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SUMMARY

Forced oscillation of a two-dimensional airfoil with attached and
separated flows is investigated using nonlinear unsteady aerodynamics for
pitching motion derived from a time synthesization technique utilizing
oscillatory loop data determined experimentally. Both one- and two-degree-
of-freedom oscillations are considered. The structural dynamic equations of
motion are integrated by a time marching finite difference scheme. The
airfoil response is examined for different values of spring stiffness and
magnitudes of externally applied moment. For two-degree-of-freedom
vibration, only small plunge amplitude is considered and the aerodynamic
loads are approximated by the superposition of nonlinear terms due to
pitch and linear terms due te plunge. The presence of a small amplitude
plunging motion increases the pitch amplitude slightly for attached flow,
while a decrease in pitch amplitude is predicted for separated flow.

*,*

RESUME

On examine l'oscillation force d'un profil de voilure bidimensionel
dans des 6coulements de contact et s~par6 i partir de donn6es d'a6rodyna-
mique non lin6aire instable sur le mouvement de tangage produites par une
technique de synthdtisation du temps bas6e sur une boucle oscillatoire
6tablie exp6rimentalement. On 6tudie les oscillations i un et i deux degr6s "
de libert6. Les 6quations dynamiques structurales du mouvement sont
int6gr6es par une mdthode d'avancement du temps aux differences finies. La
reponse du profil est examin6e pour diff6rentes valeurs de raideur d'un
ressort et de moment externe. Pour les vibrations i deux degr~s de libert6,
seule l'amplitude des faibles plongeons est consid6r6e et les charges a6ro-
dynamiques sont approchdes par la superposition de termes non lin6aires de
tangage et de termes lin6aires de plongeon. La presence d'un mouvement de
plongeon de faible amplitude augmente l6grement l'amplitude du tangage
pour l'6coulement de contact. tandis qu'on pr6voit une diminution de
I'amplitude du tangage pour l' coulement sdpar6.
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FORCED OSCILLATION OF A TWO-DIMENSIONAL AIRFOIL WITI NONLINEAR-". -

AERODYNAMIC LOADS

1.0 INTRODUCTION

The dynamic response of a two-dimensional airfoil to external oscillatory forces or moments %
using linear aerodynamic loads derived from incompressible flow is a well known subject (Refs. 1, 2).
For more complex aerodynamics as in transonic flow, numerical time marching techniques have been
used. The first study was reported by Ballhaus and Goorjian (Ref. 3) who carried out the aeroelastic
response of a NACA64A006 airfoil with a single-degree-of-freedom in pitch at transonic speeds. .- .
Extensions of this procedure to two- and three-degree-of-freedom have been reported by Rizzetta
(Ref. 4) and Yang and Chen (Ref. 5). Only a linear response was treated by these authors.

In aeroelastic studies, there are potentially many sources of nonlinearities present, but the
most commonly encountered ones are those having structural or aerodynamic origin. Existing tech-
niques of analysing dynamic response based on linear vibration theory are not applicable. Numerical
methods are the obvious choice in solving non-linear vibration problems since they do not suffer from . "
the limitations of perturbation theory. However, they have received little attention until recently, and
this study shows the usefulness of the numerical approach in dealing with aerodynamic nonlinearities
associated with stalled and unstalled airfoils. This problem has hitherto not been amenable to theoret-
ical analysis. A prediction method of the dynamic response is useful in providing information on the
sequence of events occurring on the airfoil during a cycle of oscillation. There are many applications
for such a method, for example, in wind tunnel tests of oscillating airfoils at high incidence or large
amplitude oscillations. In helicopter rotor blades design, the method can predict unsteady airloads
and deflections of the blades in forward flights or manoeuvring operations.

There exists a number of numerical time marching techniques developed for finite element
linear structural analysis. Among the most commonly used time integration schemes are the explicit
central difference technique and Houbolt's, Wilson's and Newmark's methods (Refs. 6, 7). Except for
the explicit scheme, the other three methods are unconditionally stable. Higher order schemes are
also discussed in Reference 8 and they are conditionally stable. Provided that care is taken to choose a
time step sufficiently small to ensure the highest mode considered in a vibrating system does not
diverge, higher order schemes are more efficient in terms of computation time. However, for a system
with few structural components or the number of vibration modes is small, higher order methods
such as the eighth order scheme reported in Reference 8 does not offer any distinct advantage over
!louholt's scheme which is simpler and less cumbersome to use.

