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Abstract
We describe. adaptive grid techniques for elliptic fluid-flow prob-
lems. The primary applications are to flows described by the steady,
incompressible laminar and Reynolds-averaged Navier—Stokes equations.
The method can be extended to other elliptic flows. The current version
of the adaptive method 1s designed for use on a single, uniform, rectan-
gular grid or unions of such grids. Other geometries could be handled

by means of commonly used mapping or composite grid techniques.

*ng,method is an extension of a local refinement technique devel-
oped by Berger for systems of hyperbolic equations. Local refined grids
are overlaid on a coarser base grid. Recursive use of this technique
allows an arbitrary degree of grid refinement. In two dimensions, the
refined grid consists of uniform rectangles having arbitrary rotation.

Regions neeuing refinement are defined using local error estimates.

The base grid remains fixed, and refinements are added as needed.
This method contrasts with global refinement methods, in which a fixed
number of points on a single grid are 1iteratively redistributed
according to some criterion such as the local solution gradient,

curvature, etc.

*Two classes of elliptic flows are identified; they are character-
ized as having strong or weak viscous=inviscid interactions. Adaptive
solution strategies, active and passive, respectively, are developed for

each class.

The passive method 1is applied to linear problems in one and two
dimensions. In 2-D, the refined grids automatically aligr with the
flow, thereby minimizing numerical diffusion. The adaptive method 1is

shown to be more efficient than using a uniform fine grid.

The SIMPLER method is used to solve the steady, laminar, incompres-
sible Navier-~Stokes equations, Central differencing of the convective
terms 1s implemented with the defect—correction method to stabilize the
solution method for all cell Reynolds numbers. Smooth solutions are
calculated for cell Reynolds numbers as high as 150, indicating that the

commonly used restriction, Re, < 2 is too severe. Uniform-grid
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calculations are performed for the laminar backstep flow. Patankar's
power~law scheme is shown to be less accurate than central differencing,

and only first-order accurate.

" Richardson-estimated solution and truncation errors are compared to
accurate estimates of the same quantities for the backstep flow. The
solution error is well predicted. The truncation—error estimates are
less accurate, but they reliably indicate where grid refinement is

required.

Active—adaptive calculations of the backstep are made, using
boundary-aligned refinement. At Re = 100, the adaptive calculation
has comparabie accuracy, but 1is six times faster than a uniform-grid
calculation; the advantage 1is greater at higher Reynolds numbers.
Adaptive calculations are also made at higher Reynolds numbers. The
calculations agree well with the experimental data and other calcu-

lations.
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Truncation error.

Truncation error estimate.

Maximum allowed truncation error.

Relaxation factor in Egs. (6.4.10)-(6.4.11).
Passive scalar.

Exact solution to Eq. (5.2.1).

Constants in Eqs. (6.l.11)=-(6.1.12).

Angle of rotation.

Rotated coordinates.

Fluid density.

Kinematic viscosity.

Eddy (turbulent) viscosity.

Effective viscosity.

Generalized difference operator for first derivative.
Backward difference operator for first derivative,
Forward difference operator for first derivative.
Difference operators for second derivative.
Stopping criterion for Schwarz iterations.
Stopping criterion for Gauss-Seidel iterations.
Laplacian operator.

Gradient operator,

Mesh size in x-direction.

Mesh size in y-direction.

Average value.
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Chapter 1

AR AN N

INTRODUCTION

4 1.1 Motivation

Computational fluid dynamics (CFD) 1is playing an increasingly
important role 1in the design and analysis of energy-coﬁversion and
transportation systems, due to the development of solution algorithms
that are efficient and accurate and to the rapid advances made in compu-
ter technolcgy. However, there 1is always a need for more efficient
algorithms. Design studies require repeated calculations of a given

problem in order to search a parameter space, and engineers are contin-

oo

ually tackling more complex and hence computationally more challenging

.

problems.

Many of the flows encountered in these systems are governed by
elliptic partial differential equations whose solutions may exhibit fine
structure within small regions of the computational domain. Many tradi-
- tional solution techniques require a fine mesh covering the complete ;
domain in order to resolve these fine local details. This method is
inefficient, since the fine mesh is not needed in parts of the flow
where the solution has a moderate variation. In some cases, this inef-

" ficiency can be tolerated; in others, it can be prohibitively expensive.

A lack of resolution is also a hindrance to the development of tur-
. bulent closure models. Kline et al. (1982) point out that it is diffi-
; cult to distinguish the numerical errors from modeling errors, and they
5 call out for procedures that can guarantee a prescribed level of numeri-

cal accuracy.

Adaptive grids can simplify solutions to problems that need refine-
8 ment only in small, localized regions of the domain. In these methods,
o the mesh 1s changed or adapted as the solution develops. The mesh is |
o adjusted or refined to accurately resolve fine structures as thev appear
j in the numerical solution. The result is a nonuniform distribution of

grid points that provides the desired level of accuracy at much lower

cost than a uniform fine grid.




In the remainder of Chapter 1, we review existing adaptive grid
methods. We then review the technique developed by Berger (1982) for
hyperbolic equations. We have applied this approach to elliptic prob-
lems. Chapter 2 describes Berger's method in some detail. In Chapter 3
we present the strategy for applying Berger's method and the issues par-
ticular to elliptic equations. Chapter 4 describes the application of
our method to linear, two-point, boundary-value problems. In Chapter 5,
results and a performance evaluation are given for a two-dimensional,

linear, convection—-diffusion problem.

We discuss the basic solution technique and pertinent issues for
the Navier-Stokes equations in Chapter 6. Chapter 7 describes the fea-
tures of our adaptive Navier—-Stokes solver. In Chapter 8, we present
numerical results, including a performance evaluation for the method
applied to the laminar, backward-facing-step problem. We draw conclu-
slions and make recommendations for further improvements of the method in

Chapter 9.

1.2 Adaptive Grid Methods

The development of adaptive grids is probably the most important
area of research in grid generation at present (Thompson, 1984). Many
approaches have been developed for a variety of differential equations
and applications. These include steady and unsteady problems, hyper-
bolic, parabolic, elliptic, mixed equations, etce It would be difficult
to make a classification for all adaptive grid methods, but most methods

can be fit into two different categories.

The first category is the "moving mesh” technique. Here, the total
number of grid points is fixed, and the mesh 1s adjusted by moving the
points away from regions that have small solution variation and towards
regions having large variation. The method of moving the points and the
criteria for determining where they go generally differentiate methods
in this category. These methods can also be classified as “"global” re-
finement techniaues, since the complete computational domain is usually

involved in the adaptation.

In the second strategy, mesh points are added (or deleted) as

needed in order to give the desired solution accuracy; the total number

2




may change. However, the addition or deletion 1is local in nature, and R
we therefore refer to these techniques as “"local” mesh-refinement meth-
ods. Again, the number of ways Iin which points are added or deleted

makes many variations of this approach possible.

We next discuss some of the existing global refinement strategies

and discuss their advantages and disadvantages. We follow this with a
similar presentation for some local refinement strategies. Further

L discussion of adaptive grid methods can be found in recent review art-

y v v

- icles by Thompson (1983), Anderson (1983), and Hedstrom and Rodrigue
(1982)., Note also that we do not discuss adaptive techniques for finite
element methods. Babuska et al. (1983) have given a recent review of

finite-element adaptive-grid methods. "

1.2.1 Global Refinement Methods ¢

Most global refinement methods are used in conjunction with grid-

ol

transformation methods. In these methods, the grid is nonuniform in
physical space and is generated by mapping the irregular physical domain
into a rectangular computational domain on which a uniform grid is used.
The golution 1is calculated in the computational space and transformed
back to the physical coordinates. The grid transformation results in .
modifying the differential equations; in particular, derivatives are F
multiplied by gradients of the mapping function called metrics. In

physical space, the grid is usually boundary-conforming.

For problems in complex geometries, numerical techniques are simp-
lified if a transformed grid is used. The uniformity of the computa- N
tional grid makes the programing and data storage very straightforward.

Furthermore, a solver written for the uniform rectangle can be applied

to a variety of problem geometries and grid-point distributions.

Using a fixed number of grid points and an assumed initial distri- .
bution of points in physical space, global refinement methods adjust the
grid transformation as the solution develops. Global methods differ
from each other in the way in which the transformation is generated and

updated, and in the criteria used to drive the adjustment.
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There are two subclasses of adaptive transformation methods. When
time accuracy is required, the transformation is time dependent, and the
mesh is adjusted at every time step. In the second class, the transfor-
mation is time independent, and the mesh is held fixed for a given num—

ber of iterations before it is modified.

For time-dependent problems, the grid speed appears in the trans-
formed differential equations; the adaptation criterion 1s based on an
auxiliary equation for the grid speed. The new positions of the grid
points are calculated from the grid speeds. Given the new point loca~

tions, the metrics are then reevaluated.

For time-independent problems, the grid speed does not appear in
the differential equations. Adaptive methods of this type calculate the
new grid—-point locations directly. The solution is interpolated onto
the new mesh and new metrics evaluated before another solution is gener-

ated.

Certain restrictions must be observed in either of these tech-
niques. Grid points should concentrate in regions of rapid solution
variation, but no region should become void of points. The point dis~
tribution should be smooth, and in two or three dimensions grid .lines

should not become too far from orthogonal (Mastin, 1982).

Brackbill (1982) discusses a method that uses a variational formu-
lation which explicitly addresses these restrictions. The method mini-
mizes a linear combination of three functionals of the grid. The first
functional is a measure of the rate of change of the grid spacing. It
is intended to control the smoothness of the distribution. The second
is a measure of the nonorthogonality of the mesh lines. The third func-
tional is the integral of the product of a specified weighting function
and the mesh cell volume. The weighting function is intended to measure
the solution error or variation and make the mesh spacing inversely

proportional to the error or variation.

Saltzman and Brackbill (1982) applied this variational method to a
2-D, time-dependent solution of the Euler equations having multiple

shocks. The number of times the mesh was adapted during the simulation

was not given. The weighting function used to control mesh spacing was
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the pressure gradient. The authors obtained what appears to be a nearly
optimal grid at steady state, but they do not discuss the solution

accuracy, the adaptive efficiency, or the computational work.

This method has two major drawbacks: computational expense and use
of heuristic adaptation criteria. The solution of the variational prob-
lem at each adaptation costs a large fraction of the cost of generating
the solution {itself. Also, the weighting function used to drive the
mesh adaptation is not a direct measure of solution error. Further, the
linear combination of the three functionals was determined by trial and

error and may not be appropriate to all cases.

Pierson and Kutler (1980) also used a variational formulation as a
basis for an adaptive grid method. The transformation from physical to
computational space 1s specified as a linear combination of Chebyshev
polynomials. For the methods they used, the leading term in the trunca-
tion error is proportional to the third derivative of the solution.
Thus, the integral of the square of a finite difference approximation to
the third derivative is minimized; it 1is constrained by limiting the
maximum and minimum mesh sizes. The minimization problem yields the

coefficients for the polynomials of the transformation.

The method is applied to steady, one-dimensional, boundary-value
problems. The procedure is begun by calculating an initial solution on
a uniform grid. A new grid is then generated by solving the minimiza-
tion problem. Finite difference estimates of the third derivative are
calculated using the initial solution. A new solution is then calcu-
lated on the adapted mesh. The accuracy of these two solutions was
assessed by comparing them to a calculation done on a uniform mesh hav-
ing twice as many grid points; the adapted solution had better accuracy.
No attempt was made to refine the mesh further. The authors also ap-
plied the method to a time-dependent problem. The mesh had to be fre-

quently updated to maintain good accuracy.

The advantage of the Pierson-Kutler method is that it tries to
minimize a measure of the solution error. However, the computational

expense of solving the minimization problem is considerable, especially

for time-dependent problems.




A grid speed based method 1is discussed in Rai and Anderson
(198la,b) and Anderson and Rai (1982). The auxiliary equation used to
drive the grid point motion is formulated to equi-distribute an arbi- M
trary quantity over the mesh. They use a point electrical charge
analogy; local variations cause points to attract or repel each other.
The intent is to use a truncation-error estimate as the quantity to be
equi-distributed; however, the gradient of a dependent variable has been

used in all their examples.

. The method has been applied to steady and unsteady problems 1in one
and two dimensions, primarily to problems containing shocks. The method

clusters points where the solution gradients are strong; however, errors

)
(RIS |

were 1lntroduced by stretching the grid too much in low-gradient regions.

Also, grid speeds had to be limited; otherwise oscillations in the grid

y ¥y

occurred. To overcome these difficulties, empirically determined param=-

eters and a grid-speed damping relation were introduced.

. An obvious difficulty with this method 1s 1its use of problem—
dependent empirical factors. A second difficulty is the use of the "
solution gradient as an error indicator. This is sufficient if all the

error 1s incurred at shocks, but it 1is inadequate if the solution has g
significant higher-order derivatives elsewhere, Noting that finite ‘
difference estimates of truncation error are generally very noisy, Rai

and Anderson point out that smoothing of these estimates 1is required.

Dwyer et al. (1980, 1982) also discuss a method in which the maxi-
mum change 1in the solution between ¢rid points is the criterion for
refinement. The criterion also includes the change in the gradient
hetween points. llse of equal weighting of these two quantities on a
uniform grid is equivalent to equi-distributing a weighted average of

the solution gradient and curvature.

The formulation of the grid transformation is time-dependent, but N
the grid speed 18 not explicitly calculated. Rather, the mesh is adjus-
ted, the new metrics evaluated, and the grid speed determined from the

change in the position of the grid points. K

The method 1i{s applied to combustinn problems, some of which have

moving flame fronts. Both elliptic and paraholic problems were solved.
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In two dimensions, only one of the coordinates is adjusted. Thus, the

method 1s essentially a one-dimensional adaptive technique.

The results of a uniform grid solution of a two~dimensional flame-
propagation problem in cylindrical geometry are compared with a similar
calculation done using a grid adapted in the radial direction. The uni-
form grid solution deteriorated as the flame moved towards larger radii,
where mesh size 1is larger. Oscillations and negative temperatures
developed, due to the loss of resolution, and the calculation had to be

terminated. The adaptive grid maintained accuracy at the larger radii.

Dwyer et al. implied that thelr scheme can be extended to two
dimensions, but this has not been done. Problems will arise because
there is no control of grid skewness. Also, use of problem~dependent
parameters to control the adaptation 1s a disadvantage. The authors
state that attempts to base the adaptation on estimates of higher-order
derivatives led to grid instabilities. This seems to be characteristic

of most global refinement methods.

Gnoffo (1982, 1983) discusses a time~independent transformation
method and applies it to the Navier—-Stokes equations. Like the previous
method, the grid adaptation is_ one-dimensional and the solution gradient
is equi-distributed. A spring analogy 1is used to formulate the adapta-
tion criteria. Grid points along one coordinate direction are assumed
to be connected by springs whose constants are proportional to the local

gradients.

This method suffers from problems similar to those discussed above.
Complex flowfields cannot be handled, since the adaptation is in only
one dimension. Smoothing and damping of the grid adjustment has to be

included for stability. Additionally, grid skewness is not controlled.

Nakahashi and Diewert (1984, 1985) improve upon this spring analogy
method. They extended the method to two- and three-dimensional prob-
lems. Grid poilnts are connected to adjacent points with tension springs
whose constants are proportional to the local solution gradient. Addi-
tionally, torsion springs are connected to each grid point to control
the inclination of the coordinate lines, thus preventing excessive skew-

ness.
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The method uses an efficient technique for updating the grid. The
procedure 1is split 1into a sequence of one-dimensional adaptations.
Three~dimensional grid adjustment is achieved by the successive applica:
tion of the one-dimensional scheme. The coupling of information is con-—
strained to be one-sided, allowing a marching solution procedure to be

used in the one-dimensional adaptations.

The method 1s applied to steady, supersonic flow problems in two
and three dimensions. The resulting adapted grids appear to he of good
quality for the problems solved, which possess complex flow and shock
fields. It is not surprising that the method worked well for these
flowfields, since grid and solution can hoth be marched in the same
direction. It 1s not clear whether the efficiency will be mairtained
for problems that are elliptic; however, the technique 1is probably the

best of the current time-independent refinement methods.

Greenburg (1985) describes a grid-speed method based on a chemical
reaction analogy. The time rate of change of a local mesh length is
made proportional to 1its neighboring mesh lengths multiplied by
reaction-rate constants. These constants are based on formulas spec-
ified to produce the Qesired adaptation criteria, 1including equi-
distribution of solution gradient, grid smoothness, minimum mesh length,
etc. The method is implemented and applied in one dimension only for a
time-devendent 1linear problem, Application to higher dimensions 1is

forthcoming.

To conclude our discussion of global refinement techniques, we
mention the work of Pearson (198l1). Although his method is not adap-
tive, his goal 1is to compute the streamlines in steady, inviscid,
compressible flow. It is mentioned here because the purpose of manv
adaptive grid methods 1is to produce an optimal or nearly optimal grid.
For fluid-flow problems, the stream— and velocity-potential lines are a
nearly optimal coordinate system, since the differential equations are
greatly simplified and the numerical error associated with the flow
being oblique to the grid lines 1is zero. Additionally, one wonders
whether these coordinates should be the goal of any adaptive grid method
in CFD.




Pearson recasts the momentum and continuity equations in terms of

the x-coordinate and two streamline parameters lying in a plane normal

. to the x-axis. The parameters are constant along a streamline. This
method 1is restricted to flows that have no streamlines perpendicular to

the x-direction. For supersonic flows, the solution and streamlines are

marched. in the x-direction. For subsonic flow, an iterative solution

procedure is used, similar to shooting methods for boundary-value prob-

b lems. The author points out that the method can have stability prob-

lems, particularly if there 1s large curvature in the streamlines.

The determination of the streamlines as coordinates, along with the

velocity and pressure fields, is really practica’ only for a small class
of flows, most notably inviscid, irrotational flows. The effort needed

to calculate the coordinate system for complex flows is hard to justify.

To summarize, global adaptive-~refinement techniques are generally
suited for use with grid-transformation solution methods, since they are
formulated to adjust the transformation. The distribution of a fixed
number of grid points 1is adjusted during the solution/grid iteration

process,

A major shortcoming of this type of refinement is the use of heur-
istic adaptation criteria. The basis of a natural refinement criterion
is the local truncation error. It causes the error in numerical solu-
tions. By minimizing the truncation error, the solution error can be
minimized. However, the truncation error 18 noisy because it is a
combination of higher-order derivatives. Numerical estimates of it are
noisier. Consequently, global refinement methods must resort to using

smoother adaptation criteria, such as equi-distribution of solution

gradients. However, the gradient can be a misleading error indicator.
For example, a steep linear function can be exactlv represented with -

only two grid points!

Also, these methods must employ arbitrary parameters and smoothing ‘
functions to maintain grid quality. Qualitv is Aassessed in terms of
smoothness of the point distribution, skewness of grid lines, oroper -

clustering i{in high truncation-error regions, minimum point distribution

in low-error regions, etc. The disadvantage of wusing arbitrary
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functions is that they are often problem—dependent and have to be deter-

mined by trial and error.

The expense of performing the global adaptation is proportional to
the total number of points in the grid. We shall see that this expense

can be reduced by locally refining the grid.

1.2.2 Local Refinement Methods

The second c¢lass of adaptive grid techniques contains the 1local
refinement methods. Grid points are added to (or deleted from) the
global grid where some measure of the solution error is large (or
small). Since the regions of large error are usually localized 1in
space, the resulting refinement is applied locally. The solution 1is
recalculated on the new grid, and the refinement process can then be
repeated. Iterative improvement of the grid and solution effectively

equi-distributes the measure of the error.

There are two advantages of local refinement over the global meth-
ods discussed earlier. The locations of the existing grid points do not
have to be updated; only those of the added points need to be accounted
for. This lowers the overhead for performing the grid adaptation.
Secondly, since the existing grid points are static, noisy error mea-
sures can be used to cluster grid points without giving rise to the
instabilities of the moving-grid methods. Thus, the natural refinement
criterion, the truncation error, can be used as the error measure in

these methods.

Local refinement methods can be further broken into two categories,
depending on the way in which grid points are added. 1In the first cate-
gory, points are inserted or "embedded” into the existing grid structure
and a single grid covers the problem domain at any one time. 1In the
second cat-»gory, the refinements are "overlaid” on top of the base grid.
We next discuss some embedded mesh methods found in the literature,

followed by a discussion of some of the overlaid methods.

Dwyer et al. (1982) describe a local refinement method similar tn
their global method discussed in Section 1.2.1. The same refinement
criterion, equi-distribution of a linear combination of solution gra-

dient and curvature, was used for the local method.

10




In this method, an initial grid is specified and a solution is
calculated on it. Then, for one-dimensional problems, a grid point is
added between two existing points 1if the refinement criterion is viola-
ted. For two-dimensional problems on rectangular grids, they add a arid
line. (They can remove grid points or lines if the local criterion
falls below minimum specified values.) The solution 1is interpolated
onto the new grid points to provide an initial guess for solving on the
new grid. The procedure is iteratively applied until the maximum gra-
dient and curvature 1in the field fall below the maximum specified

values.

The method is applied to a one-dimensional, steady-flame problem

described by 72 ordinary differential equations. The grid points are

added in the flame-front region, where there are large changes in the
solution components. The adaptive calculation 1s seven times faster

than a uniform-grid calculation having similar accuracy.

The technique 1is also applied in two dimensions to a nonlinear,
elliptic problem. Since grid lines are inserted between points where
the criterion is violated, additional grid points are added where they
are not needed, decreasing the adaptive grid efficiency. 1In problems in
which the region needing refinement is long, narrow, and oblique to the

grid lines, the whole grid will be refined.

Murman and Baron (1983) discuss an adaptive, embedded mesh scheme
for the Euler equations to be used in conjunction with a multigrid
method. They do not recommend a specific refinement criterion, burt
suggest several possibilities, including solution gradient and second
derivative. Mesh cells are subdivided {f the refinement criterion is
exceeded. A pointer svstem similar to the type used in finite element
methods keeps track of storage 1loncations for solution values. The
authors point out the need f{sr maintainineg conservation and accuracy

everywhere.

Murman and Baron's method 1{s apnlied to one- and two-cdimensional
problems. Savings of a factor of 2-3 in computer time compared to a
uniform, fine-grid calculation are obtained. A disadvantage of the
method 1s that multiply connected, embedded meshes containing “holes”

can result. Reglions needing refinement should be contiguous and not

11
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have holes. The presence of a hole could arise from the use of an in-
ad~quate error indicator. Not refining a region that should be refined
may stall the error-reduction ability of an adaptive refinement process.
It would be safer to plug all holes. An additional disadvantage of the
method is the difficulty of vectorizing the algorithm due to the frreg-

ular data-storage technique.

Bai (1984) investigates embedded refinement using multigrid meth-
ods, as originally suggested by Brandt (1977). Wcrking with Poisson's
equation in two dimensions, Bai specifies local refinements a priori, so
that his method is not really adaptive. However, he states that imple~
mentation of automatic refinement 1s straightforward. As in the previ-

ous method, the grid is refined by subdividing mesh cells.

