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FOREWORD

- The Thirty=-First Conference on the Design of Experiments in Army Research and

' Development and Testing was held 23-25 October 1985, The Army Mathematics
Steering Committee (AMSC) is the sponsor of this series of meetings, and {ts
subcommittee on Statistics and Probability organizes the scientific phase of
each of them, Members of this subcommittee would 1ike to thank Professor

B Bernard Harris for extending an invitation to hold this conference at the

ﬁ‘ . Mathematics Research Center, The University of Wisconsin, Madison, Wisconsin.

f,

J

4 His work, as chairperson for local arrangements, was a big factor in the
e success of this meeting.

This year eighteen contributed papers were given in the clinical and technical

o sessions, Most of these were presented by Army scientists. The titles of the A,
fJ.. sessions give some indication of the statistical areas treated: (1) Final éﬁ
| Series and Multivariate Analysis, §2 Consistence Analysis, (3) Experimental ﬁk
. Design, (4) Statistical Modeling, (5) Data Analysis, (6) Reliability and W
Quality Control. For the invited speaker phase of the conference, the Program g

Commitee was pleased to obtain the services of the following nat1ona11y_known

) scientists to talk .on topics of current interest to Army personnel: v
N ) i.m
‘ﬁ' Speaker and Affiliation Titles of Address o
Y Professor Jerame Sacks Keynote Address o
. University of I11inois at
N Urbana-Champaign
. i
] Professor Marion R. Reynolds, Jr, Approaches to Statistica)
N Virginia Polytechnic Institute Validation of Simulation Models
\ and State University
j Dr. Daryl Pregibon - An Expert System for Data o
3 Bell Laboratories Analysis T
W w‘.‘ §
& Or. Howard Wainer How to Display Data Badly 3§, ’
ot Educational Testing Services &
; Professor Gouri K., Bhattackaryya Accelerated Life Tests g"'
. . ‘\‘-
% Since the Army analytic community is becoming ever more involved in the use of ;?
: expert opinion and the related approaches to the analysis of new systems o
R performance measures, it seemed an ideal time to have a special session to
R provide the audience with new insight into this important area. The AMSC iy &
o indebted to Professor Nazer D. Singpurwalla of George Washington University e
e for organizing and chairing this feature session entitled, "Using Expert f§
§ Opinions and Expert Systems in Reliahiliy and Maintainability". We note helow WY
" the titles of the addresses given by the four speakers in this informative
K session,
B o
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HUMAN FACTORS AFFECTING SUBJECTIVE JUDGMENTS

Mary A. Meyer, Energy Technblogy Group, Los Alamos National Laboratories
SOURCES AND EFFECTS OF CORRELATIOM OF EXPERT OPINIONS

Jane M, Booker, Statistics Group, Los Alamos N&t?onal Laboratories .

USE OF EXPERT OPINION IN RELIABILITY ASSESSHENT OF THE M-1 ABRAMS TANK
Bobby'Bénnett. U.S. Army Material Systems Analysis Agency

?‘ A MATHEMATICAL THEORY OF TESTABILITY |

E Alan Currit, Systems Product Division, IBM, Rochester

. Professor Emanuel Parzen, Department of Statistics at Texas A&M University was
" selected by the AMSC to receive the Fifth Wilks Award for Contributions to

; Statistical Methodologies in Army Rasearch Development and Testing. He richly
X deserves this honor for his many significant contributiosn to time sepies
’ mudeling and analysis, stochastic processes, statistical theory (including his

: seminal paper on density estififtion), and his recent work-on the foundations
, and generalized meghodologies in data analysis. His latest work will
. undoubtedly have a very pronounced effect on the :heory and practice of
4 statistics in the years to come, :

The AMSC has requested that the proceedings of the 1985 conference be
distributed Army-wide so that the information conained tharein can assist
scientists with some of their statistical problems. Finally, committee
members would 1ike to thank the Program Committee for all the work it did in
putting togather this scientific meeting. :
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AGENDA
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IN ARMY RESEARCH, DEVELOPMENT AND TESTING

23-2% October 1905

Host: The Mathematios Research Center

Location: The Wisconsin Center Nisconsin Memorxial Union
702 Langdon Bbreet Langdon & Park Streets
Madison, Wisconsin {parallel sessiops)

R A & & & Wednesday, 23 Octoder TEEE
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Lake 8hoxe Rooa, The Wisconsin Centex
Prof. Barnard Harris, The Naohilnbios‘noicaroh‘CQntox
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Jerone Baoks, University of lllinois at Urbana-Champaign
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Chairman: William D. Bakir, Ballistic Research Laboratory
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e
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h
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Richard H, Duncan, Technical Director, and Chiaef Hoientist .
White Sands Missile Range i
Paul H. Thrashexr, White Sands MNissile Range
NODELS FOR CONTINGENCY Thnbt AHALYBIB

Rickey A, Kolb, United Stabes Military Academy i3

A CLABS OF PROBABILITY DIHBIT?_FUNCTIONB
Biegfried H. Lehnigk, US Army Missils Range , i

PLOTTING MATHEMATICAL FUNCTIONB ON A BTANDARD LINE PRINTER
Donald W. Rankin, LtCol, UBAF, Ret, XL Paso
1330-1500 TECHNICAL SESSION IV; DATA ANALYSIS N ‘
Baefeaters Room, Wisconsin Memorial Union, 3rd floox

: : : : , .
Chairman: James C. Ford, Ballistic Research Laboratory

H
QUANTITATIVE ASBESSMENT OF THE INTERACTION AND ACTIVITY OF COMBINATIONS %
OF ANTIPARASITIC DRUGB IN CONTINUOUB IN yxxng CULTURE oF o

ELASMODIUM FALCIPARUM *
ﬁ Robert E. Miller, Waltexr Reed Army Institute of Research g:
: %
b i
f STATISTICAL ANALYSIS OF PAVEMENT EVALUATION DATA ;5
Btarr D, Kohn, Waterways Experinent Btation ;j
Walter R, Barker, Waberways Experiment Btation o
W
Y BTATISTICAL COMPARIEON OF THE ABILITY OF CAMOUFLAGE COLORB TO BLEND WITH g;
" TERRAIN BACKGROUND UNDER HIGH AND LOW BUN ANGLES e
) George Anitole, UB Army Belvoir Ressarch & Development Center ;§~
¢ Ronald L. Johnson, UB Army Balvoir Ressarch & Davelopmant Center ™
ti 13 .l'
! 1500-1330  BREAK e

\

|
<D
=

. AL o .. NI D% ) l LAY xi( ‘.P lv ’ .. 7’1’..(’ ‘o -vq» {.‘.-" .' ‘(‘ ‘q."‘»'q"
A. .a f ' SACH 0) o & e . a .K q}! r N
"\ 5’ ft 31 "$" “R'v'-\ . ~!'\ Al i '_,‘ ALY - J ‘ 1,-~ "\ " L) ‘ -

"pva,.“.




1330-1700 TECHNICAL SESBION V; RELIABILITY AND QUALITY CONTROL
014 Madison Room, Wisconsin Memorial Union, 3rd floor v
Chairman: Donald Naal, Aray Materials and Mechanics Rasearch Center e
THE LINDSTROM-MADDEN METHOD FOR BERIXS SYSTEMS WITH REPEATED COMPONENTS

Andraw P, Soms, The University of Wisconsin-Milwaukes

CONVERTING INDIVIDUAL EAMPLING PLANS TO A COMPARABLE GROUP PLAN

Paul A, Roediger, US Army Armament, Munitions and Chemical Command n
John A. Mardo, US Army Armament, Munitions and Chemical Command

WEIBULL EXTREME QUANTILE MODELING FOR ESTIMATING CONFIDENCE ON
RELIABILITY FROM CENSORED SAMPLIS

Mark Vangel, Army Matarials and Mechanics Rassarch Center \g}

S
AN ALGORITHM POR DIAGNOSIS OF SYSTEN FAILURE
Robexrt L. Launer, US Aray Resesarch Office “g{

k k& k & Friday, 23 Ooctober % % & & #

09001200 QENERAL SESBION III - Lake Bhore Room, The Wisconsin Center :::-.I.;f
i
Chairman: Douglas B. Tang, Walter Raed Army Institute of Research "’f'
Chalrman of the AMSC Subcommittes on Probubility and Btatistics oo
0900-0930 OPEN MEITING OF THE STATISTICS AND PROBABILITY SUBCOMMITTEE OF THE "
ARMY MATHEMATICS STEERING COMMITTEE %ﬂi‘)
ol
R
0930-1030 HOW TO DISPLAY DATA BADLY e
Howard Wainer, Edusational Testing Sexviose N
S
1030-1100  BREAK \’
1100-1200 ACCELERATED LIFE TEBTS: AN OVERVIEW AND BOME RECENT ADVANCES E.‘:
Gouri K. Bhattacharyya, "he University of Wisconmin-Madison ':ﬁ;g
ADJOURN o
%Y
L)
>
xi e
Y
¥
I~ .
a '-2\', X R R At ANPGRS A R A A N A LA T R Dol e
S0 3‘-‘- ISR A R e ttNl.ou'if? 4l!|.'-.¢ 1' \"’} “I\\' ".3.‘7.."'&"



’

APPROACHES TO STATISTICAL VALIDATION OF SIMULATION MODELS

Marion R. Reynolds, Jr.
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

ABSTRACT

The process of validating a stochastic simulation model usually involves
the comparison of data generated by the model with corresponding data from
the real system, One method of making this comparison is to test the
hypothesis that the distribution of model output is the same as the
distribution of the éorresponding variable in the real system. 3Since no
model is a perfect reflection of the real system, a more realistic
formulation is to test the hypothesis that the model is close enough for the
purposes of the model user. An alternate approach to validation congiders
the error that results when the model is used to predict the behavior of the
real system. In order to help the model user evaluate the prédictive ability
of the model, confidence intervals for expegted error oY prediction intervals

for actual error can be constructed.




l. SIMULATION MODELS
Stochastic simulatién models are now widely used in many fields to model

compiex.systems when other types of models can ﬁot be used. fn many cases
the system being modeled will include many simpler processes interacting in a
dynamic éetting 8o that it is not possible to carry through a direct
mathematical analysis. The nature of a simulation model usually means'that
the basgic assumptions and structure of the model are not readily apparent to
the model usef éo that model validation is particularly important for these
models. |

Modéls can be constructed for several purposes, for example to gain.basic
understanding of the system being modeled, to compare different méhagement
strategies with the idea of gelecting a gdod strategy, or to predict the
behavior of the system being modeled. AIn each of these céses some inferehce
obtained uging the model will be applied to the real system. In”most |
gituations the ability of thé model to predict system behavior will be
cfitical to the effectives-of the modeli. The main pufpose of the model‘will
usuatly détermine the predictive ability reguired of the model and this\in

turn will influence the approach to validation that is required,

2. VALIDATION

Before a simulation model can be used with confidence, the model user
needs to know whether the model is a reasonable representation of the real
system so that inferences or predictions obtained from the model are useful
for the real system. It is the need for this type of information that leads
to issues of validation and assessment of the model.

In discussing model validation it is usually not helpfull to think in

absolute terms of a model being either valid or invalid, but rather in terms



of degree of validity or, better yet, in terms of degree of usefulness. The
usefulness of a model will depend on the purpose of the model and on the
conditions under which it is used. For example, a wmodel may be useful for
determining the relative performance of two management strategies but not
very ugeful for providing accurate and detailed predictions of future system
behavior. A model which is useful for providing predictions for 5 years in
the future may not provide useful predictions for 15 years in the future.

A ugeful wéy to think about the nature of wvalidation has been given by
Van Horn {1971). ﬁe defined validation as "the process of building an
acceptable level of confldence that an inference about a simulated process is
a correct.or valid inference for the actual process". An important point
here is that validation is a process and not a one time exercise.
Ideally,the validation process should be carried out during the model
building process (Sargent (1978)) as well as after the model is essentially
complete. Another important point in Van Horn's definition ig that
validatidn is a process of building confidence in the model and not
necessarily the process of "proving" that the model is valid.

It may be helpful to make a distinction between validation and what
Pishman and Kiviat (1968) have called verification. Verification is the
process of determining whether the simulation medel behaves as the model
builders intended. For.example, rdebugging” the computer program is an
important part of the verification process. The validation process extends
beyond the verification process since a model which behaves exactly as the
model builders intended still may not be useful for drawing inferences about

the real system.




3, APPROACHES TO VALIDATION

Some of the discussion of validation in the simulation literature has
focused on philosophical isgues. Discussion of some of the issues involved
are given in McKenney (1967), Naylor and Finger (1267), Schrank and Holt
(1%67), and Shannon (1975)., Balci and Sargent (1984) give an up-to-date
bibliography of papers dealing with various aspects of model validation.

one direct approach to validation invoives examining the model for "face
validity"”, that‘is, determining whether the assumptions and structure of the
model seem reasonﬁble to people who are knowledgeable about tﬁe real system
(see, for example, Law (1982)). This examination of agsumptions should, of
course, bé carried out during the modeling process as thé modeler develops a
conceptual model in collaboration with Ppeople who are familiar with the
system. After the model has been constructed other "independent" experts can
be used to evaluate the model.

In addition to examining assumptions for conformance to existing
knowledge and theory, empirical testing of these assumption can be carried
out (Naylor and Finger (1967)). In this context the use of gensitivity
analysis may help to identify which assumptiongs are most critical so that
attention can be focused on these critical assumptions (Van EBorn (1972)). In
addition to a sensitivity analysis cqnducted in the likely range of model
parameters, an evaluation of model performance can be done at the extremes of
the paramster values (Sargent (19832)).

One of the most important tests to which a model can be subjected in the
-validation process is the comparison of data obtained from the real system
with corresonding data generated from the model. If there is close
agreement, in some sense, between these two data sets then this will increase

confidence in the model. Some authors argue that the ability of the model to



predict the behavior of the real system is the most iﬁportant test of a
model.

Confidence .in the model-will be higher when the data used in the
validation of the wmodel is independent of the data‘used in constructing the
model., If it is not possible to obtain separate data for validation then one
approach is to split the existing data into two sets. One set can be used
for constructing the model and the other set can be used for validating the
model. In many éases the data used in constructing and validating a wmodel
‘wili e historicalﬁdata that has been collected on the existiﬁg system or a
gimilar system. Ideally the model should be tested by its ability to predict
‘the behavior of the system in the future. This may not be immediately
possible either because the real system may not yet exist or because there is
not enough time to wait for future cbservations on the real system. This
'paper will concentrate on the case where validation data is available since
thig is the case where statistical approaches can be used in comparing the

model and the'real system.

4. EXAMPLE

Wﬁen discussing various statistical techniques that are useful in
validation it may be helpful to think in terms of a specific type of
gimulation model ag an example. Consider the model PTAEDA developed by
Daniels and Burkhart (1975) for simulating the growth of trees in forest
stands. This type of model is designed to model stand growth over time so
that various management strategies or the effects of various natural
phenomena can be evaluated. The volume of wood in a stand at some future
time is one of the main system variables of interest, but other variables

such as the number of trees in various diameter classes may also be of




interest. In this model individual trees within the stand are assigned
initial coordinate locations and sizes at an age correéponding to the onset
of competition. Then annual diametey and height growth of each iree is
simulated as a function of tree size, site quality, age, and an index
reflecting competition from neighboring trees. Tree growth is adjusted by a
random component representing geﬁetic and/or microsite variability. Each
year each tree survives with a certain probability and this survival
brobability is a-function of tree size and competition. The wood volumes
for individual treés at the end of the simulation period are oﬁtained by
substituting diameter and height values into tree volume equations,
Estimates of wood yield per unit area are obtained by summing the individual

tree volumes and multiplying by an appropriate expansion factor.

5. NOTATION

' Suppose that the simulation medel is constructed in such a way that p
input variaﬁles represented by X = (xi,xg,...,xp) are used to generate an
output variable represented by Z. The input variables are usually selected
to correspond to the most important cobservable input variables in the real
system; The output variable Z in the model corresponds to some variable Y
that is of interest in the real system. For example, for a forest stand
simulator desighed to predict stand volume at.a future time, X might
represent input variables such as site guality, stand age at the future time,
and some measure of current density. 2 would correspond to simuiated stand
volume from the model and Y would correspond to the actual stand volume at
the future time. In most applications it will be reasonable to treat both Y
and Z as random variables whose distributions depend on the levels of X. Y
is a random variable because the value of Y can not be determinegd by

determining the values of a finite number of input variables and Z ig of
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course a random variable because the model contains stochastic elements. -
Since the distributions of ¥ and Z depend on X it will be convenient to work
with F(ylx) and G(%lx), the conditional distribution functiocns of ¥ and Z,
respectively.

Model users will usually be interested in using a model to make two
general types of inferences about the real system being modeled. The first
type of inference is concerend with a parameter or characteristic associated
with the distriﬁution of the variable Y from the real system. The parameter
that is usually of‘most interest is the conditional mean E(Yig); other
parameters that might be of interest are P(Y < ylx), the probability that the
system output is below a specified value y, and the variance Var(Y(x). All
of these parameters are functioné of the input variabiés X. For exémple a
model user might be interested in estimating the average volume for stands of
a particular type where the type of stand is determined by specifying tﬁe
input variables age, site quality, and density. Alternately, the user might
want to estimate the probability that a stand of a particular type has a
voiume below an economiéally determined lower threshold.

The second type of inference is concerned with pﬁedicting an actual
value of Y that is to be observed when X is at some specified value. For
example the model user might be interested in a particular stand and want to
predict the volume on this stand (as opposed to the average volume on all
stands of this type). The usefulness of the model for making -either type of
inference depends on how clﬁselthe conditional! distribution of Z, given X =
%, is to the conditional distribution of ¥, given X = x. The best that could
be hoped for is that these two conditional distributions are equal. Even
then, in any trial of the model, the simulated value of Z wilil not

necessarily be close to the corresponding observed value of Y since both Z




and Y are random variables.
Suppose that observations from the real system are available for n
different sets of conditions, and for the ith set of conditions mj

observations from the real system are available. Let

Yij = jth observation from the real system under the ith
gset of conditions

and
Y = (YilinZ'°'-chmi) .

For example, data on total wood volume may be available for n different
types of plots. In this example each plot may be distinct so that my = 1 for

all i. Also let

Xi = (Xi14...,X4p)

= input variables for the ith set of conditions.

Corresponding to the ith set of conditions represented by X; = x4, the
simulation model can be run my times to generate mi independent simulated

values which can be represented by
Zy = (Zilozizs""zimi) .

In some cases it may be useful to use the components of ¥j and 2Zj indivi-

dually, but it other cases the averages may be used. Then

_ mi‘
Ys = 7 Yii/m
i §=1 ij/myi
is an estimator of E(Y{xj), the mean of the system at the ith set of



conditions, and

N .
Zi = T Zij/mj

is an estimator of E(Z|x;), the mean of the model at the ith set of condi-
tions. The bias or expected error in the model at Xj = Xj is E(Y-ZIxy)

and an unbiased estimator of this bias is
Dy = D(xi) = ¥i - Z5 .

It may also be useful to think of Zj as a predictor of ¥; before Y; is

obgerved and in this case by is the prediction error.

6.: HYPOTHESIS TESTING

In.deveioping a model based on a finiﬁe nﬁmber of iﬁput ﬁariables X, the
best model that could be achieved would have the conditionai distfjbution of
z‘given X = g.equal to the conditional distribution of ¥ given X = x. Thus
a nafurai way to fo?muléte the validation problem is as the Qrdblem of
tegting the null hypothesis that Z and Y have the same conditional distribu-
tions. Let A be a set representing the range of input variables for which
if is.desirable to validafe the ﬁodei. Then fhe prqblem can be stated

formally as one of testing

Hp, F{'ix) = G(*|x) for all X < A .

The alternativé is that F and G are not equal for at least one x « A.
Ideally the set of validation data should be representative of A in some way,

for example, a random sample from A. In practice it may not be feasible to




take a random sample and thus whatever data is available may have to be used,
For purposes of building confidence in the model, data that represents the
extremas of A might actually be better than a random sémple. If the valida-
tion data does not adequately cover A then of course the conclusions about
model validity that can be drawn from the data would be restricted to the
subset of A represented by the data.

A reasonable interpretation of‘the hygpphesis testing foxmglation‘of
the validation problem is that the test is being carried out to determine
whether there is any indication that the model does not represent the real
system., If the null hypothesis is not rejected then this is interpreted to
mean that there is no strong evidence bf'ﬁodei‘inadequéCy. Tt does not
of course mean that the model is a perfect reflection of the real system
of that the model can not be improved upon since the power of the test uged
may not be high. On the other hand a decision to reJect the null hypothe51s
does nof neééssarlly mean that the model is not useful. Re;ectlon in th1s
cage would be taken as an 1nd1cat1oﬁ that there is room for improvement and
that the data should be examlnéd for 1ndlcat10ns of areas for model improve-
ment. | | | |

In some cases the requ1rément that‘F and G be equal may be too strlct
and a test for equal cond1t10n31 means may be sufficient. In this case

the nnll hypothesis would e
Ho: E(YIx) = E(Zix) for all x e A.

If m and m' are small there may not be enough information at the set of
conditions répresented by X = x; to provide a test of either Hg or Hy with

reasonable power. In this case it would be reasonable to apply a test at

each set of conditions and then use some method for combining independent:
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tests. One well known method of combining independent test was dévélopé&' 

by Fisher (1938). Let Tj be‘the test that is applied at the 133 se£ of condi-
tions and let aj represent the observed gignificance level of the test,

i.e. «j is the probability of a value of Tj that is as extreme or more extreme
than the observed vélue of Tj. If the distribution of T; is continuous then
the distrihution of «; is uniform on (0,1) when the null hypothesis is true.
From this it can be shown that -2i§llogai has a chi-square distribution with
2n degrees of freedom when the null hypothesis is true. When the «j are émall,

n .
-zinllogai will be large and Fisher's test rejects the null hypothesis when

-zigllogai exceads an appropriate critical value from the chi-square taﬁle.
For other methods of combining independent tests see, for example, Osterhoff
{1969). Alternately; a procedure such as the analysis of variance could

be used to combine information if the usual assumptions such as equality

of variances at the different conditions are reasonable.

7. CHOICE OF A TEST

For testing Hg a test such as the two-sample Kolmogorov-Smirnov test
for the equality of two distribution functions could be used. This te§€
could be applied to Yj and Zj at each set of conditions and then inférma-
tion from all tests could be combined together. This type of test has
the disadvantage that iﬁ is designed for the very general altefnative
F(-IX) # G(*ix) for some X € A and thus may not have high power for specific
alternatives that may be of primary interest.

For testing Hé various parametric and nonparametric tests could be used.
If normality and'constant variance can be assumed then the analysis 6f

variance is a reasonable choice where there are two treatments (real and

simulation) and n blocks corresponding to the n sets of conditions. If con-
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stant variance can not be aséumed then individual two-sample t-statistics can
bé gomputed at each point and then combined into an overall‘tgst. If Hé is
rejected then the individual t-statistics wﬁuld be useful in indicatiné
places where the model does not work well.

If normality can not be assuﬁed then two-sample nonpa;ametric tests
such as the Wilcoxon rank sum tést can be used at each pointrand combined
into an overall test. 1In many applications data on the real system may be
gcarce and there may be only one real observation Yjj; at each xj. In this
special case let Ri.be the rank of Yj; among the set Yil'zilszizn-'-szimi.
Then, under the null hypothesis, the distribution of Ry is uniform on |
1 2,...,mi+1. It is then possible to develop 51mple nonparametrlc tests us1ng

Rl,Rz,...,Rn (see Reynolds, Burkhart and Daniels (1981)).

8. OTHER HYPOTHESIS TESTING APPROACHES

There is a potential problem with testing Hy and Hé ag previously formu-
lated, It may be known a priéri that the model and the real system can not be
identical and thus testing that the two are identical may not be very’helpful.
A more realistic philogsophy is to realize that an iﬁperfect model can still be
useful and then tr& to determine héw "close" the modei needs to be to the real
system in order for the model to be ugeful for its intgnded‘purpbsg. once
this is determined the validation data can be used tq test the null hypothesis
that the model and system are close enough for the intenéed applicatién of
the model (see, for examéle, Balci and Sargent (1981)). This approach
:gquirestthat a measure,say Ax), pf the closeness of F and G be developed.
For example, this measure.could be AM(X) = E(Y - Z!g), tbe expected difference
between the real system output and'éhe model output. The null hypothesis:

could then be
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e

HO 1 MX) € Ag for all x e A

or, if the required agreement between the real system and wmodel depends

on X, the null hypothesis could be

ac',"z AMX) € Ag(x) for all x e A

where Ag(x) is the required agreement at X = X

L

In oxder to test Bé' or Hg an appropriate test statistic must be
chosen., Balci and Sargent (1981) discuss the use of Hotelliné's two-sample
T2 test for this problem when several system response variables are observed
and the inferences are not conditional on X.

The hypothesis testing approaches discussed so far have all tested the
null hypothesis that the model is "valid” in some sense. With this formula-
tion the null hypothesis that the model is valid will be accepted unless
there is strong evidence to the contrary. This may lead to the acceptance
of a model that is not adequate if the power of the test being used is low.
This problem can be overcome somewhat if the power of the test at alter-
natives of interest can be explicitly controlled.

Another approach that might be more reasonable from the model users
point of view is to take the null hypothesis as the hypothesis that the
model is not valid. This null hypothesis would then be rejected and the
model accepted only if there is strong evidence that the model is valid.

In this way the burden of proof is on the model to prove itself before
being accepted for use. This approach may be difficult to implement in some
cases since the null hypothesis of an invalid model may be difficult to

explicitly formulate and test. Reynolds (1984) discusses this approach to

formulating the null hypothesis in one particular context.
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9. ESTIMATING ERROR

The logical incongistency in testing the null hypothesis that the model

output has the same distribution as the system output when this is known to be

impossible has already been pointed out. Testing the hypothesis that the
model is close eﬁough for ﬁhe intended purpose of the model may be more
realistic, but there may be problems in implementing this approach. In many
cases there will be many potential users of the model. Even if these ugers
can be identified it may be difficult to get these users to accurately
specify the requiréd degree of agreement between the model and the real
system. In addition, the results of a test may not give the model ugser much
feel for the error that can be expected when the model is used to draw
inferences about the real system.

One way around the problems of the hypothesis testing approach is
through the approach of what could be called statistical estimation. This
approach is concerned with estimating the error that is likely to result when
-the model is used to estimate a parameter or to predict the actual output of
the real system. When the objective is to estimate a parameter then a
confidence interval could be given for the difference (expected error)
between the mean of the estimator from the model and the actual value of the
parameter. When the objective is to predict actual system output in a given
situation then a predicfion interval for the difference {prediction error)
between the prediction and the cbserved output could be calculated. In this
way estimates of error can be used by the model uger or users to determine
whether the performance of the model is acceptable for various purposes.

The expected output of the system at X = x%j is E(Y|xj), the expected
model output is E(Z|X;j), and the expected difference or bias in the model

is E(Y - Zix3). An unbiased estimator of this bias is Dj = ¥; - Zj. A
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confidence interval for this model bias can be constructed to give the model
uger some indication of the'average error that will result when the moéél is
used to estimate the mean response of the system. If mj and mi are hét too
small then confidence intexvalé for bias at each point xj can be constructed.

In some cases the objective may be to predict actual system output at
some point. If Zi is considered as a predictor of ¥j then the prediction
error is Di =¥; - Zi. A prediction interval for this error can be con-
structed to give the model user some indication of the size of the ervor
that may resqlt when the model is used for predicting the response of the
system.

If the n sets of conditions can be considered as a random sample
from some populatioﬁ then the n values Dy ,Dz,...,Dp can be used to construct
a confidence interval for the average bias (averaged over the distribution
of X) or to construct a prediction interval for the prediction error at a
randomly selected value of X. Reynolds (1984) discusses the use of confi-

dence interval and prediction intervals in validating models.

10. REGRESSION

In most cases the difference between the model and the real system will
not be constant but instead will vary depending on the values of the input
variables. This means that the bias in the model and the distribution of the
prediction error will depend on X. In addition the accuracy required of the
model may also depend oﬁ X. For example, for certain values of X the value of
Y may be large and the acceptable error may also be relatively large. But for
other values of X the value of Y may be small and the acceptable error may
also be relatively small. Thus it would be useful to be able to directly

relate the error or bias in the model to the levels of the input variables

15




X. bne.reasonable approach to this problem is to use regression methodology
to relate the error D to the input variables X. If this can be done then
model users can obtain information about model accuracy for different condi-
tions. 1In thig case estimates of bias or prediction error would not be
restricted t§ the n validation data points although the regression model for

error as a function of X would presumably only be valid within the region of

the validation data. Reynolds and Chung (1985) discuss the use of regression

methodology in validating models and give an example of this methodology

applied to the stand simulator PTAEDA.
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DISTRIBUTION UNDER DEPENDENCE OF NONPARAMETRIC TWO-SAMPLE TESTS

Emanuel Parzen
Department of Statistics
Texas A&M University

ABSTRACT. This paper aims to show how to develop the theory of
two-sample statistical procedures in a way that enables
statisticians to determine (in a practical and effective way)
how tests can be adjusted for dependence in the case that
dependence is modelled by a stationary time series. The
importance of the problem of adjusting two-sample tests for
dependence is illustrated by an example from Box, Hunter, and
Hunter (1978). The paper concludes with a formula for
dependence factors of linear rank statistics which are expressed
in terms of spectral densities at zero frequency of suitable
rank transformed time series. To derive dependence factors, we
use the asymptotic distribution theory of sample distribution
functions and sample quantile functions of stationary time
series. Proofs of these results and examples of their
applications are given by A. Harpaz (1985) in his Ph.D. thesis.

1, ~ INTRODUCTION

Serial dependence (autocorrelation) in data can seriously
affect the performance of standard statistical procedures (such
as the t-test or Wilcoxon rank sum test for the equality of
location parameters of two samples). The gqualitative truth of
this statement is well known to statisticians. But general
techniques for evaluating quantitatively the properties of
standard statistical procedures under dependence are not being
used by statisticians. This paper aims to show how to develop
the theory of two-sample statistical procedures in a way that
enables statisticians to determine {(in a practical and effective
way) dependence factors which adjust tests in the case that
dependence is modelled by a stationhary time series.

To illustrate and motivate the importance of the problem of
adjusting two-sample tests for dependence we quote an example
presented by Box, Hunter, and Hunter (1978, pp. B81-82). An
experiment is performed which takes two samples of 10
observations each from identical populations and tests for a
change in location by a t test and a Wilcoxon test using a 5%
level of significance. This exXperiment was repeated 1000 times
and one observed the percentage P of the number of experiments
in which the null hypothesis of equality of distributions is
rejected. When the samples of size 10 consist of independent
observations cne expects that, and observes that, approximately

Research supported by the U. 5. Army Research Office Grant
DAAG29-83~-K-0051.
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P=5%. The experiment also simulated observations with errors
e(t) generated from white noise u(t) by a first order moving
average model e(t)=u(t)+bu(t-1), with b chosen so that the lag
one autocorrelation rho equaled -.4 (negative autocorrelation)
or .4 (positive autocorrelation). Under these conditions the
values observed for P were very approximately P=11% for rho=.4
and P=0.2% for rho=-.4. One would like to be able to compute
theoretical values of P which can be compared with, and help us
understand and predict, the observed values of P. The formulas
given in this paper show that the theoretical values of P depend
in large samples on the value, denoted £(0}), at zeroc frequency
of the spectral density function of the time series model
describing the dependence of the obsgervations.

For a first order moving average £(0) = 1+2*rho, so that
f(0)=1.8 for rho=.4 and £(0)=.2 for rho=-.4; note that f{(0)=1.
for white noise (rho=0.). These values of £(0) can be used to

compute theoretical values of P (based on sampling theory for
dependent data)} which are in rough accord with the values of P
observed by Box, Hunter, and Hunter in their experiment. The
conclusion drawn by Box, Hunter, and Hunter from their
experiment is that the significance levels of the t and Wilcoxon
tests are affected remarkably little by dramatic changes in the
probability distribution (normal, uniform, skewed) but are
seriously impaired by serial dependence. To resolve the problem
of dependent errors one approach is to avoid dependence through
randomization. But when serial dependence cannot be avoided its
effect must be assessed quantitatively. This paper describes
methods for adjusting (for time series dependence) two-sample
linear rank tests to have known sampling distribution under the
null hypothesis.

As an example, let us note that the z-statistics in eq.
(3.29) or the t-statistic in eq (3.33) of Box, Hunter, and
Hunter (1978) could be approximately adjusted for serial

dependence by dividing by {f(O)}1/2. This formula generalizes
the discussion on p. 588 of Box, Hunter, and Hunter (1978).
[When £(0) = .2, its square root is .45. The adjusted
t-statistic 1.01/.45 = 2.26 or adjusted t-statistic .88/.45 =
1.96 yield P-levels comparable to that of the t-value 2.17
obtained in eq. (2.16)].

2. LINEAR RANK QTATISTICS DEPENDENCE FACTORS

Let X(1),...,¥(m) be a sample from a strictly stationary
time series with distribution function F(x) = PROB[H{(X], -=<X<(e,
and quantile function

Q(u) = F '(u) = inf (x: F(x)2u}, O<ugi.
The population mean and variance of X are denoted MX and VARX.

The sample mean and variance of X{1),...,¥X(m) are denoted MX{m}
nnd VARX{m}.
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Let Y(1),...,Y(n) be a sample from a strictly stationary
time series with distribution function G(x) = PROB[ Y<x 1,
~w{x<{» and quantile function G”1(u). Assume that X values are
independently distributed from Y values. . :

Let T denote a linear rank statistic to test the null
hypothesis Hg of equality of the distributions F(x) and G(x).
To compute and represent T one introduces the rank, denoted
Ry, of the j-th largest X value within the pooled sample of X
and Y values. A typical definition of T is :

m
(1) T= (1/m) E J(Rj/(N+1))
i=1
where N=m+n is the pooled sample size and J(u), O0Lugi, is a
suitable score function. The Wilcoxon rank-sum test corresponds
to J(u)=u or J{u}=u-0.5.

The asymptotic distribution of T under the null hypothesis
Hgo can be described in terms of A=m/N, MJ(U} = f; J(u) du, and

1

VARJ (U} = IO

(I(u) - MI(U)}2 Qu.

The role of U will become clear in the segquel {section 4); it
represents a random variable with a uniform distribution on the
interval O to 1. This paper shows how to express the asymptotic
distribution of T, as N tends to e, in the form

JNA{T - MJ(U)} is NORMAL(O, ((1-A)/A)*VARJ(U)*DEPFAC{T])

The notation * denotes multiplication

We use DEPFAC{T] to denote dependence factor of T; it
equals 1 if the X's are independent random variables and Y's are
independent random variables. The main aim of this paper is to
present a formula for the dependence factor DEPFAC[T] of a
linear xank statistic T. To adjust T for dependence we could

use (T-MJ(U))/{pEPFAC[T]) /2

as our test statistic.

To help interpret and understand the formula we present at
the end of the paper for DEPFAC[T] the next section introduces
dependence factors for sample means.

3. DEPENDENCE FACTORS AND SPECTRAL DENSITIES AT ZERC FREQUENCY

.- Our notation for the theoretical mean and variance of a
random variable X is MX=E[X] and VARX = E[{X-MX)}2}. When X(t),
t=0,+1,4+2,..., is8 a staticnary time series its covariance
function is dencted R(v;X) = COVI{X(t) ,X(t+v)] and its
correlation function is denoted
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RHO(v;X) = R(v;X)/R(0O;X) = CORR{X(t) ,X(t+v)],
' v=0,+1,+£2, ...

The sample mean of X(1),...,X(n) is denoted

n
MX{n} = (1/n) L X(t)
' t=1

The variance of a sample mean can be expressed
n VAR[MX{n}] = VARX*DEPFAC[MX{n}]
where

: n
'DEPFAC[MX(n}] = L[  (1-{v/n|) RHO(V;X)
v=-n

In words, the variance of the sample mean of a stationary time
series can be represented as the product of its variance for an
independent sample and a dependence factor.

For large samples (as n tends to =) ohe can relate the
dependence factor to the ectral density of the time
denoted

SPECDEN{w;X) = 1 + 2 £ RHO(v:X) cos 2rwv, O<wl1.
v=1

For n large, the dependence factor of a sample mean is given by
DEPFAC[MX{n}] = SPECDEN(0;X)

The advantage of expressing the dependence factor in terms of
the spectral density at zero frequency is that it can be
estimated using methods of spectral density estimation.

Let us now consider the two-sample problem of testing the
equality of distributions of two independent time series X(t)
and Y(t) using as a test statistic the difference of the sample
means ' :

- m n
MX{m} = (1/m) L X(t), MY{n} = (1/n) L Y(t).
t=1 t=1

. The test statistic MX{m}-MY{n} has variance equal to the sum of
the variances of the two sample means. Therefore approximately

VAR[MX{m}rMY{h}j'= (1/m)VARX*S§ECDEN(0;X)+(1/n)VARY*SPECDEN(O;Y)
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Assume that under Hg both MX=MY and VARX=VARY (in practice, one
might replace VARX and VARY by the variance of the pooled.
sample). Then under Hp MX{m}-MY{n} has mean 0 and variance

"1*VARx*DEPFAc[MX{m}—MY{n})

(1) VAR[MX{m}-MY{n}] = {(NA(1-A)}
where N=m+n, A=m/N, and the dependence factor can be expressed
approximately (for large values of m and n) in terms of spectral
densities: -

(2) DEPFAC[MX{m}-MY{n}] = (1-A) SPECDEN(O;X) + A SPECDEN(O;Y)

It should be noted that we are not assuming that the spectral
densities of X and Y are equal.

This formula for the dependence factor of the dlfference of
two means is 1mportant for several reasons:

(1) It can be used to determine the affect of dependence
on the two sample t-test; it shows that the affect for large
samples depends only on the value of the spectral densities of
X(t) and Y{(t) at zero frquency.

(2) It motivates the form of answer which we seek for
linear rank statistics T, since we shall show that T - MJ(U) has
the same distribution as a difference-of-means statistic

(1-A) (MJ(UX™){m} - MI(UY™) {n})

in terms of time series J(UX™(t)) and J(UY"(t)) defined below.
The asymptotic variance of T therefore can be expressed, using
(1) and (2),

%%%%%;T *VARJ (UX)*{(1-A) SPECDEN(Q;J(UX"))+ A SPECDEN(O;J(UY"))}

The remarkable conclusion which one is able to draw from
this formula is that for large samples the dependence factor of
linear rank statistics can be evaluated by estimating the
spectral density at zero frequency of the derived time series
J{UX™(t)) and J(UY™"(t)). Experience indicates that a quick and
dirty estimate of these spectral densities is provided by the
spectral densities of X(t) and Y(t) respectively. In practice
one will not know the dependence structure of the errors. The
dependence factor of T will be estimated by estimating the
spectral density at zero frequency of the time series whose
means are being compared.

4. REPRESENTATIONS OF LINEAR RANK STATISTICS

To study linear rank statistics we use representations for
them in terms of sample distribution functions which are valid
for both independent and dependent observations.
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A sample X(1),...,¥(m) has: order statistics
X(1;m)£...£X{(m;m); sample distribution function F"(x) = fraction

of sample  x; and sample quantile function Q" ({u) = F”_1(ﬁ)
given by

Q" (u) = X(j;m) for (j—1)/m<u$j/m.

One also uses conktinuous versions of the discrete sample
quantile function. A sample Y(1),...,Y(n) has: order statistics
Y(1;n)<...£¥{(n;n) and sample distribution function G {x).

One pools the two samples to form a pooled sample
X(1),...,X(m), ¥Y(1),...,¥(n) of size N=m+n which has sample
distribution function H" (x) satisfying H™ (X)=AF~ (X) +
(1-A}G7 (x). The limit of H™(x) is H{xX) = AF(x) + (1-A)G(x).

In the one-sample problem we call U(t) = F{X(t)),
t=1,...,m, the rank transformed variables; their marginal
distribution is uniform on O to 1. Sample rank transformed
variables U™ (t) are defined by a formula such as U™ (t) =
(m/(m+1))F " (X(t)) which assigns ranks 1/(m+1),...,m/(m+1) to the
order statistics X{1;m),...,X{(m:;m).

In the two-sample problem the rank transformed variables
are defined to be H(X(t)) and H(Y(t)). The sample rank
transformed variables are :

UX™(t) = (N/(N+1))H™(X(t)), UY"(t) (N/(N+1))H"(Y(Et)).
A linear rank statistic T as traditionally defined by
eq (1) of section 2 can be represented

N

Ne7 H X(3;m)) = MI(UX™){m}

m
T = (1/m) L J¢(

=1

An alternative statistic, which our analysis shows provides more
insight into the asymptotic distribution, is the difference-of-
means statistic; one can show that asymptotically [and exactly
for J(u)=u] o
T - MJ(U) = (1-A)(MJ(UX™){m} - MJ(UY"){n})
To relate T to sample distribution functions we represent it
. oo N ..~ - ‘
T = j_w J(EIT H™(x)) &F™ (x)

Our approach is to write approximately

T = f; J(u) dF*(H~‘1(u)I
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This formula is not used. But it suggests one should try to
represent T exactly as

T = I; J(u) dp~(u)

where D~ (u) is a suitable estimator of D(u} = FH 1(u), O<ug1.
We call D(u) a compariscon dquantile function.

We would like to define D (u) in terms of sample
distribution functions so that it is a step function with jumps
equal to 1/m at u={(N/(N+1)) Ry. Parzen {(1983) shows that this
can be accomplished if D" (u) 1s defined as the inverse
D1~ 1(t) of D1 () = H'F"~1(¢), 0<t<1.

Our motivations for introducing D(u) and D™ (1) are diverse.

(1) They implement our philosophy that ever raph oul
be a picture of a function. Various technigques for graphical
analysis of samples, such as P-P plots and Q-Q plots, can be
regarded as sample versions of theoretical functions of the form
of D(u),

(2) The conclusions that one obtains arithmetically from
the value of a linear rank statistic can often be discovered
graphically {(at a glance) from a graph of D™ (u).

{(3) In cases where the value of T indicates no significant
difference between the two samples, the graph of D~ (u) may
indicate important ways in which the samples differ.

{4) The empirical process D (u) is important as a
practical basis for data analysis (as outlined in reasons (2)
and (3)) and as a theoretical basis for deriving the properties
of linear rank statistics. The asymptotic distribution of
D™ (u), 0gug1, is derived by expressing it in terms of the
asymptotic distributions of the sample distribution functions of
the independent stationary time series X(t) and ¥Y(t). The
rigorous theory of the latter has recently been completed by
Pham and Tran (1985} as the culmination of a long line of
research papers starting with the pioneering work of Gastwirth
and Rubin (1975).

9. EMPIRICAL PROCESSES OF STATIONARY TIME SERIES

Let F7(x) and Q" (u) denote the sample distribution and
sample quantile function of X(1),...,X(n}), a sample from a
stationary time series X(t). Let CFX(X), -o0<x<e, and
CF“’X(u), 0O<Luf1, denote stochastic processes representing the
limiting distributions of /HA{F  (Xx)-F(x)}, -«<{x<{~, and
fH{F‘1(u)—F”1(u}},0$ug1, respectively. One can show that
there is a zero mean Gaussian stochstic process denoted BX(u),
0<uxt, such that
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CFX(x) = BX(F(x)), cF-1(u) = {-1/€F 1 (u)} BX(u).

Thus the asymptotic distribution of the sample distribution and
sample quantile functions can be expressed in terms of the
process BX(u), 0O<ugt.

For independent random variables (white noise) X(t), the
limit process BX(u) is a Brownian Bridge, which is a zero mean
Gaussian process with covariance kernel
(1-u

.E[BX(u1) Bx(uzj] = u for u, £ u

1 2) 2
An indication of the formulas required to describe BX(u)
when X(t) is a time sexries is provided by the limit
distributions of independent samples of bivariate dependent
random variables (X(t), Y(t)). Then the limit processes BX(u)
and BY(u) are each Brownian Bridges but they are not independent

of each other. They have joint covariance kernel

E[BX(u1) BY(uz)] = F(QX{U1),QY(UZ)) - u,u,, 0$u1.u2$ 1,

where F(x,v)}=PROB{X<x,Y<y] is the joint distribution function of

X and Y. We call F(QX(u¢), QY(uy)) the bivariate dependence
function of X and Y; an alternative name (used by some authors)

is c¢opula.

To express the covariance kernel of BX(u), 0O<u<1, in the
case that X(t) is a stationary time series, it is more
convenient (for insight and computation and to avoid a
complicated infinite summation of bivariate dependence
functions) to represent the covariance structure as a formula

for the'variance of a general linear functional f; g(u) dBX(u)

for suitable functions g(u). Let U(t)=F(X(t)) be the rank
transform, and form the time series g{(U) whose value at t is
g(U(t)). Equivalently we write g(U)=g(F(X)). :

BASIC THEOREM ON_EMPIRICAL PROCESS OF STATIONARY TIME

SERIES: The distribution of BX{(u), 0O<ug1, can be described in
terms of the spectral density at zero frequency of the time
series gU(t), U(t)=F(X(t)), which are estimated by gU"(t), U"(t)
= F"(X(t)): :

VAR[S] g(u) dBX(u)] = VARg(U) SPECDEN(0;g(U))
where S |
varg(0) = ! g% au - ! grwau|?

