis, and compute
nts probability

(This step may be denotsd B, _,=RIA, _,)
11 A=B, 4= Ay and Ip=l, _,U{1)

12. A =T(A)

AQ containg. in decressing orcer, the m most

probable states. .

The following observation on ORDER-M csn be
made:

Observation 1: The operstions R}, 1<i<M, 1<j<N-1,
are exhasustive of the ways new states can be generated
from oid ones.

Lemms 1: In each stage. for any two states S, and
S, which have siready besn genersted such that Pr(S.j>
PriS,1 we must heve PriR/SI>Pr{R'S,] if both of these
new states axist

Proot: When both RJS, snd RIS exist. we must
have S (i)=S, (i)»0. Rt follows from Equation (1) that
PriRS 1>PrRS |

Lemma 1 states that the states in B,_, genersted in
steps 4 and 10 are in order of decreasing probability. It
slso assures thst states left out by the select operation
T(A) will not give rise to new states in the top m spots in
the next stage.

The next theorem is a direct consequence of the
above observation snd iemma.

Theorem 1: At the end of ORDER-M, the m most
probabie states are generated.

We now estimate the time complexity of this
sigorithm. For each k in phase 2. RJA takes time O(m*
M) and checking whether icl, takes time O(M). in the
insertion we can use a sorting aslgorithm with time
complexity O(me* logm). The select operstion cen be
performed during the insertion, i.e. in the same sorting
routine. The complexity analysis of & stage in Phase 1 is
similar to Phase 2. However, instead of working with a list
of m states ( the m most probable states generated thus
tar ), one is working with m'<m states in phase 1. There
asre 8 total of Q repisce operstors in both phases. So the
total time in the worst case is O{Q m M+Q m logm).

4. Coverage of the State Space

In order to estimaste how many states must be
genersted to achieve 8 certsin coverasge of the state
space, we consider the case in which p,'-pk' for any
mode | and links i and k. To simplify the notation, we let
p’-.',-,' for all i.j and sssume as before that the labeling for
the states is such that p%5p"> . .>pN"1. Each state of
the network is represented by a random vector (X,X,. .
Xog). where X; is the mode of the ith link. 0<X;<N-1. 1<
i<M Note that X;'s are independent random variables in
our model Define s random varisble X= ) _ X, The most
probable state is (0.0, . .0) with X=0 the next most
probable has X1, the thirda most probable may have X=\
or 2, snd s0 on. The moast probable system states
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@enersted by our sigorithm correspond to the event (X<
A} where A is s positive integer The Chernoft bound
(4. 12] can be used to derive an upper bound on the
probability of the sst of uncovered ststes, ie. PriX>A;.
We first introduce some notations in the following
paragraph.

The moment-genersting function of X, i=1. . .M. is
slsoElexpisX)e] [ plexp(sil.  The  semi-inveriant
genersting function is u(s)=iné(s). For random vanable X
the moment-generating function is ox(s)-n,,,om-o“m.
its semi-inveriant generating function is Uy(s) = In ¢xis) =
M in¢(s). The Chernoff bound states the foltowing:

Pr(X >A) <exp(liy(s)-sA)=exp{Mu(s)-sA) 2
where the optimum value of 3 (which gives the tightest
bound of the exponentiat form) is selected in sccordance

with

diitsi
M-.T— wp )

Differentisting the left-hand side gives

1 N-Y, i e A
— Lo we - L “
?::njo'l L-o * "
or
I ipietie ZT% 'ples (5)

So selecting the optimum s involves solving a polynomial
equetion of degree N-1 in ®

In applying this bound to a general N-mode
problem, there sre some complications, howsver. When
N>3, the case of two components at mode 1 contributes
the same vafue to X a3 the case of one component st
mode 2. Thess two cases may have very different
probabilitities. Such complications will not asrise in a
two-mode model. where the Chernoft bound tskes the
following form Pr(X> A)< explM HA/M, 1-A/M)+(M-A)
inp0+A inp') where H(Q.1-q)=-qIng-(1-q)in(1-g) and
p Op‘ﬂA In this case. for 8 given coverage of the state
space. say 95%. we can select A by using the sbove
formuls for Pr&X?AJf0.0S. The number of states needed
is then me] (")  This gives & quick way of
determining the value m for our sigorithm However. since
the Chermmoff bound is an inequality the resuft s
pessimistic. mesning that m is ususily (arger then actusily
needed. sithough it 1s asymptotically the best among ali
exponential torms (12}

Ga'ol20s AL Bha At £° 3 R 2 L8 0.8 o

§. Delay Anplysis of a Network with Multimede Links

We now apply ORDER-M t0 the relisbility snatysis of
the network in Fig. 1. Rt has 5 nodes. M=g inks and each
link has N*5 modes 3o Q=24 The extemal traffic
requirements between node pairs are assumed to be
Poissaon with mean Ysr where s is the source snd t is
the destination, st=12. . 5. The states and the
corresponding capacities of the links are given in Table 1
The associsted probebilities are given in Teble 2.

i
0 1 2 3 4

1 50 40 30 10 20
2 50 40 30 10 20
3 50 40 30 10 20
i 4 50 30 40 20 10
5 50 30 40 20 10
8 50 30 40 20 10

