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SUMMARY

Forced oscillation of a two-dimensional airfoil with attached and
separated flows is investigated using nonlinear unsteady aerodynamics for
pitching motion derived from a time synthesization technique utilizing
oscillatory loop data determined experimentally. Both one- and two-degree-
of-freedom oscillations are considered. The structural dynamic equations of
motion are integrated by a time marching finite difference scheme. The
airfoil response is examined for different values of spring stiffness and
magnitudes of externally applied moment. For two-degree-of-freedom
vibration, only small plunge amplitude is considered and the aerodynamic
loads are approximated by the superposition of nonlinear terms due to
pitch and linear terms due tc plunge. The presence of a small amplitude
plunging motion increases the pitch amplitude slightly for attached flow,
while a decrease in pitch amplitude is predicted for separated flow.

RESUME

On examine l'oscillation forcée d’un profil de voilure bidimensionel
dans des écoulements de contact et séparé a partir de données d’aérodyna-
mique non linéaire instable sur le mouvement de tangage produites par une
technique de synthétisation du temps basée sur une boucle oscillatoire
établie expérimentalement. On étudie les oscillations a un et a deux degrés
de liberté. Les équations dynamiques structurales du mouvement sont
intégrées par une méthode d’avancement du temps aux différences finies. La
réponse du profil est examinée pour différentes valeurs de raideur d’un
ressort et de moment externe. Pour les vibrations a deux degrés de liberté,
seule 'amiplitude des faibles plongeons est considérée et les charges aéro-
dynamiques sont approchées par la superposition de termes non linéaires de
tangage et de termes linéaires de plongeon. La présence d’'un mouvement de
plongeon de faible amplitude augmente légérement I’'amplitude du tangage
pour l'écoulement de contact, tandis qu’on prévoit une diminution de
I'amplitude du tangage pour 1'écoulement séparé.
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FORCED OSCILLATION OF A TWO-DIMENSIONAL AIRFOIL WITH NONLINEAR
AERODYNAMIC LOADS

1.0 INTRODUCTION

The dynamic response of a two-dimensional airfoil to external oscillatory forces or moments
using linear aerodynamic loads derived from incompressible flow is a well known subject (Refs. 1, 2).
For more complex aerodynamics as in transonic flow, numerical time marching techniques have been
used. The first study was reported by Ballhaus and Goorjian (Ref. 3) who carried out the aerocelastic
response of a NACAB64A006 airfoil with a single-degree-of-freedom in pitch at transonic speeds.
Extensions of this procedure to two- and three-degree-of-freedom have been reported by Rizzetta
(Ref. 4) and Yang and Chen (Ref. 5). Only a linear response was treated by these authors.

In aeroelastic studies, there are potentially many sources of nonlinearities present, but the
most commonly encountered ones are those having structural or aerodynamic origin. Existing tech-
niques of analysing dynamic response based on linear vibration theory are not applicable. Numerical
methods are the obvious choice in solving non-linear vibration problems since they do not suffer from
the limitations of perturbation theory. However, they have received little attention until recently, and
this study shows the usefulness of the numerical approach in dealing with aerodynamic nenlinearities
associated with stalled and unstalled airfoils. This problem has hitherto not been amenable to theoret-
ical analysis. A prediction method of the dynamic response is useful in providing information on the
sequence of events occurring on the airfoil during a cycle of oscillation. There are many applications
for such a method, for example, in wind tunnel tests of oscillating airfoils at high incidence or large
amplitude oscillations. In helicopter rotor blades design, the method can predict unsteady airloads
and deflections of the blades in forward flights or manoeuvring operations.

There exists a number of numerical time marching techniques developed for finite element
linear structurai analysis. Among the most commonly used time integration schemes are the explicit
central difference technique and Houbolt’s, Wilson’s and Newmark’s methods (Refs. 6, 7). Except for
the explicit scheme, the other three methods are unconditionally stable. Higher order schemes are
also discussed in Reference 8 and they are conditionally stable. Provided that care is taken to choose a
time step sufficiently small to ensure the highest mode considered in a vibrating system does not
diverge. higher order schemes are more efficient in terms of computation time. However, for a system
with few structural components or the number of vibration modes is small, higher order methods
such as the eighth order scheme reported in Reference 8 does not offer any distinct advantage over
Houbolt s scheme which is simpler and less cumbersome to use.

