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1. Introduction
The goal of the Soar project is to build a system capable of general intelligent behavior. We seek to

understand what mechanisms are necessary for intelligent behavior, whether they are adequate for a wide

range of tasks - including search-intensive tasks, knowledge-intensive tasks, and algorithmic tasks - and

how they work together to form a general cognitive architecture. One necessary component of such an . ' '

architecture, and the one on which we focus in this paper, is a general learning mechanism. Intuitively, a

general learning mechanism should be capable of learning all that needs to be learned. To be a bit more

precise, assume that we have a general performance system capable of solving any problem in a broad set of

domains. Then, a general learning mechanism for that performance system would possess the following three

properties.-

* Task generality. It can improve the system's performance on all of the tasks in the domains. The
scope of the learning component should be the same as that of the performance component.

e Knowledge generality. It can base its improvements on any knowledge available about the domain.
This knowledge can be in the form of examples, instructions, hints, its own experience, etc.

* Aspect generality. It can improve all aspects of the system. Otherwise there would be a
wandering-bottleneck problem (Mitchell, 1983), in which those aspects not open to improvement
would come to dominate the overall performance effort of the system.

These properties relate to the scope of the learning, but they say nothing concerning the generality and

effectiveness of what is learned. Therefore we add a fourth property.

. Transfer of learning. What is learned in one situation will be used in other situations to improve
performance. It is through the transfer of learned material that generalization, as it is usually
studied in artificial intelligence, reveals itself in a learning problem solver.

Generality thus plays two roles in a general learning mechanism: in the scope of application of the mechanism

and the generality of what it learns.

There are many possible organizations for a general learning mechanism, each %kith different behavior and

implications. Some of the possibilities that have been investigated within A I and psychology include:

* A Multistrategy learner. Given the wide variety of learning mechanisms currently being
investigated in Al and psychology, one obvious way to achieve a general learner is to build a
system containing a combination of these mechanisms. [he best example of this to date is
Anderson's (1983a) ACI* system which contains six learning mechanisms.

% A Deliberate Learner. Given the breadth required of a general learning mechanism, a natural wy
to build one is as a problem solker that deliberately de0soes modifications that will improve
performance. I he modifications are usually based on analses of the tasks to be accomplished,

[hese propierties. are related to hut not isomorphic with. the three dimensions iriraton of? Icarning mechani~ms dewcried in

Carbonell. Michalski. and Mitchell 1198 )- application domain. underk ing learning stratcg\ and repreentation ol know ledge
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2 CHUNKING IN SOAR

the structure of the problem solver, and the system's performance on the tasks. Sometimes this
problem solving is done by the performance system itself, as in Lenat's AM (1976) and Eurisko
(1983) programs, or in a production system that employs a build operation (Waterman, 1975) , 6 %
whereby productions can themselves create new productions - as in Anzai & Simon's
(1979) work on learning by doing. Sometimes the learner is constructed as a separate critic with
its own problem solver (Smith, Mitchell, Chestek, & Buchanan, 1977: Rendell, 1983). or as a set of
critics as in Sussman's (1977) Hacker program.

9 A Simple Experience Learner. There is a single learning mechanism that bases its modifications on
the experience of the problem solver. The learning mechanism is fixed, and does not perform any
complex problem solving. Examples of this approach are memo functions (Michie, 1968: Marsh, '

1970), macro-operators in Strips (Fikes, Hart and Nilsson, 1972). production composition (Lewis,
1978: Neves & Anderson, 1981), and knowledge compilation (Anderson, 1983b).

The third approach, the simple experience learner, is the one adopted in Soar. In some ways it is the most

parsimonious of the three alternatives: it makes use of only one learning mechanism, in contrast to a

multistrategy learner: it makes use of only one problem solver, in contrast to a critic-based deliberate learner:

and it requires only problem solving about the actual task to be performed, in contrast to both kinds of

deliberate learner. Counterbalancing the parsimony is that it is not obvious a priori that a simple experience

learner can provide an adequate foundation for the construction of a general learning mechanism. At first

glance, it would appear that such a mechanism would have difficulty learning from a variety of sources of

knowledge. learning about all aspects of the system, and transferring what it has learned to new situations.

The hypothesis being tested in the research on Soar is that chunking, a simple experience-based learning

mechanism, can form the basis for a general learning mechanism.2 Chunking is a mechanism originally

developed as part of a psychological model of memory (Miller, 1956). The concept of a chunk - a symbol

that designates a pattern of other symbols - has been much studied as a model of memory organization. It - -

has been used to explain such phenomena as why the span of short term memory is approximately constant, ,.- -

independent of the complexity of the items to be remembered (Miller, 1956), and why chess masters have an

advantage over novices in reproducing chess positions from memory (Chase & Simon, 1973).

Newell and Rosenbloom (1981) proposed chunking as the basis for a model of human practice and used it

to model the ubiquitous power law of practice - that the time to perform a task is a power-law function of

the number of times the task has been performed. The model was based on the idea that practice improves

performance via the acquisition of knowledge about patterns in the task environment, that is, chunks. When

the model was implemented as part of a production-system architecture, this idea was instantiated with

chunks relating patterns of goal parameters to patterns of goal results (Rosenbloom, 1983: Rosenbhloom &

'A.

1 or a companson ofchunking to other simplc mechanisms for learning hb expenence, see Rosenbloom and Newell ( 195)
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INTRODUCTION 3 -_

Newell, 1985). By replacing complex processing in subgoals with chunks learned during practice, the model

could improve its speed in performing a single task or set of tasks.

To increase the scope of the learning beyond simple practice, a similar chunking mechanism has been ,.

incorporated into the Soar problem-solving architecture (Laird, Newell, & Rosenbloom, 1985). In previous

work we have demonstrated how chunking can improve Soars performance on a variety of tasks and in a

variety of ways (Laird. Rosenbloom & Newell, 1984). In this article we focus on presenting the details of how =

*. chunking works in Soar (Section 3). and describe a new application involving the acquisition of macro- V.

operators similar to those reported by Korf (1985a) (Section 4). This demonstration extends the claims of

. generality, and highlights the ability of chunking to transfer learning between different situations.

I..,

Before proceeding to the heart of this work - the examination of the anatomy of chunking and a

*" demonstration of its capabilities - it is necessary to make a fairly extensive digression into the structure and

performance of the Soar architecture (Section 2). In contrast to systems with multistrategy or deliberate

- learning mechanisms, the learning phenomena exhibited by a system with only a simple experience-based

learning mechanism is a function not only of the learning mechanism itself, but also of the problem-solving

component of the system. The two components are closely coupled and mutually supportive. --

2. Soar -An Architecture for General Intelligence
Soar is an architecture for general intelligence that has been applied to a variety of tasks (Laird. Newell, &

Rosenbloom, 1985: Rosenbloom. Laird. McI)ermott. Newell, & Orciuch. 1985): many of the classic Al toy %

tasks such as the Tower of Hanoi, and the Blocks World: tasks that appear to involve non-search-based

reasoning, such as syllogisms, the three-wise-men puzlc, and sequence extrapolation: and large tasks

*' requiring expert-level knowledge, such as the R! computer configuration task (McDermott. 1982). In this

section we briefly review the Soararchitecture and present an example of its performance in the Fight Puzzle.

2.1. The Architecture

Performance in Soar is based on the problem pace-hypothesis: all goal-oriented behavior occurs as search

in problem spaces (Newell, 1980). N problem spacc tor a task domain consists of a set of states representing

-* possible situations in the task domain and a set of operators that transform one state into another one. For -

example. in the chess domain the states are configurations of pieces on the board, while the operators are the

legal moves, such as P-K4. In the computer-configuration domain the states are partially configured

computers. while the operators add components to the existing configuration (among other actions). Problem

solving in a problem space consists of starting at some given imttal state, and applying operators (yielding

intermediate states) until a dev red statte is reached that Is recognized as achieving the goal.

\I-ROXPNR( IS .I1 I AIP I IMHIR IS5
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4 CHUNKING IN SOAR

In Soar, each goal has three slots, ont each for a current problem space. state, and operator. Together these

four components - a goal along with its current problem space, state and operator - comprise a context.

Goals can have subgoals (and associated contexts), which form a strict goal-subgoal hierarchy. All objects

(such as goals, problem spaces. states, and operators) have a unique identifier, generated at the time the object

* was created. Further descriptions of an object are called augmentations. Each augmentation has an identifier.

an attribute, and a value. The value can either be a constant value, or the identifier of another object. All

objects are connected via augmentations (either directly, or indirectly via a chain of augmentations) to one of

the objects in a context, so that the identifiers of objects act as nodes of a semantic network, while the

augmentations represent the arcs or links.