Table 1. cii in kbps 1<i<6. 0<j<4

)
0 1 2 3 4

99 006 002 .001 001
9% 025 0 01 005
89 007 00t 001 001
97 018 0054 .0038 .003
95 .03 0t .005 005
97 024 003 .0018 0012

POEWN -

Teble 2. p;} . 1<i<B. O<j<4

We first arrange the 24-probabilities pi‘, 1<i<6, 1<j<
4 in decressing order and record the (i.j) peir of the
corresponding q, by & 24x2 matrix

1 5 1
2 2 1
3 ] 1
4 4 1
5 2 2
6 S 2
7 2 3
8 3 1
] 1 1
10 4 2
n 5 3
k 12 2 4
13 S 4
14 4 3
15 6 2
16 4 4
17 1 2
18 6 3
19 ] 4
20 3 2
21 1 3
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22 3 3
F &) 1 4
24 3 4

Table 3. q,. k=12, . .24

§.1. Point Estimate

To ansiyze the mean message delsy ss @ reliability
measure of the network, algorithm ORDER-M is used to
generate the m most probable states. For each state of
the network. we calcuiste the network message delay by
Kleinrock's mode! using a fixed routing table. Define an
indicator varisble 1, for each state S, a3 follows:

ti= 1 it the network delay i3 <200 ms in S; (6)
¢ otherwise
then

FePr{inetwork mean messsge delay is <200 ms)

=1Prs);

Here the minimum delay among sll states is 106.7
ms (this value is achieved at state $,=(0.0.0.0.0.0)) and the
velue 200 ms is chosen as an scceptable value for the
network delay. it the above summation covers all states,
then we get the exact vsiue of F. It is aiso possible to
compute lower and upper bounds for F. Having ceiculsted
f; for the most probable states. if we let fi-O for all other
states. we get 3 iower bound; if we let t;=1 for all other
states, we get an upper bound.

*The following routing matrix is used for this
example

destination

- 1 2 3 4 5
1 143
2 235
source 3 k¥R 35
4 45
5 532 653 5.4

The matrix entries represent the vertices slong which the
data packets are torwarded.

We generste the m=20 most probable states for this
network by ORDER-M  These states and their associated
probadidities are shown in Tabie ¢ The sum of the
probabilities of these 20 states is calculated to be
098396 The reliabiity measure F. the probability that the
network sstishes the externsi traffic requirements ( 1.e.
the network delay does not exceed 200 ms ), s
spproximated as 092477 using these 20 states The jower
bound and upper bound for the velue F as a function of
m. the number of states considered. ere plotted in Fig. 2

for 1<m<20. We have thus illustrated the enalysis of »
network with muftimode components snd presented an
ingication of how reliable the network is in terms of
providing a specified leve! of service

rank state vector probabiiity
1 {0.0.0.0.0.0) 832204
2 (0.0.0.0.1.0) 026282
3 {0.1.0.0.0.0) 021902
4 {0.0.0.0.0.1) 020592
5 {0.0,0.1.0.0) 015444
8 (0.2.0.0.0.0) 008761
7 (0.0.0.0.2,0) 008781
8 (0.3,0.0.0.0) 008761
9 (0.0.1.0.0.0) 005885
10 {1.0,0.0.0.0) 005044
n (0.0.0.2,0.0) 004833
12 (0.0.0.0,3.0) 1004380
13 (0.4,00.0.0) 004380
14 {0.0.0.0.4.0) 004380
15 (0.0.0.3.0.0) 003089
16 {0.0,00.0.2) 002574
17 (0.0.0.4.0.0) 002574
18 (2.0,0.0.0.0) 001881
19 (0.0.0.0.0.3) 001544
20 (0.0.0.0.0.4) 001030

Table 4. The 2G most probsble states
and their probabilities

$2. Estimating the Distribution Function

An shternate approach to the delsy anslysis for our
model is to find the probabitity distribution function of the
network mean message delay. Define F(t)=Pr{network
mesn message delay is <t ms) and an indicator vanable
f,(t) for state S

ti{ti=1 if the network delay is <t ms in S; (]
0 otherwise

then F(t) =] Prist)

The exact determinstion of F(t) requires the
enumeration of the whole state space. However. when we
generste the m most probable stetes. we can caiculste
Fmt=IT. Pr(S;f(t). This vaiue is then & lower bound on
Fit). L.e. F{t)>F,(t) for alt t. For our example. Fm(t) using
m=20 and the most probable states in Tabie 4 s
csiculated and plotted in Fig. 3.

§. Conclusions

In this paper, we have presented s multimode mode!
for caicuisting network reliability and detine the
probability that the tratfic requirements are satistied as
the relisbility messure An gigorithm ORDER-M s
developed which enumaerates network states in order of
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.oocuumg probability We then spply it to compute the
rehiabiirty defined above.

Using our aigonthm, we are able to computs the
probability distribution tunction of the natwork mean
message delay 10 8 CONMN asccuracy th & very efficient
manner The advantage of our model is thet the tratfic
requirement of the network is taken into account in the
rehabiinty analysis

Figure 2. Upper snd Lower Bounds tor F
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