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Arithmetic procedures are induced from examples
Kurt VanLehn

Abstract

According to a common “folk” model. students learn arithmetic by understanding
the teacher’'s explanation of it This folk mode! suggests that other. more
comphcated procedural skils are aiso acquired by “being told.” The evidence
presented herein suggests that learning-by-being-told is an inaccurate model of the
kind of arithmetic learning that actually occurs in classrooms. Rather, arithmetic is
learned by induction: the generalization and integration of examples.




[}

RS i 2 A B2 WINLPECSN A0 s gt
N

n", 4"

Table of Contents

N5 IOy

1. Schematic vs. teleological knowledge. 4
2. Three ways that amthmetic could be learned 7
. 3. The conservative evaluation of the induction hypothesis 8
. 4. A liberal evaluation of the induction hypothesis 14
5. Learning by analogy 17
6. Learning by being told 20
7. Summary 21
8. Concluding remarks 23
9. Appendix 26

Accesion For

NTIS CRA&I
DTIC TAB
Unannou:iced
Justification

slalc 1N

By

Avaiiabitty Cedes
—— - —rt. et
Avan adior
Dist Sl

A1 |

——

TN

: \‘
. ey
N,

TR, V.T,T . T T T

..

et e ™ T ™ e T AN Y e e e e e . e T L e T e e
. . - . - . - . -t . . e e

et T T e e e T T e T N e e e e e {
EWS VAP VPN VAR TP S VA W WA W Sy i R P S I |




AR TN L RN I A - e o AR i Bt i e e Jiv it A i Qb oo o e g & p o0
. ~ e - [ . - DAt N A A A,

M B s B A e At aan Ll s ot At ~ -
R A AR\l AN Aie Staahe st ghe aby i _v".ﬂ_-,"_ﬂv-:'wj:\‘w_-;—-‘_.‘-‘

Arithmetic procedures are induced from exampies

Kurt VanlLehn

Suppose one asked some concerned adults. e g parents. how muiticofumn subtraction
is learned in school. Thewr explanation would probably run something like thus.  The teacher
tells the students how to perform the algorithm. then sets them to solving practice exercises.
Perhaps the practice causes some students to realize that they hadn't quite understood what
the teacher meant. Or perhaps the teacher notices that certain students are following the
wrong procedure. In either case. the teacher helps the students by telling them in more
detail about the algonthm. probably by adaptir3 the exptanation to the particular exercises
that the students are working on “Telling” dominates both the initial instruction and the
ubsequent teacher-student interactions. according to this folk model of arithmetic acgquisition
Winston (1978) dubbed this mode! “learning by be:ng toid.”

The evidence to be presented below suggests that learning-by-being-told is an
mnaccurate model of the kind of arithmetic fearning that actually occurs in classrooms Rather
anthmetic 1s learned by induction: the generalization and integration of examples An
“example” of a procedure s an execution of 1. When teachers work a subtraction exercise
on the blackboard therr writing actions constitute an example of the subtraction procedure
Al'ncugh  some inductive learming may occur  while passively observing the teacher work
gictiems  most inductive learming probably occurs in the midst of probiem solving For
instance. a student may try to solve a practice exercise. get stuck and seek help from the
textbook. the ‘teacher or a classmate. With this help. the student determines what wnting
actions to perform next and thereby continue toward a solution of the exercise Learning
occurs when the student generahzes these actions and incorporates them into his or her
procedure. The writting actions are an example of a subprocedure that the student needs to
learn.  The student's generalization of that example yields a subprocedure. although 1t may
not be the correct subprocedure. This hypothetical incident dlustrates how inductive learning
can occur in the midst of praoblem solving. The defining charactenstic of induction of
arnthmetic procedure is that learning is based an generalizawon of writing actons regardless

of whether those actions are acquired by actively soliciting help or by passively observing an
exercise being solved.

The folk model of arithmetic learming holds that verbal explanations provide information
from which students learn procedures Aithough verbal explanations certainly dominate the
instruction.  the evidence presented below suggests that the examples that nevitably
accompany such explanations are doing the pedagogical work However the examples dont
do all the work. The verbal explanations are crucial for ndicating to the students the
particular kind of induction to perform on the examples The verbal explanations indicate
what aspects of the examples to generalize and how !0 integrate them That 1s. verbai
explanations have an indirect effect They function as If they tell the student now (o nNguce
the arithmelc procedure despite the fact that their literal content 1S about how to perform the
procedure. This view of arithmetic learning will be called the induction hypothesis

Clearly. the nduction hypothesis would be false if it were tested in a fine-grained way
During the hundreds of classroom hours that a student spends learming the multicolunn
anthmetic algorithms. there are. no doubt. many episodes where the student suddently grasps
a new aspect of an algonthm. and yet there 1s no example n sight  Because examples are
a prerequisite for induction such episodes would be outright contradictions ot the induction
hypothesis if the hypothesis were to be taken as a statement about the second-by-second
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learning process. Such a fine-grained interpretation is not the intended one. An explanation
ot the intended interpretation requires that a lhttle background on the research project be
presented first.

The research project began with the “buggy” studies of Brown and Burton. It is well
known that arithmetic students make a large variety of systematic errors (Buswell, 1926.
Brueckner. 1930. Brownell. 1941 Roberts. 1968. Lankford. 1972 Cox. 1975, Ashiock, 1976).
Brown and Burton used the metaphor of bugs in computer programs n developing a precise.
detalled formalism for describing systematic errors. The basic idea is that a student's errors
can be accurately reproduced by taking a formal representation ot the correct algorithm and
making one or more smail perturbations to 1t. & g. deleting a rule. The perturbations are
called bugs. A systematic error i1s represented by a correct procedure for the skill plus a
st of one or more bugs. Bugs describe systematic errors with unprecedented precision. I a
student makes no unintentional mistakes (e.g.. 7-2=4). then the student's answers will exactly
match the buggy algorithm's answers, digit for digit.

Burton developed an automated data analysis program. <called Debuggy. Using 1t
data from thousands of students learning subtraction were analyzed. and 76 different kinds of
bugs were observed (VanLehn. 1982)  Similar studies discovered 68 bugs n addition of
fractions {Shaw et al.. 1982). several dozen bugs in simple linear equation solving {Steeman.
1984). and 57 bugs n addition and subuaction of signed numbers (Tatsuoka & Bailie. 1982)

It 1s important to stress that bugs are only a notation for systematic errors and not an
explanation The connotations of “bugs” in the computer programming sense do not
necessarily apply In particular bugs in human procedures are unstable They appear and
disappear over short periods of time. often with no intervening instruction. and sometimes
even in the middle of a testing session (VanLehn. 1982) Often. one bug s replaced by
another. a phenomenon called bug migraton.

Collecting bugs leads mevitably to wondering why those bugs exist. There are an
infinite number of possible bugs. why do students only acquire certain of these? One way to
answer such questions 1s 10 develop a generative theory of bugs Such a theory should
generate (predict) exactly which bugs will occur and which bugs won't. The way that 1t
generates a bug constitutes an explanation for the bugs existence

Repar theory (Brown & VanLehn. 1980) was our first version of a generative theory ot
bugs The basic idea of reparr theory is that students dont simply halt when they reach an
'mpasse while tollowing a procedure. as a computer would Rather. they apply certain meta-
level problem solving operations  called repars. that change their interpretation of the
procedure n such a way that the; can continue As an illustration. suppose that a student
~ho bhas not yet learned about borrowing from zero encounters the problem 305-109 When
he student trys to decrement the top digit in the tens column as his incomplete procedure

says he should. he finds that it 1s a zero and can! be decremented He 1s at an impasse
{(see A below
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(The small numbers represent the student's scratch marks) Several repairs could potentially
be applled here. A simple one i1s just to skip an action when the preconditions are violated.
In this case. the repair would result in omiting the decrement half of borrowing (see B
above). !f the student does this on every problem that requires borrowing from zero then he
will appear to have a systemanc error. a bug called Stops-Borrow-At-Zero  (The appendix
lists the observed subtraction bugs. with a short description of each) If the student chooses
a different repair. such as relocating the stuck action. then a ditferent bug would be
generated  Problem C above exhibits Borrow-Across-Zero a bug where the decrement has
been moved leftward The impasse/repair mechanism can explain many bugs as coming
from the same underlying incomplete procedure. Such underlying procedures are called core
procedures.

Repair theory can also explain bug migrations. Suppose a student has the same core
procedure throughout a testing session. but instead of repairing every occurrence of an
impasse with the same repair. he makes diffferent repairs. This would make it appear as if
the student were exhibiing different bugs on different problems or maybe even on different
columns within the same problem  For instance. if the hypothetical student mentioned above
chooses the fi.st reparr for some mpasses and the second repair for others, then it will
appear that there is a bug migration between Stops-Borrow-At-Zero and Borrow-Across-Zero.
Even though the core procedure is stable. there is instability in what appears on the surface
to be the students procedure The “surtace procedure.” which exists only in the eye of the
observer and not in the mind of the student, changes from one buggy procedure to another.

If one stipuiates just the right set of core procedures. then repair theory can generate
a large set of observed bugs. The set of bugs is larger than the set of core procedures.
so repair theory 1s not a vaccuous theory. Originally. the set of core procedures was
discovered by trial and error. In a sense. we "observed” those core procedures in the
subject population  Something is needed to explain why exactly that set of core procedure
1S “observed” n the subject population A generative theory of core procedures is needed.
Such a theory has been developed (VanLehn. 1983). It is the topic of this chapter.

As the example above makes clear. some core procedures are a direct result of the
tact that diagnostic tests are administered 10 students who have not yet completed the
subtraction curnculum and therefore have not yet been taught the entire algorithm. The
incompleteness n their training causes thetr core procedure to lack some of the
subprocedures that a correct. complete procedure would have This incompleteness shows
up as bugs on the diagnostic test. Testing beyond training explains why some core
procedures have missing subprocedures.

Other core procedures. however. are not easily explained as missing subprocedures
instead. some of the subprocedures have wrong information in them The following s a
simple exampie In the correct subtraction procedure. the student should borrow when T«<B
in a column, where T and B are the top and bottom digits. respectively n the column  The
bug N-N-Causes-Borrow performs a borrow when T<B (see below)

Apparently students with this bug have overgenerahized the condition for when 1o borrow
Thewr core procedure 1s complete bul incorrect
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To sum up. there are a variety of core procedures. Some seem quite naturally to be
the result of testing beyond training. while others seem to be the result of learning processes
that have gone awry. The research project is to find a learning theory that generates
(predicts) the core procedures that are found in the subject population.

Because the learning theory should actually construct the core procedures. a
computational learning model is needed. It should take in something that represents the
classroom experiences that the students have Using that input. it should construct some
knowledge structures that represent the core procedures that students acquire from those
experiences. Researchers in Artificial Intelligence (Al) have built such computational models
of learning (Cohen & Feigenbaum. 1983). Thrare are models of skill acguistion based on
induction (Biermann.  1372). analogy (Carbonell. 1983). learning-by-being-told (Badre. 1972).
planning and debugging (Sussman. 1876). practice (Mitchell Utgoff, & Banerji. 1983). and
I other techmques.
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In general. these researchers make no attempt 1o empirically test their model's
psychological vahdity There are exceptions. Perhaps the most thorough valdation s
! Anderson’s study of the acquistion of skidl in geometry theorem proving and Lisp programming
(Anderson. 1983 Anderson. Greeno, Khne. Neves. 1981 Anderson. Farrell, & Sauers. 13984).
In Anderson’'s studies the main data are protocols of students solving problems. with a
textbook and a tutor beside them  Their comments and actions are coded and presented to
the learming model When the mode!l s successful. 1t simulates the students’ learning
behavior accurately at a second-by-second level of detail. Despite the fact that learning such
complex skills requires hundreds of hours of learning and practice. the protocols cover only
two or three hours of an individual student's education. That 1s, of course. nevitable. It s
impossible  to  record. analyze and smulate the whole of a student's education.
Consequently. significant extrapolation beyond the data is needed in order to claim that the
observed samples of the learming process characterize the whole of the students’ education.