The asymptotic distribution of linear rank statistics are
obtained from formulas for the asymptotic distribution of linear

26



functionals in the sample comparison quantile function DY (u),
O<u<1, defined in section 4. One can show that (in the sense of
convergence of stochastic processes)

/R {D”(u)-D(u)} -+ CD(u)

where the limit process CD(u,0<u<1, can be expressed in terms of
independent limit processes BX(u), O<u<1, and BY{u),0<u<?, by

~1/2 -1/2

CD{u) = ~{1-A){A B (u) - (1-A) BY(u)}

The processes BX{u) and BY(u) are related to the processes
defined in the Basic Theorem on Empirical processes. Their
covariance kernels are expressed in terms of the spectral
densities at zero frequency of the time series J(UX“(t)) and

J(UY™(£)):

VAR[I; J(u) dBX(u)] = VARJ(U) SPECDEN(O:J(UX")),

II

VAR[J; J(u) dBY{(u}] VARJ(U) SPECDEN(Q;J(UY™)).

By combining all these results one can obtain the formula
given in section 2 for the asymptotic distribution of a linear
rank statistic for two samples from stationary time series with
dependence factor DEPFAC[T] estimated by

DEPFAC[T] = (1-A) SPECDEN(O;J(UX“)) + A SPECDEN(O;J(UY™))

A more complete proof of this result, and examples of its
applications, are given by Harpaz (1985%) in his Ph.D. thesis.
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Statistical Models and Methods for
CLUSTER ANALYSIS AND SEGMENTATICN

Staniey L. Sclove
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ABSTRACT

Clustering of individuals, segmentation of time series and
segmentation of numerical images can all be considered as labeling
problems, for each can be described in terms of pairs (x¢,g¢), t =
1,2,...,n, where x¢ |is the observation at instance t and gi is
the unobservable '"label" of Iinstance t. The. labels are to be
estimated, along with any unspecified distributional parameters. In
cluster analysis the values of t are the individuals (cases) observed
and the x's are independent. In time series the values of t are time
instants and there is temporal correlation. In numerical image
segmentation the values of t denote picture eiements (pixels) and
spatial correlation between neighboring pixels can be utilized. The
idea in segmentation is that signais and time series often are not
homogenecus but rather are generated by mechanisms or processes with
various phases, Similarly, images are not homogeneous but contain
various objects. '"Segmentation' is a process of attempting to recover
automatically the phases or objects. A labeling model for representing
such signals, time series, and images was discussed in a paper by the
present author in the Proceedings of the 30th Conference; some
approaches to estimation and segmentation in this model were presented.
The present paper summarizes the work on all these types of labeling
problems, clustering as well as time series- and image-segmentation.

, Key words and phrases: statistical pattern recognition,
classification; temporal correlation, spatial correlation; optimization
by relaxation method.
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1. [Introduction

The research reported here relates to cluster analysis and
numerical processing of time series an& images. It is in part a
discussion of work performed under ARC Contract DAAG29-82-K-0155
(6/15/82 - 6&/15/85): . Statistical Models and Methods for C(Cluster
Analysis and Image Segmentation. The type of datasets to which the
techniques‘deveioped are applicable include: signals such as radar and
sonar; economic and bio-medical time series; time series arising from
quality assurance acceptance sampling by attributes or variables; and
dig}tai_images which can result from various sources, including
bio-medical “imagery, infrared imagery obtained by smart munitions,
and multispecfral &ata obtained by satellite, The problems addressed
are fhose of clustering, and segmentation of time series and images.

The work invelves the further development of algorithms for
clustering large, multidimensional datasets and for segmentation of
time series and digital images. The algorithms are based on maximum
likel ihood estimation in distribution-mixture models. In the context
of these mixture models clustering is construed as estimation of
unobserved labels. An observation's label, were it observable, would
tell frbm which mixture component the observation arose. Image
segmentation is also considered as a labeling problem. Throughout the
work there is an attempt to apply model-selection criteria to the
decision as to an appropriate number of clusters or classes of segment.

Software development is én jmportant aspect of such a project.
The algorithms developed are progrémmed in FORTRAN.

Some of the ideas discussed in the present paper have been
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developed and published in journals; seé Sclove (1977; 1983a,b,c3
1984a) and Bozdogan and Sclove ({1984). Coonis

The organization of the present paper is as follows: Section:2
concerns cluster analysis; in this section there is some general
discussion of model-selection criteria and a digression to mention some
idéas concerning clustering of variables. Section 3 summarizes some of
the results on time-series segmentation, and results on. image

segmentation are discussed in Section k.

2. Cluster analysis

Background. The mixture model for the clustering problem
postulates a mixture of k distributions. This is the approach put
forth in (Sclove 1977). The research problem set there was, at least
in part, to see whether the ISODATA (Ball and Hall, 1967) and K~MEANS
(MacQueen, 1967) algorithms could be interpreted as
mathematical-statistical estimation schemes in some model for the
clustering problem. That is, did there exist a mode! for the
clustgring problem, and an estimation method in that model, such that
ISODATA and K-MEANS corresponded to that method applied to that model?
The answer, provided in (Sclove 1977), was affirmative; this will be
explained below, but first let us briefly define ISODATA and K-MEANS.

- The "isodata" scheme proceeds as follows. One starts with-
tentative estimates of cluster means és seed points for the clusters
and assigns each observation to the mean to which it is c¢losest. The
cluster means are then re-estimated, and one loops through the data
again, reassigning the observation;. Etc. In the -K-MEANS algorithm,

the seed points are updated immediately after each cohbservation is
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tentatively classified. In (Sclove 1977) it was shown that:~ these
algorithms correspond to iterative maximum likelihood estimation in a
type of mixture model for the clustering problem, where the component
distributions are multivariate normal.

This clustering can be done for various values of k, the number of
clusters, Figures of merit can be wused to choose the best k.

Model-selection criteria can be used as figures of merit.

2.1. MHodel-selection criteria

In the context of a mixture model, choice of the number of
clusters &k can be viewed as a model-selection problem, However,
at least in the case of <clustering individuals, existing
model-selection criteria have to be modified, as they depend upon
(regularity) assumptions that are not always met in mixture models
for clustering individuals.

in any case, let us review some of the existing model-selection
criteria. Consider, then, a problem of choosing from among several
models, indexed by k (k = 1,2,...,K). Let L{(k) be the likelihood,
given the k-th model. Various model-selection criteria taking the form

-2 log(max L(k)) + a{m)m(k) + b(k), )
have been developed in refatively recent years. Here n is the sample
size, log denotes the natural togarithm, max L(k) denotes the maximum
of the likelihood -over the paramete}s. and mf{k) is the number of
independent parameters in the k-th model. For a given criterion, al(n)
is the cost of fitting an additional parameter and b (k) is an
;dditional term depending upon the‘criterion and the model k.

Akaike (see, e.g., Akaike 1973, 1974, 1981) developed such a
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criterion as an (heuristic) estimate of the expected . entropy
(Kullback-Leibler information). Akaike's information criterion (AIC)
is of the form (1) with

a(n) = 2 for all n, b() =0 (A1C) . (2)
Schwarz (1978), working from a Bayesian viewpoint, obtained a criterion
of the form (1) with

afn) =logn, b(k) =0 (Schwarz' criterion). (3)
Since, for n greater than 8, log n exceeds 2, it follows that
Schwarz'! criterién favors models with fewer parameters‘ than does
Akaike's.,

Noting that AIC has a{n) 'a constant function of n, namely 2,
various researchers, including Kashyap (1982) and Schwarz (1978) have
mentioned that AIC is not consistent; a(n) needs to depend upon n.

Kashyap (1982), also working from é Bayesian approach, took the
asymptotic expansion of the logarithm of the posterior probabilities a
term further than did Schwarz and obtainad the criterion of the form
(1) given by

a{n) = log n, b{k) = log(det B(k)) (Kashyap's criterion}, (4)
where det denotes the determinant and .B(k) is the negative of the
matrix of second partials of log L{(k), evaluated at the maximum
likeiihood estimates. {n Gaussian linear models this is the c&variance
matrix of the maximum likelihood estimates of the regression

1
coefficiénts; in general, the expectation of B(k), evaluated at -the
true parameter values, is Fisher's information matrix. Since Kashyap's
criterion is based on reasoniﬁg similar to Schwarz', but contains an

extra term, it may perform better. [Further comments on

modeli-selection criteria are made in Sclove {1983d).]
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.2.2, Multi-sample clustering

The problem of multi-sample clustering, the grouping of. samples,
is treated in Bozdogan and Sclove (1984). The situation is the
K-sample problem (one-way analysis of variance), with an emphasis on
grouping the samples into fewer than K clusters, The use of
model-selection c¢riteria in this context can provide an alternative to
multiple-comparison procedures. Use of model-selection criteria avoids
the difficult choice of levels of significance in such problems.
MHodel-selection -criteria can alsc be used in this contegt to decide
whether or not to assume a common covariance matrix. Kashyap's
criterion could be evaluated and used for these problems.

2.3, Clustering of individuals

Schwarz! and Kashyap's criteria could be calcuiated for the
problem of clustering individuals according to Wolfe's (1970)
mixture-model clustering approach and incorporated into computer
programs for clustering. The values of the c¢riteria can be used
heuristically as figures of merit for alternative models, but in order
to be rigorously applied the model-selection crfteria need to be
modified since their derivation invofves an assumption of
nonsingularity of the information matrix. However, note in
this regard a potential advantage of model-selection criteria
over a - hypothesis-testing approach in this an? similar
situations. Model-selecti;n criteria require nonsingularity of
the information matrix only for each fixed model k. The testing
approach runs into difficulfies-because of nonsingularity of the
matrix - at the boundary between the null and alternative hypotheses

4

(i.e., at the boundary between models) .
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- 2.4, Clustering of variables

The clustering of wvariables can also be viewed as a
model-selection problem. For exampie, whether and how to <cluster
multinormal variables depends upon which covariances may be assumed to
be zero; the possible patterns of 2zeros among the covariances are
separate models, a figure of merit for which is providéd by a suitable

model-selection criterion. This idea is to be further developed.

3. Time-series segmentation

As mentioned above, a model for clustering or segmentation is
given by assuming that.each ins;ance of observation, t, gives rise not
only to an obseryation Xt but also to a label, g, equal to I, 2,
eees oOr Kk, where k is the number of classes of segment.
Model-selection criteria are used to estimate k. {n the context of
this model, segmentation is merely estimation of the labels. Sclove
{1983b,c; 1984a) treats the problem by modeling the label process as
a Markov chain. An aigorithm andlrcomputer programs are ldiscussed;
numerical examples are given.

The _model involves three sets of parameters: the distributional
parameters (e.g., means and covariance matrices); the labels, and the
transition probabiiities between labels.

- The aigorithm is a relaxation method, similar to the EM algorithm.
The estimation step consists of maximum-Tikelihood estimation of the
distributional parameters, for tentatively fixed values of the Ilabels
and' transition _prdbabiiities. The maximization step consists of
maximizing the likelihood over the labels and transition probabilities,

for tentatively fixed values of the distributional parameters.
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As developed so far, the ‘algorithm is a forward algorithm,
classifying xp after. xj, X3 after x3 and X, etc, 't is
suitable for sequential operatjon in real time, but it is non-optimal
in other modes of operation. Its performance could possibly be
improved by a backcasting technique analogous to that in Box and
Jenkins (1976) and by application of the Viterbi algorithm (Forney
1973}, which s a recursive optimal solution to the probl;m of
estimating the state sequence of a discrete-time finite state
Markov procesé; it is applicable here because this is-what we:have
at each stage when the distributional parameters and transition
probabilities are tentativé!y fixed and the labels are to be estimated.
| Fu}ther, the parameter-estimation step of the algorithm can be
‘improved. The estimation implemented in the existing algorithm leads
to estimates that are biaéed (evén asymptotically); (Seé, e.g., Bryant
and Williamson 1978.) This bi;s. may be viewed as due fo- the
truncation resultfng from the algdrithm. The estimation coﬁld be

modified by doing it in a Bayesian’mahner. e.g., estimate the mean of

Class A as
n n
> x(t) Pra|x(t))/> Pra]x(t))
t=1 1=

(in this expression, Pr(a]x) can be replaced by Pr(x[a) since
Pr{a)/f{x)  will cancel  out.} This modification in the
. parameter-estimation step' can be important. For, in this estimate,
all the observations play a role, whether labeled as . 'Class A" or
otherwise, so that at least some of the bias ‘incurred_ by -using only
| the '"a'" observations will be' removed by allowing ail of the

cbservations to enter.
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. The work done to date is explicit only for the case in which the
class-conditional prbcesses consist of independent,. identically
distributed random variables. The work is to be extended to other,

often more realistic cases, such as that of autoregression within

segments.

4. Image segmentation

Similar ideas are applied to digital images in Sclove
(1983a31984a) . -Here the label process is modeled as a Markav random
field." The same improvements made in the time-series context will be
carried over to the two-dimensional, image-processing context, For
example, computer experiments (éclove 1984kb) with the existing
algorithm have shown it ;o  be successful, even in finding small
targets. However, at thg same time, these experiments have shown the
importance of some such modification as backcasting, as mentioned in
connection with time series, to eliminate anomalous border effects.

Extension of the existing work to two-dimensional autoregressions

within segments will yield algorithms that may detect textures.
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A COMPARISON OF METHODS FOR FACTOR ANALYSIS OF VISIEILITY
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ABITRACT: Vigibility is produced by a variety of meteorolagical factors
related to micro-, meso-, and macro-scale processes. In addition the
frequency distribution of visibility is non-Gaussian, Thus a factor
analysis is not trivial, -

Today factor analysis is aided by "canned” programs on most larger
computer systems. Howsver, most of the time it is not readily
understood what these programs produce. Thus an investigation was
performed to compare four different approaches of a factor analysis, A
principal components ahalysis, an unweighted least squares, & general
least squares approach and a maxirum Yikelihood method were examined
for a basic correlation matriz of eight atrmospheric parameters and for a
7-year record of Stuttgart, Germany. Furthermore, unrotated factors,
afd arthagonal and oblique rotation of factors were included, As
expected the results of the factor analysis differ in details. However,
the four methods show some cormmaon principles.

1. INTRODUCTIOMN:  Factor analysis was used in behavioral science when
Cdpeartan (1904, 19271 Cattell (1852 and 1965), and others establishad
the basic statistical-mathematical background. The physical sciences
followed hesitantly. Factor analysis in the atmospheric sciences can anly
be found in the last two decades, e.g. Christensen and Bryson (1966),
Kutzbach (19671, Buell (1971) atc,

ih part this was due to the elaborata mathematical procedure which
is required in the mathemastical solution. Today, factor analysis is aided
by electronic data processing. In recent times even “canned programs” are
avaitable. Thus the mathematical difficulties have been resolved. The
physicist will find several methods of estimation, however, and may he
confused abiout the answer to the question which method may be most

suitable and may provide the best estimators: Furthermore, in order to
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draw the correct conclusions from the sohutions by those "canned
prograrns,” 1t i necessary to separate the "mathematics” from the
"physics.”

This study serves to elucidate some of the mathematical background
ahd reveal sarme physical characteristics by comparing the results for
several methods of factor analysis applied Lo data of & seven-year record
of atmospheric parameters for Jlutigart, Germany.

We learn that the estimsators for the "communalities” differ far the
individual methods. This is expected. The physical characteristies of the
factors, however, display grest similarity after rotation of the coordinate
system although the sequence is not always the satme for the individual

methods.

2. PRINCIPAL COMPOMENTS ANALYSIS, The basie model for factar
anslysis can be formulated as follows:

My = My Mp o+ 11, (1)

where My i 6 data matrix (the only known matriz in Egn 1), M, 5
coefficient matrix of factors, Mg the factor matrix, and 1M, an Brror
matrix. My 15 also called the factor loading matrix or factor pattern. In

the basic Tactor analysis neither the factors are correlated, nor are the
tactars and the errrors.

The mathematical solution for Eqn (1) cah be formulated as:
T .

whera § = HFTHF % & factor covariance matrixz and ¥ a diagona) matrix
¥ = MM, with Mp a diagonal errormatris,

As stated above, MK iz & data matrix, In its standardized form Mg
te 3 correlation matrix Mg with unity in its diagonal. This is called 3
‘tlosed” system or principal components analysis. Then the errror
matrix ¥ has zero elements outside the diagonal.

The true factor analysis is based on the postulation that not all
factors are known, In order to account for this fact the diagonal in the
carrelation matrix Mg must be reduced i.e. the diagonal elements are
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less than 1.0, These diagonal elements ore also called "cornmunalities”.

Determining ‘#’ and My requires a solution far
Mg =My $ 10 (3)

which is & known prablem in mathematics. The model can be
reformulated:

Dy, = My TMgH, ERC)

with MAT = Mﬁ" and Dy a diagonal matrix. D4, is called the matrix of
eigenvalues and My contains the eigenvectors. In the principal
cofmpotents analgsis MATMA = I, For more details see Essenwanger
197a).

Ea

% THE COMMUMALITIES. Four different methods have been studied in
this investigation. In the first method a principal components analysis
(P.C.}) is perfarmed and a specific number of factors is accepted. E.g. for
a correlation matrix with §X6 dimension & principal companent factors
are obtained from the mathematical model. ‘We may decide to select the
larqest 4 factors, This is equivalent to a truncation. The communalities
are then recalculated from these 4 accepted factors. This procedure may
apppear to be somewhat arbitrary and subjective, It must be pointed _
out, however, that the number of physical factors is unknown, Although
the total number of factors in the principal components analysis is
detarmined by the dimension of the matriy Mp the urcertainty of factors

with significance in physics is contained in the chosen number of
elements in the Mg matriz. A formalistic mathematical solution can be
achigved for any dimension of the correlation matrix Mg However,
whether all possible factors in the principal components analysis have
significant meaning in physics is not determined by the mathematical
solution,

The number of factors is also a subjective choice in the other three
raethods. Thus the truncation of factors in the principal components
~ analysis i¢ not worse than the assumption of the number of factors in
the other three methods,

The other three methods differ how estimators are calculated for
the communalities. We as=ume the number of factors which are
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accepted and abtain estimators as follows.,

The unweighted least squaresrethod (ULSQ) requires that Uis a
minimum for

U = (1/2) tr (Mg - My)2 (5)

where Mg is the correlation matrix with estimators in the diagonal and
tr means the trace,

In the generalized least squares method (GLEQ) G is a minimum for
G = {1/2) tr (I, ~ Mg~ 'My)? (6)

where [, denotes a diagonal matrix of unity and Mg and My, are the same
as under Egn (5),

Finally, the maximum likelihood principie (MELI) is applied to
minimize:

M = {r [U]K_]MS} - ﬂII(Mx-‘MS) ] =N {7)
(See Jireskog, 1967) where n i the number of variables.

Other methods to substitute estimators for the diagonal in Mg exist

(see Essenwanger, 1976) but were not included in the present study; see
aiso Guttman (1956), ' '

4. BOTATIONS. Although the solution of i"iA' pravides characteristic
factors which may have meaningful interpretation in physics, it is
customary to enhance certain features. This is accomplished by rotation
of the coordinate system. This is called attaining simple structure. The
uitimate goal is the following: . '

(a) At teast one zero in each row

(b k zeros in each column (k-1 for principal components)

{c) For any pair of factors:

t. High loading in one element ~ 1.0
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2. Zero in other variables
3. 3mall loading on both factors for the variable
4. Only a few noh-vanishing loading on both.

In order to explain the rotation procedure let us recall that:
Ma = MgDy, (a)

- where Mg is an eigenvector matriz and Dy is a diagonal matrix of
eigenvalues &, with 2, =K. Two methods of rotationsare ustomary:

Ssrthogonal and oblique rotation. In termsof mathernatics the orthogoral
ratation ig achisved by

where Ty is a transfarmation matrix. Oblique rotaticn raguires two

transformation procedures because factor pattern and factor structure
matrix are not identical as in the orthogonal transformation,

Thus:

Mpp = MaTo™ ! (factar pattern matrix)  ¢10a)

Mg = MaTo (factor structure matrixy  (10b)

While the Tactors are uncorrelated in the solution of Eqn's 4-7 and the
‘orthoganal rotation, the oblique ratation introduces factors which are
correlated. Thus Mpp represents the regression coefficients in the

structure pattern, and Mpg the covariances between varisbles and
factors. The factor pattern is:

}{i=3nf1+512fg+...+{_9i) , {”:’

where Mpp determines the aij and Mpg the fj terms; ey is the error.

9. EIGENVALUES, FACTOR LOADS AND COMMUNALITIES. The introduced
four methods of estimating the r:ggnmunalities have been applied to




atmospheric dsta of Stuttgart (Fed. Rep. Germany). The data cover the
period * Sept 1946-august 1953, Eight meteorological elements have
been selected: ceiling (CEIL), visibility (¥I8), wind direction (WD),
windspeed (WS), temperature (TEMP), dewpoint (DEWP), relative
hurnidity (REHU) and pressure (PRES). Yisibility was utilized in linear
scale and as transformed variate n logarithmic scale. The wind velocity
was algo converted to zonal (U} and meridional {Y) compenents. These
differences in the element selections will be discussed later,

Data as exhibited in Tables 1 and 2 were chosen as a fypical
exampie for disclozing the diversity caused by different methods of
astimating the communalities. Table 1 displays the einenvalues for data
from Stuttgart (linear visibility, zonal and meridional wind components).
We learn from perusal of Table 1 that the individual eigenvaluss
fluctuate and depend on the chosen method. The dissimilarity is even
found in the sums of these sigenvalues, Howewer, rotation of the
coordinate systems forthogonal and oblique) has no effect on the sum, as
expected, The numerical values differ anly by rounding.

The differsnces between the individual methods for the sum of
gigenvalues can be traced to the sum of communalities (Table 2). As
confirmed by the abserved data the surm of eigenvalues must be identical
with the sum of the communalities save rounding. In the principa)
components analysis this sum is identical with the number of elements
if the number of factors is not truncated,

We also notice in Table 1 that the truncated principal components
anatysis shows the highest approximation (82%) of the fotal variance far
the chosen number of factors, in our case four.

*Footnoter We experienced difficulty with the magnetic tape record
after 7 gears of data. The difficutty could not be resolved for inclusion
inta thie manuscript. Only Table 3 was available for 10 years.
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While Table 1| exhibits fluctuations of the sum of eigenvalues from
6,967 to 9.040 these variations are not necessarily repeated for other
data sets. E.g. Table 3 has been cotnpiled for 10 years of data for
Stuttgart in January, substituting visibitity in its transformed o
logarithmic scale, and zonal and meridianal caomponents of wind have .
been replaced by speed and direction (see Essenwanger, 1964). We learn
that the sum of the eigenvalues for the three methods ULSE, GLSQ, and
MXLI differ very little, although the individual eigenvectors show
dispersion. Again, the truncated principal components analysis renders

the highest approximation of the variance {about 51%).

6. FACTOR LOADS, STRUCTURE MATRIX AND FACTOR PATTERN. Tables
44-D provide detailed information about the factors., Four sections are
shown in each Table 44-0. The first section provides the unrotated
factor loads for the solution with cormmunalities. E.g. in the case of the
principal componants method (Table 44} these are the first 4
sigenveciors of a correlation matrix with unity in the diagonal matris.
The numerical values in these four columns represent the affinity with
the elements and can be interpreted as a {Jinear) correlation coefficient.

The first factar (Table 4A) which represents 39% of the variance
{i.e. 3.14/8.00} discloses high association with temperature, dewpoint,
zonal (U) and meridional (V) wind component and visibility, in that arder
of magnitude. The second factor with about 214 of the variance i3 again
3 mixture, relative humidity, visipility, dewpoint and cerling. In the
third factor the pressure stands out while the fourth factor is a0ain 3
rmixture whereby al) elements are contrahuﬂng except the relative
humidity (-.07 means almost zero).

The unrotated factor load is a valid solution. It was pointed out
previeusly that a rotation of the coordinates will enhance the
agsociation between individual factor and element. This simplification
process was described in section four. The sum of the sigenvalues
remaing constant in this transformation.

Inzpection of the section for orthogonal rotation in Table 44 reveals
that now the first factor principally is related with the temperature
elements, i.e. temperature and dewpoint. The second factor comprises
the moisture elements (relative humidity, visibility and ceiting). The
third factor containg the pressure, and the fourth factor the wind, This
may be expected by some readers and may be a trivial answer. It should

be stressed, however, that the mathematical formalism could have led to
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a different ensyrer and combination of etements, The seporation into
these four factors is logical on account af the physics background.
This maly give the impression that the grouping into these 4 factors is
trivial. In turn, the mathematical formalism has led in this case to an
answer which has an interpretation in terms of physics. However,
beyond the expected factors we gain information about the weights of
the factors. This weight is not readily available by expectation alone.

The lower part of Table 44 lists the result for an oblique rotation.
While the structure matrix contains the covariances {which are |
aquivalent to the correlation coefficient); the factar pattern expresses
~ the regression coefficients, In the obligue rotation the factors are

intercorrelated (see Table 5). They are not correlated with each other
for the unrotated or the orthogonal solution. We learn from the
structure matrix of Table 4A that the factors have not essentially
changed from the orthogonal rotation case, Therefore, the
intercarretation (between factors) is very low (Table 5).

The results for the other methods (ULSQ, GLIG, MXLIY are similiar
with minor changes except that the weights are different for the
indtvidual factors, In Table 4B we notice that the ceiling shows only
very low influence in any of the factars. This result is repeated in
Table 4C, While in the previous methods the pressure is one factor, it
shoves virtually no contripution in the GLSC method. If reappears as a

factor in Table 4D, MXLI method., Another difference between Tables 44,

B and Tables 4T, D is the influence of the windspeed, In Tahle 44 the
factor with the two wind components indicates equal correlation of the
wind components, In Table 4B a small preference of the meridionsl
carmponent 15 already visible. In Tables 4C, D, however, the meridional

wind component appears to be more dominant than the zanal influence in

the wind factor.

One further peculia'ritg must be mentioned. In the unrotated and
orthogonally rotated case the sum of the eigenvalues gl AND 30, ,

respectively, is equal to the sum of the squares of the factor
cornponents,

n Ly
By = 2 fy* B - (12a)
R '
or G0, = 2 f, (12b)
L

where fu2 and fug denote the numerical value in the respective
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factor column and n dezignates the number of elements. In the eblique
case we find

#
0By = 2 fg fp (13)
. ¢ A

where fg is the column value In the structure matrix and Tp the

torresponding colurmn value in the factor pattern. Although the sum of
uDE’}\ for the 4 factors renders the same numerical value as the

unrotated or orthogonally rotated case the individual items 30B,, can be

pasitive or negative in the maximum likelihood mathod (Table &). The
exhibited case in Table 6 is not an isolated case or error as the first
impression may be.  As can be seen from Table 74 2 negative term
appears alzo in a combination of elements Ln VIS, WD, WS, In July
(Table 7B} this peculiarity did not showy, and it aimoof rules out that it
is an error in the cornputer program. Thus the maximum likelihood
method, at 1gast in our "canned computer program”, appears to be very
sensitive to changes of the correlations in the input matrix.

7. FACTOR ANALYSIS., The detailed information an unrotated and
rotated factors is listed in Tables 4A-D for one version of a set of
elements. These detailed tabulations are somewhat difficult to read. In
order to enhance the significant features of the factors, two thanges
vers intreduced for Tables 7A and B. First, all correlations r S -0.4
viere omitted except the maximum correlation in one Yine which could be
staller than 0.4, Secondly the sign was omitted because the sign plays
only a rofe in formulating eqn (11) and performing caleulationswith it.
The magnitude is sufficient for evaluation of the factors.

In Table 74, B eight atraospheric elements are shown. For these
gight elements visibility was used in its linear scale and with a
transformed (logarithmic) scale. In the top part of Tables 7A, B the
wind appears as speed and direction while in the center and lower
section the zonal and meridional components have been utilized. These
madifications lead to three different versions of factor analysis for the
zafme elernents. Only the solutions with orthogonal and oblique rotation
are included in Tables 74, B.

Table 7A exhibits the condition for January. The significant

- features do not vary essentially between the three versions. The only
Aception is the contribution by ceiling of clouds which renders a
significant factor for the ULSQ method (top and center) but is not &
special factor at the bottom section where it is replaced by the
pressure, The differences betwean ir&t%wmuat tnethods (PC, ULS0, GLSO,




and MELI) were mostiy described in the previous section 6 snd will not be
repeated here. ' |

Table 76 provides the factor enalysis for July et Stuttgert for the
sare seven-year period of record at Stutigart. Again, it can be noticed
that the oblique rotation is not significantly different from the factors
pravided by orthogonal rotetion. Other dets, not included here, follow the
sarne trend that orthogonal end ablique rotstion do not differ significantly.
This fact may imply that orthogonal rotation may be sufficient for factor
analysis of etmospheric elements. Although the characteristic of factors
shows & similar patlern inJuly a3 given for January, some difference
exisl. Besides the mentioned difference in the contribution by the ceiling
& rajor change has occurred in the essocistion of elements. Relative
humidity and visibility are now essociated with temperature in three of
the four methods for ell three versions. This first fector proves to be the
dominent influence bul not by rmuch.

The primary purpose of this study wes not the illustration of the
changes throughout the year but the exhibition of the differences in the
utilization of the individual methods. Although variations exist, a close
perussl reveals thal physical characteristics of the system do not differ
too much in the individual methods.

G COMCLUSION AMD SUMMARY. The present study illustrates that the
eztirmation spprosch for the coramunalities by different methads (eqn 5-7)
leads to different factors. They are more uniform, however, after rotation
of the factors. This confirms that the basic problern in factor analysis has
hol been resolved as of today, namely the derivation of suitable
estitnators for the cormmunalities (see Cattell, 1965 or Guttman, 1956).
As the study proves, however, the physical festures after rotation of the
factors show major agreement, although differences in details and in the
sequence of importance of factors can be found.

Thiz study revealed that for etmaspheric etemernts the factors
derived by oblique rotation do riot differ significantly from factors
procured by ortheganal rotation. This may imply thet the eleborate
mathemalical procedure for oblique rotation could be saved in favor of the
simpler and less costly orthogonal rotation.

The factors appearing in the January dots are related to four simple
camnbinations, temperature, wind, moisture and pressure. This simple
divisien is not repeated in the July deta, However, the resulting factors
fram the analysis procedure do not give unreasonable combinations in
terrns of physics. E.g. the combination of temperature with visibility and
relative huridity maey have some explanation interms of relationship
between reduced rediation during high relative humidity and law visitility
ond vice versa. Also the cormnbination of & wind component swith
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ternperature terms may indicate & reflection of the circulation of air
either in the macro- or meso-scale. Other detaiied features in the
petterns of factlors may be reserved for a further study.

Finally, no specific recommendation es to the "best suitsble method”
far estimating the comrunalities can be made at the present time.
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TABLE 1. COMPARISON OF EIGENVALUES, FACTOR LOADS

(1)
PC
3.136
1.695
1.016
0.720

- 6.567

(2) Orthogonal Factor Load

2.150
1.611
1.200
1.601

6.562
3
2.128
1.613
1.203
1.622

6.566

(STUTTGART, JANUARY)

Unrotated Factor Loads

ULsQ

2.929
1.385
0.924
0.432

5.670

2.157
1.152
1.080
1,273

5.662

ObTique Structure Matrix

2.102
1.170
1.081
1.3

5.664
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GLSQ

2.811
1.590
0.636
0.003

5.040

2.252
1.257
1.528
0.003

5.040

2.192
1.262
1.576
0.011

5.041

MXLI

2.303
1.462
1.328

.789

5.882

2.196
1.076
1,272
1.337

5.881

- 1.189

2.238

1,460

. 994
5.881




TABLE 2. COMMUNALITIES -
(STUTTGART, JANUARY)

PC ULSQ GLSQ MXLI

CEIL 697 .234 .159 .200
VISIB .758 504 .399 .428
u .729 .507 .424 477
v .811 714 1.000 781
TEMP .947 1.002 1.000 .996
DEWP .988 1.007 1.000 1.000
REHU .749 .693 1.000 . .999
PRES .887 1.002 .058 1.000
2 x . 6.566 5.663 5.040 5,881
TABLE 3. EIGENVALUES AND COMMUNALITIES
STUTTGART, JANUARY, 1946-1956, Ln Vis, WDD, WSP
(A) EIGENVALUES (ORTHO. FACT. LOAD)
PC ULSQ GLSQ MXLT
A 2.207  1.863 2.042 1.868
Ay . 2.053 1.532 1.310 1.525
As 1.254 1.185 1.230 1,188
Ay, 1.004 1.062 1.018 1.063
A 6.518 5.642 - 5,600 5.642
(B) COMMUNALITIES

PC ULSQ 6LSQ . MXLI

.80 1.000 .146 1.000

.740 .532 441 .531

.630 .498 1.000 -501

712 .592 1.000 .591

.941 .990 1.000 .990

.996 1,000 .995 1.000

.705 1.000 1.000 1.000

.991 031 .018 .031

Zx% 6.517 5.643 5.600 5.644
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TABLE 4A.

CEIL
VIS

TEMP
DEWP
REHU
PRES

sz

CEIL
VIS

TEMP
DEWP
REHU
PRES

FACTOR LOADS, STRUCTURE MATRIX AND FACTOR PATTERN

(STUTTGART, JANUARY)

PRINCIPAL COMPONENTS

UNROTATED
ULSQ =~ GLSQ A MXLI
-.46 | .48 24

.38 | .03 47

.09 | .80 |-.30

OBLIQUE ROTATION
STRUCTURE MATRIX

6 =17 | -3
83| .01 | .19
9| te2 | 11

-58 | .05 | .26 {| -.
-08 { .10 |-.38 || -.

.18 1 .27 .28 -
47 1 .26 .23 -.
.86 | .00 }-.07 -.

1.70 11.02 | .72 !l 2.

-.44 | .58 .39
-.75 (-.21 | -.38 -.
=11 =013 ] -.81

.36 | W17 .87 -
-.14 |-.18 | -.42 -

ORTHOG.
ULSQ
-.49
-.73
~.05
.29
-.12
.18
.82
.16
1.61

FACTOR

I I |
O -l
OWwWwo

i1
—_— e
N B

Structure Matrix = Covariance
Factor Pattern = Regression Coefficients
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ROT,
GLSG  MXLI
.54 .37
-.18 | -.26
-.06 | -.75
.10 .84
=11 | -.26
-.09 | -.20
.02 .16
.92 .03
1.20 | 1.60
PATTERN
.52 .36
-.13 | -.16
.01 | -.73
.05 .83
-.04 | -.14
-.04 | -.09
.01 .13
.93 | -.06




TABLE 4B,

- CEIL
VIS

TEMP
- DEWP
REHU
PRES

CEIL
VIS

TEMP
DEWP
" RERU
PRES

FACTOR LOADS, STRUCTURE MATRIX AND FACTOR PATTERN -
STUTTGART, JANUARY -
UNWEIGHTED LEAST SQUARE:

PC

.35
51
-.66

-.92
-.85
-.07

2.93

-.29

- 46
.24
-.97
-.98
-.15
12

UNROTATED
ULSQ  GLSQ
-.23 | .21
-.47 .12
-.73 .07
.40 .09
L9 .19
.51 .09
J6 +.21
26 | .87
1.38 0.92

MXLT

-.12

=1

.26
-.42

|-.28

=11

.25
A1

0.43

STRUCTURE MATRIX

-.23
-.58
-. 11
.33
~-.16
.22
.82
1

.26

-.18
-.16

.16

.15
-.14

.02
.99

-.23
.46
.66

-.83
.46
.40

-.176
.21

Structure Matrix =
= Regression Coefficients

Factor Pattern
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* ORTHOG.
PC  ULSQ
29 | -.25
-.25 |.-.54
-.39 | -.05
5 | .23
-.95 | -.17
-.95 | .21
-.15" | .81
.07 | -.01
2.16  1.15

.23 |-.27
-.22 |-,53
-.28 | .00
-.01 .16
-.94 1-.18
-.92 | .20.
-2 | .81

01 .06

Covariance

ROT.
- GLSQ
.23
-. 14
-.10
.10
-.07
-.07
.00
.99

1.08

FACTOR PATTERN

.22
-.10
-.04

.04
-.03
-.03

.00

.99

MXLT
-.19
.36
.58
-.79
.25
22
o
-1

1.27




TABLE 4C. FACTOR LOADS, STRUCTURE MATRIX AND FACTOR PATTERN
STUTTGART, JANUARY
GENERAL LEAST SQUARES
UNROTATED ORTHO. ROT

PC ULSQ  GLSQ MXLI PC ULSQ  GLSQ MXLI
CEIL -.36 14 10 | .03 -.33 .16 .15 .02
VIS .39 .49 .08 | .01 .24 44 1-.38 .01
u .60 A9 |1 -.17 |-.003 .42 Q06 |-.49 .003
v -.54 1-,61 .57 | .000 -1 (=15 .98 01
TEMP .96 .03 .26 |-.03 .94 21 1-.25 .02
DEWP .95 | -.29 .10 | .03 97 =014 4-.19 .04
REHU 09 1-.90 (-.42 {-.01 21 1-.97 .15 .005
PRES -,20 |-.12 .06 [-.01 -.13 [-.06 .20 .004

2
%X 2.81 [1.59 | 0.64 |0.003 2.25 11.26 |{1.53 .003
STRUCTURE MATRIX FACTOR PATTERN

CEIL -.34 7 .18 |-.03 -.30 .18 .14 .03
VIS .26 46 1 -.44 |-.19 22 43 1-.33 .007
U .46 | ..08 | -.55 (-.10 .36 03 |-.47 .008
v -.18 1-.22 99 | .31 02 {-.07 .98 .01
TEMP .96 18 1 -.39 {-.02 .94 20 |-.17 .03
DEWP 98 1-.18 | -.31 { .15 94 1-.13 -.15 .04
REHU 21 1-.99 .19 | .35 .16 1-.96 .08 .004
PRES -.14 | -.07 .22 | .05 .10 [-.05 .19 .003

Structure Matrix
Factor Pattern =
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Covariances
egression Coefficient




CEIL
VIS

TEMP
DEWP
REHU
PRES

CEIL
VIS

TEMP
DEWP
REHU
PRES

TABLE 4D. FACTOR LOADS, STRUCTURE MATRIX, FACTOR PATTERN
STUTTGART, JANUARY

MAXIMUM LIKELIHOOD

UNROTATED : ORTHO. ROT

PC ULSQ GLSQ  MXLI PC ULSQ GLSQ . MXLI
42 k.09 ] .11 |[-.08 .31 23| .17 |-.14
-.31 .00 | .52 | .24 -.24 [-.15 | .43 | .40
-.46 .23 | .20 | .42 -.41 |-.10 | .08 | .55
.32 .05 [-.35 - [-.74 A4 | .09 |-.17 [-.85
-.73 |.58 | .35 {-.00 -.95 |-.06 | .17 | .25
-.76 .65 | .00 | .00. |[-.96 |-.06 [-.18 19
-.16 29 t-.94 | .00 |[-.16 |-.01 |-.98 [-.14
.76 .65 .00 | .00 .08 | .99 [-.07 {-.12

2.30 .33 11.46 .79 2.20 |1.08 [1.27 |1.34

STRUCTURE MATRIX FACTOR PATTERN
25 .36 |-.11 |-.10 22 |-.43 | .16 |-.08
-.24. .23 .56 .39 -.22 |-.14 { .55 .25
-.18 .49 43 .53 -.14 235 1 .M A4

21 =27 1-.43 {-.83 A9 1-.02 -.20 78

68 | .42 | .001

I

-.15 .93 .81 .23 ~.08
-.11. [1.00 .56 .16 -.04 .99 00 .00
.08 .31 -.61 [-.18 10 96 |-.01 -.01
1.0 -. 1 -.06 [-.02 .99 1-.04 |-.00 00
Covariances

Structure Matrix

Factor Pattern = Regression Coefficients
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TABLE 5.

INTERCORRELATION BETWEEN FACTORS
(OBLIQUE ROTATION)

A) PFincipa? Components Analysis

1.0

-.02
.13
.28

1.0

-.05
.10

=.33

1.0
-.07
-.20

12

1.0

-.08
-.04
-.01

B)

-.02

1.0
.02
.15

-.05

1.0
.04

-.21

.13

.02

1.0
.15

Unweighted Least Squares

.10
.04
1.0
-.16

C) General Least Squares

-.07

1.0
-.15
-.32

-.20

-.15

1.0
27

D) Maximum Likelihood

-.08

1.0
.56
16

METHOD {JANUARY, STUTTGART, LN VIS, U, V)

TABLE 6.

UNROT
X% 2.116
Xo 1,374
X3 1.448
Xp  0.830
ZX 5.768

ORTH. ROT

1.102
1.255
2.003
1.407
5.767

57

.28
.15
.15
1.0

-.33

-.21

-.16
1.0-

12
-.32

1.0

VARIANCE COMPONENTS FOR THE MAXIMUM LIKELIMOOD

OBLIQUE ROT.

1.469
3.934
12.392
-12.028
5.767
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TABLE 7A, FACTORS FOR JANUARY, STUTTGART (UNIT: PERCENT)

Ortho rot Oblique rot
P.C. ULsQ GLSQ MXELT P.C. uLsq GLSQ ML
CETL 61 a8 35 . a8 65 a9 B4 9%
Ln VIS 82 55 45 10 61 83 44 62 44 44 58 49
WD 94 33 : 94 32 23 18
WS 43 51 69 95 63 14 54 45 73 99 566 33
TEMP 93 96 97 36 95 B8 98 95 99
DEWP a7 96 98 96 37 BB . 98 g9 93
REHU 83 95 96 04 83 99 39 89 87 99
PRES 90 27 29 8¢ 29 20 25
A 2.26 1.24 2.04 1.10 2.24 1.22 1.10 2.03 2.25 1.25 2.04 1.07 2.11 1.18 1.13 4.68
1.83  1.08 } 1.13  1.06 1.25 0,02 1.09 1.0% 1.82  1.09] 1.15 1,071 1.15 . 0.29 2.8% -3.39
CEIL 49 50 43 97 33 : 97 46 54 44 93 33 199
Ln VIS 77 47 a7 47 40 N 43 49 78 53 53 45 45 57 50
U 41 74 59 |43 48 58 {49 80 {46 65 (46 54 5¢ 51
v 82 78 | 93 80 86 81 100 52 35
TEMP 93 94 g5 94 85 a7 45197 -~ 49 95 100
DEWP 96 94 87 .94 98 97 97 63 93
REHU 82 91 97 88 83 93 . 29 62 160
PRES 93 24 19 23 . 94 26 2% 26
X 2.10 1.17 2.00 1.09 P.24 1.50 1.10 2.00 2.06 1.17 1.89 .1.07 2,12 1.53 1.47 12.39
1.69 1,60 1.20 1.37| %1.28 0,02 1.26 1.41) 1.68 1.65) 1.21 1.38 1.16 0.24 3.93 -12.02
CEIL 49 54 29 33 31 44 58 3z 34 ) 36
VIS 73 54 44 I 43 40 75 58 °~ 46 45 44 .56
1] 40 75 58142 49 |41 55 §49 81|46 66|46 55 49°43 53
v 84 79 98 - 85 88 83 99 43 84
TEMP 92 95 94 95 a5 42197 46| 96 93 8t
DEWP 95 : 95 97 04 {96 98 . {98 40| 98 : 100 56
REHU B2 81 97 98 83 B2 89 35 61
PRES 92 99 20 99 92 99 22 . poQ
A 2.15 1,20 [2.16 1.08 2.25 1.53 p.20 1.27 2.13 1.20 2.10 1.08 2,19 1.58 © |2.20 1.27
1.61 1.60} 1.15 1.27] 1.26 .003 1.08 1.3 1.6 1.62] 1.17  1.3Y{ 1.26 .,0% 1.08  1.34

friZ 0.40 or |max|
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TABLE 7B, FACTORS FOR JULY, STUTTGART, (UNIT: PERCENT)

{r]20.40 or |max|

ORTHO ROT OBLIQUE ROT
p.C. yLsQ 6LSQ MXLI p.C. ULSQ 6L5Q MXLI
CELL. 69 33 28 95 68 33 27 99
LoVis 70 42 a2 41 70 42 43 42
WD a6 26 21 28 49 - i% 30 32
WS 83 98 12 74 83 : ‘98 12 30
TEMP 64 70 80 58 69 68 24|56 BO 65 77 I80 69 9|56 77 97
DEWP 93 9g 98 99 50 . 99 94 57|09 65
REHU 91 . o8 93 99 91 08 97 43 66 99 64
PRES 94 99 99 13 95 99 99 07
A 2.01 1,57 1.95 1.10 | 1.78 1.02 }1.37 .95 1.96 1.63 1,92 1.11 {1.01 t.02 [1.26 1.02
1.33 1.02]  1.38 1.00 1.49 1.11 1.88 .73 1.33 1.02] 1.42 1.00| .97 1.38| 0.41 2.24
CEIL .66 42 27 43 66 43 27 43
Lovis 70 97 | 42 64 § 70 99 43 65
u 80 70 24 71 82 72 33 M
v 81 78 13 77 80 77 12 76
TEMP 69 67 82 55 69 68 23 B4 80 70 75 86 58 99 67|55 82
DEWP 96 99 98 99 95 99 59 93 99
REHU 91 94 99 93 91 95 66 46  97) 97
PRES : 99 13 99 12 99 12 99 12
b 2.00 1.46 .75 1.36 | 1.79 1.02 [1.36 1.33 [1.97 1.50 [1.76 1.35 1.47 1.03 [1.38  1.27
1.79 1.00 1.32 1.00] 1.50 1.01| 1.7t .54§f 1.79 1.50| 1.33 1.00 .95 95} 1.84 .45
CEIL 67 51 | 27 ha 67 52 | 27 46
VIS 67 40 37 43 67 B9 36 40
U 80 89 43 24 66 49 82 99 53 36 69 56
v 79 56 |13 75 78 46 60 | 13 71 51
TEMP 68 67 79 57 7070 20 76 7 74 81 63 98| 82
DEWP : 96 99 98 99 95 0g 95 652|100
REHY 91 97 99 96 91 b7 98 41 61 99 4
* PRES 99 15 99 13 99 15 99 13
A 1.95 1.46 1.82 1.3  1.77 1.02 1.39 1.23 [1.91 1.49 1.82 1.35 1.07 1.03 1.38 .9
1.82  1.00 .98 81 1.50 .06 1.80 .36 1.82 1.01 1.1z .68 .90 1.35  1.88  .5§
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Small sccond-order composite designs were suggesled by Hartley (1959). Westlake (1965)
provided even smaller designs for k =5, 7, and 9 factors, for which intricate construclion
methods were needed. Here, simple designs formed using Plackett and Burman (1946) designs
are offered for k = 5, 7, and 9. Designs with one run fewer than Westlake's for k = 5 and 7 and
three fewer for k = 9 are feasible by deleting repeat points that occur in some of the designs.

