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I. INTRODUCTION

Interior ballistics flows of conventional charges in gun tubes possess
complex flow patterns. Their complexity is due to both the heterogeneous
structure of the charge and the rapldly changing flow conditions within a few
milliseconds. The fast rise in pressure and temperature caused by the burning
of the propellant initiates a turbulent, multidimensional, multiphase fiow
which is coupled with the accelerating projectile motion. A complete
mathematical model that describes all the physical phenomena occurring in an
interior ballistics cycle is not presently available. However, sTveral models
that simulate some of the phenomena exist or are being developed.

On the other hand, it is not possible for technical reasons to make
detailed experimental measurements of the complete interior ballistic cycle.
Some standard techniques as well as some new special techniques under
development determine only specific quantities in real weapons or in
simulators under simplified flow conditions. Commonly measured quantities are
the gas pressure and projectile motion. Other quantities such as the
temperature distribution in the gas and in the gun tube wall, the velocity
distribution of the gas and solid particles inside or outside of boundary
layers, the particie distribution, the turbulence pattern, etc., cannot be
accurately determined by experiment. Thus, a need exlsts for modelling of the
interior ballistic cycle so that the dynamic development of these quantities
can be studied, and their impact on ballistic problems can be evaluated.

A new computational capability for the investigation of interior
ballistics flows is the DELTA code, which is under development at the
Ballistic Research laboratory. The purpose of this code is to address
particular ballistics problems related to the boundary layer development, the
heat transfer to the tube wall, the *urbulence, and the time-dependent
distribution of additive particles. In the following, we shall give a short
description of the DELTA code and present computational results of an
investigation of heat conduction and turbulence effects.

II. REVIEW OF THE MODELS IN DELTA

The flow which is modeled by DELTA is a multidimensional, two-phase flow
inside a gun tube. Presently, the flow is assumed to be axisymmetric. At the
rear end, the so-~called breech, the tube is closed by a stationary flat plate
while the front boundary is a moving flat-based projectile. The flow is
assumed to be viscous and heat conducting, and it can be either laminar or

L Fluid Dynamics Aspects of Internal Ballistics,” AGARD Advisory Report
No. 172, 1982.
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turbulent. The wall may be either adiabatic or it may allow heat transfer :
from the gas. Heat transfer is restricted to the tube wall (excluding the .
breech). The core flow is fully coupled to the moving projectile, to the X
boundary layer development and, if desired, to the heat conduction in the tube
wall. By fully coupled we mean that each of these phenomena can affect all
others. For example, the boundary layer development can alter the details of
the core flow., This would not be the case, for example, in a boundary layer
type model.

”
. o.' .l

“e-a

The mathematical model in DELTA (the balance equations for the gas—-phase )
and one solid phase), is based on an unsteady volume-averaged formulation. n
The gas phase is described by averaged equations corresponding to the full '
Navier-Stokes equations for a compressible fluid., The model is closed by
averaged coefficients of viscosity and heat conduction, an averaged viscous
stress tensor, an averaged dissipation function and an averaged heat 4
conduction function. Since interior ballistics flows usually produce high gas
pressures, the Noble—Abel equation of state is used so that some real gas Ny
eftects can be included. The gas turbulence is represented by algebraic .
mixing length models. The solid phase is described by the averaged equations “
for arrays of incompressible particles which can undergo deformations. The -
derivation of the equations is given in Ref. 2. The equations of the solution
algorithms are listed in Ref. 3.

The system of partial differential equations for the axisymmetric two-
phase flow region is solved by a linearized Alternating Direction Implicit
(AD1) scheme. This scheme transforms the differential equations into a system
nf linear algebraic equations. The corresponding matrix has a block -
tridiagonal structure, allowing an efficient determination of the solution at
each new time-step. Details about the derivation of the scheme are presented
in Ref. 3.