A procedure 1is derived for optimizing the grid refinement. The
goal 1is to minimize the solution error for a given amount of computa-
tional work. The criterion for refinement thus becomes a complex
function of an estimate of the local truncation error, a spatial error-
weighting function, and a function describing the computational work.
Bai also discusses the issues of interpolation and conservation at the

embedded grid interfaces.

Optimal refinement can be considerably more expensive for problems
more complicated than Poisson's equation. In these cases, it may be
more practical to simply search for a refinement that gives adequate
accuracye. Alternatively, a crude implementation of Bai's optimization
scheme could be implemented. Since multigrid methods are very effi-
cient, Bai's work 1s important; however, the development of practical

refinement and data-management procedures is required.

Brown (1982) discusses an adaptive grid method that is an exten-
sion of a technique described in Kreiss and Kreiss (1981). Two-point
boundarv-value problems for a system of singularly perturbed, linear,
ordinary differential equations are considered. The results are applied

to semi-discretized partial differential equations.

The solutions to singular perturbation problems admit internal and
boundary lavers. Brown develops a theory that facilitates adaptive
solution of these systems under certain constraints. It is shown that

the solution error can be reliably estimated in terms of lower-order

12
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divided differences, primarily approximations of the first and second
derivatives. These differences are used as error estimates to drive an

adaptive grid procedure.

The numerical method used is crucial to the success of this method.
It is well known that using central differences for these prohlems mav
produce solutions that oscillate wildly over the whole computational
domain 1if the mesh size 1s too large to resolve the thin boundarv and
internal layers. Use of first-order difference methods (upwind differ-
ences) gives good solutions outside these layers, but grosslv enlarges
the thickness of the thin layers. To obtain useful information from
initial coarse-grid solutions, it 1s necessary to use the first-order
methods. This prevents the unnecessary overrefinement that an oscillat-
ing solution would require. Higher-order differences can be employed
once the mesh size in the vicinity of the thin layers is small enough.
Brown therefore uses a hybrid scheme that smoothly switches between
central and upwind differences, depending on the local mesh size and the

resolution of the thin layers.

The method is demonstrated on one-dimensional, stationary, and mov-
ing shock problems. Results are also given for two-dimensional problems
in which the shocks are oblique to the coordinate system. A splitting
technique 1s used for these calculations, in which the one-dimensional
adaptive procedure 1s applied along the coordinate lines in each direc-
tion. A nonuniform distribution of grid points in the regions of the
shocks 1s generated by acaptive refinement. The resulting shock pro-

files are very sharp and accurate.

This method appears to be very promising, especially for shock cal-
culations. Further development mav be required to extend the method to
viscous flows. The notion of using difference methods that can generate
smooth solutions to provide useful information for further refinement is
an 1lmportant one for adaptive grid methods in general. A drawback of
the method is the nonuniform data structure that accompanies embedded

refinements.

We finally come to the overlaid type of local grid refinement.
This technique has been introduced and developed primarily by Oliger and

his co-workers Berger, Bolstad, and Gropp for the solution of hyperbolic
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equations. We next summarize the principles behind the method as elabo-
rated in Oliger (1984), We then follow with a summary of the applica-

tions of the method.

The primary goal of this solution-adaptive technique is to achieve
the desired solution accuracy at near-minimal cost. The cost includes
both computer and program—development expenses. To satisfy this goal,
plecewise regular grid structures were selected. More grid points are
used than in the global methods, but there 1s less overhead (computa-
tional work and storage) per point, due to the regularity of the re-
finement. The search for an optimal grid is abandoned in favor of a

good enough grid.

A second aim 1is to relate the grid to the desired accuracy. This
can be contrasted with the global refinement methods in which the ade-
quacy of the results is not addressed very well. This goal is realized
by basing the refinement on asymptotically accurate estimates of the

solution and truncation errors.

The procedure begins with the generation of a solution on an
initial coarse grid. The truncation ervor is then estimated using a
variant of Richardson extrapolation, which we describe later in more
detail. Points having large estimated error are "“flagged”. These
points are then separated into spatially distinct clusters which define
local refinement regions. These regions are then fit with local, over-
lapping rectangles of arbitrary rotation in a manner that minimizes the
size of the refined region. Each rectangle is given a uniform grid.
The initial and boundary values for these grids are interpolated from
the coarse grid. Each refined grid 1is treated independently and pos-—
segses 1ts own regular data storage. The solution 1s recalculated on
this new grid svystem, and the process can be repeated. New levels of
refinement are overlaid on the existing grid system. This {iterative
improvement of the grid and solution 1is repeated until the maximum
truncation error in the domain falls below a maximum specified value.

The overall result is an equi=-distribution of the error.

Gropp (1980) first demonstrated the feasibility of the technique
for a two-dimensional hyperholic problem. He used one level of refine-

ment. The solution is advanced from time ¢t to ¢t + dt on the coarse



grid. Mesh cells are then subdivided where the local gradient exceeds a
specified value. Values at time t are interpolated onto the fine mesh
from the coarse mesh. These are then advanced to time t + 4t on the
fine mesh. Coarse grid points underlying fine grid points are then
assigned the corresponding fine-grid solution values. The fine grid is
then discarded, and the procedure repeated again. In this way, the fine
grid follows moving regions of large gradients. Gropp's adaptive calcu-
lation is consistently twice as fast as a uniform-grid calculation hav-
ing the same accuracy, even though one third to one half of the region

is refined.

Bolstad (1982) extended the adaptive procedure to an arbitrary num—
ber of levels of refinement. He applied the technique to systems of
hyperbolic equations in one space dimension. Finer refinements are spa-
tially and temporally nested within the previous refinement. Refined
grids can be created, destroyed, merged, and separated, permitting the
refinement to follow moving discontinuities without actually moving each
grid. Local truncation error was estimated using Richardson extrapola-
tion in order to determine where refinement was required. The procedure
for solving and updating the grid refinement was similar to that used by
Gropp, except that it was generalized to an arhitrary number of refined

levels.

Bolstad made an adaptive calculation for the wave equation. The
exact solution was two counter—-streaming Gaussian pulses superimposed on
a sinusoid. The refinement followed each pulse as it entered the do-
main, merged, and separated from the other pulse. The method also per-
formed well for a shock-tuhe calculation. The method was evaluated by
comparing with results on uniform grids having the same mesh size as the
finest level of refinement in the adaptive calculation. The adaptive
calculation was 3-5 times faster., Additionally, there was a 50% savings

in storage.

Berger (1982) extended the adaptive method to hyperbolic equations
in two dimensions. The grid refinements are rectangles of arbitrary
orientation in space. At a given level of refinement, the rectangles
are allowed to overlap. The use of such rectangles allows the local
coordinate system to be approximately aligned with flow features, redu-

ces the size of the refined region, and requires very little overhead to
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maintain. The adaptive solution procedure was similar to Bolstad's.
Berger utilized nontraditional data structures to keep track of the var-
ious grids. We discuss them in Chapter 2; a detailed description can be
found in Berger (1983). The local truncation error was estimated using

Richardson extrapolation, and provided the criteria for adaptation.

The method was applied to linear and nonlinear problems in one- and
two-space dimensions. Adaptive computations ran 4-7 times faster than
uniform-grid calculations of similar accuracy. In Berger and Jameson
(1985), the method is applied to the Euler equations. Steady-state cal-
culations of transonic flow about airfoils ran faster than uniform—grid

computations by factors up to 20.

We can now summarize the advantages of the overlaid, adaptive-grid
refinement technique. The use of piecewise, uniform refinement provides
for efficient utilization of storage and processor time. Significant
speed-up in calculational times has been demonstrated. The method per-
mits the use of parallel computation. Use of rotated rectangles allows
the coordinate system to align with the flow and flow features. This
minimizes the numerical diffusion error that occurs when the flow is
oblique to the grid lines. Since all grids are uniform rectangles, the
user needs only to provide a single standard solver to the adaptive pro-
gram. Finally, the accuracy of a calculation is explicitly assessed and

controlled.

This adaptive approach 1is not without shortcomings. One disadvan-
tage is that the computer programing is much more complicated. However,
once the adaptive part of the program has been written, the flow solver
and boundary conditions can usually be changed quite easily. Another
disadvantage 1is that interpolation is required to communicate solution
information between grids. High~order accurate interpolation is desir-
able, but its implementation is cumbersome. Additionally, special care
must be taken with the treatment of internal boundaries, where it is

important to maintain accuracy and conservation.

Because of its favorable characteristics, we decided to applv the
overlaid, adaptive-refinement approach to elliptic flow problems. We
review Berger's method in detail in the next chapter. The chapter that

follows discusses how we applied the technique to our elliptic problems.
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Chapter 2

REVIEW OF BERGER'S METHOD

Overview

In this chapter, we review Berger's adaptive method in order to
explain this approach in some detail. The chapter also serves to high-
light the specific ideas used in the development of our adaptive method
for elliptic equations. A more complete description of the method can

be found in Berger (1982) and Berger & Oliger (1984).

Berger's method was developed for finite difference solution of
svstems of hyperbolic equations in one and two space dimensions, with
explicit time Adifferencing. It was designed for problems in which the
solutions are locally irregular, but the boundaries are simple. It does

not deal with complex geometry.

The grid is refined locally in space and time. The approach is to
generate independent, refined subgrids as needed to cover the irregular
region(s) of the solution. 1In two dimensions, the subgrids are rectan-
gles of arbitrary orientation. The solution on each subgrid is approxi-
mated by the same finite difference method as on the original (base)
grid. The regions Iin which the solution 1is {rregular change in time;
the subgrids are allowed to follow them. The algorithm makes no assump-
tions about the size or shape of refinement regions, nor their direc-

tions or speeds.

A description of the grid sgystem 1is given in the next section,
followed bv discussions of the adaptive solution procedure, the errnr
estimation and refined grid-generation techniques, and the treatment of
houndarv and initial values. We finish with a discussion of the data

structures.

2.2 Grid Descrintion

The initial, coarsest grid is specified by the user. This base
grid is denoted GO and remains fixed during the computation. The bhase

grid may be a single grid covering the computational domain, or it mav

be a union of several, possibly overlapping, component grids. If there
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are several components, a typical one is denoted Go j* The base grid
’

G0 is then the union of the component grids. Each component grid is

required to be uniform in some coordinate system. (A uniform, rectang-

ular grid has constant mesh spacing in the two coordinate directions.)

E W b Ay

Component grids are treated independently, each having its own
solution vector, storage area, coordinate system, etc. Because of this
independence, the algorithm is a domain-decomposition method. It per-
mits separate processing of each grid, including solution generation,

updating of boundary conditions, etc. Domailn decomposition also allows

P e e

separate parts of the domain to be approximated by different differen-
tial and difference equations although this was not done in Berger's
. program. This was done in Bolstad's work, however., This approach is

called zonal modeling in the engineering literature.

Figure 2.1 shows an example of a base grid made up of two component
grids, a curvilinear, boundary-conforming grid and a uniform rectangular
one. If the curvilinear grid is mapped to a computational space, both
grids can be uniform rectangles. Calculations on overlapping component
grids have been previously done by Starius (1977), Atta and Vadyak
(1983), and Dihn, Glowinski, and Periaux (1984).

Subgrids having smaller mesh sizes are generated during an adaptive
computation. They are overlaid on top of the coarser grid(s), covering
the regions needing refinement. In two dimensions, the subgrids are
uniform rectangles having arbitrary orientations. Using uniform grids
minimizes the storage required for grid point locations, allows the use
of more accurate difference formulas, and provides for efficient solu-
tion procedures. The advantages of the rotation have been pointed out

previously. Subgrids are also treated independently.

Subgrids are allowed to contain even finer subgrids. Thus, a hier-
archy of "levels” of grids 1Is constructed during the adaptation process.

The coarse grid, CO is at the level O in this hierarchy. Subgrids of

Gyo denoted Gl’ are at the level 1| refinement. Subgrids of G, at

the level 2 refinement are denoted Gy, and so on. Subgrids of Gk

‘ool Oy

are constrained to be wholly contained within Gk's boundaries. The

resulting arid structure therefore hecomes a nested sequence of finer

- 18
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and finer meshes. An example grid structure is 1llustrated in Fig. 2.2,

where a component grid of level k refinement 1Is denoted Gk §°
b

The mesh size for all grids on level k 1is specified as a constant
multiple of the mesh size on level k + !, called the refinement ratio.
Typical values are 2 and 4, although a value of 10 has been used in some

cases.

2.3 Adaptive Solution Procedure

There are three main tasks 1in the adaptive solution process:
(1) time advancement of the solution on the current grid, (2) error
estimation and refined subgrid generation, and (3) inter-grid communica-
tion. In this section we discuss the time—advancement method and how
the adaptive procedure 1is executed. Error estimation and grid genera-

tion are covered separately in sections that follow.

We describe the time—advancement procedure by first assuming that
we have an existing grid structure (e.g., the grid shown in Fig. 2.2).
Initial and boundary values are also assumed specified for each grid. A
time-explicit difference method is used to advance the solution one time
step. Because each grid 1is treated independently, it is merely neces-
sary to specify the order in which the ind%’vidual grids are advanced.

For implicit methods, a different technique must be employed.

The order of integration is related to the time step used for each
grid. The ratio of time steps for consecutive grid levels is set equal
to the refinement ratio, R, of the mesh sizes. This makes the ratio
of mesh size to time step, K, constant for all grids, and is approp-
riate for hyperbolic equations. Specification of different time steps
for each level provides additional efficiency, since time steps on

coarse grids are not limited by those on fine grids.

The order of integration becomes straightforward using a constant
K. For every time step on level 0O, the grids on level 1| are advanced

R time steps, ¢rids on level 2 are advanced R2

time steps, and so
on. The basic time unit {s one coarse grid time step. All zrids must
be advanced to the base grid's time before another base g¢rid step is

taken., Figure 2.3 illustrates this procedure in one space dimension and
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time, with R = 2, The order of advancement from coarsest to finest,
for one coarse grid time step, 1is as follows (reading from left to
right):

Gy, 1 62,1 Gy,1 G2,1

The error estimation and regridding procedures are the second major
tasks that are performed in the adaptive process. Every several base-
grid time steps, the error is estimated at all points in the grid. (The
interval between error estimates 1is specified a priori.) A new fine
grid can be created at this time. Initial values for new grids are
obtained by 1interpolating from the finest grids in the current grid
structure. Existing grids that are no longer needed can be removed by
releasing theilr data-storage 1locations. These operations produce the

adapted grid.

The last operation in the process provides the necessary communica-
tion between the grids, and consists of three sub-tasks. First, since
subgrids usually have boundaries in the iInterior of the problem domain,
boundary values have to be calculated for each. Values are obtained
from either an overlapping fine grid at the same level or from a grid at
the next coarsest level. Special care needs to be taken in the evalu-
ation of these values. A more detailed discussion of the treatment »:I

boundary values is given in a later section.

The second task is updating. Whenever a grid and its subgrid are
integrated to the same time, the solution at common points in the coarse
grid is replaced with that of the fine one. The purpose is to maintain
accuracy on the coarse grids and is sufficient because the time advance-
ment is explicit. Updating also provides the influence of the "inner”

fine grid on the "outer” coarse grid solution.

The last Iintercommunication task is averaging and is performed onlv
for overlapping fine grids at the same level., Averaging is reauired,

because solution values on two grids at the same level may differ in the
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overlapping region. The solutions on each grid in the overlap are re-

placed by the averaged values.

To summarize the adaptive procedure, the solution is advanced for a
specified number of coarse-grid time steps. The error i{s then estimated,
and the grid is adapted. The special grid intercommunication procedures
are performed during both of these processes. After the grid is adapted

and init{alized, the solution can then be advanced again.

2.4 Error Estimation

Subgrids are placed over regions that need refinement. As stated
earlier, a grid is refined where the truncation error is large. In this
method, a variation of Richardson extrapolation is used to estimate the
truncation error. In this section we show how the truncation error

estimate is calculated and point out the advantages of this technique.
We begin the discussion by first introducing some notation. Con-

sider a hyperbolic differential equation,

u, = L[u] (2.4.1)

where L 1is the spatial differential operator. A simple explicit finite

difference method for this equation is:

u(x,t+k) ~ u(x,t)
k

= Lh[u(x,c)] (2.4.2)

Here, Lh i3 the spatial finite difference operator for a grid with mesh

size h. This can be rewritten in a compact form as:
u(x,t+k) = Qh[u(x,t)] (2.4.3)

The truncation error for the difference method is obtained by substitut-
ing the exact solution to (2.4.1) into the finite difference equation
(2.6.2) or (2.4.3). 1If the exact solution is smooth in space and time,
the truncation error is:

ux,t4k) = 0, lu(x,0)] = k(k%a(x,t) + n¥b(x,0)) + ko(k Hen?™H)

(2.4.4)

= o+ ok 4 RTh
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where T is the leading order term. Note that that the order of
accuracy of the method in space and time are the same and equal to q.

Taking two consecutive time steps with the method gives
+
alx,t+2K) = Qlulx,©)] = 2t + ko(k¥ ) (2.4.5)

Let Q2h represent the same difference method as Qh except with mesh
size 2h and time step 2k. The truncation error for the 2h - 2k

method is:
u(x, e42K) = 0y [ulx, )] = 2k Lka)qa(x,t) + (Zh)qb(x,t)[
+ ko(k I ndth (2.4.6)
= 29(21) + ko(k¥ hepdth

Neglecting the higher-order terms in (2.4.5), subtracting (2.4.6) and
dividing by 2(29-1) gives:

02 fulx,t)] = Qy [u(x,t)]

= v+ okt (2.4.7)
2(2%-1)
(2.4.7) provides an estimate of the leading term In the truncation

error.

This is equivalent to advancing the solution two steps from time ¢t
with the standard method and comparing it with the solution obtained by
taking one double-step on a 2h mesh., This is illustrated schematic-
ally in Fig. 2.4 for a simple explicit method which uses u(xh,t),

u(x,t), and u(x+h,t) to evaluate u(x,t+k).

A major advantage of this technique is that the exact form of the
truncation error does not need to be known. For many differential equa-
tions, especially svstems, the exact truncation error can be verv com-—
plex and tedious to derive. The method 1is also independent of both
differential and difference equations and therefore can he apnlied to a
wide varlety of problems without difficulty, in contrast to global re-
finement techniques which use heuristic error measures that are problem—

dependent. The error estimation is also relatively inexpensive.
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When it is time to estimate the error, (2.4.7) 1is evaluated at

N every point in the grid. 1If the pointwise truncation error estimate 1s
greater than a prescribed value, the point 1s "flagged” to denote that
refinement is needed in its vicinity. Once all the local error estimates

have been calculated and checked, the collection of flagged points is

5 € a2 &

then processed to generate the next level of refined subgrids.

2.5 Refined-Grid Generation

2 This section describes the procedure for generating refined grids
to enclose a collection of flagged points. We discuss only the proce-

dure used in two dimensions, as it is trivial in one dimension.

Grid generation is done in two steps. Flagged points are separated

or clustered 1into spatially distinct groups. Individual clusters are

hy then "fit" with the rectangles of arbitrary orientation. The "goodness
of fit" 1is evaluated for each rectangle. If a rectangle has a bad fit

(encloses too much of an area not requiring refinement), it is broken

into subclusters that are refit with new rectangles.

Clusters are created with an algorithm which requires all points in
a cluster to be near neighbors. A new cluster is begun by assigning one
" point to it. Other points are added to the cluster if their distance
5 from any point in the cluster is less than a specified value. The in-

tercluster distance is a small integral number of mesh widths.

Each cluster is then fit with an ellipse determined in the follow-
ing manner. Let matrix A be the n x 2 matrix of the coordinates of
the points relative to their mean (xm,ym), n the number of points 1in

- the cluster, and

x Then the 2 x 2 matrix M = ATA is:
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and contains the second moments of the points about their mean. M is

symmetric and has real eigenvectors which are easily calculated and de-

St an 4 s g o o

fine the major and minor axes of an ellipse. The sides of the rectangle

are determined by requiring that all points be contained in irt.

N g

The measure of goodness of fit 1is the ratio of the number of
flagged points to the total number of coarse grid points enclosed by the
rectangle. If the ratio is too small, the cluster is then processed -4

into subclusters using a more sophisticated routine. We do not describe

this method, since we have found the nearest-neighbor algorithm to per-

form sufficiently well for elliptic problems.

Mt o L e e o o

Before closing this section, we mention that this grid-generation z
technique can be easily extended to three dimensions. The nearest-
neighbor algorithm would be unchanged. M would become a 3 x 3 matrix

describing an ellipsoid.

2.6 Boundary Values for Refined Grids -

Special care needs to be taken in specifying boundary values for
the subgrid boundaries that are interior to the problem domain. Fine-
grid boundary values are generally interpolated from the coarse-grid
solution; accuracy must be maintained at the internal grid houndarv.
For time-dependent problems, the {interpolated values must not destrov
the stability of the time advancement. If the differential equation
represents a conservation law, it is also desirable to maintain conser- d
vation at the boundary. We discuss how each of these concerns was o

addressed by Berger's method.

In one dimension, the boundaries of the fine grids are made to

coincide with coarse-grid points. When both coarse- and fine-grid

RIS .f

solutions have been integrated to the same time, there is no ambiguitv

in the choice of fine-grid boundary conditions. However, the fine grid

also requires boundary conditions at intermediate times, since it 1is

A
PN RS
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advanced R times for each advancement on the coarse grid. Berger used
linear interpolation 1in time, whose accuracy 1is consistent with the
time-difference method. Higher-order interpolation would have required

the storage of solution values from previous time steps.

In two dimensions, the interpolation was bilinear in space and lin-
ear in time. This method was found to provide sufficient accuracy, in
part because internal boundaries were normally located where the solu-

tion was slowly varying.

Berger analyzed the stability of the time interpolation. With the
Lax-Wendroff difference method applied to the linear wave equation in
one space dimension, it was shown that these boundary conditions were
stable. Numerical experiments with other hyperbolic equations in one

and two dimensions showed no loss of stability.

For hyperbolic conservation laws in one dimension, it is well known
that difference schemes that exactly conserve fluxes of the dependent
variables can bhe guaranteed to converge to the correct shock speed and
jump condition. Therefore, conservative methods are commonly used in
shock calculations. When an internal grid boundary is introduced in the
domain, special treatment must be applied to grid points along the
boundary in order to maintain conservation, especially if a shock is
located in the vicinity of the boundary. To preserve conservation, the
flux into the grid boundary should exactly equal the flux out of 1it.
Conservation can be imposed in two ways. Either the boundary conditions
are speciallyv evaluated, or the difference equations for the boundary

points are modified to preserve the correct flux balance.

Berger derived conservative and stable boundary-difference formulas
for use with the one-dimensional wave equation. It is not clear whether
these conditions were used; however, it was not critical for the calcu-
lations shown, since shocks were always located away from internal grid

houndaries.

Analysis was not done for two dimensions; due to the rotation,
coarse and fine grid points will not coincide. Berger points out thatr
spatial, bilinear interpolation 1s not conservative, However, her

results indicate that accuracy was maintained.
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Finally, we note that it would be difficult to implement modified

boundary-difference equations for arbitrarily rotated grids. Conser=
vative difference equations using fine and coarse grid points would be
difficult to construct, given the arbitrary rotation. It 1is more
straightforward to interpolate the boundary values 1in a conservative

manner.