KEY WORDS: Center points: Composite designs; Factorial designs; Plackett and Burman

designs; Response sutrfaces.

1. INTRODUCTION

Suppose we are going to examine k predictor vari-
ables, coded to x;, x;, ..., X, t0 determine their
effects on a response variable y subject to random
error. We might first wish to perform & first-order
design to fit the model y = 8, + fix, + + B x,
+ & If no progress appeared possible {for example,
via steepest ascent), we might then wish to add a few
runs to enable the more comprehensive second-order
model,

'P=ﬁo+2ﬁ1xt+Z‘ZBi}xixj+8: ()
2j

to be examined, where all summations are taken over
L,j=1,2,..., k. Many possible sccond-order sequen-
tial designs may be used to obtain the data for such a
fitting. The specific choice of design would depend on
the relative importance to the experimenter of various
design features (for example, see Box and Draper
1975, p. 347). One extremely useful type of sequential
second-order design is the composite design. As initial-
ly suggested by Box and Wilson (1951) and followed
up by Box and Hunter (1957), it consists of a 2*
factorial or a 2*79 fractional factorial portion, with
runs selected from the 2* runs (x,, x5, ..., x) = (+1,
+1,..., £1), of resolution V or higher {for example,
see Box and Hunter 1961 or Box, Hunter, and Hunter
1978), plus a set of 2k axial points at distances « from
the origin, plus n, center points. In general, the 2¥~¢
portion or enhe may be repeated ¢ times, and the axial
points or star may be repeated s times. The values of &,
nq, ¢, and s are to be selected.

Suppose, of the various design criteria, we decide to
emphasize having only a small number of runs, Such a
course of action might be appropriate il runs were
expensive, difficult, or time-consuming, or if a compli-
cated compuler model were to be approximated lo-
cally by a second-order surface, Of course there must

61

be at least §(k + 1)k + 2) points in the design, this
being the number of coellicients (o estimate in {1).
Hartley (1959) pointed out that the cube portion of
the composite design need not be of resolution V. It
could, in fact, be of resolution as low as 11, provided
that two-factor inleractions were not dliased with
two-factor interactions. (Two-factor interactions
could be aliased with main eflects, because the star
portion provides additional information on the main
effects.) This idea permitted much smaller cubes to be
used. Westlake (1965) took this idea further by finding
even smaller cubes for the k = 5, 7, and 9 cases. Table
| shows the numbers of points in the various designs
suggested, for2 <k <9,

Westlake (1965} provided (in an appendix) three
examples of 22-run designs for k = 5, one example of o
40-run design for k = 7, and one cxample of a 62-run
design for k = 9. He noted that for k = 7 or 9, “sys-
tematic generation of all possible designs ... appears
to be almost out of the question™ (p. 332},

-

Table 1. Points Needed by Some Small
Composite Designs

Factors, k 2 3 4 5 6 7 8 9
Coefficients

1tk + Dk +2) 6 10 15 21 28 36 45 55
Points in Box-Hunter

(1957) designs 8 14 24 26 44 78 80 146
Hartley's number )

of points 6 10 16 26 28 46 48 82
Woastlake's number

of points _ = - 22 — 40 — B2




2, CONSTRUCTING SMALL
COMPOSITE DESIGNS

Can Westlake's small numbers of runs for the k = 5,
7. and 9 cases be beaten? The surprising answer is yes.
Moreover, for k = 5 and 9 it is possible to equal the
number of runs in a simple manner, and for k =7,
simple designs are available with only 42 runs, two
tnore than Westlake's 40, The overall advantage of

these suggested designs is that none of the ingenuity
shown by Westlake (1965) is neceded, thanks to
Plackett and Burman (1946), and yet an apparently
large selection of possibilities is immediately available.
(As we shall see later, the selection is not as large as
first appears!)

The basic method can be simply stated: (a) Use, for
the cube portion of the design, k columns of a Plackett
and Burman (1946) design. (b) Where repeat runs
exist, remove one of each duplicate pa:r to reduce the
number of runs,

Let (1) be written in the matrix form y=Xp+elf
(X'X) ™ Vexists, we have a valid second-order response-
surface design that will estimate all of the parameters
in (1). To avoid the possibility of actual or near singu-
larity merely due to choice of «, [ initially followed

" Westlake (1965) by selecting the star with unit axial
distance, namely with points (£ 1,0,...,0),(0, £ 1,...,
0),...,(0,0,..., + 1) In practice, this value of @ may be
varied, since its value does not affect the singularity or
nonsingularity of the design, apart from the following
feature: When o # k'/2, the design has two spheres of
points with radiuses &'/* and a, so center points are
not neceded (sce Box and Hunter 1957, p. 217). If the
choice a = k"? were made, however, center points
would be essential to avoid design singularity. In later
computauon% ;'cported here, 1 used the values ¢ =2
(for k'=5), a =8 =2828427 (k=7), and o=
274 = 3363586 (k = 9). These were suggested by a
referee, because they are the values that provide rotat-
able designs if a 2! design is used with a star of axial
distance « for k = 5 and 7, and if a 2%~ 2 design is used
similarlyfork =9

3. CASE k=5

There are 21 coefficients to estimate, and there are
10 axial points. The difference of 11 is thus the mini-
mum possible number of cube points required. An
obvious choice is to use five (of the 11) columns of a
12-run Plackett and Burman (1946} design, There are
(') that is, 462 possible choices, all of which produce
nonsingular designs. These require 22 runs, the same
number as Westlake's. A detailed examination of the
cube portions for the designs shows that there are two
basic types; standardized versions of these appear in

Table 2,
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Table 2, Two Essentially Different Choices of
Five Columns From a 12- Run Plackett and
Burman Design: (a) With a Pair of Repeat

Runs; (b) With a Mirror - Image Pair of Runs

&
o

-+

- - - - = + o+
T - =+ 4
-+ -+ ¢ A
- o+ o+ -+ + -+
-+ 4 = + o+ -+
S R & + o+ o+ - -
+ .-+ - % + -+ - -
+ -+ 4 = + -~ -4
+ o+ - - -+ = 4 -
+ o+ - - -+ = -y
+ o+ o+ - - - -+ o+ -

MNOTE: Al ollher cholces are equwa!ant to one of these, subject to
changes In signs throughout one or more columns, renaming of vari-
ables, and reordering of runs,

4, CASE k=7

There are 36 coefiicients to estimate, and there are
14 axial points. Thus a minimum of 22 cube points is
needed. First an attempt was made to form designs
using seven (of the 23) columns of the 24-run Plackett
and Burman design: Tries with columns (1-7), (1, 2, 4,
5,8, 9, 10), (3-5, 7-10), and (1, 3,4, 7-10) ail produced
singular X'X matrices. There are, in all, 245,157 possi-
ble column chmces, and it is conjectured that all will
fail,

A second attempt used seven (of the 27} columns of
the 28-run Plackett and Burman design. More than 20
tries all produced nonsingular desighs with no fail-
ures, and it is conjectured that all of the 888,030
choices of seven columns from 27 will do the same,
These designs have 42 runs, a modest two more than
Westlake’s 40, but reduced desrgns with fewer runs are
also possible, -

Features we have already noted in the k = 5 case
also arise here. Many of the possible column choices
provide identical or essentially identical sets of points;
some choices provide repeat runs and some provide
mirror-image runs, A new feature for k = 7 is that

some sets of columns provide both repeats and mirror

lmdges and some neither!

How many distinct designs are there? Bascd on‘the
number of diflerent | X'X | matrices found in a trial-
and-error selection of designs, there are at ledst 15,
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5. CASE k =9

There are 55 coefficients to estimate, and there are
18 axial points. Thus a minimum of 37 cube points is
needed. One possibility is to use nine (of the 39) col-
umns of the 40-cun Plackett and Burman design. Tries
with columns (1-9) and (2-9, 39) failed, producing a
singular X'X matrix. It is conjectured that all
211,915,312 possible choices will fail similarly. Parallel
to this, 1 note Westlake's (1965) remark that, for a 3/16
fraction of a 27, “while one apparently valid defining
relation exists, it is impossible to pick three 1/16 repli-
cates so as to give a non-singular X'X matrix” (p. 329).

A second attempt used nine {of the 43) columns of
the 44-run Plackett and Burman design. More than 20
tries all produced nonsingular 62-run designs, the
same number of runs as Westlake’s, There were no
failures, and it is conjectured that all 563,921,995
column choices will produce nonsingular designs.

Features similar to the & = 7 case again arise. De-
signs certainly exist with up to three pairs of repeats
and up to two pairs of mirror-image runs.
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CONSIDERATIONS IN SMALL SAMPLE QUANTAL RESPONSE TESTING
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ABSTRACT

In the army sensitivity testing environment it is often desired to estimate V o the
velocity at which 1/2 of a given projectile population would penetrate a given pﬁate of
armor. Excessive cost of experimental units usually necessitates the use of very small
samples - often less than 15. Several studies have been done to examine the performance
of some of the available design and estimation techniques under restrictive sample sizes.
Discussed will be some ‘extensions of those studies with emphasis on additional practical
environment considerations such as nonnormal response functions, stimulus noise, esti-
mate existence, and initial design point selection.
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INTRODUCTION

In the army quantal response testing environment, excessive cost of experimental
units usually necessitates the use of small samples. Several small sample studies have
been done to examine the performance of some of the available design and estimation
techniques. This paper discusses extensions of those studies including additional practi-
cal environment considerations such as estimate existence, nonnormal response func-
tions, and stimulus noise. ' '

The quantal response testing environment is one in which there are only two possi-
ble outcomes for each experimental unit. For example, if a projectile were fired against
a plate of armor one could observe a penetration (response) or a nonpenetration. Con-
tinuing with this example, suppose an experimenter wishes to assess the performance of
a particular projectile. One way to characterize performance is to consider the probabil-
ity of a projectile perforating the armor at various velocities. Thus, assessing the perfor-
mance of a projectile in this manner amounts to establishing some appropriate probabil-
ity distribution.

Assume that associated with every projectile is a critical velocity above which the
projectile would penetrate the armor and below which it would fail to penetrate. Then
critical velocity is a continuous random variable. What is left for the experimenter is to
characterize the probability measure associated with the random variable, critical velo-
city. Note that critical velocity is not directly observable since in no way can the experi-
menter sample direetly from a population of critical velocities. Rather, the experimenter
can only collect (response, nonresponse) data. If a response is observed at a particular
velocity then all that can be said is that that velocity was in excess of the critical velo-
city for that particular projectile. In this manner data can be collected pertinent to the
response function, or the probability distribution of critical velocity. Historically in test-
ing these projectiles, the median of this distribution, Vs, is of particular interest pri-
marily because it takes fewer rounds to estimate than other quantiles. We will continue
with that convention here.

Our purpose in examining this problem was twofold. The first was to examine the
effect of day to day problems in sensitivity testing under a representative 'in practice’
scenario. The second was to compare several design and estimation procedures in this 'In
practice’ setting. Our attention here will be focused on our first purpose.

DESIGN CONSIDERATIONS

A detailed Monte-Carlo study was performed which incorporated some problems
encountered in practice. Under each set of test conditions 700 iterations were run giving
rise to estimates of Vgy. The response for this study was taken to be the sample popule-
tion of the estimate, Vg, expressed in terms of the empirical density, its mean, and in

particular the vVMSE.
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The test design appears in Figure 1. Five designs, each in conjunction with three
estimation procedures, were used in this study. The Delayed Robbins-Monro (DRM} and
the Adaptive Robbins-Monro {ARM) are variations of the well known Stochastic
Approximation Method of Robbins and Monro. The Estimated Quantal Response Curve
(EQRC), used in conjunction with DRM and ARM in this study, is a recent technique
introduced by Wu (1985). The Langlie procedure is one currently used in much of the
army’s quantal response testing. These five constitute some reasonable designs for use in
our testing environment. References are sited at the conclusion of this paper for those
interested in the details of these procedures.

The first estimation procedure is a maximum likelihood estimation method with an
assumed normal response function and is denoted NMLE. The second {AVR) is an arith-
metic average of the velocities giving rise to the k lowest responses and the k highest
nonresponses where k is usually taken to be 2 or 3. This second estimate is frequently
used by Aberdeen Proving Ground, particularly in the absence of a unique maximum
likelihood estimate. The last, Next Stress, is simply the next design point of the sequen-
tial design. For DRM, ARM, and EQRC, Next Stress is the intended estimate.

The above designs and estimation techniques were compared under the following
test conditions. For some more expensive rounds, experimenters fire 15 rounds in hopes
of getting 12 or more. Some are disqualified due {o erratic flight of the round. Recently
the encouraged policy has been to use as few as 9. Thus, representative sample sizes of
9, 12, and 15 were considered. -

Another factor to be accounted for is noise associated with the firing velocity of
each round. It is not possible for experimenters to control precisely the velocity at
which a round is fired. In fact, for some extensively studied data sets the ratio of the
estimated noise standard deviation to the estimated population standard deviation
(assuming normal response function) was .150 or more. It was thought that this amount
of variation would limit the ability of a sequential design to converge on Vg,. Three lev-
els of noise were considered: the absence of noise, normal (0, [150]%), and exponential
with median, 0, and standard deviation, .150. In each of the above and in the following,
o is the standard deviation of the response function.

Input from the experimenter is used for establishing the initial design point, (start-
ing value) and the range, (gate width) over which the median Vg4 can be found. The
latter is used in establishing the magnitude of step sizes in the sequential designs and
actually bounds acceptable design points in the case of Langlie’s design. Unavoidably,
there is often a great disparity between initial estimates and actual values. Conse-
quently, it is reasonable to investigate how well designs and associated estimates
rebound from poor initial information. Four starting values were combined with three
gate widths in this study.

Finally, it was desired to examine the design and estimator performance under
different response functions. Of the five listed only the first four will be considered here.
Each have median, 0, and standard deviation, 1, with the obvious exception being the
Cauchy whose quartiles were made equivalent to those of the normal
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(levels)

. (levels)

(levels)

Design

DRM ARM Langlie EQRC-DRM EQRC-ARM
Estimation
NMLE AVR MNext Stress
Test Condition Factors
Sample Size Noise Starting Value (SV) Gate Width (GW) | Response Function
9 Zero Voo 2o normal
12 normal | Vgo—Ilo 6o uniform
13 asymmetric | Vsp—3o 100 Cauchy
Vso+3o exponential
empirical

Figure 1.

Design and estimation over various test conditions




ANALYSIS

One observation we made was that as the sample size increased, the precision of
the estimate improved regardless of the design and estimator used. An example of this
is given in Figure 2. We note here that VMSE is the root mean square error. In addi-
tion, a case set is a pairing of a starting value and a gate width. The reader need only
know that cases 1-9 are the same in each situation and represent a good mixture of pos-
sibilities.

With regard to noise, our study showed AVR and NMLE estimations to be insensi-
tive to normal noise and only mildly sensitive to asymmetric noise. In Figure 3 we see a
comparison of Vg,"’s , the average of 700 simulated Vyy's for each case set. In the case
of asymmetric noise, the average is biased upward slightly toward the longer tail of the
response function. However, in Figure 4 we see little difference among the three levels
of noise for those same test conditions. We found Next Stress to be sensitive to noise
and particularly to asymmetric noise. In Figure 5 the effect of noise on the precision of
the Next Stress estimator is evident. In Figure 6 with the actual median indicated by
the arrow, note the apparent shift of the estimate population toward higher velocities,
the long tail of the asymmetric noise density.

The designs and estimators considered here are influenced by. the shape of the
underlying response density. In Figure 7 Vi, comparisons are made with some zero and
normal noise cases. Note that the average of the estimator is approximately the true
value of the parameter except in the case of an exponential density and for two cases of
the Cauchy density., In Figure 8 these same case sets are compared by VMSE. We see
that the uniform density results are somewhat higher than the normal and that the
Cauchy and exponential densities each have some extremely low values. This is particu-
larly interesting in the case of the exponential since its estimate population mean was
biased upwards. The reason for such behavior rests in the shape of the densities.

Consider for a moment a density with point mass unity representing the critical
velocity probability mass. Then if a sequential design were used, the step for the next
design point would always be taken in the direction of the point of jump. Thus the
design would never make a wrong decision, the decision moving the data collection away
from the median. Hence, it would converge in an ideal sense to the median. Of course
in order to make a good estimate of the median, it is desirable to sample close to it.
Thus, a wrong decision is extremely detrimental over the first few rounds of small sam-
ple experimentation as it may prematurely cause sequential designs to decrease step
sizes, thus making it more difficult to climb back to the region about the median. For
the densities considered here there is a non-zero probability associated with making a
wrong decision. :

Examine Figure 9. Here all four densities are considered. Suppose for a normal
density the sequential design is currently at -2, then we have only a probability of .0228
of making a wrong decision. That is, there is only probability .0228 associated with
critical velocities below -2 which would cause a response to be recorded and, conse-
quently, a step down on the stress axis to the next design point. With this in mind, one
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can explain the behavior of the designs for each response function.

For the Cauchy density, once the design was sampling close to the median, the con-
centration of probability in that area was holding the design there. This gave rise to
the low vMSE in Figure 8. On the other hand, for case 2 in Figure 7 where sampling
began in the tail, the heavy tail of the Cauchy gave a relatively high probability of
going further out in the tail. When the design moved back toward the median, estima-
tion was weighted by the low probability response, resulting in V;," values well below

those of the other densities,

In the case of the exponential, most of the probability mass is contained in the
interval (-.69, .69) - relatively close to the median. Again, once the design reached this
area, the concentration of probability was likely to hold it there, giving rise to Figure 8
results. However, when the design did wander, it could only wander in one direction,
thus causing the Vi,™'s to be higher than for the symmetric distributions. The uniform
and normal explanations follow along these same lines.

In support of this explanation we offer as examples Figures 10-13. In each figure
the 700 Vso's are given in histogram form. Note that -1.1 and 1.3 bound the normal
Vso's where as'-2.5 and 1.8 bound the Cauchy Vgy's. In addition, the sample estimate
population appears slightly more peaked for the Cauchy density than for the normal.
Note also the shape of the sample estimate population corresponding to the exponential.
It is skewed to the right but at the same time very peaked about the median.

One important idea resulting from these observations rests with the heavy tails of
the Cauchy. It is doubtful that with historical small sample data that a normal density
could be discerned from a Cauchy with matching quartiles. Yet these simulation results
show that problems in estimation can result when heavy tails are present. Therefore,
the experimenter needs to be aware of this problem when picking starting values and
step sizes.

Thus far only moderate attention has been given to the estimation procedures. In
general, we found the NMLE and AVR methods to track very closely over a-wide range
of starting values and gate widths. Figure 14 shows an example of this in terms of
vVMSE. However, Next Stress, with its sensitivity to noise environments, does not track
well with the other two for normal and asymmetric noise; an example is given in Figure
15. It should be noted that Next Stress is the intended estimator for all designs except
the Langlie which uses NMLE. Over the wide range of cases NMLE seems to be the
best performer. '

The comparison of designs was too involved to address in the time allotted for this
talk. We will say only that under NMLE all the designs performed similarly. This is not
to say that some are not better than others, but only that in this small sample environ-
ment not enough rounds are available to show superiority where it is present.
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SUMMARY

In summary, several important observations follow. First, the starting value and
gate width have a significant effect on VMSE. Second, the response function does
influence the design point selection and estimation. In particular, heavy tails could
adversely affect the estimate of Vg Third, sample size changes from 9 to 15 result in
an increase in precision of about 25%. Fourth, in noise environments, NMLE is the pre-
ferred method of estimation regardless of design. In the absence of noise, there is no
clear difference among the three estimators. Last, there is no clear advantage in using
one design over another in terms of the quality of the estimate. However, certain imple-
mentation considerations will help the experimenter choose one to suit his needs.
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HUMAN FACTORS AFFECTING SUBJECTIVE JUDGMENTS

Mary A. Meyer
Los Alamos National Laboratory

ABSTRACT

Human factors include the ways in which people acauire,
procass, and convey information. They affect the quality of
people's judgements and thus become a concern when these
judgments are being elicited for use as data. This paper
focuses on five human factors: question phrasing, consare
vatism, inconsistency, overoptimism, and social pressures.
Techniques for detecting and reducing the occurrence of
these human factors are given for two methods of eliciting
subjective data, the mail survey and the interactive group
method. Techniques for structuring the elicitation methods
are proposed as the main means for countering the occurrence
of human factors.

THE HUMAN FACTORS

Human factors can affect the quality of the subjective data in many ways.
Human factors include the ways in which peaple acquire, remember, process, and
present information that inhibit their reaching mathematically optimal
decisions. The human acquisition of data is biased because humans selectively
learn that which supports, rather than opposes, their views {Mahoney 1976,
Hogarth 1980). For example, people are unconsciously drawn to acquire informa-
tion which supports, rather than refutes, their preconceptions (Mahoney 1976).
Then too, people can acquire faulty information because of the role that feed-
back plays in the learning process. When people receive no feadback, delayed,
or only partial feedback, as often occurs, they may draw incorrect conclusions
(Hogarth 1980). For example, scientists who often receive only partial confir-
mation of their hypotheses are likely to consider this sufficient validation or
to believe those data points which support their theory and mentally dismiss the
others (Mahoney 1976). The information acquired is stored and may be later ac-
cessed by the person during an elicitation session.

How easily such information can be accessed from memory also affects
peoples’ judgments during an elicitation session. Concrete, catastropic, or
widely publicized information is more easily accessible and thus more greatly
influences a person's judgment than less memorable information (Spetzler and
Stael von Holstain 1975, Hogarth 1980). For example, it is thought that the
League of Women Voters ranked the nuclear industry as posing the greatast oc-
cupational hazards to its employees of any industry because of the
disproportionata amount of media coverage this industry had received.
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The procassing of data in the human mind, such as during an elicitation
session, is also subject to human factors. Generally, peonle have difficulty
processing more than seven pieces of information at a time (W111e" 1933),
Typically, they will select a heuristic for solving a problem in a decision
situation which then influences the decision they reach. For example, managers
may focus on the major aspects of the problem and ignore the uncertainties and
complex interactions of factors to reach a decision (Bender et al., 1981). This
simplifying heuristic may point to a different decision than one which had in-
cluded all the complexities of the problem. In applying these heuristics,
peonle are likely to be inconsistent, thus further complicating the gatﬁer1ng of
guality subjective data. For examnle, the manager may have been forezasting the
compietion date of a large project by adding together the blocks of time that
each majer phase was likely to regquire. He may have farggttan to add in a onasa
being done by a subcontrac:or, thus failing to cons1suent1y follow his own

heuristic.

Additional complications may enter as a result of the mgde in which par-
ticipants are requested to give the judgments. For examp]e, respendents may
give different judgments on a survey than they would in an interview situation
(Payne 1951). They might give varying judcments to difierent phrasings of the
same questijon (Paype 1951, Sudman and Bradburn 1982, Gorden 1980). .Then tog,
they might give different judgments if they are giving it in "willingness to
gamble” or "probability" schemes (Winkler 1967, Hogarth 1980).

Due to the constraints of time, five human factors were selected for dis-
cussion. These five factors are widely prevalent and often interrelated as will
be described below. The five human factors include the effects of:

1) Presentation of the decision task and phrasing of the Questions or response
options;

2) Conservatism;

3) Inconsistency;

4) Overoptimism and;

5) Social pressure,

Evidence of the effect of the presentation of the decision task on the in-
dividual's response has been documented by Tversky and Kahnemen (1981). They
asked students which alternatives they preferred in gain and loss situations.
For example, students chose between: 1) a sure gain of $5250; and 2) a 25% chance
of gaining $1000 or a 75% chance of gaining nothing. In the set of loss alter-
natives, they chose between; 1) a sure loss of $750; and 2) a 75% chance to lose
S1000 or & 25% chance to lose nothing. The majority preferred the sure gain in
the first pair of options and the risky loss in the second pair. Thus, :tne
relative attractiveness of options varies when the same decision is framed in
different ways. Furthermore, individuals are generally unaware of the effect of
qgesb1on framing and, if inTormed of it, uncertain of how to compensate for its
afiect.

In addition, there is evidence that the response mode, such as probabil-
ities or equivalent gambles, influence peoples' judgment (Winkler 1967, Hogarth
1980). For example, Winkler (1967) recommended that a "willingness to pay*
response mode be used because people gave mare conservative, hence more realis-
tic, estimates using this response mode than using probabilities. Similarly,
the scales used for the responses, such as 1 to 10 or -5 to'+5, can influence-
peoples' judgments. 87




The effect of question phrasing has been shown most dramatically by Payne
(1951) through his use of the split ballot technique in survey questions. The
split ballot technique entails giving half of a survey sample aone wording of a
question or resoonse gption and the other, another. For examnle, one wording of
a question might be, "Do you pelieve that X event will ceccur by Y time?" The
other wording might be, "Do you believe that X event will occur by Y time, or
not?" This second option is more balanced because it mentiaons both
possibilities. For this reasen it would be likely to receive a higher percaent-
age of "no" responses. Often the difference measured by the split balloet
technique is 4-15% even when the rewording has been very slight.

Conservatism, or anchoring bias, involves the individual's tendancy <o
cling to their first judgment instaad of adjusting it to reflect new
information. Sometimes this tendency is exolained in terms of Bayes' Theorum as
the failure to adjust a judgment in 1ignt of new information as. much as it would
be according to Bayes' mathematical formula. Spetzler and Stael von Haolstein
(1972) and Armstrong (1981) describe how people tend to anchor, to their initial
response, using it as the basis for later responses. For example, the subject
may use the last year's sales as a starting paint in predicting this year's
sajes and fail to consider other points on this distribution independently from
this starting point. In addition, Ascher (1978) finds this problem to exist in
forecasting where panel members tend to anchor to past or present trends in
their projection of future trends. Ascher determined that one of the major
sources of inaccuracy in forcasting future possibilities, such as markets for
utilities, was the extrapolation from old patterns that no longer represented
the emerging or future patterns. ’ ' ‘

Inconsistency occurs when individuals give contradictory judgments. For
example, they might give item A 2 higher rating than B with respect to goal X, B
a higher rating than C, and C a higher rating than A. Inconsistency is a common
problem because, as mentioned earlier, individuals are generally unabie to apply
a consistent strategy, or heuristic, to a saries of cases (Hogarth 1980).
Inconsistency in an individual's judgment can alsc stem from his remembering or
forgetting information during the process of the elicitation session. For ex-
ample, the individual may remember some of the less spectacular pieces of
information and consider these in making judgments later in the session. Or,
the individual may forget that particular ratings are only to be given in ex-
treme cases and begin to give them more freely towards the end of a session than
at the beginning. : -

Overoptimism is sometimes referred to as the oversstimation of probabil-
jties, overconfidence bias, or the underestimation of uncerzainty. Overocotimism
is the giving of more gptimistic judgments, such as in the form of probabil-
jties, than the person's data warrants. People tend to be averly optimistic of
the probability of some event cccuring and often underestimate the uncertainty,
or the time and resources needed to make this event a reality. Thus, they give
too narrow of erraor bars on these judgments (Capen 1975). Overoptimism can
stem from a variety of causes: 1).thinking at too general a level; 2) wishful
thinkings and 3) illusion of control. Armstrong (1975) and Hayes-Roth (1980)
have shown that people give higher, less realistic, probabilities when they con-
sider decision tasks in general than when they disaggregate them into their
component parts. For example, Armstrong (1975) asked straight Almanac questions
of one half of his sample. Of the other half, he asked the same Almanac ques-
tions but broken into logical parts. For instance, the question "How many
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families were living in the U.S. in 19707" was asked as "What was the pooulation
of the U.S. in 19707" and "How many people were there in the average family
then?". The persons answering the disaggregated questionsdive significantly
more accurate judgments.

Wishful thinking occurs whan an estimator’s hopes influence his judgment
(Hogarth 1980). For example, a project manager in charge of a project may give
optimistic prcbab111t1es about completing it on schedule because he hoges this
will be the case.” In geperal, people exhibit wishful thinking about what they
can exhibit inm a given amount of time-~They overestimate their productivity
(Hayes-Roth 1980).

ITtusion of cantrol is the tendency to feel greater ap imism or greatar
confidence in some outccme, 1f one has been invelved in its procasss (Hogarth
1980}, People can acquire the fmpression of having more control over outcomes
simply by svending time analyzing a situation as in a eligitation session
(Langer 19‘75)° Similarly, people perceive risks as being lower winen they feel
that they are in contral of a process. For example, people perceive less risk
whan they are driving a car than when they are riding, as a passencer, in a
plane (Rowe 1982).

Social pressure. induces individuals to slant their responses or to silently
acquiese to what they believe will be acceptable to their group, superordinates,
institution, or society in general. Zimbardo, a psychologist, explains that it
is due to the basic needs of people to be loved, respected, and recognized that
they can be induced or choose to behave in a manner which will bring them affir-
mation (1983). There is abundant sociolegical evidence of conformity within
groups (Weissenberg 1971). Generally, individuals ia groups conform to a
greater degree if they have a strong desire to remain a member, 1f they are
satisfied with the group, if the group is cohesive, and if they are not a
natural leader in the group. Furthermore, the individuals are generally unaware
that they have modified their judgment to be in agreement with the group. One
mechanism for this unconscious modification of opinion is explained by the
theory of cognitive dissonance. Cognitive dissonance occurs when an individual
finds a discrepancy between thoughts he holds or between his beliefs and his ac-
tions (Festinger 1957). Far example, if an individual holds an opinion which is
conflict with that of the other group members and he has a high opinion of the
other's intelligence, cognitive dissonance will result. Often, the individual's
means of resolving the discrepancy is by unconsciously changing his judgment to
be in agreement with that of the group {(Baron and Byrne 1981l).

Irving Janis's study of fiascos in American foreign policy (1972) i1-
lustrates how presidential advisors often silently acquiese rather than
critically examine what they believe to be the group's opinion. This tendencey
has been called "group think", the "bandwagon tendency", or the "follow-the=
leader effect."

The effect of social pressure can also be seen in situations where the in=
dividual is not im direct contact with others. Payne (1951) has provided
evidence that people give socially acceptable answers to survey questions. On
surveys, people claim that their educations, salaries, and job titles are better
than they are. More people claim subscriptions to socially acceptable magazines
and deny it to the lurid ones than subscription records support. 0Often there is
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a 10% difference between what is claimed for "prestige" reasons and what objec-
tively 1s.

THE METHODS

Methads for eliciting expert opinion vary along several continuums: 1) the
number of participants; Z) the degree of intaraction among participants and be-
+wean them and the session leader; 3) the degree of structure jmposed on the
elicitation process; 4) the degree of participants' expertise; and 5) the degree
of "fuzziness® of the data being elicited. -

For example, one method, the mail survey, involves many respondants but
17i=«1e interaction among respondents or herwean them and an interviswer.
Interaction is defined as any two-way communication afttar wnich the responagent
is allowed to change his judgment. When the respondent fills out a survey,
there is generally no interaction hetween him and his peers or betwesn him and
an intarviewer.

Another possibility, the Delphi method, can include any. number of respon-
dents and allow for more interaction between respondents than the traditional
mail survey. The respandents' interactions are controlled by the felpni monitor
who sends each respondent the judgments of the others. The respondents are al-
Towed to adjust their judgments in light of this information. The process of
allowing respondents to change theipr judgments can go through any number of
jterations even until consensus is reached. RAND corporation developed the
Delphi method to overcome some of the problems inherent in an intaractive group
method, such as social pressures to conformity. For this reason, in the Delphi
technique, the respondents do not interact in a face-to-face situation.
Instead, the only contact they are supposed to have with one another is via the
mail. And then, the names and other jdentifying features are removed from the
judgments before they are circulated so that the origins of these judgments will

not unduly affect the recipients.

Ancther method, the face-to-face interview, usizally involves a fewer number
of respondents than the mail survey. The respondents are interactive, singly,
with the inteviewer during the course of the interview.

Fourthly, there is a interactive group method. In this method, a groupd of
‘three or more may be convened to give their judgments in the presence of one
another, The group sessions are generally monitored and structured by a session
leader., For example, the leader may encourage group members to write down their
judoments and their reasoning. . The leader may regquire that this information be
presented to the group and that a discussion follow. The interactive group
method can go through any number of iterations, as in the Delphi method, until
consensus, if it is desired, is reached.

For the sake of brevity, this paper will confine its discussion of the
detoction and reduction of the human factors to two methods, the traditional

mail survey and the interactive group method.. These two methods were selected
because they 1ie on opposite ends of the continuum with respect to the numpber of

participants and the degree of interaction involved.

The five human factors are manifested in different ways in the various
methods so the means by which they can be detected or reduced also vary. For
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example, the effect of social pressure {s manifested more strongly in the intar-
active methods such as the face-to-face interview and the interactive group
method. Yet, because these methods are interactive, much of the deteczion of
soccial pressure can be done by a trained observer. This paper‘s approach to the
detection and reduction of human factors in elicitation methods is likely to
reflect the orientation of a cognitive or social scientist. The aporoach is to
perform a real time detection or counteraction of the human factors as they gc-
cur during a session rather than a later mathematical adjustment of the data.

This paper advocates a structuring of the elicitation methods as a means
for reducing the occurrence of human factors. Structuring an elicitation merhod
involves centrolling interactions, identifying the parts of the phencmenon an
which the respandents are being questioned, defining them and the response oc-
tions, such as the scale. For example, an unstructured interactive group metnod
would resemble the usual meeting which occurs in the business world. A struc-
tured version of the same method would have a program for when éach memper would
present his judgment and ratiorale to the group, when the fldor was open faor
discussion, and when the next round could begin. In general, the greater the
degree of structure imposed on the decision process, the simpler it. is to con-
trol for the occurence of human factors. Often a method cannot be maximumly
structured because gach degree of structure imposed slows the process and re-
quires more patience or cooperation on the part of the participants. The client
may have deadlines and a fixed budget which 1imit the amount of structuring
which can be done. Thus, the amount of structuring which can ba done often in-
volves tradeoffs between the quality of the data and its cost in time and
manpower.

The Mail Survey

“Detection of Human Factors

In a survey, the occurrence of human factors is not generally detected
while the individual is making his judgment but earlier during pilot tests ar
later when the survey is analysed. Three factors, the effects of question
phrasing, social pressure, and inconsistency, can be detected by the use of the
split ballet, the sleeper option, and pilot test.

The effects of question wording and sequencing of cptions can be detected
by measuring the differences between the split ballot questions. The split bal-
Tot technique is most commonly used for "yes-no" and other multiple choice
questions. Use of split ballot techniques in the past (Payne 1951) have shown
that peaple favor generally worded options over thase which are highly specific.
In addition, they favor options which refer to the status quo over those proogs-
ing new alternatives. Split ballot results have also shown that people favor
selecting numerical options which are located in the middie of a series whereas
they favor nonnumeric options which are located on either end of the series.

Social pressures to give the most acceptable response can also he detectad
by use of the split ballot technique. One wording on half the surveys can state
the options bluntly, the other can contain face saving phrases to encourage
people to check the response which is most descriptive of their thougnts or
actions. A face-saving option often encourages the respondent to admitt that he
does not have X knowledge or Y socially-desirable possession.-at this time by al-
lowing him to state that he plans to acquire them in the future.
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Another common area far the effects of social pressures to emerge is in
peoples' unwillingness to admitt ignarance, to check the "I don't know" ootion.
1f identification. of knowledgable raspondents is important, a different tech-
nique can be used to get a hetter indication of people's knowledge than simoly
totalling those who selected the "Oon't know" response. A “sleeper” option that
sounds plausible but which does not exist in reality can be inserted into the
series of bonafide options. For example, on a survey of public opinion of
nuclear reactors a “fast water reactor" might be inserted between a "light
water", and a "breeder.” The number of pecple who select the sleeper option can
be added to those who marked the "Dan't know" option and excluded from the pool

of supposedly knowledgable respandents.

Inconsistency in people's resoponses Lo sSurveys js more difficult to detac:
than the two above mentioned effects. [nconsistency could concaivably be
dereczad by the use of redundant questions but this approach poses prodlems, If
the redundant question is an exact repitition, it can annoy people becausa they
wonder why they are being asked the same question, again. Yet, if the question
js asked with a new wording, respondents may give different answers simply be-
cause of the difference in phrasing. Inconsistency can occur becausa the
individual has not applied his heuristic consistently, has forgotten instruc-
tions or definitions, or has remembered differeat incidents as he progressed
through the survey. An intensive interview type of pilot test can be used to
check the survey instrument for these problems. For example, one set of these
pilot tests revealed that individuals had forgotten the instructions about half
way through the selection of many options. The respondents were supposed to
mark their areas of knowledge on a list spanning two pages. Instead by the
second page, one Fifth of the pilot sample had checked areas in which they would
have liked to have had knowledge.

This type of pilot test is the only one, to my knowledge, that can be used
to tack peoples' thinking, their consistency, through a survey. [ adaoted
several ethnographic interviewing techniques to create this pilot test method,
~These techniques gather two types of information: 1) how the respondent

progresses through the survey, that is which sections he looks at, in what or-
der, and for how long, his general impressions, and when or why he decides to
£111 out the survey and to turn it in; and 2) how the respondent specifically
interprets each direction, question, and response option.

To obtain the first type of information, the interviewee is asked to handle
the survey as he would naturally, if no observer were present. The interviewes
is asked to "think outloud" and to mention his impressions. Generally, in-
dividuals will skim the cover letter and flip through the rest of the survey.
As the individual flips through the survey he mignt state, "I nave problems with
this page and I would probably let the survey sit on my desk for several days to
decide whether to fi11 it out. While the interviewee pages through the survey,
his pauses and gestures, particularly those indicating confusion or anxiety are
noted by the monitor. If the respondent has paused or shown some emotion during
his review of a particular section, specific questions will be asked such as,
"What was your feeling when you read this?". '

To obtain the second type of information, the respondent is asked to
paraphrase, in his own words, the meaning of each direction, question, and
response option. This information allows the monitor to track the respondent 's
intarpretation of each part of the survey.
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Structurﬁnq'the Method to Reduce the Occurrence of Human Faczors

As mentioned earlier, structuring any elicitation method can facilitate the
counteraction of many human factors. The following section contains some recom-
mendations on how to set up a mail survey to obtain better quality subjective
data by controlling for the intrudence of some human factors.

" The first stage in developing the mail survey can have an effect on the
amount of inconsistency which shaws up later in the respondents' judcments.
Often seeming inconsistencies in the respondents’' answers arise from their view-
ing the phenomena in a different manner than the way in which it has been
presented on the survey. Because the survey does not generally encourage them
to explain the view or assumption which aliowed them to make the puzzling
responses, their responses are dismissed as inconsistent and unraliable. For
this reason, it is recommended that the creator of the survey .first talk exten-
sively to a sample of those who will be surveyed to learn what relationships,
causas and effects, they believe enter into the problem. For example, resoaon-
dents from a utility might believe that the future of their utilities market is
tied to the nation's gross national product (GNP). If the task is to elicit
their projections for a utilities market in year 2000, then the questions should
define different levels of GNP. For instance, “Assuming that the GNP is X in
the year 2000, what would you predict the market for Y to be?" K

Careful composition of the questions can reduce the occurrence of three
agffects: 1) inconsistencies which arise from the respondents' confusian, 2)
phrasing, and 3) social pressure. The use of Basic English is recommended if
the survey is targeted for the general public as one means for minimizing
misunderstandings. Basic English is a vocabulary of agproximately 1000 words
that are understood by most people who possess a high schgol education. Payne
(1951) provides a list of these words. He also provides a 1ist of words which
have been found to possess different meanings for different people. For ex-
ample, "this year" means the present fiscal year to some, the present calendar
year to others, and this coming year to sti1l others. It is recommended that
the use of these problem words or phrases be avoided in the interests of
clarity. In addition, it is recommended that question lengths not exceed 25
words because respondents' comprehension has been found to fall off around that
point (Payne 1951). :

As mentioned earlier, the split ballot techniques can be used to detect or
counteract the effect of phrasing and ordinality. For example, response options
can be placed first or last in half the surveys and in the middle in the other
half to counter the effect of ordinality. '

If the pilot test of the survey indicated that prestige was on issue on
some questions, then face-saving wordings can be used to obtain a better repre-
sentation of peaples' opinions. Generally, admission of ignorance involves the
Joss of prestige, so the "Don't know" option should be carefully worded. "No
set opinion at this time" is an example of a face-saving wording.

The presence and placement of definitions is another technigue which can be
employed to reduce the occurrence of human factors, in this case, inconsistency.
Definitions include descriptions of the phencmena, the time frame in which the
respondent is to consider these, and the scale in which he is to respond. As an
individual progresses through a survey, the definitions becomes biurred in his
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mind. He relies on his memory of these definitions and often arrives at a WArK =
ing definition which deviates from the original written one. For this reason,
definitions should be incorporated into the question or they should immediately
proceed it. For example, "What is the probability that the motor generator wWill
reach a maximum power of X for Y amount of time by calendar year Septamoer 1,
16847" The defimition of the phenomena has been mentioned as part of the
question. The same treatment can be extended to the response scale.

For example, the Sherman Kent scale gives these descriptors, “nearly certain®,
“highly probably”, and "We are convinced", to describe a percent ranging from a0
to 99, Both numbers and verbal descriptors, or definitions, are used in attempt

to make people mean approximately the same thing when they give the same rating.

Another structuring techinique, hierarchically arganizing the survey, is
helpful in countering the respondents' tendencies to consarvatism and oversD-
timism {Meyer 1982a). Organizing the survey in a hierarchical; manner generally
entails beginning with specific questions and progressing to more inclusive
questions. The respondent is not asked major questions until his memory has
been prodded to remember more than just the easily accessible information.
Thus, his judgment is not as 1ikely to be anchored to just the- first remembered
hits of data. Using the hierarchical® structure aiso involves disaqgregating
questions, as shown in the Almanac example, to counter pecples® tendency

toward overoptimism.

The Interactive Groub Method

petection of Human Factors

The effects of phrasing, conservatism, inconsistency, and social pressure
can be detected during elicitation sessions by the trained observer who s
monitoring this process (Meyer 19828). Generally, only the presence of these
effects, not their magnitude, can be detected by this means. This mode of
detection assumes that the group members have been instructed to "think outioud"
in interpreting the questions and giving their judgments. (More details on the
group members’ verbalization of their thoughts will be given in the next
section.) ‘

The respondent's verbal feadback on their interpretations of questions al-
1ows misunderstandings to be caught during the sessions. Conservatism can also
he detected during the session. 1f an individual continuously holds to his
initial judgment, even though there has been a discussion and an opportunity to
revise his judgment, he is a likely candidate for conservatism. Inconsistency
can be detected when members rate an element differently than they did a com-
pﬁrab1e one earlier or when their interpretation of a definition appears to
change. _

The problem of inconsistency arises from more sources in the interactive

group method than in the face-to-face interview.or the mail survey. This is be-

- cause the group meetings are held many times whereas the others tend to be one-
time deals. Thus, with the usual group method, there is the chance of the

members forgetting information, instruction, and definitions over the coursa of

time. One inconsistency which can emerge is the ease with which a response op-

+ion.is applied. For example, the respondents may select the extremrs of the

gcale with varying frequency through time. Ir general, fatigue during a session

spems to contribute to the occurrence of inconsistencies, perhaps because pegpie

94




are not thinking as carefully. (Fatigue is indicated by briefer responses and
by the degree of the participants' horizantal inclipation.)