Rather than taking a small sample of the students education and analyzing it in great
detail, the present research takes the whole of the students education and analyzes it at a
higher level of detail. The essential information in the students experiences is abstracted
and presented in an ideal form to the learning model The key question is. what should this
essennal information be?  This question is intimately related to the question of what the
learning process 1S if the learning process is inductive. as claimed earlier. then examples
are the essental information to abstract from the curriculum and present to the learming
model. It the learning process is learning-by-being-toid. then the teacher's verbal explanations
are the essential information. Either way, the objective is to find some learning process and
its  associated abstraction of the curnculum such that (1) the whole curriculum can be
presented to the learmning model and (2) the learning model accurately predicts the core
procedures that the students acquirre In short. the desired learning theory 1 a generatve
theory of core procedures (and hence bugs) which models learning over the whole curriculum

This. then. s the interpretation under which the induction hypothesis seems true.
Induction 1s more accurate than learning-by-being-told as a whole-curriculum. generative theory
of bugs. This clam creates an interesting tension. How can induction be such a good
modei when the curricuium s viewed as a whole. and such a mediocre model when
instruction 1s viewed on a second-by-second level? Frankly. | dont know yet because the
research regured to resolve the tension 1s just beginning However. some speculative
explanations are offered in the last secton of the chapter
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The body of the chapter i1s devoted 10 explicating and supporting the induction
hypothesis Three hypotheses will be defined and contrasted: the induction hypothesis,
learmng-by-being-told. and a third hypothesis. learning from analogies to famihar procedures.
The familar procedures used In arithmetic classrooms are usually ones for manipulating
concrete numerals (e g.. coins. Dienes blocks. poker chips. Montessori rods. etc) Analogy 1s
included as a third hypothesis even though it is not particularly plausible as a stand-alone
learning process Much goes on in the classroom that does not involve drawing analogies to
familiar procedures  However. it is plausibie that analogy might go on in combinaton with
induction or learning-by-being-told.  That is. we might find that some bugs can be explained
by analogy. and the rest can be explained by either induction or learning-by-being-told.
Analogy may be of special interest in the context of this book. for it seems. more so than
either induction or learming-by-being-told. to engender conceptual knowledge of arithmetic. as
opposed to procedural knowledge.
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At any rate. the first task is to clarify these three hypotheses. In the process. the role
of the conceptual/procedural distinction. as it applies in this context. will also become clear.
To thus end. it 1s helpful to begin by making an assumption about the kind of knowledge that
students acquire from the arithmetic curriculum.

1. Schematic vs. teleological knowledge

The assumption s that student's knowledge about procedures is schematic but not
telealogical Tc define these terms. “schematic” and “teleological.” it is helpful 1o relate
" >m to more famihar terms  (Figure 1-1 is a road map of the terms to be discussed.)
C Tputer programmers generally describe a procedure in three ways (N.B.. the term

;cedure” 1S being used temporarily 10 mean some very abstract. neutral idea about
S.stemanc actions)

e Program A program 1s a schematic description of actions It is schematic.
because one must say what its nputs are before one can tell exactly what
actions 1t will perform That 's. a program must be instantiated. by gwing it
nputs. betore 1t becomes a complete description of a chronological sequence of
actons

e Action sequences Executing a program produces an action sequence In
principle. one could describe a procedure as a set of action sequences This is
analogous to specifying a mathematical functon as a set of tuples (eg n' as
<01> <11> <22> <36>. <4.24>, i)

e Soechcat.ons Spectfications say what a program ought to do  Often they are
rformair, presented 1in documents that circulate among the programmers and
Taskel researchers on a product development team.  Sometimes spectfications are
~ren an a formal language so that one can prove that a program meets them

There e names tor the processes of transforming information about the procedure
fram o zne level 1o another Programming 1s the transformation of a specification nto a
Lrogram  Execubon anterpretaton and runming are names for the transformation of a program
into an action sequence There are also names for static. structural representations of these
transtormations A race 1s a structural representation of the relationship between a program
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Specifications

LR RN

Teleology Programming

'

Program

Trace Executing

Action Sequence

Figure 1-1: Three leveis of description for a 'procedure © Names for the
processes of converting from higher levels to lower levels are on the right.
Names for conversion structures are on the left

and a particular execution of it A procecural ~o' (Sacerdon 19773 a cenivaton (Carbonell.
1983) and a planning net (VanlLehn & Brown 1380) are all formal representations of the
relationship between a speciicaton and a program Actually these Ihree terms are just a
few of the formabsms being used in an ongoing area of nvestigation Rich (1981) has
concentrated almost exclusively on developing a formanism describing the relationship between
a specitication and a program In his representation system. both the specthcation and the
program are plans -- the surface plan (program) is just a structural refinement of the other
Rather than seeming to commit to one or another of these various formalisms. the neutral
term “teleoiogy” wil be used. Thus. the teleology of a certain program s information
relfatng the program and its parts to their intenced purposes (1 e. to the specification).

Since “teleclogy’ may be an unfamihar term. it s worth a moment to sketch s
meaning. The teleology of a procedure relates the schematic structure (program) of the
procedure to its goals and other design consideratons The teleology mught include. for
instance. a goal-subgoal herarchy it might ndicate which goals serve multiple purposes.
and what those purposes are It might indicate which goais are crucially ordered. and which

goals can be executed n paralel if the program has iterations or recursions, it indicates
the relationship between the goals of the uteration tody (or recursion step) and the goal of
the iteration (recursion) as a whole in general the procedure s teleology exphcates the

gesign behind the procedure

A procedure for making gravy serves well as an ulustration of the difterence between
teleological and schematic knowr2dge. A nowice cook often has only schematc knowledge (a
program) for the gravy recipe -- anich ingredients to add in which order  The expert cook
will realize that the order s cruc:al in some cases bu! arbdrary .n others. The expert also
knows the purposes of vanous par!s of the rec ce For instance. the expert understands a
certain sequence of steps as making a flour-based ‘:ckener  Knowing the goal. the expert
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can substitute a cornstarch-based thickener for the flour-based one More generally. knowing
the teleology of a procedure allows its user to adapt the procedure 1o special circumstances
{e.g., runming cut of flour). It also allows the user 10 debug the procedure. For instance. if
the gravy comes out lumpy. the expert cook can infer that something went wrong with the
thickener. Knowing which steps of the recipe make the thickener. the cook can discover that
the bug is that the flour-fat mixture (the roux) wasn't cooked ilong enough. The purpose of
cooking the roux is to emuisity the flour. Since the sauce was lumpy. this purpose wasnt
achieved. By knowing the purposes of the parts of the procedure. people are able to debug.
extend. optimize and adapt their procedures. These added capabilities. beyond merely
following (executing) a procedure, can be used 1o test for a teleological understanding.

It 1s an empirical question whether the students’ knowledge level corresponds to the
schematic level {(ie.. a program for the procedure) or the teleological level. The assumption
made here is that ther knowledge 1s schematic. This is a rather uncontroversial assumption
In fact. much research in arithmetic begins with the assumption that current instruction gives
students only a schematic (or procedural) knowledge of arithmetic. then seeks some new
instructional methods that will giwve them a teleological (conceptual) knowledge of the skill
Although the assumption of schematic knowledge is wuncontroversial, it might be worth

discussing it a little further in order to iliustrate how one might detect teleological knowledge
if one succeeded in teaching it

Ore hallmark of expert cooks. and others who have a teleological knowledge of
procedures. is their ability to debug and extend the procedures when necessary. Geiman
and her colleagues (Gelman & Gallistel. 1978. Greeno. Riley. & Gelman. 1384) used tests
based on debugging and extending procedures in order to determine whether children
possess the teleology for counting Adapting their techniques, | tested tive adults for
possession of teieology for addition and subtraction. All  subjects were competent at
arthmetic.  None were computer programmers. The subjects were given nine tasks. Each
task added some extra constraint to the ordinary procedure. thereby forcing the subject to
redesign part of the procedure in order 1o bring i back into contormance with its goals. A
simple task. for example. was adding left to right. A more complex task was inventing the
equal additions method of borrowing (1.e.. the borrow of 53-26 is performed by adding one to
- the 2 rather than decrementing the 5)

The results were equivocal One subject was unable 1o do any of the tasks. The rest
were able 10 do some but not all of the tasks. The experiment served only to eliminate the
extremes. Adults dont seem to possess a complete. easiy used teleology. but neither are
they totally incapabie of constructing it (or perhaps recalling ). Further experiments of this
kind may provide more definitive results In particular. 1 would be interesting to find out if
adults were constructing the teleology of the procedure. or whether they already knew it. At
any rate. its clear that not all adults possess operative teleology for therr arithmetic

procedures. and moreover. some adults seem to possess only schematic knowledge of
anthmetic

“ s

Adults found the teleology test so difficult that | was unwilling 1o subject young children

. to t However there 1s some indirect evidence that students acquire very little teleclogy. It
'_". concerns the way students react to impasses Consider the decrement-zero 1mpasse
4 aiscussed  earher The hypothetical student hasnt yet tearned how to borrow from zero

although borrosing trom non-zero numbers 1s quite famiiar  Given the problem
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the student starts to borrow. attempts to decrement the zero. and reaches an impasse. If the
student ynderstands the teleology of borrowing. then the student understands that borrowing
from the hundreds would be an appropriate way 10 fix the impasse. That i1s. the teleology of
non-zero borrowing allows it to be easily extended to cover borrowing from zero.  Although
some stucents may reac! to the decrement-zero impasse this way. many do not.  They reparr
instead Because students do not make teleologically appropriate responses 10 impasses. it
appears that they did not acquire much teleology (or if they did. they are unwiling to use it
-1 which case 11's a moot point whether they have 1t or not).

2. Three ways that arithmetic could be learned

Gwven the assumption that students knowledge of arithmetc procedures is schematic.
we can more accurately address the issue of how they acquire that knowledge The tnipartite
distinction between spectfications. programs and actions sequences will be used again If the
goal 1s to construct a descrniption of the procedure at a schematc (program) level. there are
four possibie routes (see figure 2-1)

1. From specification to program A kind of learning by discovery.
2 From examples (action sequences) to programs. induction.

3 From some other schematc description. either

a ancther tamihar program. learming by analogy. or

D a natural language presentation of the program learning-by-being-told.

The first possibiity 's not particularly plausible in the domain of arithmetic. The teleology of
arthmetic 1s very complex. and the curniculum would have to modified radically n order to
teach 1t Vantehn and Brown (1980 present a complete teleology for addiion. and discuss
how #t could bte taught This form of learning will not be consider further here  However.
the remaiming three forms of learning -- induction. analogy. and learning-by-being-told -- are
exactly the three hypotheses to be discussed

The best way to compare 'hese three hypotheses would be to develop three complete
generative theories. one for each hypothesis. then see which theory 13 better according to the
usual scientfic critena.  In fact. only the induction hypothesis has such a theory behind it
{vanLehn. 1983: The theory is quite rigorousty formutated  There are 31 main hypotheses
The induction hycothesis s one of them.  The other 30 hypotheses concern the form of the
knowtedge representation, the mechamsms for impasses and reparrs and the detais of the
inductive learmng process Frzm the standpoint of supporting the nduction nypcthes:s this
degree of ngor presents some problems First  the empincal adequacy ¢t 'he theor,
depends on all the hypotheses and not just the inductior hypothes:s Thus i the 1regr,
fails to gene ate a certain bug this does not recessa’!, mean that the bug can "ot e
acquired by induction It could pe that some other hypcireses n the theory are ~rong 3.1
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Figure 2-1:  Ways to acquire a program level ot description.

they should shoulder the blame for the theory's inability to predict the bug. This problem of
assigning blame to hypotheses can be solved, but it takes a very careful analysis of the
relationghips among the hypotheses and the data. That analysis has been undertaken, but it
i too lengthy to present here (see (VanLehn, 1983)). Instead. two informal analyses of the
the theory's empirical adequacy will be presented.

The first analysis will be a conservative evaluation of the induction hypothesis. It will
present exactly the bugs the theory can generate in the task domain of subtraction. It will
turn out that the theary can generate 33% of the observed bugs. This conservative
evaluation confounds the effects of the induction hypothesis with the other 30 hypotheses. in
order to pick their effects apart somewhat. the derivations of a few of the bugs will be

presented. The relationship of the induction hypothesis to these bugs is typical of its
relationship to other. similar bugs.

The second analysis will be a liberal estimate of the generative power of the induction
hypothesis [t 1S meant to indicate how many bugs the induction hypothesis could generate
if the other hypotheses in the theory were relaxed or discarded. Essentially. it is an estimate
of the generative power of the best possible inductive learning theory. It will be shown that
85% of the observed bugs can be generated.

Following these two analyses. there will be a discussion of the two competing
hypotheses. learning by analogy and learning-by-being-told. Since no generative theories have
been developed for these hypotheses. their empirical predictions will be derived informally. It
wil be shown that they are not as productive as the induction hypothesis.

3. The conservative evaluation of the induction hypothesis

First. some background. The bug data to be presented were collected from 1147
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subtraction students in grades 2 through 5. The collection and analyses of these data are
detailed in VanLehn (1982). The learning model used to generate the theory's predictions is
the one documented in VanLehn (1983). The model has changed since then. and its
predictions have improved. However, the figures from that publication are used because it
presents a detailed account of how they were generated.

The overall adequacy of the theory is displayed in figure 3-1. There are 76 observed
bugs. The theory generates 49 bugs. 25 of which are observed. This 25 bugs are confirmed
predictions. Seventeen of the predicted bugs a plausible. but have not yet been observed.
Perhaps if another thousand students were examined. some of these would be found.
However. 7 of the predicted bugs are so strange that it is extremely doubtful that they would
ever be observed. These bugs should not be generated by the theory. Of the observed
bugs. 51 are not generated by the theory. This is not as damning an inditement of the
theory as the 7 implausible bugs. It could be that other bug-generating processes are at
wc and they are responsible for some of the 51 bugs. When those processes are
di wed. they can be added to the theory. converting some of the 51 bugs to confirmed
pr .tions. However, the generation of the 7 implausible bugs can't be fixed by adding
ar .ner bug-generating process to the theory. They indicate problems with the present
theory that need rectification.