The use of numerical time integration techniques to study nonlinear vibration in one-degree-
of-freedom was reported in Reference 8. The nonlinearities considered was that of a cubic spr' .e. The
numerical results agree very well with analytical predictions derived tfrom perturbation theory, and
in addition, give more information on the behaviour of the system to initial conditions which the
analvtical method fails to provide.

In this study, Houbolt's (Ref. 7) scheme is used to investigate the forced oscillation of an
airfoil in one- and two-degree-of-freedom. For the one-degree-of-freedom motion case, only pitch
oscillation is investigated and both stalled and unstalled flow are considered. There are a number of
studies (Refs. 9-1.1) on methods of predicting dynamic stall and unsteady airloads on two-dimensional
airfoils with harmonic pitching motion. The most sophisticated one is given by Bielawa et al. (Ref. 14)
using experimental oscillatory loop data to generate synthesized data in the time domain. This method
15 used i the present study sinee it conveniently generates the acrodynamic loads at each time step
n the integration of the structural dynamic equations of motion.

In the two-degree-of freedom vibration of the airfoil, the plunge amplitude is assumed to
he small. The acrodynamic loads are then approximated by the superposition of nonlinear terms due
to piteh and Tinear terms due to plunge, since empirical relations for both large amplitude pitch and
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p:: plunge motions are not available. A comparison with one-degree-of-freedom response results gives the .:,,‘-
N effect of a small plunging motion for cases with attached or separated flow on the airfoil. ’
""’ f,\:-.
2.0 ANALYSIS -:-::
',‘.p:' f
2.1 Empirical Representation of Unsteady Aerodynamic Loads of Stalled and Unstalled Airfoils E}"., ;
Y
oL,
In Reference 14 an empirical method to determine the aerodynamic loads is given in the o
time-domain using data obtained from oscillating airfoil experiments. The expressions for the normal ,
force and pitching moment coefficients are quite general and valid for both stalled and unstalled B
airfoils. For a given airfoil shape, Mach number and Reynolds number, the dynamic characteristics of
the airfoil depend cn the mean angle of attack, the frequency and amplitude of oscillations. In the T

et

case of dynamic stall, it is assumed that a vortex develops near the leading edge when the static stall
angle is exceeded. As the angle of incidence « increases, the vortex detaches from the leading edge
and convects downstream near the surface until it leaves the trailing edge. The airfoil remains stalled
until a drops significantly for reattachment of flow to occur.

v
e
PR

Bielawa et al. (Ref. 14) define a parameter oy which accounts for the time history effects
of the change in « and is given by

T do
awit) = 1) - a(0)B ¢ (7,M) -fﬂ a;ﬂ ¢ (1-0,M)do (1) .'_-f::f

where 7 is the non-dimensional time

Ut 2)
T = — sy
b ( .l"h
A
AAY
S o~
B8 = V1-M? «f0) is the initial angle of attack at time 7 = 0, and ¢.(7,M) is the compressibility -‘.-::
corrected Wagner function which is written as O
1 ve,-0.0455 7,57 0.3 s S
O AT M) = = {1 -0.165¢7"-"7 7 - 0.335¢7" 0 7 (31
B
. The equations in the rest of this section are essentially the same as those obtained from —
v Reference 14, They are included here since they are used in the numerical finite difference scheme tc
. be described in the next section. For a detailed description of the time synthesization technique, the :f.‘_';:'"
5 derivation given by Bielawa (Ref. 14) should be referred to.
Pt
JCSRN

The dynamic stall and reattachment angles in terms of the static stall angle agq. the pitch
rate A and o are defined as

L o
v e

Qo © (T+e+( Am Al)m +( Win “\\m)“.\.\ (-H)

2

and agp T AL et Oy Ay, + Gy aygagg t9)