Throughout the process of satisfying a goal. Soar makes decisions in order to select between the available

problem spaces, states, and operators. Every problem-solving episode consists of a sequence of decisions and

* these decisions determine the behavior of the system. Problem solving in pursuit of a goal begins with the

selection of a problem space for the goal. This is followed by the selection of an initial state, and then an

operator to apply to the state. Once the operator is selected, it is applied to create a new state. The new state

can then be selected for further processing (or the current state can be kept. or some previously generated

state can be selected), and the process repeats as a new operator is selected to apply to the selected state. The

weak methods can be represented as knowledge for controlling the selection of states and operators (Laird &

Newell, 1983a). The knowledge that controls these decisions is collectively called search control. Problem

solving without search control is possible in Soar, but it leads to an exhaustive search of the problem space.

Figure I shows a schematic representation of a series of decisions. To bring the available search-control

knowledge to bear on the making of a decision, each decision involves a monotonic elaboration phase. During

* the elaboration phase, all directly available knowledge relevant to the current situation is brought to bear.

This is the act of retrieving knowledge from memory to be used to control problem solving. In Soar, the

long-term memory is structured as a production system, with all directly available knowledge represented as

productions. 3 The elaboration phase consists of one or more cycles of production execution in which all of the

* eligible productions are fired in parallel. The contexts of the goal hierarchy and their augmentations serve as

* the working memory for these productions. '[he information added during the elaboration phase can take

one of two forms. First, existing objects may have their descriptions elaborated (via augmentations) with new

or existing objects, such as the addition of an evaluation to a state. Second. data structures called preferences

can be created that specify the desirability of an object for a slot in a context. Each preference indicates the

context in which it is relevant by specifying the appropriate goal, problem space, state and operator.

3 ~

Wewill use the terms production and rule interchangeablv throughout this paper

XE+ROX P \RC ISI -11, SIT I FIBIR 1985
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*DECISION 1 DECISION 2DECISION 3

Elaboration Deci ion
4Phiase4,Proc dure4,, 4 , 444

Gather
Preferences

Quiescence Replace
Interpret - Context

Preferences Obiect

Im passe "- :

Create .,

Figure 1: The Soardecision cycle.

When the elaboration phase reaches quiescence - when no more productions are eligible to fire - a fixed

decision procedure is run that gathers and interprets the preferences provided by the elaboration phase to r
produce a specific decision. Preferences of type acceptable and reject determine whether or not an object is a

candidate for a context. Preferences of type better, equal. and worse determine the relative worth of objects.

Preferences of type best, indifferent and worst make absolute judgements about the worth of objects.4 Starting

from the oldest context, the decision procedure uses the preferences to determine if the current problem

space, state, or operator in any of the contexts should be changed. The problem space is considered first.

followed by the state and then the operator. A change is made if one of the candidate objects for the slot

dominates (based on the preferences) all of the others, or if a set of equal objects dominates all of the other

objects. In the latter case, a random selection is made between the equal objects. Once a change has been

made, the subordinate positions in the context (state and operator if a problem space is changed) are

initialized to undecided, all of the more recent contexts in the stack are discarded, the decision procedure

terminates, and a new decision commences.

If sufficient knowledge is available during the search to uniquely determine a decision, the search proceeds

unabated. However, in many cases the knowledge encoded into productions may be insufficient to allow the

4There is also a parallel preference that can be used to assert that two operators should execute simultaneously.

XEROX PARC ISLI3. SPEMBER 1985
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6 CILiUNKI\G In SOAR

direct application of an operator or the making of a search-control decision. That is. the available preferences'-'
do not determine a unique, uncontested change in a context, causing an impasse in problem solving to

occur (Brown & VanLehn. 1980). Four classes of impasses can arise in Soar. (1) no-change (the elaboration

phase ran to quiescence without suggesting any changes to the contexts), (2) tie (no single object or group of

equal objects was better than all of the other candidate objects), (3) cotlict (two or more candidate objects

were better than each other), and (4) rejection (all objects were rejected. even the current one). All types of %

impasse can occur for any of the three context slots associated with a goal - problem space. state, and

operator - and a no-change impasse can occur for the goal. For example, a state tie occurs whenever there

are two or more competing states and no directly available knowledge to compare them. An operator

no-change occurs whenever no context changes are suggested after an operator is selected (usually because

not enough information is directly available to allow the creation of a new state).

" Soar responds to an impasse by creating a subgoal (and an associated context) to resolve the impasse. Once

a subgoal is created, a problem space must be selected, followed by an initial state, and then an operator. If an

impasse is reached in any of these decisions, another subgoal will be created to resolve it, leading to the

hierarchy of goals in Soar. By generating a subgoal for each impasse, the full problem-solving power of Soar

can be brought to bear to resolve the impasse. These subgoals correspond to all of the types of subgoals

created in standard Al systems (Laird. Newell, & Rosenbloom. 1985). This capability to generate

automatically all subgoals in response to impasses and to open up all aspects of problem-solving behavior to

problem solving when necessary is called universal subgoaling (Laird. 1984).

Because all goals are generated in response to impasses, and each goal can have at most one impasse at a

time. the goals (contexts) in working memory are structured as a stack, referred to as the context stack. A

subgoal terminates when its impasse is resolved. For example, if a tie impasse arises, the subgoal generated

for it will terminate when sufficient preferences have been created so that a single object (or set of equal

objects) dominates the others. When a subgoal terminates, Soar pops the context stack, removing from

working memory all augmentations created in that subgoal that are not connected to a prior context, either

directly or indirectly (by a chain of augmentations), and preferences whose context objects do not match

objects in prior contexts. Those augmentations and preferences that are not removed are the results of the

suhgoal.

lefault knowledge (in the form of productions) exists in Soar to cope with any of the subgoals when no

additional knowledge is available. For some subgoals (those created for all types of rejection impasses and

no-change impasses for goals, problem-spaces, and states) this invokes simply backing up to a prior choice in

the context, but for other subgoals (those create for tie, conflict and operator no-change impasses), this

involves searches for knowledge that will resolc the subgoal's impasse. If additional non-default knowledge

X1lR0\ IINP( ISI -1 I I I MF[itR 1981
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is available to resolve an impasse. it dominates the default knowledge (via preferences) and controls the

problem solving within the suhgoal.

2.2. An Example Problem Solving Task

Consider the Fight lPlule. in which there are eight numbered, movable tiles set in a 3x3 frame. One cell of

the frame is always empty (the blank), making it possible to move an adjacent tile into the empty cell. The

problem is to transform one configuration of tiles into a second configuration by moving the tiles. [he states

of the eight-pu#.ile prohlem space are configurations of the numbers 1-8 in a 3x0 grid. [here is a single

general operator to make adjacent tiles into the empty cell. For a given saLte, an instance of this operator is

created for each of the cells adjacent to the empty cell. 'ich of these operator instances is instantiated with

the empty cell and one of the adjacent cells. To simplify our discussion, we will refer to these instantiated

.' operators by the direction they move a tile into the empty cell: up, down, left, or right. Figure 2 shows an

example of the initial and desired states of an Fight Itl//le problem.

Initial State Desired State

2 3 1 1 2 3

8 4 8 4

7 6 5 7 6 5

Figure2: 2 . ample initial and desired states of the Fight Pu,,Ic.

1 o encode this task in Soar. one inust include productions that propose the appropriate problem space.

create the initial state of thait problem space, implement the operators of the problem space, and detect the

desired state when it is achieved. If no additional knowledge is availihle, an exhaustive depth-first search
_- occurs is a result of the def-ult processing far tie impasses. lie impassc airise each time an operator has to be

selected. In response to the stuhgoals for these inpasscs. alternatives are investigated to determine the best .

mose. Whenever another tie impasse arises during the investigation of one oft the alternatives, an additional

suhgoal is generated. and the search deepens. Iftadditional search-control knowledge is added to proide an

eN.ilu,ition of the states, the search changes to steepest-ascent hill climbing. As more or diflerent search-

"ontrol knowledge is added, the heha, ior ofthe search changes in response to the new knowledge. One of'the

properties of Soar is that the weak methods, such is generate and test. Incans-ends analysis, depth-first search

*L ,iid hill climbing, do not have to he explicitly selected, hut instead emerge from the structure of the task and

I \1 RON I\( I'll I k iI I MMil N 1,(N W O N
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* the a~ailble search-)ntrI know cdge (I Iird & Newell. 1983a: Laird & Newell, 1983b: L.aird. 1984).