Observed Predicted Implausible

L,

Figure 3-1: A Vvenn Diagram showing relationships and size of the sets of
observed and predicted bugs.

In developing the theory. it was often the case that one could increase the number of
confirmed predictions but only at the expense of increasing the number of mmplausible
predictions. In the case of this theory. such choices were always made in favor of reducing
the number of implausible predictions. It these choices had been made the other way. then
many of the 51 unaccounted for bugs would be accounted for. The liberal evaluation. which
will be presented in the next section. indicates roughly how many of the 51 bugs could be
converted (o confirmed predictions if the theory were fiberaiized.
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The numbers presented above are difficult to understand without some point of
reference. TwoO such points are provided by earlier generative theories of subtraction bugs.
An early version of repair theory is documented in Brown and VanLehn (1980). {ts empirical
adequacy can be compared with the present theory's. Clearly. this theory will do better since
it includes the ideas of its predecessor. Another generative theory of subtraction bugs was
developed by Richard Young and Tim O’'Shea (1981). They constructed a production system
tor subtraction such that deleting certain of its rules (or adding other rules. in some cases)
would generate observed bugs. They showed that these mutations of the production system
could generate many of the bugs described in the original Buggy report (Brown & Burton,
1978).

A chart comparing the results of the three theories is presented as table 3-1.
Observed bugs that no theory generates are not listed. nor are bugs that have not been
observed. Brown and VanLehn (1980) count bugs differently than they are counted here.
(See VanLehn 1983, pf. 68. for details.) The chart shows that the present theory generates
more bugs, which is not surprising since it embeds many of the earlier theories’ ideas.
What is perhaps a little surprising is that there are a few bugs that they generate and it
does not. These bugs deserve a closer look.

Young and O'Shea’s model generates a class of bugs that they call "pattern errors.”
Four bugs were included in this class:

Diff-0-N=N |f the top of a column is 0. write the bottom as the answer.
Diff-0-N=0 If the top of a column is Q. wrnte zero as the answer.

Ditt-N-0=0 {f the bottom of a column is 0, write the zero as the answer.
Diff-N-N=N If the top and bottom are equal write one of them as the answer.

Young and O 'Shea derive all four bugs the same way. Each bug is represented by a
production ruie. and the rule 1s simply added to the production system that models the
student’s behavior. Put differently. they derive the bugs formally by stipulating them. then
explain the stipulation informally. Their explanations are:

From his earlier work on addition. the child may well have learned two rules
sensitive to zero. NZN and ZNN {two rules that mean N+0=N and 0+N=N]|
Included In a production system for subtraction. the first. NZN. will do no harm  but
rule ZNN wilt give rise to errors of the "0-N=N" type. Simiar rules would account
for the other zero-pattern errors. If the child remembers from addition just that
zero is a special case. and that if a zero is present then one copies down as the
answer one of the numbers given. then he may well have rules such as NZZ or
ZNZ [the rules for the bugs Diff-N-0=0 and Diff-0-N=0) . Rule NNN ([the rule for
the bug Diff-N-N =N} covers the cases where a child asked for the ditterence
between a digit and itself writes down that same digit. it s clearly another
instance of a “pattern” rule. (Young & O'Shea. 1981, pg. 163)

The informal explanations. especially the one for Diff-0-N=N. are plausible (Note by
the way. that some of these explanations crucially involve induction) To treat them fully. one
would have to explain why only the zero rules are transferred from additions. and not the
other addition rules
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Y&O B&V  Cur. Occurs Bug

Always-Borrow-Left
Blank-Instead-of-Borrow
Borrow-Across-Second-Zero
Borrow-Across-Zero
Borrow-Don't-Decrement-Unless-Bottom-Smaller
Borrow-From-Onc-Is-Nine
Borrow-From-One-1s-Ten
Borrow-From-Zero
Borrow-From-All-Zero
Borrow-From-Zero-Is-Ten
Borrow-No-Decrement
Borrow-No-Decrement-Except-Last
Borrow-Treat-One-As-Zero
Can't-Subtract
Doesn’t-Borrow-Except-Last
Diff-0-N=0

Diff-0-N=N

DiffFtN=N=N

Diff-N-0=0
Don’t-Decrement-Zero
Forget-Borrow-Over-Blanks

N — N-Causes-Borrow
Only-Do-Units
Quit-When-Bottom-Blank
Stutter-Subtract
Smaller-From-Larger
Smaller-From-Larger-Except-Last
Smaller-From-1.arger-Instzad-of-Borrow-From-Zero
Smaller-From-1.arger-Instcadof-Borrow-Unless-Bottom-Smaller
Stops-Borrow-At-Multiple-Zero
Stops-Borrow-At-Zero
Top-Instead-of-Borrow-From-ZEro
Zero-Instcadof-Borrow
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10 12 25 totals

Tabie 3-1: Companson of observed bugs generated by three theories:
Y80 = Young and O Shea. B&V = Brown & VanlLehn Cur = current theory
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The point is that one can have as much empirical adequacy as one wishes if the
. theory is not required to explain its stipulations in a rigorous. formal manner. The present
theory could generate the same pattern bugs as Young and O'Shea’'s model simply by
adding making the appropriate modifications to the core procedures and reiterating their
informal derivation (or tell any other story that seems right intuitively). This would not be an
explanation of the bugs. but only a restatement of the data embroidered by interesting
specufation. This approach does not yield a theory with explanatory value. In short, there 1s
a tradeoff between empinical adequacy and explanatory adequacy !f the model does not itself
construct the appropriate knowledge representations. then it is the theorist and not the theory
that is doing the explaining. The theory per se has little explanatory vaiue. even though it
might cover the data quite well. The present theory aims first for explanatory adequacy.
even f that means sacrificing empirical adequacy.

With the foregoing background information in hand. we can return to discussing the
induction hypothesis.  Induction is generalization from examples. Almost always. there are
many possible concepts consistent with a given set of examples. Some will be more general
than the target concept. and some will be more specific. If the learner is not somehow
given extra information about which of the consistent concepts is the target concept. then
there s a strong chance that the learner will guess wrong, and pick either an
overgeneralized or overspecialized concept instead. If human students are learning
inductively, then there should be many bugs that are the result of overgeneralization or
overspecialiization.

- In order to demonstate the influence of the induction hypothesis. the bugs generated by

the theory will be divided into several groups. and characteristic bugs from each group will
be discussed.

The first group consists of bugs generated by overgeneralization of the conditions that
determine whether or not to perform a subprocedure. A prototypical case is the bug N-N-
) Causes-Borrow. which was mentioned earlier. The proper test for when to borrow is T<B.
- where T is the top digit of a column and B is the bottom digit. The bug borrows when

T<B. This makes sense given the induction hypothesis. The student sees many columns
some with T>B and some with T<B. The student induces that the T<B columns trigger
, borrowing. and the T>B columns don't. However. the student must see a T=B8B column in
- order to induce that T =B columns don't trigger borrowing. Such problem types are rare in
. the textbooks used by the students in our subtraction study. and they never occupy a lesson
N of theiwr own Nowhere in the teacher's guides are T=B8 columns pointed out as deserving
special mention So 1t s plausible to assume that students are never notice that T=B
§ columns do not require borrowing. Unless a T=B column is examined. the student doesn!
s know whether the borrowing predicate is T<B or T<B. The students who guess T<B show
up in the data as having the bug N-N-Causes-Borrow. and the students who guess T<B8 wilf

show up as Phaving the correct test for borrowing. Both kinds of performance have been
observed

A simifar explanation works for the bug Borrow-Treat-One-As-Zero. The proper test for
when 1o borrow across zero 1s T =0 (see problem A. below) However students with this bug
«l perform the subprocedure when T=1 or T=0 (see problem B)
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Perhaps the student thinks that 1 and O are special numbers (which they are. for they are
the 1dentity elements of the field). and that “T is a Special Number” is the appropriate test
condition for when to perform the borrow-from-zero subprocedure. The bug can be explained
by the induction hypotheses and the fact that problems (ke B are rare among the textbooks
examples. Two other bugs in this class of overgeneratized test condition bugs are Borrow-
From-One-is-Nine and Borrow-From-One-ls-Ten.

The preceding group of bugs illustrated that the test conditions can be ¢ 2:rgeneralized.
One would 2also expect overspeciallization. if the induction hypothesis is correct. The next
group ot bugs result from overspeciallization of test conditions. (These bugs were not
generated by the version of the theory discussed eartier, and do not appear :n table 1.
They are generated by the liearming model in its present form.) The following 1s a classic
case of a bug generated by overspecialiization of a test condition. In the textbooks in our
study. borrowing is introduced n two column problems. This means that the borrow
originates in the units column. Some students who are tested at this point in the curriculum
believe that borrowing can only be triggered in the units column (see problem A  below)
This s inductively correct. because they have not yet seen examples that contradict therr
overspecialized dea about when to barrow.
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A similar story explains the bug shown in problem B This bug. Smaller-From-Larger-When-
Borrowed-From. borrows in any T<B column. except those where the top digit in the column
has been scratched out already. as in the tens column of problem B. The textbooks delay
teaching about adjacent borrowing (e g.. problem C) untl well after isolated borrowing has
been taught (e.g. problem D) Consequently, a student who is tested between these two
fessons cannot yet have seen a T<B column with the top digit scratched out. and therefore
cannot know whether to borrow or not  In short. for both these bugs. the students have an
overspecraihized concept of when to borrow because certain examples haven't yet been
presented to them Two other bugs. X-N=0-After-Borrow and X-N=N-Alter-Borrow. have
nearly 'dentical derivations.

Ancther four bugs are generated by overspeciallized tests of when to perform borrowing
across zero They are: Borrow-Across-Zero-Over-Zero, Borrow-Across-Zero-Over-Blank. Don't-
Decrement-Zero-Over-Zero. and Con't-Decrement-Zero-Over-Blank

So far. the bugs discussed have concerned when to borrow The next group of bugs
concerns a different kind of procedural knowledge how 1o borrow  Stugents with the bug
Alnays-Borrow-Left borrow from the leftmost column in the problem no matter which column
triggers the borrowing Problem A below shows the correct placement of borows
decrement.  Problem B shows the bug's placement
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The explanation begins with the fact that borrowing s introduced using only two-column
ptoblems such as problem C above.  Multi-column problems. such as A. are not used
Consequently. the student has insufficient information to unambiguously induce where to place
borrow's decrement. The correct ptacement s in the left-adjacent column. as in A However.
two-column examples are also consistent with decrementing the leftmost column. as in
B. Once again. the induction hypothesis provides the key for explaining how a bug is
acquired.  Other bugs in this group are: Forget-Borrow-Over-Blanks. Only-Do-Units, Borrow-
Don't-Decrement-Uniess-Bottom-Smailer.  Smaller-From-Larger-Uniess-Bottom-Smailer.  Doesn -
Borrow-Except-Last. and Smaller-From-Larger-Except-Last.

The other bugs generated by the theory stem from core procedures that are
incomplete, rather than mis-induced. Examples of bugs in this group are Stops-Borrow-At-
Zero and Borrow-Across-Zero. which were described in the introduction. The bugs i~ this
group are consistent with the induction hypothesis. Indeed. the inductive learning model
constructs their core procedures from the initial few lessions of the lesson sequence
However these bugs also would be consistent with any form of learning that had could
gerive a correct (albeit incomplete) procedure from an inihal segment of the lesson sequence.
So the bugs 'n this group confirm the nduction hypothesis, but don't differennate it from
other hypotheses

This completes the conservative analysis of the empirical adenuacy of the nduction
k yothesis. it was shown the overgeneralization and overspecialization could account for
r 1y bugs On a deaper level there are three uitimate causes for the bugs. (1) Many bugs
: generated by testing subskilis that haven't been taught yet. Stops-Borrow-At-Zero is a
good lllustration of this.  (2) Certain critical examples a . missing from the curriculum or
under-emphasized. The bug N-N-Causes-Borrow is a clear case of this. If the critical
examples were added to the curriculum and emphasized. such bugs nught not occur  (3)
Certain examples that should be grouped into the same lesson are separated into two
lesson. and a diagnostic test 1s administered in between them. The bug Always-Barrow-Left
15 a good illustration of this If the two lessons were merged or placed close together. this
bug may not occur in short all three causes for bugs can be cured by modifying the
curriculum and the tesung pohcies

Or so it seems. These are suspiciously crisp predictions I suspect that there will
some surprises if one tries 10 eliminate bugs by changing instruction in the indicated ways
It would an interesting experiment 10 make.