The degree of inconsistency can he detected by use of Bayesian-based scor-
ing and ranking technigues. The group members' judgments can be entered into a
scoring and ranking program, such as that of Saaty's Analytical Hierarchical
Process, to obtain a rating of their consistency (Saaty 1980).

Social pressures can also be detected by real-time observations.
Generally, if consensus is easily obtained, nc difference of epinion is voicad,
and the group members appear to defar to another member of the group, group
think is a strong possibility. Social pressures can come from the members of
the group or from the institution sponsoring the decision session. The institu-
tion may favor a particular decision outcome and apply prassure an the grouo
members to this end.

Structuring the Method to Reduce the Qccurrence of Human Factors

The first stage of the interactive group method, a free association exer-
cise, can be used to counteract the members' tendency toward conservatism. The
free association exercise invoives having group members mention any and all ele-
ments which might have bearing on the phenomena in question. For example, in
considering a problem on which technologies should be exported from the United
States, some of the major elements a free association might have produced would
be the military, economic, political, and technological significance of the ex-
port items. The elements mentioned during a free association are usually
recorded for the group members to see. Later, the group members will work from
these in developing a model of the decision situation. The purpose of the free
association exercise is to start with a wide set of possibilities and to narrow
- these to the pertinent ones. The free association exercise is to counter the

human tendency to anchor narrowly on past or present cases which may not hold in
the future. ' ' :

The next stage, the organization of these elements into a model, has bear-
ing on how much inconsistency will be observed when the members are giving their
judgments. Highly inconsistent judgments.(as determined by ear and by Bayesian
techniques) often indicate a need to restructure the model to better represent.
the members' view. This stage of the method is the most time consuming because
the particpants are not always conscious of how they mentally model the
phenomena. Then too, sometimes they are so conscious of some information that
they fail to convey it for incorporation into the model.

The eticitation phase can be structured to include various techniques for
countering the effects of social pressure, conservatism, and dveraptimism.
Perhaps, the most critical of all of the structures placed on the elicitation
process is the reguirement that participants verbalized their judgments and
their reasons for giving such judgments. As mentioned earlier, this verbal
feedback allows the method to be monitored for the intrusion of many human
factors. For example, if group members appeared to exhibit group think, the
methad can be structured to promote the opposite bias, conservatism. Groups
where conformity is likely to be a problem are cohesive groups, groups where the
people have warked togeather before, or groups where there is a dominating
leader {Janis 1972). By requiring group members tc write down and then report
on their judgments and rationale, they are more likely to get attached to their
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judgments and defend them when the discussion begins. I would recommend having
each person record and read his judgments before opening the floor to dis-
cusssion and allowing people to modify their judgements. If there is a strong
official or even a natural exoffio leader in the group, that individual should
be asked to give his judgments last so as not to influence the other group
members. In addition, if there is an official leader of the group, he or she
should be encouraged to be nondirective during the meetings. An explanation of
the group think phenomena usually suffices to convince them that better dis-
cussions and data will result from their refraining from “leading.”

~If on the other hand, group members appear to be too narrow, or anchoring,
in their thinking, a series of extreme scenarios can be introduced for their
consideration. :

If overoptimism has been detacted, the group members can be lead to think
in greater detail about the elements of the phenomena. This s done in much the
way that the Almanac questions were disaggregated for the survey population.

Another technique, the reviewing of definitions, can help .reduce respon-
dents' tendency to be inconsistent because of faulty memory. If at the
beginning of every session, definitions are verbally reviewed, membprs will be
more consistent in their definitions through time and between themselves. In
addition, each time that their judgment is requested, a statement of the ques-
tion inclusive of definitions, can be given. For example, "What rating would
you give to the importance of element X over Y to reaching goal 27" Their copy
- of the scale, in this case a Saaty Pairwise Comparison, should include descrip-
tors or definitions of the ratings.

Another technique for reducing inconsistency is to have the group members
monitor their own consistency. For this task, they should have copies in front
of them of their judgments, and response scale. A matrix structure of the
critieria on which the elements are being judged, the elements, and the judg-
ments work well for this task (Meyer 1982b), Often the group members will view
an element in a different light than they did earlier and wish to change the
earlier judgment to be in line with their current thinking. 1If their reasoning
does not violate the logic of the model or of the definitions, they should be
allowed to make the change. Sometimes, consideration of a new element makes
them aware that the model and accompanying definitions did not realistically
protray this part of the phenomena. Parts of the original model will nead to be
changed and some of the process of giving judgments will need to be repeated.
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USE OF EXPERT OPINION IN THE RELIABILITY ASSESSMENT OF THE
M1 ABRAMS TANK

BOBBY G. BENNETT
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1. INTRODUCTION

Modern Army weapon systems tend to be sophisticated, complex, and
expensive. The complexity and sophistication are necessary to meet the
projected threat and lead to the high cost of both development and procure-
ment. There is also typically an urgency to field the new, more capable
equipment as soon as possible, Because of this urgency, the Army has adopted
the Single Integrated Development Test Policy wherein government, as well as
contractor, testing is utilized to find problems and determine the effective-
ness of corrective actions.

The Army acquisition process recognizes that most weapon systems are
not mature when subjected to government tests by allowing for reliability
growth throughout the development phase. Before proceeding into the production
phase, however, there is a requirement to demonstrate that the materiel has
achieved the reliability threshold established. 1Ideally, this demonstration
is accomplished by sufficient testing of the final configuration to provide
statistically valid estimates. Experience has shown that programs which
rely oh this technique generally do not achieve the reliability objectives
within the allocated resources and time. The second best alternative is to
design the tests in a test-fix-test fashion that allows for tracking of
reliability by using accepted and proven self-purging reliability growth
methodology, such as the AMSAA model. This technique has the advantage of
using all test data, thus increasing the applicable sample size over the first
alternative, and is successfully used by AMSAA in the reliability evaluation
of many Army weapon systems. This technique, in fact, is the preferred
technique for assessing reliability at any point in the development cycle.
The ability to use this technique, however, is contingent upon several
factors, one of which is a requirement to implemenat the corrective action in
a timely manner on the test samples, Unfortunately, it is not always possible
to meet the conditions necessary to use the AMSAA Reliability Growth Model, or
a similar model, due to the time and money constraints previously discussed;
such was the case for the M1 Abrams tank during its Full Scale Engineering
Development Phase. In such cases, alternate methods must be used to provide
credible estimates of the reliability of the final design at the end of
development,

This paper descsribes the process used to assess the reliability of the
M} Abrams tank, and provides comparisons of these estimates to estimates
obtained from later tests of the same configuration. Further, lessons learned
during this evaluation are presented along with a brief description of improved
$nd formalized procedures developed by AMSAA in response to these lessons
earned.
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2. Ml RELIABILITY ASSESSMENT

The M1 Abrams tank had a combat mission reliability requirement of 320
Mean Miles Between Failure (MMBF), to be demonstrated during the Inftial
Production phase of the acquisition cycle. Recognizing that corrective actions
for many of the design faults detected during development test would not be
implemented until after test was complete, a threshold of 272 MMBF was imposed
on the system to be demonstrated at the completion of the Full Scale Engineering
Development (FSED). Early in the FSED testing, it became apparent that the
initial design possessed a reliability much less than that necessary to progress
into production. With approximately forty percent of the FSED testing complete,
the tank was demonstrating an "as-tested" MMBF of 120, "As-tested" MMBF was
computed, assuming an exponential distribution, by dividing the total test
miles by the total number of failures. At that point in time, although faiiure
analyses had been conducted, very few proposed design changes had resulted in
hardware changes on the test samples. In fact, due to the desire to implement
corrective action on the test samples as soon as possible, some of the changes
to the tank hardware had actually resulted in an increase in total system
failure rate and had to be removed. All attempts to fit reliability growth
tracking curves were unsuccessful. Since an Army decision review was scheduled
shortly, an alternate method had to be considered to assess any growth in
design reliability, and to further assess the potential reliability considering
proposed, as well as implemented, design changes.

To provide a continuing assessment of the M1 Abrams tank reliability, it was
decided to conduct periodic Reliability Assessment Conferences as authorized by
AR 702-3, This conference, composed of representatives of the materiel developer,
combat developer, development test independent evaluator and operational evalu-
ator, was charged with the responsibility of estimating the reliability of the
current configuration and to project the reliability when all identified, but not
implemented. corrective actions were taken. In order to accomplish this mission,
procedures were developed and agreed to by the conference principals.

2.1 Procedures for Estimating "Demonstrated" Reliability

The term "demonstrated" reliability as used in current Army Regulations has
been shortened from what the M1 Assessment Conference termed “"reliability adjusted

for demonstrated corrective action.” Failure rate adjustment for this estimate
is made only if there is clear evidence, from representative testing, that a

reduction in failure rate has in fact taken place. The following procedure
was used by the assessment conference to estimate "demonstrated" reliability:

° Establish that design change has been subjected to representative test.
® Determine that design change had positive effect on reliability,
° Estimate effectiveness of corrective action.

° Adjust failure rates and compute adjusted reliability,
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2.2 Procedures for Estimating Projected Reliability

The projected reliability estimate allows for adjustment of failure rates

for proposed as well as demonstrated design changes., As allowed for in
AR 702-3, the combat developer and operational evaluator chose not to parti-

cipate in this projection, other than offer opinions during discussion. Thus,
for the Ml program, grojections were made by AMSAA and the M1 Program Manager's
Of fice using the following procedures:

® Adjust failure rates for demonstrated corrective actions in accordance
with procedures outlined in paragraph 2.1. _

° Using engineering judgement and experience with similar systems,
estimate whether or not proposed change will decrease failure rate.

° Using engineering judgement and experiences with similar systems,
estimate effectiveness of proposed modifications,

° Adjust failure rate and compute projected reliability.

It is evident from the agreed to procedures that significant judgement was
inherent in estimation of both the demonstrated and projected reliability.
In order to maximize the information available to make this judgement, a
requirement was placed on the prime contractor to prepare and provide a
document to the assessment conference principals at least two weeks prior
to the conference detailing:

° Results of faflure analyses

® Results of all tésting (before and after corrective action). If testing
was other than on test samples, the contractor was required to detail con-
ditions of test, :

° Proposed effectiveness factor and rationale.

Upon receipt of the contractor documentation, the AMSAA RAM analyst would
provide the information, without the contractor's effectiveness estimates,
to engineers with experience in the area of interest and ask the following
guestions: ‘

° Based on the contractor presentation, is there evidence that design
change will result in lower failure rate?

° What is your estimate of the effectiveness of the corrective action,
expressed in terms of reduction in failure rate? Provide rationale.

° Could correction of this failure mode result in other fai]ure modes?
What, in your opinion, is the most likely fajilure mode and frequency?

This package would normally be reviewed by three engineers independently.

The RAM analyst would assimilate the responses: if in close agreement, the
responses would be accepted as appropriate; if not in close agreement, the
analyst would discuss the differences with each engineer until the differences
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were completely understood or a consensus was reached. The analysts would
then discuss the results with his supervisor and they would jointly agree to
a position for the conference. This modified delphi approach resulted in a
range of effectiveness factors and rationale for discussion at the assessment
conference. : :

The assessment conference was conducted in a democratic process, with
open discussion by all principals. A majority vote (3 of 4) was required to
consider corrective action demonstrated. If considered demonstrated, the
effectiveness factor was then agreed to by voting. Because of the work done
at home station, the AMSAA position was normally accepted, particularly if
the estimate was close to the estimate provided by the contractor through
the Program Manager's Office representative.

2.3 Results of M1 Assessment

The above procedures were used prior to the Army review mid-way through

the development test program. At that time, results of the assessment were
as follows: .

MMBF
As Tested = - 120
Demonstrated 145
Projected ‘ 256

The demonstrated estimate was not vastiy different from the "as-tested"
estimate for two reasons; (1) The as-tested estimate included some experience
with corrective actions implemented on the test samples and (2) very few of the
proposed corrective actions had been tested. Although the tank was demonstra-
ting reliability well below the requirement, a go-ahead decision was granted
based on a thorough discussion of the corrective actions identified and the
estimates provided by the assessment conference as to the effectiveness of
these corrective actions. :

These procedures were used during the remainde¢-of the FSED and Low Rate
Initial Production test with the following results:

Mean MiTes Between Fajlure

As-tested Demonstrated
Extended FSED (Phase 1 234 299
Extended FSED (Phase 2 : 308 326
Initial Production (] . 278 351
Initial Production (2 324 351

{1) Inc]udes‘Ear1y Production Process Problems
(2) Excludes Early Production Process Problems

The configuration of the tank at thé'beginning of the Extended FSED (Phase 1)

was essentially the same as that for which a projected estimate of 256 MMBF
was made for the Army review. For all other phases of the test program, the

configuration at the beginning of the phase is essentially the same as that
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for which "demonstrated" estimates were made duing the preceding phase. For

example, the estimated value for extended FSED {Phase 2} was 299 MMBF based
on Phase 1 testing; the actual as-tested value for Phase 2 was 308 MMBF,

It is bf interest to note that the estimated value, in most cases,

overestimated the "as-tested" estimate. It was observed that the greatest
reason for this was the occurrance of new failure modes, in most part not
related to any corrective action, It was also apparent that there had been
no provisions in the estimates to account for quality assurance and produc-
tion process problems inherent in the start-up of a new production process.
Historically, this start-up process has resulted in approximately a 10 per-
cent reduction in MMBF. '

Overall, the process worked well. Even with the recognized problems,
the estimates obtained using expert opinion were within the “statistical

noise" of the estimates obtained from further testing of the same configuration,

3. LESSONS LEARNEd

Although the estimates obtained by using the procedures'discussed were
very close to values actually demonstrated later, several problems were noted
with the procedures. : .

° There is typically a wide variation in the estimates provided by experts
on the effectiveness of proposed corrective action. This paper will not
attempt to discuss reasons for this variation, but simply note that it did
exist,

° Intuitively, it was felt that giving credit for corrective action taken
for Tow failure rate modes resulted in an optimistic estimate of reliability.

° The assessment conference procedure allows for control of the conference
by the "strong" individual (most persuasive), not necessarily the one with the
most knowledge. Estimates arrived at by the conference may thus not have the
benefit of the representative input of all experts. '

On the positive side, the Ml experience demonstrated that credible
estimates can be made using expert opinion, and that low risk decisions can
be made in a timely manner without the requirement to test the final configu-
ration for prolonged periods.

® The contractors (prime and subs) possess the greatest expertise for
the particular design. Contracts must be written to take advantage of this
expertise, and in such a manner to allow for significant government inter-
action, to include the independent evaluators. A conscientious effort is
required by the government community, to include use of Government laboratories
and independent consultants, to properly assess corrective actions,

4. lIMPROVEMENT IN PROCEDURES

The two areas of greatest concern that evolved from the Ml assessment was

the uncertainty of the fix effectiveness estimates, particularly for the
projected reliability estimates, and the realization that projections were
probably optimistic because of giving credit for corrective actions for low
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failure rate failure modes without considering the effect of other unseen

failure modes, Discussions of these perceptions with personnel from the
AMSAA -RAM Methodology Office resulted in further investigatin of the perceived

problems and publishing of several reports to document improved methodolgy and

procedures. Following is & brief synopsis of the published reports with
comments on how they may be used to imphovg*future assessments,

4,1 AMSAA Technical Report No. 357, "An Improved Methodology for
Reliability Growth Projection", Larry H. Crow, June 82,

In this report, Dr. Crow showed that even when the effectiveness factors
are known exactly, the adjusted procedures used in the Ml assessment would

still overestimate the system reliability. He further was able to mathe-
matically determine the bias term: '

B(T), = K h(T)’ 7

Where K
h(T)

average effectiveness factor

average rate of occurrance at time t

of new failure modes for which corrective
action will be taken .

Maximum Tikelihood methods are used to estimate h(T).

(3]

Use of the procedures outlinmed in this report make it possible to provide an
unbiased estimate of system failure rate. The uncertainty in the estimate of
the effectiveness factors, however, remained a concern. In order to alleviate
this concern, research was conducted on historical fix effectiveness factors
and documented in the following report. '

4.2 AMSAA Technical Report No. 388, “Reliability Fix Effectiveness for
Army Systems", Bruce 'S. Trapnell, May 1983.

The purpose of this report was to provide a historical data base on fix
effectiveness factors for various systems. The advantage to this data base
is that it provides a guide to what might be reasonably expected on similar
systems, serving as a useful tool to the engineer in assignment of effective-
ness factors for projection purposes.

The report details historical effectiveness factors for eleven systems,
to include helicopters, tanks, wheeled vehicles and missiles. The average
demonstated effectiveness factor for all systems was approximately 0.70, with
reTatively small variation. '

Work is continuing in this area to determine fix effectiveness by major
subsystems, such as engine, electrical system, etc. These data, broke down to

subsystem level, will be even more useful for projection for future, more
complex systems. ' ' S o

It is recognized that fix effectiveness depends on many factors, and that
the past does not necessarily predict the future. The available estimates,

however, will provide a starting point and will force the expert to defend
large deviations from past experience. ‘ ' '
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4.3 AMSAA Technical Report No. 399, "Corrective Action Review Team,
(CART's)," Bruce Trapnell and Clarke Fox, July 1983.

The purpose of this report is to standardize the procedures for determining
effectiveness factors and making projections. It recommends a procedure which

uses historical fix effectiveness factor to modify judgmental estimates. It
further specifies additional data that must be collected to use the projection

model,
5. CONCLUSIONS

Estimates of reliability provided for the M Abrams tank using procedures
outlined in this paper proved to be quite good, as demonstrated in later testing,
To a large degree, the author feels that this is attributed to the expertise
of the engineers and analysts involved - and a lot of luck. The procedures
could be greatly enhanced by use of available historical fix effectiveness
factors and the projection methodology developed by AMSAA. There will con-
tinue, however, to be situations where expert opinion will be the prime imput
to analyses and decisions, It is thus of paramount importance to continue to

develop experts and methodology to best use expert opinion,
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ABSTRACT

The Civil Service Reform Act of 1978 mandates 'performanée?based appraisal
systems in federal agencies and performance measﬁfeménts which ‘are accurate
and objective to "the maximum extent feasible." In this‘paper we study two
examples in which objectivity can be defined as the establishment of processes
which test hypotheses against actual data and the evaluation of attendant a
and b risks. In the first example, we use the Poisson distribution to
evaluate performance against a standard for courtesy. This model requirés
that behavior be directly observed 90 percent of the time for acceptably low
“rudeness levels" and is thus impractical. In the second example, we propose
using the binomial distribution to evaluate the performance of message center
clerks who have the task of assigning “Action/Info" and distributing
correspondénce to elements of arlaﬁgé‘drganizatibn. In this case the amount

of inspection required is affordable.
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INTRODUCTION

The Civil Service Reform Act of 1978 (CSRA) requires government agencies
to establish performance-based appraisal systems under the general supervision

of the Office of Personnel Management. In pertinent words of the statute:

Under regulations which the Office of Personnel
Management shall prescribe, each performance appraisal
system shall provide for establishing performance
standardS which will, to the maximum extent feasible,
permit the accurate evaluation of job performance on
the basis of objective criteria (which may include the
extent of courtesy demonstrated to the public) related
to the job in questfon for each employee or position

under. the system.,

In compliance with the CSRA, the Department of the Army {DA) established
performénce-based appraisal systems for Senior Executives (SE), General Merit
(GM) employees, and General Schedule (GS) .and Wage Grade ({WG) emp]oyees.
Although the three appraisal systems are coveréd by different regulations and
utitize different forms, they share similar structufe, vocabulary, and
management philosophy to the extent that one may speak of the “Army Appraisal
System" (AAS). Under the AAS, supervisors are to provide each employee with a

written Individual Performance Plan (IPP) at the beginning of a rating period.
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In an IPP, related Tasks/Activities are grouped into Job Elements
described by short titles such as personnel Management, Preparation of
Correspondence, safety, etc. Some Job Elements are mandatory for supervisors;
otherwise, & great deal of discretion is ajlowed in grouping tasks and naming
Job Elements. Each Task/Activity is accompanied by a standard which expresses
an acceptable level of performance. Additional standards not keyed toO
specific tasks may be written for the Job Element as & whole. 1pps for-
superViSOrs usual]y_invo]ve six to eight Job Elements with seyera1 standards
per' Job Element. Less structure is required 1o cover a nonsupervisofy
position. |

System doctrine requires that standards be quantified whenever possibie,
express @& range of acceptable performance, and prbvide the employee an
opportunity to excel by surpassing the standards. This doctrine may be
preached by the establishment of absolute standards provided such standards
are not an abuse of discretion. Absolute standards may be used in situations
whére a single failure could cause death, injury, breach of sacurity, or great
monetary 1o0ss. Thus, a standard may require & pilot to make preflight checks .
100 pefcent of the time, but 2 standard ajiowing no typing errors would .be an
abuse of discretion. |

At the end of the performance period covered by the ipp, the rating
supervisor is required to make an estimate of actual performance (Pi) against
cach standard (Si) and make a judgment of exceeded (E}, Mel (M}, or Not Met
(N} for each Job Element. It is common, but s1oppy.» practice to use the words.

"axceeded," "met," and "not met" in comparing each Pj to jts associated S4.
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These words have been mentioned (selected as names of ratings for éntire Job
E]ements.which usually contain more than one standard) and are not Togically
~available for use in any other context.'l In order to aveid confusion, we use
the  separate and distinct designators Above: Tolerance (A}, Within Tolerance
(W), and Below Tolerance (B) for this comparison. No algorithm for mapping a
(A,M,B) set for a Job Element into E, M, or N is provided in the system
design, It is indeed within the purview of a rating supervisor to rate an
empioyee E or M on a Job Element even though a specific Py to $; comparison
within the element leads to a conclusion of Below Tolerance, (A reviewing
official might reduire that such a supervisor explain his/her decision!)
Following determination of the (E,M,N) set of ratings of Job Elements, an OPM
approved algorithm is. used to arrive at a final adjectival rating‘ of
Exceptional (EX}, Highly Successful (HS), Fully Successful (FS), Minimally
Satisfactory (MS), or Unsatisfactory (U).

So far we have merely provided a brief description of the structure and
vﬁcabu]ahy of the AAS. The appraisal systems of other agencies are quite
similar. ° In the remainder of the ‘paper we examine the implications of
attempfing to be objective within such a system, objectivity being a statutory
requirement, |

In order +to have_ specific examples, we introduce two mathematical
models, In the first we propose to measure courtesy by'direét observations.
In the second we propose to measure by actual sampling the accuracy of an
Action/Info Clerk in an administrative . office who 1is supposed  to route
incoming mail.to the appropriate subdivisions of a large organization. Before

continuing, we note that many supervisors write standards in the form "No more
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than N substantiated complaints of during tbe performance
period." (fhe reader may fi11 in the blank.) For the purposes of this paper
we eschew shortcuts which allow conclusions in the absence of data. Instead,
we require that actual observations be used to test hypofheses and assess the
attendant risks of drawing wrong conclusions. Since one purpose of
performance-based appraisal systems i; to provide a basis for ‘rewafding
employees whose performance is above acceptable standards, the difference
hetween ordinqry good’ performance and exemplary performanée shou]d. he
detectable by the measurement paradigm. Antithetically, less than acceptable
performance shou1d>é1so be detectable-in order to validate corrective action

for nonacceptable performance.
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STANDARDS FOR COURTEOUS BEHAVIOR

It td. notéd in the Introduct1on that the CSRA spec1f1ca11y mentions

courtesy demonstrated to the pub11c as an eva1uat1on factor in  job
performanceo In the same 1egasTat10n Congress has prov1ded for & suspens1on
of on]& i& days or Tess for four 1nstances of d1scourtesy within a one year
per1od. | Consaderab1e d1scuss1on of courtesy standards has been prov1ded by :
the =U.S, Merit Systems Protéttton !Boérd (MSPB).s it is clear from thése‘
references that courtesy éhou1d‘h6t be thé'subject of én-absoiute'standérd.

It may seem paradoxidal but a level of rudeness must be allowed if courtesy’
is to be measured and rewarded ﬁrh our}own'revdéd'of IPPs, we note that
courte;y standards are common1y 1mposed on emp?oyees in Secretary/Receptionist
type positions and rarely on others., As a side commént, this would appear to
be wunintentional discrimination against incumbents in a particular job
category.

We find that courteéy standards are usually written in the "No more than

N + 6 complaints received” form. We propose a standard written in terms of
"No more than N + & incidents of discourtesy allowed." This would seem to be
appropriate since most employees are under direct observation by a supervisor
for some fraction of time. (As a thought experiment, we could imagine
employing an inspector to observe the employee through a one-way window for
whatever fraction of time is needed to ensure objectivity in the sense
intended here.) It is assumed that incidents of discourtesy are random,
isolated in time, uncorrelated and that the probébi1ity of an incident during
a time interva]nis proportional to the duration of the interval. Provided the

number of incidents is small, these assumptions are reasonable and permit the

use of the well-known Poisson distribution.
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Given a "rudeness allowance" of N + & incidents per year, we can only

estimate the actual performance level, P, by hypothesis testing.

mathematically consistent sets of the following parameters:

%

s

I

Fraction of time observed.

Acceptance range. If the number of observed
discourteous acts is within this range, the
sample supports the concjusion that  the
pérformance is within tolerance with a given

risk of being wrong.

Employee's risk that a within tolerance or
better . performance will be vrated as below

tolerance.

Supervisor's risk that a within tolerance or

worse performance will be rated as above

tolerance.

Employee's risk that above to]erance> perfor-

mance will not be detected.

Supervisor's risk that below tolerance perfor-

mance will not be -detected.
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Mathematical details are presented ‘in appendix. I-B. A short table of

results follows:

Standard F Ry -~ o = ag B8Py Bs| Py
2 + .5 .90 0-3 .25 1.00]1 7113
2+ .5 1.00 1-3 .25 .63|1 .65|3

20 + 5 .25 1-10 .10 .92]10 .8630

200 + 50 .25 30-73 - .10 .18}100 .441300

In the first line of the table, we set the rudeness level at 2 + .5
incidents per year. (The artif1c1a1ity of setfiag § as half of an incident
merely facilitates computation in the small N regime.)‘ The proposed fraction
of time observed in this line is rather high, 90 percent. Then if the number
of observed incidents of d1scourtesy is in the range 0-3, 1nc1us1ve, the rater
may conclude that performance is within tolerance with a probab111ty greater
than ap + ag = .5 of. hav1ng drawn the wrong conc]us1on.' It might seem that
if . the actual number of incidents of discourtesy is 3 againet a standard of
N=2+ ,5 the performance was surely out of tolerance. Not necessarily.
When N + § is uéed to'parameterize the Poisson dfstribution,'it applies either
to an ensemble of' employees, or individual. behavior over many performance
periods, Then P,, the actual performance for a given period, becomes a
stochastic variable and an observation of three incidents does not show that
N # 2. (Subtleties of interpretation in the small N regfme disappear for
larger values of N.) The next entryJBE|P = 1,00I1 is the probability (1.00)
that a better performance (N 1) would not be detected, and Bs|Py = .71]3 is
the probability {(.71) that a worse performance (N 3) would not be detected.
The second line merely exhibits a decrease in r1sks if 1nspecfion is increased

to 100 percent. In the final 1ine, we decrease inspection time and Tower
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risks by degrading the standard to the point of allowing almost four incidents
of discourfesy per week, The dilemma is apparent. Objective Qa1idation of
pefformance against a high standard requires a Tlot of inspection time.
Maintenance of the objective procesa with reduced inspection time requifes"

that the standard be degraded to an unacceptable level.

In the case of Callaway versus D;, the MSPB reversed a ramoval action
against the appellant which was based partially on failure to perform in
accordanca.with an absolute (N = 0) courtesy standard. Absolute standards ara
11ke1y to be judged by the MSPB as an abuse of agency discretion except in
“situations:where death, injury, breach of security, or great monetary loss
could result from a single failure to meet the performance standard measuring
performance of a critical element." That issue is quite different from the
one addressed here, hame?y, tha ob jective measurability_of performance against
a nonabsolute standard. |

A standafd _wfitten in the form "No more than N * & substantiated
complaints of discourtesy during the performance year"‘has the advantage of
being easy to administer. Such a standard.p1aces the inspection and reportiag
responsibility .on the public and coworkers rather than the supervisor.
However, the measurement is now a joint property of employee behavior and
tolerance thresholds of potential complainants. In practice, few or% no.
reports will actually pe received. Trivialized and easy to administer
standards lead to "Above Tolerance“ decisions in the absence of data and
contribute significantly to rating inflation. MWere it not for the statutory
status of courtesy standards, we would recommend that they be used only on a
mahagement by exception basis and not ordinarily included in IPPs. The
queation of‘lwhether or not the adoption of this policy would .vio1ate the

intent of Congress is debatable.
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STANDARDS FOR A MESSAGE FORWARDING CLERICAL FUNCTIOM

.The task in this example is that of sorting a large volume of incoming
messages, assigning "Action/Info" to each, and distributing the messages to
appropriate elements of a large orgahization, While many actions are.pure1y
routine, others require an appreciation pf message content and knowledge of
the mission and functions of organizational elements. We assume that the
workload is sufficiently large to a1]ow:use of the binomial distribution to
describe sampling without rep]acemenf. {The Message Center at White Sands
Missile Range processes about 50,000 such actions per year. The function is
performed by three to four employees who also have other duties.} We further
neglect the fact that "Action" errors are usually more serious than "Info"
errors, Performance standards for the employees are assumed to be in the form
"p + & percent of Action/Info determinations are correct.” A sample of size n
is to be draﬁn at ran&ém for inspection during the perfbfmahce year. It is
assumed that the inspecting supervisor's determination of “correct"” or
"incorrect" on each sample element is error free. P,» the actual performance
to be estimated, is expressed as a percentage. Ra is the observed range of
correct actions within a-given sample of size n that allows accéptance of the
hypothesié that‘ performance 1is within toiérance with risks as defined
previously. Mathematical details are presented in appendix I-C. As with the

previous example, we exhibit a short table of results.

Standard n Ry o = o 8elP, Bs Py
85 + 53 100 76-93 .15 23195 46|75
94 + 24 100 89-98 15 .60]98  .70[90
94 + 2% 500  450-487 .05 21198 .54]90
94 + 2% 1000 906-970 .05 0298 28|90
% + 23 1500  1362-1452 .05 .001198  .16]90

94 + 2% 2000 1820-1934 .05 .0001{98 .07]90
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In the data selected for presentation, we begin with a pedestrian level of
performance, 85 + 5 percent, a small sample size, n = 100, and exhibit rather
high risks. As would be expected, the second line shows that escalating the
standard and keeping n = 100 increases the risks. In the remainder of the
table we maintain a high standard and keep increasing n in order to decrease
B [Py and Bg|P,.

We searched for a sample size and risks of about 10 percent or less as
exhibited in the last line of the table. An interesting feature -of the
results is that for fixed p + § and o = ag, BElPa decreases much faster than
Bs P, as n increases. Balanced risks of about 10 percent across the board are
not inherent in the model. At the sampling level of n = 2,000 the risk of
being unfair to the employee is negligible. MWe speculate that coﬁpetent,
self-confident employees would resent increased inspection, although analysis
shows that it would be in their best interest. It should also be noted that

R. is wider in every case than the nominal range of p* § (expressed as

a
decimal fractions) timés n. This is to be expected in a stochastic model;
observations outside the nominal range do not necessarily indicate an out of
tolerance condition. This is not generally understood by supervisoks.

Should it turn out that the number of correct Action/Info determinations
in the sample of n = 2,000 is more than the top of the range, namely 1,934,
that fact along with berforménce against other standards in the emp?oyee‘s IPP
§h0u1d be an evaluation factor in considering the employee for a performance
award. Similarly, an observed number of correct determinations below the
bottom of the range, 1,820, indicates a need for corrective action. If the
scheme is applied to each of three employees, the total sample is n = 6,000,
about 12 percent of workload. The standard of 94 + 2 percent is high enough
to represent a good operation,‘ yet low enough to allow employees an

opportunity to excel. The amount of inspection is affordable and the paradigm

is objective.
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There is a more sophisticated procedure for making A, W, or B decisions
than that given above. Depending on the data, these decisions may be
classified as strong or weak. The supervisor may wish to give the employee
the benefit of any doubt and escalate a decision from B to W or from W to A,
or gain further confidence that a B decision justifies corrective action. The
basic theory can be found in the literature of s'ca'i:istics"’5 and an example is
provided in appendix II,

A standard relating to filing errors was a second issue in the case of

Ca]iaway Versus DAi No more than two filing errors were allowed during an
"annual files insﬁection.“ Errors were found duriﬁg an inspection in
preparation for the "1982 Annua?'Geherai Inspection"; and the agency claimed
that the performance‘standard applied to any inspection. The MSPB thought
otherwise and found in favor of plaintiff on this count. One tesson from this
case is that inspectibn‘reTated to performance-based appraisal systems should
be defined in terms of on-going processes for monitoring performance rather
than scheduled general inspections. Moreover, if we may speculate that the
filing workload in this case was high enough to allow an analytical model such
as the'one used 1in tﬁis example, then the standard itself was faulty. It
should have been expressed as a percentage of allowed incorrect actions with a
range, set high enough to allow a good operatioﬁ yet Tow enough to provide the
employee an opportunity to excel, and monitored by an oﬁjective process. As
did the MSPB, we would find in favor of plaintiff, but with different

reasoning.

[
There is another case, that of Walker versus Treasury, in which the
teéhniques of this paper can be abplied in a critique. Walker's task was

spetifica]]y that considered here, namely distribution of correspondence.
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The agency had been operating with an 86 percent accuracy standard, It
changed from this rate-type standard to a number of errors-type standard which
translates back to a rate standard of 99.5 + .2 percent. Appellant was
allowed O - 3 errors per month on a workload of about 500 pieces of .
correspondence. She in fact averaged about 9 errors per month, committed -
10 errors during a 1-month probationary period, and was removed from her

position. Among other things, she claimed that the new standard was
unreasonably high. ‘ The .agency claimed that other. employees were able to
achieve the standard, but did not present convincing evidence of this claim to
the MSPB. In crifiquing this case, we have two findings: (1)} The new
standard provided no opportunity for any employee to excel. As shown in
appendix I, validation ‘of an  above  tolerance performance would require
observation of a negative number of errors, an impossibility. {(2) Had the
agency wished to document achievability, the table in appendix I shows that
the sample size would have had to be larger than the workload, another
1mbossibiiity. Our analysis is supportive of the MSPB decision to order -the

reinstatement of Walker to her position.
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COMMENTS AND CONCLUSIONS

The Civil Service Reform Act of 1978 mandates performance-based appraisal
systems and performance measurement which is objective and accurate to the
"maximum extent feasible." It is appropriate, therefore, to systematically
“investigate the ektent-to which performance measurement can be made objective
and accurate.

In our exploration of this issue, we have chosen examples in which
objectivity can be defined in terms of processes which ﬁse actual data to test
hypotheses and ev&?uate related « and 8 risks. This definition of objectivity
is a standard tool in all of measurement science. However, in establishing
objective processes one also must consider the cost of inspection in time or
money. On this basis, the model for validating performance against courtesy
standards must be judged fmpractical, whereas the model for evaluating the‘
work of "Action/Info" clerks in a message center appears to be worthy of
adoption;

The analytical approach used in this paper is not applicable in many
cases, Some standards are inherently easy to administer., For example, a
“Timeliness" standard requires very 1itt1e>1nspection time, it being easy to
determine whether or not a piece of work is rendered on time. Most per-
formance standards of managers and executives are ‘stated in terms of
organizational objectives, do not involve repetitive tasks, and are not
amenable to statistical treatment. However, the basic tension between
objectivity and inspection time can never be avoided. In this regard, one
must also consider the total number of standards to be monitored by a single

supervisor. For example, consider a GM-14 who rates three GM-13s and two
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nonsupervisory personnel. Job analysis and the structuring of IPPs in
accordance with the “school solution" will, in this case, generate about
150 performance standards. Some of these will be easy to administer, some
will not. Some will be amenable to hypothesis testing, many will not. In any
case, it is clear that effective use of performance-based appraisal systems
requires orderly planning of inspection time,

Hypothesis testing should be used in those cases where analysis shows it
to be feasible. Any Tesser definition of “objectivity" in such cases would be

indefensible.
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Appendix I: APPLICABLE HYPOTHESIS TESTING

A. Background.

Hypothesis testing is a widely used, well documenteds method for comparing
a parameter, 6, with a standard, aOQ The basic procedure is to assume a null
hypothesis, HO, and rejéct Hy only 1if there is sufficient experimental
evidence that the assumption is unlikely. The sigﬁificance Tevel, called the
Type I risk and dénoted by a, is the minimum acceptable likelihood that the
exprimental data could be obtained if Hy is true. An alternate hypothesis,

Ha’ is for use if H0 is rejected.

The straight-forward hypotheses for performance appraisa1 would be
Hp: 8 <6 _f_éu' cs==> Within Tolerance (W) and

8 < o <===> Above Tolerance {A) or

0> o <===}. Below Tolerance (B)

where 0g is replaced by a tolerance range 9 to oy, The Type I risk would be
a=P [ Rating o <8 or 0>0;, | o <o<o; ]=PL[RatingAorB | W]

An opposing risk, called the Type II risk and denoted by 8, would be

8 =P [ Rating 8 <0 <oy | e<e oro>o; ]1=P[RatingW | AorB L

-l
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The straight-forward way to design the hypothesis test would be to
(1) Select an a.
(2) Select a size for the planned data set.

(3) Use o to determine a range of data, R, which is defined by
xq + 1 to xg = 1, within which a measurement does not indicate a rating of

either A or B.

(4) Use {xy + 1) < {xg - 1) and the planned data set size to

determine 8 for values of © such that o < eL or & > 9U°

(5) Repeat steps (1)} through (4) until the supervisor and empioyee

agree on a triplet of a, planned data set size, and B's.

Unfortunately, the well-known mathematical relations between a, Xp, Xp
and B's are based on a standard that is an equality, or at least a semi-
infinite range, instead of a finite range. This problem may be handled by

performing two hypotheses tests simultaneously. These are:

<===> W or B Hp ¢ & = @ <===>1} or A

’ 1 2
The = signs in the null hypotheses may be replaced with > in H0 and < in HO'

This change to semi-infinite standards does not change the application of the

tests but it does make the interpretation of the tests clearer.
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This set of tests will yield a unique member of the A, W, B set for any

measuremenf. The associated Type I and Type II risks are:

ag =« =P [ Rating 6 <6 | 6 =196 1=P (RatingA]| WorB]
ap = «f =P Rating @ > 6, | 8 = ¢, 1 =P [ Rating B | W or A ]
1 . ) < .
Bg =8 =P ( Rating 0 =6 | 6 <o 1 =P L[ Rating W orB.| A] and
\ ,
B; =B =P [ Rating 8 = g | >0, 1="PL[ Rating W or A|B ]

where the E and S subscripts designate the employee's and supervisor's risks.

The various Type I and Type II risks in the single test ‘and the two
simuTtaneous tests are not as simply interpreted as those for a hypothesis
tést which has only two possible outcomes. Insight to these re]ations may be
obtained by examining figures 1 through 5. One interesting resu]t,}which

relates the three Type I risks defined above, is shown by figure 5 to be
(GS + GE) < o,

This inequality can be made to approach an equality only if the actual

¥ domain is made much larger than the domains of B and A.

The two simultaneous hypotheses - tests are performed by comparing the

measurement, x, with test parameters, x, and Xg. For a discrete distribution
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in whfch the probability of measuring x events is given by f(x;8), the maximum

x which implies 8 < 8 is denoted by xp and is the largest x making

X
z f(1;9L) < og
1=X4

where x, is the Towest value of i making f(i;8) > 0 . Similarly, xg is the

minimum x which implies o > 8; and is the smallest x making

x .

.f f(i; eU) <o or
i=x
x~1

I f(i; eu) > (1 - aE)
1=Xy

where x_ is the highest value of i making f(i;e} > 0 . If data yields an X

such that Xp < x < xg oor (xp+ 1) <x < {xg - 1), the null hypotheses are
both dccépted and the assumed rating is W. On the other hand, x > Xp implies

A and x < xp implies B.

It should be noted that the calculations of Xp and xg yield worst case
values if the null hypotheses are inequalities. Each equation is the well-
known result when the null hypothes1s is an equality. The use of ¢ and g as

ends of semi-infinite intervales correspond to the worst cases in those

intervals.
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The Type II risks for the two simultaneous hypotheses tests are calculated

from Xp and xp by

X°° XA
B = I f(i;o) = 1 - & f(i;e)
1=XA+1 =X,
xB-l
Bo = I f(is0).
S 1=X,

For sufficiently low values of & and large values of X, - Xx,, Bg and Bg will

differ only slightly from the traditional B risk given by

xB-l xB—l XA
8= I fli;e) = & flij;e) - ¢ f{i;e)
i=xA+1 i=X, i=X,
because
xB-l |
z f(i;e) = 1 and
'i=XQ
Xp
t f(i;e) =0
=X,

for the values of 6 that are of interest in the calculation of 8 and Bg.




The Type I risk, Type II risks, and number of measurements taken are
inter-related and competing factors. The balancing of these factors must
result from consideration of (1) proposed values of op, ag, and the number of

measurements and (2) the mathematically resulting values of B and Bg. The
employee and supervisor can be aided in their balancing consideration by
operating characteristic (0C) curves. The OC-curve is a graph of the Type II
risk versus ¢ with the number of measureﬁents as a parametek, The employee
naturally wants an OC-curve with of and 8p small while the supervisor wants

both ag and 8¢ small.
B, Poisson.

The Poisson distribution function,

vy = M€ =
p(xsa) = x! for X = 0, 1, 2,.--,

describes the distribution of the random variable x in time t provided that t

can be divided into intervals At such that:

i) PLx>1 1din at] 0,

1]

i) pI{x=1 idin &t ] (k) ( ot ) where A= kt, and

111) x4

; 1s independent of xj'where i and J refer to any two different

intervals,
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The use of f(x;8) = p{x;x), o =1, x, =0, and x, = = in the equations of
Section I-A yields formulas for the design of simultaneous, Poisson hypotheses

tests to select an A, W, or B performance rating.

The parameter A is a meaningful property to test. It is the mean value of
X in time t. (Interestingly but usually less directly appticable, A is also

the variance of x in time t.) The additive property of A,
Atirte = My T A

for any nonoverlapping times t. and t:, makes the actual substitution for the
parameter € equal to the product of F and X instead of A. Here F is the
fraction of the time t, for which A is the mean, that observations are made in

the measurement of x., -
€. Binomial.

The ‘binomial distribution function,

b(x;n,q) = Tﬁ“:Q%TT'iT' - % for x=0,1, ..., 0,
describes the distribution of the random variable x provided the following
conditions are met: |

i) x is the number of "bad" events in a random sample of size n
selected from an infinite, dichotomous population.

i) PLx=11=qwhenn-=1,

I_
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The use of f(x;8) = f(x;je) = b(x;n,q), & =q, x = 0, and X, = n in the
equations of section I-A yields formulas for simultaneous, binomial hypotheses

tests to select an A, W, or B performance rating.

Either the parameter g or its mirror image parameter p = 1l-q is a meaning-
ful parameter to test. They are respeCtive1y the fraction defective and
fraction correct of the population. To useé the language of "goodness" instead
of “badness”, simply substitute i-p for 6 and y = n-x for x and use y, = n=X,
and'yB = n-Xg in the acceptance range of Ypa > ¥ > ¥pe When either the p or g
description is desifed, it may be advantageous to do the calculations in the

opposite interpretation because of available. tables and/or computer programs.

The design of a binomial hypotheses tests involves the balancing of e, B,
Bg, and n for a Jjustifiable tolerance interval., Figures 6 and 7 present
0C-curves for a reasonably high tolerance interval and Tow Type I risks.

These may be used to balance the risk and the amount of data taken.

Another example, with an inordinately high tolerance interval, 1is
summarized in the table below. The standard used is 99.5 + .2 percent
"goodness" or q; = .003 and qy = .007. The Type I errors used are

ag = .05, The last two columns present two points of the OC-curves.

