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Abstract A oy
The neural encoding of memory is a problem of great interest and importance.
Traditional proposals have taken one of two extreme views: The one-concept, one- ¢

neuron, punctate view and the fully distributed, holograrhic alternative. Major e
advances in the behavioral, biological and computational sciences have greatly

increased our understanding of the question and its potential answers. There is now
good reason to reject both extreme views, but a compact encoding that derives from
the punctate model appears to fit well with all the facts. Much of the work espousin
holographic models is reinterpreted as studying system properties of neura
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networks and, as such, considered to be of great importance. Some suggestions for Ii_'j‘f.

directions of further research are discussed. }_
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How it is that the brain codes, stores and retrieves memories is among the

most important and baffling questions in science. [Thompson 1986]

1. Introduction and Punctate Theories

In addition to its compelling scientific interest, the neural substrate of memory is
a question of considerable practical importance. There are obvious applications in
neurology, but it goes well beyond that. Our understanding of how human minds
incorf)orate and process information has a profound influence on many aspects of
social intercourse including formal and informal education, psychotherapy, public
information and inter-personal communication [Roediger 1980]. Researcz in the
behavioral and brain sciences entrails implicit assumptions about neural encoding.

Recent advances in the behavioral, biological and computational sciences may
yield a major improvement in our understanding of the neural coding of memory.
Neurobiology is making remarkable strides in elucidating the structure of the
nervous system and the details of its functioning. The behavioral sciences are
developin% deep structural models of language, vision, etc. and employing
increasingly sophisticated experimental and simulation techniques to refine them.
Computer science has produced powerful devices and profound theories of
representation and computation which are supporting the study of how the complex
structural theories of the behavioral scientists could be carried out by the
information Frocessing mechanism revealed by neurobiology. The neural encoding
of conceptual knowledge is one central question in this enterprise.

The entire paper is predicated on the direct neural encoding of conceptual
structure -- could it be otherwise? In a conventional digital computer, the wiring
diagrams tell us virtually nothing about the information structure stored in the
system; the computer is a general purpose interpreter. Almost all its hardware is
passive memory which is idle except when accessed by the interpreter. Many
cognitive scientists still like to think of the brain in this way and, for them, the study
of neural encodings makes no sense. One explores the high level structure of
cognition in a way that is independent of any embodiment. A great deal can be
learned in this way and this paper relies heavily on the results of such studies. The
problem with this stance is that the speed of the system (brain) relative to that of its
elements (neurons) places very severe constraints on the possible organization of
knowledge. Human reactions, over a wide range of tasks, take a few hundred
milliseconds or about 100 times the switching time of individual neurons. Thus, for
example, an interpreter of the standard kind would be too slow by many orders of
magnitude. While there are in principle a wide range of possib{e realizations of
intelligence, we know that our brains are constrained to use one that is quite direct.
One can also view this paper as an exploration of the relationships among three
kinds of structure: the structure of the brain, the structural characterization of
behavior and the conceptual structure of knowledge. The questions addressed in this

aper are 1) What do we now know about the range of possible encodings of
Enowledge in the brain? and 2) What does this suggest for experimental and
theoretical research? All of this falls within a research domain characterized by
terms like those in Table 1.




Common Terms
.. ]
Connectionist

Neural Model
Massively Parallel
Cell Assembly
Pattern of Activation
Parallel Distributed
Processing

Table 1

We will pursue these questions following what has become the paradigmatic
method of cognitive science -- converging constraints. Neither behavioral, biological
nor computational results alone greatly restrict theorizing, but taken together these
results preclude many models that look plausible from a narrow perspective. The
100-step rule for simple behaviors is an elementary example of how converging
constraints can lead to insights.

For concreteness, let us suppose that the problem is to describe how a human
brain could represent and exploit the information in a standard encyclopedia. We
assume that any representation will employ some notion of “concept” which
corresponds rou%}‘l’ly to a dictionary word-sense. The only other primitive needed is
the “relation.” We assume that all the required knowledge can be captured as a
collection of relations among concepts. The encyclopedia contains pictures so some
appearance models are required, but these can also be expressed in terms of concepts
and relations. There is no attempt to define formally the notion of concept and
relation because the various representational schemes discussed will entail
properties of the primitives. What we will do is show how different neural encoding
models relate to constraints arising from various branches of science. To begin, we
will focus only on the representation of concepts, ignoring relations as most of the
literature continues to do.

Even leaving relations aside, the literature contains a wide range of notions of
what a concept is and how it might be represented neurally. The simplest view
restricts consideration to very concrete nouns such as “horse” or “chair,” ignoring
more complex concepts such as “game,” “yesterday,” “"active” or “love.” Even in this
quite restricted context, the representation of concepts has proven to be a deep
problem for philosophers, linguists, psychologists, etc. [Smith & Medin 1981]. Our
point of departure is the computational models of Artificial Intelligence, which have
made explicit many of these issues in conceptual knowledge [Charniak &
McDermott, 1985]. A minimum requirement is that the representation support the
answering of questions about concepts (and later about their relations). One

articularly simple kind of question concerns the structure of the object itself, e.g.,
ﬁow many legs has some chair. Models which treat concepts as unstructured
collections of attributes will need to provide additional mechanisms for answering
even these simple questions. Many studies of neural concept representations ignore
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entirely the issue of how concepts are used, but no serious attempt to understand real ”
animals can afford to do so. It
The range of possible representations of concepts in the brain is constrained by a g
combination of computational considerations and neurobiological findings. The 100- ’
y step rule for simple tasks already eliminates any conventional computer model. ~
Other pertinant facts include the relatively small number of neurons (about 1011 or P

one-hundred billion), the large number of connections between neurons (about 104 i

per unit), and the low rate of information transfer. It mag seem that 1011 is not a

small number, but when one considers the 106 input fibres from each eye, a computer :
scientist immediately detects a major constraint. For example, dedicating one unit "

to test for a gossible line between any 'pair of points in the retina would take more
neurons ((106)2) then there are. The information rate between individual neurons at
a firing rate of 100 spikes per second is about five bits or enough to encode one letter
of the alphabet. (If complex messages are being conveyed, it is not by individual
neurons.) Much of the computational power of the brain derives from its great >
connectivity and a challenge to theory is to explain how this power is realized. :
Although this paper concentrates on representation more than learning, there are
also constraints on plasticity that are pertinent. The major finding is that the

wth of new fibers in adults is much too slow and constrained to account for
earning and that there is no generation of new neurons. There is sufficient
converging evidence [Lynch 1986] to allow us to assume that long-term concept and s
relation memory comes about through changes in connection strength, but rapid
connection change is problematical. There is also reason to believe that skill :
learning may involve significantly different mechanisms than concept learning
[Thompson 1986].
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The best way to begin a serious discussion of neural encoding of concepts is to tie
down two simple theories that embody the extreme ends of the range of possible
answers. The most compact representation possible would be to have a unique unit
dedicated to each concept. If we assume that a unit corresponds to one neuron then
this is the "grandmother cell” or “pontifical cell” theory. The other extreme would be
to have each concept representated as a pattern of activity in all of the units in the
system. This is well known as the “holographic” model of memory and is the most
highly distributed theory that we will consider. In addition to the pure theory based
on optical holograms, we will call holographic any model that has all the units in a
system encoding each concept [Willshaw 1981]; most of these are matrix
formulations. Nothing much would change in either theory if a “unit” corresponded
to a dendritic sub-tree instead of an entire neuron. The discussion will proceed by g
movin% in from the extremes to examine the range of Elausible encoding models and 3
some of their properties. A grea! .eal of excellent work has been done employing the
end-case assumptions, but neither of them could actually be right.

