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* -- FOREWORD

The Thirty-First Conference on the Design of Experiments in Army Research and
Development and Testing was held 23-25 October 1985. The Army Mathematics

. Steering Committee (AMSC) is the sponsor of this series of meetings, and its
subcommittee on Statistics and Probability organizes the scientific phase of
each of them. Members of this subcommittee would like to thank Professor
Bernard Harris for extending an invitation to hold this conference at the
Mathematics Research Center, The University of Wisconsin, Madison, Wisconsin.
His work, as chairperson for local arrangements, was a big factor in the
success of this meeting.

This year eighteen contributed papers were given in the clinical and technical
sessions. Most of these were presented by Army scientists. The titles of the
sessions give some indication of the statistical areas treated: (1) Final
Series and Multivariate Analysis, (2) Consistence Analysis, (3) Experimental
Design, (4) Statistical Modeling, (5) Data Analysis, (6) Reliability and
Quality Control. For the invited speaker phase of the conference, the Program
Commitee was pleased to obtain the services of the following nationally known
scientists to talk on topics of current interest to Army personnel:

Speaker and Affiliation Titles of Address

Professor Jerome Sacks Keynote Address
University of Illinois at

Urbana-Champaign

Professor Marion R. Reynolds, Jr. Approaches to Statistical
Virginia Polytechnic Inst 4 tute Validation of Simulation Models

and State University

Dr. Daryl Pregibon An Expert System for Data
Bell Laboratories Analysis

Dr. Howard Wainer How to Display Data Badly
Educational Testing Services

Professor Gouri K. Bhattackaryya Accelerated Life Tests

Since the Army analytic community is becoming ever more involved in the use of
expert opinion and the related approaches to the analysis of new systems
performance measures, it seemed an ideal time to have a special session to
provide the audience with new insight into this important area. The AMSC is
indebted to Professor Nazer D. Singpurwalla of George Washington University
for organizing and chairing this feature session entitled, "Using Expert
Opinions and Expert Systems in Reliabilly and Maintainability". We note below
the titles of the addresses given by the four speakers in this informative
session.
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HUMAN FACTORS AFFECTING SUBJECTIVE JUDGMENTS

Mary A. Meyer, Energy Technology Group, Los Alamos National Laboratories

SOURCES AND EFFECTS OF CORRELATION OF EXPERT OPINIONS

Jane M. Booker, Statistics Group, Los Alamos Nat ional Laboratories

USE OFVEXPERT OPINION IN RELIABILITY ASSESSHENT OF THE M-1 ABRAMS TANK

Bobby Bennett, U.S. Army Material.Systems Analysis Agency

A MATHEMATICAL THEORY OF TESTABILITY

Alan Currit, 'Systems Product Division, IBM, Rochester

Professor Emanuel Parzen, Department ot Statistics at Texas AIM University was
selected by the.AMSC to receive the Fifth Wilks Award for Contributions to
Statistical Methodologies in Army Research Development and Testing. He richly
deserves this honor for his many significant contributtosn to time series
mudgling and analysis, stochastic processes, statistical theory..(includitng his
seminal paper on density estirition), and his recent work on the foundations
and generalized meghodologies in data analysis. His latest work will
undoubtedly have a very pronounced effect on the ";heory and practice of
statistics in the years to come.

The AMSC has requested that the proceedings of the 1985 conference be
distributed Army-wide so that the information conainedtherein can assist
scientists with some of their statistical problems. Finally, committee
members would like to thank the Program Committee for all the work it did in
putting together this scientific meeting.

PROGRAM COMMITT.E

Carl Bates William McIntosh
Robert Burge J. Richard Moore
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Robert Launer Malcolm Taylor
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AaEnDA

THIRTY-FIRST CONFERENCE O0 THE DESIGN OF EXa'RIMhTs

IN ARMY RESEARCH, DIVELOPMENT AND TESTING

23-25 Ocaober 1985

Hostl The Mathematios Research Comber

Locations The Wisconsin Coster Nisconsin Memorial Union
702 Langdon Street Langdon I Park Btreets
Madison, Wisconsin (parallel s ,ssiopm)

* * * * * Wednesday, 23 October * * * *

0815-09?15 REGISTRATION - first floor, The Wisconsin Center

0915-0930 CALLING OF THE CONFERENCE TO ORDER

Lake Shore Room, The Wisconsin Center

Prof. Bernard Harris, The Mathematics Research Center

WELCOMING REMARKS

0980-1200 GENERAL USSION I - Lake Shore Room, The Wisconsin Cenoter

Chairmano Prof. Bernard Harris

0930-1030 KEYNOTE ADDRESS

Jerome Sackse University of Illinois at Urbana-Champaign

1030-1100 BREAK

1100-1200 APPHOACHES TO STATISTICAL VALIDATION OF STMULATION MODELS

Marion R. Reynolds, Jr., Virginia Polytechnia Institute
and state University

1200-1330 LUNCH

1330-1500 TECHNICAL SBESBION Ig TIME SERIES AND MULTIVARIATE ANALYSIS

Lake Shore Room# The Wisconsin Center

Chairmano William D. Baker, Ballistic qesearah Laborabory

P'.,
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TESTS OF EQUALITY Of DISTRIBUTIONS FOR DEPENDENT SAMPLES
AND STATIONARY TIME SERIES

Emanuel Parson, The Texas A&M University

ON SEOMENTATION OF 9IGNALS, TIMB SZRIES, AND IMAGtSs
IMPROVED ESTIMATION AND SEQUENTIAL PROCESSING

Stanley BGlOVe, The Universiby of Illinois at Chicago

A COMPARISON Of METHODS FOR FACTOR ANALYSIS OF VISIBILITY

Oskar W. Essenwanger, U8 Army Missile Command

1300-1530 BREAK

1530-1630 CLINICAL SESSION

Old Madison Room, Wisconsin Memorial Union, 3rd Floor

Chairmant Oskar M. Esmenwanger, US Army Missile Command

Panelistsi

Prof. Bernard Harris, The Mathematics Researoh Camber
Prof. Richard Johnson, The University of Wisconsin - Madison
Prof. Stanley Solove, The University of Illinois at Chicago

CONSISTENCY ANALYSIS OF AUTOMATIC TARGET RECOGNIZER PERFORMANCE

Clarence P. Walters, Right Vision and Eloctro-Opbios Lab

1530-1700 TECHNICAL SESSION III EXPIRIMENTAL DESIGN

Inn Wisconsin Room, Wisconsin Memorial Union, 2nd floor

Chairmant Carl Bates, US Army Concepts Analysis Agency

SMALL COMPOSITE DESIGNS

Norman R. Draper, The University of Wisconsin

HIGH IREQUENCY RADIO GROUND COMMUNICATIONSi DESIGNING TESTS
FOR 1980's APPLICATIONS OF 1940's TECHNOLOGY

Clarence H. Anneab, TRADOC Independent Evaluation Directorate

CONSIDERATIONS IN SMALL SAMPLE QUANTAL RESPONSE TESTING

Barry A. Bodb, Ballistic Research Laboratory
Henry B. Tingey, The University of Delaware

viii
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1830-1930 CASH BAR

1930-2130 BANQUET AND PRISENTATION CF MILKS AWARD

The Howard Johnson's Executive Hotel
525 West Johnson street
Madison, MI
(The Conference Hotel)

* ** * •* Thursday, 24 October ** ** *

03•0-1010 SPECIAL SEION 1 USING XXP'RT OPINIONS AND EXPERT SYSTEMS
IN RELIABILITY AND MAITAINAIBILITY

Lake Shore Room, The Wisconsin Centoer

Chairman and Coordinatori Moser D. Singpurwalla, The George
Washington University

HUMAN FACTORS AFFECTIMG BUBJECTIVE JUDGEMENTS

Mary A. Mayer, Energy Technology Group, Los Alamos National Laboratories

SOURCES AND EFF*CTS OF CORREAITION OF EXPERT OPINIONS

Jane N. Booker, Statistics Group# Los Alamos National Laboratories

USE Of •XPERT OPINION IN RELIABILITY ABBESSMENT OF THE N-1 ABRAMS TANK

Bobby Bonnett, U.S. Army Material Systems Analysis Aguncy

A MATHEMATICAL THEORY Of TESTABILITY

Alan Currit, Systems Product Division, IBM, Rochester

1030-1100 BREAK

1100-1200 GENERAL SESSION II - Lake Shore Room, The Nisoonsin Center

Chairman:• alcolm Taylor, Ballistia Research Laboratory

TITLEi TO BE ANNOUNCED (An Expert System for Data hhalysis)

Daryl Pregib~n, Bell Laboratories

1200-1330 LUNCH
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1930-1500 TECHNICAL SISSON 111; SATISTICAL MODELING

Old Madison Room, Wisconsin Memorial Union 3rd floor

Chairmani Richard L. Usholts, Ballistic Research Laboratory

APPLICATION Of HYPOTHESIS TEMING TO PERFORMANCE APPRAISAL

Richard H. Duncan, Technical Director, and Chief Scientist
White Sands Missile Range

Paul H. Thrasher, White Bands Missile Range

MODELS FOR CONTINGENCY TABLE ANALYSIS

Riokey A. Kolb# United States Military Academy

A CLASS OF PROBABILITY DENSITY FUNCTIONS

Siegfried H. Lohnigk; US Army Missile Range

PLOTTING MATHEMATICAL FUNCTIONS ON A STANDARD LINE PRINTER

Donald W. Rankin, LCol, UBAF, Reot, El Paso
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Robert S. Miller, Walter Reed Army Institute of Research
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Starr D. Kohn, Waterways Experiment Btation
Walter R. Barker, Waterways Experiment Station
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1530-1700 TECHNICAL SESSION Vj RELIABILITY AND QUALITY CONTROL

Old Madison Room, Wisconsin Memorial Union, 3rd floor

Chairman: Donald Neal, Army Materials and Mechanics Research Center

THE LINDSTROM-MADDEN METHOD FOR SERIES SYSTEMS WITH REPEATED COMPONENTS

Andrew P. Soos, The University of Wisconsin-Milwaukee
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Howard Wminer, Educational Testing Berviae
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APPROACHES '1'0 STATISTICAL VALIDATION OF SIMULATION M:>DELS 

Marion R. Reynolds, Jr. 
Virginia Polytechnic Institute and state University 

Blacl<.sburg, VA 24061 

ABSTRACT 

The process of validating a stochastic simulation model usually involves 

the comparison of data generated by the model with corresponding data from 

the real system, one method of maKing this comparison is to test the 

hypothesis that the distribution of model output is the same as the 

distribution of the corresponding variable in the real system. Since no 

model is a perfect reflection of the real system, a more realistic 

formulation is to test the hypothesis that the model is close enough for the 

purposes of the model user. An alternate approach to validation considers 

the error that results when the model is used to predict the behavior of the 

real system. In order to help the model user evaluate the predictive ability 

of the model, confidence intervals for expected error or prediction intervals 

for actual error can be constructed. 
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1. SIMULATION WJDELS 

stochastic simulation models are now widely used in many fields to model 

complex systems when other types of models can not be used. In many cases 

the system being modeled will include many simpler processes interacting in a 

dynamic setting so that it is not possible to carry through a direct 

mathematical analysis. The nature of a simulation model usually means that 

the basic assumptions and structure of the model are not readily apparent to 

the model user so that model validation is particularly important for these 

models. 

Models can be constructed for several purposes, for example to gain basic 

understanding of the system being modeled, to compare different management 

strategies with the·idea of selecting a good strategy, or to predict the 

behavior of the system being modeled. In each of these cases some inference 

obtained using the model will be applied to the real system. In most 

situations the ability of the model to predict system behavior will be 

critical to the effectives of the model. The main purpose of the model will 

usually determine the predictive ability required of the model and this in 

turn will influence the approach to validation that is required. 

2. VALIDATION 

Before a simulation model can be used with confidence, the model user 

needs to know whether the model is a reasonable representation of the real 

system so that inferences or predictions obtained from the model are useful 

for the real system. It is the need for this type of information that leads 

to issues of validation and assessment of the model. 

In discussing model validation it is usually not helpfull to think in 

absolute terms of a model being either valid or invalid, but rather in terms 
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of degree of validity or, better yet, in terms of degree of usefulness. The 

usefulness of a model will depend on the purpose of the model and on the 

conditions under which it is used. For example, a model may be useful for 

determining the relative performance of two management strategies but not 

very useful for providing accurate and detailed predictions of future system 

behavior. A model which is useful for providing predictions for 5 years in 

the future may not provide useful predictions for 15 years in the future. 

A useful way to think about the nature of validation has been given by 

van Horn ( 1971). He defined validation as "the process of building an 

acceptable level of confidence that an inference about a simulated process is 

a correct or valid inference for the actual process". An important point 

here is that validation is a process and not a one time exercise. 

Ideally,the validation process should be carried out during the model 

building process (Sargent (1979)) as well as after the model is essentially 

complete. Another important point in van Horn's definition is that 

validation is a process of building confidence in the model and not 

necessarily the process of "proving" that the model is valid. 

It may be helpful to make a distinction between validation and what 

Fishman and Kiviat (1968) have called verification. verification is the 

process of determining Whether the simulation model behaves as the model 

builders intended. For example, "debugging" the computer program is an 

important part of the verification process. The validation process extends 

beyond the verification process since a model which behaves exactly as the 

model builders intended still may not be useful for drawing inferences about 

the real system. 

3 



3, APPROACHES TO VALIDATION 

some of the discussion of validation in the simulation literature has 

focused on philosophical issues. Discussion of some of the issues involved 

are given in McKenney (1967), Naylor and Finger (1967), Schrank and Holt 

(1967), and Shannon (1975), Balci and Sargent (1984) give an up-to-date 

bibliography of papers dealing with various aspects of model validation. 

one direct approach to validation involves examining the model for "face 

validity", that is, determining Whether the assumptions and structure of the 

model seem reasonable to people who are knowledgeable about the real system 

(see, for example, Law (1982)). This examination of assumptions should, of 

course, be carried out during the modeling process as the modeler develops a 

conceptual model in ·collaboration with people Who are familiar with the 

system. After the model has been constructed other "independent" experts can 

be used to evaluate the model. 

In addition to examining assumptions for conformance to existing 

knowledge and theory, empirical testing of these assumption can be carried 

out (Naylor and Finger (1967)). In this context the use of sensitivity 

analysis may help to identify Which assumptions are most critical so that 

attention can be focused on these critical assumptions (Van Horn (1972)), In 

addition to a sensitivity analysis conducted in the likely range of model 

parameters, an evaluation of model performance can be done at the extremes of 

the parameter values (Sargent (1983)), 

one of the most important tests to which a model can be subjected in the 

validation process is the comparison of data obtained from the real system 

with corresonding data generated from the model. If there is close 

agreement, in some sense, between these two data sets then this will increase 

confidence in the model. Some authors argue that the ability of the model to 
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predict the behavior of the real system is the most important test of a 

model. 

confidence in the model will be higher when the data used in the 

validation of the model is independent of the data used in constructing the 

model. If it is not possible to obtain separate data for validation then one 

approach is to split the existing data into two sets. One set can be used 

for constructing the model and the other set can be used for validating the 

model. In many cases the data used in constructing and validating a model 

will be historical data that has been collected on the existing system or a 

similar system. Ideally the model should be tested by its ability to predict 

the behavior of the system in the future. This may not be immediately 

possible either because the real system may not yet exist or because there is 

not enough time to wait for future observations on the real system. This 

paper will concentrate on the case where validation data is available since 

this is the case where statistical approaches can be used in comparing the 

model and the real system. 

4. EXAMPLE 

When discussing various statistical techniques that are useful in 

validation it may be helpful to think in terms of a specific type of 

simulation model as an example. consider the model PTAEDA developed by 

Daniels and Burkhart (1975) for simulating the growth of trees in forest 

stands. This type of model is designed to model stand growth over time so 

that various management strategies or the effects of various natural 

phenomena can be evaluated. The volume of wood in a stand at some future 

time is one of the main system variables of interest, but other variables 

such as the number of trees in various diameter classes may also be of 
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interest. In this model individual trees within the stand are assigned 

initial coordinate locations and sizes at an age corresponding to the onset 

of competition. Then annual diameter and height growth of each tree is 

simulated as a function of tree size, site quality, age, and an index 

reflecting competition from neighboring trees. Tree growth is adjusted by a 

random component representing genetic and/or microsite variability. Each 

year each tree survives with a certain probability and this survival 

probability is a function of tree size and competition. The wood volumes 

for individual trees at the end of the simulation period are obtained by 

substituting diameter and height values into tree volume equations. 

Estimates of wood yield per unit area are obtained by summing the individual 

tree volumes and multiplying by an appropriate expansion factor. 

5. NOTATION 

Suppose that the simulation model is constructed in such a way that p 

input variables represented by!= (X1 ,x2 , ••• ,xp) are used to generate an 

output variable represented by z. The input variables are usually selected 

to correspond to the most important observable input variables in the real 

system. The output variable z in the model corresponds to some variable Y 

that is of interest in the real system. For example, for a forest stand 

simulator designed to predict stand volume at a future time, ~might 

represent input variables such as site quality, stand age at the future time, 

and some measure of current density. z would correspond to simulated stand 

volume from the model and Y would correspond to the actual stand volume at 

the future time. In most applications it will be reasonable to treat both Y 

and Z as random variables whose distributions depend on the levels of !· Y 

is a random variable because the value of Y can not be determined by 

determining the values of a finite number of input variables and z is of 
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course a random variable because the model contains stochastic elements. 

Since the distributions of Y and z depend on ~ it will be convenient to work 

with F(yl~) and G(zl~), the conditional distribution functions of Y and z, 

respectively. 

Model users will usually be interested in using a model to make two 

general types of inferences about the real system being modeled. The first 

type of inference is concerend with a parameter or characteristic associated 

with the distribution of the variable Y from the real system. The parameter 

that is usually of most interest is the conditional mean E(YI~); other 

parameters that might be of interest are P(Y ~ yl~), the probability that the 

system output is below a specified value y, and the variance var(YI~). All 

of these parameters are functions of the input variables ~· For example a 

model user might be interested in estimating the average volume for stands of 

a particular type Where the type of stand is determined by specifying the 

input variables age, site quality, and density. Alternately, the user might 

want to estimate the probability that a stand of a particular type has a 

volume below an economically determined lower threshold. 

The second type of inference is concerned with predicting an actual 

value of Y that is to be observed when~ is at some specified value. For 

example the model user might be interested in a particular stand and want to 

predict the volume on this stand (as opposed to the average volume on all 

stands of this type). The usefulness of the model for making-either type of 

inference depends on how close _the conditional distribution of z, given X = 

~. is to the conditional distribution of Y, given ~ = ~· The best that could 

be hoped for is that these two conditional distributions are equal. Even 

then, in any trial of the model, the simulated value of z will not 

necessarily be close to the corresponding observed value of Y since both Z 
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and Y are random variables. 

suppose that observations from the real system are available for n 

different sets of conditions, and for the ith set of conditions mi 

obstarvations from the real system are available. Let 

and 

Yij = jJ:!! observation from the real system under the ith 
set of conditions 

For example, data on total wood volume may be available for n different 

types of plots. In this example each plot may be distinct so that mi = 1 for 

all i. Also let 

= input variables for the ith set of conditions. 

Corresponding to the ith set of conditions represented by !i = :!!ii• toe 

simulation model can be run mi times to generate mi independent simulated 

values which can be represented by 

In some cases it may be useful to use the components of !i and ~i indivi-

dually, but it other cases the averages may be used. Then 

mi = l: Y· ·fmi 
j=l l.J 

is an estimator of E(YI~i)• the mean of the system at the ith set of 
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conditions, and 

is an estimator of E(ZI~i>• the mean of the model at the ith set of condi-

tions. The bias or expected error in the model at ~i = ~i is E(Y-ZI~i) 

and an unbiased estimator of this bias is 

It may also be useful to think of Zi as a predictor of Yi before Yi is 

observed and in this case Di is the prediction error. 

6. HYPOTHESIS TESTING 

In developing a model based on a finite number of input variables ~. the 

best model that could be achieved would have the conditional distribution of 

z given ~ = ~ equal to the conditional distribution of Y given ! = ~· Thus 

a natural way to fonnulate the validation problem is as the problem of 

testing the null hypothesis that z and Y have the same conditional distribu-

tions. Let A be a set representing the range of input variables for Which 

it is desirable to validate the model. Then the problem can be stated 

formally as one of testing 

llo 1 F( • I~) = G( • I~) for all ~ 6 A • 

The alternative is that F and G are not equal for at least one ~ 6 A. 

Ideally the set of validation data should be representative of A in some way, 

for 'example, a random sample from A. In practice it may not be feasible to 
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take a random sample and thus whatever data is available may. have to be used. 

For purposes of building confidence in the model, data that represents the 

extremes of A might actually be better than a random sample. If the valida-

tion data does not adequately cover A then of course the conclusions about 

model validity that can be drawn from the data would be restricted to the 

subset of A represented by the data. 

A reasonable interpretation of the hypothesis testing formulation of 

the validation problem is that the test is being carried out to determine 

Whether there is any indication that the model does not represent the real 

system. If the null hypothesis is not rejected then this is interpreted to 

mean that there is no strong evidence of model inadequacy. It does not 

of course mean that the model is a perfect reflection of the real system 

of that the model can not be improved upon since the power of the test used 

may not be high. On the other hand a decision to reject the null hypothesis 

does not necessarily mean that the model is not useful. Rejection in this 

case would be taken as an indication that there is room for improvement and 

that the data should be examined for indications of areas for model improve-

ment. 

In some cases the requirement that F and G be equal may be too strict 

and a test for equal conditional means may be sufficient. In this case 

the null hypothesis would be 

Ho: E(YI~) = E(ZI~) for all ~ e A. 

If m and m• are small there may not be enough information at the set of 

. ' . ' .. ' . ' 
conditions represented by ; = ~i to provide a test of either Ho or Ho with 

reasonable power. In this case it would be reasonable to apply a test at 

each set of conditions and then. use some method for combining independent 
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tests. ·One well known method of combining independent test was developed 

by Fisher (1938). Let Ti be the test that is applied at the i~h set of condi-

tions and let ai represent the observed significance level of the test, 

i.e. ai is the probability of a value of Ti that is as extreme or more extreme 

than the observed value of Ti• If the distribution of Ti is continuous then 

the distribution of ai is uniform on (O,l) when the null hypothesis is true. 

n 
From this it can be shown that -2 t logai has a chi-square distribution with 

i=l 

2n degrees of freedom when the null hypothesis is true. When the ai are small, 

n 
-2 t logai will be large and Fisher's test rejects the null hypothesis when 

i=l 
n 

-2 t logai exceeds an appropriate critical value from the chi-square table. 
i=l 

For other methods of combining independent tests see, for example, osterhoff 

(1969). Alternately, a procedure such as the analysis of variance could 

be used to combine information if the usual assumptions such as equality 

of variances at the different conditions are reasonable. 

7 . CHOICE OF A TEST 

For testing Ho a test such as the two-sample Kolmogorov-Smirnov test 

for the equality of two distribution functions could be used. This test 

could be applied to !i and E!i at each set of conditions and then informa-

tion from all tests could be combined together. This type of test has 

the disadvantage that it is designed for the very general alternative 

F(· I~) F G(·l~) for some~ e A and thus may not have high power for specific 

alternatives that may be of primary interest. 

For testing aQ various parametric and nonparametric tests could be used. 

If normality and constant variance can be assumed then the analysis of 

variance is a reasonable choice where there are two treatments (real and 

simulation) and n blocks corresponding to the n sets of conditions. If con-
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stant va.riance can not be asswned then individual two-sample t-statistics can 

be computed at each point and then combined into an overall test. If HQ is 

rejected then the individual t-statistics would be useful in indicating 

places where the model does not work well. 

If normality can not be asswned then two-sample nonparametric tests 

such as the Wilcoxon rank sum test can be used at each point and combined 

into an overall test. In many applications data on the real system may be 

scarce and there may be only one real observation Yi1 at each ~i· In this 

special case let Ri be the rank of Yi1 among the set Yn,zn,Ziz, ... ,Zimj_. 

Then, under the null hypothesis, the distribution of Ri is uniform on 

1,2, .•• ,mj_+1. It is then possible to develop simple nonparametric tests using 

Rt,R2•···•Rn (see Reynolds, Burkhart and Daniels (1991)). 

B. OTHER HYPOTHESIS TESTING APPROACHES 

• There is a potential problem with testing Ho and Ho as previously formu-

lated. It may be known a priori that the model and the real system can not be 

identical and thus testing that the two are identical may not be very helpful. 

A more realistic philosophy is to realize that an imperfect model can still be 

useful and then try to determine how "close" the model needs to be to the real 

system in order for the model to be useful for its intended purpose. once 

this is determined the validation data can be used to test the null hypothesis 

that the model and system are close enough for the intended application of 

the model (see, for example, Balci and Sargent (1981)). This approach 

requires that a measure,say ~(~), of the closeness ofF and G be developed. 

For example, this measure could be ~(~) = E(Y - Zl~), the expected difference 

between the real system output and the model output. The null hypothesis 

could then be 
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'' H0 : ~(~) ~ ~o for all ~ E A 

or, if the required agreement between the real system and model depends 

on ~. the null hypothesis could be 

' .. H
0 

~(~) ~ ~o(~) for all ~ E A 

where ~o(~) is the required agreement at J!: = ! 

or flo an appropriate test statistic must be ' ' In order to test B
0 

"' 

chosen. Balci and sargent (1981) discuss the use of Botelling•s two-sample 

T2 test for this problem when several system response variables are observed 

and the inferences are not conditional on ~· 

The hypothesis.testing approaches discussed so far have all tested the 

null hypothesis that the model is "valid" in some sense. With this formula-

tion the null hypothesis that the model is valid will be accepted unless 

there is strong evidence to the contrary. This may lead to the acceptance 

of a model that is not adequate if the power of the test being used is low, 

This problem can be overcome somewhat if the power of the test at alter-

natives of interest can be explicitly controlled. 

Another approach that might be more reasonable from the model users 

point of view is to take the null hypothesis as the hypothesis that the 

model is not valid. This null hypothesis would then be rejected and the 

model accepted only if there is strong evidence that the model is valid. 

In this way the burden of proof is on the model to prove itself before 

being accepted for use. This approach may be difficult to implement in some 

cases since the null hypothesis of.an invalid model may be difficult to 

explicitly formulate and test. Reynolds (1984) discusses this approach to 

formulating the null hypothesis in one particular context. 
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9. ESTIMATING ERROR 

The logical inconsistency in testing the null hypothesis that the model 

output has the same distribution as the system output When this is known to be 

impossible has already been pointed out. Testing the hypothesis that the 

model is close enough for the intended purpose of the model may be more 

realistic, but there may be problems in implementing this approach. In many 

cases there will be many potential users of the model. Even if these users 

can be identified it may be difficult to get these users to accurately 

specify the required degree of agreement between the model and the real 

system. In addition, the results of a test may not give the model user much 

feel for the error that can be expected When the model is used to draw 

inferences about the real system. 

one way around the problems of the hypothesis testing approach is 

through the approach of what could be called statistical estimation. This 

approach is concerned with estimating the error that is likely to result when 

the model is used to estimate a parameter or to predict the actual output of 

the real system. When the objective is to estimate a parameter then a 

confidence interval could be given for the difference (expected error) 

between the mean of the estimator from the model and the actual value of the 

parameter. When the objective is to predict actual system output in a given 

situation then a prediction interval for the difference (prediction error) 

between the prediction and the observed output could be calculated. In this 

way estimates of error can be used by the model user or users to determine 

whether the performance of the model is acceptable for various purposes. 

The expected output of the system at ~ = ~i is E( Y l~i), the expected 

model output is E(ZI~i), and the expected difference or bias in the model 

is E(Y - Zl~i>• An unbiased estimator of this bias is Di = Yi - Zi• A 
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confidence interval for this model bias can be constructed to give the model 

user some indication of the average error that will result When the model is 

used to estimate the mean response of the system. If m1 and mi. are not too 

small then confidence intervals for bias at each point ~1 can be constructed, 

In some cases the objective may be to predict actual system output at 

some point. If Zt is considered as a predictor of Yi then the prediction 

error is Di = Yi - Zi· A prediction interval for this error can be con

structed to give the model user some indication of the size of the error 

that may result when the model is used for predicting the response of the 

system. 

If the. n sets of conditions can be considered as a random sample 

from some population then then values o1 ,o2 , .•• ,Dn can be used to construct 

a confidence interval for the average bias (averaged over the distribution 

of ~) or to construct a prediction interval for the prediction error at a 

randomly selected value of~· Reynolds (1994) discusses the use of confi

dence interval and prediction intervals in validating models. 

10. ~GRESSION 

In most cases the difference between the model and the real system will 

not be constant but instead will vary depending on the values of the input 

variables. This means that the bias in the model and the distribution of the 

prediction error will depend on ~· In addition the accuracy required of the 

model may also depend on ~· For example, for certain values of~ the value of 

Y may be large and the acceptable error may also be relatively large. But for 

other values of ~ the value of Y may be small and the acceptable error may 

also be relatively small, Thus it would be useful to be able to directly 

relate the error or bias in the model to the levels of the input variables 
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~· one. reasonable approach to this problem is to use regression methodology 

to relate the error D to the input variables ~· If this can be done then 

model users can obtain information about model accuracy for different condi-

tions. In this case estimates of bias or prediction error would not be 

restricted to the n validation data points although the regression model for 

error as a function of ~ would presumably only be valid within the region of 

the validation data. Reynolds and Chung (1985) discuss the use of regression 

methodology in validating models and give an example of this methodology 

applied to the stand simulator PTAEDA. 

11 • ACKNOWLEDGEMENT 

This research was supported in part by Cooperative Agreement No. 4723-1 

with the u.s. Department of Agriculture, Forest service. 

12, REFERENCES 

Balci, Osman and Robert G. sargent (1991). A Methodology for Cost-Risk 
Analysis in the Statistical Validation of Simulation Models. 
Communications of the ACM 24: 190-197. 

Balci, Osman and Robert G. sargent (1984), 
Credibility Assessment and Validation 
Models. Simuletter 15: 15-27. 

A Bibliography on the 
of Simulation and Mathematical 

Daniels, Richard F. and Harold E. Burkhart (1975). Simulation of Individual 
Tree Growth and stand Development in Managed Loblolly Pine Plantations. 
FWS-5-75, School of Forestry and Wildlife Resources, Virginia Tech. 

Fisher, R.A. (1938). statistical Methods for Research Workers. 7th ed. 
Oliver and Boyd, Edinburgh and London. 356 p. 

Fishman, G.s., and P.J. Kiviat (1968). The statistics of Discrete-event 
Simulation. Sinrulation 10: 185-195. 

Law, Averill M. and w. David Kelton (1982). Simulation Modeling and Analysis. 
McGraw-Hill, New York. 

McKenney, J.L. (1967). Critique ofi "Verification of Computer Simulation 
Models." Management Science 14:8-102-103. 

Naylor, T.H., and J.M. Finger. (1967). Verification of Computer Simulation 
Models. Management Science 14:B-92-101. 

16 



oosterhoff, J. 1969. combination of one-sided statistical Tests. 
Mathematisch centrum, Amsterdam, Mathematical centre Tract 28, 148 p. 

Reynolds, Marion R., Jr. (1984). Estimating the Error in Model Predictions. 
Forest science 30: 454-469, 

Reynolds, Marion R., Jr., Harold E. Burkhart, and Richard F. Daniels (1981). 
Procedures for statistical Validation of Stochastic Simulation Models. 
Forest Science 27: 349-364. 

Reynolds, Marion R., Jr., and Jain Chung (1985). Regression Methodology for 
Estimating Model Prediction Error. Submitted for publication. 

sargent, Robert a.· (1979). Validation of Simulation Models.· Proceedings of 
the Winter Simulation conference, san Diego, CA, 497-503. 

sargent, Robert G,(l983). Validating Simulation Models. Proceedings of the 
1983 Winter Simulation Conference, edited by s. Roberts, J. Banks, 
and B. Schmeiser, 333-337. 

Schrank, W.E. and c.c. Holt (1967). Critique of: "Verification of computer 
Simulation Models." Management Science 14:B-l04-106, 

Shannon, Robert E. (1975). Systems Simulation: The Art and the Science. 
Prentice Hall. 

Van Horn, R.L. (1971). validation of Simulation Results. Management Science 
17: 247-258. 

17 



DISTRIBUTION UNDER DEPENDENCE OF NONPARAMETRIC TWO-SAMPLE TESTS 

Emanuel Parzen 
Department of Statistics 

Texas A&M University 

ABSTRACT. This paper aims to show how to develop the theory of 
two-sample statistical procedures in a way that enables 
statisticians to determine (in a practical and effective way) 
how tests can be adjusted for dependence in the case that 
dependence is modelled by a stationary time series. The 
importance of the problem of adjusting two-sample tests for 
dependence is illustrated by an example from Box, Hunter, and 
Hunter (1978). The paper concludes with a formula for 
dependence factors of linear rank statistics which are expressed 
in terms of spectral densities at zero frequency of suitable 
rank transformed time series. To derive dependence factors, we 
use the asymptotic distribution theory of sample distribution 
functions and sample quantile functions of stationary time 
series. Proofs of these results and examples of their 
applications are given by A. Harpaz (1985) in his Ph.D. thesis. 

1. INTRODUCTION 
Serial dependence (autocorrelation) in data can seriously 

affect the performance of standard statistical procedures (such 
as the t-test or Wilcoxon rank sum test for the equality of 
location parameters of two samples). The qualitative truth of 
this statement is well known to statisticians. But general 
techniques for evaluating quantitatively the properties of 
standard statistical procedures under dependence are not being 
used by statisticians. This paper aims to show how to develop 
the theory of two-sample statistical procedures in a way that 
enables statisticians to determine (in a practical and effective 
way) dependence factors which adjust tests in the case that 
dependence is modelled by a stationary time series. 

To illustrate and motivate the importance of the problem of 
adjusting two-sample tests for dependence we quote an example 
presented by Box, Hunter, and Hunter (1978, pp. 81-82). An 
experiment is performed which takes two samples of 10 
observations each from identical populations and tests for a 
change in location by a t test and a Wilcoxon test using a 5\ 
level of significance. This experiment was repeated 1000 times 
and one observed the percentage P of the number of experiments 
in which the null hypothesis of equality of distributions is 
rejected. When the samples of size 10 consist of independent 
observations one expects that, and observes that, approximately 

Research supported by the u. S. Army Research Office Grant 
DAAG29-83-K-0051. 
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P=5%. The experiment also simulated observations with errors 
e(t) generated from white noise u(t) by a first order moving 
average model e(t)=u(t)+bu(t-1), with b chosen so that the lag 
one autocorrelation rho equaled -.4 (negative autocorrelation) 
or .4 (positive autocorrelation). Under these conditions the 
values observed for P were very approximately P=11% for rho=.4 
and P=0.2% for rho=-.4. One would like to be able to compute 
theoretical values of P which can be compared with, and help us 
understand and predict, the observed values of P. The formulas 
given in this paper show that the theoretical values of P depend 
in large samples on the value, denoted f(O), at zero frequency 
of the spectral density function of the time series model 
describing the dependence of the observations. 

For a first order moving average f(O) = 1+2*rho, so that 
f(0)=1.8 for ~ho=.4 and f(0)=.2 for rho=-.4; note that f(0)=1. 
for white noise (rho=O.). These values of f(O) can be used to 
compute theoretical values of P (based on sampling theory for 
dependent data) which are in rough accord with the values of P 
observed by Box, Hunter, and Hunter in their experiment. The 
conclusion drawn by Box, Hunter, and Hunter from their 
experiment is that the significance levels of the t and Wilcoxon 
tests are affected remarkably little by dramatic changes in the 
probability distribution (normal, uniform, skewed) but are 
seriously impaired by serial dependence. To resolve the problem 
of dependent errors one approach is to avoid dependence through 
randomization. But when serial dependence cannot be avoided its 
effect must be assessed quantitatively. This paper describes 
methods for adjusting (for time series dependence) two-sample 
linear rank tests to have known sampling distribution under the 
null hypothesis. 

As an example, let us note that the z-statistics in eq. 
(3.29) or the t-statistic in eq (3.33) of Box, Hunter, and 
Hunter (1978) could be approximately adjusted for serial 

dependence by dividing by {f(0)1 112 . This formula generalizes 
the discussion on p. 588 of Box, Hunter, and Hunter (1978). 
[When f(O) = .2, its square root is .45. The adjusted 
t-statistic 1.01/.45 = 2.26 or adjusted t-statistic .88/.45 = 
1.96 yield P-levels comparable to that of the t-value 2.17 
obtained in eq. ( 2. 16)] . 

2. LINEAR RANK STATISTICS DEPENDENCE FACTORS 
Let X(1), ... ,X(m) be a sample from a strictly stationary 

time series with distribution function F(x) = PROB[X~x], -~<x<~, 
and quantile function 

Q(u) = F- 1 (u) = inf {X: F(X)2U) 1 0<u~1. 

The population mean and variance of X are denoted MX and VARX. 
The sample mean and variance of X(1), ... ,X(m) are denoted MX{m) 
nnd VARX{m). 
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Let Y(1), ... ,Y(n) be a sample from a strictly stationary 
time series with distribution function G(x) = PROB[ Y~x ), 
-~<x<~ and quantile function G-1(u). Assume that X values are 
independently distributed from Y values. 

Let T denote a linear rank statistic to test the null 
hypothesis Hoof equality of the distributions F(x) and G(x). 
To compute and represent T one introduces the rank, denoted 
Rj, of the j-th largest X value within the pooled sample of X 
andY values. A typical definition of Tis 

m 
(1) T= (1/m) [ J(Rj/(N+1)) 

j=1 

where N=m+n is the pooled sample size and J(u), O~u~1, is a 
suitable score function. The Wilcoxon rank-sum test corresponds 
to J(u)=u or J(u)=u-0.5. 

The asymptotic distribution of T under the null hypothesis 

Ho can be described in terms of A=m/N, MJ(U) = J 1 J(u) du, and 
0 

VARJ(U) = J~ {J(u) - MJ(U)f 2 du. 

The role of U will become clear in the sequel (section 4); it 
represents a random variable with a uniform distribution on the 
interval 0 to 1. This paper shows how to express the asymptotic 
distribution of T, as N tends to ~, in the form 

/N{T- MJ(U)} is NORMAL(O, ((1-A)/A)*VARJ(U)*DEPFAC[T]) 

The notation * denotes multiplication 

We use DEPFAC[T] to denote dependence factor of T; it 
equals 1 if the X's are independent random variables andY's are 
independent random variables. The main aim of this paper is to 
present a formula for the dependence factor DEPFAC[T] of a 
linear rank statistic T. To adjust T for dependence we could 

use (T-MJ(U))/{DEPFAC[T]f 112 as our test statistic. 

To help interpret and understand the formula we present at 
the end of the paper for DEPFAC[T] the next section introduces 
dependence factors for sample means. 

,3. DEPENDENCE FACTORS AND SPECTRAL DENSITIES AT ZERO FREQUENCY 
Our notation for the theoretical mean and variance of a 

random variable X is MX=E[X] and VARX = E[{X-MX}2]. When X(t), 
t~0,±1,±2, .. ~, is a stationary time series its covariance 
function is denoted R(v;X) = COV[X(t),X(t+v)] and its 
correlation function is denoted 
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RHO(v;X) = R(v;X)/R(O;X) = CORR[X(t),X(t+v)], 
v=0,±1,±2, ... 

The sample mean of X(1), ... ,X(n) is denoted 

n 
MX{n} = (1/n) L X(t) 

t=1 

The variance of a sample mean can be expressed 

where 

n VAR[MX{n}] = VARX*DEPFAC[MX{n}] 

n 
DEPFAC[MX{n}] = L 

v=-n 
(1-jv/nj) RHO(v;X) 

In words, the variance of the sample mean of a stationary time 
series can be represented as the product of its variance for an 
independent sample and a dependence factor. 

For large samples (as n tends to ~> one can relate the 
dependence factor to the spectral density of the time series, 
denoted 

SPECDEN(w;X) = 1 + 2 L RHO(v:X) cos 2rrwv, O~w~1. 
v=1 

For n large, the dependence factor of a sample mean is given by 

DEPFAC[MX{n}] = SPECDEN(O;X) 

The advantage of expressing the dependence factor in terms of 
the spedtral density at zero frequency is that it can be 
estimated using methods of spectral density estimation. 

Let us now consider the two-sample problem of testing the 
equality of distributions of two independent time series X(t) 
and Y(t) using as a test statistic the difference of the sample 
means 

m 
MX{m} = (1/m) L X(t), 

t=1 

n 
MY{n} = (1/n) L Y(t). 

t=1 

The test statistic MX{m}-MY{n} has variance equal to the sum of 
the variances of the two sample means. Therefore approximately 

VAR[MX{m}~MY{n}] = (1/m)VARX*SPECDEN(O;X)+(1/n)VARY*SPECDEN(O;Y) 
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Assume that under Ho both MX=MY and VARX=VARY (in practice, one 
might replace VARX and VARY by the variance of the pooled 
sample). Then under Ho MX{m}-MY{n} has mean 0 and variance 

(1) VAR[MX{m}-MY{n}] = {NA(1-A)l- 1*VARX*DEPFAC[MX{m}-MY{n}) 

where N=m+n, A=m/N, and the dependence factor can be expressed 
approximately (for large values of m and n) in terms of spectral 
densities: 

(2) DEPFAC[MX{m}-MY{n}] = (1-A) SPECDEN(O;X) +A SPECDEN(O;Y) 

It should be noted that we are not assuming that the spectral 
densities of X andY are equal. 

This formula for the dependence factor of the difference of 
two means is important for several reasons: 

(1) It can be used to determine the affect of dependence 
on the two sample t-test; it shows that the affect for large 
samples depends only on the value of the spectral densities of 
X(t) and Y(t) at zero frquency. 

(2) It motivates the form of answer which we seek for 
linear rank statistics T, since we shall show that T - MJ(U) has 
the same distribution as a difference-of-means statistic 

(1-A) (MJ(UX"){m} - MJ(UY") {n}) 

in terms of time series J(UX"(t)) and J(UY"(t)) defined below. 
The asymptotic variance of T therefore can be expressed, using 
(1) and (2), 

(1-A)2 NA( 1-A) *VARJ(UX)*{(1-A) SPECDEN(O;J(UX"))+ A SPECDEN(O;J(UY'"))} 

The remarkable conclusion which one is able to draw from 
this formula is that for large samples the dependence factor of 
linear rank statistics can be evaluated by estimating the 
spectral density at zero frequency of the derived time series 
J(UX"(t)) and J(UY"(t)). Experience indicates that a quick and 
dirty estimate of these spectral densities is provided by the 
spectral densities of X(t) and Y(t) respectively. In practice 
one will not know the dependence structure of the errors. The 
dependence factor of T will be estimated by estimating the 
spectral density at zero frequency of the time series whose 
means are being compared. 

4. REPRESENTATIONS OF LINEAR RANK STATISTICS 
To study linear rank statistics we use representations for 

them in terms of sample distribution functions which are valid 
for both independent and dependent observations. 
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· A sample X(1), ... ,X(m) has: order statistics 
X(1;m)~ ... ~X(m;m); sample distribution function F~(x) =fraction 

of sample~ x; and sample quantile function Q'(u) = F'- 1 (u) 
given by 

Q'(u) = X(j;m) for (j-1)/m<u~j/m. 

One also uses continuous versions of the discrete sample 
quantile function. A sample Y(1), ... ,Y(n) has: order statistics 
Y(1;n)~ ... ~Y(n;n) and sample distribution function G'(x). 

One pools the two samples to form a pooled sample 
X(1), ... ,X(m), Y(1), ... ,Y(n) of size N=m+n which has sample 
distribution function H'(x) satisfying H'(x)=AF'(x) + 
(1-A)G'(x). The limit of H'(x) is H(x) = AF(x) + (1-A)G(x). 

In the one-sample problem we call U(t) = F(X(t)), 
t=1, ... ,m, the rank transformed variables; their marginal 
distribution is uniform on 0 to 1. Sample rank transformed 
variables U'(t) are defined by a formula such as U'(t) = 
(m/(m+1))F'(X(t)) which assigns ranks 1/(m+1), ... ,m/(m+1) to the 
order statistics X(1;m), ... ,X(m;m). 

In the two-sample problem the rank 
are defined to be H(X(t)) and H(Y(t)). 
transformed variables are 

transformed variables 
The sample rank 

UX~ (t) = (N/ (N+1) )H' (X(t)), UY' (t) = (N/ (N+1) )H' (Y(t)). 

A linear rank statistic T as traditionally defined by 
eq (1) of section 2 can be represented 

T = (1/m) 
m 
E 

j=1 

An alternative statistic, which our analysis shows provides more 
insight into the asymptotic distribution, is the difference-of
means statistic; one can show that asymptotically [and exactly 
for J(u)=u] 

T- MJ(U) = (1-A}(MJ(UX')Iml - MJ(UY')Inl) 

To relate T to sample distribution functions we represent it 

T = J:® J(N~ 1 H' (x)) dF' (x) 

Our approach is to write approximately 
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This formula is not used. But it suggests one should try to 
represent T exactly as 

T = J 1 J(u) dD~(u) 
0 

where D~(u) is a suitable estimator of D(u) = FH-1(u), O~u~1. 
We call D(u) a comparison quantile function. 

We would like to define D~(u) in terms of sample 
distribution functions so that it is a step function with jumps 
equal to 1/m at u=(N/(N+1)) Rj· Parzen (1983) shows that this 
can be accomplished if D~(u) ~s defined as the inverse 
D1~-1(t) of D1~(t) = H~F~-1(t), O~t~1. 

Our motivations for introducing D(u) and D~(u) are diverse. 

(1) They implement our philosophy that every graph should 
be a picture of a function. Various techniques for graphical 
analysis of samples, such as P-P plots and Q-Q plots, can be 
regarded as sample versions of theoretical functions of the form 
of D(u). 

(2) The conclusions that one obtains arithmetically from 
the value of a linear rank statistic can often be discovered 
graphically (at a glance) from a graph of D~(u). 

(3) In cases where the value of T indicates no significant 
difference between the two samples, the graph of D~(u) may 
indicate important ways in which the samples differ. 

(4) The empirical process D~(u) is important as a 
practical basis for data analysis (as outlined in reasons (2) 
and (3)) and as a theoretical basis for deriving the properties 
of linear rank statistics. The asymptotic distribution of 
D~(u), O~u~1, is derived by expressing it in terms of the 
asymptotic distributions of the sample distribution functions of 
the independent stationary time series X(t) and Y(t). The 
rigorous theory of the latter has recently been completed by 
Pham and Tran (1985) as the culmination of a long line of 
research papers starting with the pioneering work of Gastwirth 
and Rubin (1975). 

5. EMPIRICAL PROCESSES OF STATIONARY TIME SERIES 
Let F~(x) and Q~(u) denote the sample distribution and 

sample quantile function of X(1), ... ,X(n), a sample from a 
stationary time series X(t). Let CFX(x), -~<x<~, and 
CF-1X(u), O~u~1, denote stochastic processes representing the 
limiting distributions of /n{F~(x)-F(x)), -~<x<~, and 
/n{F-1(u)-F-1(u)),O~u~1, respectively. One can show that 
there is a zero mean Gaussian stochstic process denoted BX(u), 
O~u~1, such that 
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CFX(x) = BX(F(x)), 

Thus the asymptotic distribution of the sample distribution and 
sample quantile functions can be expressed in terms of the 
process BX(u), O~u~1. 