[II. HEAT TRANSFER Tu AND TEMPERATURE DISTRIBUTION IN THE TUBE WALL

The heating of the gun tube wall caused by convection, heat conduction, .
and radiation of the hot propellant pas enhances the gun tube wear and -
erosion, and therefore, affects the lifetime of gun tubes. An experimental M
determination of the inner wall surface temperature is quite difficult.
Commonly used thermocouples arce »f limited use in interior ballistic

“Cetring, A.K.%., Scamitt, J.A.. "Three-Dimensional “oceliny of :ias- oo
Combusting Solid Two-Phase Flows, "™Multi-Phase Flow and Heat Transter -
I1I, Part B: Applications, T. N. Veziroglu and A.E. Bergles, editors, o
pp. 681-698, Elsevier Science Publishers, Amsterdam, 1984. x>
SSchmitt, J.a., "4 .umericai Algorithm Tor the “ultidimensionat, ultiohase. G

Viscous Fquations of Interior Ballistics,” Transactions of the Second Army
Conference on Applied Mathematics and Computing, ARO-Report 85-1,
pp. Hh39-HA91, 1985,
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applications because such applications require accurate measurements in very
short time intervals, a close contact to the flow, and special thermal
preperties of the gauges.

Ty

There are several mathematical models of the heat transfer to the gun
tube wall. They can be divided in four categories according to their
complexity. The first type uses a very simplistic boundary layer calculation
and a heaz_gransfer correlation, e.g,, Colburn's analogy, to obtain the heat
transfer. Heat losses in the core flow are considered. The empirical heat
transfer correlations are derived for fully developed, steady, one-phase pipe
flow. The main feature of this type of model is the emphasis on the
calculation of the core flow. In models of the second category the emphasis
is on a de§c§iption of the boundary layer by using more general boundary layer
equations. The heat transfer to the tube wall again is described by
correlations. The boundary layer edge is not coupled with the computation of
the core flow. Instead, one assumes for the latter values which represent
approximately the core flow. The third category makes use of general boundary
layer equations and of a balance of heat fluxes from the hot gas to the gun
tube wall at the inner wall surface.? The conditions at the boundary layer
edge are comparable to those in the second category. Neither of these
approaches includes all the feedback mechanisms from the tube to the core
flow, and therefore, to the projectile motion. The fourth category of models
uses a fully coupled approach whereby the phenomena in the core flow are
directly linked to the projectile motion, the boundary layer development, the
heat transfer to and the heat conduction in the tube wall, and vice versa.
This is achieved by using a single system of equations everywhere in the gas
region and a coupled system of heat conduction equations in the tube wall.

The solution of these sets automatically provides the boundary layer solution
in the boundary layer region, the core flow solution in the core flow, and all
the necessary coupling that naturally occurs in the flow. Although this type

T

4Shelton, S., Bergles, A., Saha, P., "Study of Heat Transfer and Erosion in
Gun Barrels,” Air Force Armament laboratory, Eglin Air Force Base, Florida,
AFATL-TR-73-69, 1973,

5Gough, P., "Modelin: of Rigidized Gun Propelling Charges,' Ballistic Research

laboratory, Aberdeen Proving Ground, Maryland ARBRL-CR-00318, 1983.

ﬁﬁolsnn. c."". . Ward, J.7.. "Calculation of Heuat Trarsfer to the Gun Barrel
Wall,” J. Ballistics 6 (3), pp. 1518-1524, 1982,

7Bar1ett, E.P., Anderson, L.W., Xendall, LR.!!I., "Time-Dependent Boundary Layers
with Application to Gun Barrel Heat Transfer,” Proceedings 1972 Heat Transfer
Fluid Mech. Institute, Stanford University, CA, 1972.

8Buckingham, A.C., "Modelin, Prepeliant Conbustion Interactin: with an Froding
) Solid Surface,” lawreuce Livermore laboratory, 'CRI-83727, 1980,

S

Adars, MJ0., rier, "Unsteady interrt! Boundary Lover pfoalvsis Arplied to
Gun Barrei Wall Heat Transfer,” Int. .J. Heat Mass Transter, Vol. 24, No. 1.,

pp. 1925-1935, 19451,
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Y of solution is most complex, it provides a flow description with the tewest L
assumptions and approximations. In light of the scarcity of experimental e
measurements with which to compare the calculations, we feel such an approach o

to be best. The DELTA code is an examnle of a fourth category model.