The extreme opposing models of neural representation lead to radically different
views of many aspects of Cognitive Science. Table 2 presents a number of contrasting
terms that arise, respectively, from the punctate and fully distributed views of
neural coding. Not all of these items will be meaningful to every reader, but
everyone should recognize some striking contrasts in perspective. All of these
contrasting notions will find their way into the discussion. One term that is possibly
misleading in Table 2 is “distributed representation.” The problem is that people
have been using this term to denote everything from a fully holographic model to one
where two units help code a concept, thus the term has lost its usefulness. The
various contrasting terms often accompany significant differences in research goals
and strategies. One intriguing idea that we will pursue is that many of these
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Contrasting Terms
= punctate  diffuse
lognd distributed representation
grandmother neuron hologram, spin-glass
disjoint codes homogeneous code
detector filter
labelled line pattern of activity
active memory passive memory
reduction emergence
hierarchy complete connectivity
recruiting adapting
general computation correlation
Table 2

agparent conflicts are basically alternative ways of looking at the same set of
phenomena, vaguely reminiscent of atomic physics and thermodynamics.

We shoald first dispense with an abstract argument that equates the punctate
and hologram models. It is true. in a sense, that an encoding having one active unit
per concept is a pattern of activity in the mass. But this identification is too abstract
to be meaningful. Another proposed way to identify holographic and punctate
representations comes from linear algebra and the idea of alternate coordinate axes
for a vector space. If, as in many models, the output of a unit is the (thresholded)
linear combination of its inputs, one can view this unit as a (very large) vector, v ,
whose coordinates are the outputs of each predecessor unit. There is, in principle,
another set of bases for the vector space for which this vector, v, is an axis and can
therefore be represented by one non-zero coordinate. This argument fails for three
reasons. Even for strictly linear input combinations, the output threshold destroys
the applicability of linear algebra and there is no biologically plausible way to
eliminate non-linearity. In addition, no single transform would work unless the set
of concepts were independent and therefore small (cf. Section 2). More importantly,
the computational properties of the two representations are radically different as ]
with the example just above. !

Punctate Models

The next step is to show why neither the pure punctate nor the holographic model
are consistant with the facts. We will start with the punctate model because the
story here is simpler.
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...........
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The extreme end of the compact representation position is to assume each concept
is represented by exactly one neuron. This view received considerable support from
single unit recording research, which found that units in sensory areas responded
best to a relatively narrow class of stimuli [Hubel & Weisel 1979]. The punctate

b |

encoding is also called “labelled lines” emphasizing the fact that, in this encoding, ::::
each axon will be conveviry 2 specific message when it is active. The most Y
influential expression of this position was Horace Barlow’s “neuron doctrine” which o
is worth quoting in its outline form [Barlow, 1972]. b
The following five brief statements are intended to define which aspect of the brain’s .‘3
activity is important for understanding its main function, to suggest the way that single j':i

neurons represent what is going on around us, and to say how this is related to our

.-

subjective experience. The statements are dogmatic and incautious because it is important

that they should be clear and testable.
First dogma

A description of that activity of a single nerve cell which is transmitted to and influences

other nerve cells, and of a nerve cell's response to such influences from other cells, is a

complete enough descriptior. for functional understanding of the nervous system. There is
nothing else 'looking at’ or controiling this activity, which must therefore provide a basis for

understanding how the brain controls behaviour.
Second dogma

At progressively higher leve!~ i1 ~ensory pathways information about the physical stimulus
is carried by progressively few:r active neurons. The sensory system is organized to achieve
as complete a representaticr. «~ possible with the minimum number of active neurons. ([cf

Figure 71)
Third dogma

Trigger features of neurons are matched to the redundant features of sensory stimulation in

order to achieve greater completeness and economy of representation. This selective

responsiveness is determined by the sensory stimulation to which neurons have been

exposed, as well as by genetic factors operating during development.

" Fourth dogma

Just as physical stimuli directly cause receptors to initiate neural activity, so the active

high-level neurons directly and simply cause the elements of our perception.
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Fifth dogma

The frequency of neural impulses codes subjective certainty: A high impulse frequency in a
given neuron corresponds to a high degree of confidence that the cause of the percept is

present in the external world.

T sl T S S T 4 e 4 | EEEES

The five dogmas are much less controversial in their original form than in most of
the strawman characterizations derived from them. Obviously enough, much of their
force is in defense of the direct encoding position shared by all connectionist models.
The most relevant point in our discussion is that individual neurons are the
appropriate object for study in determining how the brain does its work. This is
' commonly identified with the most com¥act, punctate, style of neural model and is
an appropriate introduction to this end of the spectrum.

Figure 1 (after Shastri [1985]) presents a vastly oversimplified version of how a
punctate system might encode and exploit conceptual knowledge. The memory
. network is a category-based hierarchy with each concept and property-name
3 represented by a rectangular unit. The triangular nodes stand for intermediate units
) which become active when two of their three input lines are active. Suppose the
system has a routine that retrieves its knowledge of food tastes as an aid to ordering
wine, such as that cartooned in the lower half of the figure. If activation is spread
simultaneously to the “main course” of the meal and to the desired property “has-
taste,” exactly one triangular evidence node, b, will receive two active inputs and
this will lead to the activation of the concept “salty.” This is the required answer, but
for technical reasons an intervening clean-up network is needed where the answer is
acutally put to use. One interesting feature of Shastri’s model is that the same
memory network is able to classify a salty, pink food as ham -- the triangular
evidence nodes work in both directions.

-

While oversimplified, Figure 1 does convey much of the flavor of punctate (and
other compact) connectionist models and their appeal to some scientists and rejection
by others. The main point is that everything is quite explicit; the concepts,
properties and even the rules of operation are simple and direct. This makes it
relatively easy to express and test specific models either at the neural ievel or more
abstractly as in our example. No one believes that the brain uses exactly the
structure of Figure 1, but any highly compact concept representation could behave in
essentially the same way. The very explicitness of all this is what makes many

scientists reject punctate models either for abstract study or as a theory of brain T
structure. While any particular structure or theory can be encoded (just like circuit S
design), nothing may be learned about the general properties of intelligence. RN
Moreover, how could such a hard-wired sytem develop and adapt in living brains? |

We will discuss this last issue in Section 3; the others are questions of scientific taste
and judgment. But the answer to how the brain represents knowledge is not a matter L
of taste and we next explore some arguments that it can not be in the punctate style S
of Figure 1. Y

The first point is that a large number of neurons (~105) die each day and these are -
distributeg throughout the brain. If each concept were represented by exactly one
neuron, one woulg expect to lose at least some concepts (at random) each day. This
argument is often taken to be conclusive evidence against the compact model, but
there is a slight variant of the punctate view that is proof against the death of
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Figure 1: Connectionist Retrieval System
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individual units. Suppose that instead of one unit per concept, the system dedicated
three or five, distributed somewhat physically. Alrof the theories and experiments
would look the same as in the one unit case, but the redundancy would solve the
problem of neuron death. While the number of neurons dying is large, the fraction is
quite small (~10-6) so the probability of losing two of the representatives of a concept
in a lifetime is quite low (~10-7). There is also considerable redundancy at the system
level, several separate ways to perform a given function. As we will see, there are
other rl'easons for rejecting the punctate model, but the death of neurons is not
critical.