For. independent random variables (white noise) X(t), the 
limit process BX(u) is a Brownian Bridge, which is a zero mean 
Gaussian process with covariance kernel 

An indication of the formulas required to describe BX(u) 
when X(t) is a time series is provided by the limit 
distributions .of independent samples of bivariate dependent 
random variables (X(t), Y(t)). Then the limit processes BX(u) 
and BY(u) are each Brownian Bridges but they are not independent 
of each other. They have joint covariance kernel 

where F(x,y)=PROB[X~x,Y~y) is the joint distribution function of 
X andY. We call F(QX(u1), QY(u2)) the bivariate dependence 
function of X and Y; an alternative name (used by some authors) 
is copula. 

To express the covariance kernel of BX(u), O~u~1, in the 
case that X(t) is a stationary time series, it is more 
convenient (for insight and computation and to avoid a 
complicated infinite summation of bivariate dependence 
functions) to represent the covariance structure as a formula 
for the variance of a general linear functional I~ g(u) dBX(u) 

for suitable functions g(u). Let U(t)=F(X(t)) be the rank 
transform, and form the time series g(U) whose value at t is 
g(U(t)). Equivalently we write g(U)=g(F(X)). 

BASIC THEOREM ON EMPIRICAL PROCESS OF STATIONARY TIME 
SERIES: The distribution of BX(u), O~u~1, can be described in 
terms of the spectral density at zero frequency of the time 
series gU(t), U(t)=F(X(t)), which are estimated by gU"(t), U'(t) 
=F'(X(t)): 

VAR[J~ g(u) dBX(u)] = VARg(U) SPECDEN(O;g(U)) 

where 

VARg(U) =I~ g
2

(u) du- II~ g(u)dui
2 

The asymptotic distribution of linear rank statistics are 
obtained from formulas for the asymptotic distribution of linear 
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functionals in the sample comparison quantile function o'(u), 
O<u<1, defined in section 4. One can show that (in the sense of 
convergence of stochastic processes) 

IN {D'(u)-D(u)f ~ CD(u) 

where the limit process CD(u,O<u<1, can be expressed in terms of 
independent limit processes BX(u), O<u<1, and BY(u),O<u<1, by 

CD(u) = -(1-A)(A- 1/ 2BX(u)- (1-A)- 1/ 2BY(u)f 

The processes BX(u) and BY(u) are related to the processes 
defined in the Basic Theorem on Empirical processes. Their 
covariance kernels are expressed in terms of the spectral 
densities at ~ero frequency of the time series J(UX'(t)) and 
J ( UY' ( t) ) : 

VAR[J~ J(u) dBX(u)] = VARJ(U) SPECDEN(O:J(UX')), 

VAR[J ~ J (u) dBY (u)] = VARJ ( U) SPECDEN(O; J ( UY')). 

By combining all these results one can obtain the formula 
given in section 2 for the asymptotic distribution of a linear 
rank statistic for two samples from stationary time series with 
dependence factor DEPFAC[T] estimated by 

DEPFAC[T] = (1-A) SPECDEN(O;J(UX')) +A SPECDEN(O;J(UY"")) 

A more complete proof of this result, and examples of its 
applications, are given by Harpaz (1985) in his Ph.D. thesis. 
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ABSTRACT 

Clustering of individuals, segmentation of time series and 
segmentation of numerical images can all be considered as labeling 
problems, for each can be described in terms of pairs (xt,gtl, t = 
1,2, ••• ,n, where Xt is the observation at instance t and gt is 
the unobservab 1 e "1 abe I" of instance t. The I abe Is are to be 
estimated, along with any unspecified distributional parameters. In 
cluster analysis the values of t are the individuals (cases) observed 
and the x's are independent. In time series the values of t are time 
instants and there is temporal correlation. In numerical image 
segmentation the values of t denote picture elements (pixels) and 
spatial correlation between neighboring pixels can be utilized. The 
idea in segmentation is that signals and time series often are not 
homogeneous but rather are generated by mechanisms or processes with 
various phases. Similarly, images are not homogeneous but contain 
various objects. "Segmentation" is a process of attempting to recover 
automatically the phases or objects. A labeling model for representing 
such signals, time series, and images was discussed in a paper by the 
present author in the Proceedings of the 30th Conference; some 
approaches to estimation and segmentation in this model were presented. 
The present paper summarizes the work on all these types of labeling 
problems, clustering as well as time series- and image-segmentation. 

Key words and phrases: statistical pattern 
classification; temporal correlation, spatial correlation; 
by r.elaxation method. 
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I. Introduction 

The research reported here relates to cluster analysis and 

numerical processing of time series and images. It is in part a 

discussion of work performed under ARO Contract DAAG29-82-K-0155 

(6/15/82 - 6/15/85): ·Statistical Models and Methods for Cluster 

Analysi.s and Image Segmentation. The type of datasets to which the 

techniques developed are applicable include: signals such as radar and 

sonar; economic and bio-medical time series; time series arising from 

quality assurance acceptance sampling by attributes or variables; and 

digital images which can result from various sources, inc I ud i ng 

bio-medical imagery, infrared imagery obtained by smart munitions, 

and multispectral data obtained by satellite, The problems addressed 

are those of clustering, and segmentation of time series and images. 

The work involves the further development of algorithms for 

clustering large, multidimensional datasets and for segmentation of 

time series and digital images. The algorithms are based on maximum 

I ike! ihood estimation in distribution-mixture mode·Js. In the context 

of these mixture models clustering is construed as estimation of 

unobserved labels. An observation's label, were it observable, would 

tell from which mixture component the observation arose. Image 

segmentation is also considered as a labeling problem. Throughout the 

work there is an attempt to apply model-selection criteria to the 

decision as to an appropriate number of clusters or classes of segment. 

Software development is an important aspect of such a project. 

The algorithms developed are programmed in FORTRAN. 

Some of the ideas discussed in the present paper have been 
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developed and pub! ished in journals; see Sclove (1977; 1983a,b,c; 

1984a) and Bozdogan and Sc 1 ove ( 1984) • ·,_:·pir. 

The organization of the present paper is as follows: Section .. 2 

concerns c I us ter ana I ys is; in this section there is some genera 1 

discussion of model-selection criteria and a digression to mention some 

ideas concerning clustering of variables. Section 3 summarizes some of 

the results on time-series segmentation, and results on image 

segmentation are discussed in Section 4. 

2. Cluster analysis 

Background. The mixture model for the clustering problem 

postulates a mixture of k distributions. This is the approach put 

forth In (Sclove 1977). The research problem set there was, at least 

in part, to see whether the ISODATA (Ball and Hall, 1967) and K-1'\EANS 

(MacQueen, 1967) algorithms could be interpreted as 

mathematical-statistical estimation schemes in some model for the 

clustering problem. That is, did there exist a model for the 

clustering problem, and an estimation method in that model, such that 

ISODATA and K-1'\EANS corresponded to that method applied to that model? 

The answer, provided in (Sclove 1977), was affirmative; this will be 

explained below, but first let us briefly define ISODATA and K-MEANS. 

The "isodata" scheme proceeds as follows. One starts with 

tentative. estimates of cluster means as seed points for the .clusters 

and assigns each observation to the mean to which it is closest.. The 

cluster means are then re-estimated, and one loops through the data 

again, reassigning the observations. Etc. In the K-1'\EANS algorithm, 

the seed points are updated immediately after each observation is 
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tentatively classified. In (Sclove 1977) it was shown that' these 

algorithms correspond to iterative maximum likelihood estimation in a 

type of mixture model for the clustering problem, where the component 

distributions are multivariate normal. 

This clustering can be done for various values of k, the number of 

clusters. Figures of merit can be used to choose the best k. 

Model-selection criteria can be used as figures of merit. 

2.1. Model-selection criteria 

In the context of a mixture model, choice of the number of 

clusters 

at least 

k can be viewed as a model-selection problem. However, 

in the case of clustering individuals, existing 

model-selection criteria have to be modified, as they depend upon 

(regularity) assumptions that are not always met in mixture models 

for clustering individuals. 

In any case, let us review some of the existing model-selection 

criteria. Consider, then, a problem of choosing from among several 

models, indexed by k (k • 1,2, ••• ,K). Let L (k) be the I ike I ihood, 

given the k-th model. Various model-selection criteria taking the form 

-2 I og (max L (k)) + a (n) m (k) + b (k) , (I) 

have been developed in relatively recent years. Here n is the sample 

size, log denotes the natural logarithm, max L(k) denotes the maximum 

of the likelihood over the parameters, and m(k) is the number of 

independent parameters in the k-th model. 

is the cost of fitting an additional 

For a given criterion, 

parameter and b (k) 

additional term depending upon the criterion and the model k. 

a (n) 

is an 

Akaike (see, e.g., Akaike 1973, 19]4, 1981) developed such a 
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criterion as an (heuristic) estimate of the expected entropy 

(Kullback-Leibler information). 

is of the form (1) with 

Akaike's information criterion (AlC) 

a(n) = 2 for all n, b(k) = 0 (A I C) • (2) 

Schwarz (1978), working from a Bayesian viewpoint, obtained a criterion 

of the form (l) with 

a(n) = log n, b (k) = 0 (Schwarz' criterion). (3) 

Since, for n greater than 8, log n exceeds 2, it follows that 

Schwarz' criterion favors models with fewer parameters than does 

Akaike's. 

Noting that AIC has a(n) a constant function of n, namely 2, 

various researchers, including Kashyap {1982) and Schwarz (1978) have 

mentioned that AIC is not consistent: a(n) needs to depend upon n. 

Kashyap {1982), also working from a Bayesian approach, took the 

asymptotic expansion of the logarithm of the posterior probabilities a 

term further than did Schwarz and obtained the criterion of the form 

{1) given by 

a{n) • log n, b{k) • log(det B(k)) (Kashyap's criterion), {4) 

where det denotes the determinant and 

matrix of second partials of log L(k), 

B{k) is the negative of the 

evaluated at the maximum 

likelihood estimates. In Gaussian 1 inear models this Is the covariance 

matrix of the maximum likelihood estimates of the regression 

coefficients: in general, the expectation of B(k), evaluated at ·the 

true parameter values, is Fisher's information matrix. Since Kashyap's 

criterion is based on reasoning similar to Schwarz', but contains an 

extra term, it may perform better. [Further comments on 

model-selection criteria are made in Sclove (1983d) .] 
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. 2.2. Multi-sample clustering 

The problem of multi-sample clustering, the grouping of samples, 

is treated in Bozdogan and Sclove (1984). The situation is the 

K-sample problem (one-way analysis of variance), with an emphasis on 

grouping the samples into fewer than K clusters. The use of 

model-selection criteria in this context can provide an alternative to 

multiple-comparison procedures. Use of model-selection criteria avoids 

the difficult choice of levels of significance in such problems. 

Model-selection criteria can also be used in this context to decide 

whether or not .to assume a common covariance matrix. 

criterion could be evaluated ~nd used for these problems. 

2.3. Clustering of individuals 

Kashyap's 

Schwarz' and Kashyap' s criteria could be calculated for the 

problem of clustering individuals according to Wolfe's (1970) 

mixture-model clustering 

programs for clustering. 

approach and incorporated into computer 

The values of the criteria can be used 

heuristically as figures of merit for alternative models, but in order 

to be rigorously applied the model-selection criteria need to be 

modified since their derivation involves an assumption of 

nonsingularity of the information 

this regard a potential advantage 

matrix. However, 

of model-selection 

over· a hypothesis-testing approach in this and 

note in 

criteria 

similar 

situations. Model-selection criteria require nonsingularity of 

the information 

approach runs 

matrix only for each fixed model k. The 

into difficulties- because of nonsingularity 

testing 

of the 

matrix at the boundary between the null and alternative hypotheses 

(i.e., at the boundary between models). 
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2.4. Clustering of variables 

The clustering of variables can also be viewed as a 

model-selection problem. For example, whether and how to cluster 

multinormal variables depends upon which covariances may be assumed to 

be zero; the possible patterns of zeros among the covariances are 

separate models, a figure of merit for which is provided by a suitable 

model-selection criterion. This idea is to be further developed. 

3. Time-series ·segmentation 

As mentioned above, a model for clustering or segmentation is 

given by assuming that each instance of observation, t, gives rise not 

only to an observation Xt but also to a label, gt, equal to I, 2, 

... ' or k, where k is the number of classes of segment. 

Model-selection criteria are used to estimate k. In the context of 

this model, segmentation is merely estimation of the labels. Sclove 

(1983b,c; 1984a) treats the problem by modeling the label process as 

a Markov chain. An algorithm and computer programs are discussed; 

numerical examples are given. 

The model involves three sets of parameters: the distributional 

parameters (e.g., means and covariance matrices), the labels, and the 

transition probabilities between labels. 

The algorithm is a relaxation method, similar to the EM algorithm. 

The estimation step consists of maximum- I ike I ihood estimation of the 

distributional parameters, for tentatively fixed values of the labels 

and transition probabilities. The maximization step consists of 

maximizing the likelihood over the labels and transition probabilities, 

for tentatively fixed values of the distributional parameters. 
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As developed so far, the algorithm is a forward algorithm, 

classifying x2 after X], x3 after x2 and XJ• etc. It is 

suitable for sequential operation in real time, but it is non-optimal 

in other modes of operation. Its performance could possibly be 

improved by a backcasting technique analogous to that in Box and 

Jenkins (1976) and by application of the Viterbi algorithm (forney 

1973), which is a. recursive optimal solution to the problem of 

estimating the state sequence of a discrete-time finite state 

Markov process; it is applicable here because this is what we have 

at each stage when the distributional parameters and transition 

probabilities are tentatively fixed and the labels are to be estimated. 

t further, the·parameter-estimation step of the algorithm can be 

improved. The estimation implemented in the existing algorithm leads 

to estimates that are biased (even asymptotically), (See, e.g., Bryant 

and Williamson 1978.) This bias may be viewed as due to the 

truncation resulting from the algorithm. The estimation could be 

modified by doing it in a Bayesian manner, e.g., estimate the mean of 

Class A as 
n 

> X (t) 
t=l 

n 
Pr (aix(t))/> Pr (aix(t)) 

t=l 

(In this expression, Pr(alxl can be replaced by Pr(xlal since 

Pr (a) /f (x) wi II cancel out.) This modification in the 

paramet,er-estimation step• can be important. for, in this estimate, 

all the observations play a role, whether labeled as "Class A" or 

otherwise, so that at I east. some of the bias incurred by using on I y 

the "a" observations wi II be .removed by allowing all of the 

observations to ente~. 
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The work done to date is explicit ~nly for the case in which the 

class-conditional processes consist of independent, identically 

distributed random variables. The work is to be extended to other, 

often more realistic cases, such as that of autoregression within 

segments. 

4. Image segmentation 

Similar ideas are applied to digital images in Sclove 

(1983a';l984a). ,Here the label process is modeled as a Markov random 

field.' The same improvements made in the time-series context wi II be 

carried over to the two-dimensional, image-processing context. For 

example, computer experiments (Sclove 1984b) with the existing 

algorithm have shown it to be successful, even in finding smal I 

targets • However, at the same time, these experiments have shown the 

.importance of some such modification as backcasting, as mentioned in 

connection with time series, to eliminate anoma'lous border effects. 

Extension of the existing work to two-dimensional autoregressions 

within segments will yield algorithms that may detect textures. 
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ABSTRACT: Vi si bil i ty is produced by a variety of meteorol ogi ca 1 factors 
related to rnicro-, meso-, and macro-scale processes. In addition the 
frequenC'd di stri buti on of visi bi 1 i ty is non-Gaussian. Thus a factor 
11nalysis is not trivi11l. 

Today factor analysis is aided t''d "canned" programs on rnost larger 
computer SI,!Stems. Ho'Never, mo~:t of the time it is not readil'd 
under·stood what tr1ese programs produce. Thus an investigation vvas 
performed to compare four different approaches of a factor analysis. A 
principal components anal'dsis, an unweighted least squares, a general 
least squares approach ar,,j a maximum likelihood method were examined 
for a basic correlation matrix of eigt·,t atrnospheric parameters and for a 
?-year record of 5tuttgart, Germ<~l11d· Furthermore, unrotated factors, 
and ortr,ogonal and oblique rotation of factor'<:: were included. As 
expected tt1e results of tl·,e factor analysis 1Mfer in ,jetails. Hov·tever·, 
the (our rnethods show some cornrnon principles. 

1. INTRODUCTION: Factor analy~:is v.;as used in behavioral science when 
5pearman ( 1904, 1927) Cattell ( 1952 and 1965), and others established 
the basic statist i ca 1-rnathernat i ca I background. Hie phy~:i ca I ~:ci ences 
followed hesitantly. Factor analysis in the atrnospher·ic sciences can only 
be found in the last two ,jeca,jes, e.g. ct1ristensen and Bryson ( 1966), 
Kutzbach ( 1 96 7), Bue II ( 1 971) etc. 

In part this was due to the elaborate mathematical procedure which 
is required in the mathematical solution. Today, factor analysis is aided 
by electr·onic data processing. In recent times even "canned programs" ar·e 
available. Thus the mathematical difficulties have been resolved. Hie 
ph'dSicist wi II find several methods of estimation, however, an,j may be 
confused about the answer to the question which method may be most 
suitable and may provide the best estimators: Furthermore, in order to 
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draw the c:orrect conclusions from the solutions by those "canned 
programs," it is necessary to sepBrBte the "mathematics" from the 
"physics." 

This study serves to elucidBte some of the mtJthernBticBI bBckground 
and reveal some physical characteristics by comparing the results for 
several methods of factor analysis applied to data of a seven-year record 
of atmospheric parameters for Stuttgart, Gerrmmy. 

\'le learn thet the estirnetors for the "communalities" differ for the 
individufll methods. This is expected. The p~tysicel char~:~cteristics of t~1e 
factors, however, dispiBy great similarity Bfter rot~:~tion of the coot-dinflte 
system altbough the sequence is not fllways the same for the individual 
rnetl·tods. 

.-, 
"-· PRINCIPAL COMPONENTS ANALYSIS. The basiG model for factor 
atHllysis can t'e forrnul~:~ted flS follow":: 

( 1 ) 

where r-1)( is a data matrix (t~te on ltd known matrix in Eqn 1 l .. r·1A a 

coefficient matrix of factors, r1F the factor matri:,, and 1\ an error 

matri>(. MA is also called the factor loading matrix or factor pattern. In 

the basic factor analysis neither the factors are correlated, nor are the 
factors and the errrors. 

The mathematical solution for Eqn ( 1) can t1e formulated as: 

(2) 

'·Nhere •f• = r·1FTr·1F is a factor covariance matrix and ·t a dia,~onal matrix 

'I' = r1011e witrt t10 a diagonal errormatri>(. 

As stated above, t1x is a data matrix. In its standardized form 11x 

is a correlation rnatrix r·1R witrt unity in its diagonal. This is called a 

"closed" system or principal components analysis. Then the errror 
matrix 't' has zero elements outside tt1e diagonal. 

The true factor analysis is based on the postulation that not all 
factors are known. In order to account for this fact the diaqonal in tf·te 
correlation matrix f1R must be reduced i.e. tf·te diagonal elements are 
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le~•S thon 1.0. These diogonol elements ore olso colled "cornmunolities", 

Determining t and t1A requires a solution for 

(3) 

which is a known problem in mathematics. The model can be 
r-ef cnnulat ed: 

(4) 

with fiAT = r·1A - 1 and D), a diagonal matrix. Dx is called the matrix of 
eigenvalues and f1A contains tl"re eigenvectors. In the principal 

components analysis f1AT MA = I. For more details see Essenwanger 
( 1976). 

3. THE COf1t-IUNALITIE5. Four different rnethods have been studied in 
tl"ri s i nvesti gati on .. In tile first rnetlwd a principal components analysis 
(P.C.) is performed and a specific number of factors is accepted. E.g. for 
a con-elation matrix wittl 81:8 dimension 8 principal component factors 
<'We obtained frorn the mathernatical model. Vie may decide to select tl"re 
largest 4 factors. This is equivalent to a truncation. The communalities 
<Jre then recalculated from these 4 accepted factors. This procedure rnay 
apppear to be somewhat arbitrary and subjective. It must be pointed 
out, twwever, tt1at tt·re nwnber of physical factors is unknown. Alt~rougll 
the total number· of factors in the principal components analysis is 
determined by the dirnension of the rnatril< t1R tt·re uncertainty of factors 
with significance in physics is contained in the ctwsen nurnber of 
erernents in tt1e MR matrix. A formalistic mathematical solution can be 
achieved for any dimension of the correlation matrix MR. However, 
whether a 11 possi b 1 e factors in the. pri nci pa I components ana I ysi s. have 
significant meaning in physics is not determined by the mathematical 
solution. 

Tile number of factors is also a subjective choice in tt·re ott1er t11ree 
methods. Thus the truncation of factors in the principal components 
analysis is not worse than the assumption of the number of factors in 
the other three rnethods. 

The other three methods differ how estimators are calculated for 
the communalities. We ac::;r.Jme the number of factors which are 
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~ccepted ond obtoin ee.timotore. oe. follows. 

Hie unweigr1ted least squaresrnethod (ULSQ) requires tr1at U is a 
rninirnum for 

" u = ( 1/2) tr 01s - l·lxl"" (5) 

where 115 is the correlation matrix with estimators in the diagonal and 

tr means the trace. 

In the generalized least squares method (GL5Q) G is a minimum for 

(6) 

where In denote's a diagonal matrix of unity and lis and M>< are the same 

as un•jer Eqn (5), 

Finally, the rnaximurn likelihood principle (11XLI) is applied to 
rni ni rni ze: 

(5ee Joreskog, 1 967) where n is the number of variables. 

Other methods to substitute estimators for the diagonal in t1R exist 

(see Essenwanger, I 976) but were not included in the present study; see 
a I so Guttman (I 956). 

4. ROTATION5. Although the solution of t·IA provides characteristic 

factors which rnay have meaningful interpretation in physics, it is 
customary to enhance certain features. This is accomplished by rotation 
of the coordinate system. This is called attaining sirnple structure. The 
ultimate goal is the following: . 

(a) At least one zero in eact1 row 

(b) k zeros in each column (k-1 for principal components) 

(c) For any pair of factors: 

I. High loading in one element .,. 1.0 
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2. Zero in other variables 

3. 5mall loading on both factors for the variable 

4. Only a few non-vanishing loading on both. 

In order to explain the rotation procedure let us recall that: 

(8) 

where t1E is an eigenvector matrix and DA is a diagonal matrix of 

eigenvalues A, withAl =IK. Two methods of rotationsare \:UStomary: 

crthogonal and oblique rotation. In terrnsof mathematics the orthogonal 
rotation is achieved by 

(9) 

where T 1 is a transformation matrix. Oblique rotation requires two 

transformation procedures because factor- pattern and factor structure 
matrix are not identical as in the ortt1ogonal transformation. 

Thus: 

t1F5 = MAT 2 (factor structure matrix) ( 1 Ob) 

While the factors are uncorrelated in the solution of Eqrr's 4-7 and the 
orthogonal rotation, the oblique rotation introduces factors which ar-e 
correlated. Tt"rus MFP represents the regre%ion coefficients in trre 

structure pattern, and t'1F5 the covariances between variables and 

factors. The factor pattern is: 

( 1 1 ) 

where t1FP determines the aij and MF5 the f j terms; ei is the error. 

5. EIGENVALUE5, FACTOR LOAD5 AND COt1~1UNALITIE5. The introduced 
for.w methods of estimating the communalities have been applied to 
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atmospheric data of Stuttgart (Fed. Rep. Germany). The data cover the 
period* Sept 1946-August 1953. Eight meteorological elements have 
been selected: ceiling (CEIL), visibility (VIS), wind .direction (YIID), 
windspeed (v-IS), temperature (TEf1P), dewpoint (DEYIIP), relative 
t"1umidity (REHU) and pressure (PRES). Visibility was utilized in linear 
scale and as transformed variate in logarithmic scale. The wind velocity 
was also converted to zonal (U) and meridional (V) components. These 
differences in the element selections will be discussed later. 

Dat11 as e;;hibited in Tables 1 and 2 were chosen as a typical 
example for disclosing the diversity caused by different methods of 
estimating tt1e communalities. Table 1 displays tr1e eigenvalues for data 
from Stuttgart (linear visibility, zonal and meridional wind components). 
IHe learn from perusal of Table 1 that the individual eigenvalues 
fluctuate and depei·1d on tt"le chosen mett·1od. The dissimilarity is even 
found in the :::urns of these eigenvalues. However, rotation of the 
coordinate systerns (orthogonal and oblique) has no effect on the sum, <'lS 
expected. The numerical values differ only by rounding. 

The differences between tr1e in1jividua1 rnethods for tt1e sum of 
eigenvalues can be traced to tt"le sum of communalities (Table 2). As 
confirmed by the observed data the surn of eigenvalues must be identical 
with the sum of the communalities save rounding. In the principal 
components analysis this sum is identical with the number of elements 
if tr1e number of f actor·s is not truncated. 

We also notice in Table 1 that t~1e truncated principal components 
ana!IJSis sr11JVvs the t1igt1est approximation (62%) of the total variance for 
the chosen number of factors, in our case four. 

*Footnote: V·le experienced difficulty ·witt"! the magnetic tape record 
after 7 years of data. The difficulty could not be resolved for inclusion 
into this manuscript. Only T<'lble 3 was availat1le for 10 years. 
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While Table 1 exhibits fluctuations of the sum of eigenvalues from 
6.56 7 to 5.040 tt1ese variations are not necessarily repeated for other 
data sets. E.g. Table 3 has been compiled for 10 years of data for 
Stuttgart in January, substituting visibility in its transformed 
logaritrtmic scale, and zonal and meridional components of wind have 
been replaced by speed and direction (see Essenwanger, 1964). We learn 
that the sum of the eigenvalues for the three methods ULSQ, GLSQ, and 
MXLI differ very little, although the individual eigenvectorJ sho'N 
dispersion. Again, Hte truncated pri nci pa I components ana I ysi s renders 
the highest approximation of the variance (about 81 %). 

6. FACTOR LOADS, STRUCTURE 1'1ATRIX AND FACTOR PATTERN. Tables 
4A-D provide detailed information about the factors. Four sections are 
shown in each Table 4A-D. The first section pr-ovides the unrotated 
factor loads for the solution with cornrnunalities. E.g. in the case of the 
principal components method (Table 4A) these are the first 4 
eigenvectors of a correlation matrix with unity in the diagonal matrix. 
The numer-ical vaiLJes in these four columns represent the affinity with 
tt"1e elernent8 and can be interpreted as a \linear) correlation coefficient. 

The first factor (Tat!) e 4A) which represents 39% of t~te varia nee 
(i.e. 3.14/8.00) discloses high association with temperature, dewpoint, 
zonal (U) and meridional (V) wind component and visibility, in that order 
of rnagnitude. The second factor with about 21% of the variance is again 
a mixture, relative humidity, visibility, dewpoint and ceiling. in the 
tt1ird factor tt1e pressure stands OtJt while tt1e rourt~1 factor is again a 
mixtlwe whereby all elements are contributing el<cept the relative 
twmiditq (-.07 means almost zero). 

The unrotated factor load is a valid solution. It was pointed out 
previously that a rotation of the coordinates will enhance the 
association behveen i ndi vi dua I factor and e I ernent. This si rnp I ifi cation 
process \".'ZIS described in section four. The sum of the eigenvalues 
remains constant in this transformation. 

Inspection of the section for orthogonal rotation in Table 4A reveals 
that now the first factor principally is related witt"t the temperature 
elements, i.e. temperature and dewpoint. The second factor comprises 
the moisture elements (relative humidity, visibility and ceiling). The 
third factor contains the pressure, and the fourth factor the wind. This 
may t1e expected by some readers and may be a trivial answer. It should 
be stressed, however, tt1at the mathematical formalism COIJid t1ave led to 
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o different on~wer ond combination of element~. The ::~eporotion into 
these four factors is logical on account of the physics background. 
This may give the impression t~1at the grouping into these 4 factors is 
trivial. In turn, the mathematical formalism has led in u·,is case to an 
answer which has an interpretation in terms of physics. However, 
beyond the expected factors we gain information about the weights of 
the factors. Hlis weight is not readily available by expectation alone. 

The lower part of Table 4A lists the result for an oblique rotation. 
While the structure matrix contains the covariances (which are 
equivalent to the correlation coefficient); the factor pattern expresses 
the regression coefficients. In the oblique rotation the factors are 
intercorrelated (see Table 5). They are not correlated with each other 
for the unrotated or the orthogonal solution. We learn from the 
structure matrix of Table 4A that the factors have not essentially 
c~1anged from the orthogonal rotation case. Trierefore, the 
intercorrelation (between factors) is very low (Table 5). 

Tt1e results for the other methods (UUQ, GL5Q, t1XLI) are similiar 
wm1 minor changes .e~;cept that t~1e weigt1ts are different for· tt·1e 
individual factors. In Table 48 we notice n1at t~1e ceiling s~10ws onl'd 
'lery low influence in an'd of the factors. This result is repeated in 
Table 4C. v1hile in the previous methods the pressure is one factor, it 
shows virtually no contr-ibution in tt·,e GL5Q method. It reappears as a 
factor in Tatile 4D, MXLI rneU1od. Another difference between Tables 4A, 
8 and Tables 4C, D is the influence of the windspeed. In Table 4A the 
factor wit~' t~1e two wind components indicates equal correlation of the 
wind components. In Table 48 a srnall preference of the meridional 
compbnent is already visible. In Tables 4C, D, ~1owever, n,e rneridional 
wind component appears to be more dominant than tt1e zonal influence in 
the wind factor. 

One further peculiarity must be mentioned. In the unrotated and 
orthogonally rotated case the sum of the eigenvalues su1, AND 50J.., 

respectively, is equal to the sum of the squares of the factor 
components. 

or 

n ' 
<>U - " f 2 ( 12a) c!J..-Lu 

I 

1'1 

50J.. = 2: fo2 ( 12b) 
I 

where f u 2 and f 0 
2 denote the numerical value in the respective 
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foc:tor c:olurnn ~nd n deaignotes the nurnber of elements. In the oblique 
case we find 

1'1 

50Bx = 2 fs fF ( 13) 
• 

where f 8 i~ the column value in tr1e structure lnatrix and f F the 
corresponding column value in the factor pattern. Although the sum of 
50Bx for the 4 factors renders the same numerical value as the 
unrotated or orthogonally rotated case the individual items 50Bx can be 
positive or negative in the maximum likelihood method (Table 6). The 
exhibited case in Table 6 is not an isolated case or error as the first 
impression may be. As can be seen from Table 7A a negative term 
appears also in a combination of elements Ln 1/!Ei, WD, WS. In July 
(Table 78) this peculiarity did not show, and it almost rules out that it 
is an error in ttle cornputer prograrn. Thus the rnaxirnurn likelitwod 
rnetlwd, at least in otw ··canned computer program", appears to be very 
sensitive to changes of the correlations in the input matrix. 

7. FACTOR ANAL Y5I5. The detailed infonnation on unrotated and 
rotated factors is listed in Tables 4A-D for one version of a set of 
e I ements. Tl"lese detai 1 ed tat,ul ati ons are somewhat difficult to read. In 
order to enhance the significant features of the factors, hvo changes 
were introduced for Tables 7A and B. First, all correlations r ~ -0.4 
v.;ere omitted except t11e rnaxirnum correlation in one line which could be 
smaller than 0.4. Secondly the sign 'Nas omitted because the sign plays 
only a role in formulating eqn (11) and performing calculationswith it. 
The magnitude is sufficient for evaluation of the factors. 

In Table ?A, B eight atmospheric elernents are shol"'m. For these 
eight elements visibility was used in its linear scale and with a 
transformed (logar1thrnic) scale. In t1"1e top part of Tat,les 7A, E: t1·1e 
··t·tind appears as speed and direction vvl1ile in tt·1e center and lov·ter 
section the zonal and meridional components have been utilized. H1ese 
modifications lead to three different versions of factor analysis for the 
sm·ne elements. Only the solutions with orthogonal and oblique rotation 
are included in Tables 7A, B. 

Table ?,\ exhibits the condition for January. The significant 
features do not vary essentially between the three versions. The only 
eHception is the contribution by ceiling of clouds which renders a 
si!~nificant factor for the UL5Q rneH10d (top and center) but is not a 
special factor at the bottom section where it is replaced by the 
pressure. The differences between individual rnethods (PC, ULSQ, GLSQ, 
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and I'IXLI) were mostly described in tbe previous section 6 and wi II not be 
repeated bere. 

Table 7B provides tbe factor analysis for July ot 5tuttgort for the 
sarhe seven-year period of record at Stuttgart. Again, it can be noticed 
tbat the oblique rotation is not significantly different frorn the factors 
provided by orthogonal rototion. Other dete, not included here, follow the 
serne trend that orthogonal end oblique rotetion do not differ significentiiJ 
This feet may irnply that orthogonel rotetion may be sufficient for fector 
en a I !JSi s of atmospheric e I ernents. A I though the cherecteri sti c of factors 
shows e simi ler pattern in July M given for Januery, some difference 
exist. Besides the mentioned difference in the contribution by the ceiling 
a me j or change hes occurred in the essoci at ion of e I ernents. ReI ati ve 
humidity and visibility are now associated with temperature in three of 
the four methods for oil three versions. This first factor proves to be the 
dorninant influence but not by rnuch. 

The primary purpose of this study was not the illustrotion of the 
changes throughout the year but the exhibition of the differences in the 
utilization of the individuel methods. Althougl1 variations exist, a close 
peruse! reveals that physicel characteristics of the system do not differ 
too much in the indi'liduol methods. 

8. CONCLUSION AND SUMI'IAR'I. The present study i llustrotes that the 
e~:t i rneti on approach for the commune I it i es by different methods (eqn 5-7) 
leads to different factors. They are rnore uniform, however, after rotetion 
of the factors. Thi~: confirms that tt·1e basic problem in factor enalysis hes 
not t1een resolved es of today, namely the derivotion of suitable 
estimators for t11e communalities (see Cattell, 1965 or Guttrnan, 1956). 
As the study proves, however, the physical features after rotetion of the 
factors show major agreement, although differences in detai Is and in tr1e 
sequence of irnportance of factors cen be found. 

This study revealed t11at for atrnospt1et-ic elements the factors 
derived by oblique rotation do not differ significantly from factors 
procured by orthogonal rotetion. This rnay imply thet tt1e eleborate 
rnathernetical procedure for oblique rotelion could be saved in favor of the 
simp I er and I ess cost! y orthogona I rotation. 

The factors appearing in the Jenuary date are related to four simple 
c:ornbi nBti ons, ternperature, wind, rnoi sture and pressure. This si rnp I e 
division is not repeated in the July dBte. However, the resulting fectors 
frorn the analysis procedure do not give unreasonable combinations in 
terms of ~~hysics. E.g. the combination of temperature with visibility and 
reletive humidity rnay 1·1BVe some explanation in terms of relationship 
t1et ween reduc:ed redi ali on during high reI alive hurnidi ty Bnd I ow vi si bi I ity 
(lnd vice verso. Also the cornbin(ltion of e 'Nind component 'Nith 
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ternper~:~ture terms rn~:~y indic~:~te 1:1 reflection of the circulation of flir 
either in the mBcro- or rneso-scBie. Other detei led fe~:~tures in the 
petterns of fBctors rnay t'e reserved for a further study. 

Finally, no specific recommendation fls to the "best suite~ble rnethod" 
for estimating tt·1e cornrnunblities can be made at the present time. 
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TABLE 1. COMPARISON OF EIGENVALUES, FACTOR LOADS 

(STUTTGART, JANUARY) 

( 1 ) Unrotated Factor Loads 

PC ULSQ GLSQ MXLI 

A 1 3.136 2.929 2.811 2.303 
Az 1.695 1. 385 1.590 1.462 
A3 1. 016 0. 924. 0.636 1.328 
A4 0.720 0.432 0.003 .789 

LA 6.567 5 .670. 5.040 5.882 

(2) Orthogonal Factor Load 

A 1 2.150 2.157 2.252 2.196 
Az 1.611 1.152 1.257 1.076 
A 3 1.200 1.080 1. 528 1.272 
A4 1.601 1.273 0.003 1. 337 

EA 6.562 5.662 5.040 5.881 

(3) Oblique Structure Matrix 

A 1 2.128 2.102 2.192 1.189 
Az 1.613 1.170 1. 262 2.238 
A3 1.203 1.081 1.576 1.460 
A4 1.622 1. 311 0.011 . 994 

LA 6.566 5.664 5.041 5.881 
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TI\BLE 2. COMMUNALITIES 

(STUTTGART, JANUARY) 

PC ULSQ GLSQ MXLI 

CEIL .697 .234 .159 .200 
VI SIB .758 .504 .399 .428 
u .729 .507 .424 .477 
v .811 .714 1.000 .781 
TEMP .947 1.002 1.000 .996 
DEWP .988 1.007 1.000 1.000 
REHU .749 .693 1.000 .999 
PRES .887 1.002 .058 1.000 

l: x2 6.566 5.663 5.040 5.881 

TABLE 3. EIGENVALUES AND COMMUNALITIES 

STUTTGART, JANUARY, 1946-1956, Ln Vis, WDD, WSP 
(A) EIGENVALUES (ORTHO. FACT. LOAD) 

PC ULSQ GLSQ MXLI 

A l 2.207 1.863 2.042 1.868 
A2 2.053 1.532 1.310 1.525 
A3 1.254 1.185 1. 230 1.188 ' 

' A4 1.004 1.062 1.018 1.063 

l:A 6.518 5.642 5.600 5.642 

(B) COMMUNALITIES 

PC ULSQ GLSQ MXLI 

.802 1.000 . 146 1.000 

.740 .532 .. 441 .531 

.630 .498 1.000 .501 

.712 .592 1.000 .591 

.941 .990 1.000 .990 

.996 1.000 .995 1.000 

.705 1.000 1.000 1.000 

.991 . 031 .018 .031 

l:i 6.517 5.643 5.600 5.644 
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TABLE 4A. FACTOR LOADS, STRUCTURE MATRIX AND FACTOR PATTERN 
(STUTTGART, JANUARY) 
PRINCIPAL COMPONENTS 

UNROTATED ORTHOG. ROT. 
PC ULSQ GLSQ MXLI PC ULSQ GLSQ MXLI 

CEIL .44 -.46 .48 .24 . 19 -.49 .54 .37 
VIS -.59 -.58 .05 .26 -.35 -.73 -.18 -.26 
u -.76 -.04 . 10 -.38 -.40 -.05 -.05 -.75 
v .67 .38 .03 .47 .12 .29 . 10 .84 
TEMP -.87 . 18 .27 .28 -.92 -. 12 -.11 -.26 
DEWP -.80 .47 .26 .23 -. 95 . 18 -.09 -.20 
REHU • 10 .86 .00 -.07 -.21 .82 .02 .16 
PRES .39 .09 .80 -.30 .08 . 16 .92 .03 
Ex 2 3.14 1. 70 1. 02 .72 ' 2.15 1 . 61 1.20 1.60 

OBLIQUE ROTATION 

STRUCTURE MATRIX FACTOR PATTERN 

CEIL .28 -.44 .58 .39 . 10 -.50 .52 .36 
VIS -.37 -.75 -.21 -.38 -.32 -.73 -. 13 -.16 
u -.49 -.11 -.13 -. 81 -.29 -.00 . 01 -.73 
v .22 .36 .17 .87 -.02 .23 .05 .83 
TEMP -.95 -.14 -.18 -.42 -.91 -.14 -.04 -.14 
DEWP -.98 • 16 -.17 -.34 -.95 -. 16 -.04 -.09 
REHU -. 21 .83 • 01 . 19 -.24 . 81 .01 . 13 
PRES .13 . 19 .92 • 11 .03 . 19 .93 -.06 

Structure Matrix = Covariance 
Factor Pattern = Regression Coefficients 
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TABLE 4B. FACTOR LOADS, STRUCTURE MATRIX AND FACTOR PATTERN 
STUTTGART, JANUARY . 

UNWEIGHTED LEAST SQUARE 

UNROTATED ORTHOG. ROT. 
PC ULSQ GLSQ MXLI PC ULSQ · GLSQ .MXLI 

CEIL . 35 -.23 • 21 -.12 .29 -.25 .23 -·. 19 
VIS .51 -.47 .12 -.11 . -.25 -.54 -.14 .36 
u -.66 -.73 .07 .26 -.39 -.05 -.10 .58 ·v .61 .40 .09 -.42 .15 .23 . 10 -.79 
TEMP -.92 . 19 .19 -.28 -.95 -.17 -.07 .25 
DEWP -.85 . 51 .09 -.11 -.95 .21 -.07 .22 
REHU -.07 . 76 . 21 .25 -.15 . 81 .00 " .. 12 PRES .40 .26 .87 • 11 .07 -.01 .99 -.11 

2 
Ex 2.93 1.38 0.92 0.43 2.16 1. 15 1.08 1. 27 

STRUCTURE MATRIX FACTOR PATTERN 

CEIL • .32 -.23 .26 -.23 .23 -.27 .22 -.18 
VIS -.29 -.58 -.18 .46 -.22 -.53 -.10 .26 u -.46 -.11 -.16 .66 -.28 .00 -.04 .. 56 v .24 .33 .16 -.83 -.01 . 16 .04 -.79 
TEMP -.97 -.16 -.15 .46 -.94 -.18 -.03 .11 
DEWP -.98 .22 -.14 .40 -.92 .20 -.03 '14 REHU -.15 .82 .02 -.16 -.12 .81 .00 -:o3 
PRES . 12 • 11 .99 • 21 • 01 .06 .99 -.04 

Structure Matrix = Covariance 
Factor Pattern = Regression Coefficients 
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TABLE 4C. FACTOR LOADS, STRUCTURE MATRIX AND FACTOR PATTERN 
STUTTGART, JANUARY 

GENERAL LEAST SQUARES 

UNROTATED ORTHO. ROT 
PC ULSQ GLSQ MXLI PC ULSQ GLSQ MXLI 

CEIL -.36 .14 . 10 .03 -.33 .16 . 15 .02 
VIS .39 .49 .08 .01 • 24 .44 -.38 . 01 
u .60 .19 -.17 -.003 .42 .06 -.49 -.003 
v -.54 -.61 .57 .000 -.11 -. 15 .98 .01 
TEMP .96 .03 .26 -.03 .94 .21 -.25 -.02 
DEWP .95 -.29 . 10 .03 .97 -.14 -.19 .04 
REHU .09 -.90 -.42 -.01 .21 -.97 . 15 .005 
PRES -.20 -.12 .06 -.01 -. 13 -.06 .20 -.004 

2 
Ex 2.81 1. 59 0.64 0.003 2.25 1. 26 1 .53 .003 

STRUCTURE MATRIX FACTOR PATTERN 

CEIL -.34 . 17 .18 -.03 -.30 . 18 • 14 .03 
VIS .26 .46 -.44 -.19 .22 .43 -.33 .007 
u .46 .08 -.55 -.10 .36 .03 -.47 -.008 v -.18 -.22 .99 .31 .02 -.07 .98 .01 
TEMP . 96 . 18 -.39 -.02 • 94 .20 -.17 -.03 
DEWP .98 -. 18 -.31 . 15 .94 -.13 -. 15 .04 
REHU .21 -.99 . 19 .35 .16 -. 96 .08 .004 
PRES -.14 -.07 .22 .05 -.10 -.05 . 19 -.003 

Structure Matrix = Covariances 
Factor Pattern = Regression Coefficient 
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TABLE 4D. FACTOR LOADS, STRUCTURE MATRIX, FACTOR PATTERN 
STUTTGART, JANUARY 

MAXIMUM LIKELIHOOD 

UNROTATED ORTHO. ROT 
PC ULSQ GLSQ MXLI PC ULSQ GLSQ MXLI 

CEIL .42 .09 .11 -.08 . 31 .23 .17 -.14 
VIS -.31 .00 .52 .24 -.24 -.15 .43 .40 
u -.46 .23 .20 .42 -.41 -.10 .04 .55 
v .32 .05 -.35 -.74 .14 .09 -.17 -.85 
TEMP -.73 .58 .35 -.00 -.95 -.06 . 17 .25 
DEWP -.76 .65 .oo .00 -. 96 -.06 -.18 .19 
REHU -.16 .29 -.94 .00 -.16 -.01 -.98 -.14 
PRES .76 .65 .00 .00 .08 .99 -.07 -.12 

2 
l:x 2.30 .33 1 .46 .79 2.20 1.08 1.27 1. 34 

STRUCTURE MATRIX FACTOR PATTERN 

CEIL .25 -.36 -.11 -.10 .22 -.43 .16 -.08 
VIS -. 24 . .23 .56 .39 -.22 -.14 .55 .25 
u -.1 B .49 .43 .53 -.14 . 35 . 11 .44 
v .21 -.27 -.43 -.83 • 19 -.02 -.20 -.78 
TEMP -. 15 .93 .81 .23 -.08 .68 .. 42 .001 
DEWP -.11 1. 00 .56 • 16 -.04 .99 .00 .oo 
REHU .08 .31 -.61 -.18 • 10 .96 -. 01 - .01 
PRES 1. 0 -.11 -.06 -.02 .99 -.04 -.00 .00 

Structure Matrix = Covariances 
Factor Pattern = Regression Coefficients 
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TABLE 5. INTERCORRELATION BETWEEN FACTORS 
(OBLIQUE ROTATION) 

A) Principal Components Analysis 

1. 0 -.02 .13 .28 -.02 1. 0 .02 .15 .13 .02 1. 0 .15 .28 . 15 . 15 1. 0 

B) Unweighted Least Squares 

1. 0 -.05 .10 -.33 -.05 1.0 .04 -.21 .10 .04 1 .0 -.16 
~. 33 -.21 -.16 1. 0 

C) General Least Squares 

1.0 -.07 -.20 . 12 -.07 1. 0 -. 15 -.32 -.20 -. 15 1. 0 .27 .12 -.32 .27 1. 0 

D) Maximum Likelihood 

1. 0 -.08 -.04 -.01 -.08 1. 0 .56 . 16 -.04 .56 1. 0 .28 
-. 01 .16 . 28 1.0 

TABLE 6. VARIANCE COMPONENTS FOR THE MAXIMUM LIKELIHOOD METHOD (JANUARY, STUTTGART, LN VIS, U, V) 

UNROT ORTH. ROT OBLIQUE ROT. 
x1 2.116 1.102 1.469 
x2 1. 374 1.255 3.934 
x3 1.448 2.003 12.392 
x4 0.830 1.407 -12.028 
EX 5. 768 5. 767 5. 767 
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c.n 
CXl 

CEIL 
Ln VIS 
WD 
ws 
TEMP 
DEWP 
REHU 
PRES 

A 

CEIL 
Ln VIS 
u 
v 
TEMP 
DEWP 
REHU 
PRES 

A 

CEIL 
VIS 
u 
v 
TEMP 
OEWP 
REHU 
PRES 

' 

P.C. 