4. A liberal evaluation of the induction hypothesis

As mentioned earlier, the theory generates only 33% of the observed subtraction bugs
" dces not for instance. generate the bug Diff-0-N =N This bug could be explained as an
cvergeneranzation ot the correct subtraction rule that N-O=N The current theory could N
fact generate the bug by overgeneralization. but only f the rule N-O=N s taught in a
separate lesson which it 1S not 1in the textbook senes used by the subjects  Similarly. other
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bugs couid be induced if the theory were tested less rigourously than it was. or if the
various ancilfary hypotheses of the theory were relaxed. This section estimates the best
possible emprrical adequacy that a theory based on induction could have. It will be. of
course, be a rough estimate.

The estmate is based on the following, admittedly weak. line of reasoning. (The
weakness of this kind of reasoning by the way. is exactly why one must build theories) It
a bug s nguced from examples. then there ought to be some way to describe it in terms
ot the wisual and numerical features that examples have. For instance. the bug Diff-0-N=N
can be described by a rule "If T=0. then write B in the answer.” where T and B are the

3 10p and bottom digits 1n a column  The featurs T=0 is a visual-numerical feature. On the
- other hand. f a bug is not acquired by induction. then it might be difficult to describe it
" with simple rules composed of wisual-numerical features. For instance. the bug Borrow-Unit-
Difference seems to be acquired non-inductively. in a correct borrow. the student adds ten to
T and decrements the next digit over by one. Borrow-Unit-Difference calculates how much

needs to be added to T in order to make T equai B. then it decrements the next digit over
by that amount:

N = &

9
g

9

1

Teachers who use coins. Diennes blocks or other concrete numerals to teach subtraction will
recogmize this bug almost ymmediately. in a monetary representation. the problem above is
“You have 8 dimes and 5 pennies. What do you have left if you give me one dime and 9
pennies?” There is a bank. consisting of piles of dimes and pennies. that the student may
use 10 make change. Many students. seeing that they need to hand out 9 pennies. will take
exactly four penmies from the bank  That's all they need to make 9 However. they know
that they must make change fairly. so they hand in four dimes. They have got aimost
everything rnight and they are doing a fine job of means-ends analysis problem solving. except
that they have one constraint wrong: they think that dimes and pennies are worth the same
amount in this context. So their concrete procedure has a small bug in it. To put it a littie
ditferently. when Borrow-Unit-Difference is represented\ as problem-solving with concrete
numerals. it has a succinct, accurate representation as the substitution of an incorrect
constraint for the correct one. However, there 1S n0 such succinct represenation when the
bug 1s represented as a procedure for manipulating written numerais. In particutar. it can
not easily be represented as a condition-action rule using simple visual-numerical features.

When a bug is learned by processes other than induction. such as the analogy process
that ewvidently underlies this bug's acquisition it will be difficult to represent as condition-
action rules over a vocabulary of simple visual-numerical features Consequently. the ease of
description of a bug in these terms can be used as a weak test for whether it can be
generated by an inductive theory

The appendix lists alt 78 currently observed subtraction bugs. (Two bugs have been
discovered since the empirical results of figure 3-1 were calculated) The appendix
demonstrates that 66 of these (te. 85%) can be easily represented as condition-action
perturbations 1o a correct procedure The set of wisual-numerical features used in these
perturbations are hsted in table 4-1
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o
: Ba# The bottom digit in the column is blank. PO
* B=0 The bottom digit in the column is zero. ;1::2}»-
: BORROWED A borrow has taken place already. ::.-‘;
‘ DECR'ED The top digit in the column has been decremented. 2
OECR'ED/BOT The bottom digit in the column has been decremented.
IN/LAST/COLUMN The current column ;s the lettmost one.

IN/NEXT/TO/LAST/COLUMN The current column is the penultimate one.

NEXT/Bs# The bottom digit in the next column to the left is blank.
NEXT/T=0 The top digit in the next column left is zero.
NEXT/T=00 The top two digits in the next two columns to the left are zero. _
; NEXT/Ts=1 The top digit in the next column left is one. Bs
. T<8B The top digit is less than or cqual to the bottom digit o
X T<B The top digit is strictly less than the bottom digit. S
T>8 The top digit is strictly greater than the bottom digit. OO
i T8 The top digit is equal to the bottom digit "
T=B/ORIGINALLY T =B in the original column, before decrementing occured. K
T=# The top digit in the column is blank. .
T=0 The top digit in the column is zero. e
T=00 The top digit in the column and the next one to its left are zero. :'.-j:'::-
T=1 The top digit in the column is one. -
T=1V0 The top digit is a one or a zero. - E
T=g The top digit is nine.

Table 4-1: The wvisual-numerical features used in the appendix

Ot the observed subtraction bugs. 12 could not be represented in a simple way with
visual-numerical features. These bugs are potentially disconfirming to the induction
hypothesis Let's examine them. Of the 12 bugs. 5 have relatively simple explanations.
One of them. Borrow-Unit-Difference. has been discussed already. It seems to have been
acquired by analogy from concrete manipulative procedures. One bug. Add-instead-Of-Sub, LS
seems to result from confusing addition with subtraction. Simpie-Problem-Stutter-Subtract
seems to be a confusion between multiplication and subtraction. When the bottom row of
the subtraction problem has a single digit in it, the student uses a pattern of calculation
simiar to muiltiplication: the single digit is subtracted from each digit in the top row. Stutter-
Subtract is generated by the theory from an incomplete procedure, one that doesn't know
how to handle columns with a blank in the bottom. Don't-Write-Zero seems to be due to R
overgeneralization of a special kind. Somewhere in the curriculum (there is no lesson for it). -
teachers instruct students to omit wrniting a zero if the zero will be the leftmost digit n the I-;.f-j:l
answer  That 1s. younger students answer as in A. below. and older students answer as n _':-::f-j'
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Apparently. the bug Oon't-Write-Zero. whose work is shown in C. is an overgeneralization of
the prohibimion against wnting leading zeros. So this bug actually supports the induction
hypothesis. even though 1t can't be simply expressed in the given feature vocabulary.

Ot the 12 bugs. the remaining 7 baffle me. |f the reader has explanations for any of
the these bugs | would appreciate hearing about them.

At any rate it appears that. whatever the non-inductive learning processes are, they
generate only a few bugs each Induction. on the other hand. seems able to handle, in

principle. 85% of the bugs This 85% includes all the most commonly occurring bugs. as
the appendix documents.

This completes the informal. fiberal analysis of the empirical adeguacy of the induction
hypothesis. Perhaps the evidental relationships are a little weak. but the data side strongly

with the induction hypothesis. The remaining two sections discuss the competing hypotheses.
learning by analogy and learning by being told.

5. Learning by analogy

Learning by analogy is the mapping of knowledge from one domain over to the target
domain. where it 1s applied to solve problems. Analogies are used in the early grades to
teach base-10 numeration.  Students are drilled on the mapping between written numerals
and and various concrete representations of numbers. such as collections of coins. Diennes
blocks. Montessorn rods and so forth. This is a mapping between two kinds of numerals.
and not two procedures  Later. this inter-numeral mapping is drawn on in teaching carrying
and borrowing  For example. a known procedure for making change -- trading a dime for
ten pennies -- s mapped nto the borrowing procedure of written subtraction Many
textbooks and teachers’ manuals advocate this method of teaching by analogy. Although it is
not clear how much this technigue is actually used in the classroom. it warrants our attention
as one possible hypothesis about how students learn procedures. quite common in the
primary grades. 1t seems quite plausible that learning by analogy should be a prominent
framework for learning procedures. indeed. one piece of evidence for the analogy
hypothesis, the bug Borrow-Umt-Difference. has been discussed already. However. it 15 only
one bug and only one subject in our 1147-student sampie had it

Presumably. once an analogy has transferred some knowledge. it 1s still avalable for
use later to transfer more knowiledge about the procedure. In some cases. this predicts
significant student competence For instance. if the students learned simple borrowing via

the anaiogy. then it's qguite plausible that when confronted with more complex borrowing
problems. such as
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(assuming the student hasn't yet been taught how to solve such borrow across zero
problems). the student could soive the problem in the concrete domain by trading a doHar for
nine dimes and ten pennies. then map back into the written domam. thus producing the
correct solution  indeed. the analogies used in instruction may have been designed so that
these productive extensions of the base analogy are encouraged

But this is a much more productive understanding of borrowing than most students
achieve. As discussed earlier. when most students discover that it 1S impossible to decrement
the zero. they repair. These students do not use analogies to familiar procedures (e.g..
making change) if the students had learned their procedures via analogy. one would have
o make ad hoc stipulations to explain why they no longer use that analogy after they have
learned the procedure. [t's more plausible that they simply didnt utiize the analogy in the
first place. Loosely speaking, learming by analogy s too good it predicts that students
would fix impasses by constructing a correct extension 10 ther current procedure. That is.
they would gebug instead of repair Since many students have repair-generated bugs.
another expianation would be needed for how these students acquired thewrr procedures. At
the very least. analogy cannot be the only kind of learning going on if it happens much at
all

Carbonell (1983) makes a telling argument about analogies between procedures. His
ARIES program was unable to form analogies between certain procedures when all it had
~as the progra™m (schematc) representations. However Carboneli found that analogies could
be forged when the procedures were described teleologically (i.e.. in Carbonell's terminology.
the analogy 1s between cervatons of procedures) Suppose one stretches Carbonell's resuits
a Iittte and claims that knowing the teleclogy (Jenvation) of procedures is necessary for
procedural analogy (Carbonnell claims only sufficiency if that) Since most math students
are ignorant of the teleaglogy of their procedures. as discussed earlier. one can conclude that
students did not acquire their procedures via analogy.

How 1s 1t that teachers can present material that is specifically designed to encourage
fearning procedures Dby analogy. and yet their students show few signs of doing s0?
Winston s research {(Winston. 1979) yields a speculative answer It indicates that the most
computationally expensive part of analogy can be discovering how best to match the parts of
the two sides of the analogy To solve electrical problems given hydraulic knowledge. one
must match voltage. electrical current and resistance to one each of water pressure. current
and pipe size There are 6 possible matchings. and only one matching is correct. The
numper of possible matchings rises exponentially with the number of parts. For a similar
analogy. a best match must be selected from 11! or 40 milion possible matches. The
maiching problem of analogy 1s a version of a NP-complete problem. finding the maximal
common subgraph of two digraphs {Hays-Roth & McDermott 1978) Hence. 1t i1s doubtful
that a faster solution than an exponential one exists  Even 1if the matching algorithm were
implemented or a3 connechion machine (1e a computer that 1s lLike a neural net in that n
uses mihons of small processors arranged in a network instead of a single powerful
processor as conventional computers use). 11 seems that the combinatorics would not
decrease radically (O Chnstman personal commumcation)

if computational complexity can be equated w&ith cognitive difficulty. Winston's work
predicts that students may find it difficult to draw an analogy unless either it is a very simpie
cne we few parts) or they are gwen some help in hnding the matching. Resmck (1982)
has produced some expenmental ewvidence supporting this prediction Resnick interviewed
students who were 'aught additon and subtraction n schooi. using the usual analogies
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between concrete and wrntten numerals. She discovered that some students had mastered
both the numeral analogy and the anthmelic procedures in the concrete domain, and yet
they could not make a connection between the concrete procedures and the written ones.
Resnick went on to demonstrate that students could easily make the mapping between the
two procedures provided that the steps of the two procedures were exphcitly paired.  The
students were walked through the concrete procedure in parallel with the written one. A step
in one was immediately followed by the corresponding step in the other.' If we assume the
conjecture from above. that combinatorial explosions in mapping equates with difficuity for
humans making analogies. and we assume that “parts’ of procedures roughly correspond to
steps. then Resnick's finding makes perfect sense  The procedures are currently presented
in school In a non-parallel mode  Trus forces students to solve the matching problem. and
most seem unable to do so  Consequently. the analogy does lttle good. Only when the
instruction helps the students make the matching. as it did in Resnick experiment. does the
analogy actually succeed in lransfernng knowiedge abou! one procedure to the other. In
short., analogy could become a major learning technique. but current instructional practices
must be changed to do so.