Another, and more telling, argument against a purely punctate model is that
there would not be enough units to represent everything. It is fine to envision a unit
that is active when you recognize your grandmother’s picture in the encyclopedia,
but what about all your other memories of her. Is there a separate unit for each age,
each outfit, each body position, etc.? There are two aspects to this argument, Sme
sheer number of things to be represented and the relational structure among them.
Merely representing all the possible concepts is not a problem if efficient encodings
are used. For example, a group of one hundred binary units can represent 2100 (~1030)
distinct patterns which is far more than the number of concepts required. A million
such groups is ample memory and is a small fraction of the neurons available (~ .1%).
The most efficient coding information is not the main design criterion, but there are
constraints which preclude some encodings as too wasteful. Supporters of the
compact end of the spectrum have conceded this and have developed coding
techniques which permit the encoding of significantly more information without a
major change in computational architecture.

In parallel with these theoretical developments, experimentalists have been
reframing their view of the activity of single units. For some time, the idea of a
neuron as a "detector” of one kind of event has been declining but no alternative
term has yet evolved. The psychophysicist’s idea of a “filter” is the diffuse equivalent
(all units filter all signals) and equally misleading. Although no new word has been
established, many experimentalists now (correctly, in my view) view sensory
neurons as having responsivity of different fineness to a variety of stimulus
dimensions. Single unit neurophysiology studies are finding effects of stimuli beyond
the classical receptive field [Allman et al. 1985] as is evitable in an interacting
system of units. And, of course, the idea that all of intelligence could be understood
simply by finding the neuron for each concept was always silly. It is clear that
Barlow’s dogmas could use some revision and Appendix A suggests one variant
which seems reasonable. For example, dogma five should reflect the fact that firing
frequency encodes some stimulus feature information as well as confidence. Figure 2
shows the firing rate of a visual system neuron as a function of binocular temporal
and spatial offset of a target and is typical. When one includes the firing rate
(instead of just on/off) as part of the information code, the rage of distinct entities
representable goes up significantly {Ballard 1986b]. For example, the relative
activity rate of three color “channels” is enough te specify a wide range of hue and
intensity combinations. Summarizing the discussion to this point: While the purely
Eunctate view is unsupportable, there is no numerical problem with a theory that

as each concept represented by the activity of a few units. Such an encoding shares
many of the properties of the punctate model and is consistant with single unit
experiments in a wide range of brain structures.

Another argument used against compact models of neural representation arises q
from bulk activity experiments. A single small stimulus can give rise to activity in a
significant fraction of the total population. There are several reasons why this fact
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Figure 2: Response of a cat visual (area 18) cell to a binocular stimulus as a function
of temporal and spatial offset. Spatial offset is from -2.4 to 2.4 degrees, temporal from
~20 to +40 m.sec. (from [Gardner et al. 1985)).

does not preclude compact representations. For one thing, the “simplicity” of a
stimulus looks different from various encoding schemes. A small dot, in a Fourier
encoding, activates receptors for all spatial frequencies. In a parameter-space
encoding [Ballard 1986a], a single feature provides evidence for many higher-level
features and these may be suppressed slower than when more information is present.
Finally, there does appear to be some non-specific gating [Barber 1980] which
activates an entire structure wien any input appears. None of this is to say that the

unctate position is correct, only that arguments from bulk activity do not preclude
1ts viability.

While the cell-death and bulk activities arguments against punctate
representation are easily accommodated, it is easy to see that there really could not
be enough neurons to have one for each concept of interest. One clear example arises
in early vision. It is well known that the visual system is sensitive to at least the
following local stimulus properties: orientation, intensity, hue, depth, motion
direction and size. A system that could resolve 10 values for each of the six
dimensions would require 106 units to represent all combinations of values. But
there are about 106 separate points at the narrowest (retinal ganglion) level that
must be represented so the total requirement would be 1012 which is too many.
Similar combinatorial arguments can be made at higher level conceptual levels, as
in all the memories of one’s grandmother. At these higher levels, the structure of the
knowledge itself provides considerable encoding economy (Section 3), but for early
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processing additional mechanisms are required. In fact, quite a lot is known about
the response properties of cells in visual cortex and there is a clean computational
story that both helps organize the experimental deta and contributes to our goal of
constraining the possible models of neural encoding.

S N s w s

: The basic idea is depicted in Figure 3 for the case of two stimulus dimensions.
' Suppose (as turns out tc k= th: case) that units respond non-uniformly to various
: stimulus dimensions. For example, the vertical rectangle in the lower left depicts the
: responsiveness of a cell that is five times more sensitive to size than to orientation
I and the horizontal rectangle the opposite. The nice point is that the joint activity of
two such cells can code the stimulus space as finely as the finest dimension of either
(cf. the crossed rectangles), while requiring significantly fewer units. This
computational mechanism goes by the name “coarse-fine coding” and appears to
describe a good deal of neural computation. In general, given K stimulus dimensions,
each with a desired resolution of N values, the punctate encoding requires NK units.
A coarse-fine encoding with the coarse dimensions D requires a total of

M5
T=K. -
D

units. This is because there will be K separate tilings (covers) of the K-dimensional
space, but each will be covered coarsely and this requires (N/D) units in all
dimensions but one, which has N units. This formula still grows exponentially, but is
significantly smaller for the cases of interest. For example, our early vision example
had K = 6 and N = 10. With D = 5, this yields 1920 units per point instead of the
1 1,000,000 for the pure punctate encoding. Since I believe these ideas to be central, a
i number of related issues will be discussed next.
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The critical point in the construction is the overlap of receptive fields, not their
¢ assymmetric shape. Essentially the same arguments can be made for symmetric
, overlapping fields and this is known as “coarse-coding” [Hinton 1981].
Computational ideas of this kind have been known for some time to provide a nice
account of hyper-accuity, the ability of people to resolve details finer than the
spacing of their receptors. In both coarse and coarse-fine coding there is a price to be
paid for saving all these units. If two stimuli that overlap co-occur, the system will be
unable to resolve them. This situation is depicted in Figure 4. Suppose one stimulus
is encoded by the two rectangles labelled X and the other by the two rectangles
labelled Y. The intersections labelled X and Y encode the desired information, but
the "ghosts” labelled G would be equally active. One of these expresses the
conjunction of Y-size and X-orientation and the other the converse. This is an
instance of “cross-talk” in neural encodings. Cross-talk is the fundamental problem
of shared encodings and appears to be a critical limiting factor on distributed models,
as we will see. For the simple case of coarse coding, some analysis of the trade-offs
has been carried out {Sullins 1985]