The use of .numerical time int egration techniques to study nonlinear vibration in one-degree-
of-freedom was reported in Reference 8. The nonlinearities considered was that of a cubic spr- .'-. The
numerical results agree vero well with analytical predictions derived from perturbation theory, and
in addit ion, give more Informat ion on the behaviour of the system to initial conditions which the
analvt ital miet hod fails to provide.

In this study. tltouholt's Ref. 7) scheme is used to investigate the forced oscillation of an
airfoil in onc- and two-dti.ret-of-freedom For the one-degree-of-freedom motion case, only pitch
oscillation is investigated and hoth stalled and unst alled flow are considered. There are a num ber of
studies IRefs. 9-1-1) on methods of predicting dynamic stall and unsteady airloads on two-dimensional
airfoils with harnoni, pitching motion. The most sophisticated one is given by Bielawa et al. (Ref. 14 .
using experim ental oscillatory lootp data to generate synthesized data in tie time domain. Thiis method
iS lsed i1 th, pre.ent st udy since it conveniently generates the aerodynamic loads at each time step
In the tleration of 1he stMuCLral dynamic equations of motion.

In thtt lwt -('rtr,-tf-frtedom vibralion of the airfoil, the plunge amplitude is assumed to
hot mall. ll at-rtdvnamit loads are then approximated by the superposition of nonlinear terns due
to poih and linear terms due to plunge, since empirical relations for both large amplituode pitch and
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plunge motions are not available. A comparison with one-degree-of-freedom response results gives the
effect of a small plunging motion for cases with attached or separated flow on the airfoil.

2.0 ANALYSIS

2.1 Empirical Representation of Unsteady Aerodynamic Loads of Stalled and Unstalled Airfoils

In Reference 14 an empirical method to determine the aerodynamic loads is given in the
time-domain using data obtained from oscillating airfoil experiments. The expressions for the normal
force and pitching moment coefficients are quite general and valid for both stalled and unstalled
airfoils. For a given airfoil shape, Mach number and Reynolds number, the dynamic characteristics of
the airfoil depend en the mean angle of attack, the frequency and amplitude of oscillations. In the
case of dynamic stall, it is assumed that a vortex develops near the leading edge when the static stall
angle is exceeded. As the angle of incidence a increases, the vortex detaches from the leading edge
and convects downstream near the surface until it leaves the trailing edge. The airfoil remains stalled
until a drops significantly for reattachment of flow to occur.

Bielawa et al. (Ref. 14) define a parameter aw which accounts for the time history effects
of the change in a and is given by

de

a'}r) = (r) - a(O)f0 3, (T,M)-f - I3 (r-o,M)do (1)

where r is the non-dimensional time

Ut r - ~(2) .:-%
b

1 - M-, a(O) is the initial angle of attack at timer = 0, and ¢(r,M) is the compressibility
corrected Wagner function which is written as

¢ (TM) { 1 - 0.165e -I(' S r,2 - 0.335,-' 3 5 T (3)

The equations in the rest of this section are essentially the same as those obtained from
Reference 14. They are included here since they are used in the numerical finite difference scheme tc
be described in the next section. For a detailed description of the time synthesization technique, the
derivation given by Bielawa (Ref. 14) should be referred to.

The dynamic stall and reattachment angles in terms of the static stall anglh ass, the pitch °
rate A and o\, are defined as

o)" (1 + C + ( , 7 1 + ( ' Ap, )us (4)

and (kRi (1 - C + ('AR l + K . "SS (5)

where c, ('.\. (III. (,. and (\\ r are empirical constants to he (hetermin( d. "'lw follo in v relationiship
is used to predict the time it takes for the vortex to travel from the hading elge to the trailing: c((l, o f
the airfoil:
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CAt ADm + Cat aDm (6)

where CAt and Cat are empirical constants. The normal force coefficient is given as

CN CNS (a Aal -Co) +ao L Aal + P4 A + P5aw

P6 + P7 (a+ P8 6 1 + P9 A°a2 ''
S,- . .