There 1s anecdotal evidence that analogy 1s common. but it is analogy of a very
different kind in twtoring. | have watched students fiip through the textbook to locate a
worked problem that is simifar to the one they are currently trying to solve. They then draw
a mapping of some kind between the worked problem and therr problem that enables them
'0 Solve tnerr protblem Anderson et al report the same behavior for students solving
- geometry problems (Anderson. Greeno. Khne. Neves. 1981) and Lisp problems (Anderson.
: Farrell. & Sauers. 1984) Although the usage could be disputed. Anderson et al. use
“analogy  to refer to this kind of example-exercise mapping It differs significantly from the
kind of analogy discussed earlier. The abstraction that s common to the two problem
solutions 15 exactly the schematic knowledge (program) of the procedure. In the analogy
between making change and borrowing. the common abstraction lay much deeper. somewhere
in the teleology (conceptual basis) of the procedure To put it differently. the example-
exercise analogy maps two action sequences of a procedure together. thus illustrating the
procedure s schematic structure (program) The other analogy maps two distinct procedures
together in order to llustrate a common teleoiogy

The tormer mapping. between two instances of a sciematc object. is nearly identcal
to induction  In both cases. the most specific common generalization of the two instances s
calcutated.  Winston also pomnts out the equivalence of generahzation and analogy in such
circumstances (Winstan. 1979).  Although | have not inveshgated example-exercise analogy in
detan. | expect il to behave indistinguishably from learning by generalizing examples

To summanze one form of analogy (f it could be calied that) 1s indistinguishable from
induction The other form of analogy seems necessanly to involve the teleology of
procedures Since students show little evidence of teleology 1t 15 safe to assume that
analogic learning 15 not common in classrooms. perhaps because current nstructional
practices aren't encouraging 1t in quite the right way

Although Resrok = termique makes learnng L/ A A L@y €aiar ol 308 aat 3larartee that @ ach jearming won
Tt threlent wore Hesriox Lad that the  ostraoh a1 w e eMeshi e iy o e hme Resrics & Omanson
[}, gess
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6. Learning by being told

One framework for acquiring a procedure involves following a set of natural language
instructions until the procedure is committed to memaory. This framework for explaining
learning is called /learming by being told (Winston, 1978). [t views the central problem of
learning as one of natural language understanding. There are possible several sources for
the natural language “recipes.” One is the teacher, who explains the algorithm while
presenting it. Another source is the textbook. Since students spend most of their time doing
seatwork. when their major source of recipes is the textbook. let's begin by examining what
the textbooks say. The key issue is whether tha textbooks describe the procedure in enough
detail It they do, then all the students need to do is understand the language, and they
will be able to perform the procedure.

Manuals of procedures are ubiquitous in adult tife. Examples are cookbooks. user
guides. repair shop manuals and office procedure manuals. in using procedure manuals.
adults sometimes learn the procedures described therein. and cease to use the manuals. So
learning by being told is probably quite common among adults. The content of procedure
manuals can be taken as a model for how good a natural language description has to be if
it is to be effective in teaching the procedure.

Open any arithmetic text. and one immediately sees that it is not much like a cookbook
or an auto repair manual. There is very little text. The books are mostly practice exercises
and worked examples. The reason is obvious: since students in the primary grades are just
beginning to read. they could make littie use of an elaborate written procedure.

Badre (1972) built an Al program that reads the prose and examples of a fourth grade
arithmetic textbook in order to learn procedures for multicolumn addition and subtraction.
Badre sought in vain for simple. concise statements of arithmetic procedures that he could
use as input to his natural language understanding program. He comments:

Ouring the prelimirary work of problem definition, we looked for a textbook that
would explain anthmetic operations as a clearly stated set of rules. The extensive
efforts 1n this search led to the following. somewhat surprising result: ‘owadays.
young American grade-school children are never told how to perform addition or
subtraction in a general way. They are supposed to infer the general algorithms
from exampies. Thus actual texts are usually composed of a series of short
iflustrated stories Each story describes an example of the execution of the
addition or the subtraction aigorithms. (Badre, 1972, pg. 1-2)

Despite the fact that Badre's program “reads” the textbook's “stories” in order to obtain a
description of the examples. the role of reading in s learning 1s minmal. The heart of the
program s generalization of examples In particular. the program employs only a few
heunstics that use the book s prose to disambiguate choices left open by generalization.

Although textbooks dcat seem lo have the right sort of language 1o make iearning-by-
being-toild work. perhaps the teachers supply 1t. It 1s infeasible to find out everything that
teachers say In classrooms over the years that anthmetic is taught However, one way 10
test this hypothesis is to make a plausible assumption about what teachers might give as an
explanation and see whether that makes any useful predictions Suppose that the teacher 1s
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3 describing borrowing for the first time As mentioned earlier. borrowing (S invariably
. introduced with two-column problems. such as problem A.
5 2 -
A. g's B, Fé's -
-19 -1069 X
46 466 -
!
s

Under the induction hypothesis. this causes Always-Borrow-Left. as in B. Let's see what kind
- of prediction is produced by assuming that learning is dominated by natural fanguage
X understanding.

In problems like A, “tens column” is probably the most common noun-phase used to
describe the place to decrement from. Under the natural language hypothesis. “tens
column” would be how students would describe to themselves where to do the decrement.
This predicts that if they are given borrowing problems with more than two-columns. then
they would always decrement the ten column. as in C and D below:

5 15

c. 1'sgs p. 3¢5
-_.910 -190
1655 265

This kind of problem solving has never been observed. and in the opinion of the project’s
diagnosticians and teachers. it never will. The natural language hypothesis is making an
implausible prediction. Pernaps the hypothesis can be salvaged. In problem C, the student
decrements a column that has already been answered. Perhaps the student would somehow
appreciate that this won't have any effect on the answer. and thus not do it. However. this

o salvage attempt won't work for problem D. The decremented column is not yet answered at
. the time it is decremented.

These briet examples, illustrate the kinds of trouble that a naive approach to natural
. language understanding as the source of procedure knoweldge falls into. The basic problem
is that natural language is terribly imprecise. The examples add the precision that the
- language lacks. But attending to the examples brings us back to the induction hypothesis

7. Summary

This chapter presented two hypotheses. The first hypothesis. a rather uncontroversial
one. is that the knowledge that students acquire is schematic/procedural (at the level of a
program) rather than teleologic/conceptual (at the level of the design for a program) Both
descriptive levels are logically sufficient to describe a procedure. However. if students
possessed the teteology of their procedures. most impasses could be fixed by deriving a
correct procedure (1.e.. students would debug instead of repair). At feast some students, the
ones with bugs. must be lacking such teleoiogical knowledge. Also. there s experimental
evidence that scme adulls have no teleology for their arithmetic procedures. They either

never learned it or they forgot it while somehow retaining the schematic level (program) for
the procedure All in o ali. it s more parsimonious to assume that students learn just the -3
- schematic level descriptions for their procedures. This imphes that student’'s knowledge can 3}':
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A be tormalized by something like Lisp procedure or production systems. It is not necessary 10
use more powerful formalisms such as planning nets (VanLehn & Brown. 1980). planning
calculr (Rich, 1981) or procedural nets (Sacerdoti. 1977).

The second hypothesis is that students learn inductively. They generalize examples.
There are several fess plausible ways that procedures could be learned: (1) Learning-by-being-
told explains procedure acquisition as the conversion of an external natural language
information source. e.g.. from a procedural manual. into a cognitive representation of the
procedure. Learning from written procedures is implausible in this domain because young
students don't read well. It spoken natural language were the source of procedure
descriptions, some bugs would be predicted that should not be. for they have never
occurred. (2) Learning-by-analogy is used in current mathematical curricula. but in ways that
5 would produce an overly teleological understanding of the procedural skilis. If students really
% understood the analogies, they wouldn't develop the bugs that they do.
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Of the various ways to learn procedures. only induction seems both to fit the facts of

. classroom life and to account for the schematic (program) level of knowledge that students

N appear to employ. Most importantly. the induction hypothesis can account for many bugs.

; ranging from 33% to 85% of the observed bugs. depending on how rigorously one tests the
hypothesis.

Most of the evidence supporting the induction hypothesis came from bug data. This
invites a counter-hypothesis that runs as follows: Students who learn by induction acquire
bugs. while students who Iearn by being told acquire a correct procedure. However,
induction is perfectly adequate for acquiring a correct procedure. In all cases where
induction feads 1o bugs. there is an alternative path that leads to a correct procedure.
Because the examples aren’t rich enough to tell the student which path is correct. some will

N guess wrong. and end up with bugs. The others will guess correctly. and end up with a
correct procedure. The induction hypothesis can't help predicting that some students acquire
correct procedures. It would require extremely ad hoc stipulations to block that prediction.

An advocate of the counter-hypothesis might suggest a modified version of it: Students
who learn by induction acquire either bugs or a correct procedure. while students who learn
by being told acquire a correct procedure. The implausibilty of this hypothesis should be -_}lj‘_:
obvious. Why is learning-by-being-told so perfect that no bugs are ever acquired? It was o
shown in the preceding section that when one assumes that learning-by-being-told is less e
than pertect. then the kinds of bugs that are produced are quite implausible. To block
these bugs would require. | suppose. some rather ad hoc stipulations. i

In short, we are left in a classic Occam’s razor situation. One mechanmism. induction.
. suffices to account for most of the data. Another mechanism, aithough intuitively plausible.
- accounts for only one datum the acquisition of the correct procedure. and it must te R
' constrained in ad hoc ways in order to do so. We can choose to believe that one L
empirically adequate mechanism. induction. is present. Or we can choose to believe that
induction i1s accompanied by a second mechanism that adds nothing to the empincal
coverage and may even hurt 1t Occam’s razor counsels us to choose the former. simpler
theory
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8. Concluding remarks

Induction works well as the foundation of a whole-curriculum generative theory of bugs.
However. it seems inconsistent with a fine-grained. second-by-second account of classroom
learning. There is just too much natural language being used in the classroom for induction
per se to accurately characterize the students learning processes. This section contains a
few speculations about what all that natural language s doing. and what the relationship of
the induction hypothesis is to fine-grained. daily classroom life.

As a form of inference. induction is incor:plete In order to be useful. induction must
be constrained by predilections or biases For instance a common bias is to prefer the
simplest concept that 1s consistent with the examples Several of the 31 hypotheses of the
present theory concern the inductive biases that arithmetic students seem to have. Another
prerequisite for induction is a vocabulary of primitive features with which to describe the
examples in arithmetic. the primitives used by students seem to be mostly visual and
numer:cal (see table 4-1 The present theory has no account for why students use exactly
those primitives. It also has no account for why they hold the inductive biases that they do.
There are certainly other primitves and biases that they could use. and don't. For instance.
T<B T=B and T.B are aifl sahent tfeatures to anthmetic students. Yet they don't appear
to use T=B -1 or T=2xB relatonships that are crucial in counting (Groen & Parkman. 1972
aten L Resnick 12770 Tne, use the notions cof leftmaost column and nghtmost column. but
not the notion of second-column-from-the-nght (1 e. the tens column). They segment
problems into columns and rows. but not into diagonals or 2x2 blocks. They use primitive
operations for decrementing by one and incrementing by ten. but they don't use tens
compiement (7-3) or doubling. There are infinitely many primitives and biases that students
could use. yet they seem to employ only a remarkably small set. Why?

One possibility s that the teacher's explanations somehow indicate which primitives and
biases are appropriate for arithmetic.  Suppose the teacher says. “You can't take 6 from 3
because it's too large © The phrase “too large” tps the student off that some relationship of
relatve magritudes. e.g.. T<B. i1s involved. and not. say. T=2xB. It doesnt say specihically
what relationship to use. but it does narrow the set of relevant primitives gown. On this view
the role of verbal explanations is to give the students a rough idea of what the procedure s
Induction fdis in the details. On this view. the language S absalutely crucial There are
mntinitely many numerical relattonships that can hc!d. say. betwen 3 and 6 The words 100
large” narrows it down to a small set.  Without the language to :ndicate the kinds of
primitives that induction should use. induction would be impossible

Some students. when interviewed. seem to have an excellent grasp of subtraction n
that they can explain. in words quite similar to those that a teacher might use how
borrowing 1s done and why Yet. when they start solving problems they have borrowing
bugs (Resmick. 1982). There 15 a dramatc decoupling of therr verbal competence and theu
written competence Chilgren aren’t the only ones that show this decoupling Wwhen adults
play the Buggy game (Brown & Burton. 1978). they are requred 'o nfer a buggy procedure
from € amples When they feel that they bave discovered the bug they fust type mn a
verbal description of it. and then take a diagnostic test where they solve the problems using
the procedure that they have induced. Quite frequently the players would pass the test with
flying colors. indicating that they really had induced the target procedure However theur
verbal explanations would have little recognizable refationship 1o the procedure  Brown ang
Burton (1978. pg. 169) comment on this phenomena cancentrating on the use of language
during remediation

9
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Another important issue concerns the relationship between the language used 10
describe a student's errors and its effect on what a teacher should to to remediate
it Is the language able to convey to the student what he is doing wrong? Should
we expect teachers to be able to use language as the tool for correcting the buggy
algorithms of students? Or should we expect teachers only to be able to
understand what the bug is and attempt remediation with the student with things
like manipulative math tools? The following descriptions of hypotheses given by
student teachers. taken from protocols of [the Buggy game] give a good idea of
how difficult it is to express procedural ideas in English. The descriptions in
parentheses are [the Buggy game’s] prestored explanations of the bugs.

“Random errors in carryover.” (Carries only when the next column in the top
number is blank.)