2.7 Data Structures

Because of the complexity of Berger's system of grids, non-standard
data structures were used to describe the grid hierarchy and to store

grid-solution vectors. We describe these structures in this section.

The purpose of the grid data structure is to describe each grid and
its relationship to other grids. For example, the information stored in
the data structure determines which coarse grid to interpolate boundary
conditions for a fine grid, the order of integration of the grids, where
the solution vector for a given grid is located, etc. The grids are or-
ganized in a tree-like structure. An illustration of a two-dimensional
tree structure is given in Fig. 2.5. The tree is constructed hy keeping
track of the local relationships that are indicated by the double arrows
in the figure.

Before describing the tree, we Iintroduce some definitions. Sub-
grids of the same parent coarse grid are called sihlings. Subgrids are
called neighbors 1f they are at the same level of refinement but have

different parents.

Each grid 1is treated as a node in the tree; 1its description is
stored as a fixed-length vector. To distinguish them, the nodes are
numbered. They contain a complete description of the grid; information

stored includes:

1, Grid location (coordinates of its corners).
2. Numhbher of grid points.

3. Mesh sizes.

4. Level in tree.

5. Parent.

6. Offspring.
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7. Previous neighbor on level.
8. Next neighbor on level.
9. Time to which grid has been integrated.

10. Index in main storage array where solution 1s stored.

A parent can have more than one offspring, and a subgrid can have
more than one parent (for example, G3’1 in Fig. 2.5). Since node
vectors contain a fixed number of elements, a linked list is used for
data storage if a grid has multiple relatives. In that case, the node
entry for the parent or offspring points to the beginning of the string
of relatives that is located in the linked 1list. A description of the
linked list and its implementation can be found in any standard computer

science text on data structures.

This grid structure makes feasible an otherwise unwieldy data-
management problem and is partly responsible for the overall efficiency
of the adaptive method. The structure is dynamic in that grids can be

added or deleted from the tree during program execution.

The storage of grid-solution vectors also must be dynamic. Grids
created during the adaptive process require a location to store solu-
tions. Also, the area occupied by solutions for grids that are de-
stroyed should be reclaimed for future use. If this is not done, the
program's memory requirements could exceed the computer's limit during a
run. FORTRAN does not permit dynamic dimensioning of arrays, so a

special data structure to handle the solution vectors was developed.

A single, large, global array 1is allocated for storing all solu-
tions and any temporary work space that is required. When a grid is
created, space is reserved in this array for its solution. The begin-
ning address in the array is saved in the node vector. When a grid is
destroyed, its space 1is reclaimed. Because of the dynamic nature of the
creation and destruction of grids, storage in the global-solution array
will not be contiguous. The location and length of free blocks in the
array is maintained in a linked list. When a grid is created, the list
ls searched to find an appropriate location to store the solution. When

a grid {s deleted, its solution storage area is added to the list of

free blocks.
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Chapter 3

STRATEGY FOR ELLIPTIC EQUATIONS

3.1 Overview

In this chapter, we describe how Berger's refinement approach is
applied to elliptic flow problems. The differences prevent direct ap-
plication of Berger's method. Our strategy was to implement the fol-
lowing two features of the method:

° overlaid, locally uniform grid refinement consisting of rotated
rectangles, and

L] refinement regions defined by Richardson error estimates.

Thus, Berger's grid-generation algorithms and data structures, described

in Chapter 2, are used in our program,

In the next section, we discuss how the characteristics of elliptic
equations influence the choice of the method. The differences between
elliptic and hyperbolic flows are highlighted. We then develop two
adaptive strategies, active and passive, Discussions of the error-
estimation methods and treatment of initial and boundary conditions for

refined grids follow.

3.2 Influence of Elliptic Equations on Adaptive Approach

The flows we are interested in are governed by the steady, incom-
pressible, laminar or Reynolds—averaged Navier—-Stokes equations. These
systems are elliptic 1in contrast to the Euler equations, which are

hyperbolic, and the boundary-layer equations, which are parabolic.

Elliptic flows are characterized by thin regions (boundary and
free—shear lavers), in which the velocity has a rapid variation in the
direction normal to the main flow direction. This contrasts with hyper-
bolic flows which contain shocks, in which the rapid variation occurs
over infinitesimally small regions aligned with or oblique to the main
flow direction. Within shear layers, viscositv or turbulent diffusion

is important.
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Outside the thin shear layers (TSLs), the velocity varies smoothly,
the effects of viscosity are small, and the flow is determined primarily
by a balance between inertia and the pressure gradient. Viscosity can

often be completely neglected in these regions.

Fine ¢grids are needed in the vicinity of TSLs; coarser grids suf-
fice for the onter flow. The locations and sizes of TSLs are usually
not known in advance, and may depend on the Reynolds number. An adap-
tive method must bhe able to "recognize” the TSLs so that the refinement

grids can be correctly located.

Elliptic flows may also have recirculating regions, 1in which the
local flow direction is opposite to the main flow. Due to recirculation
and the long-range effects of pressure, influences may be felt both
upstream and downstream. In hyperbolic and parabolic flows, influence

occurs only in the downstream direction.

Because 1Information propagates differentlv, different solution
methods are used for each type of flow. For hyperbolic and parabolic
flows, the solution 13 generated by marching in the flow direction.
With elliptic equations, large regions of the flowfield require simul-
taneous solution. This requires modification of the adaptive method

used for hyperbolic equations.

3.3 Two Adaptive Strategies

In this section, we develop two methods; each is applicable to a
class of elliptic flows. Overlaid grid refinement {s used 1in both
cases; they differ primarily in how the solutions on the various grids
rerlate. Also, each uses a different error criterion. The classifica-
tion of flows 13 discussed first. We then outline the two adaptive
strategies and thelr solution and error—-estimation procedures. The

methods are described in detail in later sectiors.

When the shear lavers are thin, the outer flow depends only weakly
on the properties of the shear lavers. The flowfield in each region can
be studied independently to a good approximation (Mehta, 1984). Such a

flow is described as having a weak viscous—-inviscid interaction.




Eablat ‘el SallAal A A Nl Said ey “al ol Sado g

When shear layers are not thin, there is stronger coupling between
the inner and outer flows. Local effects within the shear layer may
then have long-range, multidirectional influence. The coupling 1is
provided hy the pressure gradient and recirculation. These flows are
sald to have strong viscous-inviscid interation; the inner and outer

regions cannot he analyzed independently.

Consider a concrete example — incompressible, viscous flow over an
airfoil at a high Reynolds number. So long as the boundary layer re-
mains attached, it 1is thin and exerts a weak influence on the outer
flow. The latter can be accurately calculated by either neglecting the
boundary layer or using a crude approximation to it. Given an accurate
outer flow, the boundary layer can be calculated to a good approxima=-
tion. However, if the boundary layer separates, it can thicken consid-
erably and there may be significant modification of the outer flow. In
this case, the two parts of the flow field must be calculated simul-

taneously.

Different solution—adaptive strategies were developed for these two

types of interactions.

For flows with weak interactions, the outer solution does not need

to be recalculated, as the accuracy of the calculation of the shear
layer is improved through grid refinement. The “passive” adaptive

method 1s formulated to take advantage of this.

In the passive scheme, an initial calculation 1s made on a coarse
grid and its error is estimated. Refined grids are then constructed so
that they enclose the inaccurate region(s). Care is taken to ensure
that their boundaries be In accurate regions, so that accurate boundary

conditions can be taken from the initial solutionm.

Solutions are then calculated on the refined grid regions, and
thelr errors are estimated. If necessary, a new level of refined grids
is created. The procedure 1s repeated until further refinement 1{s no

longer necessary.

At any step, the solution is calculated only on the most recently
created, finest level agrids. The outer solution is never recalculated;

it assumes a “passive” role in the adaptive process. Since the outer

33




e s 4 42

-‘-W.,').‘

solution 1is not recalculated, its error, rather than the truncation
error, must he used as the basis for a refinement criterion. This is an

outline of the passive scheme; details will be given later.

For flows with strong interactions, the inner and outer solutiouns
have to be calculated simultaneously. Improving the solution in the
shear layer changes the flow in the outer region. The "active” scheme

is formulated for these flows.

In the active scheme, an initial solution 1s calculated on a coarse
grid, as 1in the passive method. Since the initial grid 1is coarse, the
strong interaction causes the outer solution to be inaccurate. The
solution is likely to be inaccurate everywhere, so the solution error is
not a good indicator of where refinement 1s required. For this reason,
the local truncation error is used as the basis for the criterion for

refinement in the active scheme.

Refined grids are constructed to enclose regions of large trunca-
tion error. The coarse-grid solution provides boundary conditions for

these grids, and the solution is calculated on them.

However, the coarse grid solution has to be recalculated to account
for the change in the inner solution. This is done by modifying the
coarse-grid equations to account for the improvement provided by the
fine grid, then recalculating the coarse-grid solution. New fine-grid
boundary conditions are obtained from the new coarse-grid solution, and
the fine-grid solution recalculated. This procedure is repeated until
the solution no longer changes on either grid. In this method, the

coarse grid "actively"” participates in the solution procedure.

The choice of which strategy to use, active or passive, depends on
the strength of the coupling between the flow within the TSLs and the

outer flow. For simple flows, the strength can be determined.

For flows along solid surfaces, the coupling is due to the dis-
placement of the outer flow by the bhoundary layer. The strength of the
interaction can be quantified. This was done for the developing bound-
arv layer in a plane channel (shown in Fig. 3.1). We outline the analv-

sis here; details are given in Appendix A.
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The velocity V0 in the inviscid core region can be related to the

*
displacement thickness, 6*. Let the change Iin § be:

a8* = (x-1)8"
where K 1s a sensitivity parameter. On a coarse grid, the boundary
layer may be smeared to twice its actual size, K = 2. Figure 3.2 shows
*
the relative change in V_ as a function of § /L for XK =2 and 10,

o
where L 1is the channel width.

The relative change in V, should be no greater than the maximum
allowable error. For K = 2 and maximum allowed relative error, 0.l%,
the displacement thickness should be 6*/L < 10-3. At larger 6*/L,
the coupling 1s stronger. The passive method should be used for

- *
6*/L < 10 3; the active method is required for larger 6 /L.

This concludes the outline of our adaptive strategies. To summa-
rize, we have shown that elliptic flows having strong and weak viscous-
inviscid interactions require different adaptive strategies, and we have

developed these strategies.

In the next two sections, we describe each strategy in more detail.

3.4 Passive Method

3.4.1 Strategy

In this section, we describe the algorithm for the passive strat-
egy, which is applicahle to flows having weak viscous-inviscid interac-
tions. We also present some theoretical results that justiry the

technique.

The passive method is begun with the calculation of a converged
solution on the coarse grid. The error 1in this solution 1is then
estimated, using the method described below in Section 3.7. Regions
having large estimated solution error are fit with refined grids, as
described in Section 2.5. Boundary conditions and initial guesses for
refined grids are 1interpolated from the coarse-grid solution. The
solution 1is then calculated on all newly created refined regions (see
Fig. 3.3). A special procedure is required to calculate the solution on

a set of overlapping grids; it is described in Section 3.6.
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The solution is not recalculated outside the refined regions 1in
this method. Boundary values for the refined region remain fixed during
the computation. For safety, each newly created rectangle contains a
buffer zone, which 1s usually one or two coarse mesh widths wide on all

sides.

After the solution and its error estimate have been comouted,
refined grids are generated. These grids usually lie within the bound-
aries of the previous grids, but they are not required to do so. Bound-
ary conditions are taken from the next coarsest grid on which data are

available.
Thus, the passive solution method is described by:

(0) Set up base grid, G ; k = 0.

o’
(1) Calculate solution on G,.

(2) Estimate solution error on Gy.

(3) Check for convergence.

(4) 1If converged, stop; otherwise continue.
(5) Generate refined grids, Gy,.

(6) k =k +1; go to (1).

Convergence 1s achieved when the estimated solution error (maximum abso-

lute value or rms) falls below a specified value.

3,4.2 Summary of Theoretical Results

Theoretical justification for this solution technique can be found
in analyses of one-dimensional bhoundary-value problems. We shall summa-

rize these results.

The solution to the two-point boundary-value problem for the ordi-

nary differential equation:

-ey” + p(x)y' + q(x)v = f(x)
y(0) = Yo o y() =y (3.4.1)
p(x) > 0 a(x) > O

36



-
3
-

where € > 0 1s a small parameter, has a boundary layer of thickness

O(E) at x = 1.

The second-order central difference approximations are:

Y(XJ+1) = y(xj-l)

vj - (3.4.2)

Y(fi+1) - Zy(xj) + y(xj—l)
3 2

where h 1is the mesh size, x5 = (j=1)h, and 1 < j <N

Numerical solution of problem (3.4.1) using the approximations
(3.4.2) can be grossly inaccurate everywhere if the bhoundary layer is

not resolved, i.e., if € < h.

As an example, consider (3.4.1) with a =f =0, p =1, u(0) =0,

and u(l) = 1. The exact solution is:

- 1= exp(-x/e)
y(x) Ty (3.4.3)

Dorr (1970) showed that, for fixed h and even N, a central differ-
ence approximation has the solution:
1 . .
NeT j even
lim y(x,,e) = (3.4.4)

R
o -= ;3 j odd

One~sided (upwind) differencing approximates the first derivative
by:

yj . Y(xj) ; Y(xj_l)

(3.4.5)

Using upwind differences for the first derivative but retaining second-
order differences for the second derivative gives the solution (Il'in,

1969):

y(xj) - — (3.4.6)

- .
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The solution (3.4.6) behaves like the exact solution (3.4.3) away from

x = l. However, the boundary layer 1s several mesh widths thick. Thus,

it is smeared unless h < e, 1i.e., unless the grid is find enough.

Kellog and Tsan (1978) derive error bounds for solving (3.4.1)
using upwind differencing. Their results show that the error in the
boundarvy laver does not pollute the solution away from x = l. For our
adaptive method, this means (at least for this problem) that we do not
have to re-solve the problem on the coarse grid as the boundary layer is
refined, if upwind differences are used. Our experience shows that the

technique works in both one and two dimensions (see Chapters 4 & 5).

For p < 0, (3.4.5) must be replaced by:

yj Y(xj+1)h- Y(xj)

(3.4.7)

3.5 Active Method

The active technique 1is used for problems with strong viscous=-
inviscid interactions. We describe the active algorithm in this sec-

tion.

In this strategy, the grid-refinement process is similar to the one
used in the passive strategy, with two major differences. First, the
solution is 1iterated over all refinement levels after a new level of
grids has bheen added. Second, the refinement is based on local trunca-
tion error estimates rather than solution error estimates (cf. Section
3.3). The method used to estimate the local truncation error is given

in Section 3.7.

Because the coarse solution is updated in the active method, we do
not need to be as conservative in refining the grid. Thus, the error
tolerances used to define the refinement regions may be larger, and

huffer zones for refined grids may be smaller.

Consequently, an active calculation generates smaller refined grids
than a passive calculation of the same problem. However, the active
calculation may not be more efficient, since additional work is expended
in updating the outer solution. The relative efficiency of the two

methods depends on the strength of the coupling between outer and inner
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. solutions. The passive method is better for weak coupling, the active
method for strong coupling. It is difficult to determine a priori which
method is more appropriate for a problem with an intermediate-strength

coupling; it 1Is safer to use the active strategy in such cases.

We shall describe the active method for generating the solution on

Pl A A

the two-level svstem shown in Fig. 3.4. Extension to more levels is

straightforward.

Assume we have the differential equation (written in operator
form):

Lu = f (3.5.1)

on the domain, Q, with appropriate boundary conditious. L 1is the

differential operator.

We want to solve (3.5.l1) using the two—~level grid svstem indicated
in Fige. 3.4. The coarse grid G, covers Q, and has mesh size H.
The fine grid Gl covers Ql and its mesh size 1s h. Note that

H = Rh, where R 1is the refinement ratio.

We use the same difference approximation on both grids; only the
mesh size differs. The approximation on the conarse grid is represented

as

LHUH = f (3.5.2)
and on the fine grid as:

Lhuh = f (305.3)

We want the solution to satisfy the fine grid approximation on Q) the
coarse grid approximation on QO - Qy, and the solutions on the two

grids shonuld agree at common points, i.e., on Q- X

In other words, the solution should satisfy:

; Lyuy, = £ on  Q (3.5.4%a)
j LHUH = f on Qo - QI (3.5.4b)
o [)
- Uy = uy on Ql (3.5.4¢)

39




A 'l'l '.'It' s

The last condition requires that the coarse grid equations be modified
in @;. Equations (3.5.4b) are solved on R, = Ql' while the equa-

tions:
L'HUH = LHuh (3.5.5)

are solved on Qq. The terms on the right—-hand-side are the "coarse
grid corrections terms”. Solution of this equation gives the desired

Assuming that the grids have been selected, the following procedure
is used to generate the solution. An 1initial coarse grid solution is
first calculated on the entire domain, i.e., LH“H = f 1s solved on
Qo. Boundary conditions for the fine grid are interpolated from this
solution, and a fine-grid solution is calculated. The coarse grid cor-
rection terms are then calculated, using the current fine grid solution.
The modified coarse grid equations are solved, boundary conditions are
then interpolated for the fine grid, the solution calculated on the fine
grid, and so on. Convergence 1is achieved when the interpolated fine

grid boundary conditions no longer change.
Thus, the active solution algorithm is:

(0) Calculate initial coarse grid solution; solve:

o
LHUH = f (on Qo) ; m=1
(1) Update boundary values for G1 by interpolating solution on
GO:
m m-1
u, (¥, ) ug o (vy)

(2) Check for convergence, e.g.,
m m—-1
maxluh(yl) - uy (Yl)' < ¢
1
(3) 1If converged, stop; otherwise continue.

(4) Calculate fine grid solution; solve:

m

Lhuh = f (on Ql)

Calculate coarse grid correction:
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(6) Calculate coarse grid solution; solve:

(7) Go to (1),

Corrections are applied at coarse grid points internal to the fine
grid. Coarse-grid points lying on the fine grid boundaries are not
corrected, permitting the solution on the fine grid boundaries to change

as the solution converges.

For one-dimensional problems, calculation of the correction 1is sim-
ple, since coarse and fine grid points are coincident., With rotated
grids in two dimensions, the fine grid solution has to be interpolated
to evaluate the correction terms. This is done as follows. The coarse-
grid difference approximation (3.5.2) at a point (i,j) on a uniform

rectangular coarse grid, G can be written:

0,

H H H
Lty o IO PR S PO FIR R TR LYo () PR
i (3.5.6)
H : H
oy lugd g * el iga

for the five—=point stencil shown in Fig. 3.5. We have assumed that the
equation Is linear and the coefficients a, b, ¢, d, e are known, for
the purposes of illustration. (The procedure 1is equally applicable to
nonlinear equations.) The correction terms in (3.5.6) are formed by
replacing the uH's in the stencil by the corresponding fine grid

values, l.e.:

H H q
Lgup| = aggledyy + oyl * epy(wdioy
(3.5.7)

H H
gl i *oegledig

The location of the coarse grid point (1,j) determines which solution

values (coarse or fine) are used. Four cases are indicated in Fig. 3.5.




In case (i), all five coarse grid points are internal to the fine grid,
Gl; the fine grid solution is used at all five points. 1In the second
case, (i+l,j) and (i,j-1) 1ie outside the fine grid. The coarse
grid values are used for these, the fine grid, for the other three. In
cage (iii), the point (i,j) 1lies on the houndary of Gy. The correc-
tion term is not needed here nor for case (iv), for which the stencil is

completely outside the fine grid domain.

This concludes our discussion of the active solution method for the
two-level grid system; the method is easily generalized to more than two
levels. Correction terms are apnlied on grid Gy if there is a finer
grid Gk+1' However, the solutions on the various grids are generated
successively, going from coarsest to finest aad back again., One itera-
tion is defined as solving on the grids in the order:

ese G

S1s Gz' e kaax’ kaax'l’ 0

where Gk is the grid on the finest refinement level. This "V”
max

sweep pattern is also used in multigrid methods.

To summarize, the major difference from the passive method is that,
in the active method, information is passed from the fine grid to the
coarse grid and the solution is generated on both grids simultaneously.
Also, the truncation rather than the solution error is used to define

the refinement regions.

3.6 Solution on Overlapping Grids

On a given level, Berger's method may generate overlapping grids to
enclose a cluster of flagged points. An example having two such grids

is shown in Fig. 3.6.

Assuming that boundary conditions are specified, except in the
overlap region, the problem is to solve a houndary-value prohlem on an
irregular domain. A numerical version of the Schwarz alternating
method, outlined bhelow for the case of two rectangles, is used; it can

be extended to more rectangles.

The problem domain, Q, 1s composed of two overlapping rectangular

subdomains, @, and  Q,, as indicated in Fig. 3.6. I and T,
42
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denote the boundaries of the two rectangles; Y1 and Y, are their

internal boundaries.

Boundary conditions are specified on the external boundaries,
(I‘i - Yi)’ i = 1,2, The initial conditions on the internal bound-
aries, Y|, are guessed (or interpolated from a coarse grid solution)

and the following algorithm is carried out.

(1) Update internal boundary values on Y; from the solution on
Ty: u?(yl) = ug-l(YZ). This usually requires interpolation.
(2) Solve for u?(x,y) (on Qp).
(32) Update internal boundary values on Yy u;(yz) = UT(YI)’
again by means of interpolation.
- (4) Solve for ug(x,y) (on 32).

) (5) Check for convergence, e.g.,

n n-1
maxlui(Yi) uy (Yi)’ < € 3 i=1, 2
Yy
(6) 1If converged, stop; otherwise go to (1).
The Schwarz altermating method has been analyzed for simple ellip-
tic equations (including Laplace's and Poisson's) on unions of simple

subdomains, Some of the relevant results are summarized next.

The technique was originally developed to prove the existence of
continuous solntions to the Laplace-Dirichlet problem on 1irregular
regions. (See Stoutemyer (1972) for a review of the early literature.)
However, assuming the existence of a continuous solution, the conver—
gence of the discrete solution can be guaranteed for certain classes of
problems. Miller (1965) shows that two additional conditions are suf-

ficient for convergence. They include:

(1) the discrete approximations must converge to the continuous
solution as the mesh size goes to zero;

(2) subregion approximations must satisfy the maximum principle on
their respective domains (i.e., the solution error on each
subregion must be less than the error on the internal bound-

aries. This condition 1s satisfied by many elliptic equa-

tions.)
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Miller showed that, at the ath iteration, the error on the internal

boundaries converges linearly:

Heglly, € alleglly 5 1=1,02

where l|~||Y denotes the maximum value along the boundary Yi» and
[q] < 1. Convergence can be accelerated using standard techniques,
e.g., Aitken's method (see Smith, 1978), SOR (successive overrrelaxa-
tion), etc. The magnitude of q 1s problem—dependent; it depends on

the amount of overlap, the geometry of the subdomains, etc.

Miller also analyzed the case 1in which the numerical solution on
each grid 1s not carried to convergence at each step. He found bounds
on the error made on the internal boundaries in terms of the error at
internal points and thus established stability. However, the conver-
gence rate could not be determined, since 1t depends on the numerical
method and the degree of solution convergence on each subregion. All of

Miller's results apply to both linear and nonlinear problems.