Another a to control the w'arch in the Fight puIe is to break it up into a set of subgoals to get the

individual tiles into position We will look at this approach in some detail because it forms the basis for the

use of macro-operators tor the [ight Pu71le. Means-ends analss is the standard technique for solving

problems where the goal can be decomposcI into d set of subgoals, but it is ineffective for problems such as

the Eight Puzzle that have non-seriah:able subgoals - tasks for which there exist no ordering of the subgoals

such that successive subgoals can be achieved without undoing what was accomplished by earlier

subgoals (Korf. 1985a). Figure 3 shows an intermediate state in problem solving where tiles 1 and 2 are in

their desired positions. In order to move tile 3 into its desired position. tile 2 must bc moved out of its desired

position. Non-serializable subgoals can be tractable if they are serially decomposable (Korf. 1985a). A set of

subgoals is serially decomposable if there is an ordering of them such that the solution to each subgoal

depends only on that subgoal and on the preceding ones in the solution order. In the Eight Puzzle the

subgoals are, in order: (1) have the blank in its correct position: (2) have the blank and the first tile in their

correct positions: (3) have the blank and the first two tiles in their correct positions: and so on through the

eighth tile. Each subgoal depends only on the positions of the blank and the previously placed tiles. Within

one subgoal a previous subgoal may be undone, but if it is, it must be re-achieved before the current subgoal

is completed.

Intermediate State Desired State

1 2 4 1 2 3

3 8 8 4

7 6 5 7 6 5

- - -•- - -

Figure 3: Non-serializable subgoals in the Eight Puzzle

Adopting this approach does not result in new knowledge for directly controlling the selection of operators

and states in the eight-puzzle problem space. Instead it provides knowledge about how to structure and

decompose the puzzle. This knowledge consists of the set of serially decomposable subgoals, and the ordenng

of those subgoals. To encode this knowledge in Soa, we have added a second problem space, eight-puzzle-sd,

X[ROX PI)R( ISI 11 SiPII BI R 19XS



SOAR - AN ARCHITECTURE FOR GENERAl. INTEL IIGENCE 9 ...

with a set of nine operators corresponding to the nine subgoals.5 For example, the operator place-2 will place

tile 2 in its desired position, while assuring that the blank and the first tile will also be in position. The'',- .

ordering of the subgoals is encoded as search-control knowledge that creates preferences for the operators.

Figure 4 shows a trace of the decisions for a short problem-solving episode for the initial and desired states .

from Figure 2. This example is heavily used in the remainder of the paper, so we shall go through it in some

detail. To start problem solving, the current goal is initialized to be solve-eight-puzzle (in decision 1). The

goal is represented in working memory by an identifier, in this case G1. Problem solving begins in the

eight-puzzle-sd problem space. Once the initial state, SI, is selected, preferences are generated that order the

operators so that place-blank is selected. Application of this operator, and all of the eight-puzzle-sd operators,

is complex, often requiring extensive problem solving. Because the problem-space hypothesis implies that

such problem solving should occur in a problem space, the operator is not directly implemented as rules.

Instead, a no-change impasse leads to a subgoal to implement place-blank, which will be achieved when the

blank is in its desired position. The place-blank operator is then implemented as a search in the eight-puzzle

problem space for a state with the blank in the correct position. This search can be carried out using any of
the weak methods described earlier, but for this example, let us assume there is no additional search-control

knowledge.

Once the initial state is selected (decision 7), a tie impasse occurs among the operators that move the three

adjacent tiles into the empty cell (left, up and down). A resolve-tie subgoal (G3) is automatically generated for

this impasse, and the tie problem space is selected. Its states are sets of objects being considered, and its

operators evaluate objects so that preferences can be created. One of these evaluate-object operators (05) is

selected to evaluate the operator that moves tile 8 to the left, and a resolve-no-change subgoal (G4) is

generated because there are no productions that directly compute an evaluation of the left operator for state

SI. Default search-control knowledge attempts to implement the evaluate-object operator by applying the

left operator to state S1. This is accomplished in the subgoal (decisions 13-16), yielding the desired state (S3).

Because the left operator lead to a solution for the goal, a preference is returned for it that allows it to be .....

selected immediately for state SI (Decision 17) in goal G2, flushing the two lower subgoals (G3 and G4). If

this state were not the desired state, another tie impasse would arise and the tie problem space would be

selected for this new subgoal. Tlhe subgoal combination of a resolve-tie followed by a resolve-no-change on "

an evaluate-object operator would recur, giving a depth-first search.

Applying the left operator to state S1 yields state S4. which is the desired result of the place-blank operator --

-' Both plsce-7 and place-8 are always no-ops because once the blank and tiles 1-6 are in place. either tiles 7 and 8 must also be in place.
°  or the problem is unsolvable They can therefore be safel) ignored
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10 CHlUNKING IN SOAR

1 GI solve-eight-puzzle.,,.
2 P1 eight-puzzle-sd
3 SI

2 3

7 6 5

4 01 place-blank
5 -)G2 (resolve-no-change)
6 P2 eight-puzzle

*7 Si
8 -->G3 (resolve-tie operator)
9 P3 tie
10 S2 (left, up. down)
11 05 evaluate-object(02(left)) - -

* 12 -->G4 (resolve-no-change)
13 P2 eight-puzzle

*14 SI
16 02 left
18 S3

2 3 1

8 4

17 02 left
" 16 S4

19 S4 . -
20 08 place-i

Figure 4: A problem-solving trace for the Eight Puzzle. Each line of the trace includes, from left to right,
the decision number, the identifier of the object selected, and possibly a short description of the
object.

in goal G1 above. The place-I operator (08) is then selected as the current operator. As with place-blank,
p..---

place-I is implemented by a search in the eight-puzzle problem space. It succeeds when both tile I and the

blank are in their desired positions. With this problem-solving strategy, each tile is moved into place by one

of the operators in the eight-puzzle-sd problem space. In the subgoals that implement the eight-puzzle-sd

operators, many of the tiles already in place might be moved out of place, however, they must be back in

place for the operator to terminate successfully.

3. Chunking in Soar
Soar was originally designed to be a general (non-learning) problem solver. Nevertheless, its problem-

solving and memory structures support learning in a number of ways. The structure of problem solving in
Soar determines when new knowledge is needed, what that knowledge might be. and when it can be acquired.

XFROX PARC. IS[-i3. SEPTEMBER 1985
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* Determining when new knowledge is needed. In Soar, impasses occur if and only if the directly
available knowledge is either incomplete or inconsistent. Therefi)re, impasses indicate when the , s,

system should attempt to acquire new knowledge. N'

• Determining what to learn. While problem solving within a subgoal. Soarcan discover information ,- ,-
that will resolve an impasse. This information, if remembered, can avert similar impasses in
future problem solving.

" Determining when new knowledge can be acquired. When a subgoal completes, because its impasse
has been resolved, an opportunity exists to add new knowledge that was not already explicitly
known.

Soars long-term memory, which is based on a production system and the workings of the elaboration phase,

supports learning in two ways:

* Integrating new knowledge. Productions provide a modular representation of knowledge. so that
the integration of new knowledge only requires adding a new production to production memory
and does not require a complex analysis of the previously stored knowledge in the system (Newell,
1973: Waterman, 1975: Davis & King, 1976: Anderson, 1983b).

e Using new knowledge. Even if the productions are syntactically modular, there is no guarantee that
the information they encode can be integrated together when it is needed. The elaboration phase
of Soarbrings all appropriate knowledge to bear, with no requirement of synchronization (and no
conflict resolution). The decision procedure then integrates the results of the elaboration phase.

Chunking in Soar takes advantage of this support to create rules that summarize the processing of a

subgoal, so that in the future, the costly problem solving in the subgoal can be replaced by direct rule

application. When a subgoal is generated, a learning episode begins that could lead to the creation of a

chunk. During problem solving within the subgoal, information accumulates on which a chunk can be based.

When the subgoal terminates, a chunk can be created. Each chunk is a rule (or set of rules) that gets added to

the production memory. Chunked knowledge is brought to bear during the elaboration phase of later '" "' "

decisions. In the remainder of this section we look in more detail at the process of chunk creation, evaluate

the scope of chunking as a learning mechanism, and examine the sources of chunk generality. ." -

3.1. Constructing Chunks

Chunks are based on the working memory elements that are either examined or created during problem

* solving within a subgoal. The conditions consist of those aspects of the situation that existed prior to the goal. 'A - -

and which were examined during the processing of the goal, while the actions consist of the results of the goal.