+ I [ain 2 (7)

where Aa1 = (PI A + P2 W + P3 )oass (8)

AcU2  82 ass (9)

2 U(t-td..)-

Ti, - (10)
C

PI to PW are empirical constants, aL is the static lift curve slope, 0, is an empirical constant taken to
be 0.18, and td,?, is the time when dynamic stall first occurs. 61 and 6, are defined by the following

0 a < oSS

Os S

(5k- =) [ (< 0 ( i11)

......
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0 a < a5 5S

a~ni

62  - - 1 0 < nm < 'rmt (12) .
SSSS". ".

(\
a S S  -

a  E - R E /  CtRE < Q
f <

' aTE

'S'

0 a a1 RE,""

The pitching coefficient is expressed as

CM = CMS (a-Aa-2) + a 5MAa 2 + QIA + Q2 aw + Q3 (--CS)

+ Q4 01W + Q5 61 + Q6 Aa 2 + Q7aDmADmT. (13)

where ao is the static pitching moment slope at zero angle of attack. For unstalled airfoils, the last
three terms in Equation (13) are zero.

2.2 Two-Degree-of-Freedom Motion of a 2-D Airfoil

Figure 1 shows the notations used in the analysis of a two-degree-of-freedom motion of an *.".
airfoil oscillating in pitch and in plunge. The plunging deflection is denoted by h, positive in the down-
ward direction, a is the pitch angle about the elastic axis, positive with the nose up. The elastic axis
is located at a distance ahb from the midchord, while the mass centre is located at a distance xb
from the elastic axis. Both distances are positive when measured towards the trailing edge of the
airfoil. The aeroelastic equations of motion have been derived by Fung (Ref. 2) and can be written as

+ x 612 1 P(r)b (14)
+ x + 2" t  + - CN(r) +(14)

U2mU 2

' r r, 2 Q(r) (15)
xj + rg + ru 2 ',, + C,, =  -C(r) +(15)'.

U* T, 2  7rP mU2

where h/b is the non-dimensional displacement, in is the mass per unit span of the airfoil and

: !w~ (16)

. . ...-...-... ...-.. .....-...-.....-................-.....-..-...-.-.- '.
:_'.-" ":f, :.* . - ... '' : - . . . . '.:'. ". 'I : " *:, " . ' -. ' -"' ""
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w, w. are the uncoupled plunging and pitching natural frequency respectively, and " are the ,
viscous damping ratio for plunge and pitch motion respectively, r, is the radius o gyration about the
elastic axis, CN and CM are the normal force and pitching moment coefficients, and P(r) and Q(r) are
the external applied force and moment respectively. U* is defined as

U'.
U* = (17)bwce

For given P(T) and/or Q(r), Equations (14) and (15) can be solved for the forced oscillation
of the airfoil in pitch and plunge provided that CN(T) and CM(T) are known. In linear analysis for
small oscillations of the airfoil, superposition of CN and CM for pitch and plunge motions is permis-
sible in determining the total force and moment coefficients. However, when the aerodynamic loads
are nonlinear, these coefficients have to be determined for combined motions in pitch and plunge.
The two-degree-of-freedom oscillating airfoil studied in this report has large stiffness in the plunge
motion. In the limit when W_ is infinite, the motion degenerates to that of a one-degree-of-freedom
system. Since the plunging motion is assumed to be small, the values of CN and CM are predominantly
due to pitching motion. The contributions due to plunge are added on from linear aerodynamic theory
and hence they should be treated as corrections which are only approximations to an otherwise .. ,
extremely complex situation.

2.3 Finite Difference Scheme

Houbolt's (Ref. 7) implicit method is used in the present analysis even though more
accurate higher order schemes are available (Ref. 8). In this case, the derivatives at time r + Ar are
replaced with backward difference formulas using values at three previous points. For example, --

+A - (2a, + 5a, + 4 _at - UT-2L) + (AT 2 ) (18)
4 Ar2

':-'-.-

and

&1 (11a+, - 18T + 9a_ - 2a,2,) + O(At3) (19)

Similar expressions can be written for '+A, and +AT. In difference form, Equations (14) and (15)
can be written as

E T+Ar + Va,+AT = T (20)
2--,.V. I~1

M },r+,r + IaT+ , = U (21)

The coefficients E, V, M, I and the terms T and U on the RHS of Equations (20) and (21) are given
in the Appendix.