61 
82 

94 
43 51 
93 
97 

83 
90 

2.26 1.24 
1.83 1.08 

49 50 43 
77 

41 74 
82 

93 
96 

82 
93 

2.10 1 .17 
1.69 1.60 

49 54 
73 

40 75 
84 

92 
95 

82 
92 

2.15 1.20 
1.61 1.60 

TABLE 7A, FACTORS FOR JANUARY, STUTTGART (UNIT: PERCENT) 

Ortho rot Oblique rot 

ULSQ GLSQ MXLl P.C. ULSQ GLSQ MXLI 

98 35 .. 98 65 99 4 99 
55 46 10 61 83 44 62 44 44 58 49 
33 94 32 23 18 
69 95 63 4 54 45 73 

!Js 
99 66 33 

96 97 96 5 8 95 99 
96 99 96 7 8 198 99 93 

95 96 94 83 99 39 99 67 99 
27 29 89 29 20 25 

2.04 1.10 2.24 1.22 1.10 2.03 2.25 1.25 .04 1.07 2.11 1.18 1.13 4.68 
1.13 1.06 1.25 0.02 1.09 1.09 1.82 1.09 1.15 1.07 1.15 '0.29 2.89 -3.39 

97 33 97 46 54 44 99 33 99 
47 47 47 40 11 43 49 78 53 53 45 45 57 50 

59 43 48 58 49 80 ~6 65 46 54 50 51 
78 98 so 86 81 100 52 35 

94 95 94 95 97 45 97 - 49 95 100 
94 .97 94 98 97 97 99 93 

91 97 98 83 93 99 62 100 
24 19 23 94 26 21 26 

2.00 1.09 .24 1. 50 1.10 2.00 2.06 1.17 1.99 1.07 2.12 1.53 1.47 12.39 
1.20 1.37 1.28 0.02 1.26 1.41 1.68 1.65 1.21 1.38 1.16 0.24 3.93 -12.02 

29 . 33 31 44 58 32 34 36 
54 44 43 40 75 58 46 46 44 56 

58 42 49 .. 41 55 49 81 46 66 46 55 49' 43 53 
79 98 85 88 83 99 43 84 

95 94 95 95 42 97 46 96 93 81 
95 97 04 96 98 . 98 40 98 100 56 

81 97 98 83 82 99 35 61 
99 20 99 92 99 22 00 

2.16 1.08 2.25 1.53 .20 1.27 2.13 1.20 2.10 1.08 2;19 1.58 . 2.20 1.27 
1.15 1.27 1.26 .003 1.08 1.34 1 .61 1 .62 1.17 1.31 1.26 .• 01 1.08 1.34 

lrl ~ 0.40 or lmaxl 
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TABLE 7B, FACTORS FOR JULY, STUTTGART, (UNIT: PERCENT) 

ORTHO ROT OBLIQUE ROT 

P.C. ULSQ GLSQ MXLI P.C. ULSQ GLSQ 

69 33 26 95 66 33 27 
70 42 42 41 70 42 43 

46 26 21 28 49 26 30 
83 98 12 74 83 I ·gs 12 

64 70 80 58 69 68 24 56 80 65· 77 80 69 99 
93 99 98 99 90 99 94 57 

91 98 98 99 91 98 97 43 66 
94 99 99 13 94 99 99 

2.01 1.57 1.95 1.10 1. 78 1.02 1.37 .95 1.96 1.63 1.92 1. 11 1.01 1.02 
1.33 1.02 1.38 1.00 1.49 1.11 1.88 .73 1.33 1.02 1.42 1.00 .~7 1.39 

66 42 27 43 66 43 27 
70 97 42 64 70 99 43 

80 70 ' 24 71 82 72 33 
81 78 13 77 80 77 12 

69 67 82 55 69 68 23 ~4 80 70 75 ~6 58 99 67 
96 99 98 ~9 95 99 59 93 

91 94 99 93 91 S5 66 46 97 ' 
99 13 99 12 99 12 99 

2.00 1.46 1.75 1.36 1.79 1.02 .36 1.33 1. 97 1.50 .76 1.35 1.47 1.03 
1.79 1.00 1.32 1.00 1.50 1.01 1.71 .54 1.79 1.50 1.33 1.00 .95 .95 

67 51 27 4 67 52 27 
67 40 37 43 67 9 36 

80 89 43 24 66 49 82 99 53 36 
79 56 13 75 78 46 60 13 

68 67 79 57 70 70 20 76 70 74 ~1 63 98 
96 99 98 99 95 99 95 62 

91 97 99 96 91 7 98 41 61 
99 15 99 13 99 15 99 

1.95 1.46 1.82 1.36 1.77 1.02 1.39 1.23 1. 91 1.49 1.82 1.35 1.07 1.03 
1.82 1.00 .99 .81 1.50 .06 1.80 .36 1.82 1.01 1. 1? .5A on 1_ ':l:h 

\r\2:0.40 or \max\ 
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42 

32 
30 

56 77 97 
99 65 

99 64 
07 

1.26 1.02 
0.41 2.24 

43 
65 

' 71 
76 

55 82 
99 

97 
12 

1.38 1.27 
1.84 .45 

46 
40 

69 56 
71 51 

82 
100 

99 41 
13 

1.38 .96 
1 •• « 



• · 1985 American Stlllistical Association and 
UKJ American Society for Quality Control 

TECHNOMETRICS, MAY 1985, VOL. 27, NO. 7 

Small Composite Designs 
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Small second-order composite designs were suggested by Hartley (1959). Westlake (1965) 
provided even smaller designs for k = 5, 7, and 9 factors, for which intricate construclion 
methods were needed. Here, simple designs formed using Plackett and Burman (1946) designs 
are offered fork= 5, 7, and 9. Designs with one run fewer than Westlake's fork= 5 and 7 and 
three fewer fork = 9 are feasible by deleting repeat points that occur in some of the designs. 

KEY WORDS: Center points; Composite designs; Factorial designs; Plackett and Burman 
designs; Response surfaces. 

1. INTRODUCTION 

Suppose we are going to examine k predictor vari
ables, coded to x 11 x2 , ... , x1" to determine their 
effects on a response variable y subject to random 
error. We might first wish to perform a first-order 
design to fit the model y =Po+ P1x1 + · · · + p,x, 
+ 8. If no progress appeared possible (for example, 
via steepest ascent), we might then wish to add a few 
runs to enable the more comprehensive second-order 
model, 

Y=Po+LPtxt+LLP<Ix,xl+t, (I) 
l~j 

to be examined, where all sUmmations are taken over 
i, j = 1, 2, ... , k. Many possible second-order sequen
tial designs may be used to obtain the data for such a 
fitting. The specific choice of design would depend on 
the relative importance to the experimenter of various 
design (eatures (for example, see Box and Draper 
1975, p. 347). One extremely useful type of sequential 
second-order design is the composite design. As initial
ly suggested by Box and Wilson (1951) and followed 
up by Box and Hunter (1957), it consists of a 2' 
factorial or a 2'"' fractional factorial portion, with 
runs selected from the 2' runs (x 1, x 2 , ... , x,) =(±I, 
± 1, ... , ± 1), of resolution V or higher (for example, 
see Box and Hunter 1961 or Box, Hunter, and Hunter 
1978), plus a set of 2k axial points at distances" from 
lhe origin, plus n0 center points. In general, the 2"-q 
portion or tuhe may be repeated c times, and the axial 
points or star may be repeated s times. The values of <X, 

n0 , c, and s are to be selected. 
Suppose, of the various design criteria, we decide to 

emphasize having only a small number of runs. Such a 
course of action might be appropriate if runs were 
expensive, difficult, or time-consuming, or if a compli
cated computer model were to be approximated lo
cally by a second-order surface. Of course there must 
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be at least !(k + l)(k + 2) points in the design, this 
being the number of coefficients to estimate in II). 
Hartley ( 1959) pointed out that the cube portion of 
the composite design need not be of resolution V. It 
could, in fact, be of resolution as low as III, provided 
that two-factor interactions were not aliased with 
two-factor interactions. (Two-factor interactions 
could be aliased with main effects, because the star 
portion provides additional information on the main 
effects.) This idea permitted much smaller cubes to be 
used. Westlake (1965) took this idea further by finding 
even smaller cubes for the k = 5, 7, and 9 cases. Table 
I shows the numbers of points in the various designs 
suggested, for 2 :<:; k :<:; 9. 

Westlake (1965) provided (in an appendix) thr<"e 
examples of22-run designs fork= 5, one example ol a 
40-run design fork= 7, and one example of a 62-run 
design for k = 9. He noted that for k = 7 or 9, "sys
tematic generation of all possible designs ... appears 
to be almost out of the question" (p. 332). 

Table 1. Points Needed by Some Small 
Composite Designs 

Factors, k 2 3 4 5 6 7 8 9 
Coefficients 

!tk + 1)(k + 2) 6 10 15 21 28 36 45 55 
Points in Box-Hunter 

(1957) designs a 14 24 26 44 78 80 146 
Hartley's number 

of points 6 10 16 26 28 46 48 82 
Westlake's number 

of points 22 40 62 



2. CONSTRUCTING SMALL 
COMPOSITE DESIGNS 

Can Westlake's small numbers of runs for the k = 5, 
7, and 9 cases be beaten? The surprising answer is yes. 
Moreover, for k = 5 and 9 it is possible to equal the 
number of runs in a simple manner, and for k = 7, 
simple designs are available with only 42 runs, two 
more than Westlake's 40. The overall advantage of 

these suggested designs is that none of the ingenuity 
shown by Westlake (1965) is needed, thanks to 
Placke(( and Burman ( 1946), and yet an apparently 
large selection of possibilities is immediately available. 
(As we shall see later, the selection is not as large as 
first appears I) 

The basic method can be simply stated: (a) Use, for 
the cube portion of the design, k columns of a Plackett 
and Burman (1946) design. (b) Where .repeat runs 
exist, remove one of each duplicate pair to reduce the 
number of runs. 

Let ( 1) be written in the matrix form y = XP + E. If 
(X'X)- 1 exists, we have a valid second-order response
surface design that will estimate all of the parameters 
in (1). To avoid the possibility of actual or near singu
larity merely due to choice of ex, 1 initially followed 
Westlake ( 1965) by selecting the star with unit axial 
distance, namely with points ( ± I, 0, ... , 0), (0, ± I, ... , 
0), ... , (0, 0, ... , ± I). In practice, this value of ex may be 
varied, since its value does not affect the singularity or 
nonsingularity of the design, apart from the following 
feature: When ex# k11', the design has two spheres of 
points with radiuses k''' and ex, so center points are 
not needed (see Box and Hunter 1957, p. 217). If the 
choice IX = k112 were made, however, center points 
would be essential to avoid design singularity. In later 

o\..,1.:' 
computations,.reported here, I used the values ex = 2 
(for k =·5), ex= 8112 = 2.828427 (k = 7), and ex= 
2714 = 3.363586 (k = 9). These were suggested by a 
referee, because they are the values that provide rotat
able designs if a 2'- 1 design is used with a star of axial 
distance ex fork= 5 and 7, and if a 2'" 2 design is used 
similarly fork = 9. 

3. CASE k = 5 

There are 21 coefficients to estimate, and there are 
10 axial points. The difference of 11 is thus the mini
mum possible number of cube points required. An 
obvious choice is to use five (of the 11) columns of a 
12-run Plackett and Burman (1946) design. There are 
(15

1) that is, 462 possible choices, all of which produce 
nohsingular designs. These require 22 runs, the same 
number as Westlake's. A detailed examination of the 
cube portions for the designs shows that there are two 
basic types; standardized versions of these appear in 

Table2. 
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+ 
+ 
+ 
+ 
+ 
+ 

Table 2. Two Essentially Different Choices of 
Five Columns From a 12- Run Plackett and 
Burman Design: (a) With a Pair of Repeat 

Runs; (b) With a Mirror-Image Pair of Runs 

a b 

+ + + + + + + + + + + + + + ·I. 
+ + + + + + + + + + + + 

+ + + + + 
+ + + + 
+ + + + + + + + + + + + + + + + 

NOTE: All o.ther choices ere equivalent to one of these, subject to 
changes ln s1gns, throughout .one or 'more columns, renaming of vari
ables, and reordormg of runs. 

4. CASE k = 7 

There are 36 coefficients to estimate, and there are 
14 axial points. Thus a minimum of22 cube points is 
ne~ded. First an attempt was made to form designs 
usmg seven (of the 23) columns of the 24-run Placket! 
and Burman design. Tries with columns (1-7), (I, 2, 4, 
5, 8, 9, 10), (3-5, 7-10), and (1, 3, 4, 7-10) all produced 
singular X'X matrices. There are, in all, 245,157 possi
ble column choices, and it is conjectured that all will 
fail. 

A second attempt used seven(of the 27) columns of 
the 28-run Plackett and Burman design. More than 20 
tries all produced nonsingular designs with no f>•il
ures, and it is conjectured that all of the 888,030 
choices of seven columns from 27 will do the same. 
These designs have 42 runs, a modest two more than 
Westlake's 40, but reduced designs with fewer runs are 
also possible, 

Features we have already noted in the k = 5 case 
also arise here. Many of the possible column choices 
provide i~entical or essentially identical sets of points; 
so.me c~otces provide repeat runs and some provide 
mmor-1mage runs. A new feature for k = 7 is that 
some sets of columns provide both repeats and mirror 
images, and some neither! 

How many distinct designs are there? Based on the 
number of dillerent I X'X I matrices found in a trial
and-error selection of designs. there are at least 15. 
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5. CASE k = 9 

There are 55 coefficients to estimate, and there are 
18 axial points. Thus a minimum of 37 cube points is 
needed. One possibility is to use nine (of the 39) col
umns of the 40-run Placket! and Burman design. Tries 
with columns (l-9) and (2-9, 39) failed, producing a 
singular X'X matrix. It is conjectured that all 
211,915,312 possible choices will fail similarly. Parallel 
to this, I note Westlake's (1965) remark that, for a 3/16 
fraction of a 27

, "while one apparently valid defining 
relation exists, it is impossible to pick three 1/16 repli
cates so as to give a non-singular X'X matrix" (p. 329). 

A second attempt used nine (of the 43) columns of 
the 44-run Placket! and Burman design. More than 20 
tries all produced nonsingular 62-run designs, the 
same number of runs -as Westlake's. There were no 
failures, and it is conjectured that all 563,921,995 
column choices will produce nonsingular designs. 

Features similar to the k = 7 case again arise. De
signs certainly exist with up to three pairs of repeats 
and up to two pairs of mirror-image runs. 
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ABSTRACT 

In the army sensitivity testing environment it is often desired to estimate V 0, the 
velocity at which 1/2 of a given projectile population would penetrate a given p~ate of 
armor. Excessive cost of experimental units usually necessitates the use of very small 
samples - often less than 15. Several studies have been done to examine the performance 
of some of the available design and estimation techniques under restrictive sample sizes. 
Discussed will be some extensions of those studies with emphasis on additional practical 
environment considerations such as nonnormal response functions, stimulus noise, esti
mate existence, and initial design point selection. 
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INTRODUCTION 

In the army quanta! response testing environment, excessive cost of experimental 
units usually necessitates the use of small samples. Several small sample studies have 
been done to examine the performance of some of the available design and estimation 
techniques. This paper discusses extensions of those studies including additional practi
cal environment considerations such as estimate existence, nonnormal response func
tions, and stimulus noise. 

The quanta! response testing environment is one in which there are only two possi
ble outcomes for each experimental unit. For example, if a projectile were fired against 
a plate of armor one could observe a penetration (response) or a nonpenetration. Con
tinuing with this example, suppose an experimenter wishes to assess the performance of 
a particular projectile. One way to characterize performance is to consider the probabil
ity of a projectile perforating the armor at various velocities. Thus, assessing the perfor
mance of a projectile in this manner amounts to establishing some appropriate probabil
ity distribution. 

Assume that associated with every projectile is a critical velocity above which the 
projectile would penetrate the armor and below which it would fail to penetrate. Then 
critical velocity is a continuous random variable. What is left for the experimenter is to 
characterize the probability measure associated with the random variable, critical velo
city. Note that critical velocity is not directly observable since in no way can the experi
menter sample directly from a population of critical velocities. Rather, the experimenter 
can only collect (response, nonresponse) data. If a response is observed at a particular 
velocity then all that can be said is that that velocity was in excess of the critical velo
city for that particular projectile. In this manner data can be collected pertinent to the 
response function, or the probability distribution of critical velocity. Historically in test
ing these P,rojectiles, the median of this distribution, V50, is of particular interest pri
marily because it takes fewer rounds to estimate than other quantiles. We will continue 
with that convention here. 

Our purpose in examining this problem was twofold. The first was to examine the 
effect of day to day problems in sensitivity testing under a representative 'in practice' 
scenario. The second was to compare several design and estimation procedures in this 'in 
practice' setting. Our attention here will be focused on our first purpose. 

DESIGN CONSIDERATIONS 

A detailed Monte-Carlo study was performed which incorporated some· problems 
encountered in practice. Under each set of test conditions 700 iterations were run giving 
rise to estimates of V 59. The response for this study was taken to be the sample popula
tion of the estimate, V50, expressed in terms of the empirical density, its mean, and in 
particular the v'MSE. 
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The test design appears in Figure 1. Five designs, each in conjunction with three 
estimation procedures, were used in this study. The Delayed Robbins-Monro (DRM) and 
the Adaptive Robbins-Monro (ARM) are variations of the well known Stochastic 
Approximation Method of Robbins and Monro. The Estimated Quanta! Response Curve 
(EQRC), used in conjunction with DRM and ARM in this study, is a recent technique 
introduced by Wu (1985). The Langlie procedure is one currently used in much of the 
army's quanta! response testing. These five constitute some reasonable designs for use in 
our testing environment. References are sited at the conclusion of this paper for those 
interested in the details of these procedures. 

The first estimation procedure is a maximum likelihood estimation method with an 
assumed normal response function and is denoted NMLE. The second (A VR) is an arith
metic average of the velocities giving rise to the k lowest responses and the k highest 
nonresponses where k is usually taken to be 2 or 3. This second estimate is frequently 
used by Aberdeen Proving Ground, particularly in the absence of a unique maximum 
likelihood estimate. The last, Next Stress, is simply the next design point of the sequen
tial design. For DRM, ARM, and EQRC, Next Stress is the intended estimate. 

The above designs and estimation techniques were compared under the following 
test conditions. For some more expensive rounds, experimenters fire 15 rounds in hopes 
of getting 12 or more. Some are disqualified due to erratic flight of the round. Recently 
the encouraged policy has been to use as few as 9. Thus, representative sample sizes of 
9, 12, and 15 were considered. 

Another factor to be accounted for is noise associated with the firing velocity of 
each round. It is not possible for experimenters to control precisely the velocity at 
which a round is fired. In fact, for some extensively studied data sets the ratio of the 
estimated noise standard deviation to the estimated population standard deviation 
(assuming normal response function) was .15u or more. It was thought that this amount 
of variation would limit the ability of a sequential design to converge on V50. Three lev
els of noise were considered: the absence of noise, normal (0, [.15u] 2), and exponential 
with median, 0, and standard deviation, .15u. In each of the above and in the following, 
u is the standard deviation of the response function. 

Input from the expenmenter is used for establishing the initial design point, (start
ing value) and the ra<Ige, (gate width) over which the median V50 can be found. The 
latter is used in establishing the magnitude of step sizes in the sequential designs and 
actually bounds acceptable design points in the case of Langlie's design. Unavoidably, 
there is often a great disparity between initial estimates and actual values. Conse
quently, it is reasonable to investigate how well designs and associated estimates 
rebound from poor initial information. Four starting values were combined with three 
gate widths in this study. 

Finally, it was desired to examme the design and estimator performance under 
different response functions. or the five listed only the first four will be considered here. 
Each have median, 0, and standard deviation, 1, with the obvious exception being the 
Cauchy whose quartiles were made equivalent to those of the normal. 
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15 asymmetric Yso-3o- IOcr Cauchy 

Yso+3a- exponential 
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Figure 1. Design and estimation over various test conditions 
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ANALYSIS 

One observation we made was that as the sample size increased, the precision of 
the estimate improved regardless of the design and estimator used. An example of this 
is given in Figure 2. We note here that v'MSE is the root mean square error. In addi
tion, a case set is a pairing of a starting value and a gate width. The reader need only 
know that cases 1-9 are the same in each situation and represent a good mixture of pos
sibilities. 

With regard to noise, our study showed A VR and NMLE estimations to be insensi
tive to normal noise and only mildly sensitive to asymmetric noise. In Figure 3 we see a 

• • • comparison of V50 's , the average of 700 simulated V50's for each case set. In the case 
of asymmetric noise, the average is biased upward slightly toward the longer tail of the 
response function. However, in Figure 4 we see little difference among the three levels 
of noise for those same test conditions. We found Next Stress to be sensitive to noise 
and particularly to asymmetric noise. In Figure 5 the effect of noise on the precision of 
the Next Stress estimator is evident. In Figure 6 with the actual median indicated by 
the arrow, note the apparent shift of the estimate population toward higher velocities, 
the long tail of the asymmetric noise density. 

The designs and estimators considered here are influenced by. the shape of the 
underlying response density. In Figure 7 V50' comparisons are made with some zero and 
normal noise cases. Note that the average of the estimator is approximately the true 
value of the parameter except in the case of an exponential density and for two cases of 
the Cauchy density. In Figure 8 these same case sets are compared by JMSE. We see 
that the uniform density results are somewhat higher than the normal and that the 
Cauchy and exponential densities each have some extremely low values. This is particu
larly interesting in the case of the exponential since its estimate population mean was 
biased upwards. The reason for such behavior rests in the shape of the densities. 

Consider for a moment a density with point mass unity representing the critical 
velocity probability mass. Then if a sequential design were used, the step for the next 
design point would always be taken in the direction of the point of jump. Thus the 
design would never make a wrong decision, the decision moving the data collection away 
from the median. Hence, it would converge in an ideal sense to the median. Of course 
in order to make a good estimate of the median, it is desirable to sample close to it. 
Thus, a wrong decision is extremely detrimental over the first few rounds of small sam
ple experimentation as it may prematurely cause sequential designs to decrease step 
sizes, thus making it more difficult to climb back to the region about the median. For 
the densities considered here there is a non-zero probability associated with making a 
wrong decision. 

Examine Figure 9. Here all four densities are considered. Suppose for a normal 
density the sequential design is currently at -2, then we have only a probability of .0228 
of making a wrong decision. That is, there is only probability .0228 associated with 
critical velocities below -2 which would cause a response to be recorded and, conse
quently, a step down on the stress axis to the next design point. With this in mind, one 
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Figure 4. Effect of noise on precision of AVR estimator. 
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Figure 5. Effect of noise on Next Stress estimator. 
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can explain the behavior of the designs for each response function. 

For the Cauchy density, once the design was sampling close to the median, the con
centration of probability in that area was holding the design there. This gave rise to 
the low JMSE in Figure 8. On the other hand, for case 2 in Figure 7 where sampling 
began in the tail, the heavy tail of the Cauchy gave a relatively high probability of 
going further out in the tail. When the design moved back toward the median, estima
tion was weighted by the low probability response, resulting in V50* values well below 
those of the other densities. 

In the case of the exponential, most of the probability mass is contained in the 
interval (-.69, .69) - relatively close to the median. Again, once the design reached this 
area, the concentration of probability was likely to hold it there, giving rise to Figure 8 
results. However, when the design did wander, it could only wander in one direction, 
thus causing the V50*'s to be higher than for the symmetric distributions. The uniform 
and normal explanations follow along these same lines. 

In support of this explanation we offer as examples Figures 10-13. In each figure 
the 700 V50's are given in histogram form. Note that -1.1 and 1.3 bound the normal 
V50's where as· -2.5 and 1.8 bound the Cauchy V50's. In addition, the sample estimate 
population appears slightly more peaked for the Cauchy density than for the normal. 
Note also the shape of the sample estimate population corresponding to the exponential. 
It is skewed to the right but at the same time very peaked about the median. 

One important idea resulting from these observations rests with the heavy tails of 
the Cauchy. It is doubtful that with historical small sample data that a normal density 
could be discerned from a Cauchy with matching quartiles. Yet these simulation results 
show that problems in estimation can result when heavy tails are present. Therefore, 
the experimenter needs to be aware of this problem when picking starting values and 
step sizes. 

Thus far only moderate attention has been given to the estimation procedures. In 
general, we found the NMLE and A VR methods to track very closely over a wide range 
of starting values and gate widths. Figure 14 shows an example of this in terms of 
v'MSE. However, Next Stress, with its sensitivity to noise environments, does not track 
well with the other two for normal and asymmetric noise; an example is given in Figure 
15. It should be noted that Next Stress is the intended estimator for all designs except 
the Langlie which uses NMLE. Over the wide range of cases NMLE seems to be the 
best performer. 

The comparison of designs was too involved to address in the time allotted for this 
talk. We will say only that under NMLE all the designs performed similarly. This is not 
to say that some are not better than others, but only that in this small sample environ
ment not enough rounds are available to show superiority where it is present. 
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SillviMARY 

In summary, several important observations follow. First, the starting value and 
gate width have a significant effect on v'MSE. Second, the response function does 
influence the design point selection and estimation. In particular, heavy tails could 
adversely affect the estimate of Yso· Third, sample size changes from 9 to 15 result in 
an increase in precision of about 25%. Fourth, in noise environments, NMLE is the pre
ferred method of estimation regardless of design. In the absence of noise, there is no 
clear difference among the three -estimators. Last, there is no clear advantage in using 
one design over another in terms of the quality of the estimate. However, certain imple
mentation considerations will help the experimenter choose one to suit his needs. 
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HUMAN FACTORS AFFECTING SUBJECTIVE JUDGHENTS 

Mary A. Meyer 
Los Alamos National Laboratory 

ABSTRACT 

Human factors include the ways in which peoole acauire, 
process, and convey info~ation. They affect the quality of 
people's judgements and thus become a concern when these 
judgments are being elicited for use as data. This pacer 
focuses an five human factors: question phrasing, conser
vatism, inconsistency, overoptimism, and social pressures. 
Techniques for detecting and reducing the occurrence of 
these human factors are given for two methods of eliciting 
subjective data, the mail survey and the interactive group 
method. Techniques for structuring the elicitation methods 
are proposed as the main means for countering the occurrence 
of human factors. 

THE HUI1AN FACTORS 

Human factors can affect the quality of the subjective data in many ways. 
Human factors include the ways in which people acquire, remember, process, and 
present information that inhibit their reaching mathematically optimal 
decisions. The human acquisition of data is biased because humans selectively 
1 earn that which supports, rather than opposes, their views (Mahoney 1976, 
Hogarth 1980). For example, people are unconsciously drawn to acquire informa
tion which supports, rather than refutes, their preconcepti ens (Mahoney 1976). 
Then too, people can acquire faulty information because of the role that feed
back plays in the learning process. When people receive no feedback, delayed, 
or only partial feedback, as often occurs, they may draw incorrect conclusions 
(Hogarth 1980). For example, scientists who often receive only partial confir
mation of their hypotheses are likely to consider this sufficient validation or 
to believe those data points which support their theory and mentally dismiss the 
others (Mahoney 1976). The infor~ation acquired is stored and may be later ac
cessed by the person during an elicitation session. 

How easily such information can be accessed from memory also affects 
peoples' judgments during an elicitation session. Concrete, catastropic, or 
widely publicized information is more easily accessible and thus more greatly 
influences a person's judgment than less memorable information (Soet:ler and 
Stael von Holstein 1975, Hogarth 1980). For example, it is thought that the 
League of Women Voters ranked the nuclear industry as posing the greatest oc
cupational hazards to its employees of any industry because of th~ 
disproportionate amount of media coverage this industry had received. 
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The processing of data in the human mind, such as during an elicitation 
session, is also subject to human factors. Generally, peocle have difficulty 
processing more than seven pieces of information at a time (Miller 1955). 
Typically, they will select a heuristic for salving a problem in a decision 
situation which then influences the decision t~ey reach. For examole, manacers 
may focus on the major aspects of the problem and ignore the uncertainties" and 
como 1 ex i nteracti ens of factors to reach a decision (Bender et a 1., 1981). This 
simplifying heuristic may point to a different decision than one which had in
cluded all the complexities of the problem. In applying these heuristics, 
peoole are likely to be inconsistent, thus further complicating {he gat~ering of 
quality subjective data. For examole, the manager may have been forecasting the 
completion date of a large project by adding together the blo,cks of time t~at 
each major phase was likely to require. He may have forgotten to add in a ~hase 
being done by a subcontrac::or, thus failing to consis""ently follo·11 his own 
heuristic. 

Additional complications may enter as a result of the mqde in which par
ticipants are requested to give the judgments. For example, respondents may 
give different judgments on a survey than they would in an interview situation 
(Payne 1951). They might give varying judgments to different phrasings of the 
same question (Payne 1951, Sudman and Bradburn 1982, Gorden 1980). ·Then too, 
they might give different judgments if they are giving it in "willingness to 
gamble" or "probabilitY" schemes (Winkler 1967, Hogarth 1980). 

Due to the constraints of time, five human factors were selected for dis
cussion. These five factors are widely prevalent and often interrelated as will 
be described below. The five human factors include the effects of: 
1) Presentation of the decision task and phrasing of the ~uestions or response 
options; 
2) Conservatism; 
3) Inconsistency; 
4) Overoptimism and; 
5) Social pressure. 

Evidence of the effect of the presentation of the decision task on the in
dividual's response has been documented by Tversky and Kahnemen (1981). They 
asked students which alternatives they preferred in gain and loss situations. 
For example, students chose between: 1) a sure gain of $250; and 2) a 25% chance 
of gaining $1000 or a 75% chance of gaining nothing. In the set of loss alter
natives, they chose between; 1) a sure loss of $750; and 2) a 75% chance to lose 
$1000 or a 25% chance to lose nothing. The majority preferred the sure gain in 
the first pair of options and the risky loss in the second pair. ihus, t~e 
relative attractiveness of options varies when the same decision is framed in 
different ways. Furthermore, individuals are generally unaware of the effec: of 
question framing and, if informed of it, uncertain of how to compensate for its 
effect. 

In addition, there is evidence that the response mode, such as probabil
ities or equivalent gambles, influence peoples' judgment (Winkler 1967, Hogarth 
1980). For example, Winkler (1967) recommended that a "willingness to pay" 
response mode be used because people gave more conservative, hence more realis
tic, estimates using this response mode than using probabilities. Similarly, 
the scales used for the responses, such as 1 to 10 or -5 to· +5, can influence· 
peoples' judgments. 
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The .effect of 'question phrasing has been shown most dramatically by Payne 

(1951) through his use of the split ballot technique in survey ques~ions. The 

split ballot techntque entails giving half of a survey samole one wording of a 

question or resoonse ootion and the other, another. For examole, one wording of 
a question might be, "Do you believe that X event will occur by Y time?" The 

other wording might be, "Oo you believe that X event will occur by Y time, or 

not?" This second option is more balanced becau~e it mentions both 

possibilities. For this reason it would be likely to receive a higher percent

age of "no" resoonses. Often the difference measured by ~he split ballot 

technique is 4-15~ even when the rewording has been very slight. 

Conservatism, or anchoring bias, involves the individuql's tendency to 

cling to their first judgment inst!~d of adjusting it to reflec: new 

information. Sometimes this tendency is exnlained in ter~s of Bayes' Theoru~ as 

the failure to adjus~ a judgment in light of new information as. much as it 'llould 
be according to Bayes' mathenatical formula. Spet:ler and Stiel von Holstein 

(1972) and Armstrong (1981) describe how people tend to anchor: to their initial 

response, using it as the basis for later responses. For example, the subject 

may use the last year's sales as a starting point in predicting this year's 
sales and fail to consider other points on this distribution !~dependently from 

this starting point. In addition, Ascher (1978) finds this problem to exist in 

forecasting where panel members tend to anchor to past ar present trends in 
their projection of future trends. Ascher determined that one of the major 

sources of inaccuracy in forcasting future possibilities, such as markets for 

utilities, was the extrapolation from old patterns that no longer represented 
the emerging or future patterns. 

Inconsistency occurs when individuals give contradictory judgments. For 

example, they might give item A a higher rating than B wit.h respect to goa 1 X, B 

a higher rating than C, and C a higher rating than A. Inconsistency is a common 

problem because, as mentioned earlier, individuals are generally unable to apply 

a consistent strategy, or heuristic, to a series of cases (Hogarth 1980). 

Inconsistency in an individual's judgment can also stem from his remembering or 

forgetting information during the process of the elicitation session. For ex

amole, the individual may remember some of the less spectacular pieces of 

information and consider these in making judgments later in .the iession. Or, 

the individual may forget that particular ratings are only to be given in ex
treme cases and begin to give them more freely towards the end of a session than 
at the beginning. 

Overoptimism is sometimes referred to as the overestimation of probabil

ities, overconfidence bias, or the underestimation of uncer~ainty. Overootimism 

is the. giving of more optimistic judgments, such as in the form of probabil

ities, than the person's data warrants. People tend to be overly optimistic of 

the probability of some event occuri ng and often underestimate the uncertainty, 

or the time and resources needed to make this event a reality. Thus, they give 

too narrow of error bars on these judgments (Capen 1975). Overoptimism can 

stem from a variety of causes: l).thinking at too general a level; 2) wishful 
thinking; and 3) illusion of control. Armstrong (1975) and Hayes-Roth (1980) 

have shown. that people give higher, less realistic, ·probabilities when they con

sider decision taski in general than when they disaggregate them into th~ir 

component parts. For example, Armstrong (1975) asked str:aight Almanac questions 
of one half of his sample. Of the other half, he asked the same Almanac ques

tions but broken into logical parts. For instance, the question "How many 
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families were living in the U.S. in 1970?'' was asked as "What was the pooulation 
of the U.S. in 1970?" and "How many people were there in the average family 
then?". The persons answering the disaggregated questionsgive significantly 
more accurate judgments. 

Wishful thinking occurs when an estimator's hopes influence his jud;~ent 
(Hogarth 1980). Far example, a project manager in charge of a project may give 
optimistic probabilities about completing it an schedule because he hooes this 
will be the case.· In general, people exhibit wishful thinking about what they 
can exhibit in a given amount of time--They overestimate their produc:ivity 
(Hayes-Roth 1980). 

Illusion of control is the tendency to feel greater optimisr:1 or gre::er 
confidence in some outcome, if one has been involved in its process (Hogarc:h 
1980). People can acquire the impression of having more control over ouc:cames 
simply by soending time analyzing a situation as in a elicitation session 
(Langer 1975). Similarly, people perceive risks as being lower when they feel 
that they are in control of a process. For example, people perceive less risk 
when they are driving a car than when they are riding, as a passenger, in a 
plane (Rowe 1982). 

Social pressure. induces individuals to slant their responses or to silently 
acquiese to what they believe will be acceptable to their group, superordinates, 
institution, or society in general. Zimbardo, a psychologist, explains that it 
is due to the basic needs of people to be loved, respected, and recognized that 
they can be induced or choose to behave in a manner which will bring them affir
mation (1983). There is abundant sociological evidence of conformity within 
groups (Weissenberg 1971). Generally, individuals in groups conform to a 
greater degree if they have a strong desire to remain a member, if they are 
satisfled with the group, if the group is cohesive, and if they are nat a 
natural leader in the group. Furthermore, the individuals are generally unaware 
that they have modified their judgment to be in agreement with the group. One 
mechanism for this unconscious modification of opinion is explained by the 
theory of cognitive dissonance. Cognitive dissonance occurs when an individual 
finds a discrepancy between thoughts he holds or between his beliefs and his ac
tions (Festinger 1957). Far example, if an individual holds an opinion which is 
conflict with that of the other group members and he has a high opinion of the 
other's intelligence, cognitive dissonance will result. Often, the individual's 
means of resolving the discrepancy is by unconsciously changing his judgment to 
be in agr·eement with that of the group (Baron and Byrne 1981). 

Irving Janis's study of fiascos in American foreign policy (1972) il
lustrates how presidential advisors often silently acquiese rather than 
critically examine what they believe to be the group's opinion. This tendencey 
has been called "group think", the "bandwagon tendency", or the "fallow-the-
1 eader effect." · 

The effect of social pressure can also be seen in situations where the in
dividual is not in direct contact with others. Payne (1951) has provided 
evidence that people give socially acceptable answers to survey questions. On 
surveys, people claim that their educations, salaries, and job titles are better 
than they are. More people claim subscriptions to social.ly acceptable magazines 
and deny it to the lurid ones than subscription records supp.ort. Often there is 
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a 10: difference between what is claimed for "prestige" reasons and what objec

tively is. 

THE METHODS 

Methods for eliciting expert op1n1on vary along several continuums: 1) the 

number of participants; 2) the degree of interaction among participants and be

twe2n them and the session leader; .3) the degree of structure imposed on the 

elicitation process; 4) the degree of participants' expertise; and 5) the degree 

of 'fuzziness" of the data being elicited. -

For example, one method, the mail survey, involves ma9y resoondents but 

lit:le intarac:ion amana respondents or between them and an inter~iewer. 

Interaction is defined a"s any two-way communication after v1hic~ the res<Jonaem: 

is allowed to change his judgment. When the respondent fil.ls out a sur~ey, 

there is generarly no interac::ion between him and his peers or becween him and 

an interviewer. 

Another possibility, the Delphi method, can include any.number of respon

dents and allow for more interaction between respondents than the traditional 

mail survey. The respondents' interactions are controlled by the Delphi monitor 

who sends each respondent the judgments of the others. The respondents are al

l owed to adjust tliei r judgments in light of this information. The process of 

allowing respondents to change their judgments can go through any number of 

iterations even until consensus is reached. RAND corporation developed the 

Delphi method to overcome some of the problems .inherent in an interactive group 

method, such as social pressures to conformity. For this reason, in the Delphi 

technique, the respondenis do not interact in a fac~-to-face situation. 

Instead, the only contact they are supposed to have with one another is via the 

mail. And then, the names and ather identifying features· are removed from the 

judgments before they are circulated so that the origins of these judgments will 

not unduly affect the recipients. 

Another method, the face-to-face 
of respondents than the mail survey. 
with the inteviewer during the course 

interview, usually involves a fewer number 
The respondents are interactive, singly, 
of the interview. 

Fourthly, there is a interactive group method. In this method, a grouo of 

three or more may be convened to give their judgments in the presence of one 

another. The group sessions are generally monitored and structured by a session 

leader. For example, the leader may encourage group members to write down their 

judgments and their reasoning •. The leader may require that this inforr.1ation be 

presented to the group and that a discussion follow. The interactive grouo 

method can go through any number of iterations, as in the Delphi method, until 

consensus, if it is desired, is reached. 

For the sake of brevity, this paper will confine its discussion of the 

detection and reduction of the human factors to two methods, the traditional 

mail survey and the interactive group method •. These two methods were selected 

because they lie on opposite ends of the continuum with respect to.the number of 

participants and the degree of interaction involved. 

The five human factors are manifested in different.ways in the various 

methods so the means by which they can be detected or reduced also vary. For 
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example, the effect of social pressure is manifested more strongly in the inter
active methods such as the face-to-face interview and the interactive group 
method. Yet, because these methods are interac:!ve, much of the detection of 
social pressure can be done by a trained observer. This paper's· aoproach to the 
detection and reduction of human factors in elicitation methods is likely to 
reflect the orientation of a cognitive or social scientist. The aporcach is to 
perform a real time detection or counteraction of the human factors as they oc
cur during a session rather than a later mathematical adjustment of the data. 

This paper advocates a structuring of the elicitation methods as a me:ns 
for reducing the occurrence of human factors. Structuring an elicitation mechod 
involves controlling interactions, identifying the parts of the pheno~enan on 
which the respondents are being questioned, defining them and the res~onse oo
tions, such as the scale. Far examole, an unstructured interactive grauo mecnod 
would resemble the usual meeting which occurs in the business world. A struc
tured version of the same method would have a· program for when e:ch member would 
present his judgment and rationale to the group, when the fl a;or was open far 
discussion, and when the next round could begin. In general, the greater the 
degree of structure imposed on the decision process, the simpler it. is to con
trol far the occurence of human factor~. Often a method cannot be maximumly 
structured because ~ach degree of structure imposed slows the process and re
quires more patience or cooperation an the part of the participants. The client 
may have deadlines arid a fixed budget which limit the amount of structuring 
which can be dane. Thus, the amount of structuring which can be done often in
volves tradeoffs between the quality of the daia and its cost in time and 
manpower. 

The Mail Survey 

Detection of Human Factors 

In a survey, the occurrence of human factors is not generally detected 
while the individual is making his judgment but earlier during pilot tests or 
later when the survey is analysed. Three factors, the effects of question 
phrasing, social pressure, and inconsistency, can be detected by the use of the 
split ballot, the sleeper option, and pilot test. 

The effects of question warding and sequencing of options can be detected 
by measuring the differences between the sp 1 it ballot questions. The sp 1 it ba 1-
lot technique is most commonly used for "yes-no" and ather multiple choice 
questions. Use of split ballot techniques in the past (Payne 1951) have shown 
that peoole favor generally warded options over those which are highly specific. 
In addition, they favor options which refer to the status quo over those procos
ing new alternatives. Split ballot results have also shown that people favor 
selecting numerical options which are located in the middle of a series whereas 
they favor nonnumeric options which are located an either end of the series. 

Social pressures to give the mast acceptable response can also be detected 
by use of the split ba 11 at technique. One wording on ha 1f the surveys can state 
the options bluntly, the ather can contain face saving phrases· to encourage 
people to check the response which is mast descriptive of their thoughts or 
actions. A face-saving option often encourages the respondent to admitt that he 
does not have X knowledge or Y socially-desirable possessfon.·at this time by al
lowing him to state that he plans to acquire them in the f.uture. 
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Another common area for the effects of social pressures to emerge is in 

peooles' unwillingness to admitt ignorance, to check the "I don't know'' ootion. 

If identification. of knowledgable respondents is important, a different tech

n~que can be used to get a better indication of people's knowledge than simoly 

totalling those who selected the "Don't know" resoonse. A "sleeper" ootian that 

sounds plausible but which does not exist in reality can be inserted into the 

series of bonafide options. For example, on a survey of public opinion of 

nuclear reactors a "fast water reactor• might be inserted between a "light 

water", and a "breeder." The number of people who selec:: the sleeper option can 

be added to those who marked the "Don't know" option and excluded from the pool 

of supposedly knowledgable respondents. 

Inconsistency in peaole's resoonses to surveys is more difficult to do,~r· 

than the two above mentioned effects. Inconsistency could conceivably be 

decec:ed ~y the use of redundant questions but this aoproach poses proole~s. If 

the redundant ques'tion is an exact repitition, it can annoy people because they 

wonder why they are being asked the same question, again. Yet,. if the question 

is asked with a new warding, respondents may give different answers simply be

caus~ of the difference in phrasing. Inconsistency can occur because the 

individual has not applied his heuristi.c consistently, has forgotten instruc

tions or definitions, or has remembered di'fferent incidents as he progressed 

through the survey, •. An intensive interview type of pilot test can be used to 

check the survey instrument for these problems. For example, one set of these 

pilot tests revealed that individuals had forgotten the instructions about half 

way through the selection of many options. The respondents were supposed to 

mark their areas of knowledge on a 1 i st spanning two pages. Instead by the 

second page, one fifth of the pilot sample had checked areas in which they would 

have liked to have had knowledge. 

This type of pilot test is the only one, to my knowledge, that can be used 

to tack peoples' thinking, their consistency, through a survey. I adaoted 

several ethnographic interviewing techniques to create this pilot test method. 

These techniques gather two types of information: l) how the respondent 

progr~sses through the survey, that is which sections he looks at, in what or

der, and for haw long, his general impressions, and when or why he decides to 

fill out the survey and to turn it in; and 2) haw the respondent specifically 

interprets each direction, question, and response option. 

To obtain the first type of information, the interviewee is asked to handle 

the survey as he would naturally, if no observer were present. The inter~iewee 

is asked to "think autloud" and to mention his impressions. Generally, in

dividuals will skim the cover letter and flip through the rest of the survey. 

1\s the individual flips through the sur~ey he might state, "I have problems Nith 

this page and I would probably let the survey sit on my desk for several days to 

decide whether to fill it out. While the interviewee pages through the survey, 

his pauses and gestures, particularly those indicating confusion or anxiety are 

noted by the monitor. If the respondent has paused or shown some emotion during 

his review of a particular secti{ln, specific questions will be asked such as, 

"What was your feeling when you read this?". 

To obtain the second type of information, the respondent is asked to 

paraphrase, in his own words, the meaning of each direction, question, and 

res pans e option. This i nformati an a 11 aws the mani tor to track the respondent '.s 

interpretation of each part of the survey. ' 
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Structurino the Method to Reduce the Occurrence of Human Faccors 

As mentioned earlier, structuring any elicitation method can facilitate the 
counteraction of many human factors. The following section contains some recom
mendations on how to set up a mail survey to obtain better quality subjec~ive 
data by controlling for the intrudence of some human factors. 

The first stage in developing the mail survey can have an effect on the 
amount of inconsistency which shows up later in the respondents' judgments. 
Often seeming inconsistencies in the respondents' answers arise from their view
ing the phenomena in a different manner than the way in which it has been 
presented on the survey. Because the survey does not genera~lX encourage them 
to explain the view or assumotion which allowed them to make the puz:ling 
responses, their responses are dismissed as inconsistent and unreliable. For 
this reason, it is recommended that the creator of the survey :first talk exten
sively to a sample· of those who will be surveyed to learn what relationships, 
causes and effects,_ they believe enter into the problem. Fa~ example, resoon
dents from a utility might believe that the future of their utilities market is 
tied to the nation's gross national product (GNP). If the :task is to elicit 
their projections for a utilities market in year 2000, then the questions should 
define different ~evels of GNP. For instance, "Assuming that the GNP is X in 
the year 2000, what would you predict the market for Y to be?" ' 

Careful composition of the questions can reduce the occurrence of three 
effects: 1) inconsistencies which arise from the respondents' confusion, 2) 
phrasing, and 3) social pressure. The use of Basic English is recommended if 
the survey is targeted for the general public as one means for minimizing 
misunderstandings. Basic English is a vocabulary of approximately 1000 words 
that are understood by most people who possess a high schqol education. Payne 
(1951) provides a list of these wards. He also provides a list of wards which 
have been found to possess different meanings for different people. For ex
ample, "this year" means the present fiscal year to some, the present calendar 
year to others, and this coming year to still others. It is recommended that 

the use of these problem words or phrases be avoided in the interests of 
clarity. In addition, it is recommended that question lengths not exceed 25 
words because respondents' comprehension has been found to fall off around that 
point (Payne 1951). 

As mentioned earlier, the split ballot techniques can be used to detect or 
counteract the effect of phrasing and ordinality. For example, response options 
can be placed first or last in half the surveys and in the middle in the other 
half to counter the effect of ordinality. 

If the pilot test of the survey indicated that prestige was on issue on 
some questions, then face-saving wordings can be used to obtain a better repre
sentation of peoples' opinions. Generally, admission of ignorance involves the 
loss of prestige, so the "Don't know" option should be carefully worded. "No 
set opinion at this time" is an example of a face-saving warding. 

The presence and placement of definitions is another technique which can be 
employed to reduce the occurrence of human factors, in this case, inconsistency. 
Definitions include descriptions of the phenomena, the time frame in which the 
respondent is ::a consider these, and the scale in which tie is'. to res~ond. As an 
individual progresses through a survey, the definitions becomes blurred in his 
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mind. He relies on his memory of these definitions and often arrives at a work

ing definition which deviates from the original written one. For this reason, 

definitions should be incorporated into the question or they should immediately 

proceed it. For example, "What is the probability that the motor generator will 

reach a maximum power of X for Y amount of time by calendar year Septemoer 1, 

1984?" The definition of the phenomena has been mentioned as part of the 

question. The same treatment can be extended to the response scale. 

For example, the Shennan Kent scale gives these descriptors, "nearly certain", 

"highly probably", and "We are convinced", to describe a percent ranging from 90 

to 99. Both numbers and verbal descriptors, or definitions, are used in attemot 

to make people mean approximately the same thing when they give the same rating. 

Another struc-:::.~ring technique, hierarchically organizing the survey, is 

helpful in countering the respondents' tendencies to conser;1atism and overoo

timism (Meyer 1982a). Organizing the survey in a hierarchical: manner generally 

entails beginning with specific questions and progressing. to more inclusive 

questions. The respondent is not asked major questions until his memory has 

been prodded to remember more than just the easily accessible infonnation. 