\FROX PARC. ISI 13 ShPI I MBtI'R 11W
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* 12 CIIUNKING IN SOAR

When the subgoal terminates, the collected working-memory elements are converted into the conditions and , 1 6

actions of one or more productions.7 In this subsection, we describe in detail the three steps in chunk

creation: (1) the collection of conditions and actions, (2) the variabilization of identifiers, and (3) chunk JA

optimization. -. *"

3.1.1. Collecting Conditions and Actions

The conditions of a chunk should test those aspects of the situation existing prior to the creation of the goal

that are relevant to the results that satisfy the goal. In Soar this corresponds to the working-memory elements

that were matched by productions that fired in the goal (or one of its subgoals), but that existed before the

goal was created. These are the elements that the problem solving implicitly deemed to be relevant to the "" "

satisfaction of the subgoal. This collection of working-memory elements is maintained for each active goal in

the goal's referenced-lis. 8 Soarallows productions belonging to any goal in the context stack to execute at any

time, so updating the correct referenced-list requires determining for which goal in the stack the production

fired. This is the most recent of the goals matched by the production's conditions. The production's firing

affects the chunks created for that goal and all of its supergoals, but because the firing is independent of the

more recent subgoals, it has no effect on the chunks built for those subgoals. No chunk is created if the

subgoal's results were not based on prior information, for example, when an object is input from the outsid'.

or when an impasse is resolved by domain-independent default knowledge.

The actions of a chunk are based on the results of the subgoal for which the chunk was created. No chunk

is created if there are no results. This can happen, for example, when a result produced in a subgoal leads to

the termination of a goal much higher in the goal hierarchy. All of the subgoals that are lower in the

hierarchy will also be terminated, but they may not generate results.

For an example of chunking in action, consider the terminal subgoal (G4) from the problem-solving

episode in Figure 4. This subgoal was created as a result of a no-change impasse for the evaluate-object

6The default behavior for Sar is to create a chunk always: that is. every time a subgoal terminates The major alternative to creating

chunks for all terminating goals is to chunk bottom-up, as was done in modeling the power law of practice (Rosenbloom, 1983) In
bottom-up chunking, only terminal goals - goals for which no subgoals were generated - are chunked. As chunks are learned for
subgoals, the subgoals need no longer be generated (the chunks accomplish the subgoals' tasks before the impasses occur). and higher
goals in the hierarchy become eligible for chunking. It is unclear whether chunking always or bottom-up will prove more advantageous
in the long run, so to facilitate experimentation, both options are a ailable in Soar.

7 Production composition (Lewis, 1978) has also been used to learn productions that summarize goals (Anderson. 1983b) It differs most
from chunking in that it examines the actual definitions of the productions that fired in addition to the working-memor elements
referenced and created by the productions.

8if a fired production has a negated condition - a condition testing for the absence in working memory of an element matching its ' . -

pattern - then the negated condition is instantiated with the appropnate %anable bindings from the production's positike conditions If
the identifier of the instantiated condition existed prior to the goal. then the instantiated condition is included in the refcrenced-list
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CIIUNKING IN SOAR 13

operator that should evaluate the operator that will move tile 8 to the left. The problem solving within goal

G4 must implement the evaluate-object operator. Figure 5 contains a graphic representation of part of the

working memory for this subgoal near the beginning of problem solving (A) and just before the subgoal is

terminated (B). The working memory that existed before the subgoal was created consisted of the

augmentations of the goal to resolve the tie between the eight-puzzle operators, G3, and its supergoals (G2

and G1. not shown). The tie problem space is the current problem space of G3, while state S2 is the current

state and the evaluate-object operator (05) is the current operator. !)1 is the desired state of having the blank

in the middle, but with no constraint on the tiles in the other cells (signified by the X's in the figure). All of

these objects have further descriptions, some only partially shown in the figure.

The purpose of goal G4 is to evaluate operator 02, that will move tile 8 to the left in the initial state (SI).

The first steps are to augment the goal with the desired state (I)1) and then select the eight-puzzle problem

space (P2), the state to which the operator will be applied (SI), and finally the operator being evaluated (02).

To do this, the augmentations from the evaluate-object operator (05) to these objects are accessed and

therefore added to the referenced list (the highlighted arrows in part (A) of Figure 5). Once operator 02 is

selected, it is applied by a production that creates a new state (S3). The application of the operator depends

on the exact representation used for the states of the problem space. State SI and desired state DI, which

were shown only schematically in Figure 5, are shown in detail in Figure 6. The states are built out of cells

and tiles (only some of the cells and tiles are shown in Figure 6). The nine cells (CI-C9) represent the

structure of the Eight Puzzle frame. They form a 3x3 grid in which each cell points to its adjacent cells. There

are eight numbered tiles ('2-1'9), and one blank (Ti). Each tile points to its name, I through 8 for the

numbered tiles and 0 for the blank. 'Files are associated with cells by objects called bindings. Each state

contains 9 bindings, each of which associates one tile with the cell where it is located. The bindings for the

desired state, l)1, are 1.1-1.9, while the bindings for state SI are BI-139. The fact that the blank is in the center

of the desired state is represented by binding 1.2, which points to the blank tile (TI) and the center cell (CS).

All states (and desired states) in both the eight-puzzle and eight-puzzle-sd problem spaces share this same cell

structure.

To apply the operator and create a new state, a new state symbol is created (S3) with two new bindings, one

for the moved tile and one for the blank. [he binding for the moved tile points to the tile (F9) and to the cell

where it will be (C4). The binding for the blank points to the blank (II) and to the cell that will be empty

(C). All the other bindings are then copied to the new state. This processing accessing the relative positions

of the blank and the moved tile, and the bindings for the remaining tiles in current state (SI). The

augmentations of the operator are tested for the cell that contains the tile to be momed.

Once the new state fS3) is selected, a production generates the operators that can apply to the new state. All

\IRO\ P\R( ISI I SI P11 %BI R 190



. .. ." . . . 7

14 CHUNKING IN SOAR

2 2,
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S2 (A) 4 02 ( 38)
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operators that can apply to state S3, the operator that would undo the previous operator is rejected so that .

unnecessary backtracking is avoided. During the same elaboration phase, the state is tested to determine,...:.
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X%

~ .

CELL 4 )5C CELL - -.

T9 8 T1 0 T 6 T6 5; T8 7.

A..,.-.. ,A.

A.

Figure&6 Example of working-memory elements representing the state used to create a chunk. The -.,.

highlighted augmentations were referenced during the the subgoal. "-"

whether a dile was just moved in or out of its correct position. 'Inis information is used to generate ani

evaluation based on the sum of the number of tiles that do not have to be in place and the number of tiles that .•.-

both have to be in place and are in place. Th~is computation. whose result is represented by the object X1I with-"-"

a value of 8 in Figure 5, results in the accessing of those aspects of the desired state highlighted in Figure 6...",'

The value of 8 means that the goal is satisfied. so the evaluation (El) for the operator has the value success.

Because El is an identifier that existed befo~re the subgoal was created and the success augmentation was .-.

%.

created in the subgoal this augmentation becomes an action. If success had further augmentations, hey

would also be included as actions. we augmentations of the subgoal (G4), the new state (S3) and its

sub-object (X 1) that point to objects created efore the subgoal are not included ations usbecause they are

not augmentations, either direc y or indirectly, of an object that existed prior to the creation of the subgoal.

XFRO\ P.\RL ISI 1 S[PIMBI-R 1985

....... ..... .



- 77 ..-.:

16 CHUNKING IN SOAR

When goal G4 terminates. the initial set of conditions and actions have been determined for the chunk.

The conditions test that there exists an evaluate-object operator whose purpose is to evaluate the operator that

moves the blank into its desired location, and that all of the tiles are either in position or irrelevant for the

current eight-puzzle-sd operator. The action is to mark the evaluation as successful, meaning that the operator

being evaluated will achieve the goal. This chunk should apply in similar future situations, directly

implementing the evaluate-object operator, and avoiding the no-change impasse and the resulting subgoal.

3.1.2. Identifier Variabilization

Once the conditions and actions have been determined, all of the identifiers are replaced by production

(pattern-match) variables, while the constants, such as evaluate-object, eight-puzzle, and 0 are left unchanged.

An identifier is a label by which a particular instance of an object in working memory can be referenced. It is

a short-term symbol that lasts only as long as the object is in working memory. Each time the object reappears

in working memory it is instantiated with a new identifier. If a chunk that is based on working-memory

elements is to reapply in a later situation, it must not mention specific identifiers. In ess, nce the

variabilization process is like replacing an "eq" test in Lisp (which requires pointer identity) with an "equal"

test (which only requires value identity).

All occurrences of a single identifier are replaced with the same variable and all occurrences of different
identifiers are replaced by different variables. This assures that the chunk will match in a new situation only if

there is an identifier that appears in the same places in which the original identifier appeared. The production

is also modified so that no two variables can match the sair identifier. Basically, Soar is guessing which

identifiers must be equal and which must be distinct, based only on the information about equality and

inequality in working memory. All identifiers that are the same are assumed to require equality. All

identifiers that are not the same are assumed to require inequality. Biasing the generalization in these ways
assures that the chunks will not be overly general (at least because of these modifications), but they may be

overly specific. The only problem this causes is that additional chunks may need to be learned if the original

ones suffer from overspecialization. In practice, these modifications have not led to overly specific chunks.