A final point on coarse coding is that the multiple-dimension, fine-grained
information is left implicit in the representation. The joint activity of several units
encodes the desired information, but how can subsequent computation make use of
it? This is another critical issue in shared encodings and a major reason why no
holographic model has gone more than one level. In the case where the information
is carried by the activity of a small number of units (K ~ 10), there is a simple and
biologically plausible solution. Suppose that the inputs to a unit (neuron) were not
all treated uniformly, but were grouped into “sites” each of which computed
separately a combined input value. If each site computed the logical AND of all its
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¢ Feature 1
' e.g., Orientation

Feature 2
e.g., Size

Figure 3: Coarse-Fine Coding

inputs, this would be an ideal receiver for the joint output of coarse-coding. A cartoon
of how this might go is shown in Figure 5, which shows a fragment of an abstract
multiplication table for integers between 1 and 9. Only one inhibitory link is shown.
Units representing possible answers (e.g., 12) have separate conjunctive receiving
sites and take on the activation of the maximum (or logical OR) of the sites. There
are two reasons why this general idea provides a major saving over punctate
encodings. One reason is that one computational role of units has been brought down
to sites, significantly increasing the feasible numbers (by perhaps 1000). The other is
that not all combinations of outputs need to be explicitly represented. Although it is
well beyond the current story, one can envision how the coarse-fine coding units
could combine to represent the feature space with different resolutions.
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Y - orientation

X-orientation

Figure 4: Ghosts in the Machine

It is interesting to consider if we could eliminate the circular nodes carrying
the punctate number representations and deal directly with the distributed
representation based on number range and odd-even parity. The obvious solution is
to link directly the appropriate combinations to the receiving sites. This works fairly
well, but does encounter some problems. Suppose 1 and 4 were simultaneously
active. Our distributed representation of 2 is <3 and even, both of which are active
in this case and this could lead to activation of the answer 8. This problem can be
fixed, e.g. by having separate sites for the first and second arguments, but it does
point out the delicacy of doing computation with distributed representations.

One final discussion will close off this path of consideration. The coarse-fine
coding examgles used overlapping encodings, but were based on the minimum
possible number of cells to cover some feature space. Suppose instead we allowed for

redundancy in the coverage, saf' three separate tesselations of the space. In terms of
d

Figure 3, a second covering could be similar bars at 45° and 315° to the axes [Ballard
1986b). We could still use separate receiving sites for each desired stimulus, but the
comgutation would be not just a logical AND. In fact, a thresholded sum of activity
might be quite plausible as the sites’ way of computing the likelihood of its
combination being present. This would combine the error tolerance and information
reduction ideas in a simple and plausible way. Edelman has come to essentially the
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Figure 5: Multiplication Table for Integers

same kind of model through a very different route, starting from his expertise in
immunology [Edelman 1981]. Since this is how I believe the brain really works, I
will next attempt to show how the holographic approach narrows down (sic) to the
same solution.

2. Holographic Models

Holographic models have been fervently supported by biologists, psychologists
and theoreticians. There is no comparable fervor for compact models. In fact, several
researchers preach fully distributed models while employing punctate ones, often in
the same paper. To cite one well known example, the elegant travelling salesman
model of Hopfield and Tank [1986] is purely punctate and unmappable to Hopfield’s
holographic memory proposals [1982]. gne major contributing factor in the
popularity of this view was the early work of Karl Lashley who %ound that for a
variety of tasks, the deficit exhibited by lesioned rats was best explained by the total
amount of cortex removed -- the “law of mass action.” Lashley summarized his view
of memory representation in the classic 1950 paper “In Search of the Engram.” The
following quotation continues to motivate much current work (Lashley 1950]:
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It is not possible to demonstrate the isolated localization of a memory trace anywhere
within the nervous system. Limited regions may be essential for learning or retention of a
particular activity, but within such regions the parts are functionally equivalent. The
engram is represented throughout the area. . . . Briefly, the characteristics of the nervous
network are such that when it is subject to any pattern of excitation, it may develop a
pattern of activity, reduplicated throughout an entire functional area, by spread of
excitations, juch as the surface of a liquid develops an interference pattern of spreading
waves when it is disturbed at severa! points. . . . Consideration of the numerical relations of
sensory and other cells in the brain makes it certain, I believe, that all of the cells of the
brain must be in almost constant activity, either firing or actively inhibited. There is no
great excess of cells which can be reserved as the seat of special memories. The complexity
of the fucntions involved in reproductive memory implies that every instance of recall
requires the activity of literally millions of neurons. The same neurons which retain the

memory traces of one experience must also participate in countless other activities.

Recall involves the syngergic action or some sort of resonance among a very large
number of neurons. . . . From the numerical relations involved, I believe that even the

reservation of individual synapses for special associative reaction is impossible.

Since Lashley’s time, the intricate specialized structure of mammalian cortex has
been elucidated and no one currently holds the view that all of cortex is holographic.
(Reading Lashley’s article makes it clear that he would reach very different
conclusions on current experimental evidence.) Since all of the primary sensory and
motor areas have been found to have specialized structure, the holographic
hypothesis is currently restricted to “higher” brain areas whose functional
orﬁ_anization is not yet understood. Another historical source of motivation for
ditffuse models was the wonderful 1949 book, The Organization of Behavior, by
Donald Hebb. Hebb introduced the notion of cell assemblies, but was (appropriately
for the time) vague about how they actually encode knowledge. Hebb definitely
envisioned a dynamic pattern of activity, but there are two interpretations of this.
The most literal would be to assume concepts are purely dynamic and are not tied to
any particular tissue; this idea has been pursued a bit [von der Marlsberg 1985;
Bienenstock 1985] but without much success and the experimental data is not
encouraging. A more general notion of dynamic activity of cell assemblies is
inherent in all current connectionist theories; the compact - diffuse question is about
what fraction of a system is involved. A closely related question is structure; it does
not seem useful to think of a computer as a "chip assembly.” We will return to this
after examining theoretical hologram models.

Holographic models are theoretically attractive because of two properties: fault-
tolerance and generalization. The brain clearly has these groperties and it is easy to
see informally why holographic models do also. If all of the units of a large system

are involved in coding one concept, the failure of some of them can be tolerated.
Furthermore, two concepts which share much of their activity patterns will tend to
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behave similarly. More technically, the theoretical hologram models have all been
based on one form or another of mathematical correlation. An excellent compendium
of holcgra hic-st{lle models can be found in Hinton and Anderson (1981], and I will

often cite this rather than the original papers.

The purest holographic model is, unsurprisingly, the optical hologram itself. A
nice presentation can be found in [Willshaw 1981] where it is also shown that that
the purely linear hologram is undesirable on both computational and biological
gounds. The models typically studied are large rectangular matrices representing all
the possible connections between m input units and n output units, wgich need not
be distinct (cf. Figure 6). The most common case, and one ot the easiest to consider, is
where each unit compares the sum of its weighted inputs to its threshold and emits 1
if the sum of inputs is greater and 0 otherwise. A concept is represented as a binary
vector over all the input lines. Each element of the vector may be uninterpretted or
can be thought of as the presence or absence of a microfeature characterizing the
concept. (A punctate view of this would be to imagine each output unit as being
responsible tor computing one bit of the output, using all of the inputs according to
its weights on them.) If the input and output are identified, the matrix becomes a
pattern completion machine. The basic idea is simple and derives from the
mathematical notion of correlation. The correlation of two binary vectors u and v is
simply:

n
u v
J J
Jj=1
and this is obviously maximized when u = v. In a well distributed set of vectors, an
input distorted by modest noise or omission will correlate best with the appropriate
complete vector. This is the basic source of error resistance and generalization in
holographic-style models. What makes them interesting is that a connection matrix
with the appropriate weights can be learned with a simple, local procedure. Most of
;he learning discussion is in Section 3, but this case is so central that it will be done
ere.