The heat transfer model in DELTA consists of the equations governing the
heat conduction in the tube wall, and the boundary conditions which couple the
temperature in the wall to the flow inside and outside the tube. The heat .
conduction in the tube wall is described by the two-dimensional, nonlinear 0y

axisymmetric equation for the wall temperature Tw(t,r,z): e
BTW 3 BTw

PlTy eu(TY) 5t = 57 DT 55 ,

@ oT -

t e 3;-[r Xw(Tw) ar I i

The variables t, z and r denote the time, axial coordinate in the wall and Ny
radial coordinate in the wall, respectively. The specific heat ¢, and the L
thermal conductivity A, of gun tube steel strongly depend on the RS
temperature. By comparision, the density of the steel o, varies only a i
little with temperature. T
The most important bouandary condition is at the inner tube wall surface f;i
where the coupling of the flow region and the wall occurs. It consists of the t}?
balance of heat fluxes with a radiation effect i
oT 3T

- X 5?5 + e 0 (Ta —TQ) = - Aw 3?2 f_i

g g &, g ¢ e

and of the temperature equilibrium equation -
T = T . .:_

g w o

The variables AU s oy 0y, T and T denote the thermal conductivity of

&) & T3

the gas, the emissivity of the wall sur?ace, the Stefan-Boltzmann constant,

the gas temperature, and the maximun gas temperature in a given cross-section
(z = constant), respectively. We emphasize that in DELTA hoth c¢nunditions are
used only at the inner tube wall surface, excluding the breech. The left hand -
side of the first condition represents the heat flux on the gas side towards e
the wall, whereby the first term represents heat conductinn, and the second -
term represents heat radiation. The right hand side gives the heat flux into
the tube wall. For the boundarv conditions at the outer tube wall surface we

B i I — T .

10

Aerospace Structural Metal Handbook, "Ferrous Alloys,” 1973, N




chose the simple engineering condition

STw
- Aw or h (Tw - Tme) ’
where h is a heat transfer coefficlent and T is an outer ambient

temperature. A more sophisticated condition is not needed (at least for a
single shot weapon) because the heat usually does not reach the outer surface
during a ballistic cycle. Two additional boundary conditions are needed in
axial direction. At the projectile base, we set

Ty = Tamb»

across the wall thickness, that is, we assume that the projectile moves into
an area which is at ambient temperature. At the breech and at the projectile
base, an adiabatic condition

9T
—8 -0
oz

was assumed to be adequate.

The equations governing the temperature distribution in the tube wall are
solved using the same linearized ADI method as for the equations in the gas
flow region; that is, the equations are linearized in time, and are split
along coordinate directions. At each new time level, we first update the
temperature distribution in the wall, and then update the dependent variables
in the flow region. This is performed by the following sequence of sweeps
along coordinate directions: an axial sweep followed by a radial sweep in the
wall, a radial sweep followed by an axial sweep in the gas region, and finally
an adjustment of the dependeant variables along the inner wall surface to the
flux boundary condition. We omit a discussion of the details of the numerical
procedure because they are discussed in Ref, 3. 1In the DELTA code, the
thermodynamic dependent variables in the gas region are the specific gas
entropy (s) and the logarithm of the gas pressure (q). Therefore, the heat
flux boundary condition must be reformulated in terms of s and q at the new
anknown time level for the radial sweep in the gas region. To this end, we
transform the heat flux term on the right hand side of the condition via the
chain rule as follows:

’

0T _ ¢T(s,q) _ Js 3
A 57 = MI(s,q)) —_Z}_r—_q— = M1(s,q)) (T =2 + T, 3—‘}1

where T is the gas temperature, and T_, T.  denote the partial deriviatives of
f with respect to s and q, respective?y. q(For simplicity, we dropped the
index g.) The linearization in time gives a relation between the unknown new
time level (n) and the known current time level (c)

13
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n n C ~AmC , c
aT aT d T 2
, 9Ty | T d 3T +
A (ar ) A (ar ) ar (A o | ac + 0 (6t%)
with
d . oT,¢ . dx°© ¢ ds ¢ dq, ,ot,C
Y3 [ A B_El Lt = (—d-,—I;) (TS ac + Tq 'd—t] (E) Lt
c ¢ c
, 39 3s dg 3s 34,  ds
oA [(qu e T qu 3 ac ¥ Tes 30 ¥ qu 3t ac oot

The time-deriviatives we approximate by

ds N n_ _c

‘d—t Lt S s ,
and

d9 . L M- 4©

dt At q q .

With this approximation, the boundary condition provides a linear equation for
s" and q®. The equation is compatible with the set of finite differenced and

linearized flow equations.

