
7D-AlES 302 DATA COMMUNICTION IN PRLLEL ACITECTURES() VLE In1
I UNIV MEN HARVEN CT DEPT OF COMPUTER SCIENCE
I V SAAD ET AL. MAR 86 VALEU/DCS/RR-461 NSSS±4-62-K-6164

UNCLSSIFIED F/O 9/2 ML

- . A -.- I

% %

1.0

13.

2.2

40 2..0

-,. I"".

CV) ...LECTE
JUL 01 8~?

CY4

Data Communication in Parallel Architectures

Youcef Saad and Martin H. Schnitz

Resendrc Report YALEI.T/DCS/RR-461
March 1986

V-,

LA- AP~fov,.d for Public relecas;
DatzbutjOuj UzIirzaited

VALE, t-NIVRSITY

i) P T,\LNI AI'(I\I~iE SCIENCE

86 5 9 041

Abstract. In this paper we consider different methods for exchanging data among processors in
parallel computers. The most common data exchange operations in parallel numerical methods
are examinel and different methods for performing them efficiently on each of several ensemble
architectures are proposed and analyzed. Our objective is to compare the performance of each
particular architecture on each of the data exchange operation.

DTICAS E C T
L

.... ~~~~UI U.P:!m . -

Data Communication in Parallel Architectures

Youcef Saad and Martin H. 3chultz

Research Report YALEU/DCS/R R-46 1
March 1986

This work wa.- supported in part by b~y ONR grant N00014-82-l{-0184 and in part by a joint study
with IBM/Kingston

£~ AV 2

.....

1. Introduction

Interprocessor communication is often one of the main obstacles to increasing performance
of parallel algorithms for multiprocessors. In addition to the actual arithmetic computations, the
nodes of a multiprocessor need to exchange data. Many algorithms are communication intensive
in that the number of I/O operations in any given node during the execution of the algorithm
is not negligible as compared with the number of arithmetic operations. This means that if the
I/O channels are slow relative to the CPU's then the delays incurred by data movements may well
dominate the execution time and possibly ruin any hypothetical speed-up that would have been
expected by considering exclusively the time to perform the arithmetic. This has been illustrated
in several papers, see for example (6, 10, 51.

In this paper, we will examine in detail the problem of exchanging data in multiprocessors and
will present several efficient algorithms for performing data exchange tasks. We consider architec-
tures with shared memory, a switch inteconnect or a bus interconnect. We also consider loosely
coupled nearest neighbor architectures, such as rings, two-domensional grids, and hypercubes. We
study six important exchange operations that arise in various numerical algorithms: data movement
between two nodes, broadcasting data from one node to every other node, broadcasting data from
every node to every other node, scattering or gathering of data to/from all nodes, and transposition
of a matrix.

When programming tasks in parallel machines one may choose to rely entirely on libraries
of general purpose software. However, in this case some difficulties, such as memory conflicts in
shared memory machines, are never seen by the user. This may result in inefficient programs. For
communication intensive problems, it is crucial to carefully organize the data exchange in order to
optimize processor utilization. This implies that for parallel multiprocessors, there will be a need
for highly optimized subroutine libraries, to carry out the common interprocessor communication
tasks, as well as the more traditional numerical subroutine libraries.

Our goal is to propose and analyze efficient algorithms for communication and to compare the
performance of various architectures on the most common data permutation tasks, which would be
represented in a communication subroutine library.

In Section 2 we present the six models of architecture we consider and discuss the assumptions
and limitations of our models. In Section 3 we consider the data exchange operations one by
one, propose algorithms to perform them, and analyze their running times on each of the six
architectures.

* 2. Models of Parallel Architectures

In this section we introduce the models of architecture we consider in this paper. We examine
six different types of architectures that include models for both shared resource machines and
nearest neighbor machines.