For the auto-associative, pattern completion case we want weights wj; such that

1
X/ = z w, X' .
assuming the threshold is included as another weight. The natural local weight-
change rule is to increase the weight between two units when they both are active
(output = 1). This is essentially Hebb’s rule and can be interpretted as increasing
the weight of units whose firing is correlated. Symbolically:

Awjj = (X; X)) -0 where § is a constant.

If all the weights are initially set to zero and the auto-association matrix is trained
on some P sequences then

P
_ =, k) k)
wU—S Z X(l X(J
k=1

The resulting matrix can be shown to be optimal in some cases (orthonormal
vectors) and is a good estimator in many others [Kohonen 1984]. Thus a simple and
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biologically plausible locai learning rule yields a matrix which reliably finds the best >

match to an input pattern under some distortion conditions (but not others). The '
binary, linear auto-associator is the simplest of wide variety of essentialg similar o
models. Many variations have been tried on all aspects of the model [Hinton &

g Anderson 1981; Kohonen 1984; Barto & Anandan 1984]. The more refined models o

1 use a variant of Hebb’s rule which allows feedback from some external result to -

{ affect the weight change n-o-ecc [Kohonen 1984; Barto et al. 1981; Anderson & R

they demonstrate that essentially anything that can be represented as a linear
threshold matrix can be learned by correlation -- the problem is that the
. representation itself is much too weak. There is a well-known relation between
Y correlation matrices and classical pattern recognition and the same basic inability to
deal with structure, occlusion and invariance applies in both cases.

i Murphy 1986]. The shortcomings of the methodology do not lie in the learning rules, "

holographic encoding and make it extremely unlikely that one will be discovered.
Before examining these in detail, we must eliminate a trivial path of escape
sometimes sought by defenders of the holographic models. It is a truism of
computation theory that any universal mechanism can simulate any other if
computational costs are ignored. Since a large enough (associative or other) memory
can be made universal, one can find a way to encode any computation as a
holographic memory plus a small interpreter. But ignoring computational costs is
precisely what we can not do in the current enterprise -- computational costs are one
of the principle constraints on the viability of neural representation schemes. Much
of the holographic work has been directed to purely passive memory networks, and
we will examine these, but it is important not to forget that no passive memory will

i There are a number of comﬁutational considerations which rule out any existing ~

satisfy the basic time and competence constraints for conceptual knowledge. A .
sequential machine with a fast associative memory is still orders of magnitude off -
the required performance. -
-:\

When computational issues are taken seriously, the holographic model is fatally g
deficient, even as a passive associative memory. The basic problems with any v
holographic representational scheme are cross-talk, communication, invariance and P

the inability to capture structure. Essentially the same problems have prevented
the development of holographic computer memories or recognition systems despite
consideragle effort. Consider the problem of representing a concept like
“grandmother” as a pattern of activity in all the units in some memory network. We
can assume that di(gerent parts of the network represent various input modalities o
(e.g., vision) and they all lead to the same overall pattern. But notice what would -
happen if two (or more) concepts were presented at the same time, e.g., grandmother .
at the White House. The encodings for the two concepts would normally overlap and
the system would get garbled. This is a massive instance of the cross-talk problem of
Figure 4. Of course, we can reduce the probability of cross-talk by having fewer
units active for each pattern. Suppose that there are punctate output detectors for
each pattern in the holographic memory (nothing becomes easier if there are not).
Willsan [1981)] addressed the question of how one could arrange the coding and
detector thresholds so that only the desired detector would respond to each pattern.
If one assumes that the cross-talk is randomly distributed (the best case), the system

will be reliable only if the number of units active for each pattern is proportional to R

the logarithm of the number of units in the diffuse memory. This means that a -1
network of 1,000,000 units should use an encoding with about 20 active units per
concept -- this is suspiciously close to the number that would arise from a redundant,
coarse-coded compact approach.

.................................................

.........
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Figure 6: An Associative Net. The nodes that have been activated in the
storage process are colored black (from [Willshaw 1981]).

If a fully distributed encoding is used for concepts, there is an unsolved problem of
how conceptual information could move from one subsystem, e.g., vision, to another,
such as speech. The obvious encoding would be with a *bus” or group of links as wide
as the holographic representation, which is unrealistic. In fact, there are many fewer
long distance than local connectionions in the cortex. If only some of the units were
linked, they would constitute a more compact representation of the concept, which
violates the holographic assumption. Even so, unless these encodings were largely
disjoint, communication over the bus would have to be sequential to avoid cross-talk.
If cross-talk were present, people would make mistakes like seeing a horse and a
chair and mistakenly saying something irrelevant like “apple sauce.” If
microfeatures were the basis of the representation, then something like “rocking
horse” should result. The idea that visual information is conveyed to other parts of
the brain one concept at a time clearly violates timing constraints by orders of
magnitude. The notion that “attention” can restrict the system to one concept at a
time is not tenable. Consider how a cowboy movie is mapped from vision to concepts.
What is the concept for each frame: the posse, the horse and rider and saddle and hat,
etc.? How do they fit together to keep a gestalt of the scene and scenario? What is
happening with all the other visual information? How does attention know what to
transmit unless the structure of the scene and story line are already known at the
vision end? And, of course, we would be back at a sequential machine model. There
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v appears to be no alternative to assuming that, at least for communication,
b

representation of concepts must be largely disjoint and thus compact.

Ny

The same communication problem would arise within the concept memory itself
if one tried to build a knowledge structure like Figure 1 with a diffuse
representation. If a concept like “salty” were represented only by a large pattern,
the links for this entire pattern would have to go to all the places that related to
saltiness -- and be treated correctly at each of these. If a concept encoded by N units
needed to be linked to M other concepts, a total of M*N links would be needed. One
punctate intermediate unit can reduce the requirement to N+M connections. The
more distributed the representation, the more serious this problem becomes. Again,
any serious reduction in this wiring requirement would constitute a compact
representation. And, as in the inter-modal case, unless these representations were
largely disjoint, concept processing woud have to be sequential to avoid cross-talk.
This eliminates the spreading activation and massively parallel processing which
was the motivation for the whole idea.

Even so, no one has suggested how to represent any but the simplest concepts in
the holographic style. For example, the problem of all the different historical views
of one’s grandmother is as difficult for the hologram as for the punctate model. In
fact, it is far from obvious how to make the same distributed pattern active for
alternative views of a chair, even without occlusion. One could, I suppose, assume
that there are essential invariant features of one’s grandmother that are derived
(magically) from all the different pictures, stories etc. involving her. Even so, how
would one express the structure of concepts, like the fact that grandma has two legs,
the left of which is slightly shorter. All concepts in any holographic structure that I
know of are totally without internal structure. There is an idea of associating the
components of a representation with microfeatures (and this will be discussed later)
but these are still unstructured. Nor do any of the holographic proposals provide a
way of answering even simple questions like the color of grandmother’s hair (let
alone at different ages). There are a number of other problems with holographic
models, but this should suffice to show that this end of the compact-diffuse spectrum
is no more viable than the punctate end.