Rodrigue and Simon (1983) analyzed a method for solving elliptic
equations on multiprocessor computers. They decomposed the domain into
subregions, each of which was assigned a single processor. The Schwarz
alternating procedure was used to compute the solution on the complete
domain. The method was recast as a matrix problem so that classical
techniques of acceleration could be applied (see e.g., Hageman and
Young, 1981). For linear problems, they showed that the procedure is
equivalent to the block Gauss-Seidel iterative method. Numerical
experiments with Laplace's equation showed that the convergence rate

increased with increased overlap area.

Tang et al. (1985) analyzed the Schwarz method for Poisson's
equation in n-dimensions when the problem domain is a line, rectangle,
or box in 1-D, 2-D, and 3-D, respectively. The domain was composed into
an arbitrary onumber of strips, each having the same size and amount of
overlap. The convergence rate was linear, but depended on the overlan
area and the number of strips. SOR applied to the internal boundarv
values was shown to sneed up conversence. Formulas were given for the

optimum relaxation factors. Numerical results agreed with the theory.

44

e S e T

1
|




N
-
A

Kang et al., (1985) consider the Schwarz alternating procedure with
multiple subregions on parallel computers. They demonstrated conver-
gence independent of the order of solution on the subregions. They also

showed that an energy norm of the error monotonically decreases.

A practical application of the Schwarz method is given in Atta and
Vadyak (1983). Transonic external flow calculations were made using
overlapping, three-dimensional grids. Two overlapping component grids
were used. Multivariate quadratic interpolation was used to update
internal boundary values. Starting from an initial specified field,
each grid was iterated a fixed number of times before boundary values
were transferred. Convergence was achieved after 10-15 Schwarz itera-

tions.

3.7 Error Estimation

In the passive technique, we need to determine where the coarse
grid solution 1is accurate. We keep that part of the solution, and

refine and re-solve only where the error is large.

In strongly coupled problems, the solution, or global, error is
spread over the domain by convection and diffusion. Consequently, it
may not be a good 1indicator of where grid refinement is required.
Therefore, in the active method, the local truncation error 1is used to

define refinement regions.

In this section we present the methods used to estimate the solu-
tion and truncation errors. We then discuss how the two errors interact

in elliptic flows.

We use a form of Richardson extrapolation to estimate both types of
error. This technique assumes that the solution error can be expressed

as a Taylor series
e(h,x) = u(0,x) - u(h,x) = hPF(x) + hiG(x) + ... (3.7.1)

where u(0,x) is the exact solution, h the mesh size, and p the
order of the method (p = 2 for second-order methods). This expansion
is valid for smooth solutions with several continuous derivatives -- a

condition that 1s satisfied by all elliptic flows.
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If we double the mesh size (for both coordinates in two dimensions)

and calculate another solution, the error becomes:

e(2h,x) = u(0,x) = u(2h,x)
(3.7.2)
= 2PnPF(x) + 2%96(x) + ...
Subtracting (3.7.2) from (3.7.1) and dividing by gives an

estimate of the solution error:

u(h,x) = u(2h,x)
2P -

;(h,x)

(3.7.3a)
29 -

2P -

= hPr(x) + h <

> G(x) +

Comparing (3.7.1) with (3.7.3a), we see that:
e(h,x) = e(h,x) + 0o(h?) (3.7.3b)
so the estimate is accurate to order gq.

Next we derive the truncation error estimate. In operator form,

the difference method 1is:
Lh[u(h,x)] = f (3.7.4)

where L, 1s the difference operator. The truncation error is defined
as the residual obtained by substituting the exact solution of the dif-

ferential equation, u(0,x), into the difference equation, i.e.,:
t(h,x) = Lh[u(O,x)] - f
= L [u(0,x)] = Ly [u(h,x)]
If Ly is linear, the relationship between solution and truncation
errors is obtained by combining the defimitions (3.7.1) and (3.7.5):

t(h,x) = Lyle(h,x)] (3.7.6)

Consequentlv, for linear problems, the solution error estimate,
(3.7.3a), can be substituted into (3.7.6) to yield an estimate of the

truncation error:

T(h,x) = L [e(h,x)] (3.7.7)
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The accuracy of this estimate 1is found by inserting (3.7.3b) into
(3.7.7):

T(h,x) = Lyle(h,x) + o(h?:]
(3.7.8a)
= t(h,x) + L [0(aD)]

th

Since L, 1s a difference approximation to an r order differential

operator, it multiplies function values by terms as large as h~F.

Therefore:
T(h,x) = t(h,x) + o(nI"T) (3.7.8b)

so that this estimate is accurate to order (gq=-r). Comparing this with
(3.7.3b), we see that solution error estimates are more accurate than

truncation error estimates.
For nonlinear problems, we use (3.7.3a) to compute:
u(0,x) = wu(h,x) + e(h,x) (3.7.9)

which is used in place of the exact solution u(0,x) in (3.7.5) to give

the truncation error estimate:
T(h,x) = Lh[3<o,x)1 - f (3.7.10)

In practice, to estimate the error, the mesh size 1is doubled in
both directions and a solution is calculated on the 2h grid for use in
(3+.7.3). For the passive method, the error is estimated only on the fin-
est level at each adaptive step. For the active method, all grid meshes
are doubled, and an active solution is calculated on the 2h grid sys-

tem.

Before closing this section, we further discuss how the solution
and truncation errors interact. We first derive a formal relationship

and then give a phenomenological interpretation.
Consider the linear, elliptic differential equation:
Lu = ¢ (3.7.11)
and its solution:

u = L7lg (3.7.12)
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where L 1s the differential operator and L1 represents its Green's

function,

Providing L, can be inverted, from (3.7.4) we can also write:
u(h,x) = Lgllf] (3.7.13)

Noting the similarity between (3.7.12) and (3.7.13), Lgl can be
interpreted as a discrete Green's function (Gladwell and Wait, 1979).

We can also invert (3.7.6):
e(h,x) = Lil{e(h,x)) (3.7.14)

The numerical approximation (3.7.4) introduces the truncation error Tt
(3.7.14) indicates how T is converted into the resulting solution
error. Note that the solution error is reduced by reducing the trunca-

tion error, i.e.,, by refining the grid.

We give an 1interpretation of how the error gets distributed in

elliptic flows. Consider the linear problem:
3 3 L 2
u(x,y) e + vix,y) 3y eV ¢ + S¢ (3.7.15)

on a regular domain with Dirichlet boundary conditions. This equation
describes the convection and diffusion of a passive scalar ¢ in a
known velocity field, given by u and v. S¢ is a source of ¢ in
the field.

A numerical approximation for this problem is:

5 54
LR R S (3.7.16)

U 3X 5y ntn * S,

where §&/6x, §/8y, Vé are difference operators. This can also be writ-

ten:
Lpdy, = S, (3.7.17)

The solution error, en = ¢ ~ ¢y is related to the truncation error by

(3.7.6), which when expanded becomes:

P




(3.7.18)

We see that the solution error satisfies a discrete convection-diffusion
equation similar to (3.7.16), with e = 0 on the boundaries. T, Aacts
as a source term. This shows that the solution error is convected and
diffused over the flow field in the same manner as ¢, and that its

source is the truncation error.

3.8. 1Initial Guesses and Boundary Values for Refined Grids

Since iterative solution methods are used, initial guesses are
required for newly created grids and the grids used for the error esti-
mates. For the former, initial guesses are interpolated from existing
grids. Guesses for 2h-grids are interpolated from the corresponding

h=-grid solution. In both cases, bilinear interpolation is used.

The cell in the grid containing the point at which the guess 1is
needed is first found, as indicated in Fig. 3.7. The interpolated solu-

tion is found in terms of the local cell coordinates:

i

(3.8.1)

n o= 3-1,
where (io, jo) is the origin (see Fig. 3.7), and i and j are con=-
sidered continuous variables. In these coordinates, bilinear interpola-

tion is:

u(g,n) = (1=g)(1l=n) ug g + E(l-n) u

o~ o ioﬂ’jo

+ n(1-g) uy

. + gnu
+
o I,JO+1 io,jo+1

This second-order accurate method 1is sufficient for providing initial

guesses.

Boundary conditions for refined grids are 1interpolated from the
finest existing grids. These boundaries normally fall within the prob~
lem domain and are thus fictitious internal boundaries. ldeally, the
order of accuracy for 1interpolation at these locations should be at

least r + p, where r s the order of the differential equation and
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p the order of accuracy of the approximation (Bai, 1984)., This makes
the accuracy at the fictitious boundaries consistent with the accuracy

at other internal points.

To 1illustrate, assume we approximate the second-order equation
(r = 2):

du
= £ (3.8.3)

with second-order central differencing (p = 2):

u - 2u, +u
_i+t ZL d=L o £ 4 oD (3.8.4)

h

where we have indicated the leading term in the truncation error. Note

that “j+l' “j’ and “j—l are the exact solution values.

Also assume that we have to use an interpolated value G} at some

point J 1inside the domain. u, dt°fers from the exact value uy by:

J

u = u

q
; 5+ o(h™) (3.8.5)

where q 1s the order of accuracy of the interpolation method. To see
how the interpolation error affects the difference approximation at the

point J, substitute (3.8.5) into (3.8.4) to get:

- Z(uJ +0hY)) + u

h2

Yt J+1

- £+ 0(hd) (3.8.6)

Maintaining the same order of accuracy requires q > 4; cubic interpo-

lation would be satisfactory.

We used bilinear 1interpolation (similar to Berger's method) for
fictitious internal boundaries, primarily because of its simplicity.
Our experience indicates that the accuracy was sufficient for the prob-
lems investigated (see Chapter 5). However, a more acccurate method,
preferably cubic interpolation, 1is recommended, since it will increase

the adaptive method's efficiency.

Exact houndary values are used where refined grid boundaries are on

the computational boundary.
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For the Navier-Stokes equations, a conservative interpolation pro-
cedure was developed for Iinternal fine grid boundaries. This method is

discussed in detail in Chapter 7.

In this chapter we have described how Berger's method was extended
to provide a method of solving the elliptic flow equations. New solu-
tion and error estimation procedures were presented, along with a dis-
cussion of the treatment of initial guesses and boundary values for
refined grids. We apply the method to one-dimensional problems in the
next chapter, and to a two-dimensional one in Chapter 5. Chapters 6 and
7, respectively, discuss the solution method and adaptive procedures
used with the Navier—Stokes equations. Results of adaptive calculations

for the Navier-Stokes equations follow in Chapter 8.
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Fig. 3.6. Notation for solution on overlapping grids.
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Chapter 4

APPLICATION TO ONE~DIMENSIONAL BOUNDARY-VALUE PROBLEMS

4,1 1Introduction

In this chapter, we apply our method to one~dimensional boundary-
value problems. The purpose 1s to demonstrate the feasibility and

performance of the technique.

The passive adaptive method described in the previous chapter is

applied to the linear, singular perturbation problem:

ey" + a(x)y' + b(x)y = f£(x)

y(xy) = y; 5 y(xy) = ¥y,

where € > 0 1s a small parameter. Solutlions of (4.1) have bhoundary
and/or Internal layers of thickness € 1in which there is rapid solution
variation. Outside these layers, the solution is smooth. In general,

only boundary layers can exist if a(x) does not change sign on the

interval, [xl, xz]. If a(x) changes sign, an internal layer can

appear at the turning point, a(x) = O, (See Bender and Orszag (1978)

for further discussion of the theory of singular perturbation problems.)

Equation (4.1) 1is a common model problem used to test numerical
methods for the Navier-Stokes equations., With b(x) = 0, ¢ 1is analo-
gous to the wviscosity, a(x), to the velocity, and the source term,

f(x), to the pressure gradient.

The passive method is used for (4.1), since the inner and outer
solutions are weakly coupled. For small €, accurate outer solutions
can be constructed analytically by neglecting the second derivative,
dropping one boundary condition and integrating the resulting problem.
The coupling 1is weak, because the outer solutions can be accurate even

when the boundary layer is completely neglected.
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4.2 Numerical Method

Recall that, in the passive method, the solution outside the re-
finemenc region 1s not improved as finer grids are added. Since the
grid gets refined mainly in the boundary layers, we must use a numerical
method that can give accurate results outside of boundary layers when a
coarse mesh 1s used. As discussed in Section 3.4, only first-order
upwind differencing has this characteristic; it 1is therefore used for

approximating (4.1).

The first derivative is approximated by one-sided differences:

y(xj+1) - y(xiz
h
y, = (4.2a)

y(x,) = y(x,_)
h m it if a(xj) < 0

if a(x;) > O

and the second derivative by central differences:

3 Y(xj+1) - 2y(xj) + Y(xj_l)

y
3 h2

(4.2b)

on a uniform grid, where h = xj+1 - xj. The resulting system of
difference equations 1is tridiagonal and is solved using the Thomas algo-

rithm.

The method (4.2) 1is used for all grids; the boundary conditions
differ for each.

4.3 Adaptive Procedure

An initial solution 1iIs calculated on a base grid. The mesh spacing
on this grid is douhled and another solution calculated using the same
method. The error is then estimated by inserting these two solutions in
(3.7.3a) with p = 1. Points having errors larger than a prescribed
tolerance 6max are flagged, clustered, and fit with refined grids.
Boundary conditions for new grids are taken from the coarse grid. Solu-
tions are then calculated on each refined grid using (4.2), the error

estimated, and finer-level subgrids created. The process is repeated
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until the maximum estimated error is less than dmax or a minimum mesh

size is achieved on the finest-level grid(s).
The following rules are used to generate a refined grid from a

collection of flagged points:
l. Adjacent flagged points belong to the same refined grid.

2. Flagged polnts separated by m or less counsecutive unflagged
points are in the same grid.

3. Grids are buffered with n unflagged points on their bhound-
aries.

n and m are small integers that are user specified.

Steps 1 and 2 are the nearest-neighbor clustering algorithm in one
dimension. The parameters n and m allow the user some control over

the refined grid sizes; we have used values in the range 1 < n,m < 5.

Note that, in 1-D, refined grid boundaries coincide with parent
grid points; boundary values for fine grids are the parent grid values
at these locations. The mesh size for a subgrid is obtained by dividing
the parent's mesh size by a constant factor, R, the refinement
ratio. An example grid structure after 1 and 2 refinement steps is

shown in Fig. 4.la & b, where R =2 and m=n = 1,

4.4 Numerical Results

We illustrate the method by showing the results for a simple bound-

ary layer. Results for more complex boundary lavers follow.

Unless otherwise noted, all calculations were made with the follow=-
ing parameters:

1. Perturbation parameter, ¢ = 10-2,

2, Maximum allowable estimated error, Gmax = 10-3.

3. Maximum number of consecutive unflagged points in a cluster,
o= 1.

4, Buffer region equal to one parent mesh length, n =1,

5. Refinement ratio, R = 2,
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In all plots, adaptive results are indicated by circles, exact solutions

(or very fine grid solutions) are plotted as solid lines.

Example 1 - Simple Boundary Layer

The first problem has a single houndary layer and is given by:

ey" -~ y' = 0 (4.3)

with boundary conditions:
y(-1) = 1 (4.4a)
y(1) = 2 (4.4b)

This problem has the exact solution:

(ex/s _ e-l/s)
2 sinh(l/¢€)

y(x) = 1+ (4.5)
Figure 4.2a shows the initial solution calculated on a grid having 11
mesh points. The outer solution is accurate, even though there are no
points in the boundary layer. For comparison, a solution calculated on
the same grid using second-order central differencing for the first

derivative is shown in Fig. 4.2e.

The error was estimated in the initial solution, and the criteria
indicated the need for a grid spanning 0 < x < l. The boundary con-
dition at x = 0 was taken from the coarse grid solution. The right
boundary condition was (4.4b). The method (4.2) was used to calculate
the solution on this grid; it is shown in Fig. 4.2b.

The error in this solution was estimated, and the third-level grid
spanned 0.4 < x < 1. The solution calculated on this grid is shown in
Fig. 4.2¢c. As expected, the size of each successive refined grid de=-

creases and the boundary layer is better resolved after each adaptation.

The complete adanted solution is given in Fig. 4.2d. The boundarv
laver {s accurately resolved with an efficient placement of mesh points.
Seven refinement levels were needed; Table 4.1 glves a description of

all grids that were generated.
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The efficiency of the method can be assessed by comparing its com-
putational work with that of a uniform grid calculation with mesh size

equal to the smallest mesh used in the adaptive method.

We estimate the work for these problems. In adaptive calculations,
the majority of the work 1s consumed in inverting the tridiagonal sys-
tems. This work 1is proportional to the number of grid points. We mul-
tiply the cost of the solution on each grid by 1.5 to include the cost
of error estimation and grid genertion. For the uniform grid, we use

only the actual work.

For the simple boundary layer, the uniform grid requires five times
the adaptive grid work for these parameters. Note that this savings
will increase geometrically for similar problems in two and three dimen-

sions.

Example 2 - Two Boundary-Layer Problem

A problem having boundary layers at both endpoints 1s described by:

ey” - 2xy' + 2y = 0
(4.6)
y(-1) = y(1) = 1

The results of an adaptive calculation are shown in Fig. 4.3. The solid
line is a solution calculated using a fine uniform grid. Both boundary
layers are accurately resolved, and the estimated adaptive work is two-

thirds of the uniform grid work.

Example 3 - Internal Boundarv-Laver Problem

A problem having an internal boundary layer due to a turning point
is:
ey” + xy' = 0
(4.7)
y(=1) = 1 y(1) = 2
The results of the adaptive calculation are plotted in Fig. 4.4 along
with a fine grid solution. Note that the two knees in the solution

receive the most refinement. The region of steep gradient between the
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knees 1s nearly linear and does not need much refinement. An error
criterion based on solution gradient would concentrate points in this
region. The adaptive calculation 1s estimated to be 257 faster than a

uniform grid calculation.

Example 4 - Boundary-Layer Problem with Non-constant Outer Solution

The problem:
eyt = y' = -1

y(0) = y(1) = 0

(4.8)

has a boundary layer at X = 1 with a linearly varying outer solution.
For this problem, ¢ = 10—3. The uniform grid work is estimated to be
three times the adaptive grid work.

The adaptive calculation is plotted versus a fine grid solution in
Fig. 4.5. The boundary layer is accurately resolved, with most grid
points placed at the sharp knee in the curve. Only 25% of the initial

coarse grid had to be refined.

Example 5 - Problem with a Turning Point and a Boundary Laver

The last example has a boundary layer and a turning point. (This
is one of several singular perturbation examples given 1in Pearson,

1968.) The differential equation is:
. ' 3
ey” + |xly" + (x = 1/2)’y = 0 (4.9)
with the boundary conditions:

y(=1) = 1 y(l1) = 2

For this problem, the maximum allowed estimated error Gmax =
2.5 x 10°2. The adaptive calculation 1s plotted versus a fine grid
solution in Fig. 4.6. Four distinct refinement regions are created in
this problem. Beginning at the left boundary, grid polnts are concentra-
ted in the boundary laver and at the sharp knee in the curve there.

Next follows a region of moderate grid density where the solution is
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moderately varying. The grid-point density is also high at the knees
associated with the internal layer, The estimated adaptive work 1s

approximately. 307 less than that for a uniform grid.

4.5 Conclusions

These examples demonstrate the feasibility of using the passive
solution technique for solving singular perturbation problems. Use of
the upwind difference approximation is crucial to the success of the
method. Figure 4.2e indicates that, 1if central differencing had been

used, the whole grid would have been refined.

Estimates of the computational work indicate that the adaptive
method 1is more efficient than a uniform grid, even allowing for the

additional overhead (primarily error estimation for these problems).

No stability or convergence problems associated with adaptation of
the grid were encountered. A smooth distribution of grid points was
generated. Points were concentrated in regions of large curvature;

steep, linear regions were not overrefined.

The Richardson-solution error estimates reliably indicated where
the solution was accurate and where refinement was required, justifying

the expense of computing the solutions used for the estimate.
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Fig. 4.1. Example 1-D grid structures.
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Chapter 5

APPLICATION TO A TWO-DIMENSIONAL, LINEAR, CONVECTION-DIFFUSION PROBLEM

5.1 Introduction

In this chapter, we apply our method to the two~dimensional, lin-

ear, convection~diffusion problem:

= +
u¢x + v¢y e(¢xx ¢yy)
(5.1.1)
v o= (i e A2
This is another model problem for the Navier-Stokes equations. Because

it is linear and elliptic, it is appropriate for testing our method.

With the addition of source terms, (5.l.1) describes the convection
and diffusion of passive scalars in a flow field. Thus it is connected
with convective heat and mass transfer, which are important in energy-

conversion systems.

Since the problem 1is two-dimensional, numerical diffusion 1is
present when the flow is oblique to the grid lines. This error arises
because approximations to derivatives are obtained from one-dimensional
Taylor expansions along coordinate lines. Special methods have been
devised to take account of the local flow angle, e.g., Jameson's rotated
difference scheme (Jameson, 1974) and skew-upwind differencing (Raithby,
1976). We expect our method to align the coordinate system in the re-
fined regions with the flow; special difference procedures should not be
required. Problem (5.1.1) is a useful test of the ability of the method
to accomplish this.

The passive method was used for adaptive solutions of this problem;
justification for using this method was zained from numerical experimen-—

tation. However, for a comparison, calculations were also made using

the active method.
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5.2 Numerical Method

Equation (5.1.1) is nondimensionalized using the magnitude of the

velocity V and a reference length L to obtain:

' -1
u'g_, + v'¢y. = Pe (¢x.x, + ¢y,y,) (5.2.1) ,

<|<

x' = £y =Ly WG v .

The Peclet number Pe 1is given by:

To use rotated rectangles, we transform from (x,y) coordinates to

(E,n)

arbitrary rotated coordinates related by:

(5.2.2)

sin 6

cos 6

-sin o cos 9

and 8 1s the angle of rotation with respect to the base grid. Equa-

tion (5.2.1) transforms to:

E¢E+3¢n = Pe_l(¢ ¢ ) (5.2.3) ’

+
133 nn

Thus the form of the equations is invariant to rotation of the coordi-

FX XAy

nate system when the velocities are given with respect to the rotated

coordinates.
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First-order upwind differencing 1is again used for first deriva-
tives, and second-order central differences for the second derivaties.

The resulting difference equation is:

+
g

+ + - - -1
(P HVE VS e = Pe (GEE¢ +8 ) (5.2.4)

atste + us

where

~

1 ,~ ~ 1 ~
u = E-(u + Iul) H u = E‘(u - lul)

d,. = b, _ o, . = b
ST & N~ L F% RO C N £ V% e 5
g%13 Y3 £%13 AE

oo o« tuplg TPy T tie1y
£g71] (AE)Z

+
with similar expressions for vt and Gn, etc.

These difference equations were solved using the Gauss—-Seidel
iterative method. The Schwarz alternating procedure (described in

Section 3.6) was used for solving on overlapping grids.

A subroutine was written to solve (5.2.4) on a uniform rectangle.
The solution on every grid was calculated by this routine. Only bound-
ary conditions, step sizes A and An, and the angle of rotation
needed to be supplied. The numerical method and/or the differential

equation can be modified by changing only the solver routine.