“If there are less digits on the top than on the bottom she adds columns
diagonally.” (When the top number has fewer digits than the bottom number. the
numbers are left-justified and then added.)

“Does not like zero in the bottom. ” (Zero subtracted from any number is zero.)

"Child adds first two numbers correctly. then when you need to carry in the
second set of digits. child adds numbers carried to bottom row then adds third set
ot digits diagonally finally carrying over extra digits.” (The carry is written in the
top number to the left of the column being carried from and is mistaken for another
digit in the top number)

"Sum and carry all columns correctly until get to last column. Then takes
furthest left digit in both columns and adds with digit of last carried amount. This
is 1N the sum.” (When there are an unequa! number of digits in the two numbers,
the Columns that have a blank are filled with {he left-most digit of that number.)

Even when one knows what the bug is in terms of being able to mimic it. how is
one gomng to explain it 10 the student having probiems? Considering the above
exampies. 1t 1s clear that anyone asked to solve a set of problems using these
explanations would. no doubt. have real trouble. One can imagine a student's
frustration when the teacher offers an explanation of why he is getting problems
marked wrong. and the explanation is as confused and unclear as these are.

For that matter. when the correct procedure 1s described for the first time. could
1 100 be coming across so unclearly'

For both children and piayers of the Buggy game. there is often a huge difference
retseen the procedure that s performed and its verbal description. This is not. | believe.
're fault of the individuals. but rather a property of natural language Natural language is
just not well suited for describing a procedures 't takes considerable work to generate a
3003 descrniption of a procedure and even then ambiguities remain.  This s evident not only
" the student teachers descriptions quoted above. but also in the Buggy game s descriptions
o' tugs which. although painsakingly fine-tuned. are stll easily misunderstood

On the other hand the verbal descriptions produced by the players of the Buggy game
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(and its authors!) probably seem quite clear to the people writing them. Most teachers
probably believe that their descriptions of the arithmetic algorithms are quite lucid. Moreover,
anyone else who already knows the algorithm would probably agree that the teacher's verbal
desriptions are clear. Yet. for those who don't know the algorithm yet viz. the students.
the verbal descriptions are vague, muddied and useless. It this is the true situation. one
can easily see how the folk model of arithmetic learning stays alive. it accurately
characterizes what the teacher. the parent. and anyone else who already knows arithmetic
would “hear” if they wvisited a classroom But from the students’ point of view. the verbal
descriptions are. at worst. just noise. and at best a hint about what kind of inductve
primitives and biases to employ.
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9. Appendix

Can bugs be expressed using only visual-numerical features?

The demonstration consists of presenting. for each bug. a formal represenation ot the
bug that employs only visual-numerical features. This appendix is intended to show that 85%
ot the observed subtraction bugs can be represented using a only visyal and numencal
features. This result supports the hypothesis that the bugs are learned from generalizing
examples. as described in the text

The most precise demonstration of the point would employ the bug representation used
by Debuggy (Burton. 1982, because Debuggy is the final arbiter of bug exisience. as the
data are normally analyzed (VanLehn (1982) describes the analysis technique and the
particular 1147-student sample used herein). Debuggy is used as the judge of existence
because 1 is more umform and reliable than human judges (VanLehn. 1982) However
Debuggy uses a rather complicated representation for bugs. The point could be made with
Debuggy's representation but it would be difficult to follow uniess one were a proficient Lisp
programmer The representation presented here is much simpler and much easier 10
understand  However 11 cannot be substituted for Debuggy's represemation It's main deficit
1S that 1t cannot accurately model multiple. co-occurring bugs. Much of the complications in
Oebuggy s representation are for hangting the interactions of bugs wnen they are insialied
together in a procedure This representation has no such provisions. It could probably be
extended to deal with bug combining. but then it would lose some of the simpficity that
makes it usefu!l In this context.

The representation consists of two formalisms one for correct procedures and one for
bugs First  the correct procedures formalism wili be described A correct procedure
represented by an applicative And-Or graph which by the way. 1S the representation used Dy
the generative theory of bugs discussed in the text Table 9-1 shows an And-Or graph for
the standard subtraction procedure. It furnishes a concrete illustration for explaining the
formalism

The subprocedures of subtraction. e.g. SUB/COLUMN, BORROW. etc . are represented
as nodes Each node has a defimtion The definion indicates the node's arguments. In
tabie * 1. all nodes except the first one have a singte argument. C. which holds the column
that s the current focus of attention The defimtion also indicates the node s type. which s
either AND or OR  (The first node SUBTRACTION s special it 15 neither an AND nor an
OR It is not perturbed by the bugs so its internal structure doesnt matter )

An AND node's defintion has an ordered list of subgoals They are just hke
subprocedure calls They are executed in order  When the last one 1s finished. the AND
itself 1s fimshed

An OR node's definiion has an ordered hist of if-then rules It the antecendent (the if-
party of a rule 1s true. then its consequent (then-part) 1s executed The rules are tested n
order  The fhrst rule whose antecedent i1s true runs. and only one rule runs

The pnmitive operations are listed in table 9-2 it lists both the prnmitive operators
employed by bugs as well as correct procedures Table 9-3 (and aiso in the text as table
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(DEFINE SUBTRACTION (P)
(for C from (FIRST/COLUMN P) to (LAST/COLUMN P)

do (SUB/COLUMN C))) 2
N

(DEFINE SUB/COLUMN (C) OR ol
(If (T=# C) then (QUIT)) L

(If (B=# C) then (SHOW/TOP C) N

(If (T<B C) then (BORROW C)
(If (TRUE) then (DIFF C)))

(DEFINE BORROW (C) AND
(REGROUP C)
(DIFF C))

(DEFINE REGROUP (C) AND
(B/FROM (NEXT/COLUMN C))
(B/INTO C))

(DEFINE B/INTO (C) OR ik
(If (TRUE) then (ADD10 C))

(DEFINE B/FROM (C) OR
(If (T=# C) then (QUIT))
(If (T=0 C) then (BFZ C))
(If (TRUE) then (DECR C)))

(DEFINE BFZ (C) AND

{ REGROUP C)
(DECR C))

Table 9-1:  And-Or graph for the standard subtraction procedure.

‘ l)lists the primitive predicates that are used in the antecedents of rules in correct
procedures and bugs.

A bug is represented by list of deletions. insertions and substitutions. These are to be
performed on the standard correct procedure. whose definiton was presented earlier. The
substitutions convert the standard correct procedure to an alternative. but stil correct.
procedure for subtraction. The deletions and insertions install the tug  The substitutions are
performed first. and the deletions and insertions are performed second They are performed
in parallel.  Thus. if a bug's description says “Delete rule 1 of node B/FROM. Insert rule -
XXX in B/FROM after rule 1.” then XXX will wind up exactly where rule 1 was because. In
both the insertion statement and the deletion statement. the mention of rule 1 of B/FROM
refers 10 the same rule in the correct subprocedure

The substtutions used in the bugs are all vanant of the standard subprocedure BFZ
BFZ and its variants are listed in table 9-4  These vananis correspond to different ways of
ordering the three subgoais that BFZ performs The last vanant. BFZ/2B/FROM is a HMdtle
unusual. in that 1t calls 2B/FROM. i1s a duplhcate copy of B/IFROM Because 2B/FROM s
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ADD&TRUNCATE Adds the column and writes the units digit of the
sum in answer.

PP YW W W

ADD10 Adds ten to the top digit in the colmun.
DECR Decrements the top digit in the column by 1.
DECR/BOT Decrements the bottom digit in the column by 1.
DIFF Takes the absolute difference of the digits in the
column and writes it in the answer.
INCR Increments the top digit in the column by 1.
\ QUIT Cause the procedure to give up on this problem.
4 REMEMBER/BORROW Sets a bit to true, which is read by the predicate
b BORROWED.,
! SHOW/BOT Writes the bottom digit of the column in the answer.
SHOW/ONE Write a one in the answer.
SHOW/TOP Writes the top digit of the column in the answer.
SHOW/ZERO Writes a zero in the answer.
WRITE10 Changes the top digit of the column to ten.
WRITES Changes the top digit of the column to eight.
WRITE9 Changes the top digit of the column to nine.
WRITE9/BOT Changes the bottom digit of the column to nine.

Table 9-2:  Primitive operators (nodes). All take a ¢olumn as an argument.

called trom a different place than B/FROM. perturbing the rules of 2B/FROM can give
different bugs than perturbing the rules of B/IFROM.

With these definitions of the representation language behind us. the bugs themselves
can be presented They are listed n two groups. The first group consists of 66 bugs that
can be easily represented in this formalism. A short description and an example is provided
with each bug in order to exp.ain what it does informally The formal description. in terms
of substitutons deletions and nsertions. follows' the informal one. Also. the number of
occurrences of the bug 15 gwen There are two numbers. The first is the number of
students who had that bug alone. and the second s the number of students who had that
bug in combination with some other bug.

The second group of bugs listed below consists of 12 bugs that can not be easily
represented in this formalism Only ther informal descriptions and occurrence frequencies
are hsted of course

The end result s that of the 78 bugs that have occurred. 66 (85%) can be
represented in this  formabsm Moreover. almost all the frequently appearing bugs are
ncluded among these 66  Since the formalism uses only the numerncal and visual features
nsted in taples 42 and 4 3 these 66 bugs could be induced from examples
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B=# The bottom digit in the column is blank,

B=0 The bottom digit in the column is zero.

BORROWED A borrow has taken place already.

DECR'ED The top digit in the column has been decremented.

DECR'ED/BOT The bottom digit in the column has been decremented.
IN/LAST/COLUMN The current column is the leftmost one.
IN/NEXT/TO/LAST/COLUMN The current column is the penultimate one.

NEXT/B=# The bottom digit in the next column to the left is blank.
NEXT/T=0 The top digit in the next column left is zero.
NEXT/T=00 The top two digits in the next two columns to the left
are zero.
NEXT/T=1 The top digit in the next column left is one.
T<B The top digit is less than or equal to the bottom digit.
T<B The top digit is strictly less than the bottom digit.
T>B The top digit is strictly greater than the bottom digit.
T=B The top digit is equal to the bottom digit
T=B/ORIGINALLY T=B in the original column, before decrementing occurred.
T=# The top digit in the column is blank.
T=0 The top digit in the column is zero.
T=00 The top digit in the column and the next one to its left
are zero.
T=1 The top digit in the column is one.
T=1v0 The top digit is a one or a zero.
T=9 The top digit is nine.
Table 9-3: Primitive predicates. All take a column as argument.
B S N S St I T B O O e S et x|
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(DEFINE BFZ (C) AND
(REGROUP C)
(DECR C))

(DEFINE BFZ/WRITE9 (C) AND
(WRITE9 C)

(DEFINE BFZ/3ACTS (C) AND
(ADD10 C)

(DECR C))

(ADD10 C)
(DECR C))

(DEFINE BFZ/2B/FROM (C) AND

(ADD10 C)
(DECR C)

Table 9-4:

(B/FROM (NEXT/COLUMN C))

(B/FROM (NEXT/COLUMN C))

(DEFINE BFZ/BF/A10/DECR (C) AND
(B/FROM (NEXT/COLUMN C))

(2B/FROM (NEXT/COLUMN C)))

BFZ and the variants that may be substituted for it.
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Bugs that are easily represented

0-N=0/AFTER/BORROW occurrences: (2 3)
When a column had a 1 which was changed to a 0 by a decrement, the kid
rses 0-n=0 in that column. Example: 113-28=105
Insert the rule
If (AND (T=0 C) (DECR'ED C))
then (SHOW/ZERO C)
in the Or node SUB/COLUMN before rule 3.

0-N=0/EXCEPT/AFTER/BORROW occurrences: (0 2)
When the top digit in a column is 0, the student writes 0 in the answer,
ie. 0-n=0, unless the 0 is the result of decrementing a 1 during a
borrow operation. Example: 80-25=60
Insert the rule

If (AND (T=0 C) (NOT (DECR'ED C)}))

then (SHOW/ZERO C)
in the Or node SUB/COLUMN before rule 3.

0-N=N/AFTER/BORROW occurrences: (1 6)
When a column had a 1 which was changed by a borrow to a 0, the student
used 0-n=n in that column. Example: 113-28:125
Insert the rule
If (AND (T=0 C) (DECR'ED C))
then (SHOW/BOT C)
in the Or node SUB/COLUMN before rule 3.

0-N=N/EXCEPT/AFTER/BORROW occurrences: (4 T)
When the top digit in a column is 0, the student writes the bottom digit
in the answer, ie. 0-nz=n, unless the 0 is the result of decrementing a 1
during a borrow operation. Example: 80-25:65
Insert the rule

If (AND (T=0 C) (NOT (DECR'ED C)))

then (SHOW/BOT C)
in the Or node SUB/COLUMN before rule 3.