The biological evidence against anything vaguely like a holographic model is
equally compelling. This is only fair, since the holographic hypothesis denies any
r&evance to neuroanatomy and physiology. Since intricate specificity and detailed
visuotopic, tonotopic, etc. maps have been discovered everngere in the brain that
has been examined, the only hope for the hologram is for some higher association
areas. Even there, the anatomical structure has been found to be much like the
sensory areas [Goldman - Rakic & Schwartz 1982] and nothing like the connection of
each input to each output required by matrix models. SimpFe counting arguments
show that at most 10,000 neurons could be in a matrix-like network and the local
connectivity precludes this possibility as well. Neurosurgery relies upon precision
stimulation and recording to localize lesion sites. There may be a point to studying
fully distributed encodings, but direct mapping to the brain is not among them.
Even Kohonen (1981, p. 132] who is a major figure in holographic-style modellirg
says:

There are good experimentally verified reasons to assume that for a particular

sensory experience or other occurrence, the pattern of activity over the complete

memory field consists of only a few activated local areas . ..
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Another argument for highly distributed representations derives from the large
number of input fibres (~ 104) to cortical neurons. If all of these fibers participate
actively then, ipso facto, the representation is diffuse. There are three reasons why
this argument fails. While there has been no definitive study on the number of pre-
synaptic events required for neural firing, estimates gleaned from papers and
conversations run from one event to a few dozen. No one has suggested that several
thousand synapses must fire at once for an action potential. Also, we can see from
Figures 5, 7 tgat many of the connections could represent alternative ways of
activating the same concept (e.g. from different points in space). Another way of
looking at this is that the thousand-fold connectivity is capturing an "OR” of
activation conditions rather than an "AND.” Finally, as we show in Section 3,
learning in a connectionist system requires the potential for many more connections
than are ever made functional. The most striking physiological demonstration of this
principle is in the neural reorganization studies of Merzenich et al. [1984).

All of this may seem to be flogging a dead horse model, but purely holographic
theories continue to be seriously proposed. There has been a very recent flurry of
interest in s in-%lasses as holographic memory models in the theoretical physics
community [Hopfield 1982; Toulouse 1985]. Any physical system will, in isolation,
reach some stable state and each of these states could be looked upon as encoding a
different concept; this is obviously a massively parallel system. The spin-glass story
is beyond the scope of this article, but the key idea is that spin-glasses are idealized
materials which can take on many stable states in ways that are mathematically
interesting. The hope is that analysis of these will provide insights into the behavior
of the brain and/or the design of parallel hardware. This might well happen, but the
current spin-glass models share the inherent deficiencies of all holographic
representations and have no direct applicability to the neura! representation of
concepts.

There are two basic ways of adding the required structure to hologram-like
models. One can either add structure to the collection of units (cf. Figure 7) or one
can try to construct structures out of components, each of which is an unstr. :tured
cell asessembly. Both approaches lead to systems quite like the redundant, coarse-
coded approach. Consider the latter idea: Nothing as concrete as Figure 1 has been
attempted, but one envisions about 100 (Palm) units in an assembly jointly encoding
some unspecified number of concepts. But we know that the cross-talk and coarse-
coding constraints limit the range of possible number of concept nodes to be a few
hundred. Of course, the units in the assembly can not represent the detailed
structure of the concept because they are shared by unrelated concepts.The structure
is represented by connections (also never specified) between cell assemblies which
presumably play a role equivalent to the evidence links in Figure 1. This move
preserves the sovereignty of the cell assembly, but only in a titular fashion -- the
work is all done by the connections among assemblies.

The alternative move, adding structure to the assembled masses, comes in many
variants and is treated in the next section.

0
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i 3. The Middle Ground and Beyond

' It is difficult to interpret such findings, but I think that they point to the conclusions
. that the associative connections or memory traces of the conditioned reflex do not
N extend across the cortex as well-defined arcs or paths. Such arcs are either diffused
through all parts of the cortex, pass by relay through lower centres, or do not exist.

[Lashley 1950, p. 461]

} It is clear that various forms and aspects of learning and memory involve particular
systems, networks and circuits in the brain and it now appears possible to identify

these circuits, localize the sites of memory storage and analyze the cellular and

molecular mechanisms of memory. [Thompson 1986].

We have seen that neither the purely punctate nor the fully holoiraphic mode]
are at all plausible as theories of how the brain represents conceptual knowledge. A
variety of arguments have all converged on the idea that concepts are represented by
overlapping activity among a modest number (3-100) of units and that the structure
within and across these groups can not be uniform or arbitrary. This is all fairly
close to the compact end of the original spectrum, but the story is more complex than
that. There are important lessons to be learned from the work on highly distributed
models and many difficult problems which have eluded all theories. To simplify the
discussion, we will adopt the standard convention and treat all compact
representations as punctate. The first section showed both that the purely punctate
theory can not be biologically valid and also that the redundant coarse-coded variant
is plausible and computationally very close to punctate version. It is simply much
easier to understand punctate systems and all current models, however distributed,
use punctate encodings of some elements for clarity. It is understood that direct
neurobiological applications will have to take the detailed encoding more seriously.

From my perspective, there is only one conceptual difference between the current
compact and diffuse models of neural knowledge representation and this difference
can be seen as one of research strategy. Consider the punctate model of the
appearance of horses shown in Figure 7. This is taken from a paper of mine that
attempts to show how vision yields such hierarchical conceptual descriptions
[Feldman 1985]. At the lowest level are feature pairs, which we assume are derived
by early vision networks. (The fact that there are feature pairs rather than
individual features or n-tuples of them arises from technical considerations not
relevant here (cf. [Feldman 1985, McClelland & Rumelhart 1986]). The remaining
structure is organized as a hierarchy (cf. Table 1 and dogma 2) where activation

ropagates towards the top pontifical cell which is active when a horse is recognized.
Even 1n this unrealistically punctate version, the recognition of a horse is a “pattern
of activation” in many of these units. Since the connections are two-way, mentioning
the name of a horse will cause (some) activation in all the nodes comprising visual
and other descriptions of horses. Looking at this another way, we see that it makes
no sense to talk about the activation of a single concept in such structure --
activation automatically spreads to encompass a sub-network. Notice also that this
structure will recognize a horse even when some features are missing or garbled if
the other features plus context are sufficiently strong. This captures the error
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tolerance and some of the generalization ability that were most attractive about
correlation matrices. Computer experiments of moderate complexity along these '
lines have been successfully carried out [Sabbah 1985; Shastri 1985]. The current
version of holographic correlation theory uses microfeatures (and feature pairs) .

essentially identical to the bottom row of Figure 7. The difference is that a
correlation model would not have the hierarchical structure but would represent
horse exclusively by the pattern of activity of the feature-pair units. But consider
how one might expand the correlation model to represent horse heads, eyes, etc., as
well. No one has done this, but it is hard to imagine any solution that did not
separate out groups of features and combine them to form higher groups. Now, we .
have seen that combining diffuse encodings is a problem whose only known solution ‘
is to focus the representation. So why are all these smart people so excited about

highly distributed representations?