Thus, his judgment is not as likely to be anchored to just the· first remembered 

bits of data. Using the hierarchical' structure also involves disaggregating 

questions, as shbwn in the Almanac example, to counter peoples• tendency 

toward overoptimism. 
-. 

The Interactive Grouo Method 

Detection of Human Factors 

The effects of phrasing, conservatism, inconsistency, and social pressure 

can be detected during elicitation sessions by the trained observer who is 

monitoring this process \Meyer 198Zb). Generally, only the presence of these 

effects, not their magnitude, can be detected by this means. This mode of 

detection assumes that the group members have been instructed to "think outl oud" 

in interpreting the questions and giving their judgments. (More details on the 

gro~p members' verbalization of their thoughts will be given in the next 

section.) · 

The respondent's verbal feedback on their interpretations of questions al

lows misunderstandings to be caught during the sessions. Conservatism can also 

be detected during the session. If an individual continuously holds to his 

initial judgment, even though there has been a discussion and an opportunity to 

revise his judgment, he is a likely candidate far conservatism. Inconsistency 

can be detected when members rate an element differently than they did a com

parable one earlier or when their interpretation of a definition appears to 

change. 

The problem of inconsistency arises from more sources in the interactive 

group method than in the face-to-face interview or the mail survey. This is be

cause the group meetings are held many times whereas the others tend to be one

time deals. Thus, with the usual group method, there is the chance of the 

members forgetting information, instruc~ion, and definitions aver the course of 

time. One inconsistency which can emerge is the ease with which a response op

tion is applied. For example, the respondents may select the extrem~s of the 

scale with varying frequency through time. Ir. general, fati'gue during a sessi'on 

seems to contribute to the occurrence of inconsistencies, perhaps because people 
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are not thinking ~s carefully. (Fatigue is indicated by briefer responses and 
by the degree of the participants' horizontal inclination.) 

The degree of inconsistency can be detected by use of Bayesian-based scor
ing and ranking techniques. The group members' judgments can be entered into a 
scoring and ranking program, such as that of Saaty's Analytical Hierarchical 
Process, to obtain a rating of their consistency (Saaty 1980). 

Social pressures can also be detected by real-time observations. 
Generally, if consensus is easily obtained, no difference of opinion is voiced, 
and the group members appear to defer to another member of the group, grouo 
think is a strong possibility. Social pressures can come from the membe~s of 
the grouo or from the institution sponsoring the decision sess,on. The instit~

tion may favor a par-;;icular decision outcome and apply pressure on the grouo 
members to this end. 

Struc:urino the Method to Reduce the Occurrence of Human Factors 

The first stage of the interactive group method, a free. association exer
cise, can be used to counteract the members' tendency toward .conservatism. The 
free association ~xercise involves having group members mention any qnd all ele
ments which might have bearing on the phenomena in question. For example, in 
considering a problem on which technologies should be exported from the United 
States, some of the major elements a free association might have produced would 
be the military, economic, political, and technological significance of the ex
port items. The elements mentioned during a free association are usually 
recorded for the group members to see. Later, the group members will work from 
these in developing a model of the decision situation. T~e purpose of the free 
association exercise is to start with a wide set of possibilities and to narrow 

·these to the pertinent ones. The free association exertise is to counter the 
human tendency to anchor narrowly on past or present cases which may not hold in 
the future. 

The next stage, the organization of these elements into a model, has bear
ing on how much inconsistency will be observed when the members are giving their 
judgments. Highly inconsistent judgments (as determined by ear and by Bayesian 
techniques) often indicate a need to restructure the model to better represent 
the members' view. This stage of the method is the most time consuming because 
the particpants are not always conscious of how they mentally model the 
phenomena. Then too, sometimes they are so conscious of some information that 
they fail to convey it for incorporation into the model. 

The elicitation phase cari be structured to include various techniques fo~ 
countering the effects of social pressure, conservatism, and overoptimism. 
Perhaps, the most critical of all of the structures placed on the elicitation 
process is the requirement that participants verba 1 i zed their judgments and 
their reasons for giving such judgments. As mentioned earlier, this verbal 
feedback allows the method to be monitored for the intrusion of many human 
factors. For example, if group members appeared to exhibit group think, the 
method can be structured to promote the opposite bias, conservatism. Groups 
where conformity is likely to be a problem are cohesive groups, groups where the 
people have worked togeather before, or groups where there is a dominating 
leader (Janis 1972). By requiring group members tc; write ,.down and then report 
on their judgments and rationale, they are more likely ~o get attached to their 
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judgments and defend them when the discussion begins. I would recommend having 
each person record and read his judgments before opening the floor to dis
cusssion and allowing people to modify their judgements. If there is a strong 
official or even a natural exoffio leader in the group, that individual should 
be asked to give his judgments last so as not to influence the other group 
members. In addition, if there is an official leader of the group, he or she 
should be encouraged to be nondirective during the meetings. An explanation of 
the group think phenomena usually suffices to convince them that better dis
cussions and data will result from their refraining from "leading." 

If on the other hand, group members appear to be tao narrow, or anchoring, 
in their thinking, a series of extreme scenarios can be introduc;d for their 
consideration. 

If ove rapt i mi ·sm has been detected, the group members c~n be 1 ead to think 
in greater detail about the elements of the phenomena.· This is done in much the 
way that the Almanac questions were di saggregated for the survey population. 

Another technique, the reviewing of definitions, can heJp reduce respon
dents' tendency to be inconsistent because of faulty memory. If at the 
beginning of ever~ session, definitions are verbally reviewed, memb~rs will be 
more consistent in their definitions through time and between themselves. In 
addition, each time that their judgment is requested, a statement of the ques
tion inclusive of definitions, can be given. For example, "What rating would 
you give to the importance of element X over Y to reaching goal Z?" Their copy 

. of the scale, in this case a Saaty Pairwise Comparison, should include descrip
tors or definitions of the ratings. 

Another technique for reducing inconsistency is to have the group members 
monitor their own consistency. For this task, they should have copies in front 
of them of their judgments, and response scale. A matrix structure of the 
critieria on which the elements are being judged, the elements, and the judg
ments work well for this task (Meyer 1982b ), Often the group members wi 11 view 
an element in a different light than they did earlier and wish to change the 
earlier judgment to be in line with their current thinking. If their reasoning 
does not violate the logic of the model or of the definitions, they should be 
allowed to make the change. Sometimes, consideration of a new element makes 
them aware that the model and accompanying definitions did not realistically 
protray this part of the phenomena. Parts of the original model will need to be 
changed and some of the process of giving judgments will need to be repeated. 
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USE OF EXPERT OPINION IN THE RELIABILITY ASSESSMENT OF THE 
Ml ABRAMS TANK 

BOBBY G. BENNETT 
U.S, ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY 
ABERDEEN PROVING GROUND, MARYLAND 21005-5071 

1. INTRODUCTION 

Modern Army weapon systems tend to be sophisticated, complex, and 
expensive. The complexity and sophistication are necessary to meet the 
projected threat and lead to the high cost of both development and procurement. There is also typically an urgency to field the new, more capable 
equipment as soon as possible. Because of this urgency, the Army has adopted the Single Integrated Development Test Policy wherein government, as well as 
contractor, testing is utilized to find problems and determine the effective
ness of corrective actions. 

The Army acquisition process recognizes that most weapon systems are not mature when subjected to government tests by allowing for reliability 
growth throughout the development phase. Before proceeding into the production phase, however, there is a requirement to demonstrate that the materiel has 
achieved the reliability threshold established. Ideally, this demonstration is accomplished by sufficient testing of the final configuration to provide 
statistically valid estimates. Experience has shown that programs which 
rely on this technique generally do not achieve the reliability objectives within the allocated resources and time. The second best alternative is to 
design the tests in a test-fix-test fashion that allows for tracking of 
reliability by using accepted and proven self-purging reliability growth methodology, such as the AMSAA model. This technique has the advantage of 
using all test data, thus increasing the applicable sample size over the first alternative, and is successfully used by AMSAA in the reliability evaluation 
of many Army weapon systems. This technique, in fact, is the preferred 
technique for assessing reliability at any point in the development cycle. 
The ability to use this technique, however, is contingent upon several 
factors, one of which is a requirement to implement the corrective action in 
a timely manner on the test samples. Unfortunately, it is not always possible to meet the conditions necessary to use the AMSAA Reliability Growth Model, or 
a similar model, due to the time and money constraints previously discussed; 
such was the case for the Ml Abrams tank during its Full Scale Engineering 
Development Phase. In such cases, alternate methods must be used to provide credible estimates of the reliability of the final design at the end of 
development. 

This paper descsribes the process used to assess the reliability of the Ml Abrams tank, and provides comparisons of these estimates to estimates 
obtained from later tests of the same· configuration. Further, lessons learned during this evaluation are presented along with a brief description of improved 
and formalized procedures developed by AMSAA in response to these lessons learned. 
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2. Ml RELIABILITY ASSESSMENT 

The Ml Abrams tank had a combat mission reliability requirement of 320 
Mean Miles Between Failure (MMBF), to be demonstrated during the Initial 
Production phase of the acquisition cycle. Recognizing that corrective actions 
for many of the design faults detected during development test would not be 
implemented until after test was complete, a threshold of 272 MMBF was imposed 
on the system to be demonstrated at the completion of the Full Scale Engineering 
Development (FSED). Early in the FSED testing, it became apparent that the 
initial design possessed a reliability much less than that necessary to progress 
into production. With approximately forty percent of the FSED testing complete, 
the tank was demonstrating an "as-tested" MMBF of 120. -"As-tested" MMBF was 
computed, assuming an exponential distribution, by dividing the total test 
miles by the total number of failures. At that point in time, although failure 
analyses had been conducted, very few proposed design changes had resulted in 
hardware changes on the test samples. In fact, due to the desire to implement 
corrective action on the test samples as soon as possible, some of the changes 
to the tank hardware had actually resulted in an increase in total system 
failure rate and had to be removed. All attempts to fit reliability growth 
tracking curves were unsuccessful. Since an Army decision review was scheduled 
shortly, an alternate method had to be considered to assess any growth in 
design reliability, and to further assess the potential reliability considering 
proposed, as well as implemented, design changes. 

To provide a continuing assessment of the Ml Abrams tank reliability, it was 
decided to conduct periodic Reliability Assessment Conferences as authorized by 
AR 702-3. This conference, composed of representatives of the materi e 1 deve 1 ope r, 
combat developer, development test independent evaluator and operational evalu
ator, was charged with the responsibility of estimating the reliability of the 
current configuration and to proj~t the reliability when all identified, but not 
implemented. corrective actions were taken. In order to accomplish this mission, 
procedures were developed and agreed to by the conference principals. 

2.1 . Procedures for Estimating "Demonstrated" Reliability 

The term "demonstrated" reliability as used in current Army Regulations has 
been shortened from what the Ml Assessment Conference termed "reliab~lity adjusted 
for demonstrated corrective action." Failure rate adjustment for this estimate 
is made only if there is clear evidence, from representative testing, that a 
reduction in failure rate has in fact taken place. The following procedure 
was used by the assessment conference to estimate "demonstrated" re 1 i ability: 

o Establish that design change has been subjected to representative test. 

o Determine that design change had positive effect on reliability. 

o Estimate effectiveness of corrective action. 

• Adjust failure rates and compute adjusted reliability. 
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2.2 Procedures for Estimating Projected Reliability 

The projected reliability estimate allows for adjustment of failure rates 
for proposed as well as demonstrated design changes. As allowed for in AR 702-3, the combat developer and operational evaluator chose not to parti
cipate in this projection, other than offer opinions during discussion. Thus, 
for the Ml program, projections were made by AMSAA and the Ml Program Manager's Office using the following procedures: 

o Adjust failure rates for demonstrated corrective actions in accordance with procedures outlined in paragraph 2. 1. 

o Using engineering judgement and experience with similar systems, estimate whether or not proposed change wil.l decrease failure rate. 

o Using engineering judgement and experiences with simi·lar systems, 
estimate effectiveness of proposed modifications. 

o Adjust failure rate and compute projected reliability. 

It is evident from the agreed to procedures that significant judgement was 
inherent in estimation of both the demonstrated and projected reliability. 
In order to maximize the information available to make this judgement, a 
requirement was placed_on the prime contractor to prepare and provide a 
document to the assessment conference principals at least two weeks prior to the conference detailing: 

o Results of failure analyses 

o Results of all testing (before and after corrective action). If testing 
was other than on test samples, the contractor was required to detai 1 con
ditions of test. 

o Proposed effectiveness factor and rationale. 

Upon receipt of the contractor documentation, the AMSAA RAM analyst would provide the information, without the contractor's effectiveness estimates, 
to engineers with experience in the area of interest and ask the following questions: 

o Based on the contractor presentation, is there evidence that design 
change wi 11 result in 1 ower failure rate? 

o What is your estimate of the effectiveness of the corrective action, expressed in terms of reduction in failure rate? Provide rationale. 

o Could correction of this failure mode result in other failure modes? What, in your opinion, is the most likely failure mode and frequency? 

This package would normally be reviewed by three engineers independently. The RAM analyst would assimilate the responses; if in close agreement, the responses would be accepted as appropriate; if not in close agreement, the 
analyst would discuss the differences with each engineer until the differences 
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were completely understood or a consensus was reached. The analysts would 
then discuss the results with his supervisor and they would jointly agree to 
a position for the conference. This modified delphi approach resulted in a 
range of effectiveness factors and rationale for discussion at the assessment 
conference. 

The assessment conference was conducted in a democratic process, with 
open discussion by all principals. A majority vote (3 of 4) was required to 
consider corrective action demonstrated. If considered demonstrated, the 
effectiveness factor was then agreed to by voting. Because of the work done 
at home station, the AMSAA position was normally accepted, particularly if 
the estimate was close to the estimate provided by the contractor through 
the Program Manager's Office representative. 

2.3 Results of Ml Assessment 

The above procedures were 
the development test program. 
as follows: 

As Te.sted 
Demonstrated 
Projected 

used prior to the Army review mid-way through 
At that time, results of the assessment.were 

MMBF 

120 
145 
256 

The demonstrated estimate was not vastly different from the "as-tested" 
estimate for two reasons; (1) The as-tested estimate included some experience 
with corrective actions implemented on the test samples and (2) very few of the 
proposed corrective actions had been tested. Although the tank was demonstra
ting reliability well below the requirement, a go-ahead decision was granted 
based on a thorough discussion of the corrective actions identified and the 
estimates provided by the assessment conference as to the effectiveness of 
these corrective actions. 

These procedures were used during the remaind~ of the FSED and Low Rate 
Initial Production test with the following results: 

Extended FSED (Phase 1) 
Extended FSED (Phase 2) 
Initial Production (ll 
Initial Production (2 

Mean Miles Between Failure 
As-tested Demonstrated 

234 
308 
278 
324 

299 
326 
351 
351 

{1) Includes Early Production Process Problems 
(2) Excludes Early Production Process Problems 

The configuration of the tank at the beginning of the Extended FSED (Phase 1) 
was essentially the same as ·that for which a projected estimate of 256 MMBF 
was made for the Army review. For all other phases of the test program, the 
configuration at the beginning of the phase is essentially the same as that 
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for which "demonstrated" estimates were made duing the preceding phase. For 
example, the estimated value for extended FSED (Phase 2) was 299 MMBF based 
on Phase 1 testing; the actual as-tested value for Phase 2 was 308 MMBF. 

It is of interest to note that the estimated value, in most cases, 
overestimated the "as-tested" estimate. It was observed that the greatest 
reason for this was the occurrance of new failure modes, in most part not 
related to any corrective action. It was also apparent that there had been 
no provisions in the estimates to account for quality assurance and produc
tion process problems inherent in the start-up of a new production process. 
Historically, this start-up process has resulted in approximately a 10 per
cent reduction in MMBF. 

Overall, the process worked well. Even with the recognized problems, 
the estimates obtained using expert opinion were within the "statistical 
noise" of the estimates obtained from further testing of the same configuration. 

3. LESSONS LEARNED 

Although the estimates obtained by using the procedures discussed were 
very close to values actually demonstrated later, several problems were noted 
with the procedures. 

o There is typically a wide variation in the estimates provided by experts 
on the effectiveness of proposed corrective action. This paper will not 
attempt to discuss reasons for this variation, but simply note that it did 
exist. · 

• Intuitively, it was felt that giving credit for corrective action taken 
for low failure rate modes resulted in an optimistic estimate of reliability. 

o The assessment conference procedure allows for control of the conference 
by the "strong" individual (most persuasive), not necessarily the one with the 
most knowledge. Estimates arrived at by the conference may thus not have the 
benefit.of the representative input of all experts. · 

On the positive side, the Ml experience demonstrated that credible 
estimates can be made using expert opinion, and that low risk decisions can 
be made in a timely manner without the requirement to test the final configu
ration for prolonged periods. 

• The contractors (prime and subs) possess the greatest expertise for 
the particular design. Contracts. must be written to take advantage of this 
expertise, and in such a manner to allow for significant government inter
action, to include the independent evaluators. A conscientious effort is 
required by the'government community, to include use of Government laboratories and independent consultants, to properly assess corrective actions. 

4. IMPROVEMENT IN PROCEDURES 

The two areas of greatest concern that evolved from the Ml assessment was 
the uncertainty of the fix effectiveness·estimates, particularly for the 
projected reliability estimates, and the realization that projections were 
probably optimistic because of giving credit for corrective actions for low 
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failure rate failure modes without considering the effect of other unseen 
failure modes. Discussions of these perceptions with personnel from the 
AMSAA ·RAM Methodology Office resulted in further investigatin of the perceived 
problems and publishing of several reports to document improved methodolgy and 
procedures. Following is a brief synopsis of the published reports with 
comments on how they may be used to improve future assessments. 

J (':';: 

4.1 AMSAA Technical Report No. 357, "An Improved Methodology for 
Reliability Growth Projection", Larry H. Crow, June 82. 

In this report, Dr. Crow showed that even when the effect 1 veness factors 
are known exactly, the adjusted procedures used in the Ml assessment would 
still overestimate the system reliability. He further was able to mathe
matically determine the bias term: 

B(T) = K h(T), 

Where K = average effectiveness factor 
h(T) = average rate of occurrance at time t 

of new failure modes for which corrective 
action will be taken 

Maximum likelihood methods are used to estimate h(T). 

Use of the procedure~ outlined in this report make it possible to provide an 
unbiased estimate of system failure rate. The uncertainty in the estimate of 
the effectiveness factors, however, remained a concern. In order to alleviate 
this concern, research'was conducted on historical fix effectiveness factors 
and documented in the following report. 

4.2 AMSAA Technica·l Report No. 388, "Reliability Fix Effectiveness for 
Army Systems", Bruce $, Trapnell, May 1983. 

The purpose of this report was to provide a historical data base on fix 
effectiveness factors for various systems. The advantage to this data base 
is that it provides ,a guide to what might be reasonab.ly expected on similar 
systems. serving as a useful tool to the engineer in assignment of effective
ness factors for projection purposes. 

The report details historical effectiveness factors for e.leven systems, 
to include helicopters, tanks, wheeled vehicles and missiles. The average 
demonstated effectiveness factor for all systems was approximately 0.70, with 
relatively small variation. 

Work is continuing in this area to determine fix effectlveness by major 
subsystems, such as engine, electrical system, etc. These data, broke down to 
subsystem level,.will be even more useful for projection for future, more 
comp 1 ex systems; 

It is recognized that fl x effectiveness depends on many factors, and that 
the past does not necessarily predic.t the future. The available estimates, 
however, will provide a starting point and will force the expert to defend 
large deviations from past experience. 
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4. 3 AMSAA Techni ca 1 Report No. 399, "Corrective Action Review Team, (CART's)," Bruce Trapnell and Clarke Fox, July 1983. 

The purpose of this report is to standardize the procedures for determining effectiveness factors and making projections. It recommends a procedure which 
uses historical fix effectiveness factor to modify judgmental estimates. It 
further specifies additional data that must be collected to use the projection model. 

5. CONCLUSIONS 

Estimates of reliability provided for the Ml Abrams tank using procedures 
outlined in this paper proved to be quite good, as demonstrated in later testing. To a large degree, the author feels that this is attributed to the expertise 
of the engineers and analysts involved - and a lot of luck. The procedures 
could be greatly enhanced by use of available historical fix effectiveness 
factors and the projection methodology developed by AMSAA. There will con
tinue, however, to be situations where expert opinion will be the prime imput to analyses and decisions. It is thus of paramount i~portance to continue to 
develop experts and methodology to best use expert opinion. 
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ABSTRACT 

The Civil Service Reform Act of 1978 mandates performance-based apprai sa 1 

systems in federal agencies and performance measurements which are accurate 

and objective to "the maximum extent feasible." In this paper we study two 

examples in which objectivity can be defined as the establishment of processes 

which test hypotheses against actual data and the eval ua ti on of attendant a 

and b risks. In the first example, we use the Poisson distribution to 

evaluate performance against a standard for courtesy. This model requires 

that behavior be directly observed 90 percent of the time for acceptably low 

"rudeness levels'' and is thus impractical. In the second example, we propose 

using the binomial distribution to evaluate the performance of message center 

clerks who have the task of assigning "Action/Info" and distributing 

correspondence to elements of a large organization. Iri this case the amount 

of inspection required is affordable. 
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INTRODUCTION 

The Civil. Service Reform Act of 1978 (CSRA) requires government agencies 

to establish performance-based appraisal systems under the general supervision 

of the Office of Personnel Management. In pertinent words of the statute: 

Under regulations which the Office of Personnel 

Management shall prescribe, each performance appraisal 

system sha 11 provide for estab 1 i shi ng performance 

standards which will, to the maximum extent feasible, 

permit the accurate eva 1 ua ti on of job performance on 

the basis of objective criteria (which may include the 

extent of courtesy demonstrated to the public) related 

to the job in question for each employee or position 

under the system. 

In compliance with the CSRA, the Department of the Army (DA) established 

performance-based appraisal systems for Senior Executives (SE), General Merit 

(GM) employees, and General Schedule (GS) and Wage Grade (WG) employees. 

Although the three appraisal systems are covered by different regulations and 

utilize different forms, they share similar structure, vocabulary, and 

management philosophy to the exte.nt that one may speak of the "Army Appraisal 

System" (AAS). Under the AAS, supervisors are to provide each employee with a 

written Individual Performance Plan (IPP) at the beginning of a rating period. 
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rn· an IPP, related Tasks/Activities are grouped into Job Elements 

described by short titles· such as Personnel Management, Preparation of 

Correspondence, Safety, etc. Some Job Elements are mandatory for supervisors; 

otherwise, a great deal of discretion is allowed in grouping tasks and naming 

Job Elements. Each Task/Activity is accompanied by a standard which expresses 

an acceptable level of performance. Additional standards not keyed to 

specific tasks may be written for the Job Element as a whole. .IPPs for 

supervisors usually involve six to eight Job Elements with several standards 

per Job Element. 

position. 

Less structure is required to cover a nonsupervisory 

System doctrine requires that standards be quantified whenever possible, 

express a range of acceptable performance, and provide the employee an 

opportunity to excel by surpassing the standards. This doctrine may be 

breached by the establishment of absolute standards provided such standards 

are not an abuse of discretion. Absolute standards may be used in situations 

where a single failure could cause death, injury, breach of security, or great 

monetary loss. Thus; a standard may require a pilot to make preflight checks 

100 percent of the time, but a standard allowing no typing errors would be an 

abuse of discretion. 

At the end of the performance period covered by the IPP, the rating 

supervisor is required to make an estimate of actual performance (Pi) against 

each standard (S;) and make a judgment of Exceeded (E), Met (M), or Not Met 

(N) for each Job Element. It is common, but sloppy, practice to use the words 

"exceeded," "met," and "not met" in comparing each Pi to its associated Si. 
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These· words have been mentioned (selected as names of ratings for entire Job 

Elements which usually contain more than one standard) and are not logically 
available for use in any other context.' In order to avoid confusion, we use 
the separate and distil']ct designators Above' Tolerance (A), Within Tolerance 
(W), and Below Tolerance (B) for this comparison. No algorithm for mapping a 

(A,W,B) set for a Job Element into E, M, or N is provided in the system 
design. It is indeed within the purview of a rating supervisor to rate an 
employee E or M on a Job Element even though a specific Pi to Si comparison 
within the element leads to a conclusion of Below Tolerance. (A reviewing 

official might require that such a supervisor explain his/her decision!) 
Following determination of the (E,M,N) set of ratings of Job Elements, an OPM 
approved algorithm ·is. used to arrive at a final adjectival rating of 
Exceptional (EX), Highly Successful (HS), Fully Successful (FS), Minimally 

Satisfactory (MS), or Unsatisfactory (U). 

So far we have merely provided a brief description of the structure and 

vocabulary of the AAS. The appraisal systems of other agencies are quite 
similar. In the remainder of the paper we examine the implications of 
attempting to be objective within such a system, objectivity being a statutory 
requirement. 

In order to nave specific examples, we introduce two mathematical 
models. In the first we propose to measure courtesy by direct observations. 
In the second we propose to measure by actua 1 sampling the accuracy of an 
Action/Info Clerk in .an administrative-.. qffice who is supposed to route 
incoming mail to the appropriate subdivisions of a large organization. Before 

continuing, we note that many supervisors write standards in the form "No more 
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than N substantiated complaints of--------- during the performance 

period." (The reader may fill in the blank.) For the purposes of this paper 

we eschew shortcuts which allow conclusions in the absence of data. Instead, 

we require that actual observations be used to test hypotheses and assess the 

attendant risks of drawing wrong conclusions. Since one purpose of 

performance-based appraisal systems is to provide a basis for rewarding 

employees whose performance is above acceptable standards, the difference 

between ordinary .good performance and exemplary performance should be 

detectable by the measurement paradigm. Antithetically, less than acceptable 

performance should also be detectable in order to validate corrective action 

for nonacceptable performance. 
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STANDARDS FOR COURTEOUS BEHAVIOR 

It is. noted in the Introduction that the CSRA specifically mentions 

"courtesy demonstrat~d to the .public" 'as an e~aluation factor in job 

performance. In the same legislati~~. ;c~~gr~sshaspr~~ided f~r a suspension 

of only 14 days c.ir less for four instances of discourtesy within a one' year 

2' ' 

period. Considerable discussion of courtesy. standards has been provided'by 
. . -' . ; . ·_ s 

the u.s. Merit Systems Protection Board (MSPB). It is clear from these· 

references that courtesy should' not be th~ 'subject of an absolute. standard. 

It may seem paradoxical, but a l~vel of rudeness must be allowed if courtesy 

is to be measured and' rewarded. In our own review of IPPs, we note that 
' . 

courtesy s'tandards are commoniy imposed on employees in Secretary/Receptfonist 

type positions and rarely on others. As a side comment,. this would appear to 

be unintentional discrimination against incumbents in a particular job 

category. 

We find that courtesy standards are usually written in the "No more than 

N .+ 6 complaints received" form. We propose a standard written in terms of 

"No more than N .:!:. 6 incidents of discourtesy a 11 owed." This would seem to be 

appropriate si nee most employees are under direct observation by a supervisor 

for some fraction of time. (As a thoug.ht experiment, we could imagine 

employing an inspector to observe the employee through a one-way window for 

whatever fraction of time is needed to ensure objectivity in the sense 

intended here.) It is assumed that incidents of discourtesy are random, 

isolated in time, uncorrelated and that the probability of an incident during 

a time interval is proportional to the duration of the interval. Provided the 

number of incidents is small, these assumptions are reasonable and permit the 

use of the well-known Poisson distribution. 
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Gfven a "rudeness allowance" of N ..:!:_ 5 incidents per year, we can only 

estimate the actual performance level, Pa• by hypothesis testing. We seek 

mathematically consistent sets of the following parameters: 

F = Fraction of time observed. 

Ra = Acceptance range. If the number of observed 

discourteous acts is within this range, the 

sample supports the conclusion that the 

performance is within tolerance with a given 

risk of being wrong. 

aE = Employee's risk that a within tolerance or 

better . performance will be rated as be 1 ow 

tolerance. 

as = Supervisor's risk that a within tolerance or 

worse performance wi 11 be rated as above 

tolerance. 

aE = Employee's risk that above tol era nee perfor

mance will not.be detected. 

as = Supervisor's risk that below tolerance perfor

mance will not ~e·detected. 

113 



Mathematical details are presented in appendix. I-B. A short table of 

results follows: 

Standard 

2 + .5 

2 + .5 

20 + 5 

200 + 50 

F 

.90 

1.00 

.25 

.25 

0-3 

1-3 

1-10 

30-73 

"E = "S 

.25 

.25 

.10 

.10 

1.00 Jl 

.63[1 

.92[10 

.18[100 

.71[3 

.65[3 

.86[30 

.44[300 

In the first line of the table, we set the rudeness level at 2 + .5 

incidents per year. (The artificiality of setting ~ as half of an incident 

merely facilitates computation in the small N regime.) The proposed fraction 

of time observed in this line is rather high, 90 percent. Then if the number 

of observed incidents of discourtesy is in the range 0-3, inclusive, the rater 

may conclude that performance is within tolerance with a probability greater 

than "E + "S = .5 of having drawn the wrong conclusion. It might seem that 

if .the actual number of incidents of discourtesy is 3 against a standard of 

N = 2 ~ .5 the performance was surely out of tolerance. Not necessarily. 

When N ~ d is used to parameterize the Poisson distribution, it applies either 

to an ensemble of employees, or individual behavior over many performance 

periods. Then Pa• the actual performance for a given period, becomes a 

stochastic variable and an observation of three incidents does not show that 

N I 2. (Subtleties of interpretation in the small N regime disappear for 

larger values of N.) The next entry eEIPa = 1.00[1 is the probability (1.00) 

that a better performance (N = 1) would not be detected, and e5 1Pa = .71[3 is 

the probability (.71) that a worse performance (N = 3) would not be detected. 

The second line merely exhibits a decrease in risks if inspection is increased 

to 100 percent. In the final line, we decrease inspection time and lower 
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risks by degrading the standard to the point of allowing almost four incidents 

of discourtesy per week. The dilemma is apparent. Objective validation of 

performance against a high standard requires a lot of inspection time. 

Maintenance of the objective process with reduced inspection time requires· 

that the standard be degraded to an unacceptable level. 

' 
In the case of Callaway versus DA, the MSPB reversed a remova 1 action 

against the appellant which was based partially on failure to perform in 

accordance with an absolute (N = 0) courtesy standard. Absolute standards are 

likely to be judged by the MSPB as an abuse of agency discretion except in 

"situations where death, injury, breach of security, or great monetary loss 

could result from a single failure to meet the performance standard measuring 

performance of a critical element." That issue is quite different from the 

one addressed here, namely, the objective measurability of performance against 

a nonabsolute standard. 

A standard written in the form "No more than N + a substantiated 

complaints of discourtesy during the performance year" has the advantage of 

being easy to administer. Such a standard places the inspection and reporting 

responsibility on the public and coworkers rather than the supervisor. 

However, the measurement is now a joint property of employee behavior and 

tolerance thresholds of potential complainants. In practice, few or no 

reports will actually be received. Trivialized and easy to administer 

standards lead to "Above Tolerance" decisions in the absence of data and 

contribute significantly to rating inflation. Were it not for the statutory 

status of courtesy standards, we would recommend that they be used only on a 

management by exception basis and not ordinarily included in IPPs. The 

question of whether or not the adoption of this policy would violate the 

intent of Congress is debatable. 
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STANDARDS FDR A MESSAGE FORWARDING ClERICAl FUNCTiot! 

The task in this example is that of sorting a large volume of incoming 

messages, assigning "Action/Info" to each, and distributing the messages to 

appropriate elements of a large organization. While many actions are purely 

routine, others require an appreciation of message content and knowledge of 

the mission and functions of organizational elements. lie assume that the 

workload is sufficiently large to allow use of the binomial distribution to 

describe samp 1 i ng without replacement. (The Message Center at Hhite Sands 

Missile Range processes about 50,000 such actions per year. The function is 

performed by three to four employees who a 1 so have other duties.) We further 

neglect the fact that "Action" errors are usually more serious than "Info" 

errors. Performance standards for the employees are assumed to be in the form 

"p .::_ 6 percent of Action/Info determinations are correct." A sample of size n 

is to be drawn at random for inspection during the performance year. It is 

assumed that the inspecting supervisor's determi nation of "correct" or 

"incorrect" on each sample element is error free. Pa, the actual performance 

to be estimated, is expressed as a percentage. Ra is the observed range of 

correct actions within a given sample of size n that allows acceptance of the 

hypothesis that performance is within tolerance with risks as defined 

previously. Mathematical details are presented in appendix I-C. As with the 

previous example, we exhibit a short table of results. 

Standard n R "E = "'S 8(!Pa BsiPa a 

85 + 5% 100 76-93 .15 .23195 .46175 

94 + 2% 100 89-98 .15 .60198 .70190 

94 + 2% 500 450-487 .05 .21198 .54190 

94 + 2% 1000 906-970 .05 .02198 .28190 

94 + 2% 1500 1362-1452 .05 .001198 .16190 

94 + 2% 2000 1820-1934 .05 .0001198 .07190 
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In the data selected for presentation, we begin with a pedestrian level of 

performance, 85 ..:_ 5 percent, a small sample size, n = 100, and exhibit rather 

high risks. As would be expected, the second line shows that escalating the 

standard and keeping n = 100 increases the risks. In the remainder of the 

table we maintain a high standard and keep increasing n in order to decrease 

~E I Pa and ~s I Pa. 

We searched for a sample size and risks of about 10 percent or less as 

exhibited in the last line of the table. An interesting feature of the 

results is that for fixed p ..:_ 6 and "E = "S• ~EIPa decreases much faster than 

~S IPa as n increases. Balanced risks of about 10 percent across the board are 

not inherent in the model. At the sampling level of n = 2,000 the risk of 

being unfair to the employee is negligible. We speculate that competent, 

self-confident employees would resent increased inspection, although analysis 

shows that it would be in their best interest. It should also be noted that 

Ra is wider in every case than the nominal range of p ..:!:_ 6 (expressed as 

decimal fractions) times n. This is to be expected in a stochastic model; 

observations outside the nominal range do not necessarily indicate an out of 

tolerance condition. This is not generally understood by supervisors. 

Should it turn out that the number of correct Action/Info determinations 

in the sample of n = 2,000 is more than the top of the range, namely 1,934, 

that fact along with performance against other standards in the employee's IPP 

should be an evaluation factor in considering the employee for a performance 

award. Similarly, an observed number of correct determinations below the 

bottom of the range, 1,8,20, indicates a need for corrective action. If the 

scheme is applied to each of three employees, the total sample is n = 6,000, 

about 12 percent of workload. The standard of 94 ..:_ 2 percent is high enough 

to represent a good operation, yet low enough to allow employees an 

opportunity to excel. The amount of inspection is affordable and the paradigm 

is objective. 
117 



There is a more sophisticated procedure for making A, W, or B decisions 

than that given above. Depending on the data, these decisions may be 

classified as strong or weak. The supervisor may wish to give the employee 

the benefit of any doubt and escalate a decision from B to W or from W to A, 

or gain further confidence that a B decision justifies corrective action. The 
• 5 basic theory can be found in the literature of statistics • and an example is 

provided in appendix II. 

A standard relating to filing errors was a second issue in the case of 

' Callaway versus DA. No more than two filing errors were allowed during an 

"annual files inspection." Errors were found during an inspection in 

preparation for the "1982 Annual General Inspection"; and the agency claimed 

that the performance standard applied to ~ inspection. The MSPB thought 

otherwise and found in favor of plaintiff on this count. One lesson from this 

case is that inspection related to performance-based appraisal systems should 

be defined in terms of on-going processes for monitoring performance rather 

than scheduled genera 1 inspections. Moreover, if we may speculate that the 

filing workload in this case was high enough to allow an analytical model such 

as the one used in this example, then the standard itself was faulty. It 

should have been expressed as a percentage of allowed incorrect actions with a 

range, set high enough to allow a good operation yet low enough to provide the 

employee an opportunity to excel, and monitored by an objective process. As 

did the MSPB, we would find in favor of plaintiff, but with different 

reasoning. 

• There is another case, that of Walker versus Treasury, in which the 

techniques of this paper can be applied in a critique. Wa 1 ker' s task was 

specifically that considered here, namely distribution of correspondence. 
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The agency had been operating with an 86 percent accuracy standard. It 

changed from this rate-type standard to a number of errors-type standard which 

translates back to a rate standard of 99.5 ..:_ .2 percent. Appellant was 

allowed 0 - 3 errors per month on a workload of about 500 pieces of 

correspondence. She in fact averaged about 9 errors per month, commi.tted 

10 errors during a 1-month probationary period, and was removed from her 

position. Among other things, she claimed that the new standard was 

unreasonably high. The .agency claimed that other employees were able to 

achieve the standard, but did not present convincing evidence of this claim to 

the MSPB. In critiquing this case, we have two findings: (1) The new 

standard provided no opportunity for any employee to excel. As shown in 

appendix I, validatfon of an above tolerance performance would require 

observation of a negative number of errors, an impossibility. (2) Had the 

agency wished to document achievability, the table in appendix I shows that 

the sample size would have had to be larger than the workload, another 

impossibility, Our analysis is supportive of the MSPB decision to order the 

reinstatement of Walker to her position. 
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COMMENTS AND CONCLUSIONS 

The Civil Service Reform Act of 1978 mandates performance-based appraisal 

systems and performance measurement which is objective and accurate to the 

"maximum extent feasible." It is appropriate, therefore, to systematically 

investigate the extent to which performance measurement can be made objective 

and accurate. 

In our exploration of this issue, we have chosen examples. in which 

objectivity can be defined in terms of processes which use actual data to test 

hypotheses and evaluate related a and a risks. This definition of objectivity 

is a standard tool in all of measurement science. However, in establishing 

objective processes ·one also must consider the cost of inspection in time or 

money. On this basis, the model for validating performance against courtesy 

standards must be judged impractical, whereas the model for evaluating the 

work of "Action/Info" clerks in a message center appears to be worthy of 

adoption. 

The analytical approach used in this paper is not applicable in many 

cases. Some standards are inherently easy to administer. For example, a 

"Timeliness" standard requires very little inspection time, it being easy to 

determine whether or not a piece of work is rendered on time. Most per

formance standards of managers and executives are stated in terms of 

organizational objectives, do not involve repetitive tasks, and are not 

amenable to statistical treatment. However, the basic tension between 

objectivity and inspection time can never be avoided. In this regard, one 

must also consider the total number of standards to be monitored by a single 

supervisor. For example, consider a GM-14 who rates three GM-13s and two 
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nonsupervisory personnel. Job analysis and the structuring of IPPs in 

accordance with the "school solution" will, in this case, generate about 

150 performance standards. Some of these will be easy to administer, some 

will not. Some will be amenable to hypothesis testing, many will not. In any 

case, it is clear that effective use of performance-based appraisal systems 

requires orderly planning of inspection time. 

Hypothesis testing should be used in those cases where analysis shows it 

to be feasible. Anr lesser. definition of "objectivity" in such cases would be 

indefensible. 
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Appendix I: APPLICABLE HYPOTHESIS TESTING 

A. Background. 

5 
Hypothesis testing is a widely used, well documented method for comparing 

a parameter, a, with a standard, a0• The basic procedure is to assume a null 

hypothesis, H0, and reject Ho only if there is sufficient experimental 

evidence that the assumption is unlikely. The significance level, called the 

Type I risk and denoted by "'• is the minimum acceptable likelihood that the 

exprimental data could be obtained if H0 is true. An alternate hypothesis, 

Ha, is for use if H0 is rejected. 

The straight-forward hypotheses for performance appraisal would be 

H0: aL ~a~ au <===> Within Tolerance (W) and 

Ha: a < ol <===> Above Tolerance (A) or 

a > ou <===> Below Tolerance (B) 

where o0 is replaced by a tolerance range ol to ou. The Type I risk would be 

a = P [ Rating a < el or o > au I oL ~ a ~ ou ] = P [ Rating A or B I f/ ] • 

An opposing risk, called the Type II risk and denoted by ~. would be 

~ = P [ Rating al ~a~ au I a < al or a > au ] = P [ Rating W I A or B ]. 

l-1 
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The straight-forward way to design the hypothesis test would be to 

(1) ·Select an 9'. 

(2) Select a size for the planned data set. 

(3) Use a to determine a range of data, Ra which is defined by 

xA + 1 to x8 - 1, within which a measurement does not indicate a rating of 

either A or B. 

(4) Use (xA + 1) < (x8 - 1) and the planned data set size to 

determine B for va 1 ues of e such that e < el or e > eu· 

(5) Repeat steps (1) through (4) until the supervisor and employee 

agree on a triplet of a, planned data set size, and a's. 

Unfortunately, the well-known mathematical relations between a, xA• x8 , 

and a's are based on a standard that is an equality, or at least a semi-

infinite range, instead of a finite range. This problem may be handled by 

performing two hypotheses tests simultaneously, These are: 

1 2 

Ha: e = eL <===> w or B Ha e = eu <===> w or A 

I 2 

H a. e < eL <===> A Ha e > eu <===> B 

1 • 

The = signs in the null hypotheses may be replaced with ~ in H0 and ~ in H0 • 

This change to semi-infinite standards does not change the application of the 

tests but it does make the interpretation of the tests clearer. 



This set of tests wi 11 yi e 1 d a unique member of the A, W, B set for any 

measurement. The associated Type I and Type II risks are: 

1 
P [ Rating e < eL I eL J P ( Rating A I W or B J as = a = e = = 

aE = a 2 

= P [ Rating e > eu I a = au J = P [ Rating B I W or A J 

1 

aE = a = p ( Rating e = 6L I e < eL ] = P [ Rating W or B . I A J and 

as = a 
2 

= P [ Rating a = au I e > au ] = P [ Rating W or A I B J 

where the E and S sub.scri pts designate the emp 1 oyee 1 s and supervisor 1 s risks. 

The various Type I and Type II risks in the single test and the two 

simultaneous tests are not as simply interpreted as those for a hypothesis 

test which has only two possible outcomes. Insight to these relations may be 

obtained by examining figures 1 through 5. One interesting result, which 

relates the three Type I risks defined above, is shown by figure 5 to be 

This inequality can be made to approach an equality only if the actual 

W domain is made much larger than the domains of B and A. 

The two simultaneous hypotheses . tests are performed by comparing the 

measurement, x, with test parameters, xA and xs· For a discrete distribution 
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in which the probability of measuring x events is given by f(x;e), the maximum 

x which implies a < aL is denoted by xA and is the largest x making 

X 
E 

i =x 0 

where x. is the lowest value of i making f(i;e) > 0. Similarly, x8 is the 

minimum x which imp,lies e > au and is the smallest x making 

X .. 
E 

i=x 

x-1 

or 

E f( i ; aU) > ( 1 - aE) 

i=x, 

where x., is the highest value of i making f(i; e) > 0 • If data yields an x 

such that xA < x < x8 or (xA + 1) ~x ~ (x8 - 1), the null hypotheses are 

both accepted and the assumed rating is H. On the other hand, x > xA implies 

A and x < x8 implies B. 

It should be noted that the calculations of xA and x8 yield worst case 

va 1 ues if the null hypotheses are inequa 1 iti es. Each equation is the well

known result when the null hypothesis is an equa 1 i ty. The use of eL and au as 

ends of semi -i nfi ni te i nterva 1 es correspond to the worst cases in those 

i nterva 1 s. 
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The Type II risks for the two simultaneous hypotheses tests are calculated 

from xA and x8 by 

x., XA 

aE = E f( i; a) = 1 - E f(i;e) 
i=xA+1 i=x 0 

X -1 
B 

as = E f(i; e). 
i=x 0 

For sufficiently low values of a and large values of x.,- x., aE and as will 

differ only slightly from the traditional a risk given by 

because 

x8-1 

a = E 
i=xA+1 

x
8

-1 

X -1 
B 

f(i;e) = E f(i;e) 
i=xo 

E f(i;e) = 1 and 
i=xo 

E f(i;e) = o 
i =x o 

E f(i;e) 
i=x 0 

for the values of a that are of interest in the calculation of aE and as. 
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The Type I risk, Type II risks, and number of measurements taken are 

inter-related and competing factors. The balancing of these. factors must 

result from consideration of (1) proposed values of "E• <Is• and the number of 

measurements and (2) the mathematically resulting values of aE and as. The 

employee and supervisor can be aided in their ba 1 anci ng cons i deration by 

operating characteristic (OC) curves. The OC-curve is a graph of the Type II 

risk versus a with the number of measurements as a parameter. The employee 

naturally wants an OC-curve with "E and aE small while the supervisor wants 

both "sand as small. 

B. Poisson. 

The Poisson distribution function; 

,.,, 

p(x;A) = 
X A· 

A e 
x! 

for x = 0, 1, 2, ••• , 

describes the distribution of the random variable x in time t provided that t 

can be divided into intervals At such that: 

i) P [ X > 1 in At ] = 0, 

i l P [ x = 1 in At J = ( k) ( t.t ) where ). = kt, and 

iii l x1 is independent of xj ·Where i and j refer to any two different 

intervals. 
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The use of f(x;9) = p(x;x), 9 = x, x. = 0, and x.., ="'in the equations of 

Section I-A yields formulas for the design of simultaneous, Poisson hypotheses 

tests to select an A, W, or B performance rating. 

The parameter A is a meaningful property to test. It is the mean value of 

x in time t. (Interestingly but usually less directly applicable, x is also 

the variance of x in time t.) The additive property of x, 

for any nonoverlapping times t, and t., makes the actual substitution for the 

parameter 9 equal to the product of F and x instead of x. Here F is the 

fraction of the time t; for which A is the mean, that observations are made in 

the measurement of x. 

C. Binomial. 

The binomial distribution function, 

b(x;n,q) n! 
= '(""'n--....:.:..:x;...)"!-::-x•! qx (1 - q)(n- x) for x = 0 1 ' ' ... , n~ 

describes the distribution of the random variable x provided the following 

conditions are met: 

i) x is the number of "bad" events in a random sample of size n 

selected from an infinite, dichotomous population. 

ii) P [ x = 1 J = q when n = 1. 
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The use of f(x;e) = f(x;e) = b(x;n,q), a = q, x = 0, and x~ = n in the 

equations of section I-A yields formulas for simultaneous, binomial hypotheses 

tests to select an A, W, or B performance rating. 

Either the parameter q or its mirror image parameter p = 1-q is a meaning-

tul parameter to test. They are respectively the fraction defective and 

fraction correct of the population. To use the language of "goodness" instead 

of "badness", simply substitute 1-p for e and y = n-x for x and use y A = n-xA 

and y8 = n-x8 in the acceptance range of YA > y > y8• When either the p or q 

description is desired, it may be advantageous to do the calculations in the 

opposite interpretation because of available tables and/or computer programs. 

The design of a b.inomial hypotheses tests involves the. balancing of a, BE• 

a5, and n for a justifiable tolerance interval. Figures 6 and 7 present 

OC-curves for a reasonably high tolerance interval and low Type I risks. 

These may be used to balance the risk and the amount of data taken. 