5.3 Adaptive Procedure

The adaptive process is similar to that used in the one-dimensional
calculations described in Section 4.3. The primary differences are the
additional procedures required to handle rotated, overlapping rectang-

les.

The nearest—-neighbor algorithm is used to cluster the flagged
points, and an ellipse-generated rectangle fit to each cluster. (These
methods are described in Chapter 2.) 1If some part of a new rectangle

falls outside the problem boundaries, {its size is reduced while holding
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the angle of rotation fixed. Unenclosed flagged points are then fit

with a boundary-aligned rectangle.

The nominal step sizes on a refined grid are the parent mesh sizes
divided by the refinement ratio R. The actual size 1s evaluated by
adjusting the nominal step size such that there 1is an even number of
mesh lengths in each coordinate direction. This is required to calcu-
late 2h solutions. As a result, nominal mesh sizes are usually
adjusted a small amount. The mesh size 1is adjusted, rather than the
rectangle's size, since the latter may have already been adjusted to

make the rectangle fall within the problem boundaries.

Processing of newly created grids to accommodate the overlapping
grid—-solution procedure is required. Grids are first marked to indicate
whether they are isolated or overlap another grid. Overlapping grids
are then sorted 1into disjoint, overlapping sets. The order in which
grids are visited in the Schwarz solution procedure 1s then determined
by recording relative positions of the grids in each disjoint set. The
coordinates of grid-boundary segments that are internal to other grids
are evaluated and stored. This information 1is used by the Schwarz
driver to update boundary conditions and check for convergence. (The

Schwarz solution process 1s described in the next section.)

Boundary conditions and initial guesses for fine grids are interpo-
lated from coarse grids using bilinear interpolation (3.8.2). 1If a fine
grid point lies on the external boundary, exact boundary conditions are
applieds This is important, because interpolation of prohlem boundary
values from a coarse grid could deteriorate the overall accuracy. Bi-
linear 1interpolation 1s also used to update overlapping-grid boundary

conditions during the Schwarz solution process.

An active calculation was also performed by making a small modifi-
cation to the passive program. The adaptive procedure 1is similar to the
passive method described above, except that, after a new level of grids
has been added, an active solution is calculated using the procedure

described in Section 3.5.

Because the solution error is estimated in the passive program, it

was used as a refinement criterion for the active method, rather than
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the truncatlon error, as recommended in Section 3.6. This substitution

PR b S )

is justified for two reasons. First, the active calculation 1is made
only for a comparison against the passive calculation. Second, in this
problem, the solution error is a good indicator of where the truncation
error 1s large; the substitution will not have a large effect on the
' overall performance of the method. Additionally, the maximum allowed
error in the active calculation was larger than that used in the passive

one.

5.4 Numerical Results

Equation (5.2.1) was solved on the square domain x € (0,10);
y ¢ (0,10), with a constant uniform flow field, and step initial con-
ditions:

u' = cos 8 ; v' = gin 8

V = \,/(u')2 + (v')<2~ = ] (5.4.1)
$(0,y') = }

where 8 1s the flow angle with respect to the x—axis. As indicated in

Fig. 5.1, the scalar ¢ diffuses as it is convected downstream.

- For large Peclet numbers, diffusion iIn the streamwise direction
can be neglected. Equation (5.2.1) then becomes the heat equation in
streamline coordinates and an analytical solution can be constructed.

The exact solution L is:

/Pe {(y'-yo) u' - x'v'}
o (x',y') = 0.5+ 0.5 erf (544.2)
e
zl(yv_yo) v'! = x'u!

o4

»

where Yo i1s the y-coordinate of the step discontinuity at the upstream y

boundary x = 0.
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The exact solution (5.4.2) was used for Dirichlet boundary condi=~

A LGAY Ty

tions on all problem boundaries except (0,y), where the step was '

applied.

An adaptive calculation was made with reference length L = 1,
Pe = 1000 and Yo = 4, corresponding to an 11° flow angle with respect

to the x-axis. i
The convergence criterion for stopping Gauss-Seidel (G-S) itera=~ ¢
tions was:

~1 =4
Ad.. = max|e, - 77| < 10 (5.4.3)
GS iy 1 ij

For overlapping grids, Schwarz iterations were stopped when:

~4 (5.4.4)

m m~1
by, = m:X|¢ (r ) -6 (Yl < 10
was satisfied for all grids k 1in the overlapping set, where Y, are y
the internal grid boundaries. With Eqs. (5.4.3-4), all points in the

flowfield satisfy the same criterion at convergence.

The passive adaptive calculation proceeded as follows. A solution .
was calculated on the initial 40 x 40 grid. The mesh size in both
directions was doubled, an initial guess was interpolated from the base
grid, and another solution was calculated. The pointwise solution error
was estimaced using (3.7.3a) with p = 1. Points having estimated solu-
tion error > 1073 were flagged. The initilal region needing refinement
is indicated in Fig. 5.2a.

i The flagged points were then fit with the rectangles shown in Fig.
. 5.2b. The size of the rotated rectangle was reduced so that it was com-~
& pletely contained within the problem boundaries. The boundary~aligned
rectangles were then fit to the remaining unenclosed flacged points. A ;

refinement ratlo of two was used. Boundary and initial conditions for

A
these grids were interpnlated from the solution on the hase grid.
.
5 A solution was then generated on this set of three rectangles using
. the Schwarz method. We describe the solution procedure; refer to
Fig. 5.2b for the notation. A converged solution was first calculated
~ 80 .
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on Gl,l' Boundary conditions along the internal boundary Yy,1 were
interpolated from the solution just calculated; then a solution was
calculated on 61,2' Boundary conditions along the internal boundary
Yy were interpolated from this solution, and a solution was then calcu-

lated on G1 3+ This completed a forward sweep.
»

Boundary conditicons along the boundary 72’3 were interpolated
from the solution on Gl,3’ and the solution then calculated on GI,Z'
Finally, conditions along Y, are interpolated from Gl,Z’ and the
solution calculated on Gl,l' This completed one Schwarz 1teration.
This procedure was repeated until the convergence criterion (5.4.4) was

satisfied on all internal boundaries.

The mesh sgizes on the three grids were then doubled and another
solution calculated wusing the Schwarz procedure. (The alternating
method converged in four Schwarz iterations on h grids, and two iter-
ations for 2h grids.) The error was again estimated, and the result-

ing refinement region is indicated in Fig. 5.2c.

In all, three levels of refinement were used. The resulting grids
are indicated in Fig. 5.2d. The size of the refined regions decreases
as more refinement 1s added, and the central grid tends to align with
the flow. Thus the method "homes in" on the shear layer. Note that the
major source of error is the nonalignment of the upstream boundary grid

with the flow. This error propagates downstream.

Uniform grid calculations were made with meshes finer than the
initial coarse mesh used in the adaptive calculation. The rms solution
errors were evaluated for both adaptive and uniform calculations:

1 =13 -i_ , 172

max max- -
2 2 | (055 = 8, (xy) |
- i=2 j=2_ = = ‘e 4 =
ems = \5.‘4.3)
(1

max-z ) (jmax—z )

where ¢, 1s the exact solution (5.4.2). The errors a e plotted vs.
cpu times in Fig. 5.3. (For adaptive calculations, the solution was

interpolated onto the base grid, where the errcr was then evaluated.)

We do not describe the active calculation in any detail here; the

procedure is similar to that described in Section 8.2.3 for the backstep
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problem, except for the refinement criterion. For this calculation, the
maximum allowed error was 5 x 1072 (compared to 1073 for the passive
calculation). The calculation was made with two levels of refinement,
and the generated rectangles were smaller in size, compared to the
rectangles at the same level in the passive calculation. Thig 1is a
consequence of using a larger error criterion. The rmms errors in the

active solution were also calculated and are plotted in Fig. 5.3,

Figure 5.3 illustrates that both adaptive methods are considerably
more efficient than uniform grid calculationms. For fixed cost, the
adaptive error 1is smaller or, alternatively, for fixed error, the
adaptive calculation costs less. For example, for an accuracy of
3.5 x 10'2 (as indicated in the figure), the passive method runs
approximately 15 times faster than the uniform—grid calculation. The
trend of the passive curve indicates that its advantage increases as

higher accuracy is required.

For a single level of refinement, the active calculation is found
to be somewhat more efficient than the passive one--a result of the less
conservative error criterion in the active method. However, there is a
crossover 1n performance for two levels of refinement; the passive
method becomes more efficient. The crossover occurs because the active
method expends additional work updating the outer solutions, which do
not need to be updated. For high levels of accuracy, the passive method

is more efficient for this problem.

5.5 Conclusions

These calculations have shown that the passive method applied to
the linear convection-diffusion equation is accurate and efficient when
compared to uniform fine-—grid calculations. The adaptive overhead (cal-
culation of 2h solutions, error estimation, and grid generation) is
included in the cost. The advantage of the adaptive method increases as

higher accuracy is required.

Refined rectangles are automatically aligned with the flowfield,
thereby minimizing numerical diffusion. Linear interpolation of bound-
ary conditions was found to provide sufficient accuracy. The use of
upwind differencing was 1mportant for providing accuracy outside the

shear layer and also for reliable grid~refinement information.
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Fig. 5.1. Schematic of linear convection-~diffusion problem.
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Fig. S5.2(c). First-level refinement region.
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Fig. 5,2(4). Resulting refined grids.
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Chapter 6

NUMERICAL SOLUTION OF THE NAVIER-STOKES EQUATIONS

As mentioned previously, our main interest is flows described by
the steadv, laminar or Reynolds—-averaged, incompressible Navier-Stokes
equations. In this chapter we present the governing differential equa-
tions and the numerical methods used to solve these equations. These

methods will be embedded in the adaptive method.

6.1 Navier—Stokes Equations

6.le1 The Incompressible Navier-Stokes Equations

For completeness, we present the unsteady equations, which are
incompletely parabolic. The steady equations are elliptic and are
obtained by dropping the time derivatives.

In Cartesian tensor notation, the time-dependent, incompressible,

Navier-Stokes (momentum) equations are:

du du,u Bzu
Lt,_4it . 13 ., __ 1 (6.1.1)
It 3xj p Bxi axjaxj

where ui(ggt) is the local fluid velocity, o 1s the density, p is
the pressure, and Vv the viscosity. The continuity equation solved in
conjunction with (6.1.1) is:

du
3_1 = 0 (6.1.2)
x

3

which requires the velocity field to be divergence-free.

The Navier-Stokes equations can be nondimensionalized in the fol-
lowing way. Using L and V as reference length and velocity scales,

respectively, the dimensionless variables,
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X p = p/c>V2
T = t/(L/V)

»,
: are gsubstituted into (6.1.1) and after rearranging obtain:
>
3, u,a ~ 273
FEd ~ ~ ~
. ax Ix X, x

2 3 L 1%
where Re 1is the Reynolds number, Re = VL/v,

(6.1.3)

Equation (6.1.3) governs both laminar and turbulent flows. How-
ever, at large enough Reynolds numbers (the exact value depending on the

-
‘ geometry), the flow becomes turbulent and is no longer steady.

Turbulent flows are difficult to compute bhecause of thelr unstead-
iness and because they possess a wide range of relevant physical scales.
Accurate resolution of these scales requires using a prohibitively large
: number of grid points, even for moderate Reynolds numbers. Conse-
quentlv, the direct solution of (6.1.1) for turbulent flows requires
supercomputers and 1is restricted to relatively low Reynolds numbers.
Such calculations are referred to as direct or full simulations (see,

e.g., Ferziger, 1983).

6.1.2 Reynolds—Averaged Equations

Although turbulent flows are unsteady, time—averaged quantities
(velocity, pressure, etc.) can be defined. To derive the averaged equa-
tions for these quantities, the velocity 1is decomposed into a mean and

fluctuating part:

u, = u, + u{ (6.1.4)

where u and ui denote the mean and fluctuating velocities, respec-

i
tively, and ui = 0, The pressure is similarly decomposed. Substitut-

ing this decomosition 1into (6.1.1) and (6.1.2) and time-averaging

results In the Revnolds—-averaged Navier-Stokes equations yields
— —_— 2_

du du u 13 3 u auiu'
—— - - — Y - - (6.1.5)

- it Ix b ax Ix X, X
- 3 1 3 J




and an averaged continuity equation

=
_a_l = 0 (6.1.6)
*3

These equations describe the mean flow field T and pressure P, which

are steady if 3u/at = 0.

The term = pu'u’' 1s called the Reynolds stress, and it represents

the iInfluence the turhulence exerts on the mean flow. Auxiliary

AN utmep s 2L S leming AR RA S b e

equations must be supplied for the Reynolds stress in order to solve
(6.1.5) and (6.1.6)

An eddy (or turbulent) viscosity relationship is a common constitu-

tive equation for the Reynolds stress. It has the form:

aE; 3u
u'u' = -y | — + ——l (6.1.7)
i3 T axj axi

where a relation for Vs the turbulent viscosity, must be specified.

Equation (6.1.5) can be nondimensionalized in the same manner as

Eq. (6.1.1). The resulting equation 1is similar to (6.1.3), except that

the Reynolds number is replaced by an "effective” Reynolds number:

VL
Re =
eff veff

= + -
where veff vr v

If the eddy-viscosity model is used, the laminar and averaged equa-

tions have the same form and therefore are similar from a computational

standpoint. The major difference is that vy varies spatially and is

Re” L >> re”l. This dis-
eff

tinction 1s important, because the difficulty of computing these flows

generally much larger than v. Consequently,

varies inversely with the effective Reynolds number.

hele3 Eddy-Viscosity Models

To complete our discussion of the turbulence equations, we briefly

discuss some models for Ve A more detailed discussion of these models

can be found in Rodi (1980) or the earlier review of Reynolds (1976).
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The simplest expression for vp 1is the zero~equation model:
1/2

Ju Ju du du
vy = <31+ai><aj+ai> (6.1.8)
Xi xj xi xj

where ¢ 1is a constant and £ 1s a given length scale.

A more complex relation for Vo is the one-equation model:

1/2

\YJ = Ck £ (6.1.9)

\ P

1
where k -'E uiui is the turbulent kinetic energ: and is described by a
transport equation similar to (6.1.11) below. ¢ and 2 have the same

meaning as in (6.1.8).

In the popular two-equation k-¢ model,
vp = ck?/e (6.1.10)

where € represents the dissipation of turbulent energy. ¢ 1s a con-

stant; k and € are governed by transport equations of the form: _ :

- 3u,k v, dk, %
; &, 2yt 39_<_Ta_l>p : (.11 ,
; 3 I\ %k 7 -
-
- - -
- du,e Y 2 -
3%+—Lax - —ai (;T-——ai >+ ¢, TP -c, = (6.1.12)
' 3 iNTe 73 1 2
where Oys Te» cel, Ce are constants and P is the production :
o aui auj aui -
= V7 D4 M 9x 9x
b i 3 -
Note the similarity between the laminar equation (6.l1.1), Reynolds-
averaged equation (6.1.5), and the k and € transport equations
(6.1.11) and (6.1.12), All of them can be written in the following
general form, for the steady case:
du,
e LA _a_<r m)w (6.1.13)
ax ax ax ot
3 TR A
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Equation (6.1.13) 1is elliptic, and the same numerical methods can be
applied to all the equations. Our adaptive technique has been applied
only to the steady, laminar equations. However, by modifying the flow
solver, it can be extended to apply to the averaged turbulent equations,

including any of the varlous eddy-~viscosity models discussed ahove.

ﬁf 6.1.4 Steady, 2-D, Laminar Equations
[
= Our adaptive procedure was applied to the 2-D, steady, laminar,

incompressible equations. In Cartesian coordinates, the dimensionless

x-momentum equation is:

2 2 2

3u_ , duv __3p , p.if3u 3w (6.1.14a)
ax dy ax 2
9x v

The y-momentum equation is:

2 2 2
g—:‘i+g—"— = --g-P-+ Re-l(a—!+a—% (6.1.14b)
y y ax" 3y
The continuity equation is:
L A (6.1.16)
X y

This set 1is complete, but there is no explicit relationship for the

pressure.

An equation for p can be derived by taking the divergence of
(6.1.14) and using continuity to simplify. To derive this equation,

first rewrite the momentum equations (6.1.14) as:

3 .oy

2 (6.1.16a)
P Ly (5.1.16b)
v

adding 3/3x (b.1.16a) to 3/3y (hel.l6b) results in a Poisson

equation for the pressure:
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2 2 y
3°p , 3p _ at _am
: . s * 3y s, (6.1.17)

The source term, So’ can be simplified using continuity, giving:

— 2 2 -
2 Ju v v Jdu
Equations (6.1.14) with (6.1.17) are an alternative description of in-

compressible flows.

Equations (6.1.14)=(6.1.15) are invariant under rotation, and con-
sequently so is (6.1.17). These equations are therefore directly appli-
cable to arbitrarily rotated grids.

6.2 Staggered Grid

The Navier-Stokes equations are solved on a uniform, rectangular,
staggered grid (first proposed by Harlow and Welch, 1963). On this
grid, each dependent variable 1s defined at a different set of loca-
tions, as indicated in Fig. 6.l. Pressure nodes are located at the cell
centers, u, the x—component of velocity at the midpoints of the hori-
zontal sides, and v, the y-component of velocity at the midpoints of

the vertical sides.

This grid can be viewed as a composite of three grids, one for each
variable. For example, Uy g Vij’ and Py are all located at

different points, as shown in Fig. 6.1.

For incompressible flows, the staggered grid has some important
advantages over a nonstaggered grid (on which all dependent variables
are defined at the same locations). As seen in Fig. A.1b, the staggered
grid has no pressure nodes located on its boundaries. Consequently, the
pressure does not have to be explicitlv specified there; this 1s not the
case for a nonstaggered grid. This 1{s an advantage, since boundary
conditions for the pressure are not normally known. A Neumann boundarv
condition for pressure 1Is 1implicitly contained in the numerical method,

as discussed below.

The staggered grid is also more accurate than 2 nonstaggered grid,

ag the finite differences are taken over shorter distances. They are
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therefore more accurate than centered differences on a nonstaggered grid

(see Fig. 6.2).

Furthermore, on a nonstaggered grid, only every second pressure
node is coupled (see Fig. 6.2b). As a result, an oscillating or check-
erboard pressure solution is possible (see discussion on pp. 115-117,

Patankar, 1980). This cannot occur on a staggered grid.

A disadvantage of the staggered grid is that the boundary cells are
different from the normal cells, as 1iIndicated in Fig, A.lb, Careful
treatment is required to maintaln accuracy at these points (se~ Section

6.3.2).

6.3 Finite Differences

In this section, we preseat the finite difference approximations
used for the mmentum equations. The treatment of the pressure equation

is given in Section 6.4 below.

Standard methods for solving differential equations approximate
derivatives by finite differences (FD) constructed from local Taylor
expansions. An alternative technique is the finite volpme (FV) method,
which apprcximates the 1integrated conservation equations. We use the

latter.

We demonstrate the application of the FV method to the x-momentum
equation (6.1.14a); the y-momentum equation 1s handled in a similar

manner.

Consider the finite volume centered abound uy s shown in Fig. 6.3.

Equation (6.l.14a) 1Is integrated over this volume; the volume integrals
are converted to surface integrals using the divergence theorem, and the
line integrals are evaluated using the mean-value theorem. The result
1s an exact 1Integral-conservation equation given 1in terms of face-
average values, designated e, w, n, and s (east, west, etc.):

i

L?Z - u2 +p -p - Re_l (iﬂ du
e w e w 3x

e Ix
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>
<.
W Equation (6.3.1) represents the conservation of u-momentum in the finite
»
R volume (momentum theorem).
3 Next, the average face fluxes are approximated in terms of the
;5 neighboring grid-point values. The formula used to define the face
N
N values detemines the resulting difference approximations; these are
e
= discussed next,
6.3.1 Pressure Difference
The pressure gradient is the simplest term to deal with, since the
pressure grid points are located at the centers of the cell faces, as
. noted in Fig. 6.3. This results in the equivalent centered, second-
order FD approximation:
- P - Py
- 13 spo. Parl,y TPy .2
ax|i+1/2,] ¥ %x Ax (6.3.2)
- 6.3.2 Diffusion Terms
For the diffusive fluxes, second-order central differences are also
: used, e.g., '
u| _ Su Y1941~ 14
3y |n 5y |n Ay (6.3.3a)
¥ du| _ du Y19 7 Yi-1,4
. 3y |s Sy|s Ay (6.3.3b)
) Subtracting (6.3.3b) from (6.3.3a) and dividing the result by Ay gives
the second-order central difference for the second derivative:
f; 2 u,, - 2u,, + u,,
; ey L (6.3.3¢)
: sy° 113 (ay)
- As noted in the previous section, the staggered grid is nonuniform at
M horizontal boundaries for the u-grid; consequently, (6.3.3) has to he
: modified for boundary cells (refer to Fig. 6.4). A common approximation
. at the lower boundary is:
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u - u
Su - Ll Lo (6.3.4)
Syli,1 ay/2

: Subtracting (6.3.4) from (6.3.3a) and dividing by Ay gives the fol-
. 2

b lowing approximation for é—% :

‘ 3y 1,1
32\1 - 2u14,0 - 3ui,1 + uiJg (6 3 5)
_"2 2 - .
ay“I1,1 (ay)

- However, the acccuracy of this approximation is 0(l); 1i.e., it is not
2 2
consistent with the differential equation. Since 3 u/3dy is large

N near solid walls, it is important to approximate this term accurately.

A better approach is to use the first-order—accurate approximation:

3 a2u . 231)0 - 3“1,1 + uji2~ (6.3.6)

N 2 3 2 eJe

. Iy ii,1 z-(Ay)

. or the second-order approximation:

, 32u . 16“1,0 - ZSui’1 + lOui’2 - ui,3 (6.3.7)
ay2 1,1 5(Ay)2

To test these approximations, a fully developed channel-flow problem was

calculated. This prohlem has the exact solution:
u = y(l-y)
v = 0 (6,3.8)
0 £ x <1 D <y <1

Using either (6.3.6) or (6.3.7), the converged aumerical solution agrees
with the exact solution. Using the approximation (6.3.5), significant
solution error results near the grid boundaries. We use the first-order

scheme (6.3.6) in most of our calculations.
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6.3.3 Convective Terms

vl}l...})'

First, we briefly review the problems associated with approximating
the convective terms. Our discussion is directed toward steady flows,
although similar difficulties are encountered in time~dependent prob-

lems.

s o%a"n"a"al

Central differencing (CD) of the convective term has two assonciated
difficulties. First, at large Reynolds numbers, CD may produce solu-
- tions that have large spatial oscillations or “"wiggles”. An illustra-

tion of this in one dimension was given in Fig. 4.2e.

It can be shown (see, e.g., pp. 24-26, Peyret and Taylor, 1983)
that, if CD 1s used to solve the one-dimensional, linear, convection-
diffusion equation,

o - 3¢ 32g =
u =y ; u,v const,. (6.3.8)
Ix axz

oscillations in the solution will occur unless

Re, = -L‘L\I,A—" < 2 (6.3.9)

ReAx i3 called the cell Reynolds number. This restriction may require

using prohibitively fine meshes for large Reynolds numbers.