i There are two important problems that have been effectively studied using -
diffuse encodings -- generalization and learning. Some insight into the situation can
be gained by examining the reading model of Figure 8, taken from McClelland and
Rumelhart {1981]. This is one of the earliest and most successful applications of
connectionist modelling to psychology. The model is basically punctate, 4
incorporating units for specific shapes, letters and words in a highly structured -
excitation - inhibition network. The model was used to successfully model a wide
range of experimental data, including the word superiority effect previously
considered paradoxical. Subjects can more reliably recognize a letter, e.g., “A” in the
context of a word, e.g., "FAST”, than in isolation, and the model shows clearly how
feedback from the word level can aid decisions at the letter level. But the model did
more than this, and therein lies our tale. It turns out that the model (and the "
subjects) can also recognize letters better in the context of pronounceable non-words &
than in isolation. There is no explicit representation of these non-words, but the
units for the similarly spelled words combine to provide enough boost to the target
letter. Anderson and Hinton [1981, p. 28] describe this in the following way:

Thus, the pronounceable non-words are represented by distributed patterns of activity -

at the word level.

There is much to be learned from an examination of this statement. It is, of
course, literally not true. There are many aspects of the non-words (their length, o
pronounciation, etc.) which are not represented at all and one would not expect :Zj
someone to recognize repeated occurrences of a non-word from this model. What is
true is that for this task, the network behaves as if it had a representation of the
pronounceable non-words. In fact, it is not just pronounceable nonwords that show
the enhancement effect. The concepts with the distributed representation would
have to be something like “collections of common pieces of words.” It seems to me to

be much better to understand this “emergence” as a general property of evidential -
networks, than to postulate extra concepts having a distributed representation. In

eneral, the research that has been described as studying diffuse representations can -
Ee understood as really concerned with system properties of neural networks. -
Structured networks of punctate elements (like an eYectronic circuit) have “emergent _,

properties” as anyone who has tried to understand or repair one can testify. ;_24

What actually happens in the demonstrations of distributed representations is
the following. A problem is picked in which certain properties (e.g., surface syntactic
categories) are the ones required for a particular class of general answers (e.g., case
roles). The distributed representation is chosen to be the required properties and
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Figure8: Reading Model after [McClelland & Rumelhart 1981}. A few of the
neighbors of the node for the letter “T” in the first position in a
word, and their interconnections.

4 thus the system shows (¢ ivurns) the appropriate generalization. Since the
P combination rule is always linar threshold, care must be taken with the choice of
] primitives and some precod:ng may be necessary. Other generalizations over the

same domain (e.g., past tense formation) are based on different properties and are
thus studied in separatc experiments using entirely different distributed
representations. A great deal of elegant and important work has been done in this
style, but the basic relation between properties and generalizations seems to have
been misunderstood.

The generalizations ba~d on property vectors do capture relations that would not
arise naturally from hierarchical representations such as Figure 7. In the horse

example one might wan: t. -1 ture the generalization that animals with hair are
mammals. We ~onin e foomoo Lo mammal, but this is of no direct use in classifying
novel hairy animic'~ T-. ;. =t s that if all uses of a concept were forced to go
through serms {0 .« v ..t m would e unable to yield many crucial

generalizs:. ~- Ir.-- ... ... .t relationships among properties that are best
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captured directly. The relations between syntactic and case roles, between
pronunciation and morphology and between hairiness and mammalhood are
systematic and most compactly encoded by circumventing particular instances of
words or mammals. There is an interesting duality here. It one knew enough hairy
mammals, it is likely that activation of "hairy” would lead (indirectly) to the
activation of “mammal.” One could view this as all the individual mammals
constituting a distributed representation of the hairy-mammal relation, but this is a
bad way to view network properties which are in general quite complex evidential
relations [Shastri 1985).

Learning

All of the preceding discussion has explored the ways in which conceptual
knowledge might be represented in neural networks, ignoring the critical problem of
learning. The question of the relative role of learning in intelligent behavior is as
old and as hasic as they come. It is now clear that humans come with an enormous
amount of pre-wired structure, develop a great deal more in environmentally driven
ways, and (except for administrators) continue to learn throughout life. The problem
this presents for connectionist learning studies is a severe methodological one.

The basic difficulty is that we know human learning is based on an elaborate
existing structure, but we know very little about the exact nature of this structure,
particularly in the area of conceptual knowledge. Any study of learning either
assumes some existing structure (at the risk of trivializing the learning aspects) or
assumes no existing structure and is restricted to quite simple problems. The
correlation matrix models of memory have presented an attractive research veticle.
The total initial connectivity and linear threshold rule are a minimal a prior:
structure, and the correlation method of updating is an easily analyzed learning
rule. The results of such studies often take on a structure-from-chaos aspect which
many people find attractive.

Obviously enough, these correlation matrices employ a diffuse encoding and the
appeal of the two ideas is strongly connected. But the ideas of correlation, feedback
and weight change are not restricted to diffuse representations, linear threshold
rules or complete connectivity matrices. In fact, complete connectivity is not
biologically plausible and the other assumptions also have problems. A great deal of
recent work [Belew 1986; Rumelhart & McClelland 1986; Parker 1985] involves
using correlation type ideas on networks with much richer structure, while
preserving domain independence.

It has been known for some time that anK effective learning rule would have to
include an input from the ultimate result of the computation; Hebb’s correlation rule
has no way to punish a connection that leads to a disaster. In a network that directly
links inputs and outputs, like a matrix model or a 1-layer perceptron, it is easy to

unish the offending links. For a system with more structure and indirect links, it
Eas not been obvious how to assess who deserves the credit and who deserves the
blame. Recent developments in learning theory, while not totally solving this
problem, have enabled the study of learning in much richer structures [Rumelhart
1986].

The basic idea is to “back-propagate” error signals from the output (which is
directly corrected) to successively lower levels of input. A simple version would be to
have the weight change at layer n, Aw;;{n), given by
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where §;(n+1) is the error attributed to unit i in layer n+1, Xjn) is the output of
units in layer n (now continuous valued) and ¢ is a learning constant. One can view
this as changing wj; in proportion to how the output of unit j correlates with the error
attributed to unit :. The back-propagation algorithm has been used in a variety of
studies and has been quite successful [McClelland & Rumelhart 1986]. There are
still problems with its range of application, convergence rate and biological
plausibility, but it does provide the best way known to study learning in structured
networks. For all the reasons discussed above, this is a critical problem for our
enterprise.

Learning in compact connectionist systems involves some additional
considerations. A major problem in this formulation is “recruiting” the compact
representation for new concepts [Wickelgren 1979; Feldman 1982; Shastri 1985;
Fanty 1986]. It is all very well to show the advantages of representational schemes
like Figures 1, 7 and 8, but how could they come about? This question is far from
settled, but there are some encouraging pref;minary results. The central question is
¢ how a system that grows essentially no new connections could find (recruit) compact
i groups of units to capture new concepts and relations. One relevant result concerns

the probability of finding compact groups that link nodes in a random graph
[Feldman 1981]. It turns out that, for Eiologically reasonable parameters, the
probability of a compact cluster (~ 20 units) is quite high. (Incidentally the probability
of finding a single unit is essentially zero, providing another argument against
punctate theories.) The brain is not random, except perhaps very locally, but that
actually is good news for recruiting concept representations. Current work on
learning in more structured networks [Fanty 1986; Hinton forthcoming] is
examining this more closely.