Another example, with an inordinately high tolerance interval, is 

summarized in the table below. The standard used is 99,5 .:!:_ .2 percent 

"goodness" or qu = .003 and qu = .007. The Type I errors used are 

aE = a5 = .05. The last two columns present two points of the OC-curves. 

n 

500 

2000 

. 6000 

18000 

36000 

XA XB 

-1 8 

1 .. 21 

10 54 

41 146 

90 279 

YA 

501 

1999 

5990 

17959 

35910 

Yo 

492 

1979 

5946 

17854 

35721 

493-500 

1980-1998 

5947-,5989 

17855-17958 

35722-35909 
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1.001.9985 

.so 1. 9985 

.291.9985 

.0041.9985 

.0000031.9985 

,931.9915 

.811.9915 

.641.9915 

.271.9915 

,061.9915 



Actual Decision 

B 

w a 

A 

Figure 1: Transitions from actua 1 conditions to rating decisions when one 

hypothesis test is used. Hori zonta 1 transitions would have no 

risks. Risks of changing B, W, or A are labeled with the 

appropriate Type I or Type II risks. 
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Actual Decision 

B 

w 

"'S 

Figure 2: Transitions from actual conditions to rating decisions for two 
hypothesis tests. Horizontal transitions would have no risks. 
Risks of changing B, W, or A are labeled with the appropriate 
Type I or Type II risks. 
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D 
e 
c 
i 

B 

s w 
i 
0 
n 

A 

Actual 

B w A 

Figure 3: The nine possible combinations of actual conditions and rating 
decisions as viewed with one hypothesis test. The three b 1 ocks 
with downward to the right shading represent correct decisions and 
have no associated risks. The four blocks labeled with a and a 
represent risks that are covered by the indicated Type I or Type II 
risks. The two blocks that are unshaded and unlabeled have risks 
that are not addressed by the test. 
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ktual 

B w A 

Figure 4: The nine possible combinations of actual conditions and rating 
decisions as viewed with two hypothesis tests. The three unshaded 
blocks represent correct decisions and have no associated risks. 
The three blocks toward the upper-right have associated employee 
risks because the decision is lower than actual conditions. 
Conversely, the lower-left blocks have supervisor risks. Shading 
that is upward to the right indicates that the block is covered by 
a Type I risk. Conversely, downward to the left shading indicates 
a Type II risk. Note that two blocks are double covered. 
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Figure 4: The nine possible combinations of actual conditions and rating 
decisions as viewed with two hypothesis tests. The three unshaded 
blocks represent correct decisions and have no associated risks. 
The three blocks toward the upper-right have associated employee 
risks because the decision is lower than actual conditions. 
Conversely, the lower-left blocks have supervisor risks. Shading 
that is upward to the right indicates that the block is covered by 
a Type I risk. Conversely, downward to the left shading indicates 
a Type II risk. Note that two blocks are double covered. 
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Figure 5: Venn diagram showing relation between Type I risks. 

I-13 

135 



1.0 

t 

Ho: p < .96 or q > .04 -

I 
H a . p > .96 or q < .04 

. 8 

.6 

.4 

n=500 

.2 

n=lOOO 

n=2000 

0 

.96 .97 .97 .98 1.0 

p = 1 - q 

Figure 6: OC-Curve for Upper Test 
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1.0 

2 
H
0

: p ~ .92 or q < .08 

2 

Ha: p < .92 or q > .08 

.8 

.6 

.4 

n=500 

.2 

0 

.88 .89 .90 

p = 1 - q 

Figure 7: OC-Curve for Lower Test 
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Appendix II. P-VALUE AND Q-VALUE INTERPRETATION 

A hypothesis test may be viewed in two distinct ways after the data has 

been collected. The more traditi ona 1 view for performance appra i sa 1 is to 

merely designate above, within, or below tolerance as the evaluation for an 

action/task. A more informative view uses p-values' and q-values• to indicate 

the degree to which the performance is above, within, or below tolerance on 

one or more actions/tasks. If a job element has more than one action/task and 

at .least one action/task is appraised using a hypothesis test, the supervisor 

may use p-values and q-values in the subjective mapping of action/task ratings 

into the job element rating. This appendix presents examples of the p-value 

and q-value interpret.ation. 

If a supervisor uses a seemingly rigid hypothesis test with PL = .92, 

Pu = .96, "E="s= .05, n = 2000, YA = 1935, y8 = 1819, ~ = .0001 for 

p ·= .98, and a5 = • 01 for p = .90, the actua 1 appra i sa 1 for this action/task 

can be quite flexible. Of course, the supervisor can insist that a 

measurement of y such that y ::_ yA is needed to result in an above tolerance 

rating. However, a more flexible and informative interpretation might be made 

as follows. 

Suppose that y = 1930 is the measurement from the sample of n = 2000. 

Since 1930 'f 1935 = YA• the narrow interpretation is that the employee is not 

appraised as above tolerance even though 1930/2000 = .965 > .96 = Pu· 
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Si.nce the p9int ~s1;im,C\t~ of p 1s greHer th<1n ~'M• the e!llJ:!lDY!ilS may well be 

interested in how the test WQI.I1Q have 1;o be c;hanged to ju~t barely yield an 

above tolerijnC¢ ~ppriji~il1· Ass~ming thij~ Pu an<j pl 1!-f, unch~n$~d. both a and 

a risks need tp ~e ehanQed to make YA ~ l~~o. 

The dis~r~te n11ture qf the bin~mial qjst,ribution fllil.~e~ jt impossible to 

state an exact replac¢ment; fpr 'IE " .05, ~ctu<!l1Y, the "setting" of <t 

"at" .05 really designates a ran~e of ,046 < "E < .069 when n " 2000 and 

Pu " .96 • Fpr YA to be s~t at ~930, "!: must be in thE: rang~ of 

• 138 < "E < .166. Thus, tne change ne.eded t9 jmprove the rfltjng requires an 

increase in "E by roughly a factor of tnree. The formjll way to make this 

statement is to say th~t [1) the p~walue 1 as ~alculatrd from the data, is in 

the range of ,t3a < p-rvalu!l < .~66 anf.l [2) the p·walue is roughly three times 

the designed Typ¢ I ri~k, 

The p-v11lue presents one view of t;he <1<~ta; the Qt;her view is presE:nted by 

q-values, Sinc!i! there. ~~e 111any initially dl;lsi~ne<l. BE risks with each il[ 

corresponding to a va]4~ of p, there are many moctifiect T.¥Pil ll ri~ks when data 

modifies the Type~ riljk ~o a p-vQ.lue, ~a!(h mqlfifilld aE rf~k is a q~value. 

All of thes~ q~valu~s ilre ne~~d~d for a complete de$~11iptj<?~l ~hElY may be 

displayed as th~ modifflld IDC.,ClWYEl ~hown fn figure ~. Th~ particuJar q-value 

of intere~t correspQnP$ to p = .96~ or q " ~,..ID ~ .Q~5 because ~hat is the 

point estim~1;e provicted by t~e measurement; y = 1930 or x = n-ry = 70. This 

q-value is .47 and oorfespond~ ~o a designed a~ pf .70. Thus, this qrvalue is 

roughly twor1;hird~ of the Pl)sifln~p Type H risk, 

This particular ex~mple, i).nd ~ couple ef other exQ,mp1es Which have within 

or above toleranc~ test res~lts, are sum111arized in the following table: 



y 

1930 

1940 

1900 

In 

Test 
Rating 

,965 

w 

.970 

A 

.. 

w 

. -,·, 

p~value 

us 
r-·· 

q-value ! (y/n) 
PE I y/n) 

.138- .166 ~ 2.3 ~ .3.6 f::: 3 
.046 .059 

.468 "" .67 "" 2/3 

.703 

..:.,• Oii-;1;.F1--~· O\il~5 "" 
.046 .059 

.19 - .33 "" 1/4 

.466 "" 2.0 "" 2 
-:-232 

.. 
" 

t,q; . 

.046 - .059 

.473 
"" .4 7 "" 1/2 

.. l 't·' .'.l 

the above table, the greater than 'unity 

to p-value supports a fi na 1 decison that the 

: .. : 

. , : p-value :> , 1 .. ·. · 
q-value I (y/n) 

or 

q-val~~·~ i;ln) . > 
1 

p-value 

.468 ::::-, 
.13~ - .• 166 

2.8 - 3.4 ~ 3 

.466 "" 31 - 42 ""37 .on - .oi5 

'f 

:- '; 

.-i . 
entries for the ratio of q-value 
--·.·, ., 

performance is above tolerance. 
.. '. . : 'j . 

the greater that unity entry of p-va 1 ue to q-va 1 ue supports a Conversely, 

decision of within tolerance. 

strength of this su~port. 

The magnitude of these ratios indicates the 

II-3 
'l40 

.. .". 



The following table shows examples which have within or below tJierance ratings 

from the strict i nterpreta ti on of hypotheses tests. A fi na 1 rating of within 

tolerance is supported by a p-value/q-value ratio greater than unity. Conversely, 

q-value/p-value ratios greater than unity support a final rating of below tolerance: 

y 

1818 

1830 

1900 

.J_ 
n 

Test 
Rating 

.909 

B 

.915 

w 

.950 

p-value 
"£ 

g-value j (y/n) 
. · Bs I y/n} 

_,_. 0~4~0----.:..;· 0;.,;4,;,-7 ::::: 
.047 - .056 

.71 - 1.0 ~6/7 

.484 ::::: 1.1 ::::: 10/9 

.458 

.215 - .240 ~ 3.8 - 5.1 ~ 9/2 

.047 - .056 

.488 ~ .61 ~ 3/5 
• 801 

.99999995 - .99999997 R.<(l8- 21) R.<19 
.047 - .056 

w r:ri~§ ~ .49 ::::: 112 
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~-value 
q-value I (y/n) 

> 1 

or 

q-value I (y/n) > 1 
p-value 

.489 ~ 10.4 - 12.2::::>11 
• 040 - • 047 

• 488 ~ 2 3 - 2 4 ~ 2 3 
• 215 - • 204 ~ • • - • 

.99999995 - .99999997 "" 2.1 
.486 



The interpretation of the last column in both of the above tables is that 

the within tolerance rating is supported by a ratio of p-va 1 ue/ q-va 1 ue that is 

greater than unity. 

the null hypothesis. 

This results from taking the within tolerance state as 

To support rejecting the null hypothesis and rate the 

performance as either above or below tolerance, the q-value to p-value must be 

greater than unity. 

The bottom row in both tables is for the same measurement. This value of 

y, 1900, is closely within the YA + 1 to Ys - 1 range, 1936 to 1818, which 

indicates neither above or below tolerance. Both p-value to q-value ratios 

are greater than unity and support a final rating of within tolerance. The 

fact that p-value/q-value ratios are essentially equal for the two tables 

might be unexpected since 1900 is further from Ys = 1819 than yA = 1935. This 

is a consequence of having both PL and Pu near unity; the binomial 

distribution is not symmetrical. 

Each row in the above tables may be used to appraise performance on an 

individual task/action. Combinations of rows may be used in the subjective 

appraisal of a job element which contains several tasks/actions. Naturally, 

this subjective appraisal must include all tasks/actions in the job element 

whether or not they are treated with a hypothesis test. 

As elementary examples of appraising a job element as exceeded, met, or 

not met, consider a job element which has only two tasks/actions. Assume that 

both are treated with hypothesis tests. If the two p-value to q-value ratios 
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are those in the y = 1940 and y = 1900 lines of the above tables, the 

supervisor may we 11 subjectively decide on an exceeded rating. On the other 

hand, there would be less support of an exceeded rating if the ratio were from 

the y = 1930 and y = 1900 lines or the y = 1940 and y = 1830 lines. 

Clearly, the supervisor's subjective decision becomes more complicated as 

the number of tasks/actions is increased. For example, a job element may have 

(1) a couple of tasks/actions not treated with hypothesis tests but judged 

within tolerance and (2) three tasks/actions with p-value to q-value ratios 

corresponding to those in lines of y = 1930, y = 1900, and y = 1830. This 

example has fairly strong justification for a met rating. On the other hand, 

replacing the y = 1930 line with the y = 1818 line would make a met appraisal 

more difficult to support. 

In any nontrivial situation, the use of a hypothesis test on one or more 

task/action will not provide the supervisor with an automatic decision. The 

use of p-va 1 ues and q-va 1 ues wi 11, however, guide the supervisor in the 

necessary subjective decision. Ignoring the p-va 1 ues and q-va 1 ues waul d be 

indefensible because that would deprive the manager of objective information. 
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1.0 
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Ho: p ~ .96 or q > ,04 

I 
H . a . p > .96 or q < .04 

• 8 
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.6 

:::s 
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o-

"0 
<::: 

"' 
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.4 

.2 

p-value ~ .15 

0 

,88 .89 ,90 

p = 1 - q 

Figure 1: Q-Values for y = 2000 - x = 1930 
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MODELS FOR CONTINGENCY TABLE DATA 

R.A. KOLB 
DEPARTMENT OF MATHEMATICS 

UNITED STATES MILITARY ACADEMY 
WEST POINT, NY 10996-1786 

ABSTRACT 

A contingency table is a presentation of count data resulting from 

cross-classifications. For this type of data there are many models 

available to· aid in the explanation of the relationships of the 

corresponding variables. The choice of an appropriate or, perhaps, the 

most appropriate model depends on a number of factors including both the 

generating sampling model and the hypotheses to be considered. The purpose 

of this paper is to describe some of these explanatory models and provide 

some recommendations for their use. 

INTRODUCTION 

The cross-classifications of a contingency table are variables, 

factors, or responses which have a number of levels or categories. Terms 

used synonymously for this type of data are cross-classified, 

cross-tabulated, categorical, qualitative, or frequency data. These data 

are the result of cross-classifying a population, or Siimple from a 

population, and accumulating totals for each "cell" of the contingency 

table, A cell total, then, is the number of observations from the 

population or sample that fall into the categorical combination represented 

by that cell, The table summ;l.rizes information for the entire population 

or sample, where every observation is categorized into one and only one 

cell. 
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A two-dimensional (two-way), r x s contingency table has two variables: 

one variable having r categories and one variable having s categories. The 

"complete" cross-classification gives a total of r•s cells. The following 

notation for a two-way, r x s table will be used: 

{xij} -

{pij} -

{mi) -

s 
E Xij 

j=1 

r 
E 

i=1 

r s 

table 

table 

table 

= Xi • 

of observed values; 

of cell probabilities; 

of expected values; 

- observed row marginals, i=l,2, .... ,r; 

- observed column marginals, j=l,2t•••,s; 

E E Xij = x;, = N = total sample size or population. 
i=1 j=1 

The marginal probabilities (pi•'P•j) and marginal expected values (mi,,m,j) 

are similarly defined. This notation is easily extended to higher-way 

tables (tables with more than two variables) simply by adding more 

subscripts. 

The primary purpose in developing models for contingency table data is 

to help in the determination, interpretation, and explanation of the 

relationships among the variables. Beginning with pearson (1900), 

statistical techniques have been developed and used to test for these 

variable relationships, but only recently has the focus been on the use of 

models. Statistical techniques in support of models have now been 

well-developed. Specialized statistical computer packages for contingency 

table models (e.g. ECTA-Goodman and Fay 1973, CONTAB-Zahn 1976, and 

GENCAT-Landis et. al. 1976) have been available for some time and the 

currently popular general statistical packages (SPSS, BMDP, SAS) have 

contingency table data models and associated statistical techniques. 
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The use of these models and computer packages provides flexibility in 

the analysis of various type problems including those with many variables 

and complicated structures that a few years ago would have been impossible 

to analyze. The models provide the same ease of interpretation that the 

linear models of ANOVA and regression provide, In fact, the interpretations 

of the parameters of the contingency table models are often analogous to 

corresponding parameters in ANOVA and regression models. Also, contingency 

table models allow for classic model building in a manner similar to 

stepwise regression. 

MODELS 

The models available for contingency table data are many and varied and 

often have specialized use. The models having most universal appeal and to 

be discussed in this paper are the log-linear and logit models. Other 

models include an additive model (Bhapkar and Koch 1963), the Lancaster 

( 1949, 1950, 1969) partitioning model, and a ge11eral linear model (Nclder 

and Wedderburn 1972 and Nelder 1974) with the log-linear model as a special 

case. The additive model has been used for special problems such as sample 

surveys, drug comparisons, and biological assays (e.g., see Johnson and 

Koch 1970 and Koch and ·Reinfurt 1971). Johnson and Koch discuss the 

advantages of the additive model for sample survey data. In general, the 

log-linear and logit models are the most extensively used, providing 

convenient parameters for most hypothesis testing situations, An. excellent 

discussion and comparison of the corresponding additive and multiplicative 

interaction terms for the additive and log-linear models, respectively, is 

given by Darroch (1974)o 

147 



The log-liriear model is most convenient for general independence-type 

hypothesis testing situations under poisson or multinomial sampling. As a 

motivating example, consider a 2 x 2 contingency table. The classic 

concept of independence requires that 

i = 1,2 j = 1,2 

·A single parameter measuring this interaction is Yule's (1900) 

cross-product ratio 

ct = • 
P12P21 

Independence exists when this ratio is equal to one. Taking the logarithm 

of a under independence, 

R.n a = R.n p11 - R.n p12 
- R.n p21 + R.n p22 

= O, 

we can see the motivation in using a log-linear model - a zero-valued 

parameter would imply independence. 

The general log-linear model most frequently used was presented by 

Birch (1963). For an r x s table the model is 

(1) 

R.ij =in pij = u + ul(i)+ u2(j) + u12 (ij); i=l,2, ••• ,r; j=1,2, ••• ,s. (2) 

This model is over-parameterized in that there are r + s + (r•s) + 1 

parameters for r•s cells. Analogous to ANOVA, the constraints 

are conveniently imposed. As an example, for the 2 x 2 table the 

constraints allow a reparametrization of the model in equation (2) by 

letting u1 = ul(l)' u2 = u2(l)' and u12 = u12(ll)' leadingto the model 

R.ll = u + ul + u2 + ul2 

R-12 ·= u + ul - u2 - ul2 

R-21 u - ul + u2 - ul2 

R-22 = u - ul - u2 + ul2 

148 

(3) 

(4) 

Li 



Now the "u" parameters can be determined uniquely in terms of the 

logarithms of the probabilities. Specifically, 

u = 1/4 (ill + R.l2 + R.21 + R.22) 

ul = 1/4 (R.ll + R.12 - R.21 - R.22) 
(5) 

u2 = 1/4 ( R.ll - R.12 + R.21 - R.22) 

u12 = 1/4 (ill - R.12 - R.21 + R.22) 

The "u" parameters of equations (2) through (5) have analagous 

interpretations to the parameters of the linear model for ANOVA. In 

particular, for the 2 x 2 model of equations (4) and (5), u is the average 

of the logarithms of the probabilities, u1 is the average differences 

across the first variable levels, and u2 is the average differences across 

the second variable levels. As in ANOVA, u12 is an interaction term, which 

for the 2 x 2 table measures the dependence between the variables in the 

sense of Yules' cross-product ratio a and, specifically, from equation (1) 

equals 1/4 R.n a. Most importantly, under independence or "no interaction", 

u12 equals zero. 

Another useful form of the log-linear model and one frequently 

overlooked in the literature was first presented by Ku, Varner, and 

Kullback (1968) and has been used primarily by Kullback and his associates. 

Instead of the constraints in (3), Kullback fixes one cell of the 

contingency table and defines the parameters to measure for each variable 

and interaction, a difference from this fixed cell, For the 2 x 2 table 

with cell 22 fixed, the model is 

R.ll = To + Tl +T2+T12 

R.12 = T + Tl ·o 
(6) 

R.21 = To + T2 

R.22 = To 
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Solving for the new T parameters, 

'o = J/,22 

'I = !1,12 - !1,22 
(7) 

'2 = !1,21 - !1,22 

T!2 = !1, II - !1,12 - !1,21 + !1,22. 

In terms of the Birch model "u" parameters, 

'o = u - u1 -u2 + ul2 

'I = 2(u1 - ul2) 
(8) 

'2 = 2(u2 - ul2) 

'12 = 4ul2 • 

The important interaction parameter -r 12 is proportional to Birch's u12 and 

both reflect independence for values of zero. 

It is interesting to recognize the similarity between these models and 

models for ANOVA. Similiar to Birch's log linear model, the usual linear 

model for ANOVA defines an overall mean parameter, and measures factor 

effects as differences from this mean. On the other hand, similar to 

Kullbacks log-linear model, the regression model for ANOVA fixes one factor 

level, and defines the regression coefficients as the differences of the 

other factors from this fixed level. 

In addition to log-linear models, logit models are also very popular 

for certain applications of contingency tables. In particular, for 

product-multinomial sampling with homogeneity-type hypotheses and one or 

more response variables, logit models are very useful. For example, 

consider the factor and response problem depicted in Figure 1. 
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B 

1 2 

1 1 

A 

2 1 

Figure 1, Factor A, Response B 

Here, A is the factor at 2 levels and B is the binomial response. The 

homogeneity hypothesis would be H0 : p11 p21 (or p12 = p22 ). Under H0 , 

the log-linear models would require that two parameters equal zero, namely 

from (5) and (7), 

Birch: = 0 

Kullback: = o. 

Yet, the homogeneity hypothesis is a one degree-of-freedom test and a 

convenient model should provide a single corresponding zero-valued 

parameter. Defining the logit Li = ~n(pi 1 /pi2 ) fori= 1,2, 

11 = ~n(pll /p12) = ~n p11 - ~n pl2 

and 
2u2 + 2u12 

12 = ~n(p21 /p22) = ~n p21 - ~n Pzz 

2u2 - 2u12 • 

Letting w 2u2 and w1 

11 = w + w1 

12 = w- w1 
and 

w = 1/2 (11 + 12) 

w1 1/2 (11 - 12 ). 

(9) 

(10) 

Now, the single model parameter w1 corresponds to the one degree-of-freedom 

homogeneity hypothesis (i.e., H0 : p11 = p21 <=> w1 = 0). 
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LARGER TABLES 

Extending these models to larger tables is relatively straight forward; 

although, some care is required to insure clear definitions of the 

parameters so that they will purposely relate to the hypotheses of concern. 

Appendix A provides the models and hypotheses for the 2 x 3 table and 

Appendix B for the three-way 2 x 2 x 2 table. 

Initially, considering the 2 x 3 table, the independence hypothesis is a 

two degree of freedom test and each log-linear model provides two convenient 

ij ij 
parameters, u12 and ui2 for the Birch model and T 11 and T 12 for the 

Kullback model. In comparing the models, the arbitrary fixing of a cell 

in the Kullback model may not appeal to some analysts, but the relative 

simplicity of the model would certainly appeal to all, The independence 

parameters for the Kullback model are also easier to interpret. Letting 

amn be the cross product ratio of column m and column n taken as a 2 x 2 

table, independence occurs when the three cross product ratios a 12 , a 13 , 

and a23 are equal to one (any two amn equal to one will insure that the 

third is equal to one). The log-linear parameters relate to these amn in 

the following manner: 

ul2 = 1/6 (R-n al2 + R-n "13) 

• ul2 1/6 (R-n al2 + R-n a23) 

ij 
'u = R-n al3 

ij 
= R-n a23 '12 . 

The Kullback T parameters are simply the logarithms of Yules' original 

cross-product ratios for the 2- x 2 subtables that include the fixed cell. 
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The appropriate logit model is dependent on the scheme of sampling. 

When the data is sampled across the rows, it is convenient to build a model 

that calculates logits based on ratios of row probabilities for each column. 

This is reflected in the III.a. model of Appendix A. Symmetrically, when 

data is sampled across columns, it is convenient to build a model that 

calculates logits based on ratios of column probabilities for each row. 

This is reflected in the III.b. model of Appendix A. For the sampling 

model in III.a., the corresponding homogeneity hypothesis is a two degree 

of freedom test that compares the probabilities across a row. The logit 

model provides the three parameters w1 , w2 , and w3 and the constraint that 

their sum equals zero. For the model in III.b., the homogeneity hypothesis 

is a two-degree. of freedom test that compares the probabilities across any 

two of the three columns. The logit model provides three parameters 

(corresponding to the three columns); any two of which can be used to test 

the hypothesis. It should be noted that other logit parameterizations are 

possible. 

Turning now to the three-way 2 x 2 x 2 table in Appendix B, the 

comparative simplicity of the Kullback model is again apparent. In the 

( i j k 
Kullback model the 222 cell has been fixed. The main effects T1 ,T 1 ,T 1 ) 

measure the difference between the second and first levels of each 

variable as compared to the fixed cell. The two-way interaction terms 

( ij ik jk) . 
T 11 ,T 11

,T 11 are the logarithms of the three possible cross-product 

ratios with the 222 cell that measure interaction between two variables 

with the third fixed. The three-way interaction term ( Tijk) is the 
111 

difference of the logarithms of the cross-product ratios when variable one 

is fixed at level one compared to level two. 
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The Birch model uses a mean parameter (u) <Ihich is the average of the 

·logarithms of the cell probabilities. The main effects (u1 ,u2
,u3

) average 

the difference in the logarithms of the probabilities at the two levels of 

each variable, respectively. The interaction terms (u 12 ,u13 ,u23 ) average 

the logarithms of the cross-product ratios corresponding to the two 

measured variables. The three-way interaction term (u123 ) measures the same 

i .k 
difference of logarithms of cross-product ratios as does T1i1 ; although, it 

averages this difference across the cells by taking 1/8 the value. 

The presented logit model considers that variable one· is a response 

variable and that product-multinomial sampling is appropriate. The model 

is analogous to the 2 x 2 Birch log-linear model; however, the parameters 

(w2 ,w3 ,w23 ) measure the effect that the corresponding terms have on the 

response variable, 

Considering the hypotheses for the 2 x 2 x 2 table as listed in 

paragraph IV of Appendix B, the no three-way interaction hypothesis is a one 

degree-of-freedom test and each model provides one corresponding 

parameter. The logit model w23 parameter (and corresponding hypothesis 

test) is more properly interpreted as a measure of the interaction between 

variables two and three as it affects variable one. The mutual independence 

test under multinomial sampling is a four degree of freedom test and the 

two log-linear models provide four parameters corresponding to each 

possible interaction. Under product-multinomial sampling the test has 

three degrees of freedom and the logit model provides three parameters. 

The conditional independence test requires that one variable be considered 

fixed and that independence between the other two-variables be tested. 

In Appendix B, variable three has been fixed. This is a two-degree of 

freedom test and each model provides two parameters. The homogeneity test 
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. has many forms. The one chosen in Appendix B corresponds to the selection 

of variable one as the response variable in the logit model, Under 

complete homogeneity, all these logits and logit parameters are equal to 

zero. In effect the 2 x 2 x 2 table has collapsed to a 2 x 2 table with 

variables two and three remaining. The terms of the log-linear models 

relating to the first variable are also now zero. 

CONCLUSION 

It might ·be said that there is only a limited amount· of information 

available from any given data set. For contingency table data, the models 

presented in this paper provide the means to fully explain the data with 

respect to the measured variables, and often indicate relationships which 

might not have been apparent with other techniques. 
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APPENDIX A. 2 x 3 TABLE MODELS 

Pn pl2 pl3 

p2l P22 . P23 

I. Birch Log-linear Model 

General: 

1,2; j = 1,2,3. 

Define: 

• ul2 = ul2(12) 

u' 
2 = u2 (2) 

Model: 

R.ll = u + tll + u2 + ul2 

R.l2 = u + u
1 

+ u' + u' 
2 12 

R.l3 = u + u
1 + tl2 - u' - ul2 - ' 2 ul2 

R.21 tl - ul + u2 - ul2 

R.22 = u - + u' - • ul 2 ul2 

R.23 - u' + ul2 + ' u - ul - u2 2 ul2 

Parameters: 

u 1/6 . (R.ll + R.l2 + R.l3 + R.21 + R.22 + R.23) 

ul = 1/6 (R.ll + R.l2 + R.l3 - R.21 - R.22 - R.23) 

u2 = 1/6 (2R.ll - R.l2 - R.l3 + 2R.21 - l'-22 - R.23) 

u' = 1/6 ( -R.ll + 2R.l2 - R.l3 - R.21 + ZR.22 - R.23) 2 

ul2 = 1/6 ( 2 R.11 - R.l2 - R.l3 - ZR.21 + R.22 + R.23) 

' ul2 = l/6 ( -R.ll + ZR.l2 - R.l3 + R.21 - ZR.22 + R.23) 
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II. Knllhaek Log-linear Model 

Define: Cell 23 fixed 

Model: ~11 + 1 + Tj + lj 
= To T1 1 T11 

~12 = To + i 
T1 + Tj 

2 + T ij 
12 

~ 13 m T 0 + Ti 
1 

~21 = To + Tj 
1 

~22 = To + Tj 
2 

~23 = To 

Parameters: 

To ~23 

i 
= ~13 - ~23 T1 

Tj 
1 = ~21 - ~23 

Tj 
2 = R.22 - R.23 

Tij 
II = ~ 11 - R.l3 - ~21 + ~23 

Tij 
12 = ~12 - ~13 - ~22 + R.23 

III. Log it Model 

2 
a, E pij = 1 for j = 1,2,3 

i=l 

Define: Lj= ~n(p 1 /p2j ), j = 1, 2,3 

Model: L1 = W + w1 

L2 w + "2 

L3 w + "3 

Constraint: 

WI + "2 + "3 0 
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Parameters: 

b. 

w = 1/3 (11 + 12 + 13) 

w1 = 1/3 (211 - 1 - 1 ) 2 3 

w2 1/3 (-1 1 +212-13) 

w3 1/3 (-11 - 12 + 213) 

3 
l: 

j=1 Pij = 1 for i = 1, 2 

Define: 1ij = In Pij/ l: Pij for i = 1,2; j = 1,2,3. 
kFj 

General: 1ij = w + Wj(i) 

2 
Constraints: i~ 1wj(i) = 0 for j = 1,2,3 

Define: 

Model: 111 = w + w1 

112 = w + w2 

113 = w + w3 

121 = w - w1 

122 = w- w2 

123 = w- w3 

Parameters: w = 1/6 l:l: 1ij 
ij 

w1 1/2 (111 - 121) 

w2 = 1/2 (112 - 122) 

w3 = 1/2 (113 - 123) 

159 

I 



IV. Hypotheses 

1. Independence H0 : pij ~ pi• P, j' i = 1,2; j = 1,2,3 

Birch H
0

: 0 12 
= u' 

12 = 0 

Kullback H
0

: 
ij 

T 11 = 
ij 

'12 = 0 

2. Homogeneity 

a. Ho: Pu pl2 = p13 => p21 = Pzz = p23 

Birch Ho: u2 = u' = 0 12 
= • = 0 

2 0 12 

Kullback Ho : ,J = ,J = 
ij 

= 
ij = 0 

1 2 T 11 '12 

b. Ho: pll = P21 
=> p13 = P23 

pl2 = P22 

Birch Ho: "1 = 0 12 = • 0 12 = 0 

Kullback H
0

: 
i ij ij 0 '1 '11 = '12 

Log it Ho: w1 = w2 w = 3 0 
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APPENDIX B. 2 x 2 x 2 TABLE MODELS 

p211 

I. Birch Log-linear Model 

General: 

R, jk u+u1(1) + u2 (j) + "3(k) + "12 (ij) + "13(1k) + u23 {jk) + u123 (ijk); 

1 = 1, 2; j = 1,2; k = 1,2. 

Define: 

u1 = 11
1 (1) "3 = u3 (1) "12 = "12 ( 11 ) 

u2 = u2 (1) u12 = u12(11) "23 = u23 (11) 

Model: 

R,111 = u + u
1 + u2 + u3 + u12 + u13 + u23 + u123 

R,112 = u + u
1 + u2 - u3 + u12 - u13 - u23 - u123 

R,121 u + "1 - u2 - u3 - u12 + u13 - u23 - u123 

R,211 = u - u
1 + u2 + u3 - u12 - u13 + u23 - u123 

R,212 = u - u
1 + u2 - "3 - u12 + u13 - u23 + u123 

R, = u - u1 - u2 + "3 + u12 - u13 - u23 + u123 221 

J/,222 = u - u
1 - u2 - u3 + "12 + u13 + u23 - u123 

Parameters: 

u = 1/8 (R. 111 + R,112 + R,121 + R,122 + R,211 + R,212 + R,221 + R,222) 

u1 = 1/8 (R.111 + R,112 + R,121 + R,122 - R,211 - R,212 - R,221 - R,222) 

u2 = 1/8 (R. 111 + R,112 - J/,121 - R,122 + R,211 + R,212 - R,221 - R,222) 

u3 = 1/8 (R. 111 - R,112 + R,121 - R,122 + R,211 - R,212 + R,221 - R,222) 

u12 = 1/8 (R. 111 + J/,112 -. R,121 - R,122 - R,211 - R,212 + R,22l + R,222) 

u13 = 1/8 (R. 111 - R,112 + R,121 - R, 122 - R,211 + J/,212 - R,221 + R,222) 

u23 = 1/8 (R. 111 - R,112 - R,l21 + R,122 + R,211 - R,212 - R,221 + R,222) 

u123 = 1/8 (R. 111 - R,112 - R, 121 + J/,122 - R,211 + R,212 + J/,221 - R,222) 
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II, Kullback log-linear Model 

Define: Cell 222 fixed 

Model: 

R, 111 
i + ,J k ij ik jk . ijk 

'o + '1 1 + '1 + '11 + '11 + '11 + '111 

i j ij 
T + T

1 
+ T

1 
+ T 

0 11 

R-122 To + -r~ 

R-211 =r· +rj +rk+rjk 
0 1 1 11 

R-212 'o + rt 

Parameters: 

'o = R,222 

i 
R,122 - R,222 '1 = 

,J 
1 = R,212 - R,222 

k = R, - R, 
'1 221 111 

ij 
'u R,112 - R,122 - R,212 

,ik = R,121 - R, - R,221 11 . 122 

jk 
'u = R,211 - R,212 - R, 221 

+ R,222 

+ R,222 

+ R,222 
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III. 1ogit Model: 

General: 

1,1; k = 1,2 

where 

= o. 

Define: 

w2 = w2(1 )' w3 = w3 ( 1 ) ' w23 = w23(ll)" 

l!ode1: 

1 11 w + w2 + w3 + w23 

1 12 w + w2 - w3 - w23 

121 = w - w2 + w3 - w23 

122 = w - w2 - w3 + w23 

Parameters: 

w 1/4 (111 + 1 12 + 121 + 1 22) 

w2 1/4 (1 11 + 112 - 121 - 122) 

w3 1/4 (1 11 - 112 + 121 - 122 

w23 1/4 (L11 - 112 - 121 + 122) 

IV. Hypotheses 

1. No three-way Interaction (No second order Interaction) 

Birch H
0

: 

Kull back H0 : 
ijk 

T111 

1ogit H0 : w23 = 0 

0 

0 
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2. Mutual (Complete) Int(~ra.ction 

Birch Ho : ul2 ul3 = u23 = ul23 = 0 \ 

ij i.k jk ijk 
\\ 

Kullback Ho: 'u 'u + 'u = 'ttl 0 
\ 

Logit Ho : w2 = w3 w23 0 

3. Conditional Independence (1 to 2 with 1 fi><ed) 

Birch Ho: ul2 = ul23 = 0 

Kullback T\J : 
ij 

'u 
ijk 

T 111 0 

·Log it Ho: w2 = w23 0 

4. Homogeneity of: tables 

Birch Ho : u1 ul2 ul3 ul23 = 0 

Kt1llback Ho: 
i ij ik ijk 

0 '1 'u 'u T1ll = 

Log it liD : w = w2 w3 = w23 0 
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SUf.lt1ARY 

On u Class of Probability Density Functions 

H. P. Dudel and S. H. Lehnigk 

U.S. Army Missile Command 
Research, Development, and Engineering Center 
Research Directorate 
Redstone Arsenal, AlabJma 35898-5248 

The opplication of a three pura111eter cluss of one-sided probubility disLrilw-

tions is being discussed. For specific parameter values, this class conLaill'. 

as special cases a ~umber of well-known distributions of statistics and sla-
1 

tistical physics, namely, Gauss, Heibull, exponential, Rayleigh, Gamma, cl1 i · 

_square, t1axwe11, and Hien (liuliting case of Planck's distribution). One ol 

the three parameters representi scale; the other two represent initial and 

terminal shape of the associated probability density function. A fourth· 

parameter, shift, may be introduced. The distribution class discussed in l.l1i·; 

paper was introduced by L. Amoroso [2] in 1924. It is closely connected l'lil.l1 

a f~mily of linear Fokker-Planck equations (generalized Feller equation). 

In fact, the class of probability density functions associated 11itlt the di~.--

tribution class considered here is a special case of the set of all dell." 

function initial condition solutions of the generalized Feller equation for 

a fixed value of the time variable. It will be shown that, as a function or 

the logarithm of the independent variuble, the loguritlun of the cumulativ'" 

distribution function is as~nptotically linear as tl1e independent variable 

approaches zero from above. Th·is fact leads to a general crHerion for u,,. 

applicability of the presented d·istribution family relative to given empiric.tl 

daLa. Tile applicability criterion can be used to determine approximate vuluec. 

for the two shape parameters. They can subsequently be used as initial V<lliiiH·. 

in any of the establ-ished parameter estimation techniques. 
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1. A Class of Distributions 

A number of basic continuous distributions of classical statistics 

and statistical physics are special cases of a class of distributions which 

is characterized by the cumulative distribution function 

F (x) = 

0 , X < 0 ·= ( l. 1) 

which depends on the three mutually independent parameters b > 0, p < 1, and 

A< 1. With these restrictions on the parameters p and A , the composite 

quantity q = (A-p)(l-A)-l will be greater than -1. In standard terminology, 

b is the scale parameter, and there are two shape parameters, A and p 

which are independent of each other. A fourth parameter, the shift parameter 

x
0

, may be introduced by replacing x by x - x
0

• The functions f(y) and 

y(a,y) in (1.1) are the Gamma and the incomplete Gamma functions, respectively. 

By means of the integral. definition of y(a,y) [1,8.350.1], (1.1) can 

·be expressed in the form 

F(x) = 1 
r ( 1 +q) 

~;1-A f t(l-q)-1 

0 

e-t dt , x > 0 . ( 1 • 2 ) 

Since y(a,y) may also be defined by means of the degenerate hypergeometric 

function<!>(= F ) [1,9.236.4, 9.210.1], 

y(a,y) = l ya <t>(a,a+1 ;-y) , a 
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we obtain a tl1ird expression for F(x)
1 

1 F(x) = -:::-=-'--.- t;l-p <l>{l+q, 2+q; -t;l-1-) , x > 0 , f(2+q) 

which will turn out to be quite useful later on. 

( 1 . 2) 

The probability density function f(x) associated with the cumulative dis

tribution function F(x) is given by 

f(x) = 

0 , X < 0 
( l. 3) 

The distribution class defined by either the cumulative distribution fu11<. 

tion {1.1) or the probability density function (1.3) was introduced by L.Amoroso 
[2] in 1924 and reconsidered in later publications, [3], [4], [5],and [6]. 

Some other aspects of this density function class have been discussed in 

r7J from a tl1eoretical point of view. That paper contains remarks about the 

associated probability measure space and the associated characteristic functio11 

class. A more thorough discussion of the characteristic functions from the 

point of view of complex function theory wil be presented elsewhere LB J. 
The class of density functions (1.3) contains the following spec1al cases: 

Gauss (normal), Weibull, exponential, Rayleigh, Gamma, chi-square, Maxwell, 

and Wien, as has been pointed out in [7J 
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2. The Moments 

All moments of the distribution class charac~erized either by the 

cumulative distribution F(x) given in (1.1) or by the associated density 

function f(x) given in (1.3) exist, provided the parameters b , A , and 

p are kept within the ranges b > 0, A < 1, and .p < 1. 

The characteristic function associated with F(x) and f(x) is given by the 

Laplace integral 

00 

'!'(s) = J f(x)eSX dx 

0 

00 

= l-A b-lf ~-p exp (-~1-A + sx)dx 
r(l+q) 

1-A 
= r( 1 +q) 

0 

J ~-p exp ( -t;l-A + sbt;)dt; , ~ = xb-1 , 

0 

( 2 • l ) 

where s is a complex variable. The last integral in (2.1) converges for 

Re s ~ 0 if 0 < A < 1, for Re s < b -l if A = 0, and for every s if A < 0 . 
. 

Reference is made to [7] and for a more detailed investigation, to [BJ. It 

follows that '!'(s) is holomorphic in the domain Res< 0 if 0< A < l, in 

Re s < b-l if A = 0, and it is an entire function if A < 0. Therefore, for 

A ~ 0 the moments of our distribution class are given by 
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"' 
= 'l'(n)(O) bn f t(n-p+l )(1-A)-1-1 et dt mn = r ( 1 +q) 

0 

= 
bn 

r (1 +q+-n-) (n=0,1,2, ..• ). 
r(l+q) 1- A 

(2.2) 

In particular, m
0 

= 1, and the first moment, or mean JJ, is 

ml = JJ = r(l~Qf r~ + q + l~A) (2.3) 

If A is in the range 0 < A < 1, 'l'(s) is not holomorphic at s=O. 

There is no power series expansion about s=O. The moments in this situation 

may still be defined, however, by (2.2) as lim 'l'(nl(s ), Re s < 0, as s + 
0 0 0 

0 two-dimensionally in the left-hand s-plane. Of course, one may alterna-

tively use the definition of the moments in the form 

(n=O,l,2, ... ) 

for 0 < \ < 1. 

3. An.Associated Differential Equation 

From an application point of view the usefulness of the distribution 

function defined in Section 1 lies in the fact that it contains two indepen

dent shape parameters, p and A , which allows fitting initial and termi~al 

shapes (in the direction of increasing x) of given distribution data indepen

dently. However, there is another aspect which may very well be of fundament

a 1 theoret i ca 1 interest. 
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The class of density functions (1.3} is closely connected to a class of 

Fokker-Planck equations. By fiat this connection then is typical for all 

of the special cases listed in Section 1. It makes it possible to investigate 

the underlying probabilistic features of the function class (1.3) and its 

special cases by employing the machinery of probability theory. 

Disregarding statistical considerations completely at this point, one 

may ask the question: what is the most general one-dimensional autonomous 

parabolic (Fokker-Planck) equation 

a: [A(x) ~~ + D(x)z]- ~~ = 0, z = z(x,t), x >0, t >0, (3.1) 

which admits a similarity solution 

( 3. 2) 

which is conservative, i.e., for which 

"' J z
0

(x,t)dx ~ 1. 
0 

This question is an important one in the attempt to model diffusion pro-

cesses in the applied sciences and to define initial and boundary condition 

solutions of an equation of the form (3.1). In practical terms, the coeffi~ 

cients A(x) and D(x) in (3.1) are the diffusion and drift coefficients, re

spectively. D(x) is being called the drift coefficient because, if x has 

the unit length and t the unit time, then D(x) acquires the unit length/time. 

170 



To obtain conditions for the coefficients A(x) and D(x) and for the func

* tions f (E;) and b(t) appearing in (3.2), we substitute z
0

(x,t) into the equa-

tion (3.1) and obtain a first order ordinary equation involving A(x) and D(x), 

* a second order ordinary equation for f (E;), and a first order ordinary equa-

tion for b(t). In the absence of any further conditions on z
0
(x,t), the 

differential relationship between A(x) and D(x) cannot be uniquely solved. 

Practical considerations in a number of specific situations required the 

diffusion coefficient to obey a power law of the form 

A(x) = axl+A, a> o. (3.3) 

The drift coefficient then becomes 

D (X) = CJ px A + S x, A < l , p < l , S € R • ( 3. 4) 

. * The resulting equation for f (E;) has the particular solution 

1- A -p 1- A 
= r(l+q) E; exp - E; , q = (A-p)(l-Ar1 

(3.5) 

and the function b(t) becomes 

( l A)- l --I [a(l-A)
2
t] - · . , S = 0 , 

b(t) 
)-1 

[a(l-t.)S-l (l - exp- (1-A)St)](l-A , a f 0. 

(3.6) 

Mathematical aspects of the differential equation (3.1) with its coeffic

ients specified by (3.3) and (3.4), which has been designated generalized 
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Feller equation have been investigated in a sequence of papers [9], [lOl,. [1]], 

[12;]. The special types of the equation (3.1), (3.3), (3.4) for the cases of 

interest in statistics in connection with the special distributions listed 

in Section 1 have been given in [7]. 

Within the framework of this paper it is of interest to note that 

* (1) The function z (x,t) in (3.2) with f (~)and b(t) specified in (3.5) 
0 . 

and (3.6), respectively, i.e., 

( 3. 7) 

is the delta function initial condition solutiori of (3.1), (3.3), (3.4), with 

the delta function applied at x=O, t=O [9J. In other words, the similarity 

solution (3.7) describes the distribution process governed by (3.1), (3.3), 

(3.4) from a completely concentrated initial state at x=O, t=O. 

(2) If we "stop" this process at any time t > 0, we see that, setting 
. 0 

b(t
0

) =band comparing (3.7) and (1.3), the function z
0
(x,t

0
) becomes the 

probability density function f(x) of the process at t = t • This fact opens 
.. 0 

up the intriguing opportunity of studying the statistical or probabilistic 

behavior of the underlying process in time if the scale parameter b is 

allowed to vary according.to (3.6). 

(3) It is easily seen from (3.6) that b(t) ++"'as t t +"'if the drift 

parameterS~ 0. This means the process wi 11 "spread out" over the entire 

positive x-axis. 
-1 (1-:\.)-1 .. 

However, if S > 0, b(t) + [a(l-:>..)S ] , a f101te con-

stant, as t t + oo. In other words, the process approaches a steady state as· 

tt+oo_.·with a finite mean value. 
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(4) The function z
0
(x,t) given in (3.7) is a particular delta function 

initial condition solution of the generalized Feller equation (3. 1), (3.3), 

(3.4). The delta function initial condition solution of this equation with 

the delta function applied at x = y > 0 and t = 0 is given by 

* ( ) (p-1-)/2 ( ( ) (1-J.. )/2) 
v (x,t;y)::: (1-J..)b-l~- p+J.. 12 (ef3tn) Iq 2~ l-J.. 12 (e-f3tn) . 

(3.&') 

1 1 . - 1 
~ =xb- , n= yb- , b = b(t) given.by (3.6), x > 0, t > 0, q = (f.-p)(l-J..) , 

Iq = modified Bessel function of the first kind (Bessel function of imaginary 

argument). This fact has been established in [9j. (It is useful in this con

text to also consult [ll]and [12]for slight notational differences between 

this paper and rgJ. 
* The function v (x,t;y) has the following properties [9]: 

* v (x, t;y) > 0, x > 0, t > 0, y > 0, (a) 

(b) * v (x,t;y) + 0 as t + 0 for x > 0, y > 0, x #·y, 

* (c) v (x,t;x) t+ oo as t t 0, x > 0, 

* (d) v (x,t;y) + z
0

(x,t) as y t 0 for x > 0, t > 0, 

00 * 
(e) J v (x,t;y)dx = l. 

0 

* Clearly, these properties make the function v (x, t
0

;y) a one-sided probabi 1 i ty 

density function for t=t >0 andy> 0 fixed. In particular, property (d) 
. 0 

substantiates the claim make in the summary that the family of distribution 
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characterized by (1.3) is a speGial case of the much more general family 

* specified by v (x; t
0 

;y). 

In statistical distribution fitting attempts, in particular in cases 

where the density data have a maximum, one reason for the frequent occurrence 

of unsatisfactory fits results from the fact that the location of the maximum 

of a distribution candidate cannot be chosen arbitrarily. It is normally 

automatically determined by the basic parameters. For the density functions 

given by (1.3), for example, the maximum is located at 

[-pI ( 1 -A) ] 1 I (1 -A) b , P < 0. 