(A) The Broadcast Bus Model.
In this model a number of k processors are linked by a gobal bus which enables broadcasting.
Figure 1 is an illustration of such a machine. The broadcast bus is capable of sending data packets
from one processor to all other processors in the same amount of time as it would send them to
just one processor. Each processor has its own local memory which is sufficiently large to hold the
data and code of typical application programs run on the machine. We will assume that the bus r]
is time-shared and that data exchanges are performed exclusively via the bus, although there may :]
exist other means of communication in similar models. We assume that the global bus has sufficient
bandwidth to accomodate simultaneous time-shared accesses by k processors where k' < k. In
other words the bandwidth bB of each processor is related to that B of the global bus by k* = B/bp. X_ _

To model the times it takes to transfer data, we assume that a packet of rn words can be moved

1 i:,,thy Codes 7

A . i .,':'d or
, ICI

' ." :¢ , " - + ;' " ; : ' , , ' "': : ': : ':"' ' : : : :-: --" " "+ " ' ", " " ..." " " " " ' " " '

P P P p P P P P

MMM M M M M M

Figure 1: The Broadcast Bus Model.

S H A R E D M E M O R Y

P P P P P PP

Figure 2: The Shared Memory Model.

between any two nodes in time rB + rn/bE, where rB is the communication start-up and bB is the
bandwidth of the channel from each node to the bus, expressed in words per second.

(B) The Shared Memory Model.
In the shared memory model the k processors are linked to a global shared memory which they
can access with equal speed, see Figure 2. Each processor is provided with some local memory but
this is used only as temporary storage and is not assumed to be large enough to hold the data of
the problem to be solved, which is stored in the global memory. The comunication bandwidth of
each processor is bM, i.e., it takes the time rM + m/bM to move a packet of m words between any,
processor and the memory. To allow for efficient access of the memory by several processors, the
memory is divided in several memory banks. As long as there is no contention to the same memory
bank. several processors can read/write simultaneously. However, it is usually the case that the
bandwidth of the global memory does not exceed a multiple k* of b, where k* < k. This means
that at most k* different processors can access the memory with equal speed bM in the best possible
case where there is no memory conflict. One of the goals for a software developer on this machine
is to arrange the data initially so as to minimize memory conflicts. This was examined in detail
by Shapiro [15] and more recently by Frailong, Jalby, and Lenfant [4]. Many of the commercially
available modern multiprocessors are shared memory machines: Cray X-MP, Cray-2, ETA-10. and
Alliant FX/8.

We will make the assumption that the data is initially arranged so that there is no memory
bank conflict. Since this assumption is not likely to be verified in all practical applications, the
timings that we will give are lower bounds that correspond to ideal situations. Note that it would
be impossible to give any nonprobabilistic timing estimates without such an assumption.

2

dr J.

-. *~

(C) The Ring Architecture.
A multiprocessor ring consists of k processors connected around a ring as is shown in Figure 3. Each .
processor can simultaneously write to both neighbors or simultaneously read from one neighbor and
write to the other. The time to read/write a packet of m words from/to nearest neighbors is of the
form 7R + m/bR. Several algorithms for solving dense linear systems on such machines have been
considered for such a machine in [8]. Algorithms for rings have also been proposed by Sameh 1141.

(D) Two- and Three-Dimensional Mesh Connected arrays.
Two-dimensional and three-dimensional arrays are popular among partial differential equations
specialists because they offer a simple way of mapping regular finite difference grids into the multi-
processor grid. A square two-dimensional grid consists of an array of k- x Vfk processors connected
as shown in Figure 4. In this paper we will only consider two-dimensional arrays although many of
the algorithms to be described extend easily to three-dimensional grids. Moreover, for convenience
we assume that the processors on each side of the grid are connected to those on the opposite side.
We assume these wrap around connections in order to yield more homogeneous complexity results.
These connections are not essential for the algorithms themselves. Our assumptions are identical
with those of the ring model but one processor is now able to simultaneously communicate with
its four neighbors. The time required to send m words from one processor to one of its neighbors
is given by

TG+, (2.1)c+ bTG"

where rG is the grid latency time, and bc is the bandwidth of each link.

",

Figure 3: A Processor Ring Consisting of Eight Processors.

(E) Hypercubes.