2.4 Starting Procedure

Iloubolt's scheme requires values of a and at times r-2Ar, r-AT and r in order to
determine their values at r+Ar. At time r = 0 a special starting procedure is required. Writing .--

Equations (14) and (15) at r = 0 and solving for 6, and ' gives

----------------------- **--. . . . . --. ("~.,''
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-2 o - - - - -

0  -- (22)

r2

rr

knw. .ayo xre iste1sdtTbti h olwn "C .)

S (23)

2 .U*2"

2

a.- X'. i

2

where p. and r. can be obtained from the Appendix, and the initial conditions a, hg th and i are
.'known. A Taylor series is then used to obtain the following

a-T a0 -A& T +N D + O(AT (24)

2

a 0 I a + AT 6o + A-6 + 0(Ar 3 ) (25)
2

with similar expressions for lAT and t For the next step, Houbolt's scheme can be used since
-gAT, fo, aT, erl Mo and NA are known. The accuracy of the numerical method is (Ar 4 ) on each

step while Equations (24) and (25) limit the accuracy to 0(Ar 3 ). A starting accuracy higher than
27r

t(A 3 ) is not necessary since the error per cycle in the numerical scheme is - 0(AT3 ) (Ref. 8).

* 3.0 RESULTS AND DISCUSSIONS

3.1 Synthesized Data for a Vertol Modified NACA0012 Airfoil

In Reference 15 two-dimensional oscillatory airfoil test data sets for pitching motion are
given for a Vertol Modified NACA0012 airfoil. In this report the synthesized data are only shown
for M= 0.6 and R. = 6.2 X 106. Equations (4) to (6) predict the stall events and the coefficients in
these equations are determined empirically. The force and moment coefficients are obtained from

". Equations (7) and (13) by a curve fitting procedure using data loops for both unstalled and stalled
conditions. In this particular example, 13 data loops are used for CN and 14 data loops for Cm. The
coefficients in the two equations are obtained by a minimization procedure given by Powell (Ref. 16).
Usually in each cycle of oscillation of the airfoil, the loop is divided into 600 time steps. The steps %.-

* are adjusted so that the spacings are reduced in regions where large changes in aerodynamic charac-
teristics occur.

In Table 1, the empirical coefficients in Equations (4) to (6) and those for CN and CM at
M =0.62 and R =6.2 X 10( are given. The comparisons between the synthesized and test data are
shown in Figures 2 and 3. The correlation is very similar to that obtained by Bielawa et al. (Ref. 14)
which is considered to be good compared to other empirical formulations.

.... *. . a..'a ............................................................................................ '.. .. ..
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3.2 Forced Oscillation for Pitching Motions *

For very large values of Ci, Equations (14 and (15) reduce to that for pitch oscillation. The
forcing function in Equation (15), that is, Q(r)/mU can be written as Q0 sin kr where the reduced
frequency k = wb/U.

Figure 4a shows the angular displacement from the mean, CN and CM for the first five
cycles after an external moment has been applied at T = 0. The pitch axis is at the 1/4 chord, and the
mean angle of attack am is 0.20. The initial displacement and angular velocity of the airfoil are zero.
The driving frequency corresponds to that for a value of k = 0.165. The amplitude of the applied
moment is Q. = 0.8 X 10 - 3 , 0 and ./w, = 0.9. The airfoil has the following properties: p = 100,
r, = 0.5, x, = 0.25 and ah = -0.5. The flow around the airfoil is attached at all times and the
oscillations reach a steady states in four or five cycles. The results between 15 to 20 cycles are shown
in Figure 4b and it is seen that they are practically the same as those at the fifth cycle. In all compu-
tations, a time step equal to 1/128 of a cycle is used and found to give sufficiently accurate results.

At larger mean angle of attack when the airfoil stalls, it usually takes a few more cycles
before a steady state is reached. Figures 5a and 5b show the first five and the 15 to 20 cycles for

, a,,oil 7.48 , Qo, = 0.5 X 10 - 3 , 
WI/W" 

= 1.4 and k = 0.165. ..-.