It is fixed once the parameters b, p, and A have been determined. The class 

* of functions v (x,t
0
;y) contains the additional independent "delta function 

application parameter" y • The presence of this additional parameter changes 

the situation drastically and favorably. A thorough discussion of the class 

* v (x,t
0

;y), however, will not be attempted here. We return to the discussion 

of our main subject. 
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4. An Applicability Criterion 

Inherent in any attempt to fit given empirical distribution data by 

means of an analytically defined probability density function are three 

crucial problems, namely (i) candidate function selection from a group of 

available functions, (ii) determination (estimation) of the parameters of the 

selected function, and (iii) evaluation of the achieved quality of fit. Since 

an adequate treatment of the last two problems requires a thorough discussion 

of the details of the numerical techniques involved they shall be left 

untouched here. Thts subject - relative to the class of distrfbutions which 

represent the topic of the present paper - will be picked up in a separate 

publication. We shall concentrate, therefore, on the first problem and pre

sent a general applicability criterion for the distribution class defined by 

the cumulative distribution functions (1.1) or by the associated density 

functions (1.3). This criterion covers all special cases mentioned in Section 

1. 

Let us consider the distribution function F(x) given in the form (1.2), 

i . e. , 

F(x) = 1 ~1-p <!>(l+q, 2+q; _rl-A), r: xb-.1. 
r(2+q) " " 

Taking logarithms, we obtain 

log F(x) = -log f{2+q) + (1-p) log~+ log <~>(l+q, 2+q; - (~) l-A} {4.1) 
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At this point it will be advantageous to perform the independent variable 

transformation x = llY where J.l = m1 is the mean (first moment) which can 

easily be determined from given empirical .data. This transformation ensures 

that all x data in the interval 0 < x < J.l will be mapped into y data in 

the interval 0 < y < l. This is important as will become apparent momen

tarily. Setting then log F(x) = log F(JlY) = v and logy= u so that 

log ~ = log ~ = u - log Jl-lb , 

we obtain from (4.1) the functional relation 

. ~ . 1-t..) 
v(u) = -logr(2+q) - (1-p)log ll-lb + (1-p)u +log <P l+q,2+q; (_ eu ) - ,--;;-:-r b • 

The degenerate hypergeometric function <P is defined as a power 

series in its last argument with constant term equal to unity. Therefore, 

as x t 0, i . e. , as y t 0 which me an s as u t - oo , 

Consequently, the function v(u) given in (4.2) is asymptotically linear in 

u as u t - oo. In other words, 

v(u) - v1(u) = (1-p)u- log r(2+q)-(l-p) log ll-1b, u t-oo. 

This asymptotic linearity property may also be expressed by saying that, as 

u t- oo, the graph of the function v(u) defined in (4.2) approaches the 

(straight line) asymptote defined by the linear equation 

(4.2) 

v1(u) = (1-p)u- log r(2+q)~(l-p) log ll-lb. (4.3) 
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Based on this fact we can formulate the following Applicability Criterion. 
' 

A distribution function F{x) of the class· {1.1) may be considered as a 

candidate for a data fit if the logarithmic plot of a given set of empirical 

cumulative distribution data indicates the existence of an asymptote. 

Remarks. (l) An applicability criterion similar to the one 

expressed above for the logarithm of the cumulative distribution data can, 

of course, be formulated for the corresponding density data according to 

(1.3). Which of these two equivalent criteria is actually being used is 

immaterial. The one given in terms of the cumulative data is generally pre

ferred simply because the cumulative data are normally ''smoother'' than the 

corresponding density data. 

(2) An asymptotic linearity criterion similar to the one expressed 

above for the distribution class (1.1) holds for the class of distributions 

* defined by the density function v (x,t
0

;y) given in (3.8). This is easily 

seen. If we denote the cumulative distribution function associated with 
* . v (x,t

0
;y) by V(x), then 

l-;\ 
V(x) - F(x) exp - (e-stn) as x + 0 

where F(x) is given by (1.1). We shall not go into any details here. 

There is important practical utility associated with the applicabil

ity criterion. This becomes evident when we reHlize that it can be used to 

determine approximate values p1 and \l for the two shape parameters p 

and >- An approximate value b
1 

for the scale parameter b can then be 

determined by means of the first moment, 

b = l.l 
r ( 1 +g) 

r(l+q+l/{1->.)) 
( 4. 4) 
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if we substitute in q = (\-p){l-\)-l the values p1 and 1. 1 for. p and 1-, 

respectively. 

If a set of empirical distribution data indicates the existence of 

an asymptote for the logarithmic cdf graph, the location of the asymptote can 

be estimated either by visual inspection or by analytic methods. Numerical 

techniques for the asymptote determination and for the subsequent estimation 

of parameters will be discussed e 1 sewhere. The 1 ocati on of the asymptote can 

be specified by its directional angle & and its intersection with the v-axis. 

Since the asymptote is determined by the linear equation (4.3), we immediately 

see that 

tan & = 1 - p. (4.5) 

This relation makes it possible to quickly find an approximate value p1 for 

the initial shape parameter p once & or tan & have been estimated, 

p1 = 1 - tan & • 

It· is of interest to note that, according to {4.5), the principal value of & 

is uniquely determined by the initial shape parameter p and vice versa. 

Since p < l, we have 0 < & < n/2. Some of the distributions listed as 

special cases in Section 1 have very specific tan & values. For the Gauss 

and exponential distributions we have p = 0 so that tan & = 1. For the 

Rayleigh distribution p =- 1 which means that tan & = 2. For the Maxwell 

case p = - 2, tan & = 3, and in the case of the Wien distribution p = - 3 so 

that tan & = 4. 

Next, once the v-axis intercept v1(o) of the asymptote has approxi

mately been determined, we pbtain from (4.3) the equation 

-log r(2+Q)-{l-p)log )l-lb - vl (o) = 0. 
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We eliminate the unkno.wn scale parameter b by means of (4.4) which leads 

to the equality 

. -1 -log r(2+q)-(l-p)log r(l+q)+(l-p) log r(l+q+(l-A) ) - v1(o) = 0. (4.6) 

The left-hand side becomes a function of the unknown terminal shape parameter A 

if we replace p by the previously determined approximate value p1. In other 

words, we obtain from (4.6) an. equation of the form tp(l-A) = 0. It can be 

shown that it has exactly one solution l-A1 > 0 (provided v1(o) has been 

properly determined) which can easily be obtained by means of Newton's method. 

The opportunity to determine "good" approximate values p1 and A 1 
for the shape parameters p and A is extremely important for the practical 

application of the distribution class (1.1). The approximate values p1 and 

Al can be used as initial values in any of the established parameter estima

tion techniques such as, for example, the method of moments or the maximum-

likelihood method. Each of these methods leads to three equations for the 

unknown parameters b, p, and A • Actually, only two equations are needed 

since the scale parameter b can be eliminated. The use of the initial 

values p1 and A1 results in rapid convergence of the iteration process 

which will lead to the desired final parameter values. 

Although the class of probability distributions discussed in this paper 

has been known for more than sixty years, its application has been limited, 

most likely as a consequence of computational intensity and possible conver-

gence problems. In general, however, it is not really the complexity of the 

system of transcendental equations which makes the numerical problem compu

tationally intensive but rather a poor choice initial iteration values. It 

is hoped that the approach presented here will lead to more widespread use 

of the distribution class (1.1). 
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5. Empirical Examples 

In the talk presented at the Madison conference two examples based 

on empirical data have been discussed. As indicated at the beginning of 

Sec. 4 a thorough treatment of practi ca 1 ex amp 1 es will not be attempted in 

this paper. Suffice it, therefore, to simply present the illustrative docu

mentation for the two parameter estimates. 

The empirical data were available in histogram (pdf) form as shown 

in the first figure of each of the two sets of illustrations. The cdf data 

were obtained by numerical integration. Their logarithm·ic plots are shown 

in the second figures, xM = 1.1 being the mean. The asymptote data tan & 

and v1(o) were determined by visual inspection to obtain approximate values 

p1 and s1 = 1 - Al for the two shape parameters. To improve the numerical 

values of these parameters the method of moments was used which led to the 

final values given in the table. The scale parameter b is determined by 

b = 1.1e·, 11 =mean. The last pair of figures show the histograms overlaid 

with the fitted probability density functions. 
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PLOTTING MATHEMATICAL FUNCTIONS 

ON A STANDARD LINE PRINTER 

DONALD W, RANKIN 
Lieutenant Colonel 

US Air Force Retired 

INTRODUCTION. Often the analyst will be greatly 

aided if he can view a graph of the function or 

data under investigation. The wide availability 

of computer-driven printers suggests that they be 

adapted to this usage. However, since that is 

not their primary purpose, some programming is 

required to exact an acceptable performance from 

them. This paper, then, discusses some of the 

principles which must be adhered to and offers 

some example programs. 

No attempt can be made to cover all possible 

print9r-computer combinations, since their number 

approaches the astronomical. <A recant issue of 

a periodical lists 145 low- and medium-priced 

printers from 36 different manufacturers which 

are compatible with the author's computer!> 

Instead, a typical combination*, is put forward 

as an example. 

Programming language will be confined to the 

most elementary BASIC, so that even the casual 

programmer will feel comfortable. The commands 

CALL, PEEK, and POKE will not be used. There is 

little need for streamlining, since even a clumsy 

program will run faster than the printer, 

TYPES OF PRINTERS. The principles herein can be 

applied to virtually all printers, whether dot 

matrix, daisy wheell ink Jet or thermal ribbon. 

Another criterion will be used to roughly divide 

printers into three categories. 

The first type possesses a resident plotting 

function. For them, this paper is not necessary, 

although it may contribute some insight. 

*An Epson model FX·BO printer driven by a Radio Shack model 100 
portable computer. 
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The second type is capable of a variable 
reverse line feed. The principal example pro
gram is written for this type. 

The third type has neither of the above 
attributes. As will be seen, plotting still 
may be possible. 

SENDING INFORMATION TO THE LINE PRINTER. Most 
computers send intelligence to the printer as 
a stream of 8-bit binary numbers (00000000 to 
11111111). This corresponds to 0-255 (decimal) 
or 00-FF <hexadecimal). Some computers send 
only 7 bits of data, reserv~ng the eighth bit 
for a parity check or other special use. They 
cannot distinguish Oxxxxxxx from 1xxxxxxx~ This 
amounts to subtracting 128 wherever possible. 

THE CHARACTER-STRING FUNCTION. One means by 
which BASIC converts information into suitable 
form is the character-string function, which is 
implemented by CHR$(n), where n can vary from 
0 to 255. Values of n from 32 to 127 are used 
to send various symbols, including punctuation, 
numbers, and all the letters of the alphabet. 
For example, CHR$(65) sends a capital A. Values 
from 0 to 31 are used to send instructions to 
the various peripherals, and are called control 
codes. CHR$(27l is called the ESCAPE code. It 
alerts the peripheral that one or more binary 
numbers are to follow, and that the sequence is 
to be treated as an entity. By. using ESCAPE 
sequences, the number of possible control codes 
b~comes almost unlimited. 

Another method of converting to binary is 
to enclose the actual symbols within quotation 
marks. Thus LPRINT "A" and LPRINT CHR$(65) are 
equivalent. This latter method depends upon 
the existence of the appropriate symbol, and 
hence cannot be used to transmit control codes. 
Also it cannot be used to send actual quotation 
marks, since BASIC only recognizes them as a 
sort of switch which turns a binary converter 
on and off. CHR$(34) must be used. 

Many software designers "borrow" one or 
more little-used control codes, diverting them 
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to special uses. When, in running a program, 
one of them occurs by chance, the result can 
be most unexpected (and quite unwanted). It 
is necessary to identify these anomalies, so 
that the program can avoid them. 

THE HEX DUMP. The easiest way to examine the 
information which the computer is transmitting 
to the printer is to perform a HEX dump. Th~ 

printer is placed in hexadecimal mode and the 
following program executed: 

10 FOR N = 0 TO 255 
20 LPRINT CHR$<Nl; 
30 NEXT N 
40 END 

The resulting printout will identify the codes 
in question. Note the semicolon at the end of 
line 20. It inhibits the carriage return. 
Figure 1 gives an example of a HEX dump. 

Figure 1 

Radio Shack Model 100 HEX Dump 

00 01 02 03 04 05 06 07 08 20 20 20 
20 20 20 20 20 
11 12 13 14 15 
lE lF 20 21 22 
2A 2B 2C 2D 2E 
36 37 38 39 3A 
42 43 44 .45 46 
4E 4F 50 51 52 
5A 5B 5C 50 5E 
66 67 68 69 6A 
72 73 74 75 76 
7E 7F 80 .81 82 
BA BB BC BD BE 
96 97 98 99 9A 
A2 A3 A4 A5 A6 
AE AF. BO Bl B2 
BA BB BC BD BE 
C6 C7 .. CB C9 CA 
02 D3 D4 D5 D6 
DE DF EO E1 E2 
EA EB EC ED EE 
F6 F7 FB F9 FA 

OA OB OC 
16 17 18 
23 24 25 
2F 30 31 
3B 3C 3D 
47 48 49 
53 54 55 
5F 60 61 
6B 6C 6D 
77 78 79 
83 84 85 
BF 90 91 
9B 9C 9D 
A7 AB A9 
B3 B4 B5 
BF CO Cl 
CB CC CD 
D7 DB D9 
E3 E4 E5 
EF FO Fl 
FB FC FD 
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OD OE OF 10 
19. lB lC 1D 
26 27 28 29 
32 33 34 35 
3E 3F 40 41 
4A 4B 4C 4D 
56 57 58 59 
62 63 64 65 
6E 6F. 70 71 
7A 7B 7C 7D 
86 87 88 89 
92 93 94 95 
9E 9f AO At 
AA AB AC AD 
B6 B7 BB B9 
C2 C3 C4 C5 
CE CF DO .Dl 
DA DB DC D.D 
E6 E7 EB E9 
F2 F3 F4 .F5 
FE FF OD 



Referring to Figure 1, it can be seen that 
CHR$(9) sends a series of spaces, while CHR$(26) 
transmits nothing at all. It will be necessary 
to program around these two values. 

SCALING THE PLOT. Some daisy wheel printers 
have adjustable horizontal spacing. Dot matrix 
printers achieve somewhat the same effect by 
offering a selection of type faces. The ability 
to adjust vertical spacing varies widely. As a 
rule of thumb, assign the coarser scale factor 
to the independent variable. 

Figure 2 

Dot Matrix Type Faces 

Type 
Face 

Pica 
Elite 
Compressed 

Characters per 
6-inch line 

60 
72 

103 

If a printer is capable of reverse line 
feeds, it is possible to scale and label the 
plotting area, then return the carriage and 
platen to a known position before beginning 
the actual plot. Without this capability, it 
is necessary to mark the paper in some way so 
that the platen can be correctly repositioned 
manually. 

PLANNING A PLOTTING PROGRAM. As an exercise, 
let us write a program which plots two functions 
simultaneously, using different plotting symbols 
for each, so that they may be distinguished. 
Let us assume a dot matrix printer capable of 
compressed type face and variable reverse line 
feed. Further let us assume a computer which 
diverts 09 and 1A (hex> to special uses. <We 
recall that these codes are generated by CHR$(9) 
and CHR$(26), respectively.) Available plotting 
area is 6 by 6 inches. 
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To generate variable line feeds, the ESCAPE 

sequences 1B;4A;nn (forward) and 1B;6A;nn <re

verse) are used, where nn can vary from 00 to 

FF (except 09 and 1A, of course). BASIC uses 

CHR$C27lCHR$C74lCHR$CNl and CHR$127lCHR$C106l 

CHR$CNl to send these sequences IN = 0 to 255) 

Since symbols exist for CHR$174) and CHR$11061 

the shorter forms CHR$C27l''J''CHR$CN) and CHR$ 

C27l"j"CHR$1Nl can be used. Some computers may 

require semicolons between the parts. For the 

~rinter which was em~loyed, a value of N = 255 

moves the ~laten exactly 3 em. Thus there are 

85 machine counts per em., or 216 per inch. 

By using the compressed type face for plot

ting, we find 27 machine counts per 4 em., or 

103 per 6 inches. It is apparent at once that 

the independent variable should vary in the 
horizontal direction. 

For an example plot, choose the tangent 

and cosine functions through the range from 0 

to 240 degrees, inclusive. Assigning a scale 

factor of 2.5 degrees per character, the plot 

will be 97 characters wide (compressed), which 

leaves a few for labelling. The computer re

quires that the argument be expressed in rad

ians, .so that one character is equivalent to 

0.0436332313 radians. Successive values of the 

functions are computed by a routine similar to: 

10 FOR X = 0 TO 96 
20 C = COSI0.0436332313 * Xl 
30 IF ABSCCl < 0.3 THEN 50 
40 T = TANC0.0436332313 * XI 
50 NEXT. X 

Line 30 is not essential. It merely avoids 

computing large values of the tangent which 

would not be plotted anyway. 

For the vertical scale, let us choose 

unity to be 1.25 inches. Now the ordinates 

can be easily read with a common foot. ruler, 

since 0.1 = 1/8''. Multiplying 216 by 1.25, 

it is found that. th~re are 270 machine counts 

per unit on the vertical axis. Values to about 

±2.15 can be displayed within the allotted area. 

193 



The number to be converted to binary by the 
character-string function must be an integer. 
This can be accomplished by: 

Y = INTI.5 + 270 * C) 

Computed in this way, there is no need to worry 
about sign. 

There is one more point to consider. The 
program must be given a memory. It is vital 
that it be able to ''remember" the position of 
the platen. For this express purpose, the 
variable LV Clast VI is established. 

Beiow is an example program, followed by 
explanatory notes. 

A SAMPLE PLOTTING PROGRAM. 

2990 END 
3000 LPRINT CHRSI27l"l"CHRSI10l:LPRINT CHRSI27l''A" 
CHR$18) 
3010 J$ ="I 

' ' 
I'':LPRINT CHRSI15l;JS:LPRINT JS 

3020 FOR N% = 1 TO 22 
3030 LPRINT ''I'';TABI36>;"1";TABI72>;"1" 
3040 NEXT N% 
3050 LPRINT J$ 
3060 FOR N% = 1 TO 22 
3070 LPRINT 11 I";TAB(36); 11 I 11 ;TAB(72); 11 1 11 

3080 NEXT N% 
3090 LPRINT JS:LPRINT J$ 
3100 LPRINT CHRSI18l;"O";TABI71;"30";TABI141;''60''; 
TABI21l; "90";TABI28l; "120";TABI35); "150";TABI42l; 
''180";TABI49l;"210'';TABI56>;"240":LPRINT 
3110 LPRINT TABI26l;"Degrees'';CHRSI15l;CHRSI27l"A'' 
CHR$(0) 
3120 K$ = ~~---------------------------------------

-------- II 

3130 LPRINT CHR$127l''j"CHR$110Bl;KS;CHRSI18l;"-2"; 
CHR$115) 
3140 LPRINT CHRSI27l"J"CHR$1135l;CHR$127l"j"CHRS< 
135) ;KS;CHR$118>; "-1";CHR$115l 
3150 LPRINT CHRSI27l"j"CHR$1135l;CHR$(27)"j"CHRSI 
1351; KS; CHRS I 18);" 0"; CHRS I 15) 
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3160 LPRINT CHR$C27l"j"CHR$C135l;CHR$C27l"j"CHR$( 
.135) ;KS;CHR$(18);" 1";CHR$(15l 
3170 LPRINT CHR$(27l"j"CHR$C135l;CHR$C27l"J"CHR$( 
135l;KS;CHR$C18l;'' 2" 
3180 LPRINT CHR$(27l"J"CHR$(72l;TABC31lt''Figure 3'' 
3190 LPRINT CHR$C27l"J"CHR$C72l;TABC30l;•"+y =cos x" 
3200 LPRINT CHR$C27l"J"CHR$C54l;TABC30l;''*Y ~tan x" 
; CHR$ < 15 l 
3210 LPRINT CHR$C27l"J"CHR$C171l;CHR$(27l"J"CHR$(171l 
3220 v = 0 
3230 FOR X = 0 TO 96 
3240 C = 270 * COSC0.0436332313 * Xl 
3250 IF ABS<Cl < 99 THEN 3270 
3260 T = 270·* TAN(0.0436332313 * Xl 
3270 IF ABS<Tl > 580 THEN 3460 
3280 LV = V : V = INT(.5 + Tl 
3290 IF V > LV THEN 3390 
3300 IF V < LV THEN 3320 
3310 .LPRINT "*";CHR$C8l;: GOTO 3460 
3320 IF <LV - Vl < 256 THEN 3340 

T = 999 

3330 LV= LV- 255 : LPRINT CHR$C27l"J"CHR$(255l;: 
GOTO 3320 
3340 IF <LV - Vl = 26 THEN. 3370 
3350 IF <LV - V1 = 9 THEN 3380 
3360 LPRINT CHR$C27l"J''CHR$CLV-Vl;"*";CHR$C8l;: GO 
TO 3460 
3370 LPRINT CHR$C27l"J''CHR$C13l;CHR$(27lrJ''CHR$<13l 
;"*";CHR$(8l;: GOTO 3460 
3380 LPRINT CHR$C27l"J''CHR$(4l;CHR$(27l"J"CHR$(5l; 
"*''CHR$(8l;: GOTO 3460 
3390 IF <V-LV> < 256 THEN 3410 
3400 LV= LV+ 255 : LPRINT CHR$(27l"j''CHR$C255l;: 
GOTO 3390 
3410 IF CV-LVl = 26 THEN 3440 
3420 IF <V-LVl = 9 THEN 3450 
3400 LPRINT CHR$C27l"J"CHR$(V-LV>;"*";CHR$C8l;: GO 
TO 3460 
3440 LPRINT CHR$(27l"j"CHR$(13l;CHR$(27l"j''CHR$(13l 
;"*'';CHR$(8l;: GOTO 3460 
3450 LPRINT CHR$<27l''j~CHR$C4l;CHR$(27l"j"CHR$(5l; 
"*";CHR$C8l; 
3460 LV = V : V = INTC.5 + Cl 
3470 IF LV > V THEN 3500 
3480 IF LV < V THEN 3570 
3490 LPRINT "+'';: GOTO 3640 
3500 IF <LV-Vl < 256 THEN 3520 
3510 LPRINT CHR$(27l"J"CHR$(255l;: LV= LV- 255 
GOTO 3500 
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3520 IF CLV-Vl = 26 THEN 3550 
.3530 IF CLV-Vl = 9 THEN 3560 
3540 LPRINT CHRSC27l''J"CHR$CLV-Vl;"+";: GOTO 3640 
3550 LPRINT CHR$C27l''J''CHRSC13l;CHR$C27l"J"CHRSC13l 
;"+";: GOTO 3640 
3560 LPRINT CHR$C27l"J"CHRSC4l;CHR$C27l"J"CHRSC5l; 
"+";: GOTO 3640 
3570 IF cv~LVl < 256 THEN 3590 
35BO LPRINT CHR$C27l"j"CHRS<255l;: LV= LV+ 255 
GOTO 3570 
3590 IF CV-LVl = 26 THEN 3620 
3600 IF CV-LVl = 9 THEN 3630 
3610 LPRINT CHR$C27l"j"CHRS<V-LVl;"+";: GOTO 3640 
3620 LPRINT CHR$C27)"j"CHR$(13l;CHRS<27l"j"CHR$(13l 
;"+";: GOTO 3640 
3630 LPRINT CHR$C27)"j"CHRSC4l;CHRSC27l"j"CHR$C5l; 
tl+"; 
3640 NEXT X 
3650 LV = V : V = -720 
3660 IF <LV-Vl < 256 THEN 3680 
3670 LV= LV- 255 : LPRINT CHR$C27l"J"CHR$C255l : 
GOTO 3660 
3680 IF <LV-Vl ~ 26 THEN 3710 
3690 IF <LV-Vl = 9 THEN 3720 
3700 LPRINT CHRSC27l "J"CHRS<LV-Vl : GOTO 3730 
3710 LPRINT CHRSC27l"~"CHR$(13l;CHR$C27l"J"CHR$Cl3l 

.. GOTO 3730 
3720 LPRINT CHR$(27l''J"CHRS<4l;CHRSC27l"J"CHR$(5l 
3730 LPRINT CHR$C27l"2";CHR$C18l 
3740 RETURN 

NOTES ON THE PROGRAM. 

Line 3000. Sets left margin to 1.25 in. Sets 
line feed to 1/9 in. for cosmetic purposes. 
The colon is used to separate statements on 
the same numbered line. Some computers may 
require a different symbol. 

Lines 3010-3090. Plots the vertical grid. 
CHR$(15) calls up the compressed type face. 
The string variable J$ must contain a count 
of 11 spaces between each symbol ":'' 
The symbol is generated by CHR$(124>, or it 
can be reached from the keyboard with the 
keystrokes <SHIFT><GRPH><->. 
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Lines 3100-3200. Plots the horizontal grid, 
labelling as it goes .. Note that the plot .is 
in Compressed type face, but the labelling 
is done in Pica. The width ratio is 7:12. 
CHR$!18) restores Pica. 

Line 3110. CHR$!15) calls for the Compressed 
typ~ face. CHR$!27)''A"CHR$(0) kills the 
line feed associated with a carriage return. 

Lines 3210-3220. The platen, carriage, and 
dependent variable are zeroed. 

Lines 3230-3640. Computation and plotting are 
accomplished by means of a FOR-NEXT loop. 

Line 3270. This places a limit on the values 
which will be plotted. Without this limit, 
the program might attempt to plot a point off 
the paper, thereby jamming the paper under 
the platen. 

Line 3310. CHR$(8) generates a backspace. Tha 
trailing semicolon inhibits the carriage 
return. 

Lines 3320-3330. Moves platen in steps of 3 
em. when required. 

Lines 3340-3380. Moves the platen and plots the 
point, avoiding the problem codes 9 and 26. 
This patterri is repeated three times (two 
functions, two signs). 

Lines 3650-3720. The platen is moved to the 
bottom of the plot, in position for following 
text. 

Line 3730. Restores normal line feed and Pica 
type face. 

Line 3740. If the program is not used as a 
sub-routirie, substitute "END'' or "GOTb nnri•. 

Figure 3 illustrates the program exercised. 
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PLOTTING WITHOUT VARIABLE REVERSE LINE FEED. For printers which lack the desired functions, it may suffice to usa minimum line feeds to increment the independent variable, and the TAB function to plot .the dependant variable. Begin by printing a horizontal line, which 
is used au a reference mark for aligning the paper with the printer's paper guide bar. 

The results of such a technique are shown in Figura 4. 
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5 END 
10 LPRINT " -----------------------------------• 
15 LPRINT 1 LPRINT 1 LPRINT 1 LPRINT 1 LPRINT 
20 END 
100 J$ • ·-----1---------------~--------------
---------1--------------------------~------------1----- . 
105 K$ • " 

I II 

110 LPRINT CHR$(151uCHR$<271"l"CHR$(171 
115 LPRINT J$pCHR$(1BIJ"0''JCHR$(151 
120 FOR N • 1 TO 19 
125 LPRINT K$ 1 NEXT N 
130 LPRINT J$pCHR$<1BIJ"90"uCHR$(151 
135 FOR N • 1 TO 19 
140 LPRINT K$ 1 NEXT N 
145 LPRINT J$;CHR$(181;"1BO";CHR$(151 
150 LPRINT KS;CHR$(181 
155 LPRINT " -1";TAB(261;"0"gTAB<491;"+1" 
160 END 
200 LPRINT CHR$(151;CHR$(271"l"CHR$(17) 
210 FOR N • 0 TO 41 
220 S = INT(,5 + 40 * SIN<0.07B539B1634 *Nil 
230 LPRINT TABC45 + Blu"+" 1 NEXT N 
240 END 
300 LPRINT 1 LPRINT 1 LPRINT 1 LPRINT 1 LPRINT 
1 LPRINT 1 LPRINT 1 LPRINT 
310 TAB<211J"Figure 4" a LPRINT 
320 LPRINT TAB<20I;"x • &in y 
330 END 

To draw the reference line, execute <RUN to>. 
Then turn the printer off and manually ppaition 
the platen, using the reference line. 

Turn the printer on and execute <RUN 10o>. 
Turn the printer off and reposition as before. 

Repeat the procedure executing <RUN 200>, 
Repeat again using <RUN 300>. The resulting 
plot will be similar to Figure 4. 
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STATISTICAL COMPARISON OF THE ABILITY OF 
CAMOUFLAGE COLORS TO BLEND WITH TERRAIN BACKGROUND 

UNDER HIGH AND LOW SUN ANGLES 

George Anitole and Ronald I. Johnson 
U.S. Army Belvoir Research and Development Center 

Fort Belvoir, Virginia 22060 

Christopher J. Neubert 
u.s. Army Engineer School 

Fort Belvoir, Virginia 22060 

ABSTRACT 

This study determined the effect of sunlight angle upon the 
effectiveness of camouflage colors to blend with desert backgrounds. 
Eleven u.s. Marine personnel and two civilians subjectively evaluated ten 
colors at nine desert sites, under high and low ·sunlight angles. The best 
six colors were rated on a six point scale, with the value number one most 
.eff.ective, and numbe.r six not effectiv.e. An analysis of variance was 
performed for each site and all nine sites combined to determine signifi
Callt ( a = 0.05) differences between the best four colors. Tukey's 
Studentized Range Test for Variable Ratings identified which of the four 
colors differed significantly (a = 0.05) from each other. Slight 
differences were found in the ranking of the colors. This eliminates the 
requirements for low angle sunlight data. 

1.0 SECTION 1 - Introduction 

This Center started its current desert color evaluations in April 
1980, when the Project Manager, Saudi Arabian National Guard (SANG) 
Modernization requested camouflage for SANG. Field color evaluations have 
been conducted in Saudi Arabia and the United States desert southwest. 
During these studies it was noted that the camouflage colors became 
brighter in hue when subjected to low sunlight angles in the early morning 
or late afternoon. This observation led to the question - what effects do 
high and low sunlight angles have upon the judgment of how well camouflage 
colors blend with the desert background? This paper presents the results 
of a study conducted in the United States deserts designed to answer the 
above question. It should be noted that if testing is required under both 
high and low sunlight angles, the costs and time to run the study were 
about doubled. If .evaluations can be completed using one sunlight angle, 
the high sunlight angle would be tested rather than the low sunlight angle, 
because.of its much longer time duration in the course of a day. · 

2.0 SECTION 2 - Experimental Design 

2.1 Camouflage Colors 

With the exception of the paint colors Gun Metal Gray and Egyptian, 
all the colors studied were taken from the SANG color test palette. These 
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colors were developed over a two-year period, and they represent the most 
sophisticated available to determine camouflage effectiveness for a series 
of selected different desert sites,, The Gun Metal Gray color was selected 
to provide high color contrast (in patterns). The Egyptian color is the 
paint currently being used to camouflage Egyptian equipment. Two new paints 
derived from the Saudi Arabian desert color palette were colors W and X. 
Color W is a fifty-fifty mix of colors 7 and 8*, while X is color 11 with 
the addition of black paint. All paints were lusterless with a reflectance 
of 1% at a 60° angle. 

2.2 Test Targets 

The test targets used for this study had to be highly mobile and large 
enough to permit a study of the target with various desert backgrounds. 
The u.s. Marine Corps made available ten Commercial Utility Cargo Vehicle 
(CUCV) trucks which were painted and coded according to Table 1. Each 
truck was painted on the basis of a three color pattern and are identified 
as colors 1, 2, and 3. For monotones and two color patterns, one or more 
color is repeated. 

2.3 Test Sites 

A total of nine sites were selected for this study. All the desert 
sites contained sparse vegetation similar to that found in Saudi Arabia. 
The soil ranged in color from a light buff/tan to gray and dark brown, and 

TABLE 1 
CUCV Truck Colors 

Color 
Vehicle Number 1 2 3 

A 3 3 3 
B 5 3 1 
c 7 E* 8 
D 7 8 8 
F 11 11 11 
G Gun Metal Gray 3 5 
H 8 8 8 
I 10 10 10 
w 7/8 7/8 7/8 
X AC11 AC11 AC11 

* Egyptian Color 

represented a good cross-sectional spectrum of different colored desert 
backgrounds. For example, one site on Midland Road, Blythe, California, 
had a reddish color, while the site at the Baker, California, dry lake was 
dark brown. The site at Jean Dry Lake bed off Route 15 in Nevada was 
somewhat yellow in appearance. The order of the nine sites as they will 
appear throughout this study is seen in Table 2. 

*numerical designations were assigned to colors during prior field tests 
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TABLE 2 
Site Order Identification 

Site II Color Location 
1 Buff Yuma Sand Dunes, AZ 
2 Light Gray Ogilby Road, CA 
3 Gray-Tan Baker Sand Dunes, CA 
4 Light Buff /Tan 29 Palms, Range 111, CA 
5 Light Tan 29 Palms, Tank Trail, CA 
6 Reddish Tan Midland Road, Blythe, CA 
7 Yellow-Tan Jean Dry Lake Bed, 

Las Vegas, NV 
8 Brown Dry Lake Bed, Baker, CA 
9 Dark Tan Salton Sea, CA 

2.4 Test Subjects 

The test subjects consisted of eleven U.S. Marine Corps enlisted men 
and two civilian employees from the Countersurveillance and Deception 
Division, Fort Belvoir, Virginia. The enlisted personnel belonged to the 
1st Marine Amphibious FORCE Service Support Group, Camp Pendleton, 
California. Thus, each ground observation consisted of a sample size of 
thirteen. Each subject had at least a corrected visual acuity of 20/30 and 
normal color vision. 

2.5 Data Generation 

The object of this study was to determine what effects high and low 
sunlight angles have on the ability of camouflage paint colors to blend 
with desert backgrounds. The relative rating of these colors under the two 
sunlight conditions was compared to determine significant differences. 
The ten trucks were painted as shown in Table 1. The trucks were divided 
into the following two groups: 

A B C F W 

G H I D X 

By using this division, two of the patterned trucks appeared in each of the 
two groups along with three monotones. The ground observers (13) were 
asked to select three color combinations from each of the two groups, based 
upon their subjective judgment in the colors ability to blend the CUCV 
trucks with the desert background. 

The next task was to rank the remaining six colors on their ability to 
blend with the desert background using the following ranking system: 

1 - Most effective 
2 - Very effective 
3 - Effective 
4- Somewhatceffective 
5 - Less effective 
6 - Not effective 
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No ties 
number. 
ranking 

were allowed. 
A value of 7 

by the ground 

Each of the six colored trucks was assigned a 
was assigned for all colors not selected for final 
observers. 

3.0 SECTION 3 - Results 

The results of each site for both the high and low sunlight angles 
will not be included because it would be too voluminous to present in these 
proceedings. A summary of the four best colors for each site under high 
and low sunlight angels is included in the discussion section. This data 
is available upon request from the u.s. Army Belvoir Research and 
Development Center, ATTN: STRBE-JDS, Fort Belvoir, VA 22060. Tables 3-5 
and Figure 1 show the data and data analysis averaged across all nine 
sites for the high sunlight angle. Tables 6-8 and Figure 2 show the data 
and data analysis averaged across all nine sites for the low sunlight 
angle. Table 9-11 and Figure 3 show the data and data analysis for the 
combined high and low sunlight angles to determine what effects high and 
low sunlight angles had upon the camouflage colors in their ability to 
blend with the desert background. 

Analysis of Variance for the Best Four Color Blends, 
Averaged Across All Sites, High Sunlight Angle 

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE 

COLOR 3 64.59829060 21.53276353 6.15 
ERROR 464 1623.36752137 3.49863690 
TOTAL 467 1687.96581197 

Table 4 indicates that there are significant differences in the 
the top four colors to blend with the desert background. These 
are shown in Table 5. 
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TABLE 5 

Significant Differences Between the Top Four Camouflage Colors 
(Blend), Averaged Across All Sites, High Sunlight Angle 

TUKEY GROUPING MEAN - N COLORS 

A 3.8376 117 D 
A 3.8205 117 H 
A 3.6068 117 w 
B 2.9231 117 X 

a = 0.05, Degrees of Freedom = 464 
Critical Value of Studentized Range = 3.646 
Minimum Significant Difference = 0.630546 
Color means with the same letter in the grouping column are not 
significantly different. 

TABLE 6 

Descriptive Data for CUCV Truck Color Blend with Desert 
Background, Averaged Across All Sites, Low Sunlight Angle 

STD ERROR 95% CONFIDENCE INTERVAL 
COLOR N MEAN OF COL MEAN LOWER LIMIT UPPER LIMIT 

A 117 5.76923 0.191703 5.39349 6.14497 
B 117 7.00000 0.000000 7.00000 7.00000 
c 117 5.31624 0.141385 5.03913 5.59335 
D 117 3.81197 0.107850 3.60058 4.02335 
F 117 4.21368 0.152988 3.91382 4.51353 
G 117. 7.00000 0.000000 7.00000 7.00000 
H 117 4.18803 0.139961 3.91371 4.46236 
I 117 7.00000 0.000000 7.00000 7.00000 
IV 117 2.19658 0.144268 1. 91382 2.47935 
X 117 2.50427 0.137675 2.23443 2.77412 

TABLE 7 

Analysis of Variance for the Best Four Color Blends, 
Averaged Across All Sites, Low Sunlight Angle 

SOURCE DF SUM OF SQUARES: MEAN SQUARE F VALUE PR)F 

COLOR 3 332.17948718 110.72649573 53.33 0.0001 
ERROR 464 963.45299145 2.07640731 
TOTAL 467 1295.63247863 

Table 7 indicates that there are significant differences in the ability of 
the top four colors to blend with the desert background. These differences 
are shown in Table 8. 
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TABLE 8 

Significant Differences Between the Top Four Camouflage Colors 
(Blend), Averaged Across All Sites, Low Sunlight Angle 

TUKEY GROUPING MEAN 

A 4.1880 
A 3.8120 
B 2.5043 
B 2.1966 

a = 0,05, Degrees of Freedom = 464 
Critical Value of Studentized Range = 3.646 
Minimum Significant Difference = 0.485762 

N COLORS 

117 H 
117 D 
117 X 
117 w 

Color means with the same letter in the grouping column are not 
significantly different. 

TABLE 9 

Descriptive Data for CUCV Truck Color Blend with Desert Background, 

COLOR 

A 
B 
c 
D 
F 
G 
H 
I 
w 
X 

Averaged Across All Sites, High and low Sunlight Angles 

STD ERROR 95% CONFIDENCE INTERVAL 
N MEAN OF COL MEAN LOWER LIMIT UPPER LIMIT 

234 5.76923 0.14495 5.48513 6.05333 
234 6.63675 0.07875 6.48240 6. 79110 
234 5.04701 0.10719 4.82691 5. 25711 
234 3.82479 0.08236 3.66336 3.98621 
234 4.24786 0.10557 4.04091 4.45474 
234 7.00000 0.00000 7.00000 7.00000 
234 4.00427 0.10053 3.80724 4.20131 
234 6.85470 0.04513 6.76624 6.94316 
234 2.90171 0.13803 2.63117 3.17224 
234 2.71368 0.11821 2.48199 2.83188 

TABLE 10 

Analysis of Variance for the Best Four Color Blends, 
Averaged Across All Sites, High and low Sunlight Angles 

SOURCE 

COLOR 
ERROR 
TOTAL 

DF SUM OF SQUARES 

3 294.58 
932 2721.37 
935 3015.95 

MEAN SQUARE 

98.19 
2.92 

F VALUE 

33.63 

PR>F 

0.0001 

Table 10 indicates that there are signific-ant differences in the ability of 
the top four colors to blend with the desert background. These differences 
are shown in Table 11. 
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TABLE 11 

Significant Differences Between the Top Four Camouflage Colors (Blend), 
Averaged Across All Sites, High and Low Sunlight Angles 

TUKEY GROUPING MEAN 

A 4.00427 
A 3.82479 
B 2. 90171 
B 2. 71368 

a = 0.05, Degrees of Freedom = 932 
Critical Value of Studentized Range = 3.764 
Minimum Significant Difference = 0.226501 

N COLORS 

234 H 
234 D 
234 w 
234 X 

Color means with the same letter in the grouping column are not 
significantly different. 

4.0 SECTION 4 - Discussion 

The purpose of this study was to determine if high and low sunlight 
angles had a significant effect on the ability of the top four camouflage 
colors to blend with the desert background. Tables 3-5 and Figure 1 
indicate the ability of each of the ten colors evaluated to blend with the 
desert terrain when averaged areas all nine sites for a high sunlight 
angle. Tables 6-8 and Figure 2 is a repeat of the ability of the ten 
camouflage paint colors to blend with the terrain, only this time the data 
was taken under low sunlight conditions. A look at these figures and 
tables indicates that the conditions of high and low sunlight angles do 
affect the utility of some of the camouflage colors to blend with the 
desert terrain. Table 12 shows the best four camouflage colors for each 
site and when averaged across all nine sites for high and low sunlight 
angles. For each of the two sunlight angles, the least to most effective 
colors for blend are read left to right. Thus, there are differences in 
the best four colors when comparing separately each of the nine sites. 

TABLE 12 

Summary of the Best Four Color Blends for Each Site and 
Across All Sites, High and Low Sunlight Angles 



For a camouflage color to be effective, it must have camouflage 
effectiveness across a wide range of sites. It is too costly and time 
consuming to paint equipment for specific areas unless the resources are to 
remain in that geographic location for a considerable period of time. 
Likewise, only the best four camouflage colors should be of interest for 
this study. 

Table 12 shows that the best four camouflage colors to blend with the 
desert terrain when averaged across all nine sites for high sunlight angle 
were DHWX, with X the best color and D the worst. The same four colors 
were also the most effective for the low sunlight angle reading worst to 
best HDXW. The only difference between the two groups is that the order of 
X and W and H and D are reversed. For both sunlight angles, colors W and X 
were better than colors D and H. Therefore, the remaining task is to 
determine if H and D and Wand X differ significantly ( a=0.05) from each 
after. Tables 9-11 and Figure 3 indicate the ability of each of the ten 
colors evaluated to blend with the desert terrain averaged across all nine 
sites and both high and low sunlight angles. Table 11 indicates that 
although the colors in color grouping A and B are significantly different 
( a= 0.05), there were no significant differences within the groups. Thus, 
it can be concluded that the reversals of colors H and D and W and X for 
the high and low sunlight angles are of minor consequence. From a 
practical field evaluation standpoint, future studies can be conducted 
using only the high sunlight angle because it represents the longest period 
of the day. 

5.0 SECTION 5 - Summary and Conclusions 

A total of ten CUCV vehicles were painted in camouflage colors and 
viewed by thirteen ground observers at nine desert sites in the United 
States desert southwest. The colors were divided into two groups of five. 
The best three colors from each of the two groups were selected on their 
ability to blend with the desert terrain. The resulting six colors were 
then ranked on their ability to blend using a six point scale with one 
being the best and six being the worst. No tie values were allowed and a 
value of seven was assigned to the colors that did not make the final six. 
This diita was collected for both high and low sunlight angles to determine 
what effects the lighting conditions had in .the rating of the different 
camouflage colors to blend with the terrain. 

Analysis of the data indicated that desert colors W and X were better 
than H and D for both high and low sunlight angles. The order of W and X 
and H and D were reversed for the two lighting conditions. Additional 
statistical analysis revealed that within each color grouping A and B, 
there were no significant differences (a = 0.05). The order reversal of H 
and D and W and X for the two sunlight angle conditions is therefore not 
important. It is concluded that future field evaluations should involve 
only one sunlight angle. This will be the high sun angle as it represents 
a longer period of time for each day. 
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Weibull Tail Modeling for Estimating Confidence on Quantiles from 

Censored Samples 

Mark Vangel· 

u.s. Army Materials Technology Laboratory 

Watertown, Massachusetts 02172-0001 

This paper describes a simple method for estimating lower 

confidence bounds on quantiles from a Weibull tail model, 

A two step .procedure is proposed for estimating the lOOg% lower 

confidence bound for the pth quantile of a Weibull sample of size n. 

Parameter estimates are first obtained for a Weibull model fit to 

the lower tail ~alues. The inverse o~ the estimated CDF is then 

evaluated at the (1-g}th quantile of the beta distribution with 

parameters n(l-p) and np+l. 
This method is proposed as a simple alternative to Lawless' 

elaborate conditional procedure specifically for determining 

'B-Basis' values. The B-Basis value is defined to be the quantile 

corresponding to the lower 95% confidence bound on 90% reliability. 

This value is used by the aircraft industry to determine the" 

acceptablity of composite materials. Composite material failure 

data is often multimodal, and lower tail modeling is expected to 

circumvent this difficulty. 

A preliminary Monte Carlo study indicates that the proposed 

method compares favorably with the Lawless procedure for obtaining 

B-Basis values. 
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1. ·Introduction: 

When assessing the strength of composite materials for aircraft 

applications, an important criterion is the material basis property, 

defined as the 95% lower confidence bound on the stress at which the 

material fails with 10% probability. 

To be useful for this application, a lower confidence bound 

(LCB) estimator must be able to contend with the primary problems of 

composite failure data analysis7 that is, small samples (~30) and 

multiple failure modes. Because of this multimodality, a parametric 

model often cannot be fit to an entire sample, and the standard 

nonparametric approach (e.g. Conover, 1980), based on the sample 

order statistics, usually yields very conservative results. In 

order to get a useful estimate of the basis property in this case, 

recent work suggests modeling as much of the tail as possible, and 

considering the rest of the sample as Type II censored (Breiman, 

Stone, and Gins, 1981). This paper develops a simple approximate 

method based on such a tail model for estimating confidence bounds 

on Weibull quantiles, which is particularly useful for estimating 

material basis properties from small samples. 

2. Review of Exact Methods 

Exact methods for in terence on the parameters of the. (two 

parameter) Weibull distribution 

are ultimately based on the pivotal random variables for the maximum 

likelihood estimators (MLE's). These pivotals are (Thoman, Bain, 

and Antle, 1969): 
' 

z =a./a. 
1 

for the shape parameter ( a ) and 

~ A 

Z = 11ln (fl/ B) 
2 
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for the scale parameter ( 8 ), That is, z
1 

and z 2 have 

distributions which depend only on the sample size and on the 

censoring configuration, not on the population parameters. The 

distributions of these pivotals cannot be written down in closed 

form, but may be easily estimated by Monte Carlo. once the 

quantiles of the pivotals have been tabulated for various sample 

sizes, exact confidence intervals for the Weibull MLE's may be 

obtained. 

Confidence on quantiles of the Weibull cumulative distribution 

function can be calculated from the pivotal for the pth quantile 

xp' O<p<l, which is (Thoman, Bain, and Antle, 1971) 

z =Z -ln(-ln(l-p))Z 
p 2 . 1 

Of course, the quantiles of 

determined by Monte Carlo. 

this pivotal must once again be 

The tables published in the original 

paper are not always accurate. Corrected tables are available 

(e.g. Neal and Spiridigliozzi, 1983). 

For censored data, it is necessary to tabulate zp for censoring 

situation as well as sample size. Partial tables are available 

(Billman, Antle, and Bain, 1972), but any reasonably complete 

tabulation would be unweildly. 

Lawless (1979) demonstrated that although the distribution of 

zp is intractable, the pivotal of the quantile conditioned on the 

ancillary statistics (statistics whose distribution does not depend 

on the population parameters) may be found in closed form. With the 

aid of a computer, a conditional confidence interval for the 

quantile can then be obtained without resort to Monte Carlo. This 

conditional interval probably does not differ very much from the 

unconditional interval (Lawless, 1973). 

The Lawless method provides exact conditional intervals for 

confidence on the parameters and quantiles of any continuous 

location-scale family, as long as the parameter estimators are 

equivariant. Equivariant estimators of a location parameter u and a 

scale parameter bare functions of the sample x=(x 1 <, •.• ,x) such 
- n 

that for any c 1 and any c2>D. 
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u(c 1~+c 2 )=c 1 u(~)+c 2 
b(c 1~+c 2 )=c 1 b(~) 

In particular, MLE's are equivariant estimators. A detailed 
development of the conditional procedure may be found in Lawless 
(1982). 