, where ¢, Cy, . Cy 0 Gy and Cyioare empirical constants to be determined. The following relationship
y 1s used to predict the time it takes for the vortex 1o travet from the leading edge to the trailing edge of
‘ the airfoil: e
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N where C,, and C,, are empirical constants. The normal force coefficient is given as e
{ :\-' !
L] .\*‘ ]
Ay
CN = CNS (a _Aal —Aaz) + aOL Aal + P4A + Psaw “\.
I-‘\i
- [ e®
4 2 'P\..‘\
‘ o o N
3 + P +P; +Pg 6) + Py Ay s
" %ss &ss RORS
3 3
-~ )
. s 1-e (B1™m
. + P]O ¥pm 2 (7)
. (ﬁl Tm)
Where AQ’] = (PIA + Pzav/ + P3)ass (8)
. Doy = §; ags (9) foe
: A
R FRAS
NN
! ALY
. AR
2U(t't‘dm) ,f-'n
Tm = (10)
» c
.J
- P, to P, are empirical constants, a,, is the static lift curve slope, §, is an empirical constant taken to
be 0.18, and t;,, is the time when dynamic stall first occurs. 6; and §, are defined by the following
: 0 o < agg
' - -;.I
44 AN
" — - 1 gy Sas Ny 'r:':"'
g g - :.'_‘.
Lo
&y = (11)
- ! ; "
apy, T
- - 1-— O0<r1), Sy
a tgg Tt ..
) 0 Tm > Tm(
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The pitching coefficient is expressed as

04
CM = CM (CY-AO(Z) + a Aaz + QIA + Qzaw + Q3 R
S oM Ogg

+Q aw| + Qs8) + Qelda; + Qrapy ApyTh (13)

where a M is the static pitching moment slope at zero angle of attack. For unstalled airfoils, the last
three terms in Equation (13) are zero.

2.2 Two-Degree-of-Freedom Motion of a 2-D Airfoil

Figure 1 shows the notations used in the analysis of a two-degree-of-freedom motion of an
airfoil oscillating in pitch and in plunge. The plunging deflection is denoted by h, positive in the down-
ward direction. « is the pitch angle about the elastic axis, positive with the nose up. The elastic axis
is located at a distance a,b from the midchord, while the mass centre is located at a distance x,b
from the elastic axis. Both distances are positive when measured towards the trailing edge of the
airfoil. The aeroelastic equations of motion have been derived by Fung (Ref. 2) and can be written as

. . o . w2 1 P(T)b
E+x,a+2f —E+—F = -— C\(n) + (14)
U* U*Z i mU:
2
Py 1 e 3 (04 Yo 2 Q(T)
X é+rya+r 28 — + o = —Cylr) + — (15)

U* s ! mU*
where £ = h/b is the non-dimensional displacement, m is the mass per unit span of the airfoil and

w T ow,lw, (16)
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w;, w, are the uncoupled plunging and pitching natural frequency respectively, {, and {, are the
viscous damping ratio for plunge and pitch motion respectively, r_ is the radius ofg gyration about the
elastic axis, Cy and Cy are the normal force and pitching moment coefficients, and P(7) and Q(r) are
the external applied force and moment respectively. U* is defined as

U* = (17)

For given P(1) and/or Q(7), Equations (14) and (15) can be solved for the forced oscillation
of the airfoil in pitch and plunge provided that Cy(7) and Cy(7) are known. In linear analysis for
small oscillations of the airfoil, superposition of Cy and Cy for pitch and plunge motions is permis-
sible in determining the total force and moment coefficients. However, when the aerodynamic loads
are nonlinear, these coefficients have to be determined for combined motions in pitch and plunge.

The two-degree-of-freedom oscillating airfoil studied in this report has large stiffness in the plunge
motion. In the limit when @ is infinite, the motion degenerates to that of a one-degree-of-freedom
system. Since the plunging motion is assumed to be small, the values of Cy and Cy are predominantly
due to pitching motion. The contributions due to plunge are added on from linear aerodynamic theory
and hence they should be treated as corrections which are only approximations to an otherwise
extremely complex situation.