U.E'-
N X4 X3 Yp g Ry Bg [Py Bs [Py
500 -1 8 501 492 493-500 1.00{.9985  .93].9915
2000 1 “21 1999 1979  1980-1998 .  .80|.9985  .81].9915
6000 10 54 5990 5946 - 5947-5989 - .29].9985  .64].9915
18000 41 146 17959 17854  17855-17958 .004|.9985  .27]|.9915

36000 90 279 35910 35721  35722-35909  .000003|.9985  .06{.9915
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Figure 1: Transitions from actual conditions to rating decisions when one
hypothesis test is used. Horizontal transitions would have no
risks. Risks of changing B, W, or A are labeled with the
appropriate Type I or Type II risks.
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Actual Decision
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Figure 2: Transitions from actual conditions to rating decisions for two
hypothesis tests., Horizontal transitions would have no risks.
Risks of changing B, W, or A are labeled with the appropriate
Type 1 or Type II risks. ‘
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Figure 3: The nine possible combinations of actual conditions and rating

‘ - decisions as viewed with one hypothesis test. The three blocks
with downward to the right shading represent correct decisions and
have no associated risks. The four blocks labeled with « and B
represent risks that are covered by the indicated Type I or Type II
risks. The two blocks that are unshaded and unlabeled have risks
that are not addressed by the test.
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Figure 4: The nine possible combinations of actual conditions and rating

decisions as viewed with two hypothesis tests. The three unshaded
blocks represent correct decisions and have no associated risks.
The three blocks toward the upper-right have associated employee
risks because the decision 1is lower than actual conditions.
Conversely, the lower-left blocks have supervisor risks. Shading
that is upward to the right indicates that the block is covered by
a Type ! risk. Conversely, downward to the left shading indicates
a Type 11 risk. Note that two blocks are double covered.
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Figure 4: The nine possible combinations of actual conditions and rating

decisions as viewed with two hypothesis tests. The three unshaded
blocks represent correct decisions and have no associated risks.
The three blocks toward the upper-right have associated employee
risks because the decision 1is lower than actual conditions.
Conversely, the lower-left blocks have supervisor risks. Shading
that is upward to the right indicates that the block is covered by
a Type ! risk. Conversely, downward to the left shading indicates
a Type 11 risk. Note that two blocks are double covered.
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' Figure 5: VYenn diagram showing relation between Type I risks.
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Appendix II., P-VALUE AND Q-VALUE INTERPRETATION

A hypothesis test may be viewed in two distinct ways after the data has
been collected. The more traditional view for performance appraisal is to
merely designate above, within, or below tolerance as the evaluation for an
action/task. A more informative view uses p-values® and g-values® to indicate
the degree to which the performance is above, within, or below tolerance on
one or more actions/tasks. If a job element has more than one action/task and
at least one action/task is appraised using a hypothesis test, the supervisor
may use p-values and g-values in the subjective mapping of action/task ratings
into the job element rating., This appendix presents examples of the p-value

and g-value interpretation.

If a supervisor uses a seemingly rigid hypothesis test with p = .92,

L]

by = .96, o = ag = .05, n = 2000, y, = 1935, yg = 1819, g = .0001 for
p= .98, and 8¢ = .07 for p = .90, the actual appraisal for this action/task
can be quite flexible, Of course, the supervisor can insist that a
measurement of y such that y > y, is needed to result in an above tolerance

rating. However, a more flexible and informative interpretation might be made

as follows.

Suppose that y = 1930 is the measurement from the sample of n = 2000.
Since 1930 ¥ 1935 = Ypo the narrow interpretation is that the employee is not

appraised as above tolerance even though 1930/2000 = .965 > .96 = p.
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Since the point estimate of p is gregter than pua.the epployge may well be
interested fn how the test would have to be changed to just barely yield an
above toIerahcé appraisal. Assuming fhﬂ$ Py anq-pt'ér? unghanged, both o and

B risks need tp he changed to make y, = 1%30.

 The'd1spr?te nature éf the binomial Qistribution makes it impossible to
state an exact replacement for o = .05. Actyally, the “setting" of «
"at" .05 really designates a fange of ,046 < ap < 069 when n = 2000 and
py = -96.  For y; to be set at 1930, ag must be in the range of
.138 < of < .166. Thus, the changg needed t jmprove the rating requires an
increase in'c:E by rough1y a factor of three. The fofmaT way to make this
statemeni is to say that (1) the p*yalué, as pa1cu1atﬁd from the data, is in
the range of ,138 < prvalue < .;66.and (2} tﬁg-pwvalug is rdughTy_three times

the designed Type I risk;

.VThe p-value presént$ oﬁe vieﬁ of the data§ the other view is presented by
q-values, Since there are many injtia]!y designed B risks with each 8
corresponding to a valye of p, there are many modif1ed Type Il risks when data
modifies the Type ] risk to a p-vatue, Eagﬁ mqqified-BE risk is a g-value.
A1l of these g-values are negded for a complete description; they may be
displayed as the modified OC-curve shown in figure }. The particular g-value
of interest corresponds to p = .965 or q = lép = ,035 because yhat is the
point estimate provided by the mgasurement y = 1930 or X = ny = 70, This
q-value is .47 and corresponds to a designed EE of .70, Thus, this qrﬁalue is

roughly tworthirds of the designpd Type Il risk,

This particular example, and a couple of other exampies which have within

or above tolerance test results, are summarized in the following table:
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f R
N PRSI A \?t-\_-

x:[,.' oo opevalde 0 e _oopvalue o3 o
n o ag q—value | ty/n)
y | .. . | LR T £ KR Lo -.-‘wor ..;J .-.‘
Test g-value | (y/n) S qua1ue | (yln) ,‘;< 1
Rating B | ty/n) p-value

065 o438 = 166 o3 - 36~3 |, .

046 -~ .050
1930
w468 | o 67w~ 2/3 T P
ST703 . e o, ... 138 - 0166 -8 §f4 ~ 3
oo LO0LL= 015 o 1o - s3o1/a
1940
W-‘*ﬁﬁ x 2.0 % 2 ““'0‘11““’“‘0’1‘8"466 ~ 3L~ 42 3
A A . L) gt R poiy . 7
LgEg - ¢ 988 = %99l o ~99 o 988 - 991 . . - pe
950 _._..______9999 ;17 =22 5 207 ‘_____._11_.473 2,09 = 2,10 & 2.1
046 - 059' : T
1900 D

RS, T ERR VI RSB V1

+

In the above tab1e, the greater than un1ty entrtes for the rat1o of g-value
to p~va1ue supports a f1na1 dec1son that the performance 1s above to1erance
Converse1y, the greater that un1ty entry of p va]ue to q va]ue supports a
dec1s1on of with1n to1erance. The magnitude of these ratios indicates the

. ?‘} K

strength of this support
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The following table shows exampies which have within or below *ulerance ratings
from the strict interpretation of hypotheses tests. A final rating of within
tolerance is supported by a p-value/q-value ratio greater" than'unity. Conversely,

q-va'lue/p—va1ue ratios greater than unity support a final rating of below tolerance:

¥ p-value \ p-value > 1
n ap g-value | (y/n)
y or
Test g-value | (y/n) g-value | (y/n) ,
Rating - Bg | (y/n) p-value

900 2040 - .047 . 71 - 1.0 ~6/7

,047 - .056
1818
| 484 489
B oy o=~ 1.1 = 10/9 —r o~ 10,4 - 12,211
458 / 040 - .047
915 B8 T oL ~ 3.8 - 5.1 9/2
1830
' 2488 - 61 ~ 3/5 : 488 93 .24 x2.3
W 801 ~ T T / . 215 - o048 T T ’
.99999995 = ,99999997 _ r1q . ~ .99999995 ~ ,99999997
,950 e ~(18 - 21) =19 e 2.1
1900
W Toor ® Y w /
11-4

141




The interpretation of the last column in b0£h of the above tab1és is that
the within tolerance rating is suppbrted by a rafio of p-va]ue/q—va]ue that is
greater than unity. This results from taking the within tolerance state as
the null hypothesis. To support rejecting the null hypothesis and rate the

performance as either above or below tolerance, the g~value to p-value must be

greater than unity.

The bottom rowkjn both tables is for the'same-measurement{ This-va?ue of
y, 1900, is closely within the y, + 1 to yg - 1 range, 1936 to 1818, which
indicates nheither ébove or below tolerance. Both p-value to g-value ratios
are greater than unity and support a final rating of within tolerance. The
fact that p-value/g-value ratios are essentially equal for the two tables
might be unexpected since 1900 is further from yp = 1819 than y, = 1935, This
is a consequence of having both p; and py near unity; the binomial

distribution is not symmetrical.

Fach row in the above tables may be used to appraise performance on an
individual task/action. Combinations of rows may be used in the subjective
appraisal of a job element which contains sévera1 tasks/actions. Naturally,
this subjective appraisal must include atl tasks/actions in the job element

whether or not they are treated with a hypothesis test.

As elementary examples of appraising a Jjob element as exceeded, met, or
not met, consider a job element which has only two tasks/actions. Assume that

both are treatéd with hypothesis tests. If the two p-value to g-value ratios



are those in the y = 1940 and y = 1900 lines of the above tables, the
supervisor-may well subjectively decide on an exceeded rating. On the other
hand, there would be less support of an exceeded rating if the ratio were from

the y = 1930 and y = 1900 Tines or the y = 1940 and y = 1830 lines.

Clearly, the supervisor's subjective decision becomes more complicated as
the number of tasks/actions is increased. For example, a job element may have
(1) a couple of tasks/actions not treated with hypothesis tests but judged
within tolerance and (2) three tasks/actions with p-value to g-value ratios
corresponding to those in lines of y = 1930, y = 1900, and y = 1830. This
example has fairly strong justification for a met ratihg. On the other hand,

replacing the y = 1930 Tine with the y = 1818 line would make a met appraisal

more difficult to support.

In any nontrivial situation, the use of a hypothesis test on one or more
tésk/action will not provide the supervisor with an automatic decision. The
use of p-values and g-values will, however, guide the supervisor in the
necesﬁary subjective decision. Ignoring the p-values and g-values would be

indefensible because that would deprive the manager of objective information.
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Figure 1: Q-Values for y = 2000 - x = 1930
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MODELS FOR CONTINGENCY TABLE DATA

R+.A. KOLB
DEPARTMENT OF MATHEMATICS
UNITED STATES MILITARY ACADEMY
WEST POINT, NY 10996-1786

ABSTRACT

A contingency table is a presentation of count data resulting from
cross—classifications. For this type of data there are many models
available to-aid in the explanation of the relationships of the
corresponding variables. The choice of an appropriate or, perhaps, the
most appropriate model depends on a number of factors including both the
generating samﬁling model and the hypotheses to be considered. The purpose
of this paper is to describe some of these explanatory models and provide

some recommendations for thelr use.

INTRODUCTION

The cross-—classifications of a contingency table are variables,
factors, or responses which have a number of lefgls or categories. Terms
used synonymously for this type of data are cross-classified,
cross—tabulated, categorical, qualitative, or frquency data. These data
are the result ofrcross~classifying a population, or sample from a
population, and accumulating totals for each "cell”™ of the contingency
table. A cell total, then, is the number of observations from the
population or sample that fall into the categorical combination represented
by that-cell. The table summarizes information for the entire population

or sample, where every observation 1s categorized into one and only one

cell.
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A two—dimensional (two-way), r x s contingency table has two variables:
one variable having r categories and one variable having 8 categorles. The
“complete” cross-classification gives a total of res cells. The following
notation for a two-way, r X s tablé will"be.used:

table of observed values;

{xq 4}

table of cell probabilities;

{pij}

{mg;}'= table of expected values;

L

S .t .
I X{{ = X = observed row marginals, i=1,2,...,r;
j=1 : : , _
r o
b} X{§ = Xej = observed column marginals, 3=1,2,¢..,3;
i=1 _
r s _
P) b Xjj = x,, = N = total sample size or population.
=1 jzl

-1

The marginal probabilities (pi.,poj) and marginal expected values (mi.,m‘j)
are similarly defined. This notation is easily extended to higher—-way

;ables (tables with more than two variables) simply by adding more
subscripts.

' The primary purpBSé'in developing models for contingency table data is
to ﬁeip.in‘thé determination, interpretation, and explanation of the
relationships:among the variables. Beginning with Pearson (1900),
statistical techniques have been developed and used to test for these
variable relatiomships, but only recently has the f§cus been on the use of
models, Statistical technidues in support bf models have now been
well-developed. Specialized statistical computer packages-for contingency
table models (e.g. ECTA-Goodman and Fay 1973, CONTAB-Zahn 1976; and
GENCAT-Landis et. al. 1976) have been available for some time and the
currently popﬁlaf general'statistical packages (SPSS, BMDP, SAS) have

contingency table data models and associated statistical techniques.
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The use of these models and computer packages provides flexibility in
the analysis of various type problems including those with many varilables
and complicated structures that a few years ago would have been Impossible
to analyze. The models provide the same ease of interpretation that the
linear models of ANOVA aund regression provide, In fact, the interpretations
of the parameters of the contingency table models are often analogous to
.corresponding parameters in ANOVA and regression models. Also, contingency

table models allow for classic model building Iin a manner simllar to

stepwise regression.

MODELS

The models avaiiable for contingency table data are many and varied and
often have speclalized use. The models having most universal appeal and to
be discussed in this paper are the log~linear and logit models. Other
models include an additive model (Bhapkar and Koch 1968), the Lancaster
(1949, 1950, 1969) partitloning model, and a general linear model (Nelder
and Wedderburn 1972 and Nelder 1974) with the log-linear model as a speclal
case., The additive wodel has been used for speclal problems such as sample
surveys, drug comparisons, and biological assays (e.g., see Johnson and
Koeh 1970 and Koch and Reinfurt 1971). Johnson and Koqh discuss the
advantages of the additive model for sample survey data. 1In general, the
log~linear and logit models are the most extensively used, providing
convenient parameters for most hypothesls testing situations. An,éxcellent

discussion and comparlson of the corresponding additive and multiplicative

interaction terms for the additive and log-linear models, respectively, is

given by Darroch (1974).
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The log-linear model is most convenient for general independence-type
hypothesis testing situations under poisson or multinomial sampling. As a
motivating example, consider a 2 x 2 contingency table. The classic
concept of independence requires that

pij = piap.j ’ i=1,2 , j= 1’2 »

"A single parameter measuring this interaction is Yule's (1900)

croés—product ratio
PP

- 11 22
P12Pay |
Independence exists when this ratio is equal to one. Taking the logarithm
of o under independence,

Rn.a =4&np, - &n Py, &n Pyy + &n Ppy = 0, (1)
we can see the motivation in using a log-linear model - a zero-valued
parameter would imply independence.

The general log-linear model most frequently used was presented by
Birch (1963). For an r x s table the model is

R’ij = in pij =y + U1(1)+ uz(j) + ulZ(:{,j); i=1,2’.oo.o,r; j=1,2,oao,s ° (2)

This model is ovef—parameterized in that there dare v + s + (res) + 1
parameters for res cells. Analogous to ANOVA, the constraints

- (3)

Fupgy T8y 75 Yaap T tean 77

are convenlently imposed. As an example, for the 2 x 2 table the

constraints allow a reparametrization of the model in equation (2) by

letting u = ul(l)’ u, = uz(l), and U, = “12(11)’ leading to the model

5 =u+u, +u, +u

11 1 2 .12
R..=u+u —u =u,
12 1 2 12
(4)
£21 =y = u1 + u, - ul2
=y - - + .
fpp =W TY TU, T,



Now the "u" parameters can be determined uniquely in terms of the

logarithms of the probabilities., Specifically,

u = 1/4 R, + 212 + R.21 + 222)
u = 1/4 (A, + 8 . =% =4_)
1 11 12 21 22
(5)
u, =A@ -8, v - 4)
up = U4 (R =Ry, =Ry 0,0 .

The "u" parameters of equations (2) through (5) have analagous
interpretations to the parameters of the linear model for ANOVA. 1In
particular, f;r the 2 x 2 model of equations (45 and (5), u is the average
of the logarithms of the probabilities, u, is the average differences
across the first variable levels, and u, is the average differences across
the second variable levels. As in ANOVA, U, is an interaction term, which
for the 2 x 2 table measures the dependence between the variables in the
sense of Yules' cross—product ratio ¢ and, specifically, from equation (1)

equals 1/4 &n a. Most importantly, under independence or "no interaction”,

u, equals zero.

Another useful form of the log-linear model and one frequently
overlooked in.the literature was first presented by Ku, Varner, and
Kullback (1968) énd has been used primarily by Kullback and his associates.
Instead of the constraints in (3), Kullback fixes one cell of the
contingency tabierénd defines the parameters to measure for each variable
and Interaction, a difference from this fixed cell. For the 27¥ 2 table

with cell 22 fixed, the model is

211 = TO + Tl + T2 + 112
£ =T, + T
12 0 1
. (6)
£21 = To + 12

Lop = T =




Solving for the new T parameters,

Ty = %y
T = % - %
1 12 22
(7)
Ty =y %y,
Tig =ty T TRy Ay,
In terms of the Birch model "u" parameters,
Ty =uw=u -y, tu,
T = 2{u, -~ u, )
1 1 12
(8)
T, = 2(u2 - ulz)
Typ = Gupy o

is proportional to Birch's u,_, and

The important interaction parameter T 12

12
bﬁth reflect independence for values of zero.

It is interesting tb recognize the similarity between these models and
models for ANOVA. Similiar to Birch's log linear model, the usual linear
model for ANOVA defines an overall mean parameter, and measures factor
effects as differences from this mean. On the other hand, similar to
Kullbacks log—iingar model, thg regression model for ANOVA fixes one factor
level, and defines the regression coefficlents as the differences of the
other factors from this fixed lefel.

In addition to log—linear models, logit models are also very popular
for certain applications of‘contingency tables. In particular, for
product-multinomial sampling with homogeneity-type hypotheses and one or

more response variables, loglt models are very useful. For example,

conslder the factor and response problem depitted in Figure 1.
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1 -2
1 Py Pis 1
A
2 P2y Pya 1

Figure 1, Factor A, Response B
Here, A 1s the factor at 2 levels and B is the binomial responée. The
homogeneity hypotheslis would be Hys Py = Py, (or Py, = pzz). Under Hy
the log-linear models would require that two parameters equal zero, namely
from (5) and (7),
Birch: U =u, 0
0.

]

Kullback: T, =T,
Yet, the homogeneity hypothesilis 1s a one degree-of-freedom test and a
convenlent model should provide a single corresponding zero-valued

parameter., Definiﬁg the logit Li = £n(p11/p12) for i = 1,2,

Ly =2n(p,,/p;,) =2np, ~4inp,

2u2 + 2u12
and :
‘ L, = &n(py,/p,,) = 4in p,) ~ &n p,,

= 2U2 - 21112 L)
Letting w = 2uj and wy = 2ujs,
Ly = w+ w
1 1 :
(9
L, =w-w
and z !
w = 1/2 (Ll + LZ)
W, = 1/2 (L1 - L2). (10)

Now, the single model parameter w, corresponds to the one degree—of-freedom

1

<=> w, = O)e

homogeneity hypothesis (i.e., H_: 1

0° P11 T Poy
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LARGER TABLES
Extending these models to larger tables is relatively straight forward;
although, some care 1g required to insure clear definitions of the
parameters so that they will purposely relate to the hypotheses of concern.
Appendix A provides the models and hypotheses for the 2 x 3 table and
Appendix B forﬂthe three-way 2 x 2 x 2 table,
Initially,rconsidering ﬁhe 2 x 3 table, the independence hypothesis is a

two degree of freedom test and each log-linear model provides two convenient

parameters, uiz and-u;2 for the Birch model and Tig and ffg for the
Kullback model. In comparing the models, the arbitrary fixing of a cell
in the Kullback model may not appeal to some analysts, but the relative
simplicity of the model would certainly appeal to all. The independence
parameters for the Kullback model are also easier to interpret. Letting
Opn be the cross product ratle of column m and column n taken as a 2 x 2
table, independencé occurs when the three cross product ratios A, &g
and a,, are equal to ome (any two O, equal to one will insure that the

third is equal to one). The log-linear parameters relate to these oy, in

the following manner:

w, = 1/6 (&n @, + in 313)
M =

ul, 1/6 (&n @, +4n azs)
ij _

Tll = In ala

ij _
112 = in a23 -

The Kullback Tt parameters are simply the logarithms of Yules' original

cross—product ratios for the 2 x 2 subtables that include the fixed cell.
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The appropriate logit model is dependent on the scheme of sampling.
When the.data is sampled across thelrows, it 1s convenient to bulld a model
that galculates logits based on ratios of row probabilitles for each column.
This 1s reflected in the I1II.a. model of Appendix A. Symmetrically, when
data is sampled across columns, it is convenient to build a model that
calculates logits based on ratios of column probabilities for eéch TOW.
This is reflected in the ITI.b. model of Appendix A. For the sampling
model in II1I.a., the corresponding homogeneity hypothesis is a two degree
of freedom test that compares the probabilities across a row. The logit
model provides the three parameters Wy, Wy, and Wy and the constraint that
their sum equals zero. For the model in III.b., the homogenelty hypothesis
is a two-degree of freedom test that compares the probabilities across any
two of the three columns. The logit model provides three parameters
{corresponding to the three columns); any two of which can be used to test
the hypothesis. It should be noted that other logit parameterizations are
possible.

Turning now to the three-way 2 x 2 x 2 table in Appendix B, the

comparative simplicity of the Kullback model is again apparent. In the

Kullback model the 222 cell has been fixed. The main effects (T;,Ti,Tﬁ)
measure the difference between the second and first levels of each

variable as compared to the fixed cell. The two-way interaction terms

(Ti{’T§T’T{$) are the logarithms of the three possible cross—product
ratios with the 222 cell that measure interaction between two variables

with the third fixed. The three-way interaction term (Tif?) is the

difference of the logarithms of the cross-product ratios when variable one

is fixed at level one compared to level two.
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The Birch model usés a mean parameter (u) which is the average of the
‘logarithms of the cell probabilities. The main effeétsl(ul,uzgua) average
the difference in the logarithms of the probabilities at ﬁhe tworlevels of
each variable, respectively. The interaction terms (;lz,ula,u23) average
the logarithms of tﬁe cross=product ratios carreéﬁonding ﬁo the tﬁo

measured variables. The three-way interaction term (u } measuvres the same

123
difference of logarithms of cross—product ratios as does Tif?; although, it
averages this difference across the cells by taking 1/8 the value.

The presented logit model considers that variable one is a response
variabie and that product-multinomial sampling is appropriate. The model
is analogous to the 2 x 2 Birch log-linear model; however, the parameters
(WZ’WB’WZB) measura the effect that the corresponding terms have on the
response variabie.

Considering the hypotheses for the 2 x 2 x 2 table as listed in
paragraph IV of Appendix B, the no three-way interactlon hypothesis is a omne
degree~of-freedom test and each model provides one corresponding
parameter. The logit model W,, parameter (and corresponding hypothesis
test) is more properly interpreted as a measure qf;thg interaction between
v;riables two and three as it affects varlable one. The mutual independence
teét under multinomial sampling is a four degree df freedom test and the
two log—linear models provide féur parameters corresponding to each
possible interaction. Under product-multinomial sampling the test has
three degrees of freedom-ana the logit model provides three parameters.

The conditional independence test requires that one varlable be considered
fixed and that independence between the other two-variables be tested.
In Appendix B, variable three has been fixed. This is a two-degree of

freedom test and each model provides two parameters, The homogenelty test



_has many forms. The one chosen in Appendix B corresponds to the selection
of variable one as the response variable in the logit model. TUnder
complete homogeneity, all these logits and logit parameters are equal to
zero. In effect the 2 x 2 x 2 table has collapsed to a 2 x 2 table with
varlables two and three remaining. The terms of the log—linear models

relating to the first variable are also now zero.
CONCLUSION

It might be said that there is only a limited amount’ of information
available from any given data set., For contingency table data, the models
presented in this paper provide the means to fully explain the data with
respect to the measured variables, and often indicate relationships wﬁich

might not have been apparent with other techniques.
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APPENDIX A.

2 % 3 TABLE MODELS

P11 Pyo P3
Pyy 1 Ppp Pr3.
Birch Log—-linear Model
General:
= = u + + + s 1= s 4 = .
gij in pij u ul(i) uz(j) ulZ(ij)’ i 1,25 4 1,2,3
Define:
Ui T M) Y12 7 Mi2(11)
= ¥ o
Y Y201) M2 T Y12012)
]
Uy T U2)
Model:
gll =y + u1 4 u2 + U,
= [} ¥
212 u + ul o+ u2 + u12
= P - 731
By =utu +u —uw —u, -,
321 = ] = u1 + u, - ou,
= - I
Log =u m oy +u, =u,
= 9y e aa — 3y T ¥
Loy = —up ~w, —u, tu,tu,
Parameters:
u = 1/6-(211 + ﬂlz + 213 + 221 + 222 + 223)
u = 16 (8, + fio *hig TRy 7 R %23)
u, =16 (20 = by, =Ry F 2, =Ry, - %53)
1T o - —_ - —
U, 16 (=8, + 28, = Ry = 2, + 2,, = £)3)
Uy, = U6 (20 =Ry, = Ry = By R, %,3)
- e . -
u, 1/6 ( 211 + 2£12 113 + 221 2222 + 223)
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1f. Kullback Log-linear Model

Define: Cell 23 fixed

Model: 211 =T, + T} + Tg + Tff
212 = TO + Tf + Tg + T:g
£13 == TO + Ti
221 = TO + Tg
222 =1, + Tg
%23 T

Parameters:

To = %23

Ti =Ry = a3

Tg = Ay 7 g3

Tg = Lyn 7 Rag

Tff = Ay T Ay T Ayt
ng SR PR PPRR L P!

II1I. Logit Model
=1 for j = 1,2,3

Define: Lj= ﬁn(plj/pzj). j=12,3

o
it
£
+
&

Model:

1 1
=y +
L2 15 Wé
=y +
L3 W wb
Constraint:

[
<

+ w, ¥ w
¥ 2 3
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Parameters:

w=1/3 (L, + L, +1L,)
W, = 1/3 (2L1 - L, - La)
w, = 1/3 (—L1 + 2L2 - La)
W, = 1/3 (—Ll - L, + 2L3)
3
b. j£1 piy = 1 for £ = 1,2
Define: Lij = &n pij/ki pij for i =.1,2; i =.1,2,3.
General: Ljj = w + wj(q)
2
Constraints: iile(i) =0 for j = 1,2,3
Defines w, = wl(l)’ w, = Wé(l), W, = wb(l)
Model: L, =w+tw
le = w + w,
L13 =w + Wa
L21 =w - W
L22 =W oW,
Lyg = v = w
Parameters: w = 1/6 LI Lij
i3
wp = 12 (L) - L))
w, = 1/2 (L, = L,,)
wy = 172 (Lyg = L)
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V.

2.

Hypotheses

Independence HO: pij = Py, p.j, i=1,2; =123

. [
Birch HO' U, ur, 0

8 IS K B

Kullbhack HO: Tll 12

Homogenelty

as Myt Py = Py T Py P Py T Pyy T Pyy

H = T g = N =
Birch HO' u, u, U, Uy, 0
’- j £ j == ij = ij =
Kullhgck HO. o T2 Tll 112 0

Logit HO: W, M, = oWy = 0

b. Ho: Py,

Py
Birch Hb: U, = u =yl =20
Kullback Ho: T, =T = le =0

w,o =y, =y = 0

Logit HO: 1 » 3
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APPENDIX B. 2 x 2 x 2 TABLE MODELS

P11 | Pr12

Pior | Pyaog

I. Birch Log-linear Model

General:

Pry1

p
212’

Pyoy

pzzz’

P T wt gyt Y9 T a0 Y tYsan Y23(3k) T M23 (1K)’

i=1,2;3J=1,2; k=1,2.

Define;
Y17 %) Y3 T Y3(1)
Y2 Tha) Y12 T "Ma2(11)
Model:
£111 = u + u, + u, + uy + Uy,
flig metu tu, oy,
fpap Tty muy - uy -y,
faqp Tty vy -,
1 Tw T uy tuy -y -y,
2221 =u-u - u, + u, + U,
Yp20 T W U m Uy —uy Fuy,
Parameters:
S A R T IR TP 121
e VA R COP P S TP 2PN
huz = U8 (4 + 2y, - 121
Uy = LB (g -y, 4 2121
m, = U8B (), 4, - 121
Uy = M8 Uy =8, F A,
upg = U8 (g -2y, - 211
Uppg = 1/8 (&) -8, - %121

161

u

u

13

13

13

13

13

13

13

1

1

1

1

i

1

1

I

12 Y12011)

23~ Y23(11)

23 123

T U3 T U3
T Uag T Uysg
T U3 T Uy,
T Uy tag,,
T Uy T U,
Tyt g,
+ 0.+ 8

22 211 212

22 211 212

22 211 212

22 211 212

22 211 212

22 211 212

22 211 212

22 211 212

221

221

221

221

221

221

221

221

222)
222)
222)
222)
222)
222)
222)

222)




11,

Kullback log-linear Model .

Define: Cell 222 fixed

Model:

T30 =T t
2112 =T *
f101 =T 7
2190 =% F
fa11 =T *
2212 =% T
%522 = To

Parameters:

T = 4§

0 - 222
Tf = %102
rf = %312
Tk = &

1 221
ng =t
Tf? =4
Tg? - %211

ifk _

-

,.-‘

+

-
-

-
—
—

R
L S e L Y ol T

+ T

—

~
[l S

+ T

-+

T

T

+ 1T

k 1§ . ik
S PRSP
ij

11

1k

11

jk

11

12 T 4200

21 a0

a1 t %222

121 T A T4
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+ 1

jk

11 *

T

T 13k

111

221

222
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ITI.

Iv.

Logit Model:

General:
P
L, = (G
P23k
where

gy TR 0 T Y2agr) T g Y2305k T

Define:

Vo T W)y s

Hodel:

= w + +
L11 w w2 W
le = yw + W, T W
L21 =W - W, f W
L22 =y - wi - W

Parameters:

= Y3(1)r Y23

BT I T LT O LG B

0.

T Yo3(11)"

23
23
23

23

w = 1/4 (L11 + L, * L21 + L22)
wy = M4 (L + Ly, =Ly - L)
wy = 174 (Lyy - Ly, Ly - Ly,
Wyg = 14 (L) - L, - L, +L,)
Hypotheses

1. No three-way

Birch HU:

Kullback HO:

Logit HO:

k

Interaction {(No second order Interaction)

Uy =0
ifk
T = O

Wyg = 0

163

1,2




4,

Mutual (Complete) Interaction

Birch Hy: w), = 5 = Uy = Uy =0
Rullback H.: tid =3k p pdkddk

0 11 11 11 111

Logit HU: W, = Wy = Wya = 0

Conditional Independence.(l to 2 with 3 fixed)

It
Aol

0

Birch HG: U, LI
oo ij _ ijk
Kullback HO. T Tlll

‘Logit HG: Wy = Wy, = 0

Homogeneity of Tables

Birch HG: u, = U, = u13 = u123 =

i 13 _ ik _ _ifk _
1 T T Ty 111

Kullback HG: T

Logit HO: WS W, =W T W, T 0
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On a Class of Probability Density Functions
. P. Dudel and S. H. Lehnigk

U.S. Army Missile Command

Research, Development, and Engineering Center

Research Directorate
Redstone Arsenal, Alabama 35898-5248

SUMMARY

The application of a three paraweter class of one-sided probabiiity distribu-
tions is being discussed. For specific parameter values, this class conlaiu,
as special cases a number of well-known distribution; of statistics and sta-
tistical physics, namely, Gauss, Weibull, exponential, Rayleigh, Gamma, chi:
square, Maxwell, and Wien (Timiting case of Planck's distribution}. One of
the three parameters represents scale; the other two represent initial and
terminal shape of the associated probability density function. A fourth
parameter, shift, may be introduced. The distribution class discussed in thix
paper was introduced by L. Amoroso [2] in 1924. It is closely connected wilh
a fdmi]ylof linear Fokker-Planck equations (generalized Feller equation).

In fact, the class ofrprbbability density functions dséﬁciated with the dis-
tribution class cohsidered here is a special case of fﬁe set of ail della
function initial condition solutions of the generalized Feller equation for

a fixed value of the time_variab1e. It will be shown that, as a function of
the logarithm of the independent variable, the ?ogarithmlof the cumulalive
distribution function fis asymptofica]]y linear as the independent variable
approaches zero from above. This fact leads to a general criterion for Lhu
applicability of the presented distribution fa@i]y relative to given empirical
dala. The applicabilily criterion can be used to determine approximate values
for the two shape parameters. They can subsequently be used as initial values

in any of the established parameter estimation techniques.
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1. A Class of Distributions

A number of basic continuous distributiohs of classical statistics
and statistical physics are special cases of a class of distributions which

is characterized by the cumulative distribution function

quéﬁj'ﬁY(1+q,€}“K) , E=xb1, g = (-p)(3-0)"T L x> 0,

0_, Xgo ’ ‘ ' ‘ (].1)

which depends on the three mutually independent parameters b>0, p<1, and

A <1.3 With theée restrictions on the parameters p and A , the composite
quantity gq = (k-p)(1;A)'] will be greater than -1. In standard terminology,
b is the sca]e parameter, and there are two shape paraméters, A and p
which are indebendent of each other. A fourth parameter, the shift parameter

Xy May be fntroduced by replacing x by x - Xq® The functions TI{y) and

v(a,y) in (1.1) are the Gamma and the incomplete Gamma functions, respectively.

. By means of the integral definition of Y(a,y):[1,8ﬂ350.1}, (1.1) can

-be expressed in the form

ey
F(x) = T77%57.,§ o ot(1-g)-T et e, x >0 . - (1.2)
A ,

Since y(a,y) may also be defined by'means of the degenefate hypergeometric

function ¢(= F ') [1,9.236.4, 9.2]0.1],

v(a,y) = Ja-ya o(a,a+l;-y) , | | (1.3)
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we obtain a third expression for F(x)

J

F) = grzigy &P 0+, 2vas -E1M) L x>0, (1.2)

which will turn out to be quite useful later on.
The probability density function f{x) associated with the cumulative dis-

tribution function F(x) is given by

T-X oo - - -
f(x) = N =P exp -1, g= xb=1, g = (A-p)(1-A)"T1, x >0,

The.distributﬁon class defined by either thercumu1ative distribution fun-
tion (1.1) or the probability density function (1.3) was introduced by L.Amoroso
[2] in 1924 and reconsidered in later publications, [3], [4], [51,and [6].

Some other aspects of this density function class have been discussed in
[7] from a_theoretical point of view. That paper contains remarks about the
associated probability measure space and the associated characteristic function
class. A more thorough discussion of the characteristic functions from the
point of view of complex function theory wil be presented elsewhere 8].

The c1asé of density functions (1.3) contains the following specxa! cases:
Gauss (normal), Weibull, exponential, Rayleigh, Gamma, chi-square,.Maxwe11,

and Wien, as has been pointed out in [7]
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2. The Moments

A1l moments of the distribution class characterized either by the
cumulative distribution F{x) given in (1.1) or by the associated.dénsity
function f{x) given in (1.3) exist, provided the parameters b , X , and
p are kept within the ranges b > 0, A< 1, and.p < 1.

The characteristic function associated with F(x) and f(x)} is given by the

Laplace integral

‘jr f(x)e3X dx
0

1]

¥ (s}

_ T=X -1 - 1-2
- b p -
I'(1+q) f;; exp (-5 + sx)dx
8]
_ 1-) -p - 1-A . = - .
= T 1!.£ exp {-E'~* + sbE)dE , £ = xb™! , (2.1)

where s is a complex variable. The last integral in (2.1) converges for

Re's <0 if0< A< 1, forRes <b ' if A =0, and for every s if A < 0.

Reference is made to [f] and for a more detailed investigation, to [§]. It
follows that ¥(s) is ho]omorphic'in the domain Re s < 0 if 0< x < 1, in
Re s <b™! if A = 0, and it is an entire function if A < 0. Therefore, for

A ¢ 0 the moments of our distribution class are given by
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|

.m v _‘I
n = v - 132 ft(n-pﬂ)(]-}\) -1t g

o

n

b" |
Ft]"'C” IRl + q +%\> (néoﬁ]szs---)o (2.2) .

In particular, m_ =1, and the first moment, or mean u , is

0
N I (T LAY | (2.3)
1 T(1+q) T-A ] ° :

If A s #n the range 0 < A <1, ¥(s) is not ho]omofphic at s=0.
There is no power series expansion about s=0. The moments in this situation
may still be defined, however, by {2.2) as lim 'T(”)(so), Re sé <0, as s =
0 two-dimensionally in the left-hand s-plane. Of course, one may alterna-

tively use the definition of the moments in the form

n

m =f x™ £ (x)dx (n=0,1,2,...)
0 a

for"0<)\ < 1.

3. An Associated Differential Equation

From an application point of view the usefﬁ]ness.of the distribution
function defined in Sectién 1 lies in the fact that it contains two indepen-
dent shape paraﬁéters, p and X , which allows fitting initial and terminal
shapes (in the direction of increasing x) of given distribution data indepen-
dently. However, there is andther aspect which may very well be of fundament-

al theoretical interest.
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The class of density'functiohs (1.3) is closely connected to a ciass of
Fokker-Planck equations. By fiat this connection then is typical for all
of the special cases listed in Section 1. It makes it possible to investigate
the undefiying probabilistie fea%urés of the funct1oh class (1.3) and its
special cases by employing the machinery of probability theory.

Disregarding statistical considératiohs comp?eteiy af'this point, one
may ask the question: what is the most general one-dimensional autonomous

parabolic (Fokker-Planck} equation

g%-[A(x) %% + D(X)z] - %%-= 0, z = z(x,t), x>0, £t>0, (3.1)
which admits a similarity solution
) -‘I * i . .-‘1 B :
Zo(xat) = b (t)f (E) » E = xb (t) H (3-2)

which is conservative,- i.e., for which

o

! zo(x,t)dx 2.1.

a7

0
This question is an important one in the attempt to model diffusion pro-

cesses in the app]ied'sciences and to define initial and boundary condition
solutions of an equation of the form (3.1). In practical terms, the coeffi -
cients A(x) and D(x) in (3.1) are the diffusion and drift coefficients, re-

spectively. D(x) is being called the drift coefficient because, if x has

the unit length and t the unit tiﬁe, then D(x) acquires the unit length/time.
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To obtain conditions for the coefficiénts'A(x) and D(x) and for the func-
tions f*(g)-and b{t) appearing in (3.2), we substitute zo(x,t) into the equa-
tion (3.1} and obtaih a first order ordinary eqUation involving A(x) and D(x),
a second order ordinary equation for ff(g), and a first order ordinéry equa-
tion for b(t). In the absence of any further conditions on zo(x,t), the
differential relationship between A{x) and D(x) cannot be uniquely solved.
Pfactica? considerations in a number of specific situations required the

diffusion coefficient to obey a power Taw of the form

Alx) = ax T, 4> 0. (3.3)

The drift coefficient then becomes

D(x) =apx)‘ + Bx, A<1l,p <1, BER. (3.4)

’ &
The resulting equation for f (£) has the particular solution

'E) = ﬁ]{—;‘y ePexp - N g = p)-0T L (3.5)

and the function b(t) becomes

231
02N e o,

-]
[a(1-0)870 (1 - exp - (1-0)8)1°Y g0

_-Mathematicél aspects of the differential equation (3.1) with its coeffic-

ients specified by (3.3) and (3.4), which has been designated generalized
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Feller equat1on have been 1nvest1gated 1n a sequence of papers [9], [10], i,
[12] The spec1a1 types of the equat1on (3 1) ( 3), (3.4) for the cases of

1nterest in stat1st1cs 1n connect1on with the spec1a1 distributions 11sted

in Sect1on 1 have been given in [7]

w1th1n the framework of th1s paper 1t is of 1nterest to note that
(1) The function zo(x,t) in (3.2) with f (£) and b(t) specified in (3.5)
and (3.6), respectively, i.e.,
1= -1,.-=p T=A .
Zo(x,t) = F(I%q) b 'E7 exp =& ’ | (3.7)
is the delta function initial condition solution of (3.1), (3.3), (3.4), with
the delta function applied at x=0, t=0 [§]. In other words, the similarity

solution {3.7) describes the distribution process governed by (3.1), (3.3),

(3.4) from a completely concentrated initial state at x=0, t=0.

(2) If we "stop" this process at any time t0> 0, we see that, setting
b(t&) = b and comparing (3.7) and (1.3), the function z (x,t ) becomes the
probability density function f(x) of the process at t = t . This fact opens
up the'ihtriguing opportunity of studying the statistical or probabilistic
behavior of the underlying process in time 1f'the scale parameter b is

allowed to vary according-to (3.6).

(3} It is easily seen from (3.6) that b{t)4++ »as t + + o if the drift

parameter 8 < 0. This means the process will “"spread out" over the entire

=1
_ (1-2)
positive x-axis. However, if 8 > 0, b{t) 4 [e(]-l)8'1] , a finite con-

stant, as t * + o, In other words, the process approaches a steady state as-

t 4+2 with a f1n1te mean vaiue.
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(4) The function zo(x,t) given in (3.7) is a particular delta function
initial condition solution of the generalized Feller equation (3.1), (3.3},
(3.4). The de]ta function initial condition solution of this equafion with
the delta function applied at x = y>0 and t = 0 is given by

X ' (p-x)/2 . (T-x)/2
Flotiy) = (1oap g (P72 (8t P 1 (?€(1-A)/2(e~8tn) )

1-&
X exp (—*E]'"A- (e Pt) ), , (3.%)

-1 1

£=xb"1. n= yb~!, b = b(t) given by (3.6), x >0, t >0, q = (A-p)(1-1)71,

Iq = modified Bessel function of the first kind (Bessel function of imaginary
arguhent). Thfs fact has been established in [9). (It is useful in this con-
text to aIsd consult t11]and [12] for slight notdtioné1 differences belween
this paper and [9]. ‘

.
The function v (x,t;y) has the following properties [8]:

(a) vi(x,t59) > 0, x >0, t >0, y >0,
*

(b) v (x,t;y) ¥ 0ast +0 forx>0,y >0, x #y,
*

(¢) v (x,t3x)++=as t+ 0, x >0,

*
{d) v (x,t;y) + zo(x,t) as y ¥+ 0 for x> 0, t > 0,
@ *
(e) [ v {x,t3y)dx = 1.
0
*
Clearly, these properties make the function v (x,to;y) a one-sided probability

density function for t=to>0 and y > 0 fixed. In particular, property (d)

substantiates the claim make in the summary that the family of distribution
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characterized by (1.3) is a special case of.the mach‘more general family
specified by v*(x;to;y). |

In statistical distribution fitting attempts, in particular in cases
where the density data have a maximum, bne reason for the frequent occurrence
of unsatisfactory fits results from tHe fact that the location of the maximum
of a distribution candidate cannot be chosen arbitrarily. It is nerm611y
automatically determined by thé basic parameters. For the density functions

given by (1.3), for example, the maximum is located at
ke = Lp/(1-0017 0N g <o,

It is fixed oncé the parameters b, p, and A have been determined. The class
of functions v*(x,to;y) contains the additional independent "delta function
appiication parameter”™ y . The presence of this additional parameter changes
the situation drastically and favorably. A thorough discussion of the ¢1ass
v*(x,to;y), however, will not be attempted here. We return to the discussion

of our main subject.
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4. An Applicability Criteridn

Inherent in any attempt to fit given empiritaT distribution data by
means of an analytically defined probability density function are three’
crucial problems, namely (i) candidate function selection from a group of
available functions, (ii) determinatioh (estimation) of the parameters of the
selected function, and (iii) evaluation of the achieved'quality of fit. Since
an adequate treatment of the lﬁst two problems requires a thorough discussion
of the details of the numerical techniques involved they shall be left
untouched here. This subject - relative to the class of distributions which
represent the topic of the present paper - will be picked up in a separate
publication. We shall concentrate, thekeforé, on the first problem and pre-
sent & general applicability criterion for the distribution class defined by
the cumﬁlative distribution functions (1.1) or by the associated density
functions (1.3).  This criterion covers all special cases mentioned in Section
1.

Let us consider the distribution function F(x) given in the form (1.2),

F{x) = ngéay E]"p o(1+q, 2+q; -51_1), £= xb™T,

Taking logarithms, we obtain

' 1-X
Tog F(x) = -log T(2+q) + (1-p) log & + log ‘D(Hq, 2+q; - (F) ) (4.1)
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At this point it will be advantageous to perfofm the indépendent vafiable
trans%ormation X = uy where p= m, is the mean (first moment) which can
easily be determined from g{ven empirical data. This transformation ensures
that ali x. data in the interval 0 < x < p will be mapped into y data in

the interval 0 <y < 1. This is imporiant as will become apparent momen-

n

tarily. Setting then Tog F(x) = log F(uy) = v and log y = u so that

1

Tog %—= Tog ﬁ%ﬁ =y - Tog p' b,

we obtain from (4.1) the functional relation

1

: ' u
v(u) = -TogD(2+q) - (1-p)log u 'b + {1-plu + log @ {1+q,2+q; - ( fl )
u

The degenerate hypergeometric function ¢ is defined as a power
series in its Tast argument with constant term equal to unity. Therefore,

as x + 0, i.e., as y + 0 which means as u - «,

‘ 1=
log ¢(1+q, 2+q; - (eu/u"]b) )+ 0.

Consequently, the function v(u) given in (4.2) is asymbtotica?ix Tinear in

u as u+ -, In other words,

1

v(u) ~ vilu) = (T-plu - log T(2+q)~(1-p) Tog u™'b, u -,

This asymptotic linearity propefty may also be expressed by saying that, as
u ¥ - =, the graph of the function v(u} defined in (4.2) approaches the

(straight line) asymptote defined by the linear equation

vy(u) = (T-p)u - Tog T(2+q)-(1-p) Tog i~

b . (4.3)
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Based on this fact we can formulate the following Applicability Criterion.

A distribution function F(x) of the class {1.1) may be considered as a

candidate for a data fit if the logarithmic plot of a given set of empirical

cumulative distribution data indicates the existence of an asymptote.

| Remarks. (1} An app]icabi]ity criterion similar to the.oné
expressed above for the logarithm of the cumulative distribution data.can;
oficourse, be formulated for the corresponding density data according to
(1.3). Which of these two equivalent criteria is actually being used is
immaterfa]. The one.éiven in terms of the cumulative data is génerai1y pre-
ferred simply because the cumulative data are normally "smoother" than the
corresponding density data.