We refer to any loosely coupled parallel processor based on the binary n-cube network as a hyper-
cube. An n-dimensional hypercube consists of k = 2" identical processors, numbered from 0 to
2" - I and connected in such a way that there is a link between two processors if and only if the
binary representations of their numbers differ by one and only one bit. Thus any node has exactly
n neighbors. For example. the 8 nodes of a 3-dimensional cube (n = 3) can be represented as the

3

Figure 4: A 4 x 4 Multiprocmsor Grid.

Figure 5: Three- Dime"-ional View of a Hypercube of Dimen-
sion 4.

vertices of a three dimensional cube. Figure 5 illustrates a four dimensional cube. We assume that,
it takes the time

tH + rn/b1 , (2.2)

* to transfer m words from one processor to any' number of its n neighbors. Moreover, we assume
as before that communication in all of the ?z directions can take place simultaneously: all the

* channels of a node (an either read or write, but not both, simultaneously from or to a neighbor.
* Tlii- ussunip;tion is important because it implies that the total communication speed from a node

iproportional to its dlegree. Withbout it the livperciihe would be communication inefficient in thate
- ~it "mild possess~ ha rdware t hat is nlot u~tilizedl to its full capacity.

4

I2

or

I-

f ft

Figure 6: A Switch Connected Machine.

Some properties of the hypercube topology have been developed in [11] and communication
problems in the hypercube have been examined in detail in [13]. The same algorithms will be
presented in this paper in condensed form and the reader is referred to the above report for details.

(F) The Switch Connected Model.
In switch connected models, k processors are linked to k other processors in a one-to-one fashion, by
means of the switching network, see Figure 6. We assume that the switch is capable of connecting
k inputs to k outputs in a one-to-one fashion, thus realizing the permutation

P1, P2,...-Pk Pi P9, Pi2,I Pk

Once the switch is configured, communication between connected processors can take place
simultaneously. Ideally, we would like to consider cross-bar switches which can realize an arbitrary
permutation but these are too expensive to build when the number of processors is large. There
are switching networks which can realize all permutations in a number of O(Log2 k) stages thus
offering a seemingly perfect alternative to cross-bar switches. However, there is one important
difficulty with this type of switches which is that they require a time of order O(kLog2 k) to be set,
or time O(Log2k) using a parallel algorithm. The most popular switching networks are those that

realize an important subset of permutations, usually including all permutations that are important
in numerical computations, in Log2k stages. These include the Omega network [9], the inverse
Omega network, the indirect binary n-cube, and the data manipulator network. For an exhaustive
description of these networks the reader is referred to [16]. Most of them are topologically equivalent
[2]. In these networks, the data movements are determined by the data packet itself. One of
the most popular is the Omega network of Lawrie [9]. The time to send a packet of m words
simultaneously from any group of the processors PI,P 2,...P to their destinations among the
processors Pi,, P2 . P,' can be modeled by the formula rs + m/bs, where rs is the set-up time
which includes the switch delays and bs is the bandwidth of each channel from the switch to a
node.

Among the contemporary machines based on switching networks are the Staran [. 16] the
BBN butterfly [3], and the NYU ultra-computer [7].

3. Communication algorithms

In this section we will consider the following data exchange operations:

1. Moving data from one processor to another. This represents the simplest data transfer opera-
tion

2. Moving the same data packet from one processor to all others. We will refer to this as a
broadcast operation. S.

5

-.. ,.,.

3. Moving a data packet from each processor to every other processor. This is in effect a broadcast
operation (2) from each node.

4. Scattering (gathering) data from (in) one processor to (from) all others. In the scatter oper-
ation, a node sends a packet to every other processor. These packets, although different, are
ideally all of the same size. The gather operation is the dual operation: the node receives a
packet of (ideally) equal size from each of the other nodes.

5. Multiscattering or multigathering of data. The multiscatter operation consists of a scatter
from every node. Multigather is defined similarly. Both operations will also be referred to as
transposition of data, as they essentially amount to transposing a matrix which is distributed
by rows or colums among the processors.