Figures 6 and 7 show the amplitude and phase of an unstalled airfoil at am = 0.20, M = 0.6
for three values of Q.. The driving frequency is kept constant at a value of k = 0.165, and varying
wl/w0 is equivalent to changing the stiffness of the torsional spring constant. Since 0, the
damping is solely from the aerodynamics. The phase curves for Q. = 0.5 and 0.8 X 10"Tare shifted
upward by 200. These two figures are very similar to those for one-degree-of-freedom system with
viscous damping.

With the same value of k but increasing am to 7.480, the amplitude and phase curves
are shown in Figures 8 and 9 for six values of the amplitude of the external driving moment Q,.
Again, the phase curves are shifted upwards by 200. Except for curve '6' with the smallest value of
Q, = 0.1 X 10 - 3 , the other five cases exhibit breaks in the amplitude and phase versus W/w. curves.
Starting with small values of w/c, the flow over the airfoil is attached until a value of W/w , is
reached where after many cycles of computation a steady condition does not appear to exist. The
flow changes from attached to separated and back to attached and back and forth without any
definite pattern. Further increase in /ci./, will result in a steady condition with separated flow over
the airfoil. A maximum in the amplitude of oscillation of the airfoil is reached in the vicinity of
w/w,, = 1 and the amplitude and phase curves behave like those for a linear oscillator. However,
upon increasing wo/ci, breaks in the curves are again detected and for the two smaller values of Q0,
i.e. Q,, = 0.25 and 0.5 X 10 -3 , there is a small region of unsteadiness where the flow does not settle
either to the attached or separated conditions, but beyond which the curves reach a steady condition
again with the airfoil oscillating in the unstalled state. For the larger values of Q0, no steady conditions . -

can be reached. The failure to reach stea.y oscillations when the flow changes from attached to
separated or vice versa in those regions where the breaks occur is probably due to the method of
calculating CN and CM from Equations (7) and (13). At each step in the numerical finite difference
scheme, the local values of a and & are used to compute the local pitch rate A and aw. These are
then substituted into Equation (4) to evaluate a value of cl11. Depending on whether a is greater or
less than aj),, the flow is taken to be either separated or attached accordingly. In the first transition
region, the amplitude a is initially smaller than a,).. and the flow is attached. As the amplitude grows,
a will exceed a,,, and the flow, separates. Because of the ensuing increase in damping a then decreases
and the flow becomes attached again with a smaller value of damping. The value of a then starts to
increase and the cycle repeats itself. The same phenomenon also occurs in the second transition region.
To eliminate this oscillation between attached and separated flows, a different scheme to fix the state
of the flow at transition has to be devised.

Instead of holding k constant, Figures 10 and 11 show the amplitude and phase by varying
the frequency of the external moment for the airfoil at all, 7.480, Q,, = 0.5 X 10 -' and natural
frequencies of 24, 18, 64 and 80 Hz. These curves show the same characteristics as those in Figures 8

J"7
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and 9. The regions of unsteadiness where the flow changes from either attached to separated flows or
vice versa are much larger for low natural frequencies.

The results given so far are for = 0. For small values of the damping ratio ,, Figure 12
shows a typical modification of the response curve at k = 0.165 and Q, = 0.8 X 10-3.Viscous A,%41

damping tends to decrease the amplitude and increase slightly the region of unsteadiness where the
flow oscillates between attached and separated states.

3.3 Forced Oscillations for Pitching and Plunging Motions

The empirical relations given in Section 2.1 for the unsteady aerodynamic loads are for
pitching motion only. When the airfoil is oscillating in two-degree-of-freedom with large amplitudes
of motion, a suitable method of representing the nonlinear aerodynamics has to be formulated.
Experimental oscillatory data for the synethesization method have to include cases for various com-
binations of pitching and plunging amplitudes. These data are difficult to obtain and are not presently
available.