Even though (6.3.9) is strictly valid only for (6.3.8), this re-
striction 1is often applied to the momentum equations, which are non-
linear, multidimensional, and have source terms. However, ome cannot
- prove that (6.3.9) must be satisfied for CD to give smooth solutions to

the momentum equations.

We have found smooth solutions to the laminar back=-step problem

using CD for cell Reynolds numbers as high as 150 (see Chapter 8). Kim

»

and Moin (1985) have found similar results. The apparent difficulty is
that streamwise diffusion 1s not 1Important in this flow. For further

discussion, see Ferziger (1986),

o

-
v
.

The second difficulty with CD is that 1instability mav occur when
iterative methods such as Gauss—~Seidel are used to solve the svstem of

difference equations. If the difference equations are written in matrix

form:

96




>
s

N Au = b (6.3.10)

then a sufficient condition for convergence of the Gauss-Seidel method

is that A be diagonally dominant, 1i.e.,
b

max
la | 2 D lagyl 5 t= 1t (6.3.11)
i=1

J#1

where 3y are the elements of A. (This criterion also holds for many
other iterative methods.) CD applied to (6.3.8) or the momentum equa-

tions gives diagonally dominant matrices only if Re, . < 2.

The possibility of obtaining spatial oscillations and the instabhil-
ity of iterative methods have led researchers to search for alternative
differencing approximations. Upwind differencing (UD) was the first
remedy tried. UD always gives diagonally dominant matrices and smooth
solutions; however, it introduces excessive numerical diffusion, as
discussed below. The search for better methods remains an active re-

search area.

We discuss the schemes which we use next.

Central Differencing

Second~order central differencing for the convective terms is equi-
valent to assuming that u 1is piecewise linear between the four neigh-
boring points of “ij‘ On a uniform grid, this means that face fluxes
are averages of the adjacent grid-point values. For example, the for-
mulas for the horizontal fluxes in (6.3.1) are:

2

u,, + u
u2 = (.il~_7_£tLbi> (6.3.12a)
e 2
2
u +u .
2 - (_u_i_ul> (5.3.12)
% 2

For the vertical fluxes, v must be averaged, 1i.e.,

u + u v,, + v
w e = ( 1j ij+1)< 1j 1+1:i> (6.3.13)
nn 2 2
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N
: Upwind Differencing
-~
: In upwind differencing, the fluxes at the cell faces are taken from
" the "upwind” grid point values. The "wind direction” 1is determined by
g the sign of the velocity at the cell center.
*
1f For the horizontal fluxes, the sign of u determines the wind
’ direction, e.g.,
. u2 - 2
e uij
u > 0
2 _ 2 4
Y ui-l,j
- (6.3.14)
ol 2 2
u, u1+l,j
L u < 0
2o 2 1]
- 1j
. The sign of v at the cell center determines the wind direction for the
- vertical fluxes. This value, ';, is found by averaging, e.g.,
-
- v = l-[v + v + v + v ) (6.3.15)
- 4 1 1+1,] ij-1 i+1,3-1
The vertical fluxes are then obtained from
Uy ; v20
u, o (6.3,16a)
- Y141,y 3 v <O
v + v
_ i i+1
._-'. Vn 2 (6.3.l6b)
. and similarly for ug and v,
5 UD is first—-order accurate, hut, more importantly, the leading term
} of the truncation error is proportional to the second derivative. For
i positive ugys an upwind approximation to u(3u/3dx) on a regular (non-
' staggered) grid has the following truncation error:
. 98
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u,. = u u,,Ax .2
du - 1 i-1,3 , 437" 3% 2,
Yl T Ax M el P o(ax®) (6.3.17)

The truncation error thus introduces numerical diffusion. At even mod-
erate Reynolds numbers, the numerical diffusion can greatly exceed the
physical diffusion. Consequently, if the grid 1is not sufficiently

refined, the result may be an inaccurate, overly diffused solution.

Hybrid Differencing

The next two methods are composites of cantral and upwind differ—
encing. The first scheme, attributed to Spalding (1972), uses central
differencing at a grid point 1f the magnitude of the local cell Reynolds
number, ReAx < 2, and upwind differencing otherwise. (For two—

dimensional problems, ReAy = JX%AX 1s used as the criterion for the y-
derivatives.) Additionally, where Re,, > 2, the (physical) diffusion
term in (6.3.1) is discarded to partially offset the numerical diffusion

introduced by the upwind differencing.

This scheme has the stability and monotonicity of the pure upwind
method. However, in most practical computations, Re o >> 2 in most of
the flow. Consequently, this method i{s only marginally better than pure
uD.

The second hybrid scheme 1s Patankar's power—law method (Patankar,
1980, and 1981). It is based on the exact solution to (6.3.8) and is
similar to the exponential scheme of Allen and Southwell (1955).

P

Face values are found in the following manner. Equation (6.3.8) is

integrated along the line Xy, < x K< Xp, With the boundary conditions

dandindoscionionituc RN

o(x,) = ¢
L L (6.,3.18)
¢(xR) = g
to give:
¢ - @L exp(E:(x-xL)/Ax) -1
- = — (6.3.19)
¢R L exp(Re) = 1
where
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Equation (6.3.19) 1s used to evaluate the velocities at the cell faces.

For example, using

¢(xi) = uij

« s 2
PP

¢(xgp)) = Uy4p,g
the face velocity u, 1is found by evaluating (6.3.19) at x = X{41/2
with u taken as the average of uyy and Ugt], at the previous time

step or iteration.

Patankar uses a power-law fit to the exponential (6.3.19) that is
cheaper to evaluate. The velocities for all cell faces are evaluated in
- the same manner and substituted 1in the iIntegral equation (6.3.1).
. Patankar's method is stable for all cell Reynolds numbers. It is ap-
propriate for approximating (6.3.8); however, its accuracy when applied

to the momentum equations is not clear.

The power—law scheme 1s similar to Spalding's hybrid method, but it
has a gradual transition from central to upwind differencing 1in cthe

vicinity of Re, = 2.

QUICK Differencing

- The last method discussed is the upwind~biased, QUICK difference
scheme (Leonard, 1979a,b). (QUICK {s an acronym for Quadratic Upstream
Interpolation for Convective Kinematics.) Face fluxes are determined by
quadratically Interpolating the solution from the two adjacent, upwind

grid points and the one adjacent downwind point at each face.

For the horizontal fluxes, the resulting approximation is (Shyv, A
.- 1985): 4
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(6.3.20)

The vertical fluxes are found in a similar manner.

Dividing (6.3.20) by Ax gives a second-order-accurate, noncen=
tered FD for the convective term auz/ax. the overall method remains
second-order accurate as second-order approximations are also applied to

the diffusion terms.

QUICK's accuracy 1s comparable to central differencing and more
accurate than the upwind or hybrid schemes (Leschziner, 1980, Leschziner
and Rodi, 1981, Durst and Pereira, 1983). However, the method does not
always give diagonally dominant matrices, and convergence is not guar-
anteed (Han et al., 1981). QUICK can also give oscillatory solutions,
although they are generally smoother than those obtained with CD. Our

experience confirms these observations (see Chapter 8).

6.4 SIMPLER Solution Technique

Patankar's SIMPLER (Semi-Implicit Method for Pressure-Linked Equa-
tions Revised) method is used to solve the systems of finite difference
approximations to the momentum and Poisson equations. The method is
described in Patankar (1980); we give a summary and an alternative in-

terpretation of the scheme 1in this section.

The procedure 1is {iterative. Beginning with an 1altial velocity
field, which does not necessarily satisfy continuity, we do the follow=~
ing:

l. Calculate the pressure by approximately solving a Poisson equa~
tion (6.4.2).

2. Approximately solve the linearized momentum equations (6.4.3)
for velocityv, using the pressure from Step 1.

3. Calculate the pressure correction by approximately solving a

Poisson equation (h.4.,7). (The pressure correction is formula-
ted to make the updated velocitv in Step 4 satisfy continuity.)
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4, Calculate the velocity correction (6.4.6) and add it to the P
velocity from Step 2. (The velocity correction is proportional ’
to the gradient of the pressure correction.)

5. Check for convergence: .

e on 2B g0 a8 o oa gn an g

o+l n I

maxlgij -uyyl <

1,3

Steps 1-5 are cyclically repeated. As the solution converges, the di- g

T

vergence of the velocity field, the pressure correction, and the veloc~

ity correction are all driven towards zero. The final velocity and

pressure fields satisfy the discretized momentum and Poisson equations,

respectively, to within a convergence criterion.

N
The equations solved 1in Steps 1-3 are linear systems and are ap- iy
proximately solved at each step using the same 1iterative solution '
method. We describe this method in Section 6.4.4 below.
The SIMPLER technique was heuristically formulated. However, »
.
Patankar does not clearly ind{cate what forms of the differential equa- :
tions are being approximated (e.g., the type of linearization for the
momentum equations, the sgpecific form of the Poisson equation, etc.). -
>
to clarify this, we next present an alternative interpretation of the :
method. >
-~
6.4.1 Pressure Calculation .
In Step l, the pressure is evaluated from an approximation to the p
Polsson equation (6.1.17). The source term 1s evaluated by first cal- -
-
culating the right-hand sides of (6.1.16a,b) using the current veloci-
ties u" and v". For example, .
2 2 2 n b,
M5 = - |8u_ g Suv Re-l Su ,8u (6.4.1)
i3 §x Sy 6x2 § 2 -
M* is evaluated at all u-grid points, MY at all v-grid points (see R
Fig. 6.5). 3
The divergence of M = [MX, MY]T and the Laplacian of p are both o

e

evaluated using second-order central differences, resulting in a Polsson

equation for the pressure:
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6EPnﬂ 62Pn+1 ) e . g

. [: ) o (6.4.2)
6x2 Gyz 8y 8y
where
5% Piv1,g T PPyy * Pyoy,g
sx2 |1 (ax)?
X
ou* Mg = Mo
§x 14 Ax

with similar expressions for Gzp/éy2 and GMy/Gy. The staggered grid
is more accurate than a nonstaggered one, because it results in centered

differencing over one mesh length.

At coavergence, the pressure satisfies the Neumann condition

(6.1.16a) on vertical boundaries and (6.1.16b) on horizontal boundaries.

6.4.2 Momentum Calculation

The discrete momentum equations solved in Step 2 are linearized in

the following manner:

n* * n n+l 2 * 2 *
§u'n L Suv’ _ _&p " o -1(8w  &u (h.4.3a)
8x Sy 6x ze 6y2

§x 8y Sy 2

n * n %* n+1 2 * 2 *
Sulv.  Sviv o _8p o -l1/87v 8w (6.4.3b)
8x Gyz

* *
where u and v are the unknowns and the difference formulas are the

same as in (6.4.1). These can also be written in operator form:

* n+l

Lu = - §-69—x—— (b b.%a)
* 5 n+l
Lyv = - ‘%y_“ (6.4.4b)

Underrelaxation of the velocities is required to ensure convergence of

* *
the overall scheme. u and v are simultaneously underrelaxed during
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the approximate solution of (6.4.3); the procedure is described in Sec-
tion 6.4.4 below.

6.4.3 Velocity and Pressure Corrections

]

In Step 4, the velocity corrections u and v'

are added to the
velocities calculated in (6.4.3) to give the updated velocities:

*
un+1 = u + u'

(6.4.5)

The corrections are formulated to make the updated velocity field sat-

isfy continuity.

The velocity corrections are rvtelated to the pressure correction

\]

p by eliminating all of the contributions from the velocities at the

neighboring points in the momentum equations (6.4.3) to give:

' = Auﬁ‘.L
§x

(hobd.6)
vt = av Sl
Sy

where AY and VYV depend on the difference scheme.

A similar correction is made In Chorin's projection method (Chorin,
1968). There, the pressure is used instead of ©p', and the velocity

correction 1is interpreted as an operator that projects an arbitrary
un+1 ]

velocity field, u*, onto a divergence-free field, P plays a
similar role in SIMPLER.
The equation for p' is found by requiring that utl satisfy

continuity. Inserting (6.4.5) with (h.4.6) into a discretized version

of continuity (6.1.2) results in the following Poisson equation for p:

* *
6%, &% _[eu'sat , Sv/a’ (6.4.7)
§x Sy 5x Sy e

The same differencing 1s used for (6.4.7) as for (6.4.2),

[f the velocity 1is prescribed on the bhoundaries, the boundary

condition for (6.4.7) is ©p' = 0, Intermediate values of un+1 will
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not satisfy continuity, because (6.4.7) is only approximately solved.

L R u* = u?, continuity {is satisfied and P

At convergence, '

vanishes everywhere.

6.4.4 Solution of the Linear Systems

An iterative method is used to solve the linear systems (6.4.2-3)
and (6.4.7) in Steps 1~3., The scheme 1s essentially an ADI method; it
is called a "line-by=-line” method by some authors. One iteration con-
sists of making line Gauss-Seidel relaxations in one coordinate direc-

tion, followed by similar relaxations in the other direction.

For example, the solution at points along a vertical line (indica-
ted by the dots in Flg., 6.6) are simultaneously evaluated using the
current neighboring solution values (at locations 1indicated by the
x's). The equations for the dotted variables are tridiagonal and are
solved via the Thomas algorithm. Lines are solved in succession in one

direction, then in the other direction.

Since the SIMPLER scheme is {terative, it 1s not necessary to solve
the linear systems exactly at each step. We perform one line-by-line
iteration of each system for each SIMPLER iteration. Sweeps are made in

the flow direction to get the best convergence rate.

As noted above, u* and v* are underrelaxed simultaneously when
(6.4.3a,b) are solved using the line-by-line method. Next, we describe

how the underrelaxation is performed.

The difference equation (one row of (6.4.4a)) for the velocity g

at some grid point P can be written:

* . * s (6.4.8
apup anbunp f .4.8)
where the subscript nb denotes the neighboring grid points of P; the

summation i{s to be taken over all neighboring points.

Equation (6.4.8) can be rewritten as:

— *

La,u,  +f 7
* |
u = un + —nbadb u? ! (h.4.9)
p P a, P |
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where ug is the velocity from the previous SIMPLER 1iteration. The
*
A term in the bhrackets can be regarded as the change in u, for the

current iteration.

To reduce this change, an underrelaxation factor, w, where 0 < w

<1 1is introduced:

— *
L a.,u + f
*
g 0 = 0 4g|———RbE (6.4.10)
p P a p
. - p _
Equation (6.4.10) can be rewritten:
a * % -
A P IE  2  Cl D A (6.4.11)
w p nb nb w pp

The relaxation 1s introduced by scaling the diagonal terms ap and add-
. ing the last term in (6.4.11) to the right-hand side of (6.4.4) before
performing the line-hy-line iteration.

The relaxation factor must be determined experimentally; we have
used w = 0.85, as recomended hy Zebib (1984) for most calculations.
However, at higher Re and smaller grid sizes, w must be reduced to

keep the SIMPLER method from diverging.

6.5 Implementation of Central Differencing for Re,, > 2

As discussed in Section 6.3.3, central differencing (CD) can de-
stabilize the solution method when ReAx > 2. The matrix equations
representing the x- and y-momentum equations are not diagonally dominant y

when ReAx and Re > 2, respectively., Without diagonal dominance,

Ay
the line-by—-line method becomes unstable, and the solution blows up.

A stable method can bhe constructed using the defect-correction
method (see. e.g., Stetter, 1978, Hemker, 1981, Auzinger and Stetter,
1982), which we descrihe below. Note that this method does not elimi-
nate oscillations 1in the solution. Oscillations are artifacts of the

difference eauations, not the solution method.

"
-
-

Assume that we wish to solve the differential equation:

Lu = f

.
2
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Denote Lé as a difference method that gives diagonally dominant matri-
ces, and Lg as a more accurate method, which does not necessarily give
diagonally dominant matrices. A solution can be computed that satisfies

Lg by means of the following iterative procedure:

L‘_lluo = f (6.5-13)

Liun+1 = f 4+ (Léun - Liun) (6.5.1b)

An iterative method can be used to approximately solve the linear system
(6.5.1b) at any intermediate step, e.g., one line—-by-line sweep. How-

ever, at convergence, the solution satisfies:
Liu’ - f (6.5.2)

We apply the correctlion procedure (6.5.1) to the x- and y-momentum equa-

tions (6.4.4a,b) in the following manner:

n+l

*
Llu = - éL— + (Llun - Lzun) (6-5.33)
X §x x X
1 * sp"*! la .2n J
L'v = = + (Liv = L ) (6.5.3b) ;
y Sy y y ;
where Li and L; represent Patankar's hybrid scheme and Li and
L2 are central differencing. The Poisson equation for pressure (6.4.2)

y
i{s unchanged. The solution method is stable for all cell Reynolds num—

bers, and the converged solution is second-order accurate.

Any other difference method can be easily sgubstituted into an
existing program. One need only insert the correction (Ll}lun - L%un)

on the right-hand side of the equation as a source term.
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6.6 Numerical Conservation

The notion that numerical approximations to the fluid-flow equa-~
tions should satisfy integral conservation equations to within round=-off
errors 1is an important and controversial one. In this section, we
briefly review the concept and how it applies to single grid computa-
tions. We discuss the implications for local adaptive refinement in the

next chapter.

We begin by defining numerical conservation. A scheme is said to
be conservative if it satisfies a discrete version of the Gauss diver-
gence theorem. For example, consider the continuity equation in vector

form:
V . 2 = O (6.601)

Integrating (6.6.1) over a volume V, and making use of the divergence

theorem allows us to write:

fo.uav = Jg-gds (6.6.2)
v

where S 1s the surface of the volume and 1n the outward unit-normal

to the surface.
Assume that we have the following difference scheme for (6.6.1):
Vh'g = O (6.603)

A digcrete analog of the divergence theorm in 2-D {is:

1 2
© . = 4
i T wij(vh 5)1], AxAy I L wju oS (6.6.4)
h) 1]
(interior points) (houndary polnts)

where u, is the velocity normal to the houndaries, and wh and w

2
are weighting functions dependent on the numerical integration formulas.
The scheme (6.6.,3) conserves mass if (6.6.4) is satisfied exactly to

within round-off error.

The quadrature method should be an Inverse of the difference method
(analogous to the integral and differential operators). The weighting
functions wl and w2 are usually taken to be unity, which corresponds

to the trapezoidal rule or the mid-point rule, depending on whether the
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integrated quantity 1is located at cell faces or cell centers, respec-
tively. For wl = w? = 1, the difference equations (6.6.3) are summed

over all grid points.

If the scheme conserves mass, all interior grid-point velocity
differences cancel, and the remaining boundary terms can be rearranged
to represent the surface integral in (6.6.4). Since velocity differ-
ences cancel, there are no numerical sources or sinks of mass in the

interior of the domain.

A similar analysis can be made for the momentum equations. If all
discrete volume 1integrals can be reduced to surface integrals, the

scheme conserves momentum.

The construction of conservative schemes 1is simplified with the
finite volume method, if the conservation form (6.1.1) of the differ-
ential equations 1s used as a starting point. (In the nonconservation
form, the convective terms are written as uj(aui/axj).) If face-flux
expressions are formulated such that the flux across a common face of
adjacent control volumes is the same for both control volumes, then they

will cancel when summed over interior grid points.

The 1integral fluid-flow equations are conservation statements for
the various physical quantities: mass, momentum, energy, etc. The dis-
crete integrals are not, in general, equal to their respective analyt-
ical counterparts. However, the quantities may be exactly conserved in
a numerical scheme. Conservation and accuracy are separate issues. An
accurate, nonconservative method will give the exact solution (including
conservation) in the limit of vanishing mesh size, and consequently be

conservative in the limit if the differential equation 1is conservative,

There has heen considerahle debate over whether methods need to bhe
conservative or not. For shock calculations, it is well known that a
conservative method can be used to compute the correct shock speed and
strength. Instability has been attributed to a lack of conservation in
some time—~dependent schemes for viscous flows. However, there are also
instances where a nonconservative method gave more accurate results than
a congservative one. (Roache, 1982, pp. 32-33, reviews the early liter-

ature on this subject.) The congensus 1is that conservative methods

should be used whenever possible.
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On a staggered grid, central differencing for all terms in the

momentum equations conserves mass and momentum—-—and kinetic energy in
the limit of infinite Reynolds numbers (Zabusky and Deem, 1971). But
the scheme 1is conservative only if approximations similar to (6.3.4) are
used for the diffusion term for boundary cells. The more accurate
schemes (6.3.6) and (6.3.7) which we use make the method nonconserva-

tive.

We make one final point. Given a conservative method, it is
necessary that the surface integral in (6.6.4) vanish for steady flows,
if global conservation is to be maintained. For rectangular grids, this
means that the normal velocities at all boundary grid points must sum to
zero. We therefore took care to specify boundary conditions for the

base-grid computations such that global continuity is satisfied.

In this chapter, we have described the solution techniques used for
the steady, laminar equations. These methods are incorporated in our
general flow solver, which is applicable to an arbitrarily rotated, uni-
form rectangle. This solver 1s used to calculate h and 2h solutions

for the base grid and any refined grid in an adaptive computation.
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Fig. 6.1. Staggered grid geometry.
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Fig. 6.2. Centered differences on staggered and nonstaggered grids.
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Chapter 7

ADAPTIVE NAVIER-STOKES SOLVER

In this chapter we describe the procedure for adaptively solving

the steady, laminar, Navier—Stokes equations. We begin by summarizing

the adaptive process, then follow with detais of the active solution
method, boundary conditions and conservation, and, finally, error-

estimation method.

7.1 Summary of Adaptive Process

The adaptive method will be applied to the laminar backward-facing-
step prohlem in Chapter 8. Because it 1s a strongly coupled problem,
the active method is required. All refined grids are specified a priori
to be boundary—aligned; rotated grids are not used. Finally, the re-
fined grid boundaries are restricted to be colinear with parent grid

lines, as indicated in Fig. 7.1.

Although our method Is not restricted to nonrotated refinement, two
factors influenced this choice. The primary factor is a consequence of
the backstep geometry; use of rotated rectangles would decrease the
adaptive efficiency. This 1s justified in Section 8.2.3. A secondary
factor is the difficulty of conservatively interpolating boundary condi-

tions for rotated grids; this is further discussed in Section 7.3.

With the excention of the solution method (active) and nonrotated
refinement, the adaptive procedure 13 similar to that used for the
linear convection-diffusion problem in Chapter 5. We summarize the
adaptive solution process next, then discuss implementation details in

the sections that follow.

The base~grid solution 1s calculated first. All velocity boundary
conditions are Dirichlet, except at the outflow boundaries, where zervro
derivative conditions are applied. A solution on a doubled mesh is cal-
culated with the same boundary cnditions and used to estimate the trun-
cation error via the procedure discussed in Section 3.7. Points having
estimated truncation errors larger than a specified value are clustered;

cluster(s) are fit with boundary-aligned, refined rectangle(s).
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Boundary conditions for refined grids are all Dirichlet. Exact
values are used wherever grid points lie on the problem boundary. For
fine grid boundaries 1interior to the problem domain, values are inter-
polated from the parent grid using a procedure that conserves mass
across the boundary (see Section 7.2 below). Initial guesses are

hilirear interpolations from the parent grid.