IV. TURBULENCE MODEL

In order to estimate the influence of turbulence on the flow pattern, we
used two turbulence models. Both were equilibrium algebraic eddy viscosity
models based on Prandtl's mixing length hypothesis. In these models, a
turbulent eddy viscosity u,_ and a turbulent thermal conductivity A, are added
to the molecular viscosity u and thermal conductivity A , respectfvely,
yielding the effective values

"
+

Yeff

and

=A+kt,

A
eff
which then are used in the laminar flow equations. The two models differ in

the underlying assumption that the boundary layer consists either of one
region or is composed of two regions.

14




The one-layer model expresses the turbulent eddy viscosity by

2

K] du
u, = p 2 z

3r 3z

where p is the local density, £ is Prandtl's mixing length, w and u are the
velocity in axial and radial direction, respectively. In the DELTA test
calculations the velocity gradients were obtained from the solution of the

governing ditferential equations. The mixing length was obtained

correlation. For a steady incompressible flow in a tube Nikuradse

experimentally determined that

2 =R 0.16 - 0.08 (1 —%)2 - 0.06 (1 —%)“J.

ffom a

where R is the tube radius and y is the distance from the tube wall. Using

this correlation one assumes that it models the turbulence alsoc in an unsteady

and compressible flow. We test this assumption by comparing the computed
results with those obtained using another turbulence model, a so—called two-

layer model.

The two—layer model separates the boundary layfi }3 an inner and outer

region with different formulations for each region.
for the eddy viscosity in the inner region is

2
Mg = p R
in

3w + du

3r  ez|’

which is the same as the one-layer formulation. The difference is
definition of the mixing length 2, which now is calculated by

L=k vy D,

-~

The expression

in the

where k = (.4 is the von Karmdn constant, y is the distance from the wall and

D is the van Driest damping factor. The latter is given by

_X+
'A+
D=1~--¢e s
1 Searlicatin~, .., "boundar Laver theor ,'" Cleweraw-iill, 903,
12

“lubesin, (v., "sumerica: Turbulence Modelins,” A ARP=1,85-86.
.Kussov, M.I., Viegas, J.2.. Lerstoan, C.C., Tinvestigation of a

Dimensional Shock Wave Separated Turbulent Boundary layer,” AIAA
18 (1980), No. 12, pp. 1477,
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where

and A+ = 26 is the van Driest constant. The subscript w indicates that the
subscripted quantities are to be evaluated at the wall surface (y=0). The
wall shear stress T, is expressed by

Iw
w o “w(‘gy‘) y=0.

In the outer layer we use for the eddy viscosity the correlation

ok
0.0168 , w_ =
e

He

out {1 + 5.5 (y/G)él)

where w, denotes the axial edge velocity, 6* the kinematic boundary layer
displacement thickness and ¢ the boundary layer thickness. In our case w, 1is
the maximum axial velocity in the cross-section z=constant, that 1is, the
velocity on the axis of symmetry. Hence the outer layer encompasses in this
model the core flow. The conmplete two—layer eddy viscosity 1is given by

if
ul:. y<yC
_ in
He " ify>y 7
t c
out
where y. is the first point at which U exceeds My .
in out

The turbulent thermal conductivity is calculated in both cases by

L. e o ¢
t Pr ’
where Pr_ = 0.9 is the turbulent Prandtl number and cp is the specific heat at

constant pressure.
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Computational results are presented for two different types of intericr
ballistics flows. The first type simulates a pure zas expansion flow behind a
projectile woving in a constant cross-section tube. The tube is closed at one
end by a stationary surface called the breech, and at the other end by the
movable flat based projectile. The initial states of the gas are uniform and
quiescent. Geometrical data, initial conditions as well as the thermodynamic
properties of the gas are listed in Table I. We designate this idealization
as the lagrange gzun.

TABLE I. LAGRANGE GUN PARAMETERS

Bore Diameter 20 mm

Tube leagth 2.0 m

Chamber Length 0.175 m
Projectile Mass 120 g

Ratio of Specific Heats 1.271 3
Covolume 1.08 x10 m ;kn
Molar Mass 23.8 g/mole
Initial Gas Pressure 300 MPa

Initial Gas Temperature 3000 K

Initial Velocities 0 m/s

The flow in the Lagrange gun is very well suited for the study of several
important features such as the performance of the numerical procedure, the
boundary layer development, the laminar and turbulent axisymmetric flow
patterns, and the heat transfer to the tube wall.