The present investigation considers the case of a two-degree-of-freedom motion with large
amplitude in pitch but small amplitude in plunge. In other words, the stiffness of the spring for
plunging motion is kept large so that W_ in Equations (14) and (15) is large. The aerodynamic loads
are then given by the sum of two terms: pitching motion from Equations (7) and (13) and plunging
motion from linear aerodynamics given in Reference 1 using the indicial lift and moment functions
at M = 0.6 determined by Mazelsky and Drischler (Ref. 17). This formulation of the aerodynamic
loads is only approximate but it is used in this study to give some idea of the effect of a plunge degree -

of freedom motion with small amplitude on the pitching motion of the airfoil driven by an externally
applied moment.

For an unstalled airfoil with a,, = 0.2', = 0, Figure 13 shows the pitch and plunge
motions and the aerodynamic coefficients when steady conditions are reached. The value of the
torsional natural frequency is f, = 64 Hz, 3 = 2, Q, = 0.5 X 10-3 and the results are given for
w = 2.2 for cycles 35 to 40. In all computations, a(0) = &(0) = t(0) = j(0) = 0. The effects of , •
f, and W_ on the amplitude response with variation in w/w/o are shown in Figures 14 to 19. The
amplitude of the pitching motion increases with decreasing W_ for the three values of f0 considered.
that is, for the same value of the applied moment (Q0 = 0.5 X 10-3), the presence of a plunging motion
increases the pitch amplitude slightly. The second peak in the vicinity of Z is usually quite small. For
the response curves shown in Figures 15, 17 and 19, the second peak is comparable to and in some
cases larger than the first. However, it is not strongly dependent on f0 and its magnitude changes
only slightly with increasing f0 which is quite unlike the first peak where the amplitude drops very
rapidly as the torsional natural frequency is increased.

When the airfoil's mean angle of attack is increased to a. = 7.48', the response is similar
to that for one-degree-of-freedom motion discussed in the previous section (see Fig. 10). The effect
of a plunge degree-of-freedom on the amplitude of the pitching motion is shown in Figure 20 for
f, = 64 Hz, Q,, = 0.5 X 10- and w = 10, 4 and 3 respectively. For small values of w/w, the flow is
attached and the transition from attached to separated flow occurs around W1W,, = 1. 65 does not
appear to have much effect on the range of the unsteady region where the airfoil oscillates between
attached and separated flow conditions. Unlike. Figures 14. 16 and 18 which show a slight increase
in the amplitude of o as 65 decreases, Figure 20 indicates the opposite, that is, for a stalled airfoil, .-

introducing a plunge degree-of-freedom will decrease the amplitude of the piltch motion for the same .,41%
magnitude of the externally applied moment. As c w , increases, the flow becomes attached again.
For large values of w (63 = 10 in this particular casvt i. a si ea(lv (ondit ion is reached after approxi-
mately twenty cycles of forced oscillation. Ihlwver, dc(,reasll! Co results ill failure to achieve a
steady condition even over 50 cyoles of c(ompual ion. The fl()w renmams atlached hiul the anplitude",s
of the pitch and plunge motions are scat t red as shon in curv('- 2 amti 3 ()f Figure 20. There is no
plausible explanation for this anomaly at presen.

.- * -. . . .. till -.... . ,%
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4.0 CONCLUSIONS

The empirical relations used to represent nonlinear aerodynamic force and moment
coefficient of both stalled and unstalled airfoils give fairly good results compared with the original
loop data from which they are derived. They are formulated for pitching motion only and modifi-
cations have to be made if they are to be used for plunging or combination of plunging and pitching -r

motions. The synthesized results can be used to derive data for any initial angle of attack of the
airfoil, pitch amplitude and frequency of oscillation, but in the present formulation are restricted to
the same airfoil and Mach number from which the experimental oscillatory aerodynamic data are
obtained.

In one-degree-of-freedom forced oscillation in pitch, steady conditions for unstalled flow
can be reached after a few cycles of motion of the airfoil starting from rest initially. For a stalled
airfoil, usually a few more cycles of computations are required to reach steady state. In those cases
where the flow changes from attached to separated or vice versa the transition regions are very
unsteady and the flow is unsettled between the stalled and unstalled conditions without reaching a
steady state, irrespective of the number of computation cycles carried out. Neither does a decrease in
the time step used in the numerical finite-difference scheme show any improvement. This is probably
due to an inadequate method used to compute the dynamic stall angle at those critical forcing
frequencies. The inclusion of a viscous damping term in the dynamic equation of motion does not
introduce any drastic changes in the behaviour of the response aside from a decrease in amplitude
and slight increase in the unsteady region where the flow oscillates between attached and separated
states.