An active solution 1s then calculated on the two-level grid system
according to the algorithm outlined in Section 3.5. A solution is first
calculated on the fine grid(s). Correction terms for the coarse grid
are then evaluted and a solution recalculated on the coarse grid. Iter-
ation between coarse and fine grids is repeated until internal fine-grid

boundary values no longer change,

Because the method is iterative, the solution on each grid level is
not required to be fully converged at intermediate steps. {(The same
approach is used with the momentum and Poisson equations in the SIMPLER
method--see Section 6.4.4.) Rather, the solution may be 1iterated a
fixed number of times (similar to multigrid methods) or to a given level
of partial convergence, before switching grids. The iteration strategy

is discussed in Chapter 8.

After the two-level solution has converged, its error 1s estimated
by doubling the mesh sizes for all grids, and solving. The truncation
error estimate is computed over the whole domain. Since the region of
large truncation error decreases in size after each adaptation, the new
level of refined grids 1s normally contained within those of the pre-

vious level.

7.2 Implementation of the Active Solution Method

We show how the active solution method is implemented for the lam-
inar equations by applying it to the two-grid system shown {in Fig. 7.2.

Extension to more levels is straightforward.

We use the notation of Section 3.5. At convergence, the solution
on the coarse grid Go in region Ql should agree with the fine-grid
solution. The solution consists of the velocitv components u and v

and the pressure p. However, as p can be determined from u and v,
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we require only that u and v agree on G0 and G1 on 91. As
discussed in Section 3.5, uy = up, on 91 is enforced by calculating

correction terms for the coarse grid.

If m 1indicates the active outer iteration number and n the
SIMPLER (inner) iteration number, the correction terms are computed by
modifying the right-hand sides of the coarse-grid momentum equations

(6.5.3) in the following manner:

1 n+l n 1 m
- bnd 7. .
Lx,HuH (1 ax) fx + axLx,Huh (7.2.1a)
1 n+l n 1 m
— 7. .
Ly,HvH (1 ay) fy + ayLy,th (7.2.1b)
where
n+l
n ) 1 n 2 n
fx oo * (Lo nv ~ L, u%)
n 62n+1 1 n 2 n
S TR S R

1 if (x,y) € Ql

0 1if (x,y) ¢ Q-9

ax(xay)’ ay(xsy) -

b3
that they are used to implement central differencing for the convective

Note that the defect corrections are contained in f and fy' (Recall

terms, as discussed in Section 6.5.) The parent grid-masking arrays 3,
and a, are {nitialized to zero and are modified when an offspring (re-

fined grid) is created. On the finest grids, a = ay = 0 everywhere.

The correction terms in (7.2.1) are evaluated by interpolating
fine-grid solution values and using them Iin the coarse-grid operator Lé
according to the rules given in Section 3.5. Although uy, and vy, sat-
{sfy the more accurate L% operator on the fine grid, Lé must be used
for the corrections in order to give at convergence:

uy = uy where a, = 1
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Vi where a = ]

VH y

This can be verified by multiplying (7.2.1la) with a, = 1 by the in-
verse of L& and doing similarly for (7.2.1b).

7.3 Treatment of Boundary Conditions

Boundary conditions for refined grids are Interpolated from coarse-
grid solutions using a procedure that conserves mass. Additionally,
when new grids are created, certain coarse-grid boundary conditions may
require modification to maintain global continuity. In this section, we
describe boundary conditions and discuss conservation and interpolation

1ssues related to rotated grids.

7.3.1 1Interpolation of Fine-Grid Boundary Conditions

As previously discussed, bilinear interpolation is normally used to
transfer solution values hetween coarse and fine grids. However, inter-
polation can destroy numerical conservation at internal fine-grid bound-

aries.

Consider the west face of the central coarse-grid control volume in
Fig. 7.1. The 1location of coarse-grid velocitles are indicated by
solid-head arrows, fine-grid velocities by open-head arrows. The fine
grid 1s denoted by the dashed lines; the refinement ratio is 2. Since
the fluid density is constant, the mass flux through the west face is

nroportional to the integral of the velocity over the face.

To conserve mass, the coarse~grid and fine-grid mass fluxes across
the west face should be exactly equal. If the mid-point rule is used
for integration, the coarse~grid mass flux 1s equal to the coarse-grid
normal vel~clity at the face. The fine-grid mass flux is the sum of the

two fine-grid velocities on the face.

1f fine-grid velocities are linearly interpolated from the coarse
grid, mass will not generally be conserved. However, linearly inter-
polating the coarse-grid velocity from the fine grid exactly coaserves
mass. Thus, linear interpolation from fine to coarse grids conserves

mass, while coarse to fine interpolation does not. To be consistent,
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the coarse to fine interpolation should be the inverse of the fine to

coarse grid procedure.

Such a procedure was suggested by Berger (1984a), and is similar to
methods used in TVD schemes for hyperbolic conservation laws (see, e.g.,
Van Leer, 1979). In this method, the normal velocity is assumed to vary
linearly on the coarse-grid cell boundary, as indicated in Fig. 7.3.
The slope is taken as the slope of the line connecting the two adjacent
coarse-grid point values, as indicated in Fig. 7.3, Fine-grid normal

velocities are determined by this line.

In other words, fine-grid normal velocities, G%(x), are obtained

from:

_ [ (x +H) = u (x -H)T|
uh(x) = Ho 3 ZHUH ] (x - xj) + uH(xj) (7.3.1)

for
xj -h < x < xj + h

Tangential velocities on internal boundaries are bilinearly interpolated
from coarse grids; this does not affect the mass balance on the control

volume.

An equation similar to (7.3.1) is used to interpolate v on hori-
zontal faces (e.g., north and south faces in Fig. 7.1); u 1is bhilin-

early interpolated on these faces.

This scheme conserves only mass at the internal grid boundaries.
It would be difficult to construct a method that also conserves addi-
tional quantities, e.g., momentum, kinetic energy, etc.; the necessity
for nsing such a method is not clear, As shown in the next chapter, the
scheme we use provides good accuracy and gives no stabilitv problems

when anplied to the backstep flow.

7.3.2 Modification of Coarse-Grid Boundary Conditions

As mentioned previously, exact boundary conditions are applied if 1
fine-grid houndary lies on the nroblem boundary. There are also coarse-

zrid points on these "coincident” boundaries. 1If exact boundarv values
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are applied on all grid points on a coincident boundary, the numerical
integral of the normal velocity on the boundarv will be different on
each grid; i.e., mass will not be conserved. To be conservative, all

integrated mass fluxes should be equivalent.

Coincident houndaries are handled in the following manner. Exact
values are appolied on the finest grid, giving the most accurate approx-—
imation to the integrated mass flux. To maintain conservation, boundary
values for coarse-grid points on a coincident bhoundary are linearly

interpolated from the next finest grid.

In practice, when a new level of refined grids is created, boundary
conditions are specified. At colncident boundaries, values for the next
coarsest grid are obtained by linear interpolation from the fine grid;
i.e., they are changed from their previous values. This 1s repeated for

still coarser grids.

By using the conservative, coarse—to-fine-grid interpolation scheme
(described in the previous section) and modifying coarse-grid boundary
conditions at coincident boundaries, mass 1is conserved on the multilevel

grid system.

7.3.3 Interpolation and Conservation for Rotated Grids

In this section, we discuss conservation and 1interpolation for
rotated grids; further discussion can be found in Berger (1984b). From
Fig. 7.4a, it 1s clear that conservative interpolation is complicated by
the rotation. While an interpolation scheme that conserves mass is pos-
sible, the construction of a scheme that conserves additional quantities

{38 mor=2 di€fficult. We shall therefore consider mass-conservineg schemes.

Note that the schemes used with "patched” »2r zonal grids cannot be
used for rotated grids. Adjacent patched grids do not overlap; rather,
their boundaries interface along a common line. The interpolation 1is
one-dimensional and therefore simpler compared to two-dimensional inter-
polation required for rotated, overlapping grids. See Hessenius and Rai
(1984) or Rail (1985) for a discussion of interpnlation methods used for
patched grids.
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Several interpolation approaches for rotated grids are possible; we
outline a straightforward one. Consider 1interpolation of fine-grid

boundary values along the line a-a shown in Fig. 7.4b. The mass flux

normal to the line a-a, , can be obtained from a mass balance on
a-a
the triangular region, using the coarse-grid velocities Uy and vye

Assuming velocities are piecewise constant on cell faces gives:

- = -+ = +H 7.3-2
m . wH(g 2h) (qu VH) ( )

where (g+2h), f and H are the lengths of the triangle's sides.

m is then to be distributed to the fine boundary grid cells
a-a

#1, 2, 3 lying along line a-a, i.e.,

m = m +m +m (7.3.3)

. . h . 1 2
= = ——————— * = = 7. ./
m, m, T ma-a huh huh (7.3.4)

and

= i—‘ .
my a7y " a-a (7.3.5)

The fine-grid velocities u% and u% are obtained from (7.3.4). ﬁ

3
is added to the flux obtained for the halance of cell #3, calculated

using a similar procedure.

Coarse-to-fine grid interpolation could be performed in a similarvr
manner., However, the calculation and distribution of mass fluxes
depends on the assumed veloclity variation on cell faces and on the

N auardrature method used to integrate the mass along the boundaries. (The
- midpoint rule is implicit in the procedure outlined above.) It may be
possible to use arbitrary varlations (e.g., constant, linear, quadratic,

etc.) and integration methods, although this is not clear.

Fuchs (1985) uses a simpler approach. He solves the steadv, lami-
nar equations on two overlapping rectangular grids (similar to those

shown in Fig. 3.6) with a multiecrid method. For each grid, internal
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boundary values are linearly interpolated from the other. Interpolated
values are then "corrected” such that global continuity 1s satisfied on
the respective grid. Fuchs does not indicate how the values are correc-
ted; presumably they are either scaled or a small correction is added to
each such that global coantinuity 1is satisfied. Fuchs notes that the
corrections are second-order in magnitude. The computed results are
only qualitatively evaluated (streamlines are plotted); however, the

author concludes that the interpolation scheme works adequately.

As noted in Section 6.6, whether a method should be strictly con-
servative or not 1is a debated issue. We made calculations using non-
congervative, bilinear interpolation for internal fine-grid boundary
conditions and other calculations on single grids in which global
continuity was not satisfied. The nonconservative calculations con-
verged slower (on the order of 10-15Z) and also were somewhat less
accurate compared to similar conservative computations, but no stability

problems were encountered with the nonconservative schemes.

7.4 Error Estimation

In this section, we describe the error-estimation nethod used for

the steady, laminar equations.

Assume that an active solution has been calculated on a multilevel
grid system. Let u, and vy represent this solution on all grid
levels (h should be regarded as the finest mesh size). The meshes are
doubled on all grids, and an initial guess for each is obtained by in-
terpolating from its respective h~grid. An active solution us, and

Voo is then calculated.

For each grid, the truncation error estimate is calculated only at
points not contained in finer-level grids. For example, for the grids
shown in Fig. 7.2, the estimate is calculated at all points on G, and

only at those points not in the region Qp on Go'

The solution error estimate is calculated first. For example, the

error in up is found by computing:
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(7.4.1)

at points on the h-grid. Since no h- and 2h-grid points are coincident
(see Fig. 7.1), Uy, 1s linearly interpolated in order to evalute the
numerator in (7.4.1), With central differencing for all terms in the
momentum equations, p = 2. With hybrid differencing for the convective

terms, p = 1.

If a 3h- instead of a 2h-grid were used to compute the error
estimates, interpolation would not be necessary, since every third point
on the h-grid would be colncident with a 3h-grid point. However, this
has the disadvantage that the error would be known at only 1/3 of the
grid points. Additionally, the 3h-estimate would be less accurate than
a 2h-estimate. Results given in the next chapter show that our method

provides good estimates of both solution and truncation errors.

The truncation error estimate ?u, as described in Section 3.7, is

then evaluated by performing the explicit calculation:

~ ~ s
Tlxpyy) = <L§,h [uh(xi’yj) * eﬁ(“i’yj):] * o

where Li h and 4§p/8x are the difference operators for the x-momentum
?

equations in (6.4.5) used in calculating up. The estimate is scaled

ij> . (AxAy)k (7.4.2)

by Ax and Ay, the mesh sizes on the grid Gk' 8ince we solve the
integrated (finite volume) equations (6.3.1). (The scaling is merely a
matter of programming convenience.) The truncation error for Vh is

similarly evaluated.

This completes our description of the active adaptive method ap-
plied to the steady, laminar equations., We show the results of adaptive

calculations of the laminar backstep in the next chapter.
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Fig. 7.3. Conservative coarse-to-fine grid interpolation.
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Chapter 8 1

APPLICATION TO THE LAMINAR BACKSTEP

e R T T T T T Y T s

In this chapter, we present the results of adaptive computations of !

s »

laminar flow over a backward-facing step. We first describe the physi-
cal flow and the corresponding computational model. The results of
uniform grid calculations and a justification for using nonrotated

refinement are then given. Next, results of preliminary adaptive grid

3
b

calculations are presented. A performance evaluation at a single Rey-

nolds number follows. Finally, we show results of adaptive calculations

over a range of Reynolds numbers.

8.1 Description of the Problem

The flow through a straight channel having a sudden asymmetric
expansion 1is called the backward-facing step problem (see Fig. 8.la).
Separated flows resulting from such changes in geometry are common in
energy conversion devices; the device's performance often depends on the
structure of the flow in these regions. As a result, the backstep prob—
lem has received considerable experimental and theoretical attention.
In this section, we discuss the experimental flow which we shall simu- J

late.

8.1.1 Experiment of Armaly et al.

Armaly et al. (1983) studied the flow through a two-dimensional
sudden expansion, having an expansion ratio of 1:1.94., The test section
had a long, straight inlet channel to provide a uniform inlet flow.
Similarly, the exit channel was long to allow a fully developed velocity
profile to develop.

Experiments were conducted over a range of Reynolds number covering k
the laminar, transitional, and turbulent flow regimes; we discuss only
the laminar results. Streamwise velocity profiles were recorded, pri-
marily in the section downstream of the backstep. The reattachment
length, xp, was measured as a function of the Reynolds number. Pre- >
diction of this parameter is difficult and 1s therefore used to check

the accuracy of a numerical method.
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The measured reattachment length 1s plotted in Figure 8.19 for
Reynolds numbers, 50 < Re < 600. The Reynolds number is defined:
umh
Re = —~
where U is the maximum fnlet velocity, h 1s the step height, and v
the kinematic viscosity. The flow is laminar in the range 50 < Re <
900. Above Re = 900, the flow begins to undergo transition prior to
reattachment. At still higher Reynolds numbers, the entire flow becomes

turbulent.

The streamwise velocity in the inlet channel at the sudden expan~
sion was measured and found to be "“close to that of a fully developed
channel flow, with a slight deviation from a parabolic profile.” The
normal velocity at this location was not measured. Fully developed con-
ditions were found to ocecur in the outlet channel; the location moved

downstream with increasing Reynolds number.

Cross—channel measurements were made to determine the two-
dimensionality of the flow, The flow iIn the plane of the sudden
expansion was found to be two-dimensional. The flow in the channel
downstream of the step was also two-dimensional at low Reynolds numbers,
but became three—dimensional for Re > 300, with 3-D effects increasing
with Re. Additionally, an elongated recirculation bubble apnnears on
the top wall for Re > 300. The location and length of this bubble is

also a function of the Reynolds number.

Because the geometry 1s simple, the boundary conditions well-
defined, and the data available, this flow is useful for evaluating the
accuracy of a numerical method. We describe our computational model of

this flow next.

8.1.2 Computational Model

The flow is simulated on a rectangular domain, using a uniform
base grid shown {n Fig. 8.1lh. (The mesh size mav be different in the
two coordinate directions.) An expansion ratio of 1:2 is used so that
the step—corner lies on a mesh point. The hox length is fixed in the

y=direction; the x-direction length, Xy, was variable. It was taken
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to be four times the experimental reattachment length, as recommended by

Armaly et al.

A parabolic streamwise velocity profile and zero normal velocity
are specified at the inlet. Along all walls, both velocity components
are zero. Fully developed velocity conditions, 3u/3x = 3v/3x = 0 are

used at the outlet, x = Xy .

Note that two approximations are made in the model. First, the
modeled expansion ratio is 3% larger than the experimental one. To a
first approximation, computed reattachment lengths should be ~ 3% larger
than the experimental values. Calculations were made by Zebib and Homsy
(1984) on nonuniform grids using both expansion ratios. Their results

confirm that the reattachment length 1s proportional to the step height.

The second approximation concerns the inlet velocity. Because the
experimental streamwise velocity had a slight deviation from a fully
developed profile, a small, nonzero normal velocity 1s expected in the
plane of the expansion. Use of zero normal velocity in the computation
will cause the computed reattachment lengths to deviate from experimen-
tal values, hut the effect should be small. A better approach is to use
an L-shaped computational domain and specify fully developed channel

conditions farther upstream in the inlet channel.

As a result of these approximations, computed reattachment lengths
should agree with the experimental data to within 10%, for Revnolds

numbers for which the flow is two-dimensional, f.e., for Re < 300,

8.2 Uniform Grid Calculations

During the development of the adaptive program, uniform grid cal-
culations were made for testing and debugging the basic solver. We also
experimented with three convective-difference schemes and evaluated the
error estimation procedure on uniform grids. In this section, we pre-

sent results taken from these studies.

All calculations presented 1in this chanter were made on a VAX

11/780 in double precision.
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8.2.1 Velocity Profiles

All adaptive calculations were made in the range 100 < Re < 600.
For these Revnolds numbers, all flowfields display similar behavior.
Velocitv profiles for Re = 100 with xL/h = 12 are shown to illus-
trate the qualitative nature of the flow; the calculations are not
described in detail. Quantitative results are given in sections that
follow.

Figure 8.2 shows two surface views of u, the x-component of vel~-
ocity. (These plots are somewhat distorted; the actual aspect ratio
(y:x) of the domain is 1:6.) u varies smoothly from the parabolic
profile to another fully developed profile at the outlet. The region of
negative u behind the step indicates the recirculating region. Reat-
tachment occurs where u changes sign along the bottom wall. For this
calculation, xR/h ~ 3.6, In the latter half of the channel, streamwise

gradients are small.

Figure 8.3 gives v, the y-component of velocity; it has rapid
variation near the sudden expansion. Downstream of the 1inlet, v 1is
negative in the shear 1layer. Farther downstream, v  drops towards
zero. Immediately behind the step, v 1s positive in the recirculating
region. The maximum magnitude of v 18 approximately 10% of the maxi-

mum magnitude of wu.

Greater detail can be seen in Figs. 8.4 and 8.5, where u has been
plotted along lines of constant y/h and x/h, respectively. The
behavior of u near the bottom wall is seen in Fig. 8.4a. The smooth
behavior of u in the vicinity of the step is shown in Figs. 8.4b~e,.
These figures also show the smallness of the streamwise gradients far-
ther downstream, Snecification of fully developed conditions at the

outlet is consistent; no abrupt changes occur near this boundary.

Figure 8.5a shows the variation of u with y 1{in a plane passing
through the the recirculation region. In Fig. 8.5b, the u-profile just
downstream of reattachment 1is plotted. Filgures 8,5¢,d show that u is

nearly parabolic downstream; a reference parabola is included in these

figures.
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In Fig. 8.6, v 1is plotted at constant y/h locations. Figures
8.6b=d 1llustrate the rapid variation of v just downstream of the
step. As discussed in Section 8.2.3 below, this region has the largest
truncation error and thus requires the most grid refinement. Figure 8.7
illustrates the y-variation for v, which becomes more gradual as the

flow moves downstream.

8.2.2 Comparison of Convective Difference Schemes

For Re = 100, mesh-refinement studies were made using central
(CD) and Patankar's power law (HY) differencing schemes for the con-
vective terms. (Both schemes are described in Section 6.3.,) Table 8.1
summarizes the important parameters for the calculations. Initial

guesses for each case were bootstrapped from the previous case.

Table B.l shows how the number of 1terations for convergence de-
pends on the total number of grid points; both schemes converged in
approximately the same number of iterations, except for Case 4. VNor-
malized cpu times were 0.007 and 0.009 sec/iteration/cell for HY and CD,
respectively. The difference in costs is due to the calculation of the
defect—corrections in the CD scheme (see Section 7.2). On a per itera-
tion basis, the CD scheme 1s slightly more expensive, although, as dis-

cugsed helow, the payoff in accuracy is substantial.

The Case 5 CD calculation converges in relatively few iterationms,
because 1its solution is ﬁot very different from the Case 4 solution from
which it was bootstrapped. From this near mesh independence, we conclu-
ded that the 192 x 128 CD calculation is a good approximation to the
exact solution. The calculated Xp for this grid is approximately 10%

larger than the experimental value, as expected (see Section 8.1.2).

Figures 8.8 and 8.9 are typical plots that illustrate the accuracy
and convergence of the solution as the mesh size is decreased. They
show that, on the same mesh, the CD solution error is significantly

smaller than that for HY, and the CD error decreases faster as the mesh

is refined.

Taking the 192 x 128 CD result as a good approximation to the
exact solution, the rms solution errors were calculated for all other

cases. These errors are tabulated in Table 8.2.
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The errors for the 96 64 CD case are larger than expected. There
are two causes for this. First, they are not accurate, as they are
comparable in magnitude to the 1iteration-convergence criterion, 10_4.
Secondly, when the criterion is reduced to 10-5; the errors on the
96 64 grid become approximately one-~half of the respective errors on
the 48 32 grid; the method becomes first-order accurate (see discus-
sion below). Since the 96 64 and 192 128 solutions are nearly
identical, we conclude that the error in the 96 64 solution 1is negli-
gible at interior grid points and that the significant error 1is caused
by first-order approximations, similar to {(6.3.6) used at boundary cells

(see section 6.3.2).

The errors are also plotted in Fig. 8.10. These plots also indi-
cate the accuracy and convergence properties of the two methods. The
order of accuracy of the method ("p” in Eq. (3.7.1)) is the slope of
the log plot. We find that HY is first order (p = l), CD second

order (p = 2) as expected.

To summarize, we have shown that central differencing for the con-
vective terms 1s more accurate than Patankar's power—law scheme. The
added expense of its 1implementation (through the defect-correction
method) 1is small, and the correction procedure does not degrade the

overall counvergence rate of the method.

As indicated in Table 8.1, central difference solutions were cal-
culated for cell Reynolds numbers as high as 100. No stability problems
were encountered and no wiggles were found in solutions; clearly, the

commonly applied condition, Re x < 2, 1is too restrictive.

Only a few calculations were made using the QUICK scheme (described
in Section 6.3). One calculation was made at Re = 100, using the Case
2 grid in Table 8.l. The method converged in 76 1terations, giving
xR/h = 3,85, similar to the CD calculation, and the rms errors were
somewhat smaller. The cpu time was 0.009 sec/iteration/cell. For this

case, the performance of QUICK is comparable to CD.

Two QUICK calculations were made at Re = $00. The first was on a
42 16 grid with xL/h = 42, Convergence was achieved in 900 itera-
tions, and oscillations were present in the resulting solution. A sec-

ond calculation was attempted on an 84 16 grid, with the same xL/h.
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However, after 1000 iterations, the run was aborted, since the solution
was converglng verv slowly. This can be compared with a 420 x 20 CD
calculation at the same Re, that converged in 1400 iterations. Be-
cause of the slow convergence at high Re, QUICK was dropped from
consideration. (Although it was not tried, QUICK implemented by the

defect-correction scheme may converge faster.)