Since the logarithmn of a random variable having the extreme 
value distribution with location u and scale b, 

G(x) = e-((x-u)/b)> 

is Weibull with shape ( A ) and scale ( P ) given by 

a = 1/b 

the Lawless procedure applied to the extreme value distribution will 
yield the desired confidence on the Weibull quantile. This 
procedure is sketched below for Type II censoring. This outline 
follows the exposition in Lawless' book (1982). 

If the Type II censored sample 

r<n 

is independently identically distributed G(x), and if u and bare 
any equivariant estimators of the extreme value parameters, then: 

,.. 
Z = (u-u) /b 

1 z2 = b/b z3 = (u-u) /b 

are all pivotal statistics: with Zp pivotal for the pth quantile of 
G(x). Also, the statistics: 

a= {<x1-~ )/B; i=l, ... ,r} 

form a complete set of ancillary statistics of which any r-2 are 
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functionally independent. 

Let the corresponding ordered extreme value sample be 

The conditional pdf of z2 given
~ is of the form 

k(~,r,n)e(z-l)far 
c ___ * ____________ _ 

((E eaiz)/r)r 

where K is a constant given~· r, and n. The constant is determined 

by numerically integrating the density h2 (z I a). Finally, the 

conditional distribution of z given a is 
~ p 

where 

I w +tz 
P(Zp ~ t/~) ~ h2 (z/~) I(r,e P E*eaiz) dz 

* E w = 
1 

0 

(n-r)w , 
r 

w = ln(-ln(l-p)) 
p 

and I(r,s) is the incomplete gamma function 

1 

I(r,s) = r(r) l r-1 -u 
u e du • 

The Lawless method may be used to calculate exact conditional 

confidence intervals or bounds for Weibull quantiles without the 

need for tables. The primary disadvantage of this procedure is its 

complexity. The numerical integration is not trivial, particularly 

when r is large. It is the ~im of this paper to present a very 

simple approximate method for obtaining intervals which are often 

close to the Lawless results. 
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3. ·An Approximate Method for Estimating the LCB of a Quantile 
Let y 1 <, ••• ,~_yr be the r smallest order statistics .from a 

continuous distribution F( ~ ) • Let 

be the pth quantile of F(x), and let Lp be an estimated lOOY% LCB 
for Xp' Assume initially that p = j/n for some integer j so that Yj 
estimates xp. 

using y j as an estimator for Xp' one obtains the following 
approximation 

A 
A Y " P(L < x ) 

p- p 
= P(F(L) < F(x )) " p- p 1- P(F(yj) ~ F(Lp) • 

But F(yj) has the beta distribution 

1-y = Beta(u Jj,n-j+1) = y 

The approximate LCB is then 

f(j) f(n-j+1) 
---i"(ii+I) __ _ 

If j/n = p for integer j, let u1' be the 100 (1- 'Y ) percentile from 
the Beta (u;pn,(l-p)n+l) distribution. 

For the Weibul1 case 

A ""-1 -., 1 A 
. L • F (u ) • S 1n (1/ (1-u ) ) I a. p y y 

where D. and p are the MLE' s. This estimator is identical to 
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Thoman, Bain, and Antle's estimator, except the quantile of Zp for 

appropriate n and r is replaced with a quantile from a beta 

distribution. 

4. Interpretation of the LCB Estimator an as approximation to the 

quantile pivotal 
Following Thoman, Bain, and Antle (1971), let the distribution 

of zp be G ( z) and 

P(Z < z ) = G(z ) = Y, 
p- y y 

This implies that 

(*) 
"-z/a 1/a 

P(6e y < 6(-1n(1-p)) ) = Y 

it is because of(*) that Zp is pivotal for Xp' The new estimator 

yields an approximate relation of the same form as (*). 
A 

P(S(-1n(1-u )) 1 /a < 6(-1n(1-p)) 1/a) = y 
y -

For this to be an approximation, of course, the left hand sides of 

the inequalities should be nearly equal 

A 

· ( 1/ a A -z I&. f3 -ln(1-u )) = Be y y 

or, equivalently, 

z = z = -1n(-1n(1-u )) 
y y y 

For the approximation to be useful, the random variable 

should have a distribution close to that of the pivotal z in the 
- p vicinity of the quantiles of interest. Since z is a simple 

transformation of a beta random variable, if 

- -e u(z) = 1-e 
-z 
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then the density of z is 

To graphically illustrate the agreement between the pivotal density 
and the density of z, several simulations were performed, (Figure 1, 
a-,d). The values of p and "'I were set at .1 and .95 respectively, 
since the 95% lower confidence bound on 10% probability of failure 
is the case of primary interest in aircraft design. The sample 
sizes were kept small - reflecting the expected range of sample 
sizes of composite failure data, n = 10, 20, 30, 40, and SO. For 
each sample size, the upper two thirds of the data was Type II 
censored: r = 6, 9, 12, and 15. For z, the exact density is 
plotted. For the pivotal, the densi.ty is estimated using a four 
parameter generalization of Tukey's lambda distribution (Ramberg, 
et.al., 1979) appiied to 2,500 Monte Carlo replicates for each case. 
The agreement between the densities appears to be quite good, as 
long as one bears in mind that for intervals with reasonable 
confidence, one need only be concerned with the validity of the 
approximation in the tails. 

5. Comparison with the Lawless Method 
A simulation was performed to directly compare the Lawless 

procedure with the approximation presented in this paper. Because 
of the computational effort required for the Lawless integration, 
the scope of this study was necessarily modest. However, useful 
results were obtained despite the restriction to 10 replicates per 
case. It was decided to fix p = .1 and "'I = .95 as in the previous 
section. Also, the sample size was fixed at 30, since this is 
typical for composite material failure data in aircraft industry 
testing. ~ower confidence bound estimates were obtained for 
pseudo-random Wei bull samples with shape parameters in the range . 
2 to 100 and Type II censoring_ of 90% to 0% (r = 3, 6, 9,. •. ,30). 
The average percent differences in the results are presented in 
Figure 2a. Note that for r = 9, there is amazing agreement between 
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the two methods. This could have been anticipated from the close 
agreement at the 95th percentiles of z and z for this case (Figure 
ld). 

For the approximate estimator, the dependence of the simulation 
results on the Weibull shape parameter may be completely removed by 
transforming the estimator Lp to its pivotal: 

This transformation was applied to both the Lawless results and the 
approximation results. The percent difference between .the methods 
for the transformed data showed no dependence on , so these were 
averaged over all the data providing a measure of percent difference 
vs. r based on 150 replicates per r value. (Figure 2b). Positive 
percent difference is defined here to mean that the Lawless bound 
was greater than the·approximate bound. For 9~r~30, the 
approximation yields a conservative result. It is reassuring that 
potentially dangerous nonconservative estimates only occur for very 
small values of r. 

6. Examples 

As examples, the approximate method was applied to three 
extreme value data sets from the literature (Figure 3 and 4). In 
all of these cases, either the approximation gives a result very 
close to that obtained via the conditional procedure, or the 
approximation provides a result which is more conservative. 

These examples, of course, cannot by themselves validate the 
proposed method. They are intended rather to highlight the ease 
with which one may arrive at reasonable results, making use of a 
computer only to obtain MLE's of the parameters and, possibly, the 
quantiles of the relevant beta distribution. 
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7. Conclusion 

The proposed method is attractive as an alternative to the 
Lawless procedure. The Lawless method is computationally complex, 
whereas the new method is very easy to apply. Unfortunately, while 
the Lawless method may be justified theoretically, the proposed 
method as yet has no firm theoretical basis. The interpretation of 
the new method as an approximation to the pivotal is interesting, 
but by itself it cannot provide this foundation. The natural 
question of how good this approximation is in general cannot be 
answered because the pivotal distibution can only be obtained by 
simulation. For the cases considered, namely 95% LCB on 10% point 
from samples of 10 through SO, however, the approximation is good, 
Also, the method has been demonstrated to give results for a sample 
size of 30, which are generally either close to or more conservative 
than the Lawless results. To validate the procedure, either an 
extensive Monte Carlo study or a deeper theoretical investigation 
must be performed. Both of these approaches will be considered in 
the near future. 
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FIGURE 3 

EXAMPLE: LAWLESS (1982), p.l56 

Type II censored extreme value sample 

n = 20 r = 10 

Estimate 90% confidence interval for X .l 

A /'+ A ,.. 
u = -.122 b = .907 m = .931 1 b = 1.026* 

'• 
/seta (t11,19) dt 

0 

ln 
.... 'AI': 

[-IJ ln( 1-s1
) al 

ln [-B ln(l-s
2

) J-6'] 

" 8= .8852 

I 

= jseta (t;l,l9) 

s. . 

= -4.03, Lawless = 

= -1.50, Lawless = 

* Unbiased MLE (Thoman, Bain, and Antle, 1969) 
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FIGURE 4 

EXAMPLE: LAWLESS (1975), p. 255 

n = 40 r = 28 -2.982, -2.849, ••• , .245, .296 

Pseudo random sample from extreme value distribution with u = 0, b = 1 

A A ,.. " u = .1563 b = .9104 a = .966 1 b = 1.061 

f\. 
fJ = eu = 1.169 

Lower 95% confidence on 

x.l x.05 

Lawless -2.71 -3.61 

Approximation -2.99 -3.62 
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THE LINDSTROM-MADDEN METHOD FOR SERIES SYSTEMS 
WITH REPEATED COMPONENTS 

Andrew p, Soms 

Department of Mathematical Sciences 
University of Wisconsin-Milwaukee, Milwaukee, WI 53201 
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ABSTRACT 

The Lindstrom-Madden method of computing lower confidence 

limits for series systems with unlike components is extended to 

series systems with repeated components utilizing the results of 

Harris and Soms (1983). An exact solution is given for no 

failures and key test results, together with an approximation for 

the general case. Numerical examples are also provided. 

1. INTRODUCTION AND SUMMARY 

A problem of substantial importance to practitioners in 

reliability is the statistical estimation of the reliability of a 

series system of stochastically independent components when some 

components are repeated, using experimental data collected on the 

individual components. In the situations discussed in this paper, 

the component data consist of a sequence of Bernoulli trials. 

Thus, for component .i, i = 1, 2, ... , k, the data is the pair 

(n1 ,Yi), where ni is the number of trials and Yi is the 
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number of observations for which the component functions. 

Y1,Y2 , ••• ,Yk are assumed to be mutually independent random 

variables. We assume that there are components of type 

1 ~ i ( k. Then the parameter of interest is 

h(p 1 ,p2 , ••• ,~) = h(p), the reliability of the system, where 

~ 

h(p) 

More specifically, it is desired to obtain a Buehler (1957) 

optimal lower 1 -a confidence limit on h(p). 

The case of = 1 has been treated in 

i, 

Sudakov ( 1974) 1 Winterbottom ( 1974), and Harris and Soms .( 1983). 

In Section 2 we summarize the general theory of Harris and 

Soms (1983) applicable here. In Section 3 the exact solutions to 

no failures and key test results are given. Lindstrom-Madden type 

approximations are given in Section 4. Section 5 contains 

numerical examples. 

2, BUEHLER'S METHOD FOR OPTIMAL CONFIDENCE LIMITS 

We now specialize the general results of Harris and Soms 

(1983) on optimal confidence limits for system reliability to a 

series system with independent and repeated components. As in 

Section 1, let 

h(p) 

0 < pi< 1, Xi= n1 - Y1 , xi= ni- Yi• 1 < i < k, 

S {';;:ix
1 

= 0,1, ... ,ni, 1 ( i < k} and let g(~) = (x1,x2,.:.,xk) 

be an ordering function, i.e., for real xi' 0 < xi ( ni, g(x) is 

non-decreasing in each component. It is often convenient to 

normalize g(x) by letting g(O) = 1 and g(~) = 0. With such a 

normalization, g(~) is often selected to be a point estimator of 
~ 

h(p). Also let R = {r
1
,r

2
, ••• ,r

8
, s > 2} be the range set of 

g(';;:), With no loss of generality we order R so that 
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r 1 > r 2 > ••• > rs and let Ai = {;Jg(;) = ri, x € s, 

i = 1,2, ••• ,s}. The sets Ai constitute a partition of S 

induced by g(x). We assume throughout that the data is 

distributed by 

= pv(l{ = ;) 
p 

( 2. 1) 

where qi = 1- pi, i = 1,2, ••• ,k. With no loss of generality, we 

assume n 1 < n
2 

< • • • < nk. 

From these definitions, it follows that 

j 

IN{ X € U Ai) 
p i=1 

( 2. 2) 

From (2.1) and (2.2), we have 

u1 u2 uk 
~ ~ 

pv{g(x) > r.} = I I ••• I f( i!p) 
p J i =0 i =0 i =0 

1 2 k 

(2.3) 

~ 

where i = ( i 1 , i 2 , ••• ,·ik) and u 2 = u 2 ( i 1 ) , ••• , uk = 

uk(i 1,i2 , ••• ,ik_ 1) are integers determined by rj. Equivalently, 

••• 

where t 2 = t 2 (i 1), ... ,tk = tk(i 1,i 2 , ••• ,ik_1 ), with 

t 1 = sup{ tl o ( t < n 1 and g(t,o,o, ••• ,O) > rj} and 

tt(i
1
,i

2
, ••• ,it_

1
) = sup{tJo ( t ( nt and 

g(i1,i2, ••• ,it-1't,o, ••• ,o) > rj}, t = 2,3, ••• ,k. 

(2.4) 

we now introduce the notion of Buehler optimal confidence 

limits. Let g(x) = rj. Then define 

(2.5) 

Equivalently, by (2.2), we can also write 
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(2.6) 

Then we have, from Harris and Soms (1983) 1 

Theorem 2.1. a ~ 

g(x) is a 1 - a lower confidence limit for 

h(p). If bg<x> is any other 1 - a lower confidence limit for 

h(p) with br ) b ) ... ) 
br ·' then b ~ < ag(;;) for all g(x) 

X E: s. 

Two 

or 

1 r2 

possible choices of 

k 
~ 

g(x) = n 
i=1 

k 

g(x) = n 
i=1 

J 

g(';;) are 

( (ni - xi)/ni) 
yi 

(2.7) 

(2.8) 

Both reduce to the generally used g(~) for series systems with 

independent components when y 1 y 2 = ••• = yk = 1, i.e., 

k 

g(x) = ~ (ni - xi)/ni • 
i=1 

Since (2.7) is the maximum likelihood estimator of h(p) we will 

use it here and from now on it will be understood that g(x) is 

given by (2.7). With this choice of g(';;) I we assume from now on 

that 0 < xi < ni' i = 1,2, •.• ,k, since a g(~) = 0 if some 

xi = ni' With this assumption, the ti in (2.4) are given by 

(2. 9) 

and 
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k 
y/ t : n - (n (n - xi) R- 1 i:1 i 

R--1 y k yi 1/yR-
(2.10) 

n (n - i ) s n n1 ) 1 

s:1 s s i:H1 

k yi 
R- : 2, ••• ,k, with n ni : 1 • 

i:k+1 

For the purpose of simplifying the calculation of a ~ 

g(x) 
in 

special cases it is necessary to state additional results from 

Harris and Soms (1983). 
~ 

Theorem 2.2. Let g(x) : rj and let 

O<a<1. 

Then 

. ~ . ~ 
inf f (x;a) : 0 1 sup f (x;a) : 1 

O<a<1 -O<a< 1 

* ~ 
and f (x;a) is strictly increasing in a. 

* ~ 
Theorem 2.3. f (x;a) : 01 has exactly one solution a 

01 

(2.11) 

in a 

3. EXACT SOLOTIONS FOR ZERO FAILORES AND KEY TES'r RESOLTS 

We first assume that x: (0 1 0, ••• 1 0) :0 and use Theorem 

2.3 to obtain 

Theorem 3.1. If x: O, then 

. ~ 
f (O;a) : 

where 

k n 
sup n Pii 

k y i i:1 np :a 
i:1 i 

and 

y ./n. 
: 01 J J 
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n ./Y. 
= a J J 

I. ( 3. 1) 

(3.2) 



Proof. 

k Y 
1 

n./Y. 
= en p ) J J 

i=1 i 

nj/y. 
~ a J 

k (n
1
Y.-n.Y.l/Y. np J Jl. J 

i=1 i 
ii"'j 

since 0 is equivalent to ni/Yi ) nj/Yj' which is 
k (niY.-n.Yil/Y. 

true, and therefore n p J J J ( 1. (3. 1) follows by 
i=1 i 
ii"'j 

noting that the choice 
k n n./Y. 

Pj = a 
1/Y. 

J I P:i. = 1, i " j I gives 

n i- J J Pi - a • Then, using Theorem 2.3, we obtain (3 •. 2) 1 
i=1 

which reduces to the known series result i.f 

We now turn to analogues of key test results (see, e.g., 

Winterbottom (1974) and Harris and Soms (1983)). We define a key 
test result if Y = max 1 1H<k x = (x1,o, ... ,o). 

(recall that min 
1<i<k 

Theorem 3.2. If x is a key test result and 

then 

where 

k 
{';;!IT I I (ni-

i=1 

* ~ 
f (x;a) 

k )n 
i=1 

k 

y i k 
- K ) } = {';;I I 

i i=1 

) I ( n1 -xi)} , 
i=1 

= I 1 I ( n - x1' x 1 + 1) ' 
Y1 

.a 

is the incomplete beta 'function. Let 

the solution in b of 

a = Ib(n 1 - x1,x1 + 1) • 
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Cl 

and 

(3.3) 

(3.4) 

denote 



y1 
Then a ~ = b Note that b is the usual 1 - a lower g(x) a 
confidence limit on 

'Proof. Without 

= ••• = 

~{g(X) > r,} 
p J 

loss 

x1 

I 
i =0 

l 

a 
p, given x1 failures in n1 trials. 

of generality we can assume that 

for otherwise we can write (2.4) as 

x 1-i 1-i2- ••• -ik_2 n n -i i 
( k-1) k-1 k-1 k-1 I i Pk-1 qk-1 1 p (nk-

k-1 k 

(3.5) 

where g(x) = rj' by the monotone likelihood ratio property of 

the beta distribution (Ix(a,b) has a monotone likelihood ratio 

in -a for fixed b, which implies that Ix(a,b) is a 

decreasing function of a). A similar argument applies to the 

other indexes. Thus, if (3.4) is true for n 1 = n 2 = ••• = nk' 

by (3.5) it follows for n 1 < n
2 

< .. • ( nk. 

So, assuming n = (n1 ,n 1 , ••• ,n1), we seek to maximize 

k n1 k k 

~r I I yij ~ ), (ni - xi) = I yi} ' (3.6) 
p i=1 j=1 i=1 i=1 

where Yij are independent Bernoulli random variables with 

parameter and If a, then 
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ranges from 

follows: 

and 

1/Y o 

a J 
1/Y 1 

to a Y j = min y i. 
1(i(k 

This is seen as 

1/Y 1 
a 

k 

nPi 
i=1 

k Yi 1/Y o k 1-yi/Y o 

= (TI Pi ) J fT Pi J 
i=1 i=1 . 

i;ij 

) a 
1/y 0 

J 

and the choices 
1/Y 1 

P1 =a , P2 = ••· = Pk = 1, and Pj = a 
1/y 0 

J 

pi= 1, i ;i j, attain these values. From the results of Pledger 

and Proschan (1971), for each 
k 

b = n Pi' 
i=1 

(3.6) is maximized by p 1 = b, Pi = 1, 2 < i < k. Further, the 

1/Y o 1/Y 1 
maximum over b, a J ( b < a I of the maxima for each b 

given by 
1/Y 1 

P1 = a Pi = 1 I 2 ( i ( k I 

likelihood ratio property of the binomial 

1/Y 1 
p1 = a I Pi = 1, 2 ( i ( k, satisfies 

completes the proof. 

by the monotone 

distribution, and 

k yi 
npi = a. This 
i=1 

is 

If Y1 = y
2 

= ••• = yk = 1, some guidelines for the 

verification of (3.3) are given in Harris and Soms (1983). In the 

present case (3.3) must be verified by trial and error by showing 
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k yi k yi y1 
that min n (ni - xi) = (n1 - x1) nni and that 

k i=1 

I xi=x 1 i=1 

max 
k 

I 
i=1 

Example 3.1. Let k = 3 1 n =,(5,5,5) 1 

3 
~ = (1,0 1 0). Then min r-f (ni-

3 i=1 
') X =1 

i;;,1 i 

3 

i=2 

~ 

y = (3,3,2), "'= .10 and 

yi 
xi) = 200000 and 

max n 140625 and X is a key test result 
3 
I X =2 

i=1 i, 

i=1 

and (3.3) is satisfied and hence 
3 

ag(~) = .4161 = .0720 , 

where .10 = I. 4161 (4,2). Further, it can also be verified that 
~ 

x = (2,0,0) is a key test result for which (3.3) is satisfied, 

but that for ~ = (3,0,0), (3.3) is violated. 

y1 
Note that Theorem 3.2 asserts that a ~ = b for 

g(x) "' 
0 < a < 1. It is thus possible that (3.3) is not true but the 

conclusion still holds for a of practical importance. This is 

taken up in Section 4. 

4. THE LINDSTROM-MADDEN METHOD FOR SERIES SYSTEMS WITH 

REPEATED COMPONENTS 

When Y = Y = 
1 2 

the Lindstrom-Madden method 

(henceforth abbreviated L-M) is an approximation 

ag(~) of the form 

b ~ 
g(x) 

= min 
1(i(k 
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b ~ 
g(x) 

to 

( 4. 1) 



where 

with 

k 

t 0i = ni(1 - r-f (ni - xi)/ni) , 
i=1 

(4.2) 

(4.3) 

i.e., t 0 i is the maximum of the recursive indexes ti defined 

by (2.4). For the usual levels of a, bg(~) = ba(n 1). Further, 

numerical evidence indicates (Harris and Soms (1983)) that for a 

levels of practical significance 

(4.4) 

(4.4) was incorrectly claimed to be true for 0 < a < 1 in 

Sudakov (1974) and this is discussed at length in Harris and Soms 

(1983). However, (4.4) is known to hold for special cases 

(Winterbottom (.1974) and Harris and Soms (1983)). 

Motivated by the above, we now give an L-M approximation 

b -g(x) 

where 

with 

to a -g(x) 
for arbitrary y i by 

b - = g(x) 
min 

1<i'k 

tQf = ni- (n (nj- X,) J -~-~ njJ) ~ 1 

k y ·; k y . 1/Y. 

j=1 J j=1 
j;ii 

(4.5) 

(4.6) 

(4.7) 

i.e., t 0i is the maximum of the recursive indexes ti defined 

by (2.4). However, in this case it is not clear which index i 

gives the minimum, except that the likely candidate is the one for 
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which y,, 1 < j < k, is a maximum. We might expect, by analogy, 
J 

that for a levels of practical interest 

(4.8) 

5, NUMERICAL EX~PLES 

~ ~ 

For k = 2 and selected n, y, x, a= .OS and .10, Table 

I gives b ~ 
g(x)' 

a ~ 

g(K) 
and the best upper bound, 

u ~ 

g(x) 

where 

and t 0 i are defined as in (4.6), 

TABLE I. 

L-M Approximations and 

a 

(10,10) ( 1 1 2) ( 0 1 1) .05 
(10,10) (1,2) ( 0 ,1) .10 
( 10,10) (1,2) ( 1, 1 ) .05 
(10,10) ( 1,2) ( 1, 1 ) • 10 
(10,10) (1,2) ( 2,1) ,05 
(10,10) ( 1, 2) (2,1) .10 
(10,15) (2,3) (0,1) • 0 5 
(10,15) (2,3) ( 0 ,1) • 10 
(10,15) (2,3) ( 1, 1 ) .05 
(10,15) (2,3) ( 1, 1 ) .10 
(10,15) (2,3) ( 2 ,1) .05 
(10,15) (2,3) (2,0) .10 
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a ~ 

g(K) 

b ~ 
g(x) 

.3670 

.4398 
.3045 
• 3715 
.2484 
.3088 
.3695 
.4425 
.2554 
.3167 
.1712 
.2203 

( 5. 1) 

(5.2) 

a ~ 

g(x) 
u ~ 

g(K) 

.3670 .3670 
.4398 .4398 
.3514 .3670 
.4227 .4398 
.3151 .3670 
.3825 .4398 
.3719 .3742 
.4446 .4467 
.3042 .3670 
.3705 .4398 
.1981 .2431 
.2513 .3029 



Not.e that for all the GJlHI'!S in Tilh le I, b q(;;l io a LrJ'Oil~ r. 

h()un.d Fr,r ,, 
q(;). Tho r::r:.)mp11U1 t inn a wqr.e none by il AhrJrt pr;wrRAN 

prQgr-am, a L i.sli.nq (Jf whlch Ciln b"l ohlaf.nerl fr:r.~m th" aul_hor ~ 

<i, CONCLrJIJING REMARKS 

In lhta pafler we have f!Ktenrlerl t.h~ L-M melhr)r-] tr} Berles 

Ayslems wilh n:~peaU~rl cornp0n~ntFJ. More wr.~rk i.r:~ ne~•lerl I.:JJ 

aacertai.n the region of valtrli.ly of (4.8). 
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HOWARD WAINER* 

Methods for displaying data badly have been devel
oping for many years, and a wide variety of interesting 
and inventive schemes have emerged. Presented here is 
a synthesis yielding the 12 most powerful techniques 
that seem to underlie many of the realizations found in 
practice. These 12 (the dirty dozen) arc identified and 
illustrated. 

K FY WORDS: Clraphics; Data display; Data density; 
Data-ink ratio. 

I. INTilODUC'J'ION 

The display of data is a topic of suhstmltial contcm: 
por:11 v interest anJ one tltut has occupied the thoughts 
of many scholars for almost 200 years. During this time 
there have been a number of attempts to codify stan
dards of good p<acticc (e.g., ASME Standards 1915; 
Cox I ~7H; EhrcnhcJ g 1977) us wdl us 11 number of 
books th11t have illustrated them (i.e., Bertin 
I '17.1, 1977, 19RI; Schmid 1954; Schmid and Schmid 
1979: Tufte 19HJ). The last decade ·or so has seen a 
tremendous increase in the development of new disp)ay 
techniques and tools that have been reviewed recently 
(MacJonald-Ross 1977; Fienberg 1979; Cox 1978; 
Wainer and Thissen 19HI). We wish to concentrate on 
methods of data display that leave the viewers as unin
formed as they were before seeing the display or, worse, 
those that induce confusion. Although such techniques 
arc t>roadly practiced, to my knowledge they have not 
as yet been gathered into a single source or carefully 

•ttownrd Wainer is Senior Research Scientist, Educational Testing · 
Service. l'rinccton, NJ OH541. This is the text of an in\'itcd address to 

the American S!alistkal Association. It was supported in pan by the 

rrngram Stati<;tks Jh·scard1 Project of the EtJucationai1Csting Ser
vice. TIH' author would like to express his grntitudt~ to the numerous 
f1 iends ami cotll'agucs who read or heard this article and offered 

·\'nlnahlt• ~lii'!!CStions for its improvement. Especinlly helpful were 

David Anthl•ws, Paul Jlnll:lnd, Bruce Kaplan, James 0. Ramsay, 

Edwa.rd Tufjc, the participants in the Stanford Workshop on Ad

vancnl Grapl1ical Prc-;rntnlinn. lwo anouymous rdcrees, the long
sufkring assndalc cdilor, and Gary Koch. 

How to Display Data Badly 

categorized. This article is the beginning of such a 
compendium. 

The aim of good data graphics is to display data accu
rately and clearly. Let us use this definition as a starting 
point for categorizing methods of bad data display. The 
definition has three parts. These are (a) showing data, 
(b) showing data accurately, and (c) showing data 
clearly. Thus, if we wish to <.lis play <.lata ba<.lly, we have 
three avenues to follow. Let us examine them in se
quence, parse them into some of their component parts, 
and see if we can identify means for measuring the 
success of each strategy. 

2. SHOWING DATA 

Obviously, if the aim of a good display is lo convey 
information, the less information carried in the display, 

Change In Sdonce Achlevemoot of 8-, 
13-, .nd 17-v ....... okU, by Type of 
EX..-du: 1a6&-11n 

IIUIII Bonlu~.rol~e<enco 
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Figure 1. An example of a low density graph (from SIJ {ddi ~ .3[). 
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Figure 2. A low density graph (from Friedman and Rafsky 1981 
{ddi = .5]). 

the worse it is. Tufte (1983) has devised a scheme for 
measuring the amount of information in displays, called 
the data density index (dui), which is "the number of 
numbers plotted per square inch." This easily calcu
lated index is often surprisingly informative. In popular 
and technical media we have found a range from .1 to 
362. This provides us with the first rule of bad data 
display. 

Rule 1-S/ww as Few Data as Possible (Minimize the 
Data Density) 

What does a data graphic with a ddi of .3 look like? 
Shown in Figure I is a graphic from the book Social 
Indicators III (S/3), originally done in four colors (orig
inal size 7" by 9") that contains 18 numbers (18/63 = .3). 
The median data graph in SI3 has a data density of .6 
numbers/in'; this one is not an unusual choice. Shown in 
Figure 2 is a plot from the article by Friedman and 
Rafsky (1981) with a ddi of .5 (it shows 4 numbers in 8 

Figure 3. A /ow density graph(@ 1978, The Washington Post) with 
chart-junk to fill In t/Je space (ddt = .2). 

Pubhf and Pnvalr E!eml'nlary Scbools 
Selec ed Years 1929-1970 

' rhoo ~ 

CJ l'ubllc 

111!111'1 l~a I~ 
lhouHn1~~~ S ··--···- - - ·-

JOO --

,----

100 

,----

100 -~ 

- ,___ .......... D 
1929-JO m9·40 1~4~·SO 19SHO 1969-10 

School Vw 

Figure 4. Hiding the data In the scale (from Sl3). 

in2). This is unusual for JASA, where the median data 
graph has a ddi of 27. In defense of the producers of this 
plot, the point of the graph is ta show that a method of 
analysis suggested by a critic of their paper was not 
fruitful. I suspect that prose would have worked pretty 
well also. · 

Although arguments can be made that high data den
sity does not imply that a graphic will be good, nor one 
with low density bad, it does reflect on the efficiency of 
the transmission of information. Obviously, if we hold 
clarity and accuracy constant, more information is het-

I ... 
j 

15 

14 

13 

12 

II 

10 

9 

THE NUMBER OF PRIVATE ELEMENTARY SCHOOLS 
FROM 1930-1970 

1930 
1940 
1950 
1960 
1970 

9.175 
to.ooo 
10.375 
13.574 
14.372 

oL---~19~ao~--T.I9t4o~--~~9~&~o--~19~&~o--~1~97~o----
v .. , 

Figure 5. Expanding the scale and showing the data in Figure 4 
(from 513). · 
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Figure 6. Ignoring the visual metaphor(© 1978, The New York 
Times). 

ter than less. One of the great assets of graphical tech
niques is that they can convey large amounts of informa
tion in a small space. 

We note that when a graph contains little or no infor
mation the plot ean look quite empty (Figure 2) and 
thus rHise suspicions in the viewyr that there is no~hing 
to he communicated. A way to avoid these suspicions is 
to fill up the plot with nondnta figurations-what Tufte 
has termed "chartjunk." Figure 3 shows a plot of the 
labor productivity of Japan relative to that of the 
United States. It contains one number for each of three 
years. Ohvio11sh·, a graph of such sparse Information 
would have a In I or blank space' so filling the space 
hides the paucity of information from the reader. 

A convenient measure of the extent to which this 
practice is in use is Tufte's "data-ink ratio." This mea
sure is the ratio of the amount of ink used In graphing 
the data to the total amount of ink in the graph. The 
closer to zero this ratio gets, the worse the graph. The 
notion of the data-ink ratio brings us to the second 
principle of bad data display. 

Rule 2-Hide What Data You Do Show 
(Minimize the Data-Ink Ratio) 

One can hide data in a variety of ways. One method 
that occurs with some regularity is hiding the data in the 
grid. The grid is useful for plotting the points, but only 
rarely afterwards. Thus to display data badly, use a fine 
grid and plot the points dimly (see Tufte 1983, 
pp. 94-95 for one repeated version of this). 

A second way to hide the data is in the scale. This 
corresponds to blowing up the scale (i.e., looking at the 
data from far away) so that any variation in the data is 
obscured hv the magnitude of the scale. One can justify 
this practice by appealing to "honesty requires that we 
start the scale at zero," or other sorts of sophistry. 

In Figure 4 is a plot that (from S13) effectively hides 
the growth of private schools in the scale. A redrawing 
of the number of private schools on a different scale . 
conveys the growth that took place during the mid
IQ50's (Figure 5). The relationship petween this rise and 
Brown vs. Topeka School Board becomes an immediate 
question. 

To conclude this section, we have seen that we can 
display data badly either by not including them (Rule 1) 

Onrni!liont of U.S. dotlatt) 

3,000 

U.S. exports 
to China 

fm mtlhons of U S doll3r~) 

~BOO 

U.S. imports 
from Taiwan 

Figure 7. Reversing the metaphor in mid-graph while changrng 
scales on both axes(© June 14, 1981, The New York Times). 

or by hiding them (Rule 2). We can measure the extent 
to which we are successful in excluding the data through 
the data density; we can sometimes convince viewers 
that we have included the data through the incorpo
ration of chart junk. Hiding the data can be done either 
by using an overabundance of chartjunk or by cleverly 
choosing the scale so that the data disappear. A mea
sure of the success we have achieved in hiding the data 
is through the data-ink ratio. 

3. SHOWING DATA ACCURATicL Y 

The essence of a graphic display is that a set of num
bers having both magnitudes and an order arc repre
sented by an appropriate visual metaphor-the mag· 
nitude and order of the metaphorical representation 
match the numbers. We can display data badly by ignor
ing or distorting this concept. 

Rule 3-/gnore the Visual Metaphor Altogether 

If the data are ordered and if the visual metaphor has 
a natural order, a bad display will surely emerge if you 
shuffle the relationship. ln Figure 6 note that the bar 
labeled 14.1 is longer than the bar labeled IH. Another 
method is to change the meaning of the metaphm in the 
middle of the plot. In Figure 7 the dark shading repre
sents imports on one side and exports on the other. This 
is but one of the problems of this graph; more sc rious 
still is the change of scale. There is also a difference in 
the time scale, but that is minor. A common theme in 
Playfair's (1786) work was the difference between im
ports and exports. In Figure 8, a 21JU-year-old graph 
tells the story clearly. Two such plots would have illus
trated the story surrounding this graph quite clearly. 

Rule 4-0nly Order Matters 

One frequent trick is to use length as the visual meta
phor when area is what is perceived. This was used quite 
effectively by The Washington Post in Figure 9. Note 
that this graph also has a low data density (.1), and its 
data-ink ratio is close to zero. We can also calculate 
Tufte's (1983) measure of perceptual distortion (l'D) 
for this graph. The l'D in this instance is the perceived 
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Figure 8. A plot on the same topic done welf two centuries earlier (from PIB.yfair 1786). 

Figure 9. An exsmp!P of how to goose tip the effect by squaring 
the eyeball(© 1~78, The Washington Post). 

change in the value of the dollar from Eisenhower to 
Carter divided by the actual change. I read and measure 
thus: 

Actual 
1.00- .44 

.44 1.27 

Measured 
22.00-2.06 

2.06 

PD = 9.68/1.27 = 7.62 

9.68 

This distortion of over 700% is substantial but by "" 
means a record. 

A less distorted view of these data is providcu in 
Figure 10. In addition, the spacing suggested by the 

0: 

'" X 

1.0 

0.8 

~o. ~ 

"' z 

"' ~0.1,1 
Q 
0: 

" .. 
0.2 

EISENHOWER 
" -KENNEDY 

JOHNSON 

0,0 -------.l.-
1958 1963 1968 

YEAR 
1973 1978 

Figure 10. The data in Figure 9 as an unadorned line chart (from 
Wainer, 1980). · 
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presidential faces is made explicit on the time scale. 

Rule 5-Graph Data Out of Context 

Often we can modify the perception of the graph 
(particularly for time series data) by choosing carefully 
the interval displayed. A precipitous drop can disappear 
if we choose a starting date just after the drop. Simi
larly. we can turn slight meanders into sharp changes by 
focusing on a single meander and expanding the scale. 
Often the choice of scale is arbitrary but can have pro
found effects on the pe1ception of the display. Figure II 
shows a famous example in which President Reagan 
gives an out-of-context view of the effects of his tax cut. 
The 'limes' alternative provides the context for a deeper 
understanding. Simultaneously omitting the context as 
well as any quantitative scale is the key to the practice 
of Ordinal Graphics (see also Rule 4). Automatic rules 
do not ·always work, and wisdom is always required. 

In Section 3 we discussed three rules for the accurate 
display of data. One can compromise accuracy by ignor
ing visual metaphors (Rule 3), by only paying attention 
to the order of the numbers and not their magnitude 
(Rule 4), or by showing data out of context (Rule 5). 
We advocated the use of Tufte's measure of perceptual 
distortion as a way of measuring the extent to which the 
accuracy of the data has been compromised by the dis
play. One can think of modifications that would allow it 
to be applied in other situations .. but we leave sUch 
expansion to other accounts. 

4. SHOWING llATA CLI~ARLY 

In this section we discuss methods for badly dis
playing data that do not seem as serious as those de-

THE NEW YORI{ TIMES, SUNDAY, AUGUST 2, 198/ 

The Neutral VIew:.-. -- _.,.,- · · 

$2500 

2000 

1000 

Payments under the 
$2500 Ways and Means 

plan 

2000 
P~dent'a propoul 

.. • • And the President's 

Tax .. poldby ·family-
........ !nco .... 
olll20,000. 

$ 

YOUR TAXES 
II.VERA<i( F.\Mil'f INCOME· $20.000 

Figure 11. The White House showing neither scale nor context 
(© 1981, The New York limes, reprinted with permission). 

scribed previously; that is, the data arc displayed, and 
they might even be accurate in their portrayal. Yet sub
tle (and not so subtle) techniques can be used to c!Tec
tively obscure the most meaningful or interesting as
pects of the data.lt is more difficult to provide objective 
measures of presentational clarity, but we rely on the 
reader to judge from the examples presented. 

Rule 6--Change Scales in Mid-Axis 

This is a powerful technique that can make large dif
ferences look small and make exponential rhtlll)!l''> l••oli 
linear. 

In Figure 12 is a graph that supports the associated 
story about the skyrocketing circulation of Tllr' New 
York Post compared to the plummeting Daily News 
circulation. The reason given is that New Yorkers 
"trust" the Post. It takes a careful look to note the 
700,000 jump that the scale makes between the two 
lines. 

In Figure 13 is a plot of physicians' incomes over 
time. It appears to be linear, with a slight tapering off 
in recent years. A careful look at the scale shows that it 
starts out plotting every eight years and ends up plotting 
yearly. A more regular scale (in Figure 14) tells quite a 
different story. 

The soaraway Post 
the daily paper 

New Yorkers trust 
4~~1~,91~l,~OOG=---+----+----+-'--~ 

t.9oo.ooo ... ,, ~29,ooo NEWS 
1,800,000-l---~ .. --.~---4---11---11---1 

. ~ 
I, 700,000..J..--~-_;,"""•,1----I----,J---~ 

~1.636,00G 

!"> ... t.soo.ooo+---.f---.j-:'*<...,..-.+=:-::-J
0
---! 

'· 1,555,00 
~"> ........ 

1,5oo,ooo+---+--+--~...1-__:~l"'"ls:-.,--l 
1,491,000 

Figure 12. Changing scale in mid-axis to make farge differences 
small(© 1981, New York Post). 
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Figure 13. Changing scale in mid-axis to make exponential growth 

Hnear (iL;' The Washington Post). 

Rufr 7--FIIIJ•hasize the Ihvial (lgnvre the Important) 

Sometimes the d:11a that are to be displayed have one 

impnrtanl <~<:rwct a1.d others that arc trivial. The graph 

can he made worse by emphasizing thr trivial part. In 

Figure 15 we have a page from S/3 that wmpares the 

income levels of men and women by educatimwllevels. 

11 reveals the not surprising rc'sult that better educated 

individuals are paid better than more poorly educated 

ones and that chang~..:s across time expressed in constant 

dollars are reasonably constant. The comparison of 

greatest interest and current concern, comparing sal-

aries hetween sexes within education level. must be 

made clumsily by vertically transposing from one graph 

to another. ll seems clear that Rule 7 must have been 

opcr ating here, for it would have been easy to place the 

graphs side by side and al!r.~w the comparison of interest 

to be made more directly. Looking at the problem from 

a strictly data-analytic point of view, we note that there 

are two large main effects (education and sex) and a 

small time effect. This would have implied a plot that 

" 
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FigurA 1.4 0Afa from Figure 13 redone with linear scale (from 

Wainer 1980). 
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Figure 15. Emphasizing the trivial: Hiding the main effect of sex 

differences in income through the vertical placement of plots (fwm 

513). 

showed the large effects clearly and placed the smallish 

time trend into the background (Figure 16). 
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Figure 16. Figure 15 redone with the large main effects empha

sized and the small one (time trends) suppressed. 
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U.S. IMPORTS OF RED MEATS' 

, ... 1969 1972 1975 1978 

OllG.PUI">J·IIIII 

Figure 17. Jiggling the baseline makes comparisons more difficult 
(from Handhook of Agricultural Charts). 

Rule 8-Jiggle the Baseline 

~faking cnmparisons is ahvays aided when the quan· 

tities heing compareLl st<nt from a common base. Thus 

we can always make the graph worse by starting from 

different bases. Such schemes as the hanging or sus

pended rootogram and the residual plot are meant to 

facilitate comparisons. In Figure 17 is a plot of U.S. 

imports of red meat' taken from the Handbook of Agri

cultural Clums published by the U.S. Department of 

i\grin1lturc. Shading beneath each line is a convention 

that indicates summation, telling us that the amount of 

each kind of meat is added lo the amounts below it. 

Because of the dominance of and the fluctuations in 

importation of beef and veal, it is hard to see what the 

changes are in the other kinds of meat-Is the importa

tion of pork increasing? Decrea~;ing? Staying constant? 

The only purpose for stacking is to indicate graphically 

the total summation. This is easily done through the 

addition of another line for TOTAL. Note that a 

TOTAl. will always he clear and will never intersect the 

other lines on the plot. A. version of these data is shown 
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Figure 18. An alternative version of Figure 17 with a straight line 
u.'>ed RS the basis of comparison. 

Ufo Elllpeettmcy at 8 lrth, by Sell, Selected 
Countrien, IY!mtAecnntAvnllablfl Year: 
1970-1876 ' . 

1111111 "'" 
~ f•m•T& 

Figure 19. Austria First! Obscuring the data structure by alpfta

betizing the plot (from 513). 

in Figure 18 with the separate amounts of each meat. as 

well as a summation line, shown clearly. Note how 

easily one can see the structure of import of each kind 

of meat now that the standard, of comparison is a 

straight line (the time axis) and no longer the import 

amount of those meats with greater volume. 

Rule 9-Austria First! 

Ordering graphs and tables alphabetically can ob

scure structure in the data that would have been obvious 

had the display been ordered :1y some aspect of the 

data. One can defend oneself against criticisms by 

pointing out that alphabetizing "aids in finding entries 

of interest." Of course, with lists of modest length such 

aids are unnecessary; with longer lists the indexing 

schemes common in 19th century statistical atlases pro

vide easy lookup capability. 
Figure 19 is another graph from S/3 showing life ex

pectancies, divided by sex, in 10 industrialized nations. 

The order of presentation is alphabetical (with the 

USSR positioner! as Russia). The message we get is that 

there is little variation and that women live longer tllan 

men. Redone as a stem-and-leaf diagram (Figure 20 is 

simply a reordering of the data with spacing propor

tional to the numerical differences), the magnitude of 

the sex differetlce leaps out at us .. Wealso not~ that the 

USSR is an outlier for men. 

Rule 10-Labe/ (a) Illegibly, (b) 1ncomplete/y, 
(c) Incorrectly, and (dj Ambiguously 

1bere are many instances of labels that either do not 
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LifE [XPECTI\NCY AT BIRTH, BY SEX} 

MosT RECENT AVAILABLE YEAR 

SWEDEN 

FRMICf., us, JAPAN, CANADA 

FINLAND, AUSTRIA, UK 
USSR, GERf·1ANY 

78 
77 
76 
75 
74 
73 
72 SwEDEN 
71 JAPAN 

71 
69 CANADA, UK, US, FRANCE 
68 GeRMANY, AusTRIA 
67 fINLAND 

66 
65 
64 
6o USSR 
52 

Figure 20. O,dering and spacfng ttw data from Figure 19 as a 
stem-and-leaf diagram provides insights previously difficult to 
oxtract (from Sl3). 

tell the \vhole story, tell the wrong story. tell two or 
111nre stnric~. or are so small that one cannot figure out 
whal Sl(lfY they arc telling. One of my favorite examples 
of small labels is from 71le New York 7/mes (August 

Commission Payments 
To Travel Agents 
ln~ofdoo'!ttl 

:~ 
~ 

EASTERN 

(:mnplu wtll of discount fares and airlines' ltl<'phor~e rd~i·ay~~~r'e"~;;i~'i·~gw• 
tra\•el agtnls' overtlnd, nffstUing r-evenue gains !rom higher volume. 

Figure 21. Mixing a changed metaphor with a tiny label reverses 
the meaning of the data (·© 1978, The New York Times). 
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R , 0 
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Figure 22. Figure 21 redrawn with 1978 data placed on a 
comparable basis (from Wainer·1980). 

1978), in which the article complains that fare cuts Jmver 
commission payments to travel agents. The graph (Fig
ure 21) supports this view until one notices the tiny label 
indicating that the small bar showing the decline is for 
just the first half of 1978. This omits such heavy travel 
periods as Labor Day, Thanksgiving, Christmas, and so 
on, so that merely doubling the first-half data is proba
bly not enough. Nevertheless, when this bar is doubled 
(Figure 22), we see that the agents are doing very well 
indeed compared to earlier years. 

Rule 11-More ls Murkier: (a} More Decimal 
Places and (b) More Dimensions 

We often see tables in which the number of decimal 
places presented is far beyond the number that can be 
perceiv,d by a reader. They are also commonly 
presented to show more accuracy than is justified. A 
display can be made clearer by presenting less. In Table 
1 is a section of a table from Dhariyal and Dudewicz's 
(1981) JASA paper. The table entries are presented to 
five decimal places! In Table 2 is a heavily rounded 
version that shows what the authors intended clcarh·. It 
also shows that the various columns might have n ·.ub-· 
stantial redundancy in them (the maximum L'-"1'''\:lL'd 
gain with b/c = 10 is about !!lOth that of b/c = IIIII :rllll 
l/lOOth that of b!c = 1,000). If they do, the entire t<tble 
could have been reduced substantially. 