The difference between the broadcast (2) and the scatter (4) is that in the scatter operations a
different data set is sent to every processor. The gather and scatter operations are very similar in
nature: an algorithm for scatter can be derived from an algorithm for gathering simply reversing
the data paths and vice-versa. For this reason we will only consider scatter operations in the rest
of the paper.
3.1. Moving data from one node to another

We consider the problem of moving N words from one node A to another node B.

(A) Broadcast Bus.
Using the broadcast bus, it takes the time

N
T1,B = + rB. (3.1)

(B) Shared Memory.
To move N elements from node A to node B we need to write the N elements to the global memory.
and then read them from memory to node B. Assuming there is no memory conflict, the total time
would be

TiM=2(---+rM). (3.2)

(C) Ring.
There are several approaches. The simplest (naive) one consists of hopping the data from A to B
along the shortest path between these two nodes. This requires a total of dist(A, B) steps each of
which is a transfer of N elements between nearest neighbors. The total time is

T N1R = i(rR + N/bR), (3.3)

where i = dist(A, B).
In the above naive scheme the links are not used in an optimal manner, since they are used

one at a time and parallelism in the data transfer is not exploited. As was suggested in [8, 12] a
better alternative is to split the data into v different packets of equal size and pipeline the data
transfer from P0 = A to Pi -- B along the shortest path Po, P 1, P2,..., Pi from A to B. Note that
in a ring there are two paths between any two given nodes and that the shortest one has a length
_ k/2J. Thus, at step I the first packet is sent from Po to P1 . At step 2. while sending the first

packet to P 2, P receives the second packet from Po. Generally, at step j, the first packet reaches
P from Pj 1 while the second packet follows from Pj- 2 to Pill etc... The first packet reaches P,

6

. . -

at the ith step and v - 1 more steps are needed for the remaining packets to reach Pi, resulting in %

a total of v 1 + i steps and a time of

t(V)= (V - 1 + i)(TR + L)b

The above time is minimized for the optimal number of packets equal to

v 0pg(g,i) -(1)N (3.4)

and the corresponding optimal time is

2m

where
i = di'st(A, B) <5 k

2.-

It is important to observe that the maximum distance i between two nodes in a ring is bounded

by k/2. Since we must have 1 < v < N, formula (3.4) is valid only when

1 <1 N"

N(i- 1) - bRrR -

This will always be the case if N is large enough with respect to the ratio 1/bRrR, which is usually

small. However, in case 1/[N(i - 1)]> 1/(bRrR) then the optimal number of packets is v = 1 and the
above timing formula becomes T pR = i(N/bR + 7-R)- When 1/(bRrR)>N/(i - 1) then the optimal

number of packets is v = m and the optimal time becomes TR = (N+i - 1)(1/bR + TR).

Formula (3.5) expresses the time in which N words can be moved along a chosen path of length

* i between two processors. Since there are two different paths between any two nodes A and B, an
improvement over the above scheme is to divide the data in two sets and send each set along one of -

the two paths. Note that now we can only guarantee that both paths are of length not exceeding
k - 1. Assuming that we divide the set into two equal parts, and that we pipeline the data transfer

in the same way as above along the two paths the above time becomes:

FibR+ /(-(.,

where
i< k - 1.

The above time is about half that of the one-way pipelining time in case the amount of data. i.e.,
N. is very large. Note that sending half the data in each of the two routes may not the best that
can be done. It can be shown that there is an optimal ratio of the size of the two data sets over
that of the original one. so as to minimize the total time. The details are omitted as the resulting

formulas are complicated.

(D) Two-Dimensional (;rids.
If we choose to send the data along a single path. then the only difference between the situation of

7

•. ,. ,..-

a grid and that of the ring is the shorter distance of the path which, assuming vA- is even, is now
such that

i -dist(A, B) < 2[-/ = v'k. (3.7)
2

This is because it takes at most [v'kJ to reach the processor of the grid which is on the same
horizontal level as B and, likewise, at most [vrk]J to reach B from there. As a result a formula
similar to (3.5) is,

=+ 1)7G 2 (3.8)

* where i satisfies (3.7).
Just as was done for the ring, we can exploit alternative paths between two nodes. In the

present situation, we can use 4 paths simultaneously to travel from A to B. One restriction on
these paths is that they do not use common edges, i.e., that they be edge-disjoint.