1-1=0/AFTER/BORROW occurrences: (1 7)
When a column starts with a 1 on top and a 1 on the bottom and is then
borrowed from, the kid writes O in the answer for this column.
Example: 113-18=105
Insert the rule

Tf (AND (T=0 C) (DECR'ED C) (T=B/ORIGINALLY C))

then (SHOW/ZERO C)
in the Or node SUB/COLUMN before rule 3.

1-1:=1/AFTER/BORROW occurrences: (0 2)
If a column starts with a 1 in both the top and the bottom, and is
borrowed from, the kid writes 1 as the answer in the 1 over 1 column.
Example: 113-18z115
Insert the rule

If (AND (T=0 C) (DECR'ED C) (T=B/ORIGINALLY C))

then (SHOW/BQT C)
in the Or node SUB/COLUMN before rule 3.

e A ALR TR

~~~~~~~~~~~~
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ALWAYS/BORROW/LEFT occurrences: (6 0)
The student always subtracts all borrows from the left-most digit in the
top number. Example: 602-137=375
Delete subgoal 1 from the And node REGROUP,
Delete rule 2 from the Or node B/FROM.
Insert subgoal (B/FROM (LAST/COLUMN))
in And node REGROUP before subgoal 1.
Insert the rule

If (T=0 C)

then (QUIT)
in the Or node B/FROM before rule 2.

BLANK/INSTEADOF/BORROW occurrences: (0 1)
The student leaves a blank in the answer for any column which requires
borrowing. Example: 208-113z15
Delete rule 3 from the Or node SUB/COLUMN.
Insert the rule
If (T<B C)
then (NO/OP)
in the Or node SUB/COLUMN before rule 3.

BORROW/ACROSS/SECOND/ZERO occurrences: (2 5)
Borrows from the rightmost zero by changing it to nine, but the second and
following zeros are skipped over. Example: 1003-358=U5
Substitute BFZ/2B/FROM for the node BFZ.
Delete rule 2 from the Or node 2B/FROM.
Insert the rule
If (T=0 C)
then (2B/FROM (NEXT/COLUMN C))
in the Or node 2B/FROM before rule 2.

BORROW/ACROSS/ZERO occurrences: (13 29)
When the student needs to borrow from a column whose top digit is O, he
skips that column and borrows from the next one. Example: 303-78z135
Delete rule 2 from the Or node B/FROM.
Insert the rule

If (T=0 C)

then (B/FROM (NEXT/COLUMN C))
in the Or node B/FROM before rule 2.

BORROW/ACROSS/ZERO/OVER/BLANK occurrences: (0 10)
When borrowing from a column which has 0 on top and a blank in the
bottom, the kid skips to the next column. Example: 103-8:=5
Insert the rule
If (AND (T=0 C) (B=# C))
then (B/FROM (NEXT/COLUMN C))
in the Or node B/FROM before rule 2.

BORROW/ACROSS/ZERO/OVER/ZERQ occurrences: (1 14)
When borrowing, the student skips columns which have zero on both the
top and the bottom. Example: 303-208=5
Insert the rule
If (AND (T=0 C) (B=0 C))
then (B/FROM (NEXT/COLUMN C))
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in the Or node B/FROM before rule 2.

BORROW/DIFF/0-N=N&SMALL-LARGE=0 occurrences: (4 0)
The student doesn't know how to borrow. If the top digit in a column
is 0, the student writes the dottom digit in the answer ( i.e. O-Nz=N ) .
If the top digit is smaller than the bottom digit, then 0 is written
in the answer. Example: 204-119z110
Delete rule 3 from the Or node SUB/COLUMN.
Insert the rule
If (Tz0 C)
then (SHOW/BOT C)
in the Cr node SULG/COLUMN before rule 3.
Insert the rule
if {T<B M)
then ShuW/ZERO C)
in the Or ncde SUB/COLUMN after rule 3.

BORROW/DON ' T/DECREMENT/TOP/SMALLER occurrences: (2 1)
When borrowing, the student will only decrement the top number in the
next cclumn if it is greater than or egqual to the bottom number in
that column. Example: 563-388:185
Insert the rule

If (T<B C)

then (NO/QP)
in the Or ncode B/FROM before rule 2.

BORROW/DON' T/DECREMENT /UNLESS/BOTTOM/SMALLER occurrences: (2 2)
When borrowing, the student will not decrement the top digit in the
next column to the left unless the bottom digit in that column is
smaller than the top. Example: 563-388-185
Insert the rule

If (T<B C)

then (NO/OP)
in the Or node B/FROM before rule 2.

BORROW/FROM/ALL/ZERO occurrences: (1 0)
When borrowing from 0, the student writes 9, but does not continue
borrowing from the column to the left of the O . If there are two 0's
in a row in the top number, both are changed to 9's. Example: 203-98=205
Insert the rule

If (AND (T=0 C) (NOT (NEXT/T=0 C)))

then (WRITE9 C)
in the Or node B/FROM before rule 2.

BORROW/FROM/BOTTOM/ INSTEADOF /ZERO occurrences: (0 1)
When borrowing from a column with O on top, the student borrows from
the bottom digit instead of the 0 on top. In all other cases the
student borrows correctly. Example: 203-158=65
Insert the rule
If (AND (T=0 C) (NOT (B=# C)) (NOT (B=0 C)))
then (DECR/BOT C)
in the Or node B/FROM after rule 1.
Insert the rule
If (AND (T=0 C) (NOT (B=# C)) (B=0 C))

D
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then (WRITE9/BOT C)(B/FROM (NEXT/COLUMN C))
in the Or node B/FROM before rule 2.

L e

BORROW/FROM/ONE/IS/NINE occurrences: (0 2)
When borrowing from a column which has a 1 on top, the student treats the
1 as if it were a 10. Example: 113-58=145
Insert the rule
If (T=1 C)
then (WRITE9 C)
in the Or node B/FROM before rule 2.

f BORROW/FROM/ONE/IS/TEN occurrences: (0 1,
b The student writes 10 when s/he borrows from a column with a 1 in the
top digit. Example: 913-78z935
Insert the rule
If (T=1 C)
then (WRITE10 C)
in the Or node B/FROM before rule 2.

BORROW/FROM/ZERO occurrences: (10 4)
When borrowing from a column whose top digit is O, the student writes
9, but does not continue borrowing from the column to the left of
the 0. Example: 103-45:-158
Insert the rule
If (T=0 C)
then (WRITE9 C)
in the Or node B/FROM before rule 2.

BORROW/FROM/ZERQO&LEFT/TEN/OK occurrences: (1 1)
The student changes O to 9 without further borrowing unless the 0 is
part of a 10 in the left part of the top number. Example: 803-508=395
Insert the rule

If (AND (T=0 C) (NOT (NEXT/T=1 C)))

then (WRITE9 C)
in the Or node B/FROM before rule 2.

BORROW/FROM/ZERO/IS/TEN occurrences: (1 1)
When borrowing from a column with a zero on top, the student changes the
zero to a ten. Example: 800-168=742
Insert the rule
If (T=0 C)
then (WRITE10 C)
in the Or node B/FROM before rule 2.

BORROW/ INTO/ONE=TEN occurrences: (0 5)
When borrowing into a column whose top digit is 1, the student gets 10
instead of 11. Example: 321-89-221
Insert the rule
If (T=1C)
then (WRITE10 C)
in the Or node B/INTO before rule 1.

BORROW/NQ/DECREMENT occurrences: (10 8)
{ When the student needs to borrow, he adds 10 to the top digit of the
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current column without subtracting 1 from the top digit of the next
column. Example: 143-28z125
Delete subgoal 1 from the And node REGROUP.

BORROW/NQ/DECREMENT/EXCEPT/LAST occurrences: (4 2)
When borrowing, the student does not decrement the top digit unless he
is working in the leftmost column. Example: 313-228=95
Insert the rule
If (NOT (IN/LAST/COLUMN C))
then (NO/OP)
in the Or node B/FROM before rule 2.

BORROW/ONCE/THEN/SMALLER/FROM/LARGER occurrences: (0 12)
The student subtracts the smaller digit from the larger in all columns
after the first borrow. Example: 133-38=115
Delete rule 3 from the Or node SUB/COLUMN.
Insert the rule
If (AND (T<B C) (NOT (BORROWED)))
then (BORROW C)(REMEMBER/BORROW)
in the Or node SUB/COLUMN before rule 3.

BORROW/ONLY/ONCE occurrences: (0 1)
The student will only borrow once per problem. After that s/he will add
ten to the top number if it is smaller but will not borrow one from the
next column to the left. Example: 1250-1088=262
Insert the rule
If (BORROWED)
then (NO/OP)
in the Or node B/FROM before rule 2.
Insert subgoal (REMEMBER/BORROW)
in And node BORROW after subgoal 2.

BORROW/SKIP/EQUAL occurrences: (0 4)
When borrowing, the student skips over columns in which the top digit
and the bottom digit are the same and borrows from the next column.
Example: 293-198=5
Insert the rule

If (T=B C)

then (B/FROM (NEXT/COLUMN C))
in the Or node B/FROM before rule 2.

BORROW/TREAT/ONE/AS/ZERQO occurrences: (0 1)
When borrowing from a column that has 1 on top, the kid writes 9 and
continues to borrow. That is s/he treats 1 as if it were O because s/he
doesn't like to make more 0's in the top number. Example: 313-158=145
Substitute BFZ/WRITE9 for the node BFZ.
Delete rule 2 from the Or node B/FROM.
Insert the rule

If (T=1v0 C)

then (BFZ C)
in the Or node B/FROM before rule 2.

CAN'T/SUBTRACT occurrences: (1 0)
The kid doesn't know how to subtract at all. Example: 1003-87=#




..........

MR

N
36 N

d Insert the rule
” If (TRUE)

) then (QUIT)
in the Or node SUB/COLUMN before rule 1. e

DECREMENT/ALL/ON/MULTIPLE/ZERO occurrences: (3 3) 2
When borrowing into a column which has a 0 on top from a column which o
has a 0, the student gets uses 9 instead of 10 for the top number. ‘v
Example: 400-199=200
Substitute BFZ/WRITE9 for the node BFZ.
Insert the rule

If (AND (T=0 C) (T=0/ORIGINALLY (NEXT/COLUMN C)))

then (WRITE9 C)
in the Or node B/INTO before rule 1.

. DECREMENT/LEFTMOST/ZERO/ONLY occurrences: (1 0) X
When borrowing from two or more zeros in the top number, the student N
decrements the leftmost zero but leaves all the rest as 10 and does not
decrement the column to the left of the zeros. Example: 1003-958=1055
e Substitute BFZ/3ACTS for the node BFZ.
- Delete subgoal 3 from the And node BFZ.
Insert the rule

If (AND (T=0 C) (NOT (NEXT/T=0 C)))

then (WRITE9 C)
in the Or node B/FROM before rule 2.

R N I I )
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DECREMENT/ONE/TO/ELEVEN occurrences: (0 1)
When borrowing from a column which has a one on top, the student writes G
11. He will also continue borrowing from the next column if there is o
one. Example: 613-238=-385
- Substitute BFZ/3ACTS for the node BFZ.
- Delete subgoal 3 from the And node BFZ. NS
' Delete rule 2 from the Or node B/FROM.
Delete rule 1t from the Or node B/FROM.
Insert the rule
g If (T=1v0 C)
then (BFZ C)
in the Or node B/FROM before rule 2.
Insert subgoal (If (T=0/0RIGINALLY C) then (DECR C))
in And node BFZ before subgoal 3.
Insert the rule
If (T=# C)
then (NO/OP)
in the Or node B/FROM before rule 1.
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DECREMENT/TOP/LEQ/IS/EIGHT occurrences: (1 1) T
When borrowing from a column in which the top is less than or equal to N,
the bottom, the top digit is changed to an 8.0 Example: 283-198-95 .
Insert the rule

If (AND (NOT (B=# C)) (T<B C))

then (WRITE8 C)
in the Or node B/FROM before rule 2.

.
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DIFF/0-N=0 occurrences: (0 10)
Whenever the top digit in a column is 0, the student writes 0 in the
answer, i.e. 0-N=0. Example: 140-21=120
Insert the rule
If (T=0 C)
then (SHOW/ZERO C)
in the Or node SUB/COLUMN before rule 3.

DIFF/0-N=0&N-0=0 occurrences: (0 3)
The student writes 0 in the answer when either the top or the bottom
digit is 0. Example: 308-293=105
Insert the rule
If (OR (T=0 C) (B=0 C))
then (SHOW/ZERQ C)
in the Or node SUB/COLUMN before rule 3.

DIFF/0-N=N occurrences: (1 37)
Whenever the top digit in a column is 0, the student writes the bottom
digit in the answer, i.e. 0-N=N. Example: 140-21=121
Insert the rule
If (T=0 C)
then (SHOW/BOT C)
in the Or node SUB/COLUMN after rule 2.

DIFF/0-N=N&N-0=0 occurrences: (1 0)
The student gets O when subtracting O from anything and also gets N
taken from 0 is N. Example: 302-192:=2980
Insert the rule
If (OR (T=0 C) (B=0 C))
then (SHOW/BOT C)
in the Or node SUB/COLUMN before rule 3.

DIFF/0-N=N/WHEN/BORROW/FROM/ZERO occurrences: (0 2)
The student writes n in the answer when subtracting n from 0 if s/he