", 3.1.3. Chunk Optimization

* At this point in the chunk-creation process the semantics of the chunk are determined. However, three

additional processes are applied to the chunks to increase the efficiency with which they are matched against

* working memory (all related to the use in Soarof the Ops5 rule matcher (Forgy, 1981)). The first process is to

remove conditions from the chunk that provide (almost) no constraint on the match process. A condition is

removed if it has a variable in the value field of the augmentation that is not bound elsewhere in the rule

(either in the conditions or the actions). This process recurses, so that a long linked-list of conditions will bc

removed if the final one in the list has a variable that is unique to that condition. For the chunk based on
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CIIUNKING IN SOAR 17

Figures 5 and 6, the bindings and tiles that were only referenced for copying (BI, B4, B5, B6, B7. B8, B9, and

19) and the cells referenced for creating operator instantiations (C2, C6, and C8) are all removed. The

e'aluation object, Fl. in Figure 5 is not removed because it is included in the action. Eliminating the

bindings does not increase the generality of the chunk, because all states must have nine bindings. However,

the removal of the cells does increase the generality, because they (along with the test of cell C4) implicitly

test that there must be four cells adjacent to the one to which the blank will be moved. Only the center has
four adjacent cells, so the removal of these conditions does increase the generality. This does increase slightly
the chance of the chunk being over-general, but in practice it has never caused a problem, and it can

significantly increase the efficiency of the match by removing unconstrained conditions.

The second optimization is to eliminate potential combinatorial matches in the conditions of productions

whose actions are to copy a set of augmentations from an existing object to a new object. A common strategy

for implementing operators in subgoals is to create a new state containing only the new and changed

information, and then to copy over pointers to the rest of the previous state. The chunks built for these

subgoals contain one condition for each of the copied pointers. If, as is usually the case, a set of similar items

are being copied. then the copy conditions end up differing only in the names of variables. Each

augmentation can match each of these conditions independently, generating a combinatorial number of

instantiations. This problem would arise if a subgoal were used to implement the eight-puzzle operators

instead of the rules used in our current implementation. A single production would be learned that created

new bindings for the moved tile and the blank, and also copied all of the other bindings. There would be
seven conditions that tested for the bindings, but each of these conditions could match any of the bindings

that had to be copied. generating 7! (5040) instantiations. This problem is solved by collapsing the set of

similar copy conditions down to one. All of the augmentations can still be copied over, but it now occurs via

multiple instantiations (seven of them) of the simpler rule. Though this reduces the number of rule

instantiations to linear in the number of augmentations to be copied, it still means that the other non-copying . -,

actions are done more than once. [his problem is solved by splitting the chunk into two productions. One - -

production does everything the subgoal did except for the copying. The other production just does the

copying. If there is more than one set of augmentations to be copied, each set is collapsed into a single

condition and a separate rule is created for each.-

The final optimization process consists of appl.ing a condition-reordering algorithm to the chunk

productions. The efficiency of the Rete-network matcher (Forgy, 1982) used in Soar is sensitive to the order

in which conditions are specified. By taking advantage of the known structure of Soar's working memory, we

9 [lhe inelegance of this solution leads us to behe~e that 'Ae do not ,ct hae the right assumptions about how new objects are to be
created from old oines
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18 CHIUNKING IN SOAR

* have developed a static reordering algorithm that significantly increases the efficiency of the match.

," Execution time is sometimes improved by more than an order of magnitude. almost duplicating the efficiency

-, that would be achieved if the reordering was done by hand. This reordering process preserves the existing

- semantics of the chunk.

3.2. The Scope of Chunking

In Section 1 we defined the scope of a general learning mechanism in terms of three properties: task

• 'generality, knowledge generality, and aspect generality. Below we briefly discuss each of these with respect to

- chunking in Soar.

Task generality. Soar provides a single formalism for all behavior - heuristic search of problem spaces in

. pursuit of goals. This formalism has been widely used in Artificial Intelligence (Feigenbaum and Feldman,

1963; Nilsson, 1980; Rich, 1983) and it has already worked well in Soar across a wide variety of problem

domains (Laird, Newell, & Rosenbloom, 1985). If the problem-space hypothesis (Newell, 1980) does hold,

then this should cover all problem domains for which goal-oriented behavior is appropriate. Chunking can

be applied to all of the domains for which Soar is used. Though it remains to be shown that useful chunks

- can be learned for this wide range of domains, our preliminary experience suggests that the combination of

-i Soar and chunking has the requisite generality. "

Knowledge generality. Chunking learns from the experiences of the problem solver. At first glance, it would

appear to be unable to make use of instructions, examples. analogous problems, or other similar sources of

"" knowledge. However, by using such information to help make decisions in subgoals, Soar can learn chunks

that incorporate the new knowledge. This approach has worked for a simple form of user direction, and is

under investigation for learning by analogy. The results are preliminary, but it establishes that the question of

knowledge generality is open for Soar.

Aspect generality. Three conditions must be met for chunking to be able to learn about all aspects of Soars

problem solving. The first condition is that all aspects must be open to problem solving. This condition is

, met because Soar creates subgoals for all of the impasses it encounters during the problem solving process.

These subgoals allow for problem solving on any of the problem solver's functions: creating a problem space,

selecting a problem space, creating an initial state, selecting a state, selecting an operator, and applying an

* operator. These functions are both necessary and sufficient for Soar to solve problems. So far chunking has
been demonstrated for the selection and application of operators (Laird, Rosenbloom & Newell, 1984) that

_1or demonstrations of chunking in Soar on the Fight Puule, Tic-Tac-Toe. and the RI computer-configuration task ,cc I aird,
* Rosenbloom. & Newell (1984). Rosenbloom. laird. McDermott. Newell, & Orciuch (1985), and van de Brug, Roscnbloom. & \cwcll

1t985)
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CIIUNKING IN SOAR 19

is, strategy acquisition (Langley, 1983: Mitchell, 1983) and operator implementation. However.

demonstrations of chunking for the other types of subgoals remain to be done.)

The second condition is that the chunking mechanism must be able to create the long-term memory

structures in which the new knowledge is to be represented. Soar represents all of its long-term knowledge as

* productions, and chunking acquires new productions. By restricting the kinds of condition and action

primitives allowed in productions (while not losing Turing equivalence). it is possible to have a production

.. language that is coextensive syntactically with the types of rules learned by chunking: that is, the chunking

mechanism can create rules containing all of the syntactic constructs available in the language.

The third condition is that the chunking mechanism must be able to acquire rules with the requisite

content. In Soar, this means that the problem sol ing on which the requisite chunks are to be based must be

understood. The current biggest limitations on coverage stem from our lack of understanding of the problem

solving underlying such aspects as problem-space creation and change of representation (Hayes and Simon.

1976: Korf• 1980: L.enat, 1983: Utgoff. 1984).

3.3. Chunk Generality

One of the critical questions to be asked about a simple mechanism for learning from experience is the

degree to which the information learned in one problem can transfer to other problems. If generality is

lacking, and little transfer occurs, the learning mechanism is simply a caching scheme. The variabilization - -

process described in Section 3.1.2 is one way in which chunks are made general. However, this process would

by itself not lead to chunks that could exhibit non-trivial forms of transfer. All it does is allow the chunk to

match another instance of the same exact situation. The principal source of generality is the implicit

generalization that results from basing chunks on only the aspects of the situation that were referenced during

problem solving. In the example in Section 3.1.1. only a small percentage of the augmentations in working

memory ended up as conditions of the chunk. The rest of the information, such as the identity of the tile

being moved and its absolute location, and the identities and locations of the other tiles was not examined

during problem solving, and therefore had no effect on the chunk.

Together. the representation of objects in working memory and the knowledge used during problem

solving, combine to form the bias for the implicit generalilation process (Utgoff, 1984): that is, they determine

which generali/ations are embodied in the chunks learned. [he object representation defines a language for

the implicit generalization process. bounding the potential generality of the chunks that can be learned. I he

in parl thi t ,ie i one of ranri I or carnplc. Selcction ot problem spacs , not .'t prohlernatical. and conflict impa ses hae not

* ~ %o heen encountered
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20 CIIUNKING IN SOAR

problem solving determines (indirectly, by what it examines) which generalizations are actually embodied in

the chunks.

Consider the state representation used in Korf's (1985a) work on the Eight Puzzle (recall Section 2.2). In

his implementation, the state of the board was represented as a vector containing the positions of each of the

tiles. Location 0 contained the coordinates of the position that was blank, location I contained the

coordinates of the first tile, and so on. This is a simple and concise representation, but because aspects of the

representation are overloaded with more than one functional concept, it provides poor support for implicit

generalization (or for that matter, any traditional condition-finding method). For example, the vector indices

have two functions: they specify the identity of the tile, and they provide access to the tile's position. When

using this state representation it is impossible to access the position of a tile without looking at its identity.