(2) An asymptotic.!inearity criterion similar to the one éxpressed
above for the distribution class (1.1) holds for the class of distributions
defined by the density function v*(x,to;y) given in (3.8). This is easily
seen. If we denote the cumulative distribution function associated with
v*(x;td;y) by V(x), ‘then

T-A

V{x) ~ F{x) exp ~ (e'Btn)- as x + 0
where F(x) is given by (1.1). we‘shall not go‘into any details here.

There is important practical utility a;sociated with the applicabil-
ity criterion. This becomes evident when we realize that it can be used to
determine approximate values Py and A] for the two shape parameters p

and A . An approximate value b] for the scale parameter b can then be

determined b¥ means of the first moment,

_ I (T+q) |
b= v yryEgE/T-N) (4.4)
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if we substitute in q = (kep5(1wl)*1 the values p, and A, for p and A,
respectively. o

If a set of empirical distribution data indicates the existence of
an asymptote for the logarithmic cdf graph, the 1ocation of the asymptote can
be estimated either by visual inspection or by analytic methods. Numerica]
techniques for the ssymptote determination and for the subsequent estimation
of parameters will be discussed elsewhere. The Tocation of the asymptote'can
be sbecified by its diréctiona] angle & and its intersection with the v-axiso,
Since the asymptote is determined by the linear equation (4.3), we immediately
see that

tan & = 1 - p. (4.5)

This relation makes it possible to quickly find an approximate value Py for

the initial shape parameter p once & or tand have been estimated,

pi =1~ tan & .

It is of interest to note that, according to (4.5), the_principa] value of §
is uniquely determined by the initial shape parameter p and vice versa.
Since p <1, we have 0 < § < w/2. Some of the distributions listed as
special cases in Section 1 have very specific tan & values. For the Gauss
and exponential distributions we have p = 0 so that tan & = 1; For the
Rsyleigh distribution p = - 1 which means that tan & = 2. For the Maxwell
case‘p = - 2, tan & = 3, and in the caseé of the Wien distribution p = - 3‘59
that tan & = 4, |

Next, once the v-axis intercept v](o) of the asymptote has approxi-

mately been determined, we obtain from (4.3) the equation

~1

-log T{2+4)-(1-p)logu 'b - v1(0) = Q,
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We eliminate the unknown scaie parameter b by means of (4.4) which leads

to the equality

~Tog F(2+q) (1-p)log 1"(1+q)+(1 -p) Tog r(1+g+{1-3)"1) - vi{0) = 0. (4.6)

The Teft-hand side becomes a function of the unknown terminal shape parameter )
if we replace p by the previously determined approximate value Py- In other
words, we obtain from (4.6) an equation of the form e(1-1) = 0. It cén be
éhown that it has exactly one solution 1-A1 > 0 {provided v (o) has been
properly determined) which can easily be obtained by means of Newton s method.

The opportun1ty to determine "good" approximate values Py and A
for the shape parameters p and A is extreme]y 1mportant for the practical
applicatidn of the distribution class (1;]). The apprdximate values 'pi and
A] can be used as initial values in any of the established parameter estima-
tion techniques such as, for example, the method of moments or the maximum-
Tikelihood method. Each of these methods leads to three equations for the
unknown parameters b, p, and A . Actually, only two equations are needed
since the scale parameter b can be eliminated. The use of the initial
values Py and A] results in rapid convergence of the iteration process
which will Tead to the desired final parameter values.

Although the class of probability distfibutions discussed in this paper
has been known for more than sixty years, its application has been limited,
most likely as a consequence of computational intensity and possible conver-
gence problems. In general, however, it is not really the complexity of the
system of transcendental equations which makes the numerical problem compu-
tationally intensive but rather a poor choice initia] iteration values. It
is ‘hoped that fhe approach presented here will lead to more widespread use

of the distribution class (1.1).
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5. Empirical Examples

In the talk presented at the Madison conference two examples based
on empiricél'data have been discussed. As indicated at the beginning of
Sec. 4 a thorough treatment of practical examples will not be attempted in
this paper. Suffice it, therefore, to simp]y present the i]TustratiQe docu-
mentation for the two parameter estimates.

The empirical data were available in histogram (pdf) form as sﬁown
in the first figure of each of the two sets of illustrations. The cdf data
were obtained by numerical integration. Their logarithmic plots are shown
in the second figures, Xy = M being the mean. The asymptote data tan &
and vz(o) were detefmined by visual inspection to obtain approximate values
Py and B] =1 - A1 for the two shape parameters. To improve the numerical
values of these parameters the method of moments was used which led to the |
final values given in the table. The scale parameter b is determined by
b= uf,n = mean. The Tast pair of figures show the histograms overlaid

with the fitted probability density functions.
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PLOTTING MATHEMATICAL FUNCTIONS
ON A STANDARD LINE PRINTER

DONALD W. RANKIN
Lieuternant Colonel
US‘Air Force Retired

INTRODUCTION. Dften the analyst will be greatly
aided i he can view a graph of the function or
data under investigation. The wide availability
of computer-driven printers suggests that they be
adapted to this usage. However , since that is
naot their primary purpose, some programming is
required to exact an acceptable performance from
them. This paper, then, discusses SOMe acf the
principles which must be adhered to and offers
some example programs.

No attempt can be made to cover all possible
printer—-computer combinations, since their number
approaches the astronomical. (A recent issue of
a periodical lists 145 low- and medium-priced
printers from 3é different manufacturers which
are compatible with the author’s computer!)
Instead, a typical combination¥, is put forward
28 an example.

Programming language will be confined to the
most elementary BABSIC, =o that evean the casual
programmer will feel comfortable. The commands
CALL, PEEK, and POKE will not be used. There i@
little need for streamlining, since even a clumsy
program wWwill run fawter than the printer.

TYPES OF PRINTERS. The principles herein can be
applied to virtually all printers, whether dot
matrix, daisy wheel, ink jet or thermal ribbon.
Ahother criterion will be used to roughly divide
printers into three cataegories.

The first type posseEEes & resident plotting
function. Far them, this paper is not necessary,

;-———-—--1u——————u——————_—-—————-—-————-——————.—n-—————_.———-_

portable computer.
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The second type is capable of a variable
treverse line feed. Tha principal example pro-
gram is written far this type.

The third type has neither of the abave
attributes. As will be seen, plotting still
may be possible.

SENDING IMFORMATION TO THE LINE PRINTER. Most
computers send intelligence to the printer as

& stream of B8-bit binary numbers (00000000 to
11131113, This caorresponds to 0-253 (decimal)
ar O00-FF (hexadecimal). Some computers send
only 7 bits of data, reserving the eighth bit
far a parity check or other special use. They
cannot distinguish Oxxxxuxxx from I1HMXXXRH. This
amounts to subtracting 128 wherever possible.

THE CHARACTER-STRING FUNCTION. One means by
which BASIC converts information into suitahle
farm is the character-string function, which is
implemented by CHR#¥(n), where n can vary fram
¢ to 235. Values of n from 32 to 127 are used
to send various symbols, including punctuation,
numbers, and all the letters of the alphabet.
For example, CHR#%(65) sends a capital A. Values
from 0 to 31 are used to send instructions to .
the various peripherals, and are called contral
codes. CHR#(27) is called the ESCAPE code. 1t
alerts the peripheral that one or more binary
numbers are to follow, and that the sequence is
to be treated as .aan entity. By using ESCAPE
sequences, the number of possible control codes
becomes almost unlimited.

Annther method of convert1ng to binary is
tu enclose the actual symbols within quotation
marks. Thus LFRINT "A" and LPRINT CHR#{(&5) are
equivalent. This latter method depends upon
the existence of the appropriate symbol, and
hence cannot be used to transmit control codes.
Also it cannot be used to send actual quotation
marks, since BASIC only recognizes them as a
sort of switch which turns a binary converter
.on and off. CHR$(34) must be used.

Haﬁy software designers "borrow" one or
more little-used control codes, diverting them
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to special uses. When, in running a program,
one of them occurs by chance, the result can
"be most unexpected (and quite unwanted). It
is necessary to identify these anomal1es,rsn
that the program can avoid them.. '

THE HEX DUMP. The esasiest way to examine the
information which the computer is transmitting
to the printer is to perform a HEX dump. - The
printer is placed in hexadecimal mode and the
-following program executed:

10 FOR N = © TO 255
20 LPRINT CHR®(MN});
30 NEXT N

40 END
The resulting printout will identify the codes
in question. Note the semicolon at the end of
line 2Z0O. It inhibits the carriage return.

Figure 1 gives an example of a HEX dump.

Figure 1
Radio Shack Model 100 HEX Dump

0o 01 02 03 04 05 06 07 0B 20 20 20
20 20 20 20 20 0A OB 0OC ©OD ©OE OF 10
11 12 13 14, 15 14 17 18 19 1B 1C 1D
1E 1F 20 21 22 23. 24 . 25 26 27 28 29
24 2B 2C 20 2E 2F 30 31 32 33 34 35
36 37 38 39, 3A 3B 3C 3D 3E 3F 40 4t
42 43 44 A4S 44 47 48 4% 4A 4B 4C 4D
4E 4F S0 51 52 53 54 55 56 57 58 59
SA SB S5C 5D, SE S5F 60 &1 62 63 &4 63
&6 &7 &B &9 &A 6B 6C 6D BE 6&F. 70 71
72 73 74 75 76 77 78 79 7A 7B 7C 7D
7E 7F B0 .81 82 83 84 B85S 86 87 88 89
8A 8B 8C 8D BE B8F 90 91 92 93 94 95
96 97. 98 99 9A 9B 9C 9D SE 9F. A0 Al
AZ A3 A4 A5 A6 A7 AB A9 AA AB AC AD
AE AF_ _BO B1 B2 B3 B4 BS B& B7 BB B9
BA BB BC BD BE BF CO C! €2 CX .C4 CS
‘e ©£7 ©CB €9 CA CB CC CD CE CF DO Dt
p2 D3 D4 D5 D& D7 D8 D? DA DB DC DD
DE DF EO E1 E2 E3 E4 ES E& E7 EB EW
 EA EB EC ED EE EF FO . F1 F2 F3 F4 F3
" F4 F7 FB F9 FA FB FE FD FE FF 0D
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Referring to Figure 1, it can be seen that
CHR#¥(?) sends a series of spaces, while CHR$(26)
transmits nothing at altl. It will be necessary
to program around these two values.

SCALING THE FLOT. Some daisy wheel printers
have adiustable horizontal spacing. Dot matrix
printers achieve somewhat the same effect by
offering a selection of type faces. The ability
to adiust vertical spacing varies widely. As a
rule of thumb, assign the coarser scale factor
to the independent variable.

Figure 2
Dot Matrix Type Faces

Type Characters per
Face G—inch line
Fica _ &0
Elite 72
Compressed 103

I+ a printer is capable of reverse line
feeds, it is possible to scale and label the
plotting area, then return the carriage and
platen to a known position before beginning
the actual plot. Without this capability, it
is necessary to mark the paper in some way so
‘that the platen can be correctly repositioned
manually. o

PLANNING A PLOYTING PROGRAM. As an exercise,
let us write a program which plots two functions
simultaneously, using different plotting symbols
for each, so that they may be distinguished.

lL.Let us assume a dot matrix printer capable of
campressed type face and variable reverse line
feed. Further let us assume a computer which
diverts 09 and 1A (hex) to special uses. (We
recall that these codes are generated by CHR$(%)
and CHR#%(24), respectively.) Available plotting
area is & by & inches.
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To generate variable line feeds, the ESCAFE
sequences 1Bj;4Ainn (forward) and 1B;&A3nN {re-
verse)] are used, where nn can vary from 00 to
FF (except 0% and 14, of coursel. BASIC uses
CHR% (2?7)CHR$(74)CHR$ (N) and CHR%¥(27)CHR#$(104)
CHR#(N) to send these sequences (N =.0 ta 255).
Since symbols exist for CHR$(74) and GHR*(1046),
the shorter forms CHE$(27)"J"CHR¥ (N} and CHR¥
(271" J"CHRE(N) can be used. Same computers may
require semicolans between the parts. For the
printer which was employed, a value af N = 2535
maoves the platen exactly 2 cm. Thus there are
85 machine counts per cm., or 216 per inch.

By using the compressed type face for plot-—
ting, we find 27 machine counts per 4 cm., Or
103 per &6 inches. It is apparent at once that
the independent variable should vary in the
horizontal direction.

For an example plot, choose the tangent
and cosine functions throuwgh the range fram O
to 240 degrees, inclusive. Assigning a scale
factor of 2.5 degrees per character, the plot
will be 97 characters wide (compressed), which
leaves a few For labelling. The computer re-
quires that the argument be expressed in rad-
ians, so that one character is equivalent to
D.043433F2313 radians. Surcessive values of the
functians are computed by a routine similar to:

10 FOR X = 0 TO 94 o

20 € = COS(0.0436332313 # X)
30 IF ABS(C) < 0.3 THEN S0
40 T = TAN(D.04F63323I13 * X))
50 NEXT. X

Line 30 is not ésgential. It merely avolds
computing large values of the tangent which

would not be plotted anyway.

For the wvertical scale, let us choose

unity to be 1.325 inches. Now the ordinates

can be easily read with a common foot. ruler,
. since. Q0.1 = 1/8". Multiplying 216 by 1.20,

it is found that .there are 270 machine counts
per unit on the vertical axis. Yalues to about

+2.15 can be displaved within the allotted area.
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The number to be canverted to binary by the
character—-string function must be an integer.
This can be accomplished by:

Y = INT{.5 + Z70 % ()

Computed in this way, there is no need to wWworry
about sign.

There is aone more point to caonsider. The
program must be given a memory. It is vital
that it be able to "remember" the position of
the platen. For this express purpose, the
variable LY {last ¥) is established.

Below is an example program, followed by
explanatory notes.

A SAMPLE PLOTTING PROGRAM.

2990 END -
3000 LPRINT EHR$(“?)“1“CHR$(10).LPRINT CHR&(27)"A"
CHR% (8)

3010 J% = »

[

[} 1 1
P"sLPRINT CHR$(15)3;d%:LPRINT J%
3020 FOR N%Z = 1 TO 27

2030 LPRINT "!{":TAB(3&);"i"; TAB(72) ;" ("
3040 NEXT N%Z

3050 LPRINT J%

3060 FOR N%Z = 1 TQ 22

3070 LPRINT "{";TAB(3&6) ;" 1“3 TAB(72) ;" 1"
3080 NEXT N% |

3090 LPRINT J%:LPRINT J$

3100 LPRINT CHR$(182;"0";TAB(7):"30"; TAB(14);"40";
TAB(21);"90": TAB(28); “120"; TAB(35); "150"; TAB(42) ;
“1B0"; TAB(49);"210"; TAB(S56) : "240" ; LPRINT

3110 LFRINT TAB(264);"Degrees”;CHR$(15) ;CHR$(27) "A"
CHR$ (0) _

310 K = M

3130 LPRINT CHR$(“7)"}“CHR$(1$B),K$ CHRi(iB)'"~”";
CHR#(15)

3140 LPRINT CHR$(27)" i"CHR¥ (135) s CHR$ (27" j"CHR% (
1383);K$;CHR$E(18) 3 "-1";CHR$ (13)

3130 LPRINT CHR#$(27)"j"CHR$(135);CHR*(27)"i"CHR%(
135 s EEFCHR&(18) 5 "yCHR#£(13)
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3160 LPRINT CHR${(27)"i"CHR$(1353) sCHR$(27) " ij"CHR#%(
138) s K#3CHR$(18) 3" 1" ;CHR¥(135)

3170 LFRINT CHR$(27)"'"CHR$(135);CHR$(27)“i“CHR$(
135)3K$;CHR$ (183" 2"

3180 LPRINT CHR$(27)“J"CHR$(7“)-TAB(31);"Figure 3"
3190 LPRINT CHR$(27)"J"CHR$(72): TAB(30);"+y = cos x"
- 3200 LPRINT CHR$(27)"J"CHR$(54); TAB(30);"#y = tan x"
s CHR$ (15) o
3210 LPRINT CHR$(27)"J"CHR$(171) ;CHR$ (27 "J"CHR$(171)
3220 ¥ = O ' : : SR
3230 FOR X = 0 TO 96 R
3240 C = 270 # COS(0.0436332313 % X) : T =999
3250 IF ABS(C) < 99 THEN 3270 :
I2460 T = 270 % TAN(0.04346332313 % X)
3270 IF ABS(T) > SBO THEN 3440
I280 LY = Y ¢ Y = INT(.5 + T)
3290 IF Y > LY THEN 3390
3300 IF Y < LY THEN 3320 : .
3310 LPRINT "#“";CHR$(8)3: S0TO 3440
3320 IF (LY — Y) < 256 THEN 3340 :
III0 LY = LY — 255 : LPRINT CHR$(27)"J"EHR$(255),.
GOTO 3320 :
3340 IF (LY - Y) = 26 THEN 3370
3350 IF (LY - Y) = 9 THEN 3380 :
3360 LPRINT CHR$(Z7)"J"CHR$ILY-Y);"*";CHR$(8);: GO
TO 3460 g _
3370 LPRINT EHR$(”7)“J“CHR$(13);CHR$(2?)PJ“CHR$(13)

s"%";CHR$(B);: GOTOD 3440

3I80 LPRINT EHR$(27)"J“EHR$(4).CHR$(27)“J“EHR$(5)

“¥"CHR$ (8) 3
IF {¥Y-LY) < 256 THEN 3410

3390
3400
GOTO
3410
3420

3430

3450 LPRINT CHR$(27)"'“EHR$(4),EHR$(27)“'“CHR$(5)

LY = LY + 255 : LPRINT CHR$(27)"j"CHR$(255);

3390

IF (¥Y-LV¥)-

GOTO 34460

26 THEN 3440

il

IF (Y—-LY) = 9 THEN 3430
LPRINT CHR$(27)"j“CHR$(Y LY); “*"'EHR$(B);: GO

TO 34460
3440 LFPRINT CHR$(27)"j"CHR$(13),EHR$(27)“'"CHR$(13)

s "#®";CHR$(B);: GOTO 3460

“xu:CHRS$(B) 3
LY = Y

3460
3470
3480
2490
F500
3510
G070

IF LY
IF LY
LPRINT

*
¢

t ¥ = INT(.S + .C)
Y THEN 3500

Y THEN 335370 -
"+"3;: BOTO 3640

IF (LY-Y) < 256 THEN 3320

LPRINT CHR$(27)"J"CHR#(2585);3: LY = LY - 2535

3500
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3520
3530
2540
3550
gt
3540
n +.I| ;=
3570
3580
GOTOD

3590

34600
3610
3420
U
3630
u,‘_ll.=
3640
3650
3640
3670
GOTO
T680
3690
3700
3710

IF (LY-Y) = 26 THEN X550

IF (LY-Y) = 2 THEN 3540

LFRINY CHR$ (27} "J"CHR#(LY-Y);"+"3: BOTO 36490
LEFRINT CHR$(27)"J"CHR#%(13) ;CHR${(27)"J"CHR* (13)
: GOTO 34640 ' ' e

LPRINT CHR#F{(27)"J"CHR$(4)3;CHR&F(27)"JI"CHR$ (5)
5070 3640 : ' B

IF tY=LY) 4 25& THEN 3590

LPRINT CHR$(27)"j"CHR#$(235);: LY = LY + 2355
3570 ' ‘
LF (Y-LY),
IF (Y-LY: = 9 THEN 3630 :

LFRINT CHR#%(27)"i"CHR${(Y-LY);"+";: GOTO 3640
LPRINT CHR$(27)"J"CHRS(IS),CHR$(27)"'“EHR$(133
: GOTO 3640

LPRINT CHR$(27)“j“EHR$(4)'BHR$(27)"J"CHR$(5),

Lt

26 THEN 34620

il

MEXT X ~

LY = Y ¢ ¥ = 720" o

IF (LY-Y) < 256 THEN 3480

LY = LY — 2835 : LPRINT CHR$(27)"J"CHR$(255}
3H60 : '

IF (LY-Y) = 26 THEN 37i0

IF (LY-Y) = 9 THEN 3720 :
LFRINT CHR$(27)"J"CHR$(LY-Y) : GOTO 3730
LPRINT EHR$(27)"J“CHR$(13),CHR${27)"J"CHR$(13)

BORTO 3730

\720
3730
3740

LPRINT CHR$(27)"J"CHR$(4),CHR$(”7)“J"CHR$(5)
LPRINT CHR$(27)"2";CHR$(18) : :
RETURN

NOTES ON THE PROGRAM.

Line

000, Sets left margin.ta 1.25 in. Sets

line feed to 1/9 in. for cesmetic purposes.
The colon is used toc separate statements an
the same numbered line. Some cnmputers may
require a different symbol.

Lines 3010-3Q90. Flots the wvertical grid.
CHR*(153) calls up the compressed type face.
The string variable J%f must contain a count

of 11 spaces between each symbol

HoEn
T

The symbol is generated by CHR%(124), or it
can be reached from the keyboard with the
keystrokes JSHIFT}<ERPH}{ >
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Lines 3100-3200. Plots the horizontal grid,
Iabelling as it goes. Note that the plot 1is
in Compressed type face, but the labelling

.is done in Ficaa. The width ratioc is 7:12.
CHR#%(1B) restores Pica. -

Line 3110. CHR$(15) calls for the Compressed
type face. CHR%£(27)"A"CHR$(0) kills the
line feed associated with a carriage return.

Lines 3210-3220. The platen, carriage, and
dependent variable are zeroed.

Lines F230-3640. Computation and plotting are
accomplished by means af a FOR-NEXT looap.

Line 2270. This places a limit on the values
which will be plotted. Without this limit,
‘the program might attempt to plot a point off
tﬁéﬁpapef, thereby jamming the paper under
the platen. )

Line 3310, CHR%{(8) generates a backspace. The
trailing semicolon inhibits the carriage
return.

Lines 3320-3330. Moves platen in steps of 3
cm. when required.

Lines 3340-3%380. Maoves the platen and plots the
point, aveiding the problem codes 9 and 24&.
This pattern is repeated three times (two
functions, two signs).

Lines 3450-3720. The platen is moved to the
bottom of the plot, in position four following
text. o

Line 3730. Restores normal line feed and Pica
‘type face. o

lLLine 3740. I+ the pragram is not used as a
sub-routine, substitute "END" or “GOTO nnn".

Figure I illustrates the program exercised.
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PLOTTING WITHOUT VARIABLE REVERSE LINE_FEED.
For printers which lack the desired functione,
it may suffice to use minimum line fesds to
increment the independent variable, and the
TAB function to plot the dependent variable.
Begin by printing a horizontal line, which

is used as & reference mark for aligning the
paper with the printer's paper guide bar.

The results of such a technique are shown
in Figure 4.
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9 END ' _
10 LR RINT e e e e e e e e e e et e e e

gt S PHL S S b bl ke e i ———— WOM W R SO WS AR M S S b emts R R e G M e S M v

18 LPRINT 1 LPRINT ¢ LPRINT : LPRINT 1 LPRINT
20 END '

110 LPRINT CHR$(13) jCHRE(27) "1 "CHRE(17)

115 LPRINT J$3CHR$(1B);"0"jCHR$(15)

120 FOR N = 1 TO 19

125 LPRINT K$ 1 NEXT N

130 LPRINT J$;CHR$<19>;"90";CHR¢(15)

13%5 FOR N = 1 TO 19

140 LPRINT K$ ¢ NEXT N

145 LPRINT J$;CHR$(18);"180"§CHRS (15)

150 LPRINT K$;CHR#(18) '

155 LPRINT " -1"3;TAB(26)3"0"§TAB(49) 5 "+1"

160 END

200 LPRINT CHR$(15)jCHR$(27)"1"CHR$(17)

210 FOR N = 0 TO 4t _

220 8 = INT(.S5 + 40 # SIN(0.078539814634 # N))

230 LPRINT TAB(45 + 8)3"+" 3 NEXT N

240 END

. 300 LPRINT 1 LPRINT 1 LPRINT 1 LPRINT & LPRINT
t LPRINT : LPRINT & LPRINT :

310 TAB(21)j“Figure 4" 31 LPRINT

320 LPRINT TAB(20)3"x = sin y

330 END

To draw the reference line, execute <RUN 10>,
Then turn the printer off and manually paaitinn
the platen, using the reference line.

Turn the printer on and execute <RUN 100>,
Turn the printer off and reposition as before.

Repeat the procedure executing <RUN 200>,

Rapwat again using <RUN 300>, The resulting
plot will be similar to Figure 4.
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STATISTICAL COMPARISON OF THE ABILITY OF
CAMOUFLAGE COLORS TO BLEND WITH TERRAIN BACKGROUND
UNDER HIGH AND LOW SUN ANGLES

George Anitole and Ronald I. Johnson
U.S5. Army Belvoir Research and Development Center
Fort Belvoir, Virginia 22060

Christopher J. Neubert
U.8. Army Engineer School
Fort Belvolr, Virginia 22060

ABSTRACT

This study determined the effect of sunlight angle upon the
effectiveness of camouflage colors to blend with desert backgrounds.
Eleven U.S. Marine personnel and two civilians subjectively evaluated ten
colors at nine desert sites, under high and low -sunlight angles. The best
8ix colors were rated on a six point scale, with the value number one most
effective, and number six not effective. An analysis of variance was
performed for each site and all nine sites combined to determine signifi-
_cant ( a = 0. 05) differences between the best four colors. Tukey's
Studentized Range Test for Variable Ratings identified which of the four
colors differed significantly (o = 0.05) from each other. Slight
differences were found in the ranking of the colors. This eliminates the
requirements for low angle sunlight data.

1.0 SECTION 1 - Introduction

This Center started its current desert color evaluations in April
1980, when the Project Manager, Saudi Arabian National Guard (SANG)
Modernization requested camouflage for SANG. Field color evaluations have
been conducted in Saudi Arabla and the United States desert southwest.
During these:studies 1t was noted that the camouflage colors became
brighter in hue when subjected to low sunlight angles in the early morning
or late afternoon. This observation led to the question - what effects do
high and low sunlight angles have upon the judgment of how well camouflage
colors blend with the desert background? This paper presents the results
of a study conducted in the United States deserts designed to answer the
above question. It should be noted that if testing is required under both
high and low sunlight angles, the costs and time to run the study were
about doubled. If evaluations can be completed using one sunlight angle,
the high sunlight angle would be tested rather than the low sunlight angle,
‘Kbecause of its much longer time duration in the course of a day.

2.0 SECTION 2 - Experimental Design
2.1 Camouflage Colors

With the exception of the paint colors Gun Metal Gray and Egypfian,
all the colors studied were taken from the SANG color test palette. These
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colors were developed over a two—year period, and they represent the most
sophisticated avallable to determine camouflage effectiveness for a series
of selected different desert sites. The Gun Metal Gray color was selected
to provide high color contrast (in patterns). The Egyptian color is the
paint currently being used to camouflage Egyptian equipment. Two new paints
derived from the Saudi Arabian desert color palette were colors W and X.
Color W is a fifty-fifty mix of colors 7 and 8%, while X is color 1l with
‘the addition of black paint. All paints were lusterless with a reflectance
of 1% at a 60° angle. ' o

2.2 Test Targets

The test targets used for this study had to be highly mobile and large
enough to permit a study of the target with various desert backgrounds.
The UV.S. Marine Corps made avallable ten Commercial Utility Cargo Vehicle
{(cucV) trucks which were painted and coded according to Table 1. Each
truck was painted on the basis of a three color pattern and are identified
as colors 1, 2, and 3. For monotones and two color patterns, one or more
color is repeated. ' ‘

2,3 Test Sites
A total of nine sites were selected for this study. All the desert
slites contalned sparse vegetation similar to that found in Saudi Arabia.

The soil ranged in color from a light buff/tan to gray and dark brown, and

TABLE 1
CUCV Truck Colors

Color

Vehicle Number 1 2 3
A 3 3 3
B 5 3 1
C 7 A 8
D 7 8 : 8
T 11 11 11
G Gun Metal Gray. 3 5
H 8- - 8 8
T 10 - 10 10

- W 7/8 7/8 7/8
"X AC1L AC11 AC11

* Egyptian Color

represented a good cross—sectional spectrum of different colored desert
backgrounds. ~ For example, one site on Midland Road, Blythe, California,
had a reddish color, while the site at the Baker, California, dry lake was
dark brown. The site at Jean Dry Lake bed off Route 15 in Nevada was
somewhat yellow in appearance. The order of the nine sites as they will
appear throughout this study is seen in Table 2.

*numerical designations were assigned to colors during prior field tests
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TABLE 2
Site Order Identification

Site # Color Location

1 Buff Yuma Sand Dunes, AZ

2 Light Gray Ogilby Road, CA

3 Gray-Tan ' Baker Sand Dunes, CA

4 Light Buff/Tan = 29 Palms, Range 111, CA

5 Light Tan : 29 Palms, Tank Trail, CA

6 Reddish Tan : Midland Road, Blythe, CA

7 Yellow-Tan Jean Dry Lake Bed,

' Las Vegas, ‘NV

8 Brown - Dry Lake Bed, Baker, CA

© 9

Dark Tan : Salton Sea, CA
2.4 Test Subjects

The test subjects consisted of eleven U.S. Marine Corps enlisted men
and two civilian employees from the Countersurveillance and Deception
Division, Fort Belvolr, Virginia. The enlisted personnel belonged to the
lst Marine Amphibious FORCE Service Support Group, Camp Pendleton,
California. Thus, each ground cobservation consisted of a sample size of
thirteen. " Each subject had at least a corrected visual aculty of 20/30C and
normal color vision. .

2.5 Data Generation.

The object of this study was to determine what effects high and low
sunlight angles have on the ability of camouflage paint colors to blend
with desert backgrounds. The relative rating of these colors under the two
sunlight conditions was compared to determine significant di{fferences.

The ten trucks were painted as shown in Table 1. The trucks were divided
into the following two groups: T

A B C F W
G H I D X

By using this division, two of the patterned trucks appeared in each of the
two groups along with three monotones. The ground observers (13) were
asked to select three color combinations from each of the two groups, based
upon thelr subjective judgment in the colors ability to blend the CUCV
trucks with the . desert background.

The next task was to rank the remaining six colors on their ability to
blend with the desert background using the following ranking system:

- Most effective

— Very effective
Effective

= Somewhat -effective
= Less effective

Not effactive

Sl ™~
i
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No ties were allowed. Each of the six colored trucks was assigned a
number. A value of 7 was assigned for all colors not selected for final
ranking by the ground observers.

3.0 SECTION 3 = Results

The results of each site for hoth the high and low sunlight angles
will not be included because it would be too voluminous to present in these
proceedings. - A summary of the four best colors for each site under high
and low sunlight angels is included Iin the discussion section., This data
is available upon request from the U.S. Army Belvoir Research and
Development Center, ATTN: STRBE-JDS, Fort Belvoir, VA 22060. Tables 3-5
and Figure 1 show the data and data analysis averaged across all nine

sites for the high sunlight angle. Tables 6~8 and Figure 2 show the-data

and data analysils averaged across all nine sites for the low sunlight
angle. Table 9-11 and Figure 3 show the data and data analysis for the
combined high and low sunlight angles to determine what effects high and
low sunlight angles had upon the camouflage colors in their ability to
blend with the desert background.

. TABLE 3

Descfiptive Data for CUCV Truck Color Blend with Desert
Background, Averaged Across All Sites, High Sunlight Angle

STD ERROR 95% CONFIDENCE INTERVAL
COLOR N MEAN OF COL MEAN LOWER LIMIT UPPER LIMIT
A 117  5.76923 .0.218300 5.34136 6.19710
B 117 6427350 0.150461 5.97860 6.56841
c 117 4.76923 0.158920 445775 5.08071
D 117 3.83761 0.124956 - 3.59269 4.,08252
F 117 4.28205 0.146099 3.99570 4,56840
G 117 7.00000 0.000000 7.00000 7.00000
H 117 3.82051 0.142922 3.54039 4.10064
I 117 6.70940 0.088425 6.53609 6.88272
W 117 3.60684 0.217140 3.18124 4.03243
X 117 2.92308 0.190843 2.54902 3.29713
TABLE 4
Analysis of Variance for the Best Four Color Blends, .
Averaged Across All Sites, High Sunlight Angle

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR>F
COLOR 3 64.59829060 21.53276353 6.15 0.0005

ERROR 464 1623.,36752137 3.49863690
TOTAL 467 1687.96581197

Table 4 indicates that there are significant differences in the ability of

the top four ¢olors to blend with the desert background. These differences
are shown In Table 5.
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TABLE 5

Significant Differences Between the Top Four Camouflage Colors
(Blend), Averaged Across All Sites, High Sunlight Angle

TUKEY GROUPING MEAN _ . N  COLORS
A 3.8376 117 D
A 3.8205 117 H
A 3.6068 117 W
B 2.9231 117 X

a = 0.05, Degrees of Freedom = 464

Critical Value of Studentized Range = 3.646

Minimum Significant Difference = 0.630546

Color means with the same letter in the grouping column are not
significantly different.

TABLE 6

Descriptive Data for CUCV Truck Color Blend with Desert
Background, Averaged Across All Sites, Low Sunlight Angle

STD ERROR 95% CONFIDENCE INTERVAL

COLOR N MEAN OF COL MEAN LOWER LIMIT UPPER LIMIT
A 117 5.76923 0.191703 5.38349 6.14497
B 117 7.00000 0.000000 7.00000 7.00000
c 117 5.31624 0.141385 5.03913 5.59335
b 117 3.81197 0.107850 3.60058 4,02335
F 117 4.21368 0.152988 3.91382 4.51353
G 117 . 7.00000 4.000000 7.00000 7.00000
H 117 4.18803 +.139961 3.91371 4.46236
I 117 7.00000 0.0060000 7.00000 7.00000
W 117 2.19658 0.144268 1.91382 2.47935
X 117 2.50427 0.137675 2.23443 2.77412

TABLE 7

Analysis of Variance for the Best Four Color Blends,
Averdged Across All Sites, Low Sunlight Angle

SOURCE DF SUM OF SQUARES. MEAN SQUARE F VALUE PR>F

COLOR 3 332.17948718 110.72649573 53.33 0.0001
ERRCOR 464 963.45299145 2.07640731
TOTAL 467 ° 1285.63247863

Table 7 indicates that there are significant differences in the ability of
the top four colors to blend with the desert background. These differences
are shown in Table 8, C.
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TABLE &

Significant Differences Between the Top Four Camouflage Colors
{(Blend), Averaged Across All Sites, Low Sunlight Angle

TUKEY GROUPING

W

a = 0.05, Degrees of Freedom

Critical Value of Studentized Range = 3.646
Minimum Significant Difference

significantly different.

= 464

MEAN

4.1880
3.8120
2.5043
2.1966

= 0.485762
Color means with the same letter in the grouping column are not

TABLE 9

Ll

117
117
117
117

o m

COLORS

Descriptive Data for CUCV Truck Color Blend with Desert Background,
Averaged Across All Sites, High and low Sunlight Angles

COLOR N

234
234
234
234
234
234
234
234
234
234

k><E’—'-’ID’nUOUﬂD>

MEAN

BB ON B S B Oy Ut

L76923
.63675
.04701
.82479
.24786
.00000
.00427
.85470
.90171
. 71368

STD ERROR

OO OO OO OO

. 14495
.07875
L1719
.08236
. 10557
.00000
.10053
.04513
.13803
.11821

OF COL MEAN

TABLE 10

95% CONFIDENCE INTERVAL
LOWER LIMIT UPPER LIMIT

.48513
.48240
.82691
.66336
.04091
00000
.80724
.76624
63117
.48159

NN YW~ PR P

B LA O B T B o SN O

.05333
.79110
.25711
.98621
.45474
.00000
. 20131
.94316
17224
.83188

Analysis of Variance for the Best Four Color Blends,
Averaged Across All Sites, High and low Sunlight Angles

SOURCE

COLOR
ERROR
TOTAL

BF

SUM OF SQUARES

MEAN SQUARE

F VALUE PR>F

3

932
935

294.58
2721.37
3015.95

98.19
2.92

33.63  D.0001

Table 10 indicates that there are significant differences in the ability of
the top four colors to blend with the desert background.
are shown in Table 11.
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TABLE 11

Significant Differences Between the Top Four Camouflage Colors (Blend),
Averaged Across All Sites, High and Low Sunlight Angles

TUKEY GROUPING MEAN N  COLORS
A 4.00427 234 H
A 3.82479 234 D
B 2.90171 234 W
B 2.713638 234 h.¢

¢ = 0.05, Degrees of Freedom = 932

Critical Value of Studentized Range = 3.764

Minimum Significant Difference = 0.226501

Color means with the same letter in the grouping column are not
significantly different.

4.0 SECTION 4 - Discussion

The purpose of this study was to determine if high and low sunlight
angles had a significant effect on the ability of the top four camouflage
colors to blend with the desert background. Tables 3-5 and Figure 1
indicate the ability of each of the ten colors evaluated to blend with the
desert terrain when averaged areas all nine sites for a high sunlight
angle. Tables 6~8 and Figure 2 is a repeat of the ability of the ten
camouflage paint colors to blend with the terrain, only this time the data
was taken under low sunlight conditions. A look at these figures and
tables indfcates that the conditions of high and low sunlight angles do
affect the utility of some of the camouflage colors to blend with the
desert terrain. Table 12 shows the best four camouflage colors for each
site and when averaged across all nine sites for high and low sunlight
angles. For each of the two sunlight angles, the least to most effective
colors for blend are read left to right. Thus, there are differences in
the best four colors when comparing separately each of the nine sites.

TABLE 12

Summary of the Best Four Color Blends for Each Site and
Across All Sites, High and Low Sunlight Angles

Site High Sunlight Angle Low Sunlight Angle
1 BHFA ABWF
2 “CDWX CDXW
3 CHWX CDXW
4 ‘"CDWX DAXVW
5 HD WX CDXW
6 HFBA DHAF
7 XDFH HF WX
8 CDWX CDXW
9 DHWX CDWZX
All DHWX HD X W

Note that Table 1 shows the colors for each of the alphabetical letters.
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For a camouflage color to be effective, it must have camouflage
effectiveness across a wide range of sites. It is too costly and time
consuming to paint equipment for specific areas unless the resources are to
remain in that geographic location for a considerable period of time.
Likewise, only the best four camouflage colors should be of interest for
this study.

Table 12 shows that the best four camouflage colors to blend with the
desert terrain when averaged across all nine sites for high sunlight angle
were DHWX, with X the best color and D the worst. The same four colors
were also the most effective for the low sunlight angle reading worst to
best HDXW. The only difference between the two groups is that the order of
X and W and H and D are reversed. For both sunlight angles, colors W and X
were better than colors D and H. Therefore, the remaining task is to
determine 1f H and D and W and X differ significantly ( ¢=0.05) from each
after. Tables 9-11 and Figure 3 indicate the ability of each of the ten
colors evaluated to blend with the desert terrain averaged across all nine
sites and both high and low sunlight angles. Table 11 indicates that
although the colors in color grouping A and B are significantly different
( o= 0.05), there were no significant differences within the groups. Thus,
it can be concluded that the reversals of colors H and D and W and X for
the high and low sunlight angles are of minor consequence. From a
practical field evaluation standpoint, future studies can be conducted
using only the high sunlight angle because it represents the longest period
of the day.

5.0 SECTION 5 - Summary and Conclusions

A total of ten CUCV vehicles were pailnted in camouflage colors and
viewed by thirteen ground observers at nine desert sites in the United
States desert southwest. The colors were divided into two groups of five.
The best three colors from each of the two groups were selected on their
ability to blend with the desert terrain. The resulting six colors were
then ranked on their ability to blend using a six point scale with one
being the best and six being the worst. No tie values were allowed and a
value of seven was assigned to the colors that did not make the final six.
This data was collected for both high and low sunlight angles to determine
what effects the lighting conditions had in the rating of the different
camouflage colors to blend with the terrain.

Analysis of the data indicated that desert colors W and X were better
than H and D for both high and low sunlight angles. The order of W and X
and H and D were reversed for the two lighting conditions. Additional
statistical analysis revealed that within each color grouping A and B,
there were no significant differences (o = 0.05). The order reversal of H
and D and W and X for the two sunlight angle conditions is therefore not
important. It is concluded that future field evaluations should involve
only one sunlight angle. This will be the high sun angle as it represents
a longer period of time for each day.
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Weibull Tail Modeling for Estimating Confidence on Quantiles from
' Censored Samples

Mark Vangel

U.S. Army Materials Technology Laboratory
Watertown, Massachusetts 02172-0001

This paper describes a simple method for estimating lower
confidence bounds on quantiles from a Weibull tail model,.

A two step procedure is proposed for estimating the 100g% lower
confidence bound for the pth gquantile of a Weibull sample of size n.
Parameter estimateg are first obtained for a Weibull model fit to
the lower tail values. The inverse of the estimated CDF is then
evaluated at the (l1-g)th gquantile of the beta distribution with
parameters n(l=-p) and np+l. '

This method is proposed as a simple alternative to Lawless'
elaborate conditional procedure specifically for determining
'B-Basis' values. The B-Basis value is defined to be the quantile
corresponding to the lower 95% confidence bound on 90% reliability.
This value is used by the aircraft industry to determine the’
acceptablity of composite materials, Composite material failure
data is often multimodal, and lower tail modeling is expected to
circumvent this difficulty.

A preliminary Monte Carlo study indicates that the proposed
‘method compares favorably with the Lawless procedure for obtaining

B-Basis values.
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1. - Introduction: . o
When assessing the strength of composite materials for aircraft

applications, an important criterion is the material basis property,
de fined as the 95% lower confidence bound on the stress at which the

material fails with 10% probability.

To be useful for this application, a lower con fidence bound
(LCB) estimator must be able to contend with the primary problems of
composite failure data analysis; that is, small samples (<30) and
multiple failure modes. Because of this multimodality, a parametric
model often cannot be fit to an entire sample, and the standard
nonparametric approach (e.g. Conover, 1980), based on the sample
order statistics, usually yields very conservative results. 1In
order to get a useful estimate of the basis property in this case,
recent work suggests modeling as much of the tail as possible, and
considering the rest of the sample as Type II censored (Breiman,
Stone, and Gins, 1981). This paper develops a simple approximate
method based on such a tail model for estimating confidence bounds
on Weibull guantiles, which is particularly use ful for estimating'

material basis properties from small samples.

2. Review of Exact Methods
Exact methods for inference on the parameters of the (two

parameter) Weibull distribution

[+ ]
F(x) = 1 - e‘(x/B)

are ultimately based on the pivotal random variables for the maximum
likelihood estimators (MLE's). These pivotals are {Thoman, Bain,
and Antle, 1969):

Zl = afo

for the shape parameter ( e } and

z, = aln(8/8)
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for the scale parameter ( 8 ). That is, Zl and 22 have
distributions which depend only on the sample size and on the
censoring configuration, not on the population parameters. The
distributions of these pivotals cannot be written down in closed
form, but may be easily estimated by Monte Carlo. Once the
quantiles of the pivotals have been tabulated for various sample
sizes, exact confidence intervals for the Weibull MLE's may be
obtained. |
confidence on qguantiles of the Weibull cumulative distribution
function can be calculated from the pivotal for the pth quantile

Xp, 0<p<l, which is (Thoman, Bain, and Antle, 1971)

zp=22-1n(—1r3(1—p))z1

Of course, the gquantiles of this pivotal must once again be
determined by Monte Carlo. The tables published in the original
paper are not always accurate. Corrected tables are available
(e.g. Neal and Spiridigliozzi, 1983}.

For censored data, it is necessary to tabulate Zb for censoring
situation as well as sample size. Partial tables are available
(Billman, Antle, and Bain, 1972), but any reasonably complete
tabulation would be unweildly.

Lawless (1979) demonstrated that although the distribution of
Zp is intractable, the pivotal of the quantile conditioned on the
ancillary statistics (statistics whose distribution does not depend
on the population parameters) may be found in closed form. With the
aid of a computer, a conditional confidence interval for the
quantile can then be obtained without resort to Monte Carlo. This
conditional interval probably does not differ very much from the
unconditional interval (Lawless, 1973).

The Lawless method provides exact conditional intervals for
confidence on the parameters and guantiles of any continuous
location-scale family, as long as the parameter estimators are
equivariant. Equivariant estimators of a location parameter u and a

scalg parameter b are functions of the sample §=(xl<,,..,xn) such

that for any ¢, and any c2>0.
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u(c15+c2)=c1u(5)+c2
b(c1£+c2)=c1b(5)

In particular, MLE's are equivariant estimators. A detailed
development of the conditional procedure may be found in Lawless
(1982). _ :

Since the logarithmn of a random variable having the extreme
value distribution with location u and scale b,

G(x) = e-((x—u)/b))

is Weibull with shape ( a ) and scale { 8 ) given by

o = l/Lb ‘B eu

the Lawlesslprocedure applied to the extreme value distribution will
yield the desired confidence on the Weibull quantile. . This
procedure is sketched below for Type II censoring. This outline
follows the exposition in Lawless' book (1982).