would have to borrow from a column which contains a 0 in top.
Example: 1003-892-291
Insert the rule

If (T=00 C)

then (SHOW/BOT C)
in the Or node SUB/COLUMN before rule 3.

DIFF/N-0=0 occurrences: (0 2)
Whenever the bottom digit in a column is 0, the student writes 0 in
the answer, i.e. N-0=0. Example: 403-208=105
Insert the rule
If (B=0 C)
then (SHOW/BOT C)
in the Or node SUB/COLUMN before rule 3.

DIFF/N-N=N occurrences: (0 1)

Whenever the top digit in a column is the same as the bottom digit,
the student writes that digit as the answer for that column,

i.e. N-N=N. Example: 235-134=-131

Insert the rule
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If (T=B C)
then (SHOW/TOP C)
in the Or node SUB/COLUMN before rule 3.

DOESN' T/BORROW/EXCEPT/LAST occurrences: (0 1)
Quits instead of borrowing, unless the borrow is from the last column.
Example: 345-120=225
Insert the rule
If (NOT (IN/LAST/COLUMN C))
then (QUIT)
in the Or node B/FROM before rule 2.

DON'T/DECREMENT/ZERO occurrences: (3 4)

When borrowing from a column in which the top digit i{s 0, the student
rewrites the 0 as 10 by borrowing from the next column to the left but
forgets to change 10 to 9 when s/he adds 10 to the column which
originally needed the borrow. Example: 603-138:z475

Substitute BFZ/3ACTS for the node BFZ.

Delete subgoal 3 from the And node BFZ.

DON' T/DECREMENT/ZERO/OVER/BLANK occurrences: (4 2)
When borrowing, the student will not decrement a zero when it is above
a blank. Example: 103-8=105
Insert the rule
If (AND (T=0 C) (B=# C))
then (NO/OP)
in the Or node B/FROM before rule 2.

DON'T/DECREMENT/ZERO/UNTIL/BOTTOM/BLANK occurrences: (0 1)

The student forgets to change 10 to 9 after borrowing from a column
which had a 0 on top. The exception is when 0 is part of the leftmost
part of the top number then 1 is decremented correctly.

Example: 304-259:=55

Substitute BFZ/3ACTS for the node BFZ.

Delete subgoal 3 from the And node BFZ.

Insert subgoal (If (B=# C) then (DECR C))

in And node BFZ before subgoal 3.

DOUBLE/DECREMENT/ONE occurrences: (1 2)
When borrowing from a column with a 1 in the top, the student changes
the 1 to a 9 and continues borrowing to the left. Example: 3i2-128=175
Substitute BFZ/WRITE9 for the node BFZ.
Insert the rule

If (AND (T=1 C) (NOT (NEXT/Bz# C)))

then (BFZ C)
in the Or node B/FROM before rule 2.

FORGET/BORROW/OVER/BLANKS occurrences: (1 3)
The student borrows correctly except he doesn't take 1 from the top
digits that are over blanks. Example: 143-88=155
Insert the rule
If (B=# C)
then (NO/OP)
in the Or node B/FROM before rule 2.

.....
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IGNORE/LEFTMOST/ONE/OVER/BLANK occurrences: (0 6)
The student ignores the leftmost digit in the top number if it is a
one and has a blank under it. Example: 188-33z=55
Insert the rule
If (AND (B=# C) (T=1 C) (IN/LAST/COLUMN C))
then (QUIT)
in the Or node SUB/COLUMN before rule 2.

N-N/AFTER/BORROW/CAUSES/BORROW occurrences: (0 2)
When a column has the same number in both the top and the bottom and the
digit has been decremented by a borrow to be the same as the bottom digit,
the student borrows from the next column 2ven chough they don't really
need to. Example: 1073-168=8105
Insert the rule

If (AND (T=B C) (DECR'ED C) (NOT (IN/LAST/COLUMN C)))

then (BORROW C)
in the Or node SUB/COLUMN before rule 3.

N-N/CAUSES/BORROW occurrences: (1 0)
When a column has the same number on the top and bottom, the next column
is decremented and 0 is written in the answer. Example: 288-83=1105
Insert the rule

If (AND (T=B C) (NOT (IN/LAST/COLUMN C)))

then (BORROW C)
in the Or node SUB/COLUMN before rule 3.

N-N=1/AFTER/BORROW occurrences: (1 3)
The student gets ) when subtracting n from n in a column which has
been borrowed from. That is, the student knows that he doesn't need
to borrow to subtract n from n, but he feels he must do something
with the borrow, so he writes it in the answer. Example: 354-159=215
Insert the rule

If (AND (T=B/ORIGINALLY C) (DECR'ED C))

then (SHOW/ONE C) _
in the Or node SUB/COLUMN before rule 3.

ONLY/DO/UNITS occurrences: (0 1)
Student only does the units column. Example: 78-52=6
Insert the rule
If (NOT (IN/FIRST/COLUMN C))
then (QUIT)
in the Or node SUB/COLUMN before rule 2.

QUIT/WHEN/BOTTOM/BLANK occurrences: (0 5)
The student stops working the problem as soon as the bottom number
runs out. Example: 178-59=19
Delete rule 2 from the Or node SUB/COLUMN.
Insert the rule
If (B=f# C)
then (QUIT)
in the Or node SUB/COLUMN before rule 2.

SMALLER/FROM/LARGER occurrences: (103 12)
The student subtracts the smaller digit in a column from the larger
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digit regardless of which is on top. Example: 253-118=145
Delete rule 3 from the Or node SUB/COLUMN.

SMALLER/FROM/LARGER/EXCEPT/LAST occurrences: (0 3)
Kid only borrows when decr is in the last column. Takes absolute
difference until then. Example: 313-228=95
Delete rule 3 from the Or node SUB/COLUMN.
Insert the rule
If (AND (T<B C) (IN/NEXT/TO/LAST/COLUMN C))
then (BORROW C)
in the Or node SUB/COLUMN before rule 3.

SMALLER/FROM/LARGER/INSTEAD/OF /BORROW/FROM/ZERO occurrences: (0 5)
Instead of borrowing from a column which has a 0 in the top, the student
subtracts the smaller digit from the larger. Example: 101-56=55
Delete rule 3 from the Or node SUB/COLUMN.
Insert the rule

If (AND (T<B C) (NOT (NEXT/T=0 C)))

then (BORROW C)
in the Or node SUB/COLUMN before rule 3.

SMALLER/FROM/LARGER/ INSTEADOF/BORROW/UNLESS/BOTTOM/SMALLER occ.: (2 5)
The student takes the absolute different instead of borrowing unless
the borrow would decrement a digit that is strictly greater than
the digit beneath it. Example: 300-39=339
Insert the rule

If (AND (T<B C) (OR (NEXT/B=# C) (T<B (NEXT/COLUMN C))))

then (DIFF C)
in the Or node SUB/COLUMN before rule 3.

SMALLER/FROM/LARGER/WHEN/BORROWED/FROM occurrences: (0 7)
The student subtracts the smaller digit from the larger in any column
that has been borrowed from. Example: 133-38=115
Delete rule 3 from the Or node SUB/COLUMN.
Insert the rule
If (AND (T<B C) (NOT (DECR'ED C)))
then (BORROW C)
in the Or node SUB/COLUMN before rule 3.

STOPS/BORROW/AT/MULTIPLE/ZERO occurrences: (2 1)
The student doesn't borrow from two zeros in a row. S/he will just add
ten to the column that needs it without decrementing anything.
Example: 1003-358:z655
Insert the rule

If (T=00 C)

then (NO/OP)
in the Or node B/FROM before rule 2.

STOPS/BORROW/AT/ZERO occurrences: (34 30)

The student borrows from zero incorrectly. He doesn't subtract 1 from
the 0 (though he adds 10 correctly to the top digit of the current
column) . Example: 203-178=35

Delete rule 2 from the Or node B/FROM.
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SUB/ONE/CVER/BLANK occurrences: (0 2)
The student subtracts one from the top number in any column with a
blank in the bottom. Example: 343-28:=215
Delete rule 2 from the Or node SUB/COLUMN.
Insert the rule
If (B=# C)
then (DECR C)(SHOW/TOP C)
in the Or node SUB/COLUMN before rule 2.

TOP/INSTEAD/OF /BORROW/FROM/ZERO occurrences: (0 1)
The kid doesn't know how to borrow from zero. When such a borrow is
required, the kid just writes the top nurber of the column instead.
Example: 300-39=2T70
Insert the rule

If (AND (T<B C) (NEXT/T=0 C))

then (SHOW/TOP C)
in the Or node SUB/COLUMN before rule 3.

TREAT/TOP/ZERO/AS/TEN occurrences: (0 1)
The kid treats zeros in the top number as if they were ten.
Example: 109-81:-128
Insert the rule
If (AND (T<B C) (T=0 C))
then (ADD10 C)(DIFF C)
in the Or node SUB/COLUMN before rule 3.

X-N=0/AFTER/BORROW occurrences: (0 1)
In any column except the leftmost one that has been borrowed from, the
student writes O in the answer. The leftmost column is done correctly.
Example: 313-98-305
Insert the rule

If (AND (DECR'ED C) (NOT (IN/LAST/COLUMN C)))

then (SHOW/ZERO C)
in the Or node SUB/COLUMN before rule 3.

X-N=N/AFTER/BORROW occurrences: (0 1)
In any column that has been borrowed from, the student writes the bottom
number in the answer. Example: 313-98z395
Insert the rule
If (DECR'ED C)
then (SHOW/BOT C)
in the Or node SUB/COLUMN before rule 3.

ZERO/ INSTEADOF/BORROW occurrences: (1 0)
The student writes a 0 in any column in which borrowing is needed.
Example: 140-282120
Delete rule 3 from the Or node SUB/COLUMN.
Insert the rule
If (T<B C)
then (SHOW/ZERO C)
in the Or node SUB/COLUMN before rule 3.

Bugs that are not easily represented
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ADD/INSTEADOF/SUB occurrences: (1 0)
The student adds instead of subtracts. Example: 118-5:z123

ADD/LR/DECREMENT/ANSWER/CARRY/TO/RIGHT occurrences: (1 0)

The student is adding from left to right, decrementing every column
except the rightmost and carrying into every column except the leftmost.
Example: 411-215z2527

BORROW/ACROSS/TOP/SMALLER/DECREMENTING/TO occurrences: (2 0)

When decrementing a column in which the top is smaller than the bottom, O
the student adds ten to the top digit, decrements the column being
borrowed into and borrows from the next column to the left. Also the
student skips any column which has a zero over a zero or a blank in

the borrowing process. Example: 183-95:=97

BORROW/ONLY/FROM/TOP/SMALLER occurrences: (1 3)

The student will try to borrow only from those columns in which the top
digit is smaller than the bottom digit. If he can't find one, then
borrowing is done properly. Example: 9283-3566=5627

BORROW/UNIT/DIFF occurrences: (0 1)

When the student needs to borrow, he borrows the difference between
the bottom digit and the top digit of the current column.

Example: 86-29=30

DECREMENT/MULTIPLE/ZEROS/BY/NUMBER/TO/LEFT occurrences: (1 1)

When borrowing from more than one zero in a row, the student decrements
each zero by the number of columns to the left that had to be scanned to
find a nonzero digit to decrement. Example: 8002-1714=6278

DECREMENT/MULTIPLE/ZEROS/BY/NUMBER/TO/RIGHT occurrences: (3 1)

When borrowing from more than one zero in a row, the student decrements
each zero by the number of columns to its right that are borrowed from.
Example: 8002-1714-6188

DON'T/WRITE/ZERO occurrences: (1 3)
The student does not write zero in the answer; he just leaves a blank.
Example: 24-14:=1

SIMPLE/PROBLEM/STUTTER/SUBTRACT occurrences: (1 0)

When the bottom number is only one digit and the top number is at
least three digits, the bottom number is subtracted from every column.
Example: 348-2-126

STUTTER/SUBTRACT occurrences: (2 0)
When there are blanks in the bottom number, the student subtracts the

leftmost digit of the bottom number from every column that has a blank.
Example: 4369-22:=2147

SUB/BOTTOM/FROM/TOP occurrences: (1 0)

The student always subtracts the top digit from the bottom number. If
the bottom number is smaller, he decrements the top digit and adds ten
to the bottom first. If the bottom digit is zero, however, he writes
the top digit in the answer. If the top digit is one greater than the
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bottom, he writes 9 Example: 4723-3065=9742

SUB/COPY/LEAST/BOTTOM/MOST/TOP occurrences: (1 0)
The kid makes the answer by taking the most significant digits of
the top and the least signicant digits from the bottom number.

Example: 6uU8-231=631
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