Due to its accuracy, stable implementation, and wiggle-free solu-
tions at largse Re, central differencing was selected for use in all

adaptive calculations presented in Secticns 8.4 and 8.5 below.

8.2.3 Fxact vs. Estimated Errors

Uniform grid calculations were also mesde to test and evaluate the

error-estimation method. In this section, w: show the results of cal-

culations made at Re = 100, wusing central differencing.

Calculations were made using 24 x 16 and 12 x 8 grids. The so-
lutions were inserted into (7.4.1), with p = 2 to give the u-~solution
error estimate; the v-error estimate was similarly computed. To
evaluate the accuracy of the estimates, the exact solution error
) was computed using the 192 x 128 central difference

(uh ~ Yexact

solution as the “exact” solution.

Absolute values of the errors are plotted in both contour and sur-
face views. When considering these figures, recall that the actual
aspect ratio (y:x) for the rectangles is 1:6; 1in the plots, the
ratio appears to be 1:1.5. The surface views provide a perspective of
the errors. The plotted values have been normalized by the maximum mag-

nitude so the differences in the elevations are exaggerated.

The estimated and exact solution errors for u and v are given
in Figs. R.11 and 8.12, respectively. The plots show that the topog-
raphy of the exact error is well represented by the estimate, especially
when the coarseness of the grid is considered. Awav from the step, the
estimated magnitudes are relatively accurate, and are generally high.
For example, the location and magnitude of the maximum error in u {is
predicted well. The heights of the humps 1n the v-error are similarly
well predicted. Overestimation of the error is preferahle to underes-

timation.
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Near the corner, the error estimate 18 inaccurate because the
higher-order terms in the expansion (3.7.l1) are large. Because the h-
and 2h-solutions differ considerably in this region, the error is poorly

predicted. The accuracy of the estimate improves on finer grids.

The truncation error estimate is computed by substituting the solu-
tion and its solution error estimate into (7.4.2). The exact truncation
error is evaluated by substituting the 192 x 128 central difference
solution into the difference operator in (7.4.2).

The truncation error for u and v are plotted respectively in
Figs. 8.13 and 8.l4. As discussed in Section 3.7, these estimates are
not expected to be as accurate as the solution error estimates. Al-
though there 1s less similarity between exact and estimated topographies
for these errors, the estimates do indicate where the truncation error
{s large and, thus, where grid refinement is required. Truncation error
also 1is generally overpredicted. These plots illustrate the "noisy”
behavior of the truncation error. Smoothing of the estimates is re-

quired if they are to be used in a global refinement method.

These results indicate that the Richardson error procedure provides
reasonably accurate estimates of the solution and truncation errors,

even on coarse grids.

Before closing this section, two final points are discussed. We
first discuss the relationship between solution error and truncation
er-or and some of the implications. We then give a justification for

usi1ng nonrotated grid refinement.

Consider the contour plots of the errors for both u and v,
Figs. 8.11-8.14. The figures illustrate how the truncation error is
convected and diffused through the flowfield, resulting in the solution
error, as discussed 1in Section 3.7. Since the truncation error has a
long-range influence on the solution error, the active solution method
is used for adaptive computations of this flow. The truncation error
shows that refinement is required primarily in the vicinity of the

sudden expansion.

These error plots provide a justification for using nonrotated re-

fined grids. The refinement region defined by the truncation error
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estimates for u and v encloses most of the upstream portion of the

base grid.

Preliminary adaptive calculations showed that a single rectangle
with a small angle of rotation (< 10° relative to the x-axis) is gen-
¥ erated, with 1ts corners falling outside of the problem domain, as
) indicated in Fig. 8.15a. The rectangle would have to be reduced in size
{1 and unenclosed bad points fit with overlapping boundary-aligned grids,
3 similar to the procedure described in Chapter 5. The rectangles that
& would result from this procedure are sketched in Fig. 8.15b.

i The cost of generating the solution would increase due the work
' required for solving on overlapping grids at each level. Since the

{L rotation 1is small, this added cost 1is not expected to outweigh the

- benefit of reduced "rotational error”. As a consequence of this, and
also due to the difficulty of constructing a conservative 2-D interpo-
lation scheme, we elected to use boundary—aligned grid refinement for

- the backstep problem.

8.3 Preliminary Adaptive Calculations at Re = 100

Preliminary adaptive calculations were made during the development

and testing of the program; results of these studies are presented in

this section. A notation for the grids is first given, followed by

" results of studies that 1investigated the convergence properties and
. iteration strategy for the active solution method. (The active solution "

- procedure is described in detail for a typical calculation in Section

8.3.2.) Finally, results are given to illustrate the influence that the

location of "fictitious"” internal, fine-grid boundaries has on the solu-

tion accuracy.

All calculations in this section were made at Re = 100. Since the
calculations were only preliminary, Patankar's power-law convective dif-

ference scheme was used; central differencing i{s expected to give simi- "

lar results.

A il
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8.3.1 Notation for Refined Grids

In the adaptive calculations described in the remainder of this
chapter, the geometry of all grids 1is similar. In this section, a
simplified notation for the grids is defined.

Refined grids are boundary-aligned, as discussed 1in Section
8.2.3. Each base or refined grid, G, covers a rectangular domain:
X € (O.XLk); y € (0,2) as indicated in Fig. 8.16. The coordinates
(x,y) are normalized by the step height, h. Grids are described using

the notation:

Gk: Nx X Ny ; ka

where Nx and Ny are the number of cells in the x- and y-directions,

respectively. The domain of Gk is denoted Qk.

The internal, fine-grid boundary for a refined grid lies along the
line (ka, 0 {y<2) and is denoted Y *

8.3.2 Convergence of the Active Solution Method

A calculation was made using a two—level grid system to investigate
the convergence properties of the active solution method. The

parameters for this calculation are:

Go: 12 x 8; xLo = 12
GI: 12 x 163 xLI = 6

Navier—Stokes (inner iteration) convergence criterion:
< 107 (8.3.1)
Active solution (outer iteration) convergence criterion:

max |u" - um—ll < 1078 (8.3.2)

Yk

where n 13 the index for inner iterations, m for outer {terations.
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A converged solution is first calculated on G, . Then for G|,
exact boundary conditions are applied at all prohlem boundaries. Along
the internal boundary, Y1 the normal velocity component, u, is
interpolated from Go using the conservative interpolation procedure
described in Section 7.3.1. The tangential component, v, 1s bilin-

early internolated. A converged solution 1s then calculated on Gl‘

Next, correction terms are calculated for G,, as described in
Section 7.2. For Go boundary points colncident with GI'S boundary,
the solution is linearly interpolated from Gl's solution, Modifica-
tion of these boundary conditions 1s required to conserve mass on Go,
as discussed in Section 7.3.2. (The modification needs to be done only
once, during the first active iteration on a newly created grid system.)
A converged solution is then calculated on Go’ This completes the
first active 1iteration. The process 1s continued until the inner and
outer convergence criteria (8.3.1)=-(8.3.2) are satisfied at all grid
points.

Figure 8.17 plots e™, the maximum change in the boundary values

along vy, versus iteration number. For example, for u, e" 1is defined

as:

! = max [u" - ™ (8.3.3)
11

The change in v {s also plotted in the figure. The method is seen to

converge linearly, and the convergence 1is achieved in nine outer itera-

tions. As discussed in Section 3.6, monotonic linear coavergence sug-

gests that SOR, for example, can be used to increase the convergence

rate. We used an alternative approach described in the next section.

8.3.3 1Iteration Strategy: Inner vs. Outer

Because the active scheme 1is {terative, the solution on a given
grid need not be fully converged before switching to another grid. This
is illustrated in Fig. 8,17, where it is seen that the change ian the
solution along the fine-grid houndary 1s larger than the inner conver-
gence criteria (8.3.1) for most of the outer iterations. At the m-th
outer fteration, the work required to converge the solution to an error

much less than em+1 is wasted.
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The optimum iteration strategy 1is to have the inner convergence

error during the mth outer iteration be somewhat smaller than

em+1

2 -«';".

+
e™ 1.

m

If the convergence 1is linear, can be predicted from e and

em-l, and then reduced by an appropriate factor to provide an inner

convergence criterion.

An alternative approach 1s to 1iterate a fixed number of times on
each grid, before switching. This 1s done 1in multigrid methods, 1in
which 2-4 inner iterations are typically made on each grid. Using the
following two~level grid system:

£ a

"”“ﬁﬁd:J-

Gyt 24 x 16; xLo = 12

G1: 24 x 32; xLl = 6

k)

active solutions were made with a fixed oaumber of 1inner 1iterations on
- each grid, and also with the inner convergence criterion (8.3.1). The
active convergence criterion was (8.3.2) for all cases. The work to
it calculate each converged active solution was estimated by evaluating the
number of times a grid point was swept, and then summing over all points
in both grids. This was compared to the work required to calculate a
solution on a grid having the same mesh sizes as Gl’ The results are
given in Table 8.3.

Case 1 1in Table 8.3 shows that fully converging on each grid

DA .
N AR R R

requires more work than calculating on a uniform fine grid. For this

e

calculation, five iterations is optimum. We used five inner {terations

4

for the majority of adaptive calculations. However, the inner iteration

strategy had to be modified at higher Reynolds number, as discussed in

. r Dei
PO
(% s+ 4 ) B

Section 8.5.

8.3.4 Effect of Internal Fine~Grid Boundary Location

o Before closing this section, we show results of calculations which
illustrate the effect that the location of the internal fine=-grid bound-

ary has on the solution accuracy.

L Two two-level grid systems were used. The base grid, GO was the

. same In hoth cases. The refined grids, Cla and Glb’ differed onlyv

in the location of their downstream boundaries. The grids are:
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Go: 24 x 16; xLo = 12

16 x 32; x = 4

G
1 a

a’

Gyin: 24 x 327 x =
1b Lip

Converged active solutions were calculated on both grid systems. A solu-
tion was also calculated on a uniform fine grid having the same mesh
sizes as the Gl grids. A typical plot of v at a constant y/h 1is
given in Fig. 8.18.

Figure 8.18a shows the case with X, = 4; the error in the active
solution is larger than the case with xLl = 6 sghown in Fig. 8.18b.
The solution error results from both local truncation error and interpo-
lation error at the fine-grid houndary. If a higher-order interpolation
scheme were used, the solution error should be reduced, allowing the
boundary xLI to be placed farther upstream than say x = 6. As a
result, the adaptive method would be more efficient, since the refined

area would be reduced.

8.4 Adaptive Performance Evaluation for Re = 100

An adaptive calculation was made at Re = 100, using central
differencing. The results are compared to the central-difference,
uniform—-grid calculations described in Section 8.2.2, to evaluate the
performance of the adaptive method. The results of the comparison are

discussed in this section.

The inner and outer iteration criteria used in the calculation are
(8.3.1-2); the maximum allowed estimated truncation error, Thax =
2.5 x 10-4. Five 1inner 1{iterations are made on each grid for active
calculations. Tables 8.4 and 8.5 summarize the prohlem parameters,

along with the adaptive results.

The resulting two- and three-level active solutions were compared
to the central difference, uniform grid solutions having the same mesh
sizes as the finest level grid. (The two-level solution was compared to
the 48 x 32 oarid, the three level solution to the 96 x 64 grid; hoth

grids are summarized in Table 8.1.)
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Rms errors for the adapted solutions were calculated relative to
the 192 x 128 CD solution as done earlier, and are given in Table
8.4. The table shows that the accuracy in the adapted solution for each
level of refinement 1is nearly the same as the Aaccuracies in the respec-

tive uniform-grid solutions.

The ratio of cpu time for adaptive calculations to the cpu time for
uniform-grid calculations is also given in Table 8.4. For the adaptive
calculations, the cpu time 1includes the time required to generate the

solution at the previous level.

The adaptive method is 40% faster than the uniform-grid calculation
with one refinement level. The three-level adapted solution is approxi-
mately six times faster than the corresponding uniform-grid calculation.

The backstep flow poses a severe test for our adaptive method,
since a large part of the problem domain needs to be refined. The
efficiency of the method will be larger for problems having smaller,

more localized refinement regions.

To summarize, we have demonstrated that an active, adaptive
calculation of the laminar backstep flow at Re = 100 has the same

accuracy as a uniform fine-grid calculation but is six times faster.

8.5 Adaptive Results for 100 < Re < 600

In this section, we present the results of adaptive calculations
made at higher Reynolds numbers, and compare the computed reattachment
lengths against the experimental values. The expense of calculations at
higher Reynolds numbers prohibits calculating uniform fine-grid solu-
tions to compare against the adaptive ones. As shown below, the adap-

tive calculation at Re = 600 pushes the limits of the VAX 11/780.

Adaptive calculations were made at Re = 100, 200, 300, 450 and
600, using central differencing. The base and resulting refined grids
for each calculation, along with problem parameters are summarized in

Table 8.5.

For all calculations, the inner and outer convergence criteria are
(8.3.1.,.2) as before. The maximum allowed estimated truncation error

for each case 1s indicated in Table 8.5. Adaptive calculations were
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stopped when the computed reattachment lengths had converged to within
1%; consequently, two refinement levels were required for all Reynolds

numbers.

The adaptive calculations for Re = 200 and 300 were performed in
the same manner as for Re = 100. The refinement regions for Re = 100-
300 are similar. The computed reattachment lengths agree well with the
experimental values. Note in Table 8.5 how the number of outer itera-
tions for convergence, along with the cpu times, 1ncrease for these

three cases.,

At higher Reynolds numbers, the behavior of the flow solver SIMPLER

required modification of the inner {teration strategy. On a single

grid, for Re > 300, the convergence of SIMPLER was no longer monotonic

(i.e., the change in velocity (2?f2?~1

) for one {iteration was not
always smaller than that for the previous iteration.) Increasing the

underrelaxation did not help.

Also, the intermediate solutions have spatial oscillations (or
waves) which move through the grid and die out very slowly. The oscil-
lations arise after only a few iterations. Consequently, if they are
not removed before switching grids in an active calculation, the method
causes them to be passed to all other grids in the system, with subse-

quent divergence of the solution.

The problem was remedied by iterating to a partial convergence, and
thus removing the oscillations before switching to another grid. For
Re = 450 and 600, the following active iteration strategy was used.
Two-level calculations were first converged to the inner and outer con-—
vergence criterion 10_3, before reducing the criterion to 10-4 and
fully converging the calculations. The three~level solutions used the
107%

further study is required to determine the best approach.)

criterion. (This strategy could be used at all Reynolds numbers;

The resulting refined regions are similar to the lower Reynolds
number cases; however, the computed reattachment lengths are smaller

than the experimental values. The cpu times also become very large.

As discussed in Section 8.1.1 above, Armaly et al. (1983) observed

an elongated, secondary recirculation bubble on the top wall for Re >
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300 At Re = 450 and 600, the bubble 1is located approximately

between:
8.5 < x/h < 15.5 for Re = 450
11.5 < x/h < 19 for Re = 600

This recirculation region also appears 1in our calculations and is

located hetween:
9.5 < x/h < 15,5 for Re = 450

10 < x/h < 20 for Re = 600

Since the physical flow is three-dimensional at these Reynolds numbers,

better agreement 1s nnt expected.

Computed reattachment lengths are plotted versus Reynolds number,
along with the experimental data in Fig. 8.19., Also plotted are the
calculations of Kim and Moin (1985), who also used central differencing
but a different solution method. Their computational model is identical
to ours (described in Section 8.1.2), and all calculations were made on

a uniform, 100 x 100 grid, with x;/h = 30.

Our results agree with those of Kim and Moin at all Reynolds num-—
bers. (However, we cannot draw any conclusions regarding the global
agreement between their solutions and ours.) The agreement with the
experimental data is good for Re < 300. As discussed in Section 8.1.1,
the experimental flow became three-dimensional at higher Reynolds aum-

ber; this 1is responsible for the disagreement with the 2-D calculations.

In summary, we have made adaptive calculations of the laminar back-
step flow over a range of Reynolds numbers. Calculations become quite
expensive at higher Reynolds numbers; uniform fine-grid calculations
would be prohihitively expensive. The results agree with a similar set
of central difference calculations, and also with experimental data, in

the range of Reynolds number at which the flow is 2-D.
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TABLE 8.2

UNIFORM GRID ERROR#

#+ RELATIVE TD 192 X 128 CD CALCULATION

#% CD = CENTRAL DIFFERENCE
HY = PATANKAR POWER-LAW SCHEME
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LAy,

- TABLE B.3

j INNER ITERATIDON STRATEGY

:;

- # OUTER WORK (ACTIVE)

J INNER ITERATIONS FOR
ITERATIONS CONVERGENCE WORK (UNIFORM)
Variable,

1 used inner

- convergence

’ criteria

" (8.3.1)
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PARABOLIC INFLOW
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Chapter 9

CONCLUSIONS AND RECOMMENDATIONS

In this research, we have developed adaptive grid techniques for
flows governed by the incompressible Navier—Stokes equations. The local
refinement method of Berger, developed for hyperbolic equations, was
extended to elliptic equations. Specifically, we implemented two fea-
tures of Berger's method: overlaid, locally uniform grid refinement
consisting of rotated rectangles, and refinement regions defined by

Richardson error estimates.

Local refinement offers the following important advantages over

globhal refinement methods:
° lower computational overhead,

® no instability or skewness problems assocliated with grid-
point distributionm,

y L truncation error used for refinement criterion,

° less reliance on heuristic criteria and problem—dependent
parameters,

° solution accuracy explicitly addressed.

Two classes of elliptic flows were identified; they are character-
ized as having strong or weak viscous—-inviscid interactions. Adaptive
solution methods, active and passive, respectivelvy, were developed for

each class.

Application of the passive method to linear, two—-point boundary-
value problems demonstrated the feasibility of the solution technique.

The method is efficient compared to using a uniform fine grid.

The passive method was also applied to a 2-D, linear convection-

diffusion problem, in which the flow is oblique to the grid lines. The

“o4

refined grids automatically aligned with the flow, thereby minimizing

numerical diffusion. For fixed accuracy, the adaptive method is signif-

(2l il O N

icantly more efficient than using a uniform grid.

The SIMPLER method was used to solve the steady, laminar, incom-
pressible Navier-Stokes equations. Central differencing of the con-

vective terms was Implemented with the defect-correction method to

b e O S e
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stabilize the solution method for all cell Reynolds numbers. Smooth
solutions were calculated for cell Reynolds numbers as high as 150,
indicating that the commonly wused restriction, ReAx < 2, is too

severe.

Uniform grid calculations were performed for the laminar backstep
flow. Patankar's power—law scheme was shown to be less acccurate than

central differencing, and only first-order accurate.

The Richardson-estimated solution and truncation errors were also
compared to accurate estimates of the same quantities for the backstep
flow. The solution error s predicted well. The truncation-error
estimates are less accurate, bhut they reliably indicate where grid

refinement 1is required.

Active—-adaptive calculations of the backstep were made, using
boundary-aligned refinement. At Re = 100, the adaptive calculation
has comparable accuracy but 1is six times faster than a uniform-grid
calculation. Adaptive calculations were also made at higher Reynolds
numbers. The calculations agree well with the experimental data and

other calculations.

Recommendations

Several aspects of our adaptive technique should be further studied
and 1improved. First, the method has been developed for rectangular
problem domains; extension to complex geometries will increase the

method’s usefulness as an engineering tool.

Interpolation methods for rotated grids need to be developed. The
issue of conservation and how it is maintained using local grid refine-
ment needs to be better understood. Also, to 1Increase the adaptive
efficiencv, higher-order interpolation methods, preferably cubic inter-

polation, for fine-grid boundary conditlions are recommended.

The convergence rate of the active solution method is probahly not
optimum. It should be determined what i{s the best iteration strategy--
to iterate for a fixed number nf times (and how many) or to iterate to a
partial convergence on each grid hefore switching. The choice probably

depends on the problem and also the Reynolds number.
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Since the active method is similar to multigrid methods (which are

\ =~
.

very efficient), the techniques used to improve multigrid convergence
rates may be applicable to the active method; this should be further
evaluated. For example, different sweep patterns may prove more effi-

clent; e.g., "W" sweeps, the so-called Full Multigrid (FMG) cycle, etc.

‘il =L b AL )

Also, when switching from a coarse to a fine grid in a multizrid method,
the fine grid solution 1is corrected at all internal fine grid points.
Recall that, in the active method, only the fine grid boundary condi-
tions are interpolated from the coarse grid. Addition of such a correc=-

tion may improve the overall convergence rate.

Finally, the method should be extended to the Reynolds~averaged
- equations and also to three dimensions. Such flows pose some of the

most challenging engineering problems.
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Appendix A

QUANTIFICATION OF THE STRENGTH OF THE VISCOUS-INVISCID INTERACTION

In this appendix, we show how the strength of the viscous-inviscid
interaction can be quantified for the flow in the 1inlet region of a
plane channel. The same methodology can be applied to other flows. It
is required only that the boundary-laver displacement thickness can be

related to velocity in the inviscid, outer region.

The displacement thickness 6* for a constant-density fluid is

defined as:

)
* ]
§ = /(vo—v) dy (A.1)
o
o
where § is the boundary-layer thickness, V the velocity outside,

o
and v the velocity inside the honndary laver (see Fig. 3.1). 6* is a

measure of the boundary-laver thickness. For the flow over a flat
*
plate, & ~ &/3.

The displacement thickness has the following significance. The
uniform, inviscid flow at velocity Vo through a channel, whose
height L has been reduced (displaced) by an amount equal to 6* on
each end, will have the same volumetric flow as the viscous flow through
a channel of height L. The 1inviscid flow 1is coupled to the viscous

flow in the boundary layer through this displacement effect.

The displacement thickness 1s related to VO by:

= (A.2)

where 0, the volumetric flow through the channel, is:
0 = VL (A.3)

and V 1is the average velocitvy {n the channel. Suabstituting (A.3) into

(A.2) gives:

v'oo= (4.4)




(A.5)

%
If the displacement thickness 1is increased by an amount A§ , the outer

velocity becomes:

v (6" +as") = L (4.6)

1 - 2(8" + as")

where we have dropped the " ' ", Subtractineg (A.4) from (A.6) and
dividing the result by (A.4) gives the following relationship for the

relative change in V:

* * * *
AV v(s +as") -V (s ) | - 28
——— = - - 1 (Ao7)
v * * *
0 v (s ) 1 - 2(6 + 468 )
Let the change in 6* be:
* *
Aé = (k-1) § (A.8)

where X is a sensitivity parameter. Substituting (A.8) into (A.7)
gives the desired result: T
AV
o
v

*
2(K~1) &

x
o 1 - 2K$é

(A.9)

Equation (A.9) quantifies the strength of the coupling between the

boundary layer and the outer, inviscid flow. g

AVO/V0 is plotted in Fig. 3.2, for K = 2,10. On a coarse grid,
the boundary layer may be smeared to twice its actual size, K = 2. The
relative change in Vg should be no greater than the maximum allowable X
error. For K = 2 and maximum allowed error, 0,1%, the coupling is

weak for & /L < 10-3, and strong at larger §%/L.
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