Therefore, even when the problem solving is only dependent on the locations of the tiles, the chunks learned

would test the tile identities, thus failing to apply in situations in which they rightly could. A second problem

with the representation is that some of the structure of the problem is implicit in the representation. Concepts

that are required for good generalizations, such as the relative positions of two tiles, cannot be captured in

chunks because they are not explicitly represented in the structure of the state. Potential generality is

maximized if an object is represented so that functionally independent aspects are explicitly represented and

can be accessed independently. For example, the Eight Puzzle state representation shown in Figure 6 breaks

each functional role into separate working-memory objects. This representation, while not predetermining

what generalizations are to be made, defines a class of possible generalizations that include good ones for the

Eight Puzzle.

The actual generality of the chunk is maximized (within the constraints established by the representation) if

the problem solver only examines those features of the situation that are absolutely necessary to the solution

of the problem. When the problem solver knows what it is doing, everything works fine, but generality can be

lost when information that turns out to be irrelevant is accessed. For example, whenever a new state is

selected, productions fire to suggest operators to apply to the state. This preparation goes on in parallel with

the testing of the state to see if it matches the goal. If the state does satisfy the goal, then the preparation

process was unnecessary. However, if the preparation process referenced aspects of the prior situation that

here not accessed by previous productions, then irrelevant conditions will be added to the chunk. Another

example occurs when false paths - searches that lead off of the solution path - are investigated in a subgoal.

Fhe searches down unsuccessful paths may reference aspects of the state that would not have been tested if

only the successful path were followed.12

h-Nn experimental version of chunking has been implemented that oxercomes these problems by performing a dependency anal.sis

on traces of the productions that fired in a subgoal The production traces are used to determine which conditions ,ere necessar\ to
produce results of the subgoal All of the results of this paper are based on the ,ersion ofchunking without the depcndcnc. analksis
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4. A Demonstration- Acquisition of Mac ro-Operators
In this section we provide a demonstration of the capabilities of chunking in Soar involving the acquisition

of macro-operators in the Fight Puzzle for serially decomposable goals (see Section 2). We begin with a brief

review of Kort's (1985a) original implementation of this technique. We follow this with the details of its

implementation in Soar together with an analysis of the generality of the macro-operators learned. This

demonstration of macro-operators in Soar is of particular interest because: we are using a general problem

solver and learner instead of special-purpose programs developed specifically for learning and using macro-

operators: and because it allows us to investigate the generality of the chunks learned in a specific application. r

4.1. Macro Problem Solving

Korf(1985a) has shown that problems that are serially decomposable can be efficiently solved with the aid

of a table of macro-operators. A macro-operator (or macro for short) is a sequence of operators that can be

treated as a single operator (Fikes, Hart and Nilsson, 1972). The key to the utility of macros for serially

decomposable problems is to define each macro so that after it is applied, all subgoals that had been

*1 previously achieved are still satisfied, and one ne, subgoal is achieved. Means-ends analysis is thus possible

when these macro-operators are used. Table I shows Kort's (1985a) macro table for the Eight Puzzle task of

getting all of the tiles in order, clockwise around the frame, with the I in the upper left hand corner, and the

blank in the middle (the desired state in Figure 3). Each column contains the macros required to achieve one

of the subgoals ofplacing a tile. The rows give the appropriate macro according to the current position of the

tile, where the positions are labeled A-I as in Figure 7. Fcr example, if the goal is to move the blank (tile 0)

into the center, and it is currently in the top left corner (location B), then the operator sequence ul will

accomplish it.

Tiles

B u1

P C u rdlu
0

s D ur dlurrdlu diur

t E r ldrurdlu ldru rdllurdrul

o 1: dr uldrurdldrul lurdldru ldrulurddlj lurd

n
s G d urdidrul ulddru urddluldrrul uldr rdlluurdldrrul

it dl rulddrul druuldrdlu ruldrdluldrrul urdluldr uldrurdllurd urdl .. .,-

I I drul rullddru rdluldrni rulldr uldrruldlurd ruld

Table 1: Macro table for the Eight Puzzle (from Korf. 1985. Table 1). The primitive operators mote a tile
one step in a particular direction: u (up). d do n), I(left). and r(right).
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B C 0

I A E

H G F

Figure 7: The positions (A-1) in the Eight Puzzle frame.

Korf s implementation of macro problem solving used two programs: a problem solver and a learner. The

problem solver could use macro tables acquired by the learner to solve serially decomposable problems

efficiently. Using '[able 1, the problem-solving program could solve any Eight Puzzle problem with the same

desired state (the initial state may vary). The procedure went as follows: (a) the position of the blank was

determined: (b) the appropriate macro was found by using this position to index into the first column of the

- table: (c) the operators in this macro were applied to the state, moving the blank into position: (d) the position

of the first tile was determined: (e) the appropriate macro was found by using this position to index into the .€ I

second column of the table; (f) the operators in this macro were applied to the state, moving the first tile (and

the blank) into position: and so on until all of the tiles were in place.

To discover the macros, the learner started with the desired state, and performed an iterative-deepening

search (for example, see Korf, 1985b) using the elementary tile-movement operators)13 As the search

progressed, the learner detected sequences of operators that left some of the tiles invariant, but moved others.

When an operator sequence was found that left an initial sequence of the subgoals invariant - that is, for

some tile k, the operator moved that tile while leaving tiles 1 through k-i where they were - the operator

sequence was added to the macro table in the appropriate column and row. In a single search from the

desired state, all macros could be found. Since the search used iterative-deepening, the first macro found was

guaranteed to be the shortest for its slot in the table.

4.2. Macro Problem Solving in Soar

Soar's original design criteria did not include the ability to employ serially decomposable subgoals or to

acquire and use macro-operators to solve problems structured by such subgoals. However. Soar's generality

allows it to do so with no changes to the architecture (including the chunking mechanism). Using the . -

implementation of the Eight Puzzle described in Sections 2.2 and 3.1.1, Soar's problem solving and learning

capabilities work in an integrated fashion to learn and use macros for serially decomposable subgoals.

*. I I  .'% .'.
I or scr deep searches, other more efficient techniques such as bidirectional search and macro-operator composition were used

XI-ROX P.\R IS[ -13 SI, PIEIMBFR 1985
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The opportunity to learn a macro-operator exists each time a goal for implementing one of the

eight-puzzle-sd operators. such as place-5, is achieved. When the goal is achieved there is a stack of subgoals ". ,'.-'

below it, one for each of the choice points that led up to the desired state in the eight-puzzle problem space.

As described in Section 2. all of these lower subgoals are terminated when the higher goal is achieved. As

each subgoal terminates, a chunk is built that tests the relevant conditions and produces a preference for one

of the operators at the choice point. [his set of chunks encodes the path that was successful for the

eight-puzzle-sd operator. In future problems, these chunks will act as search-control knowledge, leading the

problem solver directly to the solution without any impasses or subgoals. Thus. Soar learns macro-operators.

not as monolithic data structures, but as sets of chunks that determine at each point in the search which

operator to select next. This differs from previous realizations of macros where a single data structure

contains the macro, either as a list of operators. as in Korfs work, or as a triangle table, as in Strips (Fikes.

Hart and Nilsson. 1972). Instead, for each operator in the macro-operator sequence, there is a chunk that

*" causes it to be selected (and therefore applied) at the right time. On later problems (and even the same

problem). these chunks control the search when they can, giving the appearance of macro problem solving.

and when they cannot, the problem solver resorts to search. When the latter succeeds, more chunks are

learned, and more of the macro table is covered. By representing macr s as sets of independent productions

that are learned when the appropriate problem arises, the processes of learning, storing, and using macros

become both incremental and simplified.

Figure 8 shows the problem solving and learning that Soar does while performing iterative-deepening

searches for the first three eight-puzzle-sd operators of an example problem. The figure shows the searches

for which the depth is sufficient to implement each operator. The first eight-puzzle-sd operator. place-blank.

moves the blank to the center. Without learning, this yields the search shown in the left column of the first

row. During learning (the middle column), a chunk is first learned to avoid an operator that does not achieve

the goal within the current depth limit (2). This is marked by a "-" and the number I in the figure. The

unboxed numbers give the order that the chunks are learned, while the boxed numbers show where the

chunks are used in later problem sol% ing. Once the goal is achieved, signified by the darkened circle, a chunk

is learned that prefers the first move over all other alternatives, marked by "+" in the figure. No chunk is

learned for the final move to the goal since the only other alternative at that point has already been rejected.

eliminating any choice, and thercby eliminating the need to learn a chunk. The right column shows that on a "-"-

second attempt, chunk 2 applied to select the first operator. After the operator applied, chunk I applied to

reject the operator that did not lead to the goal. I his lea%es only the operator that leads to the goal, which is

selected and applied. In this scheme. the chunks control the problem soluing within the suhooals that

4 dditional chunk, C '-ca:'ttid 'or :c .uhcak rcsultt w ! o-chan'e trnpases, ,n the e~aluate-objecr opcr;itr,, such i, the
example chunk ir >'cctimn , iun txhc core rrelc~ant W..r ,,,k Inc the rule that embhod, pre crenccs :x IL.ircd
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24 CHUNKING IN SOAR

implement the eight-puzzle-sd operator, eliminating search, and thereby encoding a macro-operator.