2.3 Finite Difference Scheme
Houbolt’s (Ref. 7) implicit method is used in the present analysis even though more

accurate higher order schemes are available (Ref. 8). In this case, the derivatives at time 7 + A7 are
replaced with backward difference formulas using values at three previous points. For example,

. 1
Frear T _—2 (2ar+Ar - 50(1' + 4ar-Ar - ar—2Ar) + (Afz) (18)
At
and
: 1 ,
Opypny = ETAT (11, 4, - 18, + B, _,, - 20, _5,,) + O(AT7) (19)

Similar expressions can be written for g,,,m and E.T,,M. In difference form, Equations (14) and (15)
can be written as

EET*AT + Var*Ar =T (20)

M Erh\r + IaT"’AT =U (21)

The coefficients E, V, M, I and the terms T and U on the RHS of Equations (20) and (21) are given
in the Appendix.

2.4 Starting Procedure

Houbolt’s scheme requires values of o and § at times 7-2A7, 7-A7 and 7 in order to
determine their values at 7+A7. At time 7 = 0 a special starting procedure is required. Writing
Equations (14) and (15) at 7 = 0 and solving for &, and &, gives
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where p, and r, can be obtained from the Appendix, and the initial conditions «,, &, §, and éo are
known. A Taylor series is then used to obtain the following

. Arh
a, ~Atoa, + —ZL o, + 0(AT3)

5

. T ..
oy, = 0y tATO + 2 &, + O(ATY)

with similar expressions for §_,, and §,,. For the next step, Houbolt’s scheme can be used since
O _p, s Oy Opry E_pry &, and &, are known. The accuracy of the numerical method is 0(A7%) on each
step while Equations (24) and (25) limit the accuracy to 0(A7%). A starting accuracy higher than

27
0(A7?) is not necessary since the error per cycle in the numerical scheme is — 0(A7?) (Ref. 8).
w

3.0 RESULTS AND DISCUSSIONS
3.1 Synthesized Data for a Vertol Modified NACA0012 Airfoil

In Reference 15 two-dimensional oscillatory airfoil test data sets for pitching motion are
given for a Vertol Modified NACAO0012 airfoil. In this report the synthesized data are only shown
forM=06and R, =6.2 X 10%. Equations (4) to (6) predict the stall events and the coefficients in
these equations are determined empirically. The force and moment coefficients are obtained from
Equations (7) and (13) by a curve fitting procedure using data loops for both unstalled and stalled
conditions. In this particular example, 13 data loops are used for Cy and 14 data loops for Cy. The
coefficients in the two equations are obtained by a minimization procedure given hy Powell (Ref. 16).
Usually in each cycle of oscillation of the airfoil, the loop is divided into 600 time steps. The steps
are adjusted so that the spacings are reduced in regions where large changes in aerodynamic charac-
teristics occur.

In Table 1, the empirical coefficients in Equations (4) to (6) and those for Cy and C,y at
M =0.62 and R, = 6.2 X 10° are given. The comparisons hetween the synthesized and test data are
shown in Figures 2 and 3. The correlation is very similar to that obtained by Bielawa et al. (Ref. 1.1)
which is considered to he good compared to other empirical formulations.
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3.2 Forced Oscillation for Pitching Motions

For very large values of w, Equations (142 and (15) reduce to that for pitch oscillation. The
forcing function in Equation (15), that is, Q(7)/mU~ can be written as Q, sin k7 where the reduced
frequency k = wb/U.

Figure 4a shows the angular displacement from the mean, Cy and C,; for the first five
cycles after an external moment has been applied at 7 = 0. The pitch axis is at the 1/4 chord, and the
mean angle of attack «,, is 0.2°. The initial displacement and angular velocity of the airfoil are zero.
The driving frequency corresponds to that for a value of k = 0.165. The amplitude of the applied
moment is Q, = 0.8 X 1073, §, = 0and w/w, = 0.9. The airfoil has the following properties: u = 100,
r, = 0.5, x, =0.25 and a, = -0.5. The flow around the airfoil is attached at all times and the
oscillations reach a steady states in four or five cycles. The results between 15 to 20 cycles are shown
in Figure 4b and it is seen that they are practically the same as those at the fifth cycle. In all compu-
tations, a time step equal to 1/128 of a cycle is used and found to give sufficiently accurate resuits.