Since an expansion flow is quite removed from the phenomena occurrina
during a ballistic cycle, a second type of flow is simulated which has time-~
dependent pressure and temperature profiles similar to a real weapon. It is
obtained by adding proper heat and mass to the one-phase flow via source
terms. An empirical burning law for pressure-dependent sources is used. Tie
sources move with the flow., We designate this idealization as the "real
sun”, The essential parameters for the real gun ditter [rom Tahle | oaly with
respect to the initial conditions. The initial gas pressure is assumed to be
ambient pressure (0.1 !Pa) and the initial pgas temperature to be amhiuut
temperature (293 K). In all cases involving the real jun simulation, the
projectile is released from its initial position when the pressure at the
projectile base reaches 30 MPa.

Becaunse the MELTA code is based on an implicit finite difrerence schere,
no stability condition restricts the size of the time aten,  The proce teld
results are all calcalated using a coastant time-step of 10 s o The
computational mesh consists of 49 uniformly or nonuniformly spaced mesh points

DU TP 1 Y O S ey S




in the axial direction and 19 nonuniformly spaced mesh points in the radial "
direction. To obtain a finer spatial resolution in the boundary region, the -
mesh points are concentrated near the wall. An example of a 19x49 .
computational mesh, which is used in most of the computations, is shown in

Figure 1. The smallest grid size in radial direction at the bore surface is K
. /7.7 ym . The mesh for computing the heat conduction in the tube wall is v
' generated in the same way with the same mesh distribution in axial direction X

as on the gas side, and a corresponding mesh concentration near the inner bore
surface. Both the size of time-step and the number of grid points seem to be
reasonable compromises between accuracy and computing time.

Some of the computed results for the lagrange and real gun, respectively,
with laminar flows and adiabatic boundaries are compared in Figures 2-5, The
tigures show the histories of the gas pressures and temperatures at the ceater
of the breech and projectile, and the velocities and displacements of the
projectile. The main differences are in the temporal distributions of all
quantities shown, and between the final values of the muzzle velocities. In
the real gun simulations, the pressure at the projectile base reaches 30 MPa
at about 2.3 ms, at which time the projectile begins to accelerate down the

tube.
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Detailed qualitative results for a lagrange gun with a laminar flow and
adiabatic walls are presented in Figures 6-10. Notice that the three-
dimensional surfaces are shown from different directions in order to make
their display clearer. The spatial distribution of the axial velocity is
shown in Figures 6 and 7 at 3.75 ms. At this time, the projectile exits the
gun tube with a muzzle velocity of 623 m/s. Figure 6 shows the axial velocity
field when a uniformly axially spaced mesh as in Figure 1 is used. Figure 7
shows the same quantity but computed using a nonuniformly spaced axial mesh.
The radial distribution of the mesh points are the same in both figures. For
a given axial position the axial velocity 1is constant across much of the
radius of the tube (the core flow region), and decreases to zero only very
close to the wall (the boundary layer region). The boundary layer is the
result of the no-slip condition (w=0) at the wall. The thickness of the
boundary layer is approximately 0.2 to 0.3 mm. In the axial direction, the
velocity is distributed linearly in the core region between the zero value at
the breech and the muzzle velocity. The three-dimensional temperature and
pressure distributions are given in Figures 8 and 9. Due to the adiabatic
boundary condition at the wall surface the heat generated by the viscous
forces near the tube wall cannot transfer to the tube wall, and the gas
temperature rises towards the wall surface. Here again the boundary layer is
only 0.2 to 0.3 mm thick. The pressure, however, stays constant in radial
direction over the entire cross—section. The assumption in boundary layer
theory that the radial pressure gradient is zero would be valid in this
example. Figure 10 shows the 3-D graph of the radial gas velocity. In
approximately the first 70% of the distance to the projectile, the radial
velocity is negative, i.e., the flow is directed towards the center line (C-
L). Thereafter, it is positive and increases remarkably towards the
projectile base. Only very close to the projectile does the value of the
radial velocity drop rapidly from its maximum value to zero. Of course, the
radial velocity is small in comparison to the axial velocity since it is
induced only by molecular viscosity and heat conductivity. The results in
Figures 2-10 agree very well with both a one-dimensional solution of the core
flow using the method of character}§t{§s, and the two-dimensional numerical
calculations of Heiser and Hensel.'”