Structure and Relations

Questions of structure have played a major role throughout the paper. The
structure of the nervous system, of domains of knowledge, and of concepts
themselves have been central concerns. Despite the initial disclaimer, some
consideration of relations has also appeared. Structure, in my opinion, is the
dominant issue in neural knowledge representation. Most of the shortcomings of
holographic style models can be traced to their unstructured nature. This has been
recognized for some time and people have made attempts to correct the problem. One
idea is to identify the components of the giant vector with microfeatures of concepts.
The cleverest choice is to make the microfeatures follow a conceptual hierarchy so
that more specific concepts (e.g. horse) share features with more general ones
(mammal, animal) [(Hinton; Anderson]. This implicitly captures one kind of
structural relation among conce?ts. but leaves all the others untouched. And if

roperties are all microfeatures of the representation how could one incorporate new
information like the fact that early horses were a few inches tall or that a particular
horse had broken a leg. This move, like the generalization demos, can be seen as
another way of exploiting relationships that exist among properties (cf. [Shastri
1985]) and has nothing to do with holography.
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When is comes to more general relations, there are two ways to try. One, which
was mentioned earlier, assumes that relations among concepts are represented by
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links (axons) connecting the representations of the concepts involved. This
inherentli requires compact representations for the concepts, although many
authors who talk about the idea in general terms would be repelled by the thought. I
believe that resource considerations make this the only viable option, but no one has
figured out how to make it work except in simple cases. One thing we do know is that
hierarchical compact representations like Figure 7 can capture internal structural
relations defining concepts and that this goes far . wards solving the questions of
how to treat all the difterent views of a horse or your grandmother. Briefly, the
conceptual knowledge about, e.g. horses, is a largely shared structure deriving much
of its content from its relationship to other concepts. This is a kind of distributed
representation, but not at all what is usually meant by the term. There is also strong
evidence that we do not retain all the detailed memories of our grandmothers, but
recreate them with a significant tendency towards regularization [Neisser 1982].

If one is committed to a diffuse, unstructured representation for concepts there is
no direct way to realize relationships among them. Ignoring computational costs, one
can design a holographic memory to store relational information in symbolic form
e.g. as triples like (Brother Billy Jimmy) [Hinton 1981; Kohonen 1980]. But this is a
move of Sesperation in neural modellin‘g, since all of the problems of sequential
symbolic computing re-enter the scene. A sequential machine with a fast relation
store will show none of the performance or context sensitivity that motivates
connectionist models.

In summary, connectionist studies of pure learning minimize the pre-existing
structure and tend to study diffuse models. This has turned out to be very valuable
and will continue to be. Like the studies of overall convergence, e.g., [Wilson &
Cowan 1972; Hopfield 1982; Cohen & Grossberg 1983], these are best done assuming
no particular structure of the network. But the structure is there and only compact
representations can capture it.

Let us return to the analogous contrast between atomic physics and
thermodynamics. Atomic physics (really chemistry) is concerned with precise
structures and their interactions. Because of the complexity involved, cell-biology
would be an even better analog for the detailed structural concerns of compact
models. Modern thermodynamics (statistical mechanics) derives its power from
abstracting, from enormous systems of units, a very small number of state variables
that characterize certain questions of interest. While the abstraction is only strictly
true for systems without structure, the results of the theory have much wider
aprlication. Similarly, bulk models of neural activity are likely to continue to yield
valuable insights into neural functions, but it is fatal to ignore the detailed structure
present. The challenge is to get global results into a form where they can be used to
:ﬁvgnu}ge in working out how conceptual knowledge is represented and exploited by

e brain.

5

Structured networks of evidence-combining simple units have a number of
attractive computational properties. Error resistance, context dependence, and the
ability to assimilate conflictin% information are natural properties of such systems.
A reasonable degree of generalization follows from these properties. Simple weight-
change rules can enable these systems to improve their performance significantly.
The collective behavior of such systems can produce powerful computations not
easily anticipated, as is true of any complex circuit. While certain concepts are
represented explicitly, the system is not restricted to dealing only with those. A
properly structured network can behave, in certain situations, as it it had concepts "
and relations implicitly represented. An explicit, compact handle on concepts is N

N
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required when they have disjunction or internal structure or when they participate
in relations or are communicated among sub-systems. In addition, the nature of any
emergent system properties depends heavily on which concepts are explicitly
represented and the detailed structure of the representation.

) This suggests the following research priorities for the question of neural o
. representation of knowledge. The detailed anatomy and physiology of nervous
systems remains a top priority. The computational properties of connectionist
models must be better understood both in specific circuits and as mass systems.
Plasticity and learning, of course, remain in their central place, but the central
problem is change of existing structure. The most difficult problems, however,
appear to lie at the higher conceptual levels. All of the concepts and relations treated
in this paper are extremely simplistic. The technical level of research on concept and
knowledge representation among linguists, philosophers and symbolic Al types is :
enormously more sophisticated (e.g. [Wilensky 1986]). If it is true that our brains do -
these things directly with neural nets, connectionist formulations should yield better
characterizations of higher-level thought than symbolic logic, perhaps through the
mediation of new scientific languages. Expectations that this will happen without
detailed consideration of the structure of the tasks and of the underlying hardware
should be based on a time-frame of evolutionary scale.
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APPENDIX
Interim Neuron Doctrine

“The following five brivi siaic.uculs are intended to define which aspect of the brain’s
activity is important for understanding its main function, to suggest the way that single
neurons represent what is going on around us, and to say how this is related to our
subjective experience. The statements are dogmatic and incautious because it is important

that they should be clear and testable.
First dogma

A description of that activity of a single nerve cell which is transmitted to and influences
other nerve cells, and of a nerve cell’s response to such influences from other cells, is a

complete enough description for functional understanding of the nervous system. There is

nothing else ‘looking at’ or controlling this activity, which must therefore provide a basis for
understanding how the brain controls behaviour. Since significant behaviors involve

4 many individual nerve cells, functional understanding of the nervous system will

ﬁ require scientific languages for characterizing the behavior of networks of
{ neurons.

.

b Second dogma

Efficient coding of information is a central problem of the sensory system. At
progressively higher levels in the sensory pathways information about the physical

stimulus is more abstract and is represented by progressively fewer active neurons.
Third dogma

Trigger features of neurons are matched to the redundant features of sensory stimulation in
order to achieve greater completeness and economy of representation. This selective
responsiveness is determined by the sensory stimulation to which neurons have been

exposed, as well as by genetic factors operating during development.
Fourth dogma

Just as physical stimuli directly cause receptors to initiate neural activity, so the active
networks of intermediate and high-level neurons directly and simply cause the elements

of our perception.
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Fifth dogma

Frequency coding is the primary basis of neural communication. Sensory neurons
respond with high freqenr: diccharge to external stimuli which fit into a narrow
range of possibilities; the higher the discharge the more narrow the range of

possible causes.
Zeroth dogma

Intelligent behavior and its neural realization are incredibly complex. A functional
understanding of this will require organizational principles from the behavioral

and computational sciences as well as biology.
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