At larger mean angle of attack when the airfoil stalls, it usually takes a few more cycles
before a steady state is reached. Figures 5a and 5b show the first five and the 15 to 20 cycles for
o, =7.48°, Q,=0.56 X 107, w/w, = 1.4 and k = 0.165.

Figures 6 and 7 show the amplitude and phase of an unstalled airfoil at o, = 02°,M=0.6
for three values of Q. The driving frequency is kept constant at a value of k = 0.165, and varying
w/w, is equivalent to changing the stiffness of the torsional spring constant. Since { = 0, the
damping is solely from the aerodynamics. The phase curves for Q, =0.5and 0.8 X 10'f are shifted
upward by 20°. These two figures are very similar to those for one-degree-of-freedom system with
viscous damping.

With the same value of k but increasing «,, to 7.48°, the amplitude and phase curves
are shown in Figures 8 and 9 for six values of the amplitude of the external driving moment Q,.
Again, the phase curves are shifted upwards by 20°. Except for curve ‘6’ with the smallest value of
Q,=01X 107, the other five cases exhibit breaks in the amplitude and phase versus w/w, curves,
Starting with small values of w/w,, the flow over the airfoil is attached until a value of w/w, is
reached where after many cycles of computation a steady condition does not appear to exist. The
flow changes from attached to separated and back to attached and back and forth without any
definite pattern. Further increase in w/w, will result in a steady condition with separated flow over
the airfoil. A maximum in the amplitude of oscillation of the airfoil is reached in the vicinity of
w/w, =1 and the amplitude and phase curves behave like those for a linear oscillator. However,
upon increasing w/w,, breaks in the curves are again detected and for the two smaller values of Q,,,
ie. Q,=0.25and 0.5 X 1073, there is a small region of unsteadiness where the flow does not settle
either to the attached or separated conditions, but beyond which the curves reach a steady condition
again with the airfoil oscillating in the unstalled state. For the larger values of Q , no steady conditions
can be reached. The failure to reach steacy oscillations when the flow changes from attached to
separated or vice versa in those regions where the breaks occur is probably due to the method of
calculating Cy and Cy from Equations (7) and (13). At each step in the numerical finite difference
scheme, the local values of « and & are used to compute the local pitch rate A and ay,. These are
then substituted into Equation (4) to evaluate a value of ay,,,. Depending on whether « is greater or
less than «,,,, the flow is taken to be either separated or attached accordingly. In the first transition
region, the amplitude « is initially smaller than «,,, and the flow is attached. As the amplitude grows,
a will exceed oy, and the flow separates. Because of the ensuing increase in damping « then decreases
and the flow becomes attached again with a smaller value of damping. The value of « then starts to
increase and the cycle repeats itself. The same phenomenon also occurs in the second transition region.
To eliminate this oscillation between attached and separated flows, a different scheme to fix the state
of the flow at transition has 1o be devised.

Instead of holding k constant, Figures 10 and 11 show the amplitude and phase by varying

the frequency of the external moment for the airfoil at o, = 7.48°,Q,=05X 10" and natural

frequencies of 24, 48, 64 and 80 Hz. These curves show the same characteristics as those in Figures 8
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and 9. The regions of unsteadiness where the flow changes from either attached to separated flows or
vice versa are much larger for low natural frequencies.

The results given so far are for {, = 0. For small values of the damping ratio {,, Figure 12
shows a typical modification of the response curve at k = 0.165 and Q, = 0.8 X 10-3. Viscous
damping tends to decrease the amplitude and increase slightly the region of unsteadiness where the
flow oscillates between attached and separated states.

3.3 Forced Oscillations for Pitching and Plunging Motions

The empirical relations given in Section 2.1 for the unsteady aerodynamic loads are for
pitching motion only. When the airfoil is oscillating in two-degree-of-freedom with large amplitudes
of motion, a suitable method of representing the nonlinear aerodynamics has to be formulated.
Experimental oscillatory data for the synethesization method have to include cases for various com-
binations of pitching and plunging amplitudes. These data are difficult to obtain and are not presently
available.