If the Type Il censored sample

xl,xz,...,xr . r<n

is independently identically distributed G{x), and if u and b are
any equivariant estimators of the extreme value parameters, then:

= b/b Z, = (u-u)/b

Z. = (u-u)/b ,

1 2
Z =2 - ln(-In(1-
p 2y = In(-In(1 P))/22

are all pivotal statistics; with Zp pivotal for the pth quantile of
G(x). Also, the statistics:

’ Fal
a = {(xi-u )/B; i=1,...,r}
form a complete set of ancillary statistics of which any r-2 are
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functionally independent.
Let the corresponding ordered extreme value sample be

yliyzi' L] .iyr

The conditional pdf of 22 given a is of the form

where X is a constant given a, r, and n. The constant is determined
by numerically integrating the density h2(z | ay. Finally, the
conditional distribution of zﬁ given a is

o

’ w t+tz
P(Zp hl tlé) = h2(2|§) I(r,e P I eaiz) dz

0
where
r ‘
I vy = iwi'+ (n-—r)wr .

wp = In{-1n(1-p))

and I(r,s) is the incomplete gamma function

The Lawless method méy be used to calculate exact conditional
‘confidence intervals or bounds for Weibull quantiles without the
need for tables. The primary disadvantage of this procedure is its
complexity. The numerical integration is not trivial, particularly
when r is large. It is the aim of this paper to present a very
simple approximate method for obtaining intervals which are often

close to the Lawless results.
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3. - An Approximate Method for Estimating the LCB of a Quantile
Let y <reoe sy, be the r smallest order statistics from a
continuous distribution F(e ). Let

be the pth quantlle of F(x), and let L be an estzmated 100 % LCB

for xp Assume initially that.p = J/n for some integer j so that vy.

b
estimates xp.

Using yj as an estimator for_kp,\oﬁe obtains the following
approximation

= P(ij xp) ='P(F(Lg‘i F(xp)) x ] - p(F(yj) > F(L&)-
But F(yj) has the beta distribution

| I(PT(n-3+1) u = _
l-y = Beta(quj,n—j-i-]_) _____ s 5 -/O-Y tj 'l(l—t)n—‘] dt

The approximate LCB is then

” ‘--1‘
L =F .
. (uY)

If j/n p for 1nteger i, 1et uy be the 100(1 Y ) percentlle from
the Beta {u;pn,(1- =p)n+l) dlstrlbution._
For the Weibull case

.L = F = ; - /a
) (UY)‘ B 1n(1/(1 uy))
where 4 and ﬁ are the MLE's. This estimator is identical to
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Thoman, Bain, and Antle's estimator, except the guantile of zp for
appropriate n and r is replaced with a gquantile from a beta
distribution.

4. Interpretation of the LCB Estimator an as approximation to the

guantile pivotal
Following Thoman, Bain, and Antle (1971), let the distribution

of Zp be G(2) and

P(Zp 5_zY) = G(zY) =y,

This implies that

oy p(seE® < s-in@-pn %

=Y
it is because of (*) that Zp is pivotal for xp. The new estimator

yields an approximate relation of the same form as (*).

l/; 1/a)

P(é(-ln(l-uY)) < B(-In(1-p)) =y

For this to be an approximation, of course, the left hand sides of
the inequalities should be nearly equal
1/a _

6(-1n(1-u ) ge %y 8

or, equivalently,

z =z = -In(- -
" y n(-1n(1 uy)) .

For the approximation to be useful, the random variable
should have a distribution close to that of the pivotal Zp in the

L

vicinity of the quantiles of interest. Since Z is a simple
trans formation of a beta random variable, if |

u(z) = 1l-e
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then the density of z is

fu()) = M) u-1) -1, oner

To graphically illustrate the agreement between the pivotal density
and the density of Zz, several simulations were per formed, (Figure 1,
a-d). The values of p and y were. set at .l and +95 respectively,
since the 95% lower confidence bound on 10% probability of failure
is the case of primary interest in aircraft design. The sample
sizes were kept small - reflecting the expected range of sample
sizes of composite failure data, n = 10, 20, 30, 40, and 50. For
each sample size, the upper two thirds of the data was Type II
censored: r = 6, 9, 12, and 15. For 5, the exact density is
plotted. For the pivotal, the density is estimated using a four
parameter generalization of Tukey's lambda distribution (Ramberg,
et.al., 1979) applied to 2,500 Monte Carlo replicates for each case.
‘The agreement between the densities appears to be quite good, as:
long as one bears in mind that for intervals with reasonable
confidence, one need only be concerned with the validity of the
approximation in the tails,

5. Comparison with the Lawless Method

A simulation was performed to directly compare the Lawless
procedure with the approximation presented in this paper. Because
of the computational effort required for the Lawless integration,
the scope of this study was necessarily modest. However, use ful
results were obtained despite the restriction to 10 replicates per
case, It was decided to fix p = .1 and v = ,95 as in the previous
section. Also, the sample size was fixed at 30, since this is
typical for composite material failure data in aircraft industry
testing. Lower confidence bound estimates were obtained for
pseudo-random Weibull samples with shape parameters in the range .

2 to 100 and Type II censoring of 90% to 0% (r =3, 6, 9,...,30).
The average percent differences in the results are presented in
Figure 2a. Note that for r = 9, there is amazing agreement between



the two methods. This could have been anticipated from the close
agreement at the 95th percentiles of Z and 2 for this case (Figure
id). h

For the approximate estimator, the dependence of the simulation
results on the Weibull shape parameter may be completely removed by
trans forming the estimator Lp to its pivotal:

oln (fp /8)

This transformation was applied to both the Lawless results and the
approximation results. The percent difference between the methods
for the transformed data showed no depehdence on ¢ SO these were
averaged over all the data providing a measure of percent difference
vs. r based on 150 replicates per r value. (Figure 2b). Positive
percent difference is defined here to mean that the Lawless bound
was greater than the approximate bound. For 9<r<30, the
approximation yields a conservative result. It is reassuring that
potentially dangerous nonconservative estimates only occur for very

small values of r.

6. Examples

As examples, the approximate method was applied to three
extreme value data sets from the literature (Figure 3 and 4). In
all of these cases, either the approximation gives a result very
close to that obtained via the conditional procedure, or the
approximation provides a result which is more conservative.

These examples, of course, cannot by themselves validate the
proposed method. They are intended rather to highlight the ease
with which one may arrive at reasonable results, making use of a
computer only to obtain MLE's of the parameters and, possibly, the
guantiles of the relevant beta distribution.
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7. Conclusion

The proposed method is attractive as an alternative to the
Lawless procedure. The Lawless method is computationally complek,
whereas the new method is very easy to apply. Unfortunately, while
the Lawless method may be justified theoretically, the proposed
method as yet has no firm theoretical basis. The interpretation of
the new method as an approximation to the pivotal is interesting,
but by itself it cannot provide this foundation, Thé natural
question of how good this approximation is in general cannot be
answered because the pivotal distibution can only be obtained by
simulation. For the cases considered, namely 95% LCB on 10% point
from samples of 10 through 50, however, the apﬁroximation is good.
Also, the method hés been demonstrated to give results for a sample
size of 30, which are generally either close to or more conservative
-than the Lawless results. To validate the‘procedure, either an
extensive Monte Carlo study or a deeper theoretical investigation
must be performed. Both of these approaches will be considered in
the near future.
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FIGURE 1 (continued)
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FIGURE 3

EXAMPLE: LAWLESS (1982), p.l156

Type II censored extreme value sample

Estimate 90% confidence interval for X 1

" ”~ P .3
u = =-,122 b = ,907 @ = .931 /b =1.026%
A 4
B8=e = ,8852
& A :
~ﬁseta (ts1,19) dt = ~/Beta {t:1,19) dt = .05
e (A
~ 2
In [-ﬂln(l-sl) ] = -4.,03, Lawless = -3.74
~ M?- '
in L—Bln(l-sz) ] = -1.50, Lawless = ~1.49

* unbiased MLE (Thoman, Bain, and Antle, 1969)
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FIGURE 4

EXAMPLE: LAWLESS (1975), p. 255

n = 40 r = 28 -2.982, -2.849,. . ., .245, .296

Pseudo random sample from extreme value distribution with u = 0, b =1

~

= .1563 b = .9104

(=

~
= ,966 / b = 1.061

=P
1

el = 1.169

=
]

Lower 95% confidence on

X1 X, 05
Lawless -2.71 -3.61
Approximation -2.99 -3.62
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THE LINDSTROM-MADDEN METHOD POR SERIES SYSTEMS
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ABSTRACT

‘The Lindstrom-Madden method of computing lower confidence
limits for series systems with unlike components is extended to
series systems with repeated components utilizing the results of
Harris and Soms {(1983). BAn exact solution is given for no
falilures and key test results, together with an approximation for

the general case. Numerical examples are also provided.

1. INTRODUCTION AND SUMMARY

A problem of substantial importance to practitioners in
reliability is the statistical estimation of the reliability of a
gseries system of stochastically independent components when some
components are repeated, using experimental data collected on the
individual components. In the situations discussed in this paper,
the component data consist of a sequence of Bernoulli trials.
Thus, for component i, 1 = 1,2,...,k, the data is the pair

{n;,¥;), where n; 1is the number of trials and ¥; 1is the
144 i i
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number of observations for which the component functions.
Y4:¥97000,Y, are assumed to be mutually independent random

. variables. We assume that there are Yi components of type 1,
1 € 1 € ke Then the parameter of interest is

h(p1,p2,...,pk) = h(;), the reliability of the gystem, whefe

hip) = [ | p; -
=1

More specifically, it iz desired to obtain a Buehler {1957)

optimal lower 1 - ¢ confidence limit on h(g).

The case of Y1 = 72 = e = Yk = 1 has been treated in
Sudakov (1974}, Winterbottom (1974), and Harris and Soms (1983).

In Section 2 we summarize the general theory of Harris and
Soms (1983) applicable here. 1In Section 3 the exact solutions to
no failures and key test results are given. Lindstrom~Madden type
approximations are given in Section 4. Section 5 contains

numerical examples.

2. RUEHLER'S METHOD FOR OPTIMAL CONFIDENCE LIMITS

We now specialize the general results of Harris and Sowms
(1983} on optimal confidence limits for system reliability to a
series gystem with lndependent and repeated components. Aas in

Section 1, let
~ k ¥y
h(P) = I Pi L)
i=1

0 < P, < 1, Xy =ng =Yy, %3 =0y = ¥y, 1< 1<k,

S = {’;{'xi = 0,1;0..,1‘1 1< 1< k} and let g(;) = (x1,x2,...,xk)

I
be an ordering functiin,-i.e., for real x;, 0 < X < Ny, g{;) is
non~decreasing in each component. It is often convenient to
normalize g(;) by letting 9(3) = 1 and g(g) = 0, With such a
normalization, g(;). is often gelected to be a point estimator of

h(;}. Also let R =.{r1,r2,...,rs, s » 21 be the range set of

g(;)- With no loss of generality we order R so that
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ry > Ty > .ee >ry and let Ay = {xlg(x) = Xy X € 8,

s
1= 1,2,...,8}. The sets A; constitute a partition of S
" induced by g(;)- We assume throughout that the data is

distributed by

-k n,-x, X,
o &= ™ 1 1%
fi{x;p) = (X = x) | | ( a4
P i=1 i
]i‘- 1 YUYy L (2.1)
pi qi !

i=
where qq = 1 - Pys 1 =1,2,v0e4k. With no loss of generality, we

assume ny £ n, % +es S ny

2
From these definitions, it follows that

3 ~
pe{x e U 2] =pv{g(x) > r}. (2.2)
P . =1 i p J

From (2.1) and (2.2), we have

2
Z i X f(i:p) {(2.3)

1
p{g(X) > r.} = 3}
P ) = 0 i, =0

Where z = (i1,12,oi-fik) and u2 = uz{i1),c-0’uk =
uk(i1,12,...,ik_1) are integers determined by rj. Equivalently,
(e, [&,] (e, ]

2 k
Psfg(xw_*a:j} = T oeee - Y £iiip) {2.4)

{[Riannge P4

Where tz tz(i ),nna;tk = tk(11,iz,oo|'ik_1)‘ With
ty = sup{t]ﬂ €t < n; and g{t,0,0,...,0) 2 rj} and
tEti1,12,...,i ) = sup{t|0 € £ < n, and

2-1 g |
g(i1;iziooo,i 1;t,0;-o-,0) ? rj}; L= 2'3;c|o;ko

fm
We now introduce the notion of Buehler optimal confidence
limits. Let gi(x) = rse Then define
a_~_ = inf{n(p) |2~{i]g(@) » g(x)} » a} . (2.5)
409 {n(p)| S lg(i) » gtx)}

Equivalently, by (2.2), we can also write
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N 3
. = inf{h(p)ng{X € ;:1 Ai} > a} . (2.6)

Then we have, from Harris and Soms (1983),

Theorem 2.1. ag(;) is a 1 - a Ilower confidence limit for
h(S). If bg(§) is any other 1 - o lower confidence limit for
h(p) with b, > b_ > ... > b b .~ <a 5~
~(p) w T, , rj’ then g(%) ag(x) for all
X € 5.

Two possible cholces of g(x) are
gix) = | I ({ny = x.)/n)) : "(2.7)

i i
i=1
or
- k Yi-1 ni—xi—j

ax) =[] ||———;—~_j]. (2.8)

1=1 j=0 i

Both reduce to the generally used g(;) for serles aystems with

independent components when Y1 = Y2 = e = Yk =1, i.e.,
. k
g(x) = l l (ﬂi - Ki)/ni .
i=1

Since {2.7) is the maximum likelihood estimator of h{p) we will
uge it here and from now on it will be understood that gf;} is
glven by (2.7). With thig choice of g(;), we assume from now on

that 0 < Xy < 0y, 1=1,2,404,k, since 0 if some

a_ ,~ =
gix)
Xy = Ny With this assumption, the t,; in (2.4) are given by

ty = ng - (H (n, - x,) rIni ) (2.9
= i=

and
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: (2.10)
£-1 Y k ¥, 1/Y
s i L
| | (n_ = 41i) | I n ;
g=1 ° s i=g+1 -

k Yi
£ = 2,..4,.%, with ‘ | n,o = 1.
i=k+1

For the purpose of simplifying the caleulation of ag(;) in

special cases it is necessary to state additiomal results from

Harrls and Soms {1983).
Theorem 2.2, Let .g(;) = Ty and let

‘ f*(x:a)-= sup ,P~{g(§) > r.}, 0 <a<1. . (2.1
hip)=a J
Then
® ro - * .
inf £ (x;a) = 0, ‘sap £ (x;a) = 1
N<a<t i - .0<a<1

L - . o o .
and f (x;a) 1is strictly Increasing in a.

* o~
Theorem 2.3. £ (x;a) = 0 has exactly one solution aa in a

and a, = ag(§).

3. EXACT SOLUTIONS FOR ZERO FAILURES AND KEY TEST RESULTS

We first assume that x = (0,0,;..,.,0) = 9 and use Theorem

2f3 to obtain ag{B)'
Theorem 3.1. If ; = 5, then
K n n, /Y,
® ~
f (0za) = sup I ! pii =aJ J ' {3.1)
kY =1
| | P, =a
j=1 1
where n./Y. = mnmin n, /Y, iand
I o TR
Y./n,
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Egoof.

X n kY, n/Y, k  (ny,-ny.)/y
: i 137 j
TTet=(TTe)d 3TTp +3 3473
i=1 i=1 =1
1#3
n, /Y,
gal 3,

since n, Y. - n,Y, » 0 is equivalent to n /Y. ? n, /Y ; which is
i3 j i 1771
k (nY-nY)/Y

true, and therefore I | Py J < 1. (3.1) follows by
i=1
1#j
/v,
noLing that the cholce py = a J,'pi =1, 1 # 3, gives
n /Y

‘ 1 pi = a ]. Then, using Theorem 2.3,:we obtain (3.2),

which reduces to the known series result if

Y1=Y2=I..=Yk=1o

We now turn to analogues of key test resulis (see, e.g.,
Winterbottom (1974) and Harris and Soms (1983)). We define a key
test regult 1f Y, = max Y

1

i {recall that ny, = min n;) and
X = (x1,0,...,0)

1€i<k 1€ick

Theorem 3.2, If x is a key test result and

Yi k Y, X
{Z1Tﬂr {n; - @ T_T (ni -'xi) } = {z| z (n;-z;)

i=1. B e S 1=1
j : | .
> (n, -x,) : ' (3.3)

=1 A ,

then
£ (%ra) | ( + 1) (3.4)
Xia) = 1 n - x1,x1 - + .
a1/T1 _

where Ix(a,b} is the incomplete beta function. ILet ba denote
the solution in b of

o = Ib(n1 - X1;x1 + 1) .

234



Y
1
~ =Dpb . Note that b i3 the usual 1 - ¢ lower
g(x) o V o TOWREL
confidence limit on p, given Xy failures in ny trials.

Then a

Proof, Without loss of generality we can assume that

Ny =Ny = 4se =1n,, for otherwise we can write (2.4) as

X x, =1
1 n n,-i, i 171 n n.~i. 1
~ 1y, M7 M 2y M7 b
pelgxy>r}=§ (o, q )p 1, ...
P 3 1.=0 ™1 1= Iy 2 2
1 1
X "i "i s .
v f k=2 nk—1)Pnk-1 ik—1q1k—1I (n -
ik_1=0 ik_1 k-1 k-1 Py k

X . x -i -i s e i
L N Rt W T R N i o
DR VIR R A ! 3 Pt -1 Tp, (P
£.=0 1 i =0 k=1 K
1 k=1
(x1-i1-i2-----ik“1),x1-i1"i2...-ik_1+1) i (3-5)

where g(;) = rj, by the monotone likelihood ratio property of
the beta distribution (Ix(a,b) has a monotone likelihood ratio
in =-a for fixed b, which implies that Ix(a,b) is a
decreasing function of a). A similar argument applies to the
other indexes. Thus, if (3.4) is true for n; =n, = ... =ny,

by (3.5) it follows for ny < n2 € L4 § ny .

S0, assuming n o= (n1,n1,...,n1), we seek to maximize

k™

o ) ) LI

14 ‘
3 (ni - xi) = E Y } 7 (3-6)
Pri=1 =1 t

1 i=1

[ e iy

i

where Yij are independent Bernoulli random variables with
' | Y

' k 1 LS O} -k
parameter p; and 1 | p,” = a. If 1 | P, = a; then | I <1
i=1 i=1 i=1
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1y 1,

ranges from a to a + Y. = min vy,. This is seen as
follows: 1<k '
k kv, /Y, k_ 1=y /Y
i t i
[Te, =(TTr") NN
i=1 =1 i=2
v, k(Y =Y, MY VA
- a 1-T—T p 11 1 < a 1
i
=2
and
k LI FRLA TS S FYA
1=1 i=1 =1
1#3
v, ko {y,=v,) /Y, 1/
. 3 Yi YJ , Y
fo) a
i
=1
1#3
Y, | 17,
and the choices Py =a 1 Py = e =Py = 1, and py = a J,
Py = 1, i # 3, attailn these values. From the results of Pledger
k 1/v, 1/‘{1
and Proschan (1971), for each b= | p;, a - <b<a ,
' i=1
{3.6) is maximized by Py = b, Py = 1, 2 € 1 € k. Further, the
/Y. Y
maximum over b, a J<b<a + of the maxima for each b is
/Y4

given by Py = a r Py =12 < i1 ¢k, by the monotone
likxelihood ratio property of the binomial distribution, and

1/Y1 k Yi
py =2 rpy =1, 2 £ 1< k, satisfiles | I p; = a. Thig

completes the proof. 1=1

1f Y1 = Y2 T hee = Yk = 1, some guldelines for the
verification of (3.3) are glven in Harris and Soms (1983). In the

present case (3.3) must be verified by trial and error by showing
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k vy ' Y, koY
that min ‘ l {n, - %,) = (ng - X, ) l | n and that
i i 1 1 i
§ i=1 i=2
X,=%
=
x Y Y, k ¥
max | ‘ {n, - x,) 1 < {ny; - X,) ! l | n i.
! i i 1 1 1
; i=1 i=2
X,=X ,+1 ' '
=1
Example 3.1. Let k =3, n = (5,5,5), ¥ = (3,3,2), o = .10 and
x= (1,0,0). Then min | | {ng = xi) L. 2000090 and
? i=1 ‘ .
}ox, =1
i=1 i
3 A N :
max | | (ny - xi} = 140625 and x 1s a key test result
f i=1
x,=2 ‘
1= b

and {3.3) is satisfied and hence

43
“a o~ = ,4161° = ,0720
Ba(x) !

where .10 = 1.4161f4,2). Further, it can also be verified that
% = {2,0,0) 1is a key test result for which (3.3} is satisfied,
but that for x = (3,0,0), (3.3) is violated.

Note that Theorem 3Q2Taéserts that ag(;) = b:1 for
0 <a <1, It is thus possible that (3.3) is not true but the
conclusion still holds for o of practical lmportance. This 1is

taken up in Section 4.

4. THE LINDSTROM-MADDEN METHOD FOR SERIES SYSTEMS WITH
‘ REPEATED COMPONENTS

When Y1 = Y2 T .. = Yr = t, the lLindstrom-Madden method

{henceforth abbreviated L-M) is an approximation bg(;) to

a_,~ of the form
g{x)
b ~ = min b (n,) , (4.1)

9(x)  cick 1
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where

o 1
with
k .
tOi = ni(1 - i|—1| (ni - xi)/ni) ’ (4-3)

il.e.,; tny is the maximum of the recursive indexes ty "defined

by (2.4). For the usual levels of ¢, b = ba(n1). Further,

q(?c)

numerical evidence indicates (Harris and Soms (1983)) that for «

levels of practical significance
b ~ < a ~ . 4.4
g{x) g{x) . (4.4)
(4.4) was incorrecily claimed to be true for 0 < a < 1 in
Sudakov (1974) and this is discussed at length in Harris and Soms
{1983). However, (4.4) is known to hold for gpecial cases

{Winterbottom (1974} and Harris and Soms (1983)).

Motivated by the above, we now give an L-M approximation

bg(;-) to ag&) for arbitrary Yy by
3
b (~) = min ba(ni) . (4.5%)
I 1kick ‘
where |
%= Iy (g T Eoueter * N e
B T § .
with
J k Y. 1/Yi
“oi = (H‘“ -x) T n j) ' (4.7)
1 - 3=1 j=1
i7#L

i1.e., toy is the maximum of the recursive indexes ti defined
by (2.4)., However, in this case it is not clear which index 1
gives the minimum, except that the likely candidate is the one for
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which Yj‘ 1< j < k, iz a maximum. We might expect, by analogy,

that for o levels of practical interest
b ~ = ~ .

g © g% (4.8)

5. WNUMERICAL EXAMPLES

o~

For k = 2 and gselected n, Y, x, & = .05 and .10, Table

I glves bg(;), ag(;) and the best upper bound, ug(;),

Yy
Uz = 1:1121{ u,{n,) ' {(5.1)
~where _
o =1 (ni - [tOi],[tUil + 1) ) (5.2)

ua(ni)

and tOi are defined as in (4.6).

TABLE I.

L-M Approximations and a _,~
PP gl{x)

(n-‘:nz) | (Y.'I-Yz) (x1,x2) o hg(';{) ag(;) ug(’;’t)

(10,10) {1,2) (0,1} .05 »3670 «3670 +3670

(10,10) (1,2) (0,1 .10 .4398 . .4398  .4398
(10,10 (1,2) {1,1) .05  .3045 .3514  .3670
{10,10) (1,2) {(1,1) .10 .3715  .4227  .4398
(10,10) {(1,2) (2,1) .05  .2484  .3151 L3670
(10,10} (1,2) (2,1) .10 .3088  .3825  .4398
(10,15} {2,3) (0,1) .05 <3695 3719 .3742
(10,15) (2,3) (0,1) .10 L4425  .4446  .4467
(10,15) (2,3) {(1,1) .05 .2554  .3042 .3670
(10,15} (2,9 (1,1 .10 .3167  .3705  .4398
(10,15) (2,3) (2,1) .05 1712 .1981  .2431
{10,15) {(2,3) (2,0) .10 .2203  .2513  .3029
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Note that for all the. casgag in Table I, bq{;)_ ig a Llower
bhound for aq(;). Thee cempntations ware done by a ashori FORTRAN

program, a liasting of which can bhe obtatned from the aulhor,

" 6.  CONCLINTIHNG REMARKS

In this paper we have axtended the L-M methnd to series
systems with repeated components.  More work ia needad tn

agcertatn the reglon of validity of (4.8).
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HOWARD WAINER*

Methods for displaying data badly have been devel-
oping for many years, and a wide variety of interesting
and inventive schemes have emerged. Presented here is
a synthesis yiclding the 12 most powerlul techniques
that seem to underlie many of the realizations found in
practice. These 12 (the dirty dozen) are identified-and
illustrated, '

KEY WORDS: Graphics; Data display; Data deunsity,
Data-ink ratio.

'

1. INTRODUCTION

The display of data is a topic of substantial contems )

poraty interest and one that has oceupied the thoughts

of many scholars for almost 200 years. During this time
there have been a number of attempts to codify stan-

dards of good piactice (e.g., ASME Standards 1915;
Cox 1Y78; Eluenbeig 1977) us well-us a number of
books that have iliustrated them  {i.e., DBertin
1973,1977,1981: Schmid 1954; Schmid and Schmid
1979; Tufte 1983). 'The last decade -or so has scen a
tremendous increase in the development of new display
techniques and tools that have been reviewed recently
(Macdonald-Ross 1977; Fienberg 1979; Cox 1978;
Wainer and Thissen 1981). We wish to concentrate on
methods of data display that leave the viewers as unin-
formed as they were before seeing the display or, worse,
those that induce confusion. Although such technigues
are broadly practiced, to my knowledge they have not
as yet been gathered into a single source or carefully

*Howird Wairer is Senjor Research Scientist, Educational Testing
Service, Princeton, NJ 08541, This is the text of an invited address to -~

the American Stisticnl Association, It was supported in part by the
Mrogeam Statisties Research Project of the Educational Testing Ser-
vice. The author would like to express his gratitude to the numerous
fiiecnds and colleagues who read or heard this article and offered
valuable suppestions for its improvement. Especially helplul were
David Andriews, Pauf Hoelland, Bruce Kaplan, James O. Ramsay,
Edward Tufle, the participants in the Stanford Workshop on Ad-
vanced Graphical Preseatation, two anonymous selerees, the long-
suffering associste editor, and Gary Koch,

How to Display Data Badly

categorized. This article is the beginning of such a
compendium,

The aim of good data graphics is to displhiy data accu-
rately and clearly. Let us use this delinition as a starting
point for categorizing methods of bad data display. Tiie
definition has three parts, These are (1) showing data,
(b) showing data accurately, and (¢} showing data
clearly. Thus, if we wish to display data badly, we have
three avenues to follow. Let us examine them in se-
quence, parse them into some of their component parts,
and see if we can identify means for measuring the
success of each strategy.

2. SHOWING DATA

Obviously, if the aim of a good display is 1o convey
information, the less information carried in the display,
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Figure 1. An example of a low density graph (from S13 [ddi = .3},
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Figure 2 A )‘ow density graph {from Friedman and Rafsky 1981

{ddi = .5]).

the worse it is. Tufte (1983) has devised a scheme for
measuring the amount of information in displays, called
the data density index (ddi), which is “the number of
numbers plotted per square inch.” This easily caicu-
lated index is often surprisingly informative. In popular
and technical media we have found a range from-.1 to
362. This provides us with the first rule of bad data
display.

Rule 1—Show as Few Data as Possible (Minimize the
Data Density)

What does a data graphic with a ddi of .3 look like?
Shown in Figure 1 is a graphic from the book Social
Indicators HI (S13), otiginally done in four colors (orig-
inal size 7" by 9") that contains 18 numbers (18/63 = .3).
The median data graph in SI3 has a data density of .6
numbers/in?; this one is not an unusual choice. Shown in
Figure 2 is a plot from the article by Friedman and
Rafsky (1981) with a ddi of .5 (it shows 4 numbers in 8

Lahor Peruc!;ivi: US.vs Japan

e
topona e dotg ypdated
by Bureau of labor Siafistks
inge of LS. eutput

1977

ming f o B

19467 1972
Etimated pos man-hovr 1t Jop

Figure 3. Alow density graph (© 1978, The Washington Post) with
chart-junk to fill in the space (ddi =.2).

Pabhf and Privale flemenlary Schools C2d pubiic
Selected Years: 1929-1970 =
: Privale

- Ihuﬂsaﬂ%bﬂ Sehoods R
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Hl

oo

1939-1¢0 1943-50
School Yea:

Figura 4. Hiding the data in the scale (from S13).

1929-30 " 1959-50 1963-19

in?), This is unusual for JASA, where the median data
graph has a ddi of 27. In defense of the producers of this
plot, the point of the graph is to show that a method of
analysis suggested by a critic of their paper was not
fruitful. I suspect that prose would have worked pretty
well also. '

Although arguments can be made that high data den-
sity does not imply that a graphic wili be good, nor one
with low density bad, it does reflect on the efficiency of
the transmission of information. Obviously, if we hold
clarity and accuracy constant, more information is bet-

THE NUMBER OF PRIVATE ELEMENTARY SCHOOL
o FROM 1930-1970 '

9.275
10 10,000
10.375
13.574
14372
0t -
Bji ! I i L 1
1930 1840 1850 1960 1870

Year

. Figure 5. Expanding the scale and showing the data in Figure 4
{from SI3). -
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Frgu.re 8. Ignonng the visual metaphor (® 1978, The New York
Times).

ter than less. One of the great assets of graphical tech-
niques is that they can convey large amounts of informa-

tion in a small space. _
We node that when a grapb contains little or no infor-

mittion the plot can look quite empty (Figure 2) and

thus raise suspicions in the viewer that there is nothing
to be communicated. A way to avoid these suspicions is
to fitl up the plot with nondata figurations—what Tufte
has termed “chartjunk.” Figure 3 shows a plot of the
labor productivity of Japan relative to that of the
United States, It contains one number for each of three
years. Obviousty, a graph of such sparse information
would have a lot of blank spuce, so [illing the space
hides the paucity of information from the reader.

A convenient measure of the extent to which this
practice is in"use is Tufte’s “data-ink ratio.” This mea-
sure is the ratio of the amount of ink used In graphing
the data to the total amount of ink in the graph. The
closer to zero this ratio gets, the worse the graph, The
notion of the data-ink ratio brings us to the second
principle of bad data display.

Rule 2—Hide What Data You Do Show
 (Minimize the Data-Ink Ratio}

One can hide data in a variety of ways. One method
that occurs with some regularity is hiding the data in the
grid. The grid is useful for plotting the points, but only

rarely afterwards. Thus to display data badly, use a fine
grid and plot the points dimly {see Tufte 1983
pp. 94-95 for one repeated version of this).

A second way to hide the data is in the scale. This
corresponds to blowing up the scale (i.e., looking at the
data from far away) so that any variation in the data is
obscured by the magnitude of the scale. One can justify
this practice by appealing to “honesty requires that we
start the scale at zero,” or other sorts of sophistry.

In Figure 4 is a plot that (from SI3) effectively hides
the grawth of private schools in the scale. A redrawing

of the number of private schools on a different scale

conveys the growth that took place during the mid-
1950s (Figure 5). The relationship between this rise and
Brown vs. Topeka School Board becomes an immediate
question,

To conclude this section, we have seen that we can

display data badly either by not including them (Rule 1)

:; i on mithions of U.5. dollars) finmdlons of U S dollars}

| 3.000 5000

U.S. imports
from Taiwan

U.S. exports
to China

{1.S. exports
to Taiwan

U.8. imports
from China

1872 1974 1978 1978 1980 1970 1872

Saurce Deparimant 33 Lammarck

Figure 7. Reversing the metaphor in mid-graph while changing
scales on both axes (© June 14, 1981, The New York Times).

or by hiding them (Rule 2). We can measure the extent
to which we are successful in excluding the data through
the data density; we can sometimes convince viewers
that we have included the data through the incorpo-
ration of chartjunk. Hiding the data can be done either
by using an overabundance of chartjunk or by cleverly
choosing the scale so that the data disappear, A mea-
sure of the success we have achieved in hiding the data
is through the data-ink ratio.

3. SHOWING DATA ACCURATELY

The essence of a graphic display is that a set of num-
bers having both magnitudes and an order are repre-
sented by an appropriate visual metaphor—the mag-
nitude and order of the metaphorical representation
match the numbers. We can display data badly by ignor-
ing or distortinhg this concept.

Rule 3—lIgnore the Visual Metaphor Altogether

If the data are ordered and if the visual metaphor has
a natural order, a bad display will surely emerge if you
shuffle the relationship. In Figure 6 note that the bar
labeled 14.1 is longer than the bar labeled 18, Another
method is to change the meaning of the metaphor in the
middle of the plot, In Figure 7 the dark shading repre-
sents imports on one side and exports on the other, This
is but one of the problems of this graph; more scrious
still is the change of scale. There is also a difference in
the time scale, but that is minor. A common theme in
Playfair's (1786) work was the difference between im-
ports and exports. In Figure 8, a 200-year-old graph
tells the story clearly. Two such plots would have ilius-
trated the story surrounding this graph quite clearly.

" Rule 4—Only Order Matters

One frequent trick is to use length as the visual meta-
phor when area is what is perceived. This was used quite
effectively by The Washington Post in Figure 9. Note
that this graph also has a low data density (.1}, and its.
data-ink ratio is close to zero. We can also calculate
Tufte’s (1983) measure of perceptual distortion (PD)
for this graph. The PD in this instance is the perceived

.
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Figure 8. A plot on the same topic done well two centuries eatlier (from Playfair 1786).

change in the value of the dollar from Eisenhower to
Carter divided by the actual change. I read and measure
thus:

Actual Measured
0— .44 _ 22.00-2.06 _
Ve 1.27 Y206 =9.68
PD =9.68/1.27 =7.62

ST AU
TSR 4

This distortion of over 700% is substantial but by uo
means a record.

A less distorted view of these data is provided in
Figure 10. in addition, the spacing suggested by the
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Figure 9. An example of how to goose up the effect by squarlng Figure 10. The data in Figure 9 as an unadornad hne r:harf (from
the ayeball (® 1978, The Washingion Post). Wainer, 1980).
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presidential faces is made explicit on the time scale.
Rule 5—Graph Data Out of Context

Often we can modify the perception of the graph
(particularly for time scries data) by choosing carefully
the interval displayed. A precipitous drop can disappear
if we choose a starting date just after the drop. Simi-
larly, we can turn slight meanders into sharp changes by
focusing on a single meander and expanding the scale.
Often the choice of scale is arbitrary but can have pro-
found effects on the perception of the display. Figure 11
shows a famous example in which President Reagan
gives an out-of-context view of the effects of his tax cut.
The Times” alternative provides the context for a deeper
understanding. Simuitanecously omitting the context as
well as any quantitative scale is the key to the practice
of Ordinal Graphics (see also Rule 4). Automatic rules
do not always work, and wisdom is always required.

In Section 3 we discussed three rules for the accurate
display of data. One can compromise accuracy by ignor-
ing visual metaphors (Rule 3), by only paying attention
to the order of the numbers and not their magnitude
{Rule 4), or by showing data out of context (Rule 5).
We advocated the use of Tufte's measure of perceptual
distortion as a way of measuring the extent to which the
accuracy of the data has been compromised by the dis-
play. One can think of modifications that would allow it
to be applied in other situations, but we leave such
expansion to other accounts,

4. SHOWING DATA CLEARLY

In this scction we discuss methods for badly dis-
playing data that do not seem as serious as those de-

THE NEW YORK TIMES, SUNDAY, AUGUST 2, 1981
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Figure 11. The White House showing neither scale nor context
{© 7981, The New York Times, reprinted with permission).

scribed previousty; that is, the data are displayed, and

-they might even be accurate in their portrayal. Yet sub-

tle {and not so subtle) technigues can be used to cffec-
tively obscure the most meaningful or interesting as-
pects of the data, It is more difficult to provide objective
measures of presentational clarity, but we rely on the
reader to judge from the examples presented.

Rule 6—Change Scales in Mid-Axis

This is a powerful technique that can make larpe dif-
ferences look small and make exponential chanpes look
linear.

In Figure 12 is a graph that supports the associated
story about the skyrocketing circulation of The New
York Post compared to the plummeting Daify News
circulation. The reason given is that New Yorkers
“trust” the Post. It takes a careful look to note the
700,000 jump that the scale makes between-the two
lines. ‘ i

In Figure 13 is a plot of physicians’ incomes over
time. It appears to be linear, with a slight tapering off
in recent years. A carefui look at the scale shows that it
starts out plotting every eight years and ends up plotting
yearly. A more regular scale (in Figure 14) tells quite a
different story,

The soaraway Post
- the daily paper
New Yorkers trust

(8 1911000
1,900,600 - :
IR
SNl INEWS
1,800,600 %
| N
1.70().090. ;\%
31,696,000
LT N T
d) S,
1,500,000
b
1,481,000

1977 1978 979 1980 1981 1982

Figure 12. Changing scale in mid-axis to make large differences
small (© 1981, New York Post).
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Figure 13. Changing scale in rid-axis to make exponential growth
finear (% The Washington Post).

Rule 7——FLP'I.['.II'H.\'1"Z(’ the Trivial (Ignore the Important)

Sometimes the data that are to be displayed have one
important sspect ased others that are trivial. The graph
can be made worse by emphasizing the trivial part. In
Figure 1S we have a page from S14 that compares the
income levels of men and women by educational levels.
It reveals the not surprising result that better educated
individuals are paid betier than more poorly educated
ones and that changes across time expressed in constant
dollars are reasonably constant. The comparison of
greatest interest and current concern, comparing sal-
aries between sexes within education level, must be
made clumsily by vertically transposing from one graph
to another. 1t seems clear that Rule 7 must have been
operating here, for it would have been casy to place the
graphs side by side and allow the comparison of interest
to be made more directly. Looking al the problem from
a strictly data-analytic point of view, we note that there
are two Jarge main effects (education and sex) and a
small time effcct. This would have implied a plot that
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Wainer 1980}
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Figure 15. Emphasizing the !.rh;'ial: Hiding the main elfect of sex
differenices in income through the vertical placement of plots {from

S513).

showed the large effects clearly and placed the smallish
time trend into the background {Figure 16).

MEDIAN INCOME DF YEAR-ROUND FULL TIME WORKERS
25-34 YEAT'S OLD 8Y SEX AND EDUCATIONAL ATTAIRMENT:
1966-1977 {IK CONSTANT 1977 DOLLARS}
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Figure 16. Figure 15 redone with the farge main effects empha-

sized and the small one {lime trends) suppressed.
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Figure 17. Jiggling the baseline makes comparisons more difficult
{from Handhook of Agricultural Charis).

Rule 8—Jiggle the Baseline

Making comparisons is always aided when the quan-
tities being compared start from a common base. Thus
we can always make the graph worse by starting from
different bases. Such schemies as the hanging or sus-
pended rootogram and the residual plot are meant to
facilitate comparisons. in Figure 17 is a plot of U.S.
imports of red meat taken from the Handbook of Agri-
cultural Charts published by the U.S. Department of
Agriculture. Shading beneath each line is a convention
that indicates summation, telling us that the amount of
ench kind of meat is added to the amounts below it.
Because of the dominance of and the fluctuations in
importation of beef and veal, it is hard to see what the
changes are in the other kinds of meat—Is the importa-
tion of pork increasing? Decreasing? Staying constant?
The only purpose for stacking is to indicate graphically
the total summation. This is easily done through the
addition of another line for TOTAL. Note that a
TOTAL will always be clear and will never intersect the
other lines on the plot. A version of these data is shown

U.S. IMPORTS OF RED MEATS"
8L 1B.™” o

25 . 4

20 cF-\'
15 _
ol
POSK
GHF~ L ereme——— —‘-"'-‘--.,_.‘. =

LAMH MUTTON AND GO"”MEAT

$860 1963 1986 1969 1972 1976 1978
SR eSS LA f
104 MEG PAE240Y TV
Gottree: . Mandbook of Aprlenliural Tharvts, $§.5, Department of
Aprlealtore, ¥t p. 91, .
thart Senree: Orieinsl

Figure 18. An alternative version of fFigure 17 with a straight line
used as the basis of comparison.

Life Expactancy at Blrth, by Sex, Selected Male
Countriss, MoatRecent Avnltsbla Year:
1870-1976 & Famata
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Garmany |Fed. Rep.),
1973-1975

Japan, 1924

&
M{\ k“tg

"L"\
United Kingdom, 1970.1972 % m w -
Uit Stte, 1975 UU\ !’L\u\uk“

Years ol file expmciancy

Figure 19. Austria First! Obscuring the data shucture by alpha-
betizing the plot (from SI3). -

Swadan, 1971, 1915

B “0

in Figure 18 with the separate amounts of each meat. as
well as a summation line, shown clearly. Note how
easily one can see the structure of import of cach kind
of meat now that the standard, of comparison is a
straight line (the time axis) and no longer the import
amount of those meats with greater volume.

Rule 9—Austria First!

Ordering graphs and tables alphabetically can ob-
scure structure in the data that would have been obvious
had the display been ordered by some aspect ol the

‘data. One can defend oneself against criticisms by

pointing out that alphabetizing “aids in finding entries
of interest.”” Of course, with lists of modest length such
aids are unnecessary, with longer lists the indexing
schemes common in 19th century statistical atlases pro-
vide easy lookup capability.

Figure 19 is another graph from S/3 showing lifc ex-
pectancies, divided by sex, in 10 industrialized nations.
The order of presentation is alphabetical (wuh the
USSR positioned as Russia). The message we get is that
there is little variation and that women live Jonger than

men. Redone as a stem-and-leaf dlagram (Iﬂgure 20 is
simply a reordering of the data with spacing propor-
tional to the numerical differencés), the magnitude of
the sex difference leaps out at us.. We also note that the
USSR is an outlier for men. '

Rule 10—Label (a) iHlegibly, (b) Incompletely,
{c) Incorrectl'y, and (d) Ambtguous!y

'Ihere are many mstances of labels that either do not
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Lire Exprerancy AT BiaTh, BY SEX,
Most RecenT Avallaste YEAR

Honen YEARS Pex
SWEDEN 78
17
France, US, Japan, Camapa 76
FinLanp, AusTRiA, UK 75
" USSR, GERHany 75
73

72 SWEDERM

7t Japan

77

69 CanNADA, UK, US, FRance
68 GERMANY, AUSTRIA
67 FinLanp

7| USSR

Figure 20. Qrdering and spacing the data from figure 19 as a
stem-and-ieal diagram provides insights previously difficult to
extract {from SI3).

teli the whole story, tell the wrong story, tell two or
more stories, or are so small that one cannot figure out
what story they are telling. One of my favarite examples
of small labels is from The New York Times (August

Commission Payments
To Travel Agents A1
¥ mbions of doflers g‘ .

By

uUnIveD
AIRLINES

vw Futh Futaess Ay b BT

bt
Complex web of discount fares and alrlines’ telephone delays are ransmg‘”
travel agents’ overtiead, offseiting revenue gains [rom highee volume.

Figure 21, Mixing a changed metaphor with a tiny label reverses
the meaning of the data (© 1978, The New York Times).
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Figure 22. Figure 21 redrawn with 1978 data placed ot a
corparable basis (from Wainer 1980).

1978}, in which the article complains that fure cuts lower
commission payments to travel agents. The graph (Fig-
ure 21) supports this view until one notices the tiny label
indicating that the small bar showing the decline is for
just the first half of 1978. This omits such heavy travel
periods as Labor Day, Thanksgiving, Christmas, and so
on, so that merely doubling the first-half data is proba-
bly not enough. Nevertheless, when this bar is doubled
(Figure 22), we see that the agents are doing very well
indeed compared to earlier years.

Rule 11—More Is Murkier: (a) More Decimal
Places and {b) More Dimensions

We often sce tables in which the number of decimal
places presented is far beyond the number that cun be
perceivad by a reader. They are also commonly
presented to show more accuracy than is justificd. A
display can be made clearer by presenting less. In Table
1 is a section of a table from Dharival and Dudewicz’s
(1981) JASA paper. The table entries are presented to
five decimal places! In Table 2 is a heavily rounded
version that shows what the authors intended cicariv. It
also shows that the various columns might have a ~ub-
stantial redundancy in them (the maximum expected

~ gain with b/c = 10 is about 1/10th that of b/e = ikl

1/100th that of bic = 1,000). If they do, the entire table
could have been reduced substantially.