For two-degree-of-freedom motion, only small plunge amplitude is considered because of
the approximations used in computing the aerodynamic loads. The presence of a plunging motion
increases the pitch amplitude slightly for attached flow, while a decrease in the pitch amplitude is
predicted for separated flow.
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TABLE 1 .I

COEFFICIENTS IN EMPIRICAL RELATIONS FOR SYNTHESIZED DATA . m

The coefficients for the synthesized data given in Equations (4) to (13) are as follows:

c = -0.09887 CA, = 0.43095 CA.-, = 0.40729

CAR = 0.66471 CR = -0.08279 CAt = 0.07816

Cut = 0.00959

P1 2 3 4 5 ,-

0.27904 0.24569 -0.12087 -0.13962 0.01926

P 6 7 8 9 10

0.22186 0.09565 .00059 -0.06892 -0.00099

Q .122 3 4 5 6 7

-0.313 0.034 00026 -0.00215 0.09170 -0.01914 0.00003

-0.03123~~ 0.0.4 0.002
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APPENDIX

The terms T and U on the RHS of Equations (20) and (21) and the coefficients E, V, M, I
4are given as:li

TT + BaT Ca 7-6 + Da,7 1n TA + Q,-,6 + Ht-6-(Al)

U PT,+6T + N,- Ptn, tA + Ja7  Ka,-6T + L T2Ar (A2)

2 Q(T)*where r(r) 2CM (T) + Ur

1 bP(T)
P(T) N (T) +

5 _6
B + _

A72 AT U*

4 _3C +

Ar 2 Ar U*

1 2
D -+ -

Ar2 3AT U*

4x,

X0

A T
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4x.

A2

AT .. eJ

5 6 w3---
N + -- -

Ar 2 Ar U

4 3 c

A2 Ar U*

12
AT + 3Ar U

and

r.2 ArT

Ar 2  3 Ar U U

2 11 j

AT2  3 Ar U

(M6)
A2
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SUMMARY

Forced oscillation of a two-dimensional airfoil with attached and
separated flows is investigated using nonlinear unsteady aerodynamics for
pitching motion derived from a time synthesization technique utilizing
oscillatory loop data determined experimentally. Both one- and two-degree-
of-freedom oscillations are considered. The structural dynamic equations of
motion are integrated by a time marching finite difference scheme The
airfoil response is examined for different values of spring stiffness and
magnitudes of externally applied moment. For two-degree-of-freedom
vibration, only small plunge amplitude is considered and the aerodynamic 2,
loads are approximated by the superposition of nonlinear terms due to
pitch and linear terms due to plunge. The presence of a small amplitude
plunging motion increases the pitch amplitude slightly for attached flow,
while a decrease in pitch amplitude is predicted for separated flow.

RESUME

On examine l'oscillation forc~e d'un profil de voilure bidimensionel
dans des 6coulements de contact et s6par6 partir de donn~es d'arodyna-
mique non lin6aire instable sur le mouvement de tangage produites par une
technique de synth~tisation du temps base sur une boucle oscillatoire
tablie exp~rimentalement. On 6tudie les oscillations A un et i deux degr6s

de libert6. Les 6quations dynamiques structurales du mouvement sont
int~gres par une m6thode d'avancement du temps aux differences finies. La
r~ponse du profil est examin6e pour diff6rentes valeurs de raideur d'un
ressort et de moment externe. Pour les vibrations deux degr6s de libert"
seule l'amplitude des faibles plongeons est considbr~e et les charges aro-
dynamiques sont approch~es par la superposition de termes non lin6aires de
tangage et de termes lin~aires de plongeon. La pr6sence d'un mouvement de
plongeon de faible amplitude augmente 16g&ement I'amplitude du tangage
pour '6coulement de contact, tandis qu'on pr6voit une diminution de
l'amplitude du tangage pour I'6coulement stpar.-

e- .or
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