The present investigation considers the case of a two-degree-of-freedom motion with large
amplitude in pitch but small amplitude in plunge. In other words, the stiffness of the spring for
plunging motion is kept large so that « in Equations (14) and (15) is large. The aerodynamic loads
are then given by the sum of two terms: pitching motion from Equations (7) and (13) and plunging
motion from linear aerodynamics given in Reference 1 using the indicial lift and moment functions
at M = 0.6 determined by Mazelsky and Drischler (Ref. 17). This formulation of the aerodynamic
loads is only approximate but it is used in this study to give some idea of the effect of a plunge degree
of freedom motion with small amplitude on the pitching motion of the airfoil driven by an externally
applied moment,.

For an unstalled airfoil with o, =0.2°, ¢, = § =0, Figure 13 shows the pitch and plunge
motions and the aerodynamic coefficients when steady conditions are reached. The value of the
torsional natural frequency is f, = 64 Hz, w = 2,Q, =0.5 X 1073 and the results are given for
w/w, = 2.2 for cycles 35 to 40. In all computations, a{0) = &(0) = £(0) = £{(0) = 0. The effects of
f, and w on the amplitude response with variation in w/w, are shown in Figures 14 to 19. The
amplitude of the pitching motion increases with decreasing w for the three values of f, considered,
that is, for the same value of the applied moment (Q, = 0.5 X 107), the presence of a plungmg motion
increases the pitch amplitude slightly. The second peak in the vicinity of & is usually quite small. For
the ¢ response curves shown in Figures 15, 17 and 19, the second peak is comparable to and in some
cases larger than the first. However, it is not strongly dependent on f_ and its magnitude changes
only slightly with increasing f, which is quite unlike the first peak where the amplitude drops very
rapidly as the torsional natural frequency is increased.

When the airfoil's mean angle of attack is increased to «,,, = 7.48°, the response is similar
to that for one-degree-of-freedom motion discussed in the previous section (see Fig. 10). The effect
of a plunge degree-of-freedom on the amplitude of the pitching motion is shown in Figure 20 for
f,=64 Hz, Q,=0.5X 103 and @ = 10, 4 and 3 respectively. For small values of w/w, the flow is
attached and the transition from attached to separated flow occurs around w/w, = 1. w does not
appear to have much effect on the range of the unsteady region where the airfoil oscillates between
attached and separated flow conditions. Unlike Figures 14, 16 and 18 which show a slight increase
in the amplitude of « as w decreases, Figure 20 indicates the opposite, that is, for a stalled airfoil,
introducing a plunge degree-of-freedom will decrease the amplitude of the pitch motion for the same
magnitude of the externally applied moment. As w w, increases, the flow becomes attached again.
For large values of w (w = 10 in this particular case), a steady condition is reached after approxi-
mately twenty cycles of forced oscillation. However, decreasing w results in failure to achieve a
steady condition even over 50 cycles of computation. The flow remains attached but the amplitudes
of the pitch and plunge motions are scattered as shown in curves 2 and 3 of Figure 20, There is no
plausible explanation for this anomaly at present,
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4.0 CONCLUSIONS

The empirical relations used to represent nonlinear aerodynamic force and moment
coefficient of both stalled and unstalled airfoils give fairly good results compared with the original
loop data from which they are derived. They are formulated for pitching motion only and modifi-
cations have to be made if they are to be used for plunging or combination of plunging and pitching
motions. The synthesized results can be used to derive data for any initial angle of attack of the
airfoil, pitch amplitude and frequency of oscillation, but in the present formulation are restricted to
the same airfoil and Mach number from which the experimental oscillatory aerodynamic data are
obtained.