Just as increasing the number of decimal places can
make a table harder to understand, so can increasing
the number of dimensions make a graph more con-
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Table 1. Optimal Selection From a Finite
Sequence With Sampling Cost

blc = 10.0 100.0 1,000.0
N 1 (Gufr') —alc r* (Gur') —alic r* (Gufr') —a)ic
3 2 ..20000 2 2.22500 2 22.47499
4 2 26333 2 2.88833 2 29.13832
5 2 32333 3 3.54167 3 35.79166
6 3  .0B267 3 4.23767 3 42.78764
7 3 44600 3 4.80100 3 49.45097
8 3 50743 4 5.57650 4 56.33005
g 3 56743 4 6.26025 4 63.20129
0 4 62948 4 6.92358 4 69.86462

NOTE g{Xs 1+ -1} bR{Xs 1 ¢ - 1)1 8, ifS =5 and gtXs ) ¢ - t) =0, otherwise,
Souwrce. Dhariyal ang Dudewicz {1981).

fusing, We have already seen how extra dimensions can
cause ambiguity (Is it tength or area or volume?). In
addition, human perception of areas is inconsistent,
Just what is confusing and what is not is sometimes only
a conjecture, yet a hint that a particular configuration
will be confusing is obtained if the display confused the
grapher. Shown in Figure 23 is a plot of per share earn-
ings and dividends over a six-year period. We note (with
some amusement) that 1975 is the side of a bar—the
‘third dimension of this bar (rectangular parallelo-
piped?) chart has confused the artist! I suspect that 1975
is really what is labeled 1976, and the unlabeled bar at
the end is probably 1977, A simple line chart with this
interpretation is shown in Figure 24,

In Section 4 we ijlustrate six more rules for displaying
data badly. These rules fall broadly under the heading
of how to obscure the data. The techniques mentioned
were to change the scale in mid-axis, emphasize the
trivial, jiggle the baseline, order the chart by a charac-
teristic unrelated to the data, label poorly, and include
more dimensions or decimal places than are justified or
needed, These methods will work separately or in com-
bination with others to produce graphs and tables of
little use. Their common effect will usually be to leave
the reader uninformed about the points of interest in
the data. although sometimes they will misinform us;
the physicians’ income plot in Figure 13 is a prime ex-
ample of misinformation.

Finally, the availability of color usually means that
there are additional parameters that can be misused.
The U.S. Census’ two-variable color map is a wonderful
example of how using color in a graph can seduce us

Table 2. Optimal Selection From a Finite Sequence
With Sampling Cos! (revised)

blc =10 bic = 100 bic = 1,000

N r G r G I G
3 2 2 2 2.2 2 22

4 2 3 2 2.9 2 29

5 2 3 3 35 3 38

6 3 4 3 42 3 43

7 3 4 3 49 3 49

g 3 © .5 4 5.6 4 56

9 3 8 4 6.3 4 63

10 4 6 4 6.9 4 70

NOSE. g{Xs «t - 1) - DR(As t¢ - 3]+ 1 il 8 =3, and gtXs + ¢ - 1] =0, olhorwise,

into thinking that we are communicaling more than we
are (see Fienberg 1979; Wainer and Francoling 198,
Wainer 1981). This leads us to the last rule.

Rule 12—If It Has Been Done Well in the Past, Think of
Another Way to Do It

The two-variable color map was done rather well by
Mayr (1874), 100 years before the U.S. Census version.
He used bars of varying width and frequency to accom-
plish gracefully what the U.S. Census used varying
saturations to do clumsily. '

A particularly enlightening experience is to look
catefully through the six books of graphs that William
Playfair published during the period 1786-1822, One
discovers clear, accurate, and data-laden graphs con-
taining many ideas that are useful and too rarely applied
today. In the course of preparing this article, 1 spent
many hours looking at a variety of attempts to displuay

]

Farnings Per Share And
Dividends

(Doilqrs)

i 1.82

771 1172 770
Ay 1,63

1.53

1972 73 74 75 76 77

| Dividends

Earnings

Figure 23. An extra dimension corfuses even the grapher
(® 1979, The Washington Post).
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Figure 24 Dala from Figure 23 redrawn simply (from Walner
1980).

data. Some of the horrors that [ have presented were
the fruits of that search. In addition, jewels sometimes
emerged. | saved the best for last, and will conclude
with one of those jewels—my nominee for the title of
“World's Champion Graph.” 1t was produced by
Minard in 1861 and portrays the devastating losses suf-
fered by the French army during the course of Napo-
feon’s ill-fated Russian campaign of 1812, This graph
(originally in color) appears in Figure 25 and is re-
produced from Tufte’s book (1983, p. 40). His narrative
{ollows. :

Heginging ot the leb v the Pobinh Rt bonder et
Nicman River, the thick band shows the size of the anmy (122408
men} as it invaded Russia in June 1812, The widil of the hand
indicates the size of the army at each place on the map. n Sep-
tember, the urmy reached Moscow, which was by then sacked and
deserted, with 100,000 men. The path of Napoleon™s relecat from
Moscow is depicted by the darker, lower band, which is linked 10
a temperature scale and dates at the bottom of the chart. It wis a
bitterly cold winter, and many froze on the nurch out of Russia.
As the praphic shows, the crossing of the Berezina River wis al
disaster, and the army finally strugpled back to Poland with only
10,000 men remaining, Also shown are the movements of auxiliary
troops, as Lhey sought to protect the rear and flank of the ad-
vancing army. Minard’s graphic tells a rich, coherent story with its
multivariate data, far more enlightening than just a single sumber
bouncing along over time. Six variables are plotted: the size of the
army. its location on a two-dimensional surface, direction of the
army's movemeni, and femperature on various dates during the
retreat from Moscow.
It may welt be the best statistical graphic ever drawn.

5. SUMMING UP

Although the tone of this presentation tended to be
light and pointed in the wrong direction, the aim is
serious. There are many paths that one can lollow that
will cause deteriorating quality of our data displays: the
12 rules that we described were only the beginning,

‘Nevertheless, they point clearly toward an outlook that

provides many hints for good display. The mcasures of
display described are interlocking. The data density
cannot be high if the graph is cluttered with chartjunk;
the data-ink ratio grows with the amount of data dis-
played; perceptual distortion manifests itself most fre-

CARTE FIGURATIVE des pertes successives tn hommes de I'Armée Francaise dans fa campagne de Russie 18121813
Dressée par H . Minard, Inspecteur Général des Pants et Chauasées &n retraite.
A
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M T ‘,- ?3.
. ;
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Figure 25. Minard's {1861} graph of the french Army's ill-fated foray info Russia—A candidate for the litle of "World 's‘Champr'on Graph' ;oo

Tufte 1083 for a superb reproduction of this in its original color-—p. 176},
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quently when additional dimensions or worthless meta-
phors are included. Thus, the rules for good display are
quite simple. Examine the data carelully enough to
know what they have to say, and then let them say it
with a minimum of adornment. Do this while following
reasonable regularity practices in the depiction of scale,
and label ¢learly and [ully. Last, and perhaps most im-
portant, spend some time looking at the work of the
masters of the craft. An hour spent with Playfair or
Minard will not only benefit your graphical expertise
but will also be enjoyable. Tukey (1977} offers 236
graphs and litthe chartjunk, The work of Francis Walker
(1894} concerning statistical maps is clear and concise,
and it is truly a mysiery that their current counterparts
doy not make better use of the schema developed a cen-
tury amd more ago.

[Received Septomber 1982, Revised Seprember 1981.
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ACCELERATED LIFE TEST: AN OVERVIEW
AND. SOME RECENT ADVANCES . .

Gour1 i, Bhattacharyya
Un1ver31ty of Hlscons1n~-Mad1son

TN

~ ABSTRACT, . Statistical.inferences on the durability of a product may often
have to De based on an analysis of failure data generated under- an overstress or
accelerated 1ife test (ALT). The effectiveness of such inferences rests heavily
on the validity of model assumptions concerning the life distribution and the
effect of stress acceleration., In this article, the. principal methodological
approaches to ALT analysis are reviewed in T]ght of plausibility of the model,
flexibility of empirical fit and usefu1ness in pract1ca1 application., These
include parametric Tog-linear models, semi- parametr1c formutations based ‘on
proport1ona] hazards or time. transformation, and a reciprocal-linear regression
model in the setting of a Brownian motion process for damage growth, Some
theoretical considerations and pract1ca1 issues of designing an ALT experiment are
alsa discussed.

I. INTRODUCTION. A problem frequently encountered in engineering research
and development is to ascertain the durability or .service life of a new product or
to compare alternative designs of .the same product Usually, long life of the
product and relatively much shorter time available for. testing purposes impair our
ability to collect failure data by conducting tests under its normal conditions of
use, . With accelerated 1ife test (ALT), prototypes of the product are subjected to
stress conditions that are more severe than encountered in normal use so that more
failures are apt to take place in a timited time. .Data of failure times under
such over-stress conditions are then ana]yzed in the framework of a statistical
model,and inferences are drawn in regard to life 1ength or reliability of the
product under its normal use condition,

Another means of reducing the. test time, called censored sampling, consists
of testing a larger number of units in order to observe a fewer number of
failures--those that occur early. Censored life tests under normal use conditions
are useful as long as failures are likely to occur within the permitted test time.
When that is not the case, ALT is the only means of gett1ng some failure data. In
practice, ALT and censoring are often.coupled.in the same experiment toward the
common goal of cost and time savings. e .

, With techno]og1ca1 advances 1ead1ng to enhancement of product life, ALT is
_assuming. an ever increasing role in engineering experimentation. The Tlast two
decades have seen a large growth of literature in statistical methodology for ALT
,Aana1ys1s The diversity of pract1ca1 application has ihcreased at the same time.
A few examples are: self-lubricated bearings for high vacuum application {(Meeks
1980) tested under high speed stresses, stress- rupture of Kevlar-epoxy composite
(Glaser 1984). under tensile and temperature stresses, twisted nematic

tiquid- crysta1 ‘display (Kitagawa et al 1984) under acce1erated vo1tage stresses,

Research supported by Offace of Nava1 Research under
Grant ND0D014-78-C-0722.
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insulation resistance of high K multilayer ceramic capacitors (Minford 1982)
under voltage and temperature stresses, and failure of power cable insulation
(Lyle and Kirkland 1981) under temperature, moisture and voltage stresses. The
conduct and analysis of such experiments often draw a great deal from theoretical
models of chemical reaction, metal fatigue, creep rupture, wear, etc, as is
relevant to the particular physical process of failure, and are aided by empirical
evidence and statistical tools. The subject mattér is heavily interdisciplinary,
and accordingly, the relevant literature is scattered in journals of several
disciplines. Our discussion will be limited to the major statistical models and

methodology of ALT analysis.

To introduce the basic statistical issue of ALT we let the random variable
y represent the life-length or time-to-failure of a material specimen, component
or a system, The probahility distribution of y depends on some identifiable
environmental conditions or stresses X which are manipulated in the experiment.

Denote by x. the normal use-condition stress level. In an ALT experiment, a

humber of larger than normal stress settings x., 1 = 1,...,k are chosen, A

i
sample of n, units 1s subjected to the constant setting X4 and either all
their failure times are observed (full sample) or only some early failures are

recorded (censored sample}, i+ = 1,...,k. Thus, samples are generated from the
accelerated life distributions Fly xi), i=1,...,k where F(y|x) denotes the

cdf of y under the stress level x. Based on such data, one wishes to make

inferences on some relevant characteristics of F(yl§b) such as its mean,
selected percentiles, and the reliability ?Tt|§o) for a mission time t where

F = 1-F. Another variant, called step-stress ALT, allows the stress setting for
each unit to be changed at specified intervals until failure occurs. For now we
confine our attention to constant stress ALT; step-stress ALT experiments will be

discussed in Section 5.

A related area of research is survival analysis in biostatistics which also
deals with time (survival time, time to cure or time to onset of a disease) as the
dependent variable and its dependence on such covariates as age, physiological and
environmental conditions of the patient. Therefore, between ALT and survival
analysis, the basic concepts, models and methods have much in common., However,
considerable differences exist in regard to the conduct of the experiment, type of
data, role of the covariates and the target of inference., For instance, survival
analysis typically deals with a much larger set of covariates than is involved in-
an ALT, lesser control on the settings of the covariates, and lesser control on
the process data collection which leads to more complex patterns of censoring.
Also, its emphasis is toward studying the effects of some covariates after
adjusting for the effects of the others -- not sc much to predict F(ylxo). In

fact, the concept of a normal setting for the covariates is not meaningful in
survival analysis. Both of these areas can be brought under the umbrella name of
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regression analysis. In essence, ALT calls for regression analysis under
non-standard statistical models as well as data types, and its major goal is to
make predictions beyond the range of the experimental setting. In light of the
last point, it is obvious that theoretical modeling or understanding of the
failure process plays a far more important role than empirical model fitting.

Inferences from ALT data require two basic ingredients of model
formulation: the underlying life distribution F{y|x) for a given stress x,

~

and the functional relationship among these distributions with vafying X, The

latter is sometimes called the acceleration function.  The object of this paper is
to give a brief survey of the various approaches to model formulation and the
associated methods of statistical inference. To organize the exposition, we set
out with a broad classification of the major areas of development in ALT analysis:
{a) Parametric 1life models with log-linear acceleration function, (b} Semi-
parametric approaches based on hazard rate and time-acceleration models, (c)
Stochastic damage growth models, {(d) Special constructs for step-stress ALT, and
{e) Issues of designing an ALT experiment. '

Log-linear (LL) acceleration functions in the framework of important
parametric models for the underlying life distribution dominated the early
developments of ALT analysis. An extensive Titerature has developed both in
methodological advances and diverse applications, A good survey of the earlier
developments is available in Chapter 9 of Mann, Schafer and Singpurwalla (MSS)
(1974). The proportional hazards model, due to Cox (1972), is a semi-parametric
formulation that has been found instrumental to survival analysis in
biostatistics, and has Ted to major advances in handling arbitrarily censored
data. Application of these methods to ALT is somewhat limited because the model
is empirical and also the data type and object of inference are different. .The
semi~parametric and nonparametric approaches stem from ideas of greater generality
but they typically reqguire larger sample sizes for sensible inferences. Also, an
extrapolation is less dependable when it is based on a purely empirical
accéleration function. Areas of relatively recent developments include (c) and
(d). For brevity, our discussion in Sections 2-5 will focus on the motivation and
description of the various medels and will include only an outline of the
principal analytical methods. Technical details-as well as treatment of special
cases under each class of models will be omitted with references provided for the
interested reader. Section 6 deals with designing an ALT experiment and discusses
the usefulness of some optimality criteria. '

, 2. PARAMETRIC LOG-LINEAR MODELS. A general formulation, called parametric
Tog=1inear TLLY modeT, consists of the following assumptions: {a) the underlying
Tife distribution belongs to a specified parametric family involving a scale
parameter © and possibly also a shape parameter n, (b) the scale parameter
depends on the stress x according to an LL-relation. log8 = 8'x while n s

is-a constant independent of Xx. Here x 1is a p-vector whose components need

not correspond to all distinct stress variables, some may be just different
functions of the same variable., For instance, with temperature as the sole stress
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' 2 . e . . .
variable x, the quadratic function Bn+B,x+8,X satisfies this formulation with

v 2 ' v
x'" = (1,x,x ) and B -‘(lBO,Bl,BZ).

The choice of a life distribution is guided by such criteria as its
theoretical basis in reliability, simplicity of inference procedures and
flexibility of empirical fit. Distributions derived from Poisson shocks, extreme
value theory, failure rate behavior or those with good track record in fitting to
1ife data are the natural candidates. These include the exponential, Weibull,
gamma and Tognormal distributions, The assumption of an LL relation to stress is
not only simple and flexible but is aiso motivated in many practical contexts from
theoretical constructs based on chemical kinetics, activation energy, principles
of quantum mechanics, etc. The Arrhenius reaction rate model, Inverse power law,
Eyring model, and Generalized Eyring model are some of the wideTy used engineering
models which fit into the LL formulation. These are respectively given by

§ = exp(A—B/;), temperature stress
8 = (A/x)P , Vvoltage stress
. (2.1)
6 = x exp(A-B/x), temperature stress
6 = Axlexp(-B/xl)exp(Cx2+Dx2/x1), temperature and voltage stresses.

Statistical inferences including estimation of the model parameters and
setting confidence bounds for the mean life or a specified percentile of the life
distribution at use condition stress as well as model checking and goodness-of-
fit are extensively treated in the literature under various distributional
assumptions and specific engineering models. One general body of methodology is
hased on the maximum 1ikelihood (ML) estimation, the Fisher information matrix and
the associated asymptotic normal approximation. The technical details vary

according to the specific models and data types, and the plethora of results are
beyond the scope of this brief survey. The reader may refer to Chapter 9 of MSS

(1974)  for some details and also the relevant references.

In general, the maximum likelihood method in the ALT context and especially
with censored data involves considerable computational complexity, and lacks a
grip on the small sample properties of the estimators.. Some interesting
alternative procedures have been developed for the case of location-scale
parameter families for the distribution of the log-Tife. In particular, the
Togarithm of Weibull and lognormal .random variables have the Gumbel extreme value
and normal distributions, respectively, each of which constitutes a location-
scale family. : :

A simple estimation ?rocedUré with type II censored data, proposed by

Nelson and Hahn (1972, 1973), is based on an application of the Teast squares
method in two stages. To outline the idea we consider a p-vector x of stress

variables with k settings XpseeosXpo At Xis Ny runits are simultaneously

tested and gbserved ti11 the r;th failure occurs so for each i = 1,.,.,k we have
a type II right censored sample Yi1 < Yio SRR F I With a minor misuse
i
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of notation, here we take y to be therjog-life so the censored sample comes from

a pdf of the form 0—19[(y-li)/0]' where ki = g'

13

P is a completely specified

pdf (standard extreme-value, normal, etc.), and g and o are the unknown

parameters. For simplicity, we confine further discussion to equal sample

sizes and equal censoring, that is, ni = n and ry=r for all i.

In stage 1, we ignore the regression structure and estimate the parameters

(x,,0) from the ith data set by the.method of least sguares applied to the linear

-i,
mode

Yis =Nt Ny g 3= Laa,t S (2.2)
where 'Vij’ j=1l,...,7r are the'firsp r order statistics of a sample of size
n from the standardized pdf gq. Their means ¢y = E(Vij) and covariances

) are known constants, and their tables are available for

ij' = COV(Vij’Vij'

someldistributions. We thus have the'stage-llbest Tinear unbiased estimators
(BLUE) of the form o - - o
: *
Ay = Zagyss 95 = by ' {2.3)

as well as their exact covariance matrix

d, d
o’ (’ 1 3.) | (2.4)
dy d, |

where dl’ dy and da are known constants.

= * * *, x -, K LI
-In stage 2, we denote XA = (Al,...,Ak) , 0 = (cl,...,ck)=; and form
_the:]inear mode

1]

X + e
- (2.5)

;\*
g lo + ¢

where X' ='(§1,...,§k), and the pair (%1,92) has mean (Q,Q), its elements are
independent across rows and have the covariance structure (2.4) across columns.

Based on this linear model, the‘BLUE's are obtained as

k .
I o ' (2.6)
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The mean 1og-1ife'at the use condition stress X, as well as any

percentite is of the form §'§0 + co which is a linear combination of 8 and o,
Therefore, {2.6) leads to unbiased estimators of these quantities as well as their
exact variances as opposed to only asymptotic results obtainable for the MLE's,
However, to construct confidence bounds, one has to resort to large sample normal
approximation of these estimators except for some isolated simple models where an
exact pivotal method may be feasible, cf. McCool (1980).

Bhattacharyya and Soejoeti (1981) examine conditions on the design matrix
X and the underlying Tog-Tlife distribution g for the asymptotic normality of the

ML and two-stage least squares estimators, and investigate the loss of asymptotic
(k + =) efficency incurred by the Tatter. In particular, for the Weibull Tife
distribution, it is found that a fairly high efficiency is retained unless either
n is too small or r s too small compared to n. MNelson (1970) discusses
another two-stage estimation method where MLE is used in the first stage followed
by Teast squares in the second but one loses the exact properties {unbiasedness,
variances and covariances) in this process.

For the Tognorma1 Tife model and type II right censored ALT data, Mehrotra
and Bhattacharyya (1985) develop another simple and highly efficient estimation

procedure using a judicious modification of the 1ikelihood equations. Denoting

: k
LI S ' ] - = -
,y.i - (yﬂ,.-.,yiri) » X = (Xl’...,Xk)’ r = 1 1 _i, Z,iJ- (y_IJ E)‘(’ )/0’

they observe that the likelihood function is a product of the two components

o Texpl-(y-X8) ' (y-X8)/(26°)]

-~ o oA

Ly
(2.7)

7

[}

k

i=1

where‘_g is now the r xp matrix whose rows are §i;...,§é repeated
Fisesesly times, respectively, and ¢ denotes the standard normal cdf. The factor
L1 has the form of a full sample normal regression Tikelihood based on the sample
sizes Piseeesty at the k design points. Complication in obtaining the MLE
arises because of L2. A method of modified MLE is proposed by replacing

a1ogL2/8§ and a1ogL2/30 by their respective expectations in the 1ikelihood

equations. It turns out that thesé modified 1ikelihood equations lead to the
exact solutions

TR
1}
1 N

(2.8}

ror
i
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where S = X'X, and the constants a and' ¢ - can be calculated by using the .
tables of meafis and variances of the standard normal order statistics. Closed
form expPESSTOHS, easy computing algorithm, some exact small sample properties,

and Tittle loss of asymptotic efficiency with light censoring are the principal
advantages with this method. A few other modifications of the 1ikelihood

equations to obtain estimators in closed forms are d1scussed by T1ku {1978) and
Schne1der (1984) for censored norma1 samples.: ‘ _

In most app11cat10ns of the parametric LL analysis, the shape parameter n
is assumed to be independent of x. Glaser (1984) employes a more general

formulation with the Weibull distribution assuming that the reciprocal of the
shape,parameter also has a linear model in terms of x. Iterative solution of the

ML equations are discussed in the settings of grouped and censored ALT data.
Shaked (1978) discusses ML estimation with the inverse power law and Arrhenius
acceleration functions applied to some Tinear hazard rate type distributions.

3. SEMI-PARAMETRIC MODELS--PROPORTIONAL HAZARDS AND TIME ACCELERATION.

3.1 Proportional Hazards Model. The LL model discussed in the preceding
section envisons a multiplicative effect of stress on the scale parameter and
" hence on the mean as well as the percentiles of the life distribution. Another
approach to modeling the effect of stress focuses on the failure rate behavior.
The failure rate at age y of a unit undergoing a constant stress x 1is defined

~

as hiylx) = fly[x)/Fly|x) where f and T are respectively the pdf and
survival function of the Yife distribution. Let hy(y) = h{y[x,) denote the
fa1}ure rate funct1on under the use condition stress Xy The proportional

hazards {PH) mode] assumes that stress acts mu1t1p11cat1ve1y on the failure rate,
that is hiy]x) = ( Jg(x,B) where g 1is a positive function involving an

unknown parameter vector B8 but is free of y. Cox (1972) proposed this idea

and further assumed an exponential form of g,

hiylx) = h {ylexp(8'x) - o (3.1)

argu1ng that this choice is "convenient, flexible and yet entirely empirical”.
The model is semi-parametric because one component, namely, the acceleration

function is parameterized while the form of the use cond1t1on hazard h (y) is
1eft completely arbitrary.

The PH model has spurred extensive research in statistical methodo1ogy with
applications targeted mainly to survival analysis in biostatistics. Also,
hand1ing arbitrary or randomly censored data has been a focal point of these
developments, The parameter B is usually viewed as the primary target of

inference while " ho(y) “is considered a nuisance function. 1In thercontext‘of ALT,
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ho(y) or the corresponding life distribution F(Y!xo) is of main interest while

an assessment of the significance of the stress effects is often redundant. More
importantly, the use of an empirical acceleration function with no physical
back-up is prone to criticism because this function plays a dominant role in
extrapolation and inferences on ho(y). .

A comparison of the structures of the LL and PH models is in order here,
The well known relations between the failure rate, cumulative hazard and survival
functions {cf Kalbfleisch and Prentice 1980) lead to the following equivalent

forms of the PH model:

exp(8'x)

~

i

[Flylx,}]
109[-10§FIYI§0)}+§'§.

Flylx)
logl-TogF (y [x}]

(3.2)

1

The second equation shows a linear model in regard to the influence of the
stresses operates additively on the log (-log)-survival functien. By contrast,
the LL model assumes a linear form for the Togarithm of the scale parameter, and
is therefore physically more meaningful. It entails that y|x has the same

distribution as that of (ylxo)[exp(ﬁ'x)i, and this relation leads to the failure
rate relation - T

hiy|x) = exp(B'x)h [y exp(8'x)]. (3.3)
Obviously, the LL and PH models coincide if and only if ho(y) o y6, that is, the
underlying Tife distribution is Weibull,

A more general class of models is formulated by Ciampi and Etezadi-Amoli
(1985) by embedding both LL and PH failure rate functions in a common frame:

n

h{y [x) exp{a'x)h [y exp(ﬁ'ﬁ)]. (3.4)

This reduces to LL if o= 8 and to PH if B = Q. They study asymptotic

1ikelihood ratio tests for model discrimination under the further assumption that
hO is a polynomial. It is not clear if such an over-parameterization is
necessary or meaningful in ALT analysis., The model being purely empirical, its
use in ALT is questionable.

3.2 Time-Acceleration Model, The concept of a failure-time acceleration
or shortening of the 1ife-time under increased stress has prevailed in much of the
historical developments of the ALT models. A simple formulation was advanced by
Allen (1959) and its. ramifications treated later by several authors. To introduce
the basic idea, suppose Fo(y) ~and- G(y) denote the survival functions under the

use condition stress and an accelerated stress condition, fespective1y. A
relation between them is modeled as G(y) = Fo[v(y)} with a "time-acceleration"

function v{y). Allen (1959) calls it a strict acceleration if v{y) >y for
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all y (it is understood that v(y) is not identically equal to y), and a
restricted acceleration if v(y) <y holds on a finite interval and v(y) >y

on an infinite interval. Note that a strict acceleration is equivalent to the use
condition 1ife being stochastically larger than that under the accelerated stress.
Barlow and Scheuer (1971) considered nonparametric estimation of F, and G under
the assumptions that both are IFRA distributions, v(t) 1is arbitrary, and data are
available from both F0 and G,

Lacking data from F_, as is usually the case with ALT experiments, one
must specify a structure of v(t) to be able to estimate For A semi-parametric

formulation, proposed by Shaked, Zimmer and Ball (SZB) (1979), assumes that the
stress x acts on the survival by means of a change of the time scale,

viy) = g(x,8ly

where. g .is a specified function of 5 jnﬁo]ving an unknowngparametek B,

and the distribution Fo(y) is arbftrary. Note that the choice g(ﬁ,g) =
exp(é'&) leads to the structure of the LL model of Section 2; the sole difference
'being that Fo(y) is left ndnparamefric in the present formulation,

Consider the case of a‘sing1e stress variable x and a scalar parameter
B. Suppose that k accelerated stress settings X; are used, n; units are

tested at X3 and all failure times Yise j= Livaaang, i=1,...,k are

observed, The model entails that ylxi has the same distribution as Bii'(ylxi')

where 8 ='g(xi,8)/g(x1.,8). Based on this observation, SZB (1979) propose a

i
simpie inference procedure along the following stéps:

(i) Using the data from each pair of stress settings (xi,xi-),

obtain a consistent estimator eii' of the ratio of scales

such as  B..4 = ¥;/¥;1 where ¥, = Ny jfl Yije
(ii) Obtain B;s+ by solving the equation

.i.il = g(x.i,s)/g(x.il,s)-

" Repeating this for all pairs get k{k-1)/2 estimators of 8,

(iii} Form the pooled estimator 8 = X W.:1B..y using the
weights w,., 1inversely proportional to the asymptotic

11

A

variances of Bii*'
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(iv) Rescale the observed failure times to pseudo-values at the
‘use condition stress:

g(x,,8)
y:fj = i a— y.ij s j = 1’.-o.,n10, .i_= 1,.-.,ko
g(Xi,ﬂ) .

“{v) Act as if these pseudo-values constitute a random sample of
k
'size N = En; from the distribution Foly) 1in order to
i=1 _ '
estimate the mean, percentiles or other features of Fo or
even the whole function Fo(y).

Shaked and Singpurwalla (1982) discuss goodness-of-fit tests along these lines.
The appealing features of the above procedure are its simplicity which is an

attraction to the practitioners, and avoidance of the assumption of a specific
parametric life distribution as is involved in the LL analysis. However, large

sample sizes are needed for its validity, and that is in essence a price to be paid -

to forego a parametric assumption. Like the LL model it does have a parametric
assumption for the acceteration function and that plays a crucial role in extrapo-
lation. 1In light of this, whether one cheoses a flexible parametric family for
Fo(y) or leaves it nonparametric is not of mych practical import in model fitting

and inference,

Proschan and Singpurwalla (1979, 1980) discuss a Bayesian approach which
circumvents the need for choosing a specific parametric acceleration function as
well as the form of the life distribution., However, they assume that prior
information in regard to the average failure rates over disjoint time intervals
under each accelerated condition is available, and that least squares fit of a
1inear relation among the posterior average failure rates can be extended to the

use condition stress.

4. STOCHASTIC DAMAGE GROWTH -- AN INVERSE GAUSSIAN REGRESSION MODEL. In
this section, we discuss a parametric approach based on a life distribution which
derives from a stochastic model of fatigue or growth of damage in a material. In
contrast with direct modeling of the time-acceleration function or the failure rate
behavior discussed in the previous sections, here the rate parameter of the damage

growth process is modeled in relation to the stress. -

Specifically, we assume that given a constant operating environment,
depletion of strength or growth of damage of a material specimen over time follows

a Brownian motion process with drift n > 0 and diffusion constant 62, and that
the material fails when the accumulated damage exceeds a critical level « > 0.

Let X(t) denote the accumulated damage during the time interval [0,t]l. The
time-to-failure is then given by y = inf{t: X{t) > w} which is the first passage
time of the process across w, The above assumptions lead to the following pdf of

y:

fly) = (ZWOya)_I/ZeXD{-(% “0%(20y)], 0<y<w (4.1)
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where 6 = w/y, o= 62/w2, mean = 6, and variance = 930. *This distribution is
known as a Gaussian first passage time distribution in the stochastic processes
literature, and is more commonly called the inverse Gaussian distribution,
16(9,0), in the statistical Tliterature. 1Its analogy with and advantages over the
Birnbaum~Saunders (1969) fatigue life distribution is discussed by Bhattacharyya
and Fries (BJ) (1982b).

In the context of ALT, the parameter u, which represents the mean damage
growth per unit of time, is the natural choice for constructing an acceleration

function in relation to the stress x. A simple and flexible formulation due to

BF (1982a, 1986) postulates a Tlinear regression model for p and assumes o and
2

8§ to be constants independent of x, The latter assumption is in the spirit of

the homoscedasticity assumption in the normal theory regression analysis. Thus,
the distribution of the failure time under stress X, y|x, is taken to be

IG(8(x),o) whose mean 8(x) depends on the stress x (a p-vector) according to

._1(

the reciprocal-linear model © “(x) = B8'x, and ¢ is independent of x.

-~

To discuss statistical inferences with the above model, we consider ah ALT

experiment with k settings of x, and a random sample of ny failure times Yijo

j = 1,...,n; observed at the setting x4, 1= 1,...,k. Let N,-i%,'? respectively

denote the total sample size, the ith sample mean and the grand mean,

R = N'IZZy;%, the grand mean of reciprocals of the observations, V = Ez(y;§ 4?’1),
ij | R
the total reciprocal deviation, and define the matrices

diag(nl,...,nk)

=
|
: O
1]

~

Xl

~

diag(y ,....¥, ) »
X'CDX.

Lo e

1l

N
1]

(él!""ék) »

Referring to (4.1) and the regression model 9;1 = x'B, the TikeTihood function
. g~ |
L. can be written in the form

L« oM 2xpr- L q(e)] | (4.2)
: ‘ 20 ‘ .
where -1
gy = (0Xp-1)'COH(DKE-1) + V. B U R Y

From {(4.2) and (4.3), BF (1986) show that the unique roots of the likelihood
equations, . -
B = §'1Eni§i s o = N_lQ(é) , ' " (4.4)
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provide efficient Tikelihood estimators, that is, they are consistent,
asymptotically normal and asymptotically equivalent to the MLE's. ' They further
exploit some convenient features of the likelihood function to arrive at an
analysis of reciprocals (ANOR) table along the ideas of the analysis of variance
TabTe in the normal theory linear model analysis., The ANOR table rests on the

decomposition of the total corrected sum of reciprocals

v

where the components on the
regression, lack of fit,and

QReg +Q 0

righthand side measure the contributions due to
pure error, respectively, and are given by

peg = NOT'E-T)
Q = (T L - x'8)

L ; it ~i

) -1 _ -1

Consideration of likelihood ratio tests along with a judicious intermix of exact
distribution theory of IG and asymptotic theory further lead to approximate F
tests for the relevant hypotheses.

Other developments in the area of IG reciprocal tinear model include:
construction of standardized IG residuals and their plots for a graphical model
checking, construction of unbiased estimators via least squares applied to the
reciprocals (BF 1982b), determination of optimal designs by minimizing a finite
sample version of the asymptotic generalized variance (Fries and Bhattacharyya
(FB) 1986), and analysis of factorial life test experiments (FB 1983).

The method of ALT analysis discussed in this section rests on a parametric

formulation much in line with the model presented in Section 2, The IG
distribution as a life model has a sound theoretical basis, and the family is
flexible enough to fit most real 1ife data just as the lognormal and Yeibull
families. Moreover, the reciprocal linear model as an acceleration function
derives from a plausible assumption about the damage caused by stress. Taken
together, the methodology of this section has several desirable features: a
physical basis of the model, flexibility of empirical fit, tractability of
statistical inferences and availability of model checking procedures. However,
simple methods of statistical inferences with censored data are still not
available for this model and further work in this direction is needed.

5, STEP-STRESS ALT. The preceding sections were concerned with the ALT
studies where each unit 1s subjected to a constant level of stress until failure
occurs or the observation is censored. Another widely used method of conducting
an ALT experiment, called a step-stress ALT, allows the stress setting of a unit
to be changed at discrete points of time. Stress changes may be effected at
preset times or upon occurrence of a fixed number of failures along the ideas of
type I and type II censoring, respectively. Applications of step-stress ALT are
cited by Nelson (1980), Bora (1979) and Miller and Nelson (1983) in the contexts
of failure of cable insulation under voltage stress, life testing of diodes, and
dielectric breakdown of insulating fluid, respectively.
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In an ordinary fixed-time step—stress experiment, a random sampTe of N
units are simultaneocusly exposed to a stress setting Xq» observed over a fixed

time tl and the failure times of those failing in this interval are recorded.

At time tl, the surviving units are subjected to a different stress setting X,

and observed til1l they all fail. Such an experiment is called a two-step or
simple step-stress ALT. The idea extends to more than two steps in an obvious
way. Moreover, the failure observations at the terminal step may be censored at a
fixed time. The intent of such an experiment is to collect more failure time data
in a limited time horizon without necessarily using high stresses to all the
units. With an initial low stress, a unit may tend to survive too long in which
case observation of its actual failure time would be lost due to censoring. That
can be prevented by increasing the stress at an intermediate point thus increasing
the chance of an early failure. 1In principle, an initial high stress can be
followed by a lower one in the second step but the motivation of using this

pattern is not transparent,

As with a constant stress experiment, the ?oa1 of stat1st1ca1 ana1y51s of
step~stress ALT data is to draw 1nferences on F(ylx the tlife

distribution corresponding to the'constant-use'condition stress Xo For this

to be possible, we must have a model that relates the step- stress 1ife
distribution to the constant stress life distribution F (y) A sensible

formulation, called a cumulative exposure (CE) model, was proposed by Nelson
(1980}, It assumes that "the remaining life of specimens depends only on the
current cumulative fraction failed and current stress -- regardless how the
fraction accumulated. Moreover, if held at the current stress, survivors will
fail according to the cdf for that stress but starting at the previcusly
accumulated fraction failed." To formalize this idea, we let F, (y) stand for

F(yl&il, the life distribution under the constant stress x,, and let G(y)

denote the 1ife distribution under a two-step (first X4 and then 52) stress.
~The CE model entails that i '

G(y) Fl(y) for y < fl

(5.1)

[E]

F2(51+y-t1) for t) <y < | |
where s, 1is the solution of Folsq } = Fy(ty). Initially, G s the same as
Fqie At time tys it switches to the function F2 but starting w1th the value

Fl(tl)' Thus G(y} 1is made up of segments of the constant stress 11fe

distributions Fy and F,, pieced together at the change point of-stress. Note

that this formulation is different from the mixture models as well as the change
point models that appear in some areas of the statistical literature,.
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With the general formulation (5;1), a parametric model can be constructed
by taking F1 and F2 to be members of a common parametric family along with an

LL model of relation between them. For example, use of the Weibu11 model
Flylx) = exp[-(yle(x))B] in conjunction with the inverse power Taw 8{x) =
(A/x)P and equation (5.1} leads to the step-stress life distribution

~Cy(x/m)F1°
e R 0<y<t1

-ty (xg M) P +y=17) (/A1
= € ,t1<y(m

Gly)
(5.2)

where A, P and B are unknown parameters. Nelson (1980) and Miller and Nelson
(1983) discuss maximum likelihood estimation under this type of parametric models
where the underlying life distribution is taken to be exponential or Weibull, and

the acceleration function either Arrhenius or the inverse power law, They also
i1lustrate application to data of some step-stress ALT experiments.

A physical basis of the CE model in step-stress ALT is not as transparent
as its mathematical formulation. Earlier, in a similar context, DeGroot and Goel
(1979) advanced a time-acceleration model which is physically more meaningful.
They assume that the effect of switching the stress from Xq to Xo is to

multiply the remaining Tife of the unit by some unknown factor «, a function of
Xq and Xo (e« <1 if x, 1is more severe than xl). Letting Y1 denote the

Tife-length under the constant stress X1 and y* that under the step-stress

pattern (switching from 'xl to x, at time tI)’ they formulate the relation

o T nch (5.3)

I

and call y* a tampered random variable. It can be seen that (5.3) becomes a
special case of (5.?5 it F1 and F2 differ only by a scale parameter, In this

sense, (5.1) accommodates a more general formulation by allowing other parameters
of the 1ife distribution to change with stress, although such a generalization
obscures the physical meaning of the model and in none of the appiications it has
been used as yet. DeGroot and Goel (1979) only consider the setting of a
“partially accelerated life test" viewing X; as the use condition stress and

X, the single accelerated stress s0 a specification of the acceleration function,
relating o to x, 1is not necessary. On the other hand, they allow t1 to be

different for different units. Considering the underlying life distribution to be
exponential, they study the issue of optimal design in the framework of Bayesian

decision theory along with the specification of some cost function. Goel {1975)
discusses the asymptotic properties of MLE in the above setting.
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Curiously, with the assumption of an exponential distribution but without
any reference to ALT, the above model also appears in the literature under a
different name -- a change point hazard model. The formulation, which is in terms
of the failure rate function Js :

h(y) = A, if y <ty
! ! (5.4)
= A 1f y > Yy
‘and it Teads to the life distribution
...)\Iy .
gly) = xe if oy <ty
(5.5)

-A b= A (y-t,)
_ 171 "2 1 . .
= Aze if t1 <y < o,
Except for a change of notation, it is identical with the modet? (5.3) of a
tampered exponential random variable. However, in the context of a change point
hazard, the time point of change t1 is regarded as an unknown parameter in

addition to the failure rates A, and X_,, Here, the standard asymptotic theory
of MLE does not apply. In fact, one faceg the problem of non-existence of the MLE.
Nguyen et al (1984) and Matthews and Farewell (1982) discuss parameter estimation,
and testing the hypothesis of no change, and aiso provide references to earlier
works in this area.

6. DESIGNING AN ALT. A carefully planned 1ife test experiment is at the
heart of success in gathering informative data, coping with the constraints of
cost and time, and arriving at effective inferences as well as identifying
directions of further investigation. Among many issues involved in planning an
ALT experiment, some are to be resolved from an understanding of the physics of
failure. These include choice of the stress variable(s), choice of the
acceleration function consistent with a physical model of the failure process, and
decision regarding the range of stress acceleration which would be feasible and
dependable for the purposes of extrapolation., Moreover, accepted engineering
practice in a given context should guide to the choice between a constant stress
ALT and a step-stress ALT experiment,

Consider the most common type of ALT where a single stress x is
accelerated, and denote by X and Xy the intended Towest and highest settings

of x. As hefore, we denote the use condition stress by X, SO X, < X < Xy +

With a constant stress ALT, one needs to determine the number k of stress
settings to be used, their Tocations in the interval [xL,xH], the allocation of

a given total number N of units to the various stress settings, the period of
observation and the scheme of censoring. Unlike the situation of normal theory
regression analysis or least squares fitting of multiple regression with complete
data, a statistical treatment of optimal ALT plans is made complicated hy the fact
that the important parametric 1ife distribution models do not lead to exact
results for the sampling distribution. of the relevant estimators or manageable
experssions for ‘their variances especially in the case of type I censored data.
Faced with this pervasive difficulty, one reasonable approach to address the issue
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of optimal test plans is based on Targe éamp1e thedry of ML estiméfdrs. Nelson
and Kielpinski (1975, 1976) and Nelson and Meeker (1978) discuss several test
plans along this line. Their main developments are outlined below. .-

The specifications involved in their development of optimal test plans
include: a parametric Tife distribution such that the log-1ife conforms to a
tocation-scale family, an engineering acceleration function that conforms to the
Tog-linear model (such as the Arrhenius or inverse power law), a total sample size
N and a common censoring time T {determined from cost and schedule constraints),
and the highest stress setting Xy (to be set as high as possible subject to validity

of the model). The object of inference is to estimate u(xo), the median log-Tife

or more generally, ap(xo), the 100p percentile of the life distribution at the

use condition stress x.. Two kinds of test plans, the best standard plans and
the optimal two-point p18ns are discussed in this setting.

A standard plan, so called because of its popularity among practitioners,
is one that uses k equispaced stresses in a suitable transformed scale,
and equal number of test units at each stress. Given k, the best standard
plan seeks to determine the Xx that minimizes the asymptotic variance -of

u(xo), the MLE of u(xo). An optimal two-point plan uses k = 2 and finds the

X and the proportion of units m tested at x, S0 as to minimize the

asymptotic variance of n(xof. To arrive at these plans for the lognormal Tife

model, Nelson and Kielpinski (1976} start with the asymptotic theory oflMLE,
compute the Fisher information matrix, and use the delta method to deduce an

expression for the asymptotic'variance of u(xo). Minimization of this function

is done numerically on a computer with various input values of the model _
parameters and other quantities that are fixed in advance, and thereby charts are
prepared for guidance to the practitioner. Nelson and Meeker (1978) discuss such
plans for the case of Weibull distribution along with the inverse power law
acceleration. It is found that for the case of two-point designs, the optimal

- plan ‘typically allocates more units to the low stress and requires a slightly
lower x, than the best standard plan., Similar issues are also discussed by
Meeker akd Hahn (1977) in the context of success-failure data and a logistic
regression model.

It is to be noted that a determination of these optimal plans depends on
the unknown model parameters which appear in the expression for the asymptotic
variance of MLE. Therefore, one must have an informed guess of the parameter
values either from experience with similar experiments or by conducting a
preliminary ALT experiment. Also, a drawback of the two-point plans is that their
optimality rests on the correct choice of the model and, at the same time, they
provide Tittle scope of checking lack-of-fit or viotation of the model
assumptions. To remedy this drawback without departing too much from optimality,
best compromise plans are suggested.. A compromise plan uses a third design point
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Xy intermediate between X and Xy @ small proportion of units tested at
*M, and retains the same relative allocation to X and Xy as with the optimal
plan.

a Meeker (1984) reports an ektensive simulation study for the purpose of
comparing the above plans along with a few others determined from such
requirements as equal expected number of failures rather than equal sample sizes
at the design points and minimization of the variance of some other parameter
estimates. The principal criteria used in this comparison include: quality of
estimation under the chosen model (precision}, ability to detect a departure from
the assumed linear model {goodness-of-fit), sensitivity to misspecified parameter
values {(robustness) and ability to generate adequate failure data at the design
points (feasibility). It is found that the ALT plans that are theoreticaily
optimal have serious drawbacks in regard to the other criteria. The compromise

plans are sub-optimal but are more robust and are also capable of detecting
departures from the assumed model. -

The above discussion summarizes the recent developments on ALT designs for
the case of type I censoring scheme and parametric log linear analysis. Earlier
works were confined largely to uncensored data under the exponential model with
some specific acceleration function (Chernoff 1962) or the standard least squares
fitting of multiple regression (Herzberg and Cox 1972). For the Weibull
distribution with a polynomial function for the log-scale parameter, Mann {1972)
discusses optimal test plans for estimating cp(xo by means of a linear function

of order statistics rather than the MLE. Fries and Bhattacharyya (1985) study
optimal ALT designs under the inverse Gaussian distribution along with a
reciprocal-polynomial regression model,

- Derringer (1982) points out that in order to ohserve failures with a single
accelerated stress, one often requires the settings so large that validity of the
assumed model becomes questionable. To remedy the danger of a long-range
extrapolation, he suggests the use of multiple stress acceleration so each stress
factor could be employed at relatively low levels and yet together they would
accomplish the purpose of a single large stress. This is also logical from a
practical viewpoint because most materials or systems are affected by several
stresses in their normal operation, However, with multiple stress acceleration
ohe needs to be concerned about possible interaction of the stresses, At the same
time, theoretical modeling of the acceleration function is typically more
difficult when several stresses are to be accelerated simultaneously. In
essence, the choice will really be between using a Tess reliable model for a
short-range extrapolation and a more reliable mode! for a long-range
extrapolation. For an effective resolution of such issues there ought to be
sufficient interaction of the statistician with materials scientists and engineers
who are knowledgeable about the mechanics of the failure process.
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