Without Learning During Learning After Learning
Place Blank I I I

in Cell A

4 23 1 8'X

Place Tile 3
in CelliB

4 3
333 8"'. "5

4 4
567 5

6 6

Place Tile
in Cell C

1 3 2

4 8

2 2

5 +54, 88

Figure 8: Searches performed for the first three eight-puzzle-sd operators in an example problem. The left
column shows the search without learning. The horizontal arrows represent points in the search
where no choice (and therefore no chunk) is required. The middle column shows the search
during learning. A "+" signifies that a chunk was learned that preferred a given operator. A

- signifies that a chunk was learned to avoid an operator. The boxed numbers show where a
previously learned chunk was applied to avoid search during learning. The right column shows

*i" the search after learning. t

* "the examples in the second and third rows of Figure 8 show more complex searches and demonstrate how

. the chunks learned during problem solving for one eight-puzzle-sd operator can reduce the search both within

XEROX PARC ISL- 13. SEPTEMBER 1985
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that operator and within other operators. In all of these examples, a macro-operator is encoded as a set of '."

chunks that are learned during problem solving and that will eliminate the search the next time a similar

*' problem is presented.

In addition to learning chunks for each of the operator-selection decisions. Soar can learn chunks that

directly implement instances of the operators in the eight-puzzle-sd problem space. They directly create a new

state where the tiles have been moved so that the next desired tile is in place. a process that usually involves

many Fight Puzzle moves. These chunks would be ideal macro-operators if it were not necessary to actually

apply each eight-puzzle operator to a physical puzzle in the real world. As it is, the use of such chunks can

lead to illusions about having done something that was not actually done. We have not yet implemented in %

Soar a general solution to the problem posed by such chunks. One possible solution - whose consequences

we have not yet analyzed in depth - is to have chunking automatically turned off for any goal in which an

action occurs that affects the outside world. For this work we have simulated this solution by disabling

chunking for the eight-puzzle problem space. Only search-control chunks (generated for the tie problem

space) are learned.

The searches within the eight-puzzle problem space can be controlled by a variety of different problem

solving strategies, and any heuristic knowledge that is available can be used to avoid a brute-force search.

Both iterative-deepening and breadth-first search's strategies were implemented and tested. Only one piece

of search control was employed - do not apply an operator that will undo the effects of the previous

operator. Unfortunately, Soar is too slow to be able to generate a complete macro table for the Fight Puzzle

by search. Soar was unable to learn the eight macros in columns three and five in Figure 1. These macros

require searches to at least a depth of eight.16

The actual searches used to generate the chunks for a complete macro table were done by having a user lead

Soar down the path to the correct solution. At each resolve-tie subgoal, the user specified which of the tied

operators should be evaluated first, insuring that the correct path was always tried first. Because the user

specified which operator should be evaluated first, and not which operator should actually be applied. Soar

proceeded to try out the choice by selecting the specified evaluate-object operator and entering an subgoal in

which the relevant eight-puzzle operator was applied. Soar verified that the choice made by the user was

correct by searching until the choice led to either success or failure. During the verification, the appropriate

objects were automatically referenced so that a correct chunk was generated. This is analogous to the

~.. ,:,
15-P is was actualh a parallel breadth-first search in which the operators at each depth wrere executed in parallel.

16Although some of the macros are fourteen operators long, not crer operator selection requires a choice (some are forced moves)
" and in addition Soari able to make use of transfer from preiouss [earned chunks (Section 4 3)
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26 CIIUNKING IN SOAR

explanation-based learning approach (for example, see l)e Jong, 1981 or Mitchell, Keller, & Kedar-Cabelli

(1986)), though the explanation and learning processes differ.

Soar's inability to search quickly enough to complete the macro table autonomously is the one limitation on

a claim to have replicated Korfs (1985a) results for the Eight Puzzle. This, in part, reflects a trade-off

between speed (Korf s system) and generality (Soar). But it is also partially a consequence of our not using J,.

the fastest production-system technology available. Significant improvements in Soar's performance should

be possible by reimplementing it using the software technology developed for Ops83(Forgy, 1984).

4.3. Chunk Generality and Transfer

Korfs (1985a) work on macro problem solving shows that a large class of problems - for example, all Fight

PuZ7le problems with the same desired state - can be solved efficiently using a table with a small number of

macros. This is possible only because the macros ignore the positions of all tiles not yet in place. Trhis degree

of generality occurs in Soar as a direct consequence of implicit generalization. If the identities of the tiles not

yet placed are not examined during problem solving, as they need not be, then the chunks will also not

examine them. However, this does not tap all of the possible sources of generality in the Fight Puzzle. In the

remainder of this subsection we will describe two additional forms of transfer available in the Soar

implementation.

4.3.1. Different Goal States

One limitation on the generality of the macro table is that it can only be used to solve for the specific final

configuration in Figure 3. Korf(1985a) described one way to overcome this limitation. For other desired

states with the blank in the center it is possible to use the macro table by renumbering the tiles in the desired

state to correspond to the ordering in Figure 3, and then using the same transformation for the initial state. In

the Soar implementation this degree of generality occurs automatically as a consequence of implicit

generalization. The problem solver must care that a tile is in its desired location, but it need not care which .. "

tile it actually is. The chunks learned are therefore independent of the exact numbering on the tiles. Instead
they depend on the relationship between where the tiles are and where they should be.

For desired states that have the blank in a different position, Korf(1985a) described a three-step solution .

method. First find a path from the initial state to a state with the blank in the center: second, find a path from

the desired state to the same state with the blank in the middle: and third, combine the solution to the first ..

problem with the inverse of the solution to the second problem - assuming the inverse of every operator is

both defined and known - to yield a solution to the overall problem. In Soar this additional degree of ..

generality can be achieved with the learning of only two additional chunks. This is done by solving the

problem using the following subgoals (see Figure 9 below): (a) get the blank in the middle, (b) get the first six
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A DEMONSTRATION - ACQUISITION OF MACRO-OPIRATORS 27

tiles into their correct positions, and (c) get the blank in its final position. The first 7 moves can be performed

directly by the chunks making up the macro table, while the last step requires 2 additional chunks.
(A) (B) (C)

X X X 1 2 3 1 2 3

X X X 4 8 4

X X X X 6 5 7 6 5

Figure 9: Problems with different goals states, with different positions of the blank, can be solved by: (a)
moving the blank into the center. (b) moving the first six tiles into position, and (c) moving the
blank into its desired position.

4.3.2. Transfer Between Macro-Operators

In addition to the transfer of learning between desired states, we can identify four different levels of

generality that are based on increasing the amount of transfer that occurs between the macro-operators in the

table: no transfer, simple transfer, symmetry transfer (within column), and symmetry transfer (across column).

The lowest level, no transfer, corresponds to the generality provided directly by the macro table. It uses

macro-operators quite generally, but shows no transfer between the macro operators. Each successive level

has all of the generality of the previous level, plus one additional variety of transfer. The actual runs were

done for the final level, which maximizes transfer. The number of chunks required for the other cases were

computed by hand. Let us consider each of them in turn.

No transfer. The no-transfer situation is identical to that employed by Korf(1985a). There is no transfer of

learning between macro-operators. In Soar, a total of 230 chunks would be required for this case.17 This is

considerably higher than the number of macro-operators (35) because one chunk must be learned for each

operator in the table (if there is no search control) rather than for each macro-operator. If search control is

available to avoid undoing the previous operator, only 170 chunks must be learned.

Simple transfer. Simple transfer occurs when two entries in the same column of the macro table end in

exactly the same set of moves. For example, in the first column of Table 1, the macro that moves the blank to

the center from the upper-right corner uses the macro-operator ur(column 0, row D in the table). The chunk

learned for the second operator in this sequence, which moves the blank to the center from the position to the

right of the center (by moving the center tile to the right), is dependent on the state of the board following the

first operator, but independent of what the first operator actually was. Therefore, the chunk for the last half "-

17These numbers include only the chunks for the resolve-tie subgoals IF the chunks generated for the evaluate-objeci operators were

included, the chunk counts given in this section would be doubled
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28 CHUNKING IN SOAR

of this macro-operator is exactly the chunk/macro-operator in column 0, row E of the table. This type of

transfer is always available in Soar and reduces the number of chunks needed to encode the complete macro

table from 170 to 112. The amount of simple transfer is greater than a simple matching of the terminal

sequences of operators in the macros in Table I would predict because different macro operators of the same

length as those in the table can be found that provide greater transfer.