In one-degree-of-freedom forced oscillation in pitch, steady conditions for unstalied flow
can be reached after a few cycles of motion of the airfoil starting from rest initially. For a stalled
airfoil, usually a few more cycles of computations are required to reach steady state. In those cases
where the flow changes from attached to separated or vice versa the transition regions are very
unsteady and the flow is unsettled between the stalled and unstalled conditions without reaching a
steady state, irrespective of the number of computation cycles carried out. Neither does a decrease in
the time step used in the numerical finite-difference scheme show any improvement. This is probably
due to an inadequate method used to compute the dynamic stall angle at those critical forcing
frequencies. The inclusion of a viscous damping term in the dynamic equation of motion does not
introduce any drastic changes in the behaviour of the response aside from a decrease in amplitude
and slight increase in the unsteady region where the flow oscillates between attached and separated
states,

For two-degree-of-freedom motion, only small plunge amplitude is considered because of
the approximations used in computing the aerodynamic loads. The presence of a plunging motion
increases the pitch amplitude slightly for attached flow, while a decrease in the pitch amplitude is
predicted for separated flow.
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TABLE 1

COEFFICIENTS IN EMPIRICAL RELATIONS FOR SYNTHESIZED DATA

The coefficients for the synthesized data given in Equations (4) to (13) are as follows:

-0.09887 Cpp = 0.43095 Cyp = 0.40729

0.66471 Cyr = -0.08279 Ch, = 0.07816

7

0.00959

EEREX
Ak K

1 2 3 4 5

XA
‘.S" 3

0.27904 0.24569 -0.12087 -0.13962 0.01926

6 7 8 9 10

0.22186 0.09565 0.00059 -0.06892 -0.00099

Q| 1 ‘ 2 l 3 l s ] s | s l 7

r—0.03123 l -0.00345 l 0.00026 [ -0.00215 l 0.09170 |—0.01914 , 0.00003
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FIG. 1: TWO-DEGREE-OF-FREEDOM AIRFOIL MOTION
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APPENDIX

LALALL N

The terms T and U on the RHS of Equations (20) and (21) and the coefficients E, V, M, 1
are given as:

T = Trvar * BO(,, - (:aT—AT + Da1-2AT + FET - G¢ + H27—2A‘r (A1)

T-AT

[ et Wl S A Tl T iy
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’ U= Prear * NET - PET-AT N SET-zAT + JO(,, - Ka‘r-A + LT~2AT (A2)

where 1) =
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SUMMARY

Forced oscillation of a two-dimensional airfoil with attached and
separated flows is investigated using nonlinear unsteady aerodynamics for
R - pitching motion derived from a time synthesization technique utilizing N
oscillatory loop data determined experimentally. Both one- and two-degree-
of-freedom oscillations are considered. The structural dynamic equations of
motion are integrated by a time marching finite difference scheme. The
airfoil response is examined for different values of spring stiffness and
magnitudes of externally applied moment. For two-degree-of-freedom
vibration, only small plunge amplitude is considered and the aerodynamic
loads are approximated by the superposition of nonlinear terms due to
pitch and linear terms due to plunge. The presence of a small amplitude
plunging motion increases the pitch amplitude slightly for attached flow,
while a decrease in pitch amplitude is predicted for separated flow.
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RESUME

On examine l’oscillation forcée d’un profil de voilure bidimensionel
dans des écoulements de contact et séparé a partir de données d’aérodyna-
] mique non linéaire instable sur le mouvement de tangage produites par une
technique de synthétisation du temps basée sur une boucle oscillatoire
établie expérimentalement. On étudie les oscillations 4 un et a deux degrés
de liberté., Les équations dynamiques structurales du mouvement sont
intégrées par une méthode d’avancement du temps aux différences finies. La SRR
réponse du profil est examinée pour différentes valeurs de raideur d’un PR
ressort et de moment externe. Pour les vibrations a deux degrés de liberté. S
seule I'amplitude des faibles plongeons est considérée et les charges aéro- j
S dynamiques sont approchées par la superposition de termes non linéaires de AR
tangage et de termes linéaires de plongeon. La présence d'un mouvement de S
plongeon de faible amplitude augmente légérement ’amplitude du tangage L
pour ’écoulement de contact, tandis qu’on prévoit une diminution de
I'amplitude du tangage pour ’écoulement séparé.
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