T T T T . T T

L4 o Vs .. v e PR ~e H [
wiser. . st L, NN T Hin Acrsensrrnetrisc (s Moael D
Innenballistik, Teil l: Llaminare Einphasenstromung ohne
Warmeubergang (AMI: An Axisymmetric Model of Interior Ballistics,
Part l: Laminar One-Phase Flow without Heat Transfer),” Fraunhofer-
Institut fiur Kurzzeitdynamik, Ernst-Mach-Institut, Abteilung fur

Ballistik, Weil am Rhein, FRG, Report No. 4/80, 1980.

leiser, R., :lensel, D., "Berechnung der uvasstromung in einem Waftenrohr
mit Hilfe des zweidimensionalen AMI-Modells (Calculation of the Gas Flow
Inside a Gun Tube Using the Two-Dimensional AMI Model).” Fraunhofer-
Institut fur Kurzzeitdynamik, Ernst-Mach-Institut, Abteiling fir Ballistik,
Weil am Rhein, FRG, Report No. E 1/81, 1981.
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For the Lagrange gun considered above the Reynolds number based on the
tube's diameter and muzzle velocity is of the order of 107, Therefore, the
assumption of a laminar flow might not be realistic, and we examined in
further calculations the effects of turbulence. In comparison to the laminar
flow, several important differences were observed when the two algebrair
turbulence models described in Section IV were applied. However, the
difference between the effects of the two turbulence models was found to bhe
insignificant. Therefore, we do not specify the type of model in the
presented results. First, one observes a difference in the projectile
performance between the laminar and turbulent type flows. This is shown in
Figure 11 in terms of the pressure histories at the breech, in Figure 12 in
terms of the temperature histories at the breech, and in Figure [3 in terms of
the projectile velocity histories. In the turbulent flow simulation, the
projectile muzzle velocity is about 50 m/s less than in the laminar flow
simulation. The axial velocity flow field at the time of muzzle clearance is
shown in Figure 14. The velocity boundary layer is fully developed between
the center line and the tube wall. The axial velocity overshoots the
projectile velocity near the center line. This overshoot is related to the
radial gas velocity (Figure 15) which, near the projectile base, is vne tu two
orders of magnitude larger than in the case of a laminar flow (Figure 10). 1In
this region, the greater radial gas flux toward the tube wall transports mass
away from center-line which in turn can accelerate the axial flow. The radial
variation of the axial velocity (Figure 16), the radial velocity (Figure 17)
and the temperature (Figure 18) taken 0.25 m upstream of the muzzle show some
details of the differences between the laminar and turbulent flows at the time
of muzzle clearance. Boundary layer calculations in Ref. 7 show comparable
trends between laminar and turbulent flows. However, the flow patterns
computed by different types of turbulence models, e.g., non-algebraic models,
may differ. An experiment corresponding to this idealized expansion flow is
needed to validate a turbulence model. Such experiments are being attempted

at the French—-German Institute (ISL) in France and the Ernst-Mach-Institut
(EMI) in Germany.

In a second series of calculations we investigated the significance of
heat transfer to the tube wall. The heating of the wall's surface has
practical implications because it influences the erosion of the tube. Q(ur
heat transfer model together with the calculation of the heat conduction in
the wall couples the unsteady behavior in both media, and it is discussed in
Section III. We now show results ottained for the laminar Lagrange gun
expansion flow with heat transfer from the gas to the tube wall. Initially
the wall is assumed to be at ambient temperature. The thermal properties of
the gun barrel are characterized by the barrel material density 5 = 7.8 kg/m”,
thermal conductivity A = 43 W/(m K) and specific heat c, = 460 Jy(kg K). The
pressure and temperatu?e histories at the breech, and projectile velocity
history are given in Figures 11-13, and can be compared with the other two
simulations. The spatial profile of the axial velocity, radial velocitv,
pressure and temperature are plotted in Figures 19-22, respectively, at the
time of muzzle clearance. Comparing the results to those of the laminar flow
with adiabatic walls, we find that the velocity boundary layer as well as the
temperature boundary layer are in the present case thinner, that the radial
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velocity is about one order of wagnitude higher, and that the radial velocity
is always directed toward the wall. For example, the velocity boundary layer
is only about 0.U5 mm thick. Detailed comparisons across the boundary layer
regions for axial velocities and temperatures are presented in Figures 23 and
24, and across the tube cross-section for the radial velocities are shown in
Figure 25. All these profiles are at 0.25 m from the muzzle at the time of
muzzle clearance. Figure 26 shows the history of the wall surface temperature
at two different locations along the tube wall. One is taken at 150 mm away
from the breech. This wall point belongs to the chamber, and is heated up
from the beginning of the flow c¢ycle. The second wall point is 250 mm away
from the breech, and is heated up only after the projectile has passed it (at C o
0.47 ms). The maximum wall temperature occurs early in the 4 ms cycle. The
laminar gas layer close to the tube wall cools rapidly because the transport
of heat in the tube wall by conduction is much faster than the transport of