Symmetry transfer (within column). Further transfer can occur when two macro-operators for the same

subgoal are identical except for rotations or reflections. Figure 10 contains two examples of such transfer.

The desired state for both is to move the I to the upper left corner. The X's represent tiles whose values are

irrelevant to the specific subgoal and the arrow shows the path that the blank travels in order to achieve the

subgoal. In (a), a simple rotation of the blank is all that is required, while in (b), two rotations of the blank

must be made. Within both examples the pattern of moves remains the same, but the orientation of the

pattern with respect to the board changes. The ability to achieve this type of transfer by implicit

generalization is critically dependent upon the representation of the states (and operators) discussed in

Section 3.3. The representation allows the topological relationships among the affected cells (which cells are ,.

next to which other cells) and the operators (which cells are affected by the operators) to be examined while

the absolute locations of the cells and the names of the operators are ignored. This type of transfer reduces

the number of required chunks from 112 to 83 over the simple-transfer case.

Desired State

1 X x

x x
(a) (b)

Symmetric Initial States Symmetric Initial States

xx 1 x x -r" -t _ 71 X fI- -- --.-:-.
x x -- x x x

Figure 10: Two examples of within-column symmetry transfer.

Symmetry transfer (across column). The final level of transfer involves the carryover of learning between

different subgoals. As shown by the example in Figure 11. this can involve far from obvious similarities - "

between two situations. What is important in this case is: (1) that a particular three cells are not affected by . -.

the moves (the exact three cells can vary); (2) the relative position of the tile to be placed with respect to

where it should be: and (3) that a previously placed piece that is affected by the moves gets returned to its

XFROX PARC. ISI -13. SIP[I-MFBR 1985

................. ...... ..: .. ... . .. ........ . .- . .. .. .. .. .. . ..- -..



A DEMONSTRATION - ACQUISITION OF MACRO-OPERATORS 29

original position. Across-column symmetry transfer reduces the number of chunks to be learned from 83 to

61 over the within-column case.18 Together, the three types of transfer make it possible for Soar to learn the

complete macro table in only three carefully selected trials.

(a) (b)

Different Intermediate Subgoals Different Intermediate Subgoals .- , '.

Place Tile 2 Place Tile 4 Place Tile 3 Place Tile 5

I 1 2 X 1 2 3 1 2 3 1 2 3 ! _1 _

"X X X 4 X X X 4" ",'

X X X X X X X X X X X 5 ""'

Symmeiric Initial States Symmetric Initial States

1 X 2 1 2 3 1 ..- 2 3 .- :.

X - X X- X:: X rxx_ __.-.- x x_1 _ _.

X X X X X 4 X X 3 5 ""'•,

Figure 1l: An example of across-column symmetry transfer.

Table 2 contains the macro-table structure of the chunks learned when all three levels of transfer are

available (and search control to avoid undoing the previous operator is included). In place of operator

sequences, the table contains numbers for the chunks that encode the macros. There is no such table actually

in Soar- all chunks (productions) are simply stored, unordered, in production memory. The purpose of this

table is to show the actual transfer that was achieved for the Eight Puzzle.

The order in which the subgoals are presented has no effect on the collection of chunks that are learned for

the macro table, because if a chunk will transfer to a new situation (a different place in the macro table) the

chunk that would have been learned in the new situation would be identical to the one that applied instead.

Though this is not true for all tasks, it is true in this case. Therefore, we can just assume that the chunks are

learned starting in the upper left corner, going top to bottom and left to right. The first chunk learned is

number I and the last chunk learned is number 61. When the number for a chunk is highlighted, it stands for

* all of the chunks that followed in its first unhighlighted occurrence. For example. for tile I in position F. the

chunks listed are 13, 12, 11, 10. However. 0signifies the sequence beginning with chunk 10: 10, 9, 8, 4. The

18The number of chunks can be reduced further, to 54. by allowing the learning of macros that are not of minimum length [his
" increases the total path length by 2 for 14% of the problems. by 4 for 26% of the problems and 6 for 7% of the problems
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30 CIILNKING IN SOAR

terminal 4 in this sequence signifies the sequence beginning with chunk 4: 4. 3. 1. Therefore. the entire

, sequence for this macro is: 13, 12. 11. 10, 9, 8.4, .3, 1.

l'iles

A

B 2.1

P C 1 4.3.1
0

s 1) 2 7.6,5.4 15.14.1 "
%4•°

t F 1 10.9.84 18.17.16 34,33.32.31.30.29.1

o F 2 13.12.11.10 21.20.19.18 40.39.38,37.36.35,30 15

G 1 10 23.22,17 46.45.44,43,42,41.30 18 61.60.59.58.56.55.29

H 2 7 26.25.24.23 54,53.52.51,50.49.48.47.46,29 21 40 15

*1 1 4 28.27.22 51 23 46 18

" Table 2: Structure of the chunks that encode the macro table for the Eight Puzzle.

The abbreviated macro format used in Table 2 is more than just a notational convenience: it directly shows

the transfer of learning between the macro-operators. Simple transfer and within-column symmetry transfer

show up as the use of a macro that is defined in the same column. For example, the sequence starting with

chunk 51 is learned in column 3 row H, and used in the same column in row I. [he extreme case is column 0,

where the chunks learned in the top row can be used for all of the other rows. Across-column symmetry

*transfer shows up as the reoccurrence of a chunk in a later column. For example, the sequence starting with

- chunk 29 is learned in column 3 (row F) and used in column 5 (row G). The extreme examples of this are

columns 4 and 6 where all of the macros were learned in earlier columns of the table.

4.4. Other Tasks

The macro technique can also be used in the Tower of Hanoi (Korf, 1985a). The three-peg, three-disk

version of the Tower of Hanoi has been implemented as a set of serially decomposable subgoals in Soar. In a

* single trial (moving three disks from one peg to another), Soar learns eight chunks that completely encode

"- KorFs (1985a) macro table (six macros). Only a single trial was required because significant within and across

column transfer was possible. The chunks learned for the three-peg, three-disk problem will also solve the

three-peg, two-disk problem. These chunks also transfer to the final moves of the three-peg. N-disk problem

when the three smallest disks are out of place. Korf(1985a) demonstrated the macro table technique on three

* additional tasks: the Fifteen Puzzle, Think-A-Dot and Rubik's Cube. The technique for learning and using

macros in Soar should be applicable to all of these problems. Howe'er, the performance of the current

implementation would require user-directed searches for the Fifteen Puzzle and Rubik's Cube because of the
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size of the problems.

5. Conclusion
In this article we have laid out how chunking works in Soar. It is a learning mechanism that is based on the

acquisition of rules from goal-based experience. As such, it is related to a number of other learning

mechanisms. However, it obtains extra scope and generality from its intimate connection with a sophisticated

problem solver (Soar) and the memory organization of the problem solver (a production system). 'his is the

most important lesson of this research. The problem solver provides many things: the opportunities to learn, -

direction as to what is relevant (biases) and what is needed, and a consumer for the learned information. The

memory provides a means by which the newly learned information can be integrated into the existing system

and brought to bear when it is relevant.

In previous work we have demonstrated how the combination of chunking and Soar could acquire search-

control knowledge (strategy acquisition) and operator implementation rules in both search-based puzzle tasks

and knowledge-based expert systems tasks (Laird, Rosenbloom & Newell, 1984: Rosenbloom, Laird,

McDermott, Newell, & Orciuch. 1985). In this paper we have provided a new demonstration of the "%. *v

capabilities of chunking in the context of the macro-operator learning task investigated by Korf(1985a). '1his

demonstration shows how: (1) the macro-operator technique can be used in a general, learning problem

solver without the addition of new mechanisms: (2) the learning can be incremental during problem solving

rather than requiring a preprocessing phase: (3) the macros can be used for any goal state in the problem: and

(4) additional generality can be obtained via transfer of learning between macro-operators, provided an : . .

appropriate representation of the task is available.

Although chunking displays many of the properties of a general learning mechanism, it has not yet been

demonstrated to be a truly general learning mechanism. It can not yet learn new problem spaces or new

representations, nor can it yet make use of the wide variety of potential knowledge sources, such as examples

or analogous problems. Our approach to all of these insufficiences will be to look to the problem solving.

Goals will have to occur in which new problem spaces and representations are developed, and in which

different types of knowledge can be used. The knowledge can then be captured by chunking. -. '-,
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