Just as increasing the number of decimal places can 
make a table harder to understand, so can increasing 
the number of dimensions make a graph rhnrc con-
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N r' 

3 2 
4 2 
5 2 
6 3 
7 3 
8 3 
9 3 

10 4 

Table 1. Optimal Selection From a Finite 
Sequence With Sampling Cost 

b!c -=- to.o 100.0 1 000.0 
(G.(r')- a)lc r' (G.(r') - a)lc r' (G.(r') - a)lc 

.20000 2 2.22500 2 22.47499 

.26333 2 2.88833 2 29.13832 

.32333 3 3.54167 3 35.79166 

.38267 3 4.23767 3 42.78764 

.44600 3 4.90100 3 49.45097 

.50743 4 5.57650 4 56.33005 

.56743 4 6.26025 4 63.20129 

.62948 4 6.92358 4 69.86462 

NOTf·g(Xs 1 r -I) bR{Xs I r-1) fa, lfS-os, andg(Xs 1 r -I)"'O,otharwise. 
Source. Dhariyal and Oudewicz {1981). 

fusing. We have already seen how extra dimensions can 
cause ambiguity (Is it length or area or volume?). In 
ndtlilion, human perception of areas is inconsistent. 
Just what is confusing and what is not is sometimes only 
a conjecture. yet a hint that a particular configuration 
will be confusing is obtained if the display confused the 
graphcr. Shown in Figure 23 is a plot of per share earn
ings and dividends over a six-year period. We note (with 
some amusement) that 1975 is the side of a bar-the 
third dimension of this bar (rectangular parallelo
piped?) chart has confused the artist! I suspect that 1975 
is really what is labeled 1976, and the unlabeled bar at 
the end is probably 1977. A simple line chart with this 
interprclation is shown in Figure 24. 

In Section 4 we illustrate six more rules for displaying 
data badly. These rules fall broadly under the heading 
of how to obscure the data. The teehni4ues mentioned 
were to change the scale in mid-axis, emphasize the 
trivial, jiggle the baseline, order the chart by a charac
teristic unrelated to the data, label poorly, and include 
more dimensions or decimal places than are justified or 
needed. These methods will work separately or in com
bination with others to produce graphs and tables of 
little use. Their common effect will usually be to leave 
the reader uninformed about the points of interest in 
the data, although sometimes they will misinform us; 
the physicians' income plot in Figure 13 is a prime ex
ample of misinformation. 

Finally, the availability of color usually means that 
there are additional parameters that can be misused. 
The U.S. Census' two-variable color map is a wonderful 
example of how using color in a graph can seduce us 

Table 2. Optimal Selection From a Finite Sequence 
With Sampling Cost (revised) 

blc ~ 10 blc ~ 100 b!c ~ 1,000 
---- ----·-· 

N r' G r' G r' G 

3 2 .2 2 2.2 2 22 
4 2 .3 2 2.9 2 29 
5 2 .3 3 35 :l 36 
6 3 .4 3 4.2 :l 43 
7 3 .4 3 4.9 :J 49 
8 3 .5 4 5.6 4 56 
9 3 .6 4 6.3 4 63 

tO 4 .6 4 6.9 4 70 

into thinking that we arc communicaling more than we 
are (see Fienberg 1979; Wainer and Francolini I'IXO; 
Wainer 1981). This leads us to the last rule. 

Rule 12-lf lt Has Been Done Well in the Pas!, 'Thi11k of 
Another Way to Do It 

The two-variable color map was done rather well by 
Mayr (1874), 100 years before the U.S. Census vetsion. 
He used bars of varying width and frequency to accom
plish gracefully what the U.S. Census used varying 
saturations to do clumsily. 

A particularly enlightening experience is to look 
carefully through the six books of graphs that William 
Playfair published during the period 17H6-IR22. One 
discovers clear, accurate, and data-laden graphs con
taining many ideas that are useful and too rarely applied 
today. In the course of preparing this article. I spent 
many hours looking at a variety of attempts to display 

Eanilngs Per Share And 
Dividends 

(Dollars) 

..,..--....... '""' ""' " 
""'-.. ""'- """ '-., 1.82 "'-. 

L71 ~ 1.72 1.70 
"""- """- 1.63 -

1.53 
. 

. ~ J./~1< ·-' 

:,:: . :,: 
::: ::::::<\ (: 
'• 

1 ;,.~ .,; 1~ ;5 ;, " 
D Earningo 

Figure 23. An extra dimension confuses even the grapher 
NU!f._ g(Xs 1 , • 11 . tJfl(X's t , ·· IJ + a, if s = s, and gtXs +, ·· 1) = o, othorv.·isa. (© 1979, The Washington Post). 
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FiglJ!e 24 Data from Figure 23 redrawn simply (from Wainer 

1980). 

data. Some of tlw horrors that I have presented were 

the fruits nf that search. In addition, jewels sometimes 

emerged. I saved tlw best fnr last. and will conclude 

with nne of thnsc jewels-my nominee for the title of 

"World's Champion Ora ph." It was produced by 

Minard in IH61 and portrays the devastating losses suf

fered by the French army during the course of Napo

leon\ iJI.fated Russian campaign of 1812. This graph 

(originally in color) appears in Figure 25 and is re

produced from Tufte's book (1983, p. 40). His narrative 

follows. 

Bq~illllillj! at the ldt 1111 the l'oh!,h Hll',',\i\11 hn1dt'! o• .u lho 

Nieman Rivcr,thc thil'k hand shows the sizl' of the <nlnr l·L~.ooo 

men) as it invaded Russin in June ·IR12. The width ot' thl' hand 

indicates the size of the army at each place on the nwp. Ill Sep

tember, the army reached Moscow, which was by then s:~ekl'd and 

deserted, with 100,000 men, The path of Napoleon's retreat lrnlll 

Moscow is depicted by the darker, lower band, which is linkL·d to 

a temperature scale and dates at the bottom of the ch<~rt. It was a 

bitterly cold winter, and many froze on the march out of Russia. 

As the graphic shows, the crossing of the Bcrezina Hin-1 was a 

disaster, and the army finally struggled back to Poland with only 

10,000 men remaining. Also shown are the movements of auxiliary 

troops, as they sought to protect the rear and nank of the ;ld

vancing army. Minard's graphic tells a rich, coherent story with its 

multivariate data, far more enlightening than just a single number 

bouncing along over time. Sh variables arc plotted: the si1e nf the 

army, its location on a two-dimensional surface, direc.:tiou of the 

army's movement, and temperature on various Uates duri11g the 

retreat from Moscow. 

It may well be the best statistical graphic ever drawn. 

5. SUMMING Ul' 

Although the tone of this presentation tended to be 

light and pointed in the wrong direction, the aim is 

serious. There are many paths that one can follow that 

will cause deteriorating quality of our data displays; the 

12 rules that we described were only the beginning. 

Nevertheless, they point clearly toward an outluok that 

provides many hints for good display. The measures uf 

display described are interlocking. The data density 

cannot be high if the graph is cluttered with chart junk; 

the data-ink ratio grows with the amount of data dis

played; perceptual distortion manifests itself most frc-

CARTE f1CURAT1V[ de• pertea suceusive,s tn hommn de l'Ar,mte fran~aise daM Ia. campagne de Russie 1812-1813. 

DreHt~ p.,- M.Mina.rd, lmjuuur Ct"nir~l du PonU et Chauueu tn rttrOJitt. 

X1'''" = IJ,,,·ml•,·r '!'"'" = N'''<"tttl•,·r 

F1gure 25. Minard's (1861) graph of the French Army's ill-fated foray into Russia-A candidate for the title of "World's Champion Gr<>f)!) ,-" 

Tufte 1983 for a superb reproduction of this in its original color-p. 176). 
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quently when addithlnal Uimcnsions or worthll'ss mcta

plwrs are included. Thus, the rules for good display are 

quite simple. Examine the data carefully enough to 

know what they have to say. and then let them say it 

with a minimum of adornment. Do this while following 

reasonable regularity practices in the depiction of scale, 

and label clenrly and fully. Last, and perhaps most im

portant, spend some time looking at the work of the 

masters <H the craft. An hour spent with Playfair or 

Minard will not only benefit your graphical expertise 

but will also he enjoyable. Tukey (1977) offers 236 

graphs and little chartjunk. The work of Francis Walker 

(I H9,l) concerning statistical maps is clear and concise, 

nnd it is truly a mystery that their current counterparts 

dn not make better use of the schema developed a cen

tury and more ago. 
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ABSTRACT, Statistical. inferences on the durability .of a product may often 
have to be based on an analysis of failure data gener.ated under an overstress or 
accelerated life test (ALT). The effectiveness of such inferences rests heavily 
on the validity of model assumptions concerning the life distribution and the 
effect of stress accelera.tion. In this article, the. principal methodological 
approaches to ALT analysis are reviewed in lightof plausibility of the model, 
flexibility of empirical -fit' and usefulness in pra,ctical application. These 
include parametric log-linear models', semi-parametric formulations based 'on 
proportional.· hazards or. time transformation, and a reciprocal-linear regression 
model in the setting of a Brownian motion process· for damage growth. Some 
theoretical considerations and pract.i<;al issues of designing an ALT experiment are 
also discussed. · , · · 

I. INTRODUCTION. A problem frequently encountered in engineering research 
and development lS to ascertain the durability or .. service life of a new product or 
to compare alternative .designs of the same product.· Usually, long )ife of the 
product and relatively much shorter time available ·for.tes~ing purposes impair our 
ability to collect failure data by conducting tests under its normal conditions of 
use. With accelerated 1 ife test (ALT)" prototypes of the product are subjected to 
stress conditions that are more severe than 'encountered in normal use so that more 
failures are apt totake place in a limi.ted.time •. ,Data of failure times under 
such over-s.tress conditions are then analyzed in the framework of a statiStical 
model,and inferences are drawn in, regard. to ,life. length .or reliability of the 
product under its normal use condition. 

Another means of reducing the .. test time, called .censored sampling, consists 
of testing a larger number of units in order to observe a fewer number of 
failures--those that occur early. Censored life tests under normal .use conditions 
are useful as long as failures are likely to occur within the permitted test time. 
When that. is not the case, ALT is the only. means of getting some fa,ilure data. In 
practice, ALT and censoring are often coupled. in the same experiment toward the 
common goal of cost and time. savings. 

With technological advances leading to enhancement of product life, AU is 
. assuming. an ever increasing role in engineering experimentation. The last two 
decades have seen a large growth of literature in statistical methodology for ALT 

. analysis • .The diversity of practical application has. increased at the same time. 
A few examples are: self-lubricated bearings for hi,.gh vacuum application (t1eeks 
1980) tested under high speed stresses, stress-.ruptureo,f,Kevlar-epoxy composite 
(Glaser. 1984) under tensile and tempera.ture stresses, ,twisted nematic 
liquid-crystal 'diSplay (Kitagawa et al 1984} under acce,,erated vo1tage stresses, 
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insulation resistance of high K multilayer ceramic capacitors (Minford 1982) 
under voltage and temperature stresses, and failure of power cable insulation 
(Lyle and Kirkland 1981) under temperature, moisture and voltage stresses. The 
conduct and analysis of such experiments often draw a great deal from theoretical 
models of chemical reaction, metal fatigue, creep rupture, wear, etc. as is 
relevant to the particular physical process of failure, and are aided by empirical 
evidence and statistical tools. The subject matter is heavily interdisciplinary, 
and accordingly, the relevant literature is scattered in journals of several 
disciplines. Our discussion will be limited to the major statistical models and 
methodology of ALT analysis. 

To introduce the basic statistical issue of ALT we let the random variable 
y represent the life-length or time-to-failure of a material specimen, component 
or a system. The probability distribution of y depends on some identifiable 
environmental conditions or stresses x which are manipulated in the experiment. 

" 
Denote by ~0 the normal use-condition stress level. In an ALT experiment, a 

number of larger than normal stress settings ~i' i = 1, ••• ,k are chosen. A 

sample of ni units is subjected to the constant setting x. and either all 
-1 

their failure times are observed (full sample) or only some early failures are 
recorded (censored sample), i = l, ••• ,k; Thus, samples are generated from the 
accelerated life distributions F(yl~i)' i = 1, ••• ,k where F(yl~l denotes the 

cdf of y under the stress level x. Based on such data, one wishes to make 

inferences on some relevant characteristics of F(yl~0 ) such as its mean, 

selected percentiles, and the reliability r(tl~o) for a mission time t where 

F = 1-F. Another variant, called step-stress ALT, allows the stress setting for 
each unit to be changed at specified intervals until failure occurs. For now we 
confine our attention to constant stress ALT; step-stress ALT experiments will be 
discussed in Section 5. 

A related area of research is survival analysis in biostatistics which also 
deals with time (survival time, time to cure ·Or time to onset of a disease) as the 
dependent variable and its dependence on such covariates as age, physiological and 
environmental conditions of the patient. Therefore, between ALT and survival 
analysis, the basic concepts, models and methods have much in common. However, 
considerable differences exist in regard to the conduct of the experiment, type of 
data, role of the covariates and the target of inference. For instance, survival 
analysis typically deals with a much larger set of covariates than is involved in 
an ALT, lesser control on the settings of the covariates, and lesser control on 
the process data collection which leads to more complex patterns of censoring. 
Also, its emphasis is toward studying the effects of some covariates after 
adjusting for the effects of the others -- not so much to predict F(y lx ) • In 

-0 

fact, the concept of a normal setting for the covariates is not meaningful in 
survival analysis. Both of these areas can be brought under the umbrella name of 
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regression analysis. In essence, ALT calls for regression analysis under 
non-standard statistical models as well as data types, and its major goal is to 
make predictions beyond the range of the experimental setting. In light of the 
last point, it is obvious that theoretical modeling or understanding of the 
failure process plays a far more important role than empirical model fitting. 

Inferences from ALT data require two basic ingredients of model 
formulation: the underlying life distribution F(ylxl for a given stress x, 

and the functional relationship among these distributions with varying x. The 

latter is sometimes called the acceleration function. The object of this paper is 
to give a brief survey of the various approaches to model formulation and the 
associated methods of statistical inference. To organize the exposition, we set 
out with a broad classification of the major areas of development in ALT analysis: 
(a) Parametric life models with log-linear acceleration function, (b) Semi
parametric approaches based on hazard rate and time-acceleration models, (c) 
Stochastic damage growth models, (d) Special constructs for step-stress ALT, and 
(e) Issues of designing an ALT experiment. · 

Log-linear (LL) acceleration functions in the framework of important 
parametric models for the underlying life distribution dominated the early 
developments of ALT analysis. An extensive literature has developed both in 
methodological advances and diverse applications. A good survey of the earlier 
developments is available in Chapter 9 of Mann, Schafer and Singpurwalla (MSS) 
(1974). The proportional hazards model, due to Cox (1972), is a semi-parametric 
formulation that has been found instrumental to survival analysis in 
biostatistics, and has led to major advances in handling arbitrarily censored 
data. Application of these methods to ALT is somewhat limited because the model 
is empirical and also the data type and object of inference are different. The 
semi-parametric and nonparametric approaches stem from ideas of greater generality 
but they typically require larger Sqmple sizes for sensible inferences. Also, an 
extrapolation is less dependable when it is based on a purely empirical 
acceleration function. Areas of relatively recent developments include (c) and 
(d). For brevity, our discussion in Sections 2-5 will focus on the motivation and 
description of the various models and will include only an outline of the 
principal analytical methods. Technical details as well as treatment of special 
cases under each class of models will be omitted with references provided for the 
interested reader. Section 6 deals with designing an ALT experiment and discusses 
the usefulness of some optimality criteria. 

2. PARAMETRIC LOG-LINEAR MODELS. A general formulation, called parametric 
log-lin~ar ([[) model, consists of the following assumptions: (a) the underlying 
life distribution belongs to a specified parametric family involving a scale 
parameter e and possibly also a shape parameter n, (b) the scale parameter 
depends on the stress x according to an LL-relation. loge= e'x while n is . . . 
is a constant independent of x. Here x is a p-vector whose components need 

not correspond to all distinct stress variables, some may be just different 
functions of the same variable. For instance, with temperature as the sole stress 
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2 
variable x, the quadratic function B0+B 1x+B2x satisfies this formulation with 

x• = 2 
(l,x,x ) and 

The choice of a life distribution is guided by such criteria as its 
theoretical basis in reliability, simplicity of inference procedures and 
flexibility of empirical fit. Distributions derived from Poisson shocks, extreme 
va 1 ue theory, failure rate behavior or those with good track record in fitting to 
life data are the natural candidates. These include the exponential, Heibull, 
gamma and lognormal distributions. The assumption of an LL relation to stress is 
not only simple and flexible but is also motivated in many practical contexts from 
theoretical constructs based on chemical kinetics, activation energy, principles 
of quantum mechanics, etc. The Arrhenius reaction rate model, Inverse power law, 
Eyring model, and Generalized Eyr1ng model are some of the w1dely used eng1neer1ng 
models which fit into the LL formulation. These are respectively given by 

e = exp(A-B/x), temperature stress 

e = (A/x)P • voltage stress 
(2.1) 

e = x exp(A-B/x), temperature stress 

e = Ax1exp(-B/x1)exp(Cx2+Dx2/x1), temperature and voltage stresses. 

Statistical inferences including estimation of the model parameters and 
setting confidence bounds for the mean life or a specified percentile of the life 
distribution at use condition stress as well as model checking and goodness-of
fit are extensively treated in the literature under various distributional 
assumptions and specific engineering models. One general body of methodology is 
based on the maximum likelihood (ML) estimation, the Fisher information matrix and 
the associated asymptotic normal approximation. The technical details vary 
according to the specific models and data types, and the plethora of results are 
beyond the scope of this brief survey. The reader may refer to Chapter 9 of MSS 
(1974) for some details and also the relevant references. 

In general, the maximum likelihood method in the ALT context and especially 
with censored data involves considerable computational complexity, and lacks a 
grip on the small sample properties of the estimators. Some interesting 
alternative procedures have been developed for the case of location-scale 
parameter families for the distribution of the log-life. In particular, the 
logarithm of Weibull and lognormal random variables have the Gumbel extreme value 
and normal distributions, respectively, each of which constitutes a .location
seale family. 

A simple estimation procedure with type II censored data, proposed by 
Nelson and Hahn (1972, 1973), is based on an application of the least squares 
method in two stages. To outline the idea we consider a p-vector x of stress 

variables with k settings . ':_1•· •• ·~k· At ~i• ni units are simultaneously 

tested and observed till the rith failure occurs so for each i = 1, ••• ,k we have 
a type II right censored sample Yn < yi 2 < ••• < Yir.· With a minor misuse 

1 
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of notation, here we take y to be the log-life so the censored sample comes from 

-1 I 
cr g[(y-A,)/cr] where A. = s x

1
., g is a completely specified 

1 1 - -a pdf of the form 

pdf (standard extreme-value, normal, etc.), and S and cr are the unknown 

parameters. For simplicity, we confine further discussion to equal sample 

sizes ~nd equal censoring, that is, ni = n and ri = r for all i. 

In stage 1, we ignore the regression structure and estimate the parameters 

( >-;.cr) from the ith data set by the method of least squares applied to the linear 

model 

Y·. = A. + crVi j' j = l, ••• ,r (2. 2) 
1 ,] 1 

where vi j' j = 1, •.. , r are the first r order statistics of a sample of size 

n from the standardized pdf g. Their means cj = E(V .. ) 
1 J 

and covari ances 

cr .. , = cov(V .. ,V
1
.J.,) are known constants, and their tables are available for 

JJ 1 J 

some distributions. We thus have the stage-1 best linear unbiased estimators 

(BLUE) of the form 

= 
r 
E a .y .. , 

j=1 J 1J 

as well as their exact covariance matrix 

/ ( d1 d3) 
d3 d2 

where d1
, d2 and d3 are known constants. 

·In stage 2, we denote 
the linear model 

* A = 

* (J = 

xs + ~1 
1 (J + ~2 

r 
E b .y .. 

j=1 J 1 J 

* * *l·' (J = ( (11' •••• (Jk . ·, 

(2.3) 

(2,4) 

and form 

(2.5) 

where X' = ('5,1 , ... ,~k)' and thepair (~1'~2 ) has mean (0,0), its elements are 

independent across rows and have the covariance structure (2.4) across columns. 

Based on this linear model, the BLUE's are obtained as 

S = (X'X)-1X'A*, - ... - .. 
1 k * 

cr =- E a. 
k i =1 1 

257 

(2.6) 



The mean log-life at the use condition stress ~0 as well as any 

percentile is of the form ~~x + co which is a linear combination of 
- .:.0 

S and cr. 

Therefore, (2.6) leads to unbiased estimators of these quantities as well as their 
exact variances as opposed to only asymptotic results obtainable for the ~1LE 1 s. 
However, to construct confidence bounds, one has to resort to large sample normal 
approximation of these estimators except for some isolated simple models where an 
exact pivotal method may be feasible, cf. McCool (1980). 

Bhattacharyya and Soejoeti (1981) examine conditions on the design matrix 
X and the underlying log-life distribution g for the asymptotic normality of the 

ML and two-stage least squares estimators, and investigate the loss of asymptotic 
(k + oo) efficency incurred by the latter. In particular, for the Heibull life 
distribution, it is found that a fairly high efficiency is retained unless either 
n is too small or r is too small compared to n. Nelson (1970) discusses 
another two-stage estimation method where MLE is used in the first stage followed 
by least squares in· the second but one loses the exact properties (unbiasedness, 
variances and covariances) in this process. 

For the lognormal life model and type II right censored ALT data, Mehrotra 
and Bhattacharyya (1985) develop another simple and highly efficient estimation 
procedure using a judicious modification of the likelihood equations. Denoting 

( ) I · I ( I I l 
yi = yil'"''Yir. • Y = ~l''"'Yk • r 

1 

they observe that the likelihood function 

= 

k ni -r i 
.rr [1-~(zir.lJ 
1 =1 1 

k 
= E ri' ziJ. = (y .. -S 1 x.)/o, 

i=1 . 1J - -1 

is a product of the two components 

( 2. 7) 

where X is now the r x p matrix whose rows are ~i .. ···~k repeated 

r1' •.• ,rk times, respectively, and ~ denotes the standard normal cdf. The factor 

L1 has the form of a full sample normal regression likelihood based on the sample 

sizes r1, ••• ,rk at the k design points. Complication in obtaining the MLE 

arises because of L2• A method of modified MLE is proposed by replacing 

3logL 2;a~ and 3logl/3o by their respective expectations in the likelihood 

equations. It turns out that these modified likelihood equations lead to the 
exact solutions 

s = s-1X1 y - ~s:- 1a ... ... ... ... ... 

o2 = c-1y1 (I-XS-1X1 lY 
(2.8) 
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where ~ = ~·~. and the constants ~ and' c can be calculated by using the 

tables of means and variances of the standard normal order statistics. Closed 
form expressions, easy computing algorithm, some exact small sample properties, 
and little loss of asymptotic efficiency with light censoring are the principal 
advantages with this method. A few other modifications of the likelihood 
equations to obtain estimators in closed forms are discussed by Tiku (1978) and 
Schneider (1984) for censored normal samples. 

In most applications of the parametric LL analysis, the shape parameter n 
is assumed to be independent of ~· Glaser (1984) employes a more general 

formulation with the Weibull distribution assuming that the reciprocal of the 
shape parameter also has a linear model in terms of ~· Iterative solution of the 

ML equations are discussed in the settings of grouped and censored ALT data. 
Shaked (1978) discusses ML estimation with the inverse power law and Arrhenius 
acceleration functions applied to some linear hazard rate type distributions. 

3. SEMI-PARAMETRIC MODELS--PROPORTIONAL HAZARDS AND TIME ACCELERATION. 

3.1 Proportional Hazards Model. The LL model discussed in the preceding 
section envisons a mu1bpi1cat1ve effect of stress on the scale parameter and 
hence on the mean as well as the percentiles of the life distribution. Another 
approach to modeling the effect of stress focuses on the failure rate behavior. 
The failure rate at age y of a unit undergoing a constant stress ~ is defined 

as h(yl~l = f(yl~l/F(yl~l where f and F are respectively the pdf and 

survival function of the life distribution. Let h
0

(y) = h(yl~0 ) denote the 

failure rate function under the use condition stress ~o· The proportional 

hazards (PH) model assumes that stress acts multiplicatively on the failure rate, 
that is h(yl~l = h0 (y)g(~,~) where g is a positive function involving an 

unknown parameter vector ~ but is free of y. Cox (1972) proposed this idea 

and further assumed an exponential form of g, 

( 3.1) 

argu'ing that this choice is "convenient, flexible and yet entirely empirical". 
The model is semi-parametric because one component, namely, the acceleration 
function is parameterized while the form of the use condition hazard h

0
(y) is 

left completely arbitrary. 

The PH model has spurred extensive research in statistical methodology with 
applications targeted mainly to survival analysis in biostatistics. Also, 
handling arbitrary or randomly censored data has been a focal point of these 
developments. The parameter ~ is usually viewed as the primary target of 

inference while· h
0

(y) is considered a nuisance function. In the context of ALT, 
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h
0

(y) or the corresponding life distribution F(yl~0 ) is of main interest while 

an assessment of the significance of the stress effects is often redundant. More 
importantly, the use of an empirical acceleration function with no physical 
back-up is prone to criticism because this function plays a dominant role in 
extrapolation and inferences on h

0
(y). 

A comparison of the structures of the LL and PH models is in order here. 
The well known relations between the failure rate, cumulative hazard and survival 
functions (cf Kalbfleisch and Prentice 1980) lead to the following equivalent 
forms of the PH model: 

_ exp(S'x) 
F(yl~l = [F(yl~0 )] - -

(3.2) 
log[-logF(yl~lJ = log[-logF(yl~0 )]+~'~· 

The second equation· shows a linear model in regard to the influence of the 
stresses operates additively on the log (-log)-survival function. By contrast, 
the LL model assumes a linear form for the logarithm of the scale parameter, and 
is therefore physically more meaningful. It entails that ylx has the same 

distribution as that of (yl~0 )[exp(~'~)], and this relation leads to the failure 
rate relation 

( 3. 3) 

Obviously, the LL and PH models coincide if and only if 
underlying life distribution is Weibull. 

0 h
0

(y) • y , that is, the 

A more general class of models is formulated by Ciampi and Etezadi-Amoli 
(1985) by embedding both LL and PH failure rate functions in a common frame: 

(3.4) 

This reduces to LL if a = S and to PH if S = 0, They study asymptotic 

likelihood ratio tests for model discrimination under the further assumption that 
h

0 
is a polynomial. It is not clear if such an over-parameterization is 

necessary or meaningful in ALT analysis. The model being purely empirical, its 
use in ALT is questionable. 

3,2 Time-Acceleration Model. The concept of a failure-time acceleration 
or shortening of the life-time under increased stress has prevailed in much of the 
historical developments of the ALT models. A simple formulation was advanced by 
Allen (1959) and its ramifications treated. later by sev.eral authors. To introduce 
the basic idea, suppose f

0
(y) ·and G(y) denote the survival functions under the 

use condition stress and an accelerated stress condition, respectively. A 
relation between them is modeled as G(y) = f

0
[v(y)] with a "time-acceleration" 

function v(y). Allen (1959) calls it a strict acceleration if v(y) ;;. y for 
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all y (it is understood that v(y) is not identically equal to y), and a 
restricted acceleration if v(y) < y holds on a finite interval and v(y) > y 
on an infinite interval. Note that a strict acceleration is equivalent to the use 
condition life being stochastically larger than that under the accelerated stress. 
Barlow and Scheuer (1971) considered nonparametric estimation of F

0 
and G under 

the assumptions that both are IFRA distributions, v(t) is arbitrary, and data are 
available from both F

0 
and G. 

Lacking data from F
0

, as is usually the case with ALT experiments, one 
must specify a structure of v(t) to be able to estimate F

0
• A semi-parametric 

formulation, proposed by Shaked, Zimmer and Ball (SZB) (1979), assumes that the 
stress x acts on the survival by means of a change of the time scale, 

v(y) = g(x, S)y 

where g is a specified function of ~ involving an unknown parameter ~· 

and the distribution F
0

(y) is arbitrary. Note that the choice g(x,S) = 

exp(S1x) leads to the structure of the LL model of Section 2, the sole difference 

being that F
0

(y) is left nonparametric in the present formulation. 

Consider the case of a single stress variable x and a scalar parameter 
s. Suppose that k accelerated stress settings xi are used, ni units are 

tested at xi and all failure times yij' j = 1, ••• ,ni' i = 1, .•• ,k are 

observed. The model entails that ylxi has the same distribution as eiil(ylx;~l 

where eiil = g(xi'S)/g(x;~.sl. Based on this observation, SZB (1979) propose a 

simple inference procedure along the following steps: 

(i) Using the data from each pair of stress settings (xi,xi~l. 

obtain a consistent estimator eiil of the ratio of scales 

-1 n. 
such as ei i I = yi/Yi I where Y; = n; l:l y i j. 

j=1 
( i i) Obtain S; i I 

by solving the equation 
A 

eiil = g(xi'S)/g(xi~,S). 

Repeating this for all pairs get k(k-1)/2 estimators of S. 

(iii) Form the pooled estimator S = l: wii 1Sii 1 using the 
1~i<i 1 ~k 

weights wiil inversely proportional to the asymptotic 

variances of S;il• 
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(iv) Rescale the observed fai1ure times to pseudo-values at the 
use condition stress: 

h 

* Yij = 
g(xo' a) 

g(xi;e) 
Yij , j = 1, ••• ,ni, i = 1, ••• ,k. 

(v) Act as if these pseudo-values constitute a random sample of 
k 

size N = l:n. 
i =1 

1 
from the distribution F

0
(y) in order to 

estimate the mean, percentiles or other 
even the whole function F 

0
(y). 

features of 

Shaked and Singpurwalla (1982) discuss goodness-of-fit tests along these lines. 
The appealing features of the above procedure are its simplicity which is an 
attraction to the practitioners, and avoidance of the assumption of a specific 
parametric life distribution as is involved in the LL analysis. However, large 
sample sizes are needed for its validity, and that is in essence a price to be paid 
to forego a parametric assumption. Like the LL model it does have a parametric 
assumption for the acceleration function and that plays a crucial role in extrapo
lation. In light of this, whether one chooses a flexible parametric family for 
F (y) or leaves it nonparametric is not of much practical import in model fitting 

0 

and inference. 

Proschan and Singpurwalla (1979, 1980) discuss a Bayesian approach which 
circumvents the need for choosing a specific parametric acceleration function as 
well as the form of the life distribution. However, they assume that prior 
information in regard to the average failure rates over disjoint time intervals 
under each accelerated condition is available, and that least squares fit of a 
linear relation among the posterior average failure rates can be extended to the 
use condition stress. 

4. STOCHASTIC DAMAGE GRO\ml -- AN INVERSE GAUSSIAN REGRESSION MODEL. In 
this section, we discuss a parametric approach based on a life distribution which 
derives from a stochastic model of fatigue or growth of damage in a material. In 
contrast with direct modeling of the time-acceleration function or the failure rate 
behavior discussed in the previous sections, here the rate parameter of the damage 
growth process is modeled in relation to the stress. 

Specifically, we assume that given a constant operating environment, 
depletion of strength or growth of damage of a material specimen over time follows 

a Brownian motion process with drift \l > 0 and diffusion constant i, and that 
the material fails when the accumulated damage exceeds a critical level w > 0. 
Let X(t) denote the accumulated damage during the time interval [O,t]. The 
time-to-failure is then given by y = inf{t: X(t) > w} which is the first passage 
time of the process across w. The above assumptions lead to the following pdf of 
y: 

f(y) 0 < y < "' ( 4.1) 
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where e = w 11, a= o w , mean = e, and vanance = e cr. This distnbution is 
known as a Gaussian first passage time distribution in the stochastic processes 
literature, and is more commonly called the inverse Gaussian distribution, 
IG(S,cr), in the statistical literature. Its analogy with and advantages over the 
Birnbaum-Saunders (1969) fatigue life distribution is discussed by Bhattacharyya 
and Fries (BJ) (1982b). 

In the context of ALT, the parameter 11, which represents the mean damage 
growth per unit of time, is the natural choice for constructing an acceleration 
function in relation to the stress x. A simple and flexible formulation due to 

BF (1982a, 1986) postulates a linear regression model for 11 and assumes w and 

o2 
to be constants independent of x. The latter assumption is in the spirit of 

the homoscedasticity assumption in the normal theory regression analysis. Thus, 
the distribution of the failure time under stress ~· yJ~, is taken to be 

IG(e(x),cr) whose mean e(x) depends on the stress x (a p-vector) according to 

the reciprocal-linear model e-1(x) = e'x, and o is independent of x. 

To discuss statistical inferences with the above model, we consider an ALT 
experiment with k settings of ~· and a random sample of ni failure times yij• 

j = 1, ... ,ni observed at the setting xi' i = 1, ... ,k. Let N, Y;• y respectively 

denote the total sample size, the ith sample mean and the grand mean, 

R = 

the 

N- 1 EEy:~. the grand 
i j 1 J 

mean of reciprocals of the observations, V = 

total reciprocal deviation, and define the matrices 

X' = ' 

C = diag(n1, •.• ,nk) 

S = X'CDX. 

-1 --1 
EE(y •. -y ) ' 
i j 1 J 

Referring to (4.1) and the regression model 
-1 

x' e, the likelihood function e. = 
1 -i-

L can be written in the form 

L "' o-N/ 2exp[- ~ Q(S)] (4.2) 
2o 

where 
(DXS-1) 'CD- 1(DXS-1) Q( el = + v . (4.3) 

From (4.2) and (4.3), BF (1986) show that the unique roots of the likelihood 
equations, 

(1 = (4.4) 
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provide efficient likelihood estimators, that is, they are consistent, 
asymptotically normal and asymptotically equivalent to the MLE's. They further 
exploit some convenient features of the likelihood function to arrive at an 
analysis of reciprocals (ANOR) table along the ideas of the analysis of variance 
table 1n the normal theory linear model analysis. The ANOR table rests on the 
decomposition of the total corrected sum of reciprocals 

V = QReg + QL + QE 

where the components on the righthand side measure the contributions due to 
regression, lack of fit,and pure error, respectively, and are given by 

OReg = N(x' i3 - -y-1l 

-1 ' 
QL = ~ni (yi - X~ S) 

1 -1 

-1 - y~1) QE = EE(y .. 
i j 1 J 1 

Consideration of likelihood ratio tests along with a judicious intermix of exact 
distribution theory of IG and asymptotic theory further lead to approximate F 
tests for the relevant hypotheses. 

Other developments in the area of IG reciprocal linear model include: 
construction of standardized IG residuals and their plots for a graphical model 
checking, construction of unbiased estimators via least squares applied to the 
reciprocals (BF 1982b), determination of optimal designs by minimizing a finite 
sample version of the asymptotic generalized variance (Fries and Bhattacharyya 
(FB) 1986), and analysis of factorial life test experiments (FB 1983). 

The method of ALT analysis discussed in this section rests on a parametric 
formulation much in line with the model presented in Section 2. The IG 
distribution as a life model has a sound theoretical basis, and the family is 
flexible enough to fit most real life data just as the lognormal and fleibull 
families. Moreover, the reciprocal linear model as an acceleration function 
derives from a plausible assumption about the damage caused by stress. Taken 
together, the methodology of this section has several desirable features: a 
physical basis of the model, flexibility of empirical fit, tractability of 
statistical inferences and availability of model checking procedures. However, 
simple methods of statistical inferences with censored data are still not 
available for this model and further work in this direction is needed. 

5. STEP-STRESS ALT. The preceding sections were concerned with the ALT 
studies where each un1t 1s subjected to a constant level of stress until failure 
occurs or the observation is censored. Another widely used method of conducting 
an ALT experiment, called a step-stress ALT, al~ows the stress setting of a unit 
to be changed at discrete points of time. Stress changes may be effected at 
preset times or upon occurrence of a fixed number of failures along the ideas of 
type I and type II censoring, respectively. Applications of step-stress ALT are 
cited by Nelson (1980), Bora (1979) and Miller and Nelson (1983) in the contexts 
of failure of cable insulation under voltage stress, life testing of diodes, and 
dielectric breakdown of insulating fluid, respectively. 
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In an ordinary fixed-time step-stress experiment, a random sample of N 
units are simultaneously exposed to a stress setting ~ 1 , observed over a fixed 

time t
1 

and the failure times of those failing in this interval are recorded. 

At time t 1, the surviving units are subjected to a different stress setting ~2 
and observed till they all fail. Such an experiment is called a two-step or 
simple step-stress ALT. The idea extends to more than two steps in an obvious 
way. Moreover, the failure observations at the terminal step may be censored at a 
fixed time. The intent of such an experiment is to collect more failure time data 
in a limited time horizon without necessarily using high stresses to all the 
units. With an initial low stress, a unit may tend to survive too long in which 
case observation of its actual failure time would be lost due to censoring. That 
can be prevented by increasing the stress at an intermediate point thus increasing 
the chance of an early failure. In principle, an initial high stress can be 
followed by a lower one in the second step but the motivation of using this 
pattern is not transparent. 

. As with a constant stress experiment, the goal of statistical analysis of 
step-stress ALT data is to draw inferences on F

0
(y) = F(yl~0 ), the life 

distribution corresponding to the constant use condition stress ~o· For this 

to be possible, we must have a model that relates the step-stress life 
distribution to the constant stress life distribution F 

0
(y). A sensible 

formulation, called a cumulative exposure (CE) model, was proposed by Nelson 
( 1980). It assumes that "the remaining 1 ife of specimens depends only on the 
current cumulative fraction failed and current stress -- regardless how the 
fraction accumulated. Moreover, if held at the current stress, survivors will 
fail according to the cdf for that stress but starting at the previously 
accumulated fraction failed." To formalize this idea, we let Fi(y) stand for 

F(Yil5)• the life distribution under the constant stress '5.i• and let G(y) 

denote the life distribution under a two-step (first ~ 1 and then ~2 l stress. 
The CE model entails that 

where 

G(y) = F
1 

(y) 

= F2(s1+y-t1) 

is the solution of F2(s 1l 

for t 1 < y 
( 5 .1) 

( m 

Initially, G is the same as 

F 1• At time tl' it s~titches to the function F 2 but starting with the va 1 ue 

F1(t1). Thus G(y) is made up of segments of the constant stress life 

distributions F1 and F2, pieced together at the change point of stress. Note 

that this formulation is different from the mixture models as well as the change 
point models that appear in some areas of the statistical literature. 
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Hi th the genera 1 formulation ( 5.1), a parametric mode 1 can be constructed 
by taking r1 and F2 to be members of a common parametric family along with an 

LL model of relation between them. For example, use of the Heibull model 

F(ylxl = exp[-(y/e(x)) e] in conjunction with the inverse power law e(x) = 

(A/x)P and equation (5.1) leads to the step-stress life distribution 

-[y(x/AlpJe 
G(yl = e • 0 ~ y ( t1 

-[t1(x1/A)P+(y-t1l(x2/Alp]e 
= e ' t1 < y < oo 

(5.2) 

where A, P and e are unknown parameters. Nelson (1980) and Miller and Nelson 
(1983) discuss maximum likelihood estimation under this type of parametric models 
where the underlying life distribution is taken to be exponential or Heibull, and 

the acceleration function either Arrhenius or the inverse power law. They also 
illustrate application to data of some step-stress ALT experiments. 

A physical basis of the CE model in step-stress ALT is not as transparent 
as its mathematical formulation. Earlier, in a similar context, DeGroot and Goel 
(1979) advanced a time-acceleration model which is physically more meaningful. 
They assume that the effect of switching the stress from ~ 1 to ~2 is to 

multiply the remaining life of the unit by some unknown factor a, a function of 
~1 and ~2 (a < 1 if ~2 is more severe than ~1 ). Letting y1 denote the 

life-length under the constant stress ~ 1 and y* that under the step-stress 

pattern (switching from ~1 to ~2 at time t 1l, they formulate the relation 

y* 

= 

if y1 ( t1 

t1 + a(y1-t1) if 
( 5, 3) 

and call y* a tamtered random variable. It can be seen that (5.3) becomes a 
special case of (5. ) if F1 and F2 differ only by a scale parameter. In this 

sense, (5.1) accommodates a more general formulation by allowing other parameters 
of the life distribution to change with stress, although such a generalization 
obscures the physical meaning of the model and in none of the applications it has 
been used as yet. DeGroot and Goel (1979) only consider the setting of a 

"partially accelerated life test" viewing ~ 1 as the use condition stress and 

~2 the single accelerated stress so a specification of the acceleration function, 

relating a to x, is not necessary. On the other hand, they allow t 1 to be 

different for different units. Considering the underlying life distribution to be 
exponential, they study the issue of optimal design in the framework of Bayesian 

decision theory along with the specification of some cost function. Gael (1975) 
discusses the asymptotic properties of MLE in the above setting. 
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Curiously, with the assumption of an exponentia 1 di stri buti on but without 
any reference to ALT, the above model also appears in the literature under a 
different name --a change point hazard model. The formulation, which is in terms 
of the fa i 1 ure rate funct1 on is 

h(y) = Al if y ~ tl 
( 5. 4) 

= A2 if y > 

and it leads to the life distribution 

g(y) 
-A1Y 

if y ~ tl = A1e 

-Altl-A2(y-tl) 
if = A2e 

Except for a change of notation, it is 
tampered exponential random variable. 
hazard, the time point of change t 1 

tl 

(5.5) 

tl < y < ""· 

identical with the model (5.3) of a 
However, in the context of a change point 

is regarded as an unknown parameter in 

addition to the failure rates A and A • Here, the standard asymptotic theory 
of MLE does not apply. In fact, 1one face~ the problem of non-existence of the t~LE. 
Nguyen et al (1984) and Matthews and Farewell (1982) discuss parameter estimation, 
and testing the hypothesis of no change, and also provide references to earlier 
works in this area. 

6. DESIGNING AN ALT. A carefully planned life test experiment is at the 
heart of success in gathering informative data, coping with the constraints of 
cost and time, and arriving at effective inferences as well as identifying 
directions of further investigation. Among many issues involved in planning an 
ALT experiment, some are to be resolved from an understanding of the physics of 
failure. These include choice of ·the stress variable(s), choice of the 
acceleration function consistent with a physical model of the failure process, and 
decision regarding the range of stress acceleration which would be feasible and 
dependable for the purposes of extrapolation. Moreover, accepted engineering 
practice in a given context should guide to the choice between a constant stress 
ALT and a step-stress ALT experiment. 

Consider the most common type of ALT where a single stress x is 
accelerated, and denote by xL and xH the intended lowest and highest settings 

of x. As before, we denote the use condition stress by x
0 

so x
0 

~ xL < xH" 

\Hth a constant stress ALT, one needs to determine the number k of stress 
settings to be used, their locations in the interval [xL,xH]' the allocation of 

a given total number N of units to the various stress settings, the period of 
observation and the scheme of censoring. Unlike the situation of normal theory 
regression analysis or least squares fitting of multiple regression with complete 
data, a statistical treatment of optimal ALT plans is made complicated by the fact 
that the important parametric life distribution models do not lead to exact 
results for the sampling distribution of the relevant estimators or manageable 
experssions for their variances espeCially in the case of type I censored data. 
Faced with this pervasive difficulty, one reasonable approach to address the issue 
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of optimal test plans is based on large sample theory of ML estimators. Nelson 
and Ki el pinski ( 1975, 1976 l and Ne 1 son and Meeker ( 1978 l discuss sever a 1 test 
plans along this line. Their main developments are outlined below., 

The specifications involved in their development of optimal test plans 
include: a parametric life distribution such that the log-life conforms to a 
location-scale family, an engineering acceleration function that conforms to the 
log-linear model (such as the Arrhenius or inverse power law), a total sample size 
N and a common censoring time T (determined from cost and schedule constraints), 
and the highest stress setting xH (to be set as high as possible subject to validity 

of the model). The object of inference is to estimate ~(x0 ), the median log-life 

or more generally, 'P(x
0

), the lOOp percentile of the life distribution at the 

use condition stress x • Two kinds of test plans, the best standard plans and 
the optimal two-point plRns are discussed in this setting. 

A standard plan, so called because of its popularity among practitioners, 
is one that uses k' equispaced stresses in a suitable transformed scale, 
and equal number of test units at each stress. Given k, the best standard 
plan seeks to determine the xL that minimizes the asymptotic variance of 

~(x 0 ), the MLE of ~(x0 ). An optimal two-point plan uses k = 2 and finds the 

xL and the proportion of units "L tested at xL so as to minimize the 

asymptotic variance of ~(x0 ). To arrive at these plans for the lognormal life 

model, Nelson and Kielpinski (1976) start with the asymptotic theory of MLE, 
compute the Fisher information matrix, and use the delta method to deduce an 

A 

expression for the asymptotic variance of ~(x0 ). Minimization of this function 

is done numerically on a computer with various input values of the model 
parameters and other quantities that are fixed in advance, and thereby charts are 
prepared for guidance to the practitioner. Nelson and Meeker (1978) discuss such 
plans for the case of Weibull distribution along with the inverse power law 
acceleration. It is found that for the case of two-point designs, the optimal 
plan typically allocates more units to the low stress and requires a slightly 
lower x than the best standard plan. Similar issues are also discussed by 
Meeker ahd Hahn (1977) in the context of success-failure data and a logistic 
regression model. 

It is to be noted that a determination of these optimal plans depends on 
the unknown model parameters which appear in the expression for the asymptotic 
varia:nce of MLE. Therefore, one must have an informed guess of the parameter 
values either from experience with similar experiments or by conducting a 
preliminary ALT experiment. Also, a drawback of the two-point plans is that their 
optimality rests on the correct choice of the model and, at the same time, they 
provide little scope of checking lack-of-fit or violation of the model 
assumptions. To remedy this drawback without departing too much from optimality, 
best compromise plans are suggested., A compromise plan uses a third design point 
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xM intermediate between xL and xH' a small proportion of units tested at 

xM, and retains the same relative allocation to xL and xH as with the optimal 

plan. 

Meeker (1984) reports an extensive simulation study for the purpose of 
comparing the above plans along with a few others determined from such 
requirements as equal expected number of failures rather than equal sample sizes 
at the design points and minimization of the variance of some other parameter 
estimates. The principal criteria used in this comparison include: quality of 
estimation under the chosen model (precision), ability to detect a departure from 
the assumed linear model (goodness-of-fit), sensitivity to misspecified parameter 
values (robustness) and ability to generate adequate failure data at the design 
points (feasibility). It is found that the ALT plans that are theoretically 
optimal have serious drawbacks in regard to the other criteria. The compromise 
plans are sub-optimal but are more robust and are also capable of detecting 
departures from the.assumed model. 

The above discussion summarizes the recent developments on ALT designs for 
the case of type I censoring scheme and parametric log linear analysis. Earlier 
works were confined largely to uncensored data under the exponential model with 
some specific acceleration function (Chernoff 1962) or the standard least squares 
fitting of multiple regression (Herzberg and Cox 1972). For the Weibull 
distribution with a polynomial function for the log-scale parameter, Mann (1972) 
discusses optimal test plans for estimating ~ (x J by means of a linear function 

p 0 

of order statistics rather than the ~1LE. Fries and Bhattacharyya (1985) study 
optimal ALT designs under the inverse Gaussian distribution along with a 
reciprocal-polynomial regression model. 

Derringer (1982) points out that in order to observe failures with a single 
accelerated stress, one often requires the settings so large that validity of the 
assumed model becomes questionable. To remedy the danger of a long-range 
extrapolation, he suggests the use of multiple stress acceleration so each stress 
factor could be employed at relatively low levels and yet together they would 
accomplish the purpose of a single large stress. This is also logical from a 
practical viewpoint because most materials or systems are affected by several 
stresses in their normal operation. However, with multiple stress acceleration 
one needs to be concerned about possible interaction of the stresses. At the same 
time, theoretical modeling of the acceleration function is typically more 
difficult when several stresses are to be accelerated simultaneously. In 
essence, the choice will really be between using a less reliable model for a 
short-range extrapolation and a more reliable model for a long-range 
extrapolation. For an effective resolution of such issues there ought to be 
sufficient interaction of the statistician with materials scientists and engineers 
who are knowledgeable about the mechanics of the failure process. 
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