4 heat by conduction and convection on the gas side towards the wall. To obtain
- the heat transfer precisely from the gas to the wall, we need to compute the
radial temperature gradient on both sides of the inper bore surface as
accurately as possible. The temperature boundary layer, however, is very thin
as it is shown in Figures 22 and 24. This implies that very small grid sizes
must be used close to the wall. The smallest one in radial direction for
Figure 26 is 0.73 m .
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The final simulations are of one-phase flows in the real gun, i.e., of a
gas flow with mass and energy sources. The pressure and temperature histories
at the breech and projectile, and the projectile velocity and displacement
histories for the laminar flow simulation and for the real gun are given in
Figures 2~5. Figures 27-40 are a series of three-dimensional profiles which ;
characterize both the laminar and turbulent flows inside an adiabatic tube. ”
The group of figures associated with the laminar flow are at two times: the 1
; first at 3.6 ms when maximum pressure is achieved and the second at 5.3 ms -
- when the projectile exits the tube. For these calculations a nonuniform -
K radial grid is used with the minimum grid size of 0.73 um because of the
- thinness of the boundary layer. We excluded the profile of the radial

velocity at 3.6 ms because the magnitude of this component was smaller than
0.05 m/s. Three~dimensional profiles show the turbulent flow fields when
maximum pressure occurs at 3.6 ms (Figures 34-37), and when the projectile
exits the tube at 5.49 ms (Figures 38-40). As in the Lagrange gun, the
differences are minimal between the simulations with different turbulence
model, but significant between the laminar and turbulence simulations.
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Figure 23,

Lagrange Gun, Laminar Flow: Radial Profiles of the
Axial Gas Velocity for Adiabatic and Heat Permeable
Walls at the Time of Muzzle Clearance 0.25 m Away
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Figure 27.
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Real Gun, Laminar Flow, Adiabatic Walls:

Figure 29,

Spatial Distribution of the Cas Pressure

at 3.6 ms.
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Spatial Distribution of the Axial Gas .
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Spatial Distribution of the Radial Gas

Velocity at Muzzle Clearance (5.3 ms).
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Fipgure 32.

Real Cun, Laminar Flow, Adiabatic Walls:

Spatial Distribution of the Gas Temperature

at Muzzle Clearance (5.3 ms).
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Figure 35. Real Gun, Turbulent Flow, Adiabatic Walls:
Spatial Distribution of the Radial Gas
Velocity at 3.6 ms.
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Real Gun, Turbulent Flow, Adiabatic Walls:

Spatial Distribution of the Axial Gas
Velocity at Muzzle Clearance (5.49 ms).
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Velocity at Muzzle Clearance (5.49 ms).
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Spatial Distribution of the Cas Pressure at
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VI. SUMMARY

Special interior ballistic phenomena are investigated by using the DELTA
computer code, which is designed to calculate the multidimensional, two-phase
flow behind an accelerating projectile inside a gun tube. Details of the heut
transfer and turbulence submodels used in the simulations are given in this
report. The general mathematical model and numerical algorithm are described
in a companion paper, Ref. 3. Results are given for two types of idealized,
vne-phase interior ballistics gun simulations: a pure expansion flow, and a
flow with moving mass and heat sources. Comparisons are made between laminar
and turbulent flows as well as between flows in an adiabatic tube and in a
tube that allows heat transfer. The comparisons show that the flow structure
and the motion of the projectile are both significantly influenced by
turbulence and heat conduction, because of a strong coupling between the core
flow and boundary phenomena. A study of the effects of turbulence and heat
conduction therefore can be best accomplished with a multi-dimensional
mathematical model, such as the DELTA code.
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