Assume at first that A and B do not lie on the same line of the processor grid. Then it is
easily seen that there are two obvious parallel paths between these two nodes. The first one starts

.. by traveling in the vertical direction until reaching the horizontal line where B lies and then travels
in the horizontal direction to reach B. The second starts by traveling in the horizontal direction
and then in the vertical direction. Both paths are optimal in the sense that their length is exaclty

*dzst(A, B). Two additional paths can be found by going around the rectangle formed by the first
two paths. Each of the additional paths is of length at least i + 4. But as is easily seen this can
be improved slightly by having 4 paths of length i + 2 each. The first two of these four paths are
shown in Figure 7. The other two, not shown in the figure for clarity, are obtained by taking the
reflections of these paths with respect to the axis A, B.

* 0 0 0 0 0 0 0

B
0 0 00 4 0

0 * 0 0 0 0 40

* 0 0 0 0 0

0

A

* 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Figure 7: Edge-disjoint paths in a two dimensional grid: thc
general case.

8i

*00 0 0 0 0 0 *

A Bq A B

Figure 8: Four edge-disjoint paths in the aligned case.

Moreover, it can be shown that this cannot be improved, i.e., that it is not possible to find
four paths all of which are of length less than i + 2 if we want to minimize the maximum length of
all 4 paths. This is an immediate conseqence of the following lemma.

Lemma 3.1. If 11,12,13,14 are the lengths of four edge-disjoint paths between two nonaligned nodes

A and B, then
4

Eli 4 [dist(A, B) + 2]. (3.9)

Proof. Consider the Ith path and let Ai be the first vertex visited after leaving node A and Bi the
last vertex visited before the final vertex B. Observe that the Ai's, i = 1 ... 4 must be the four
neighbors of A. Similarly, the Bi's, 2 = 1_ .. ,4 must be the four neighbors of B. It is clear that

Ii_ dist(Ai, Bi) + 2, i= 1.... 4,

and therefore,
4 4

Eli I Zdzst(Ai,Bi)+8, i= 1.... 4. (3.10)
'"i=l i=I

Let us now choose a coordinate system for the vertices and denote by M',M" the coordinates of
a vertex Al with respect to this system. It is assumed without loss of generality that A' < B' and
A ll B . Since dist(Ai,Bi) BF - A I + IB - AYl, we have

4 4
di st (Ai. B,)= [IB r - A-' + IB, -A"I]

1=1 s=1

4

> E [(Bf - Af) + (By - AY)] 4 [(B' - A') + (B" - A)]= 4 dist(A.B)
i=1

The proof follows by replacing the above inequality in (3.10).

A consequence of the lemma is that there are only two possible ways in which the sum of the 4
path lenths can be minimized: either two paths of length dist(.4, B) and two of length disf(A. B)+4
or four paths of length dist(A. B) + 2. The second possibility minimizes the maximum path length.

9

In case A and B are on the same line then two of the paths collapse into each other and we
need to define the four paths differently. One solution is given in Figure 8: there are four paths of
length i + 4 each.

Finally in the ultimately particular case when the two vertices are neighbors, the previous
solution fails again and one can find 4 paths between A and B which are of length at most i + 6,
more precisely: one of length one (= i) , one of length 3 (= i + 2), one of length5 (= + 4) and
finally one of length 6 (= z + 6). Thus we have shown the following result

Proposition 3.1. There are four edge-disjoint paths between any two nodes A, B of a 2-dimensional
grid (with wrap around). Moreover, in the case where A and B are not aligned in the grid, then
these raths can be chosen to be of length dist(A, B) + 2 each. If A and B are aligned (in the
horizontal or vertical direction) but not neighbors then the four paths can be chosen to be of length
dist (A, B) + 4. Finally if A and B are neighbors then the four paths can be chosen to be of length
at most dist(A, B) + 6 = 7.

It follows from Proposition 3.1 that data can be routed through 4 parallel paths between two
nodes of a two dimensional grid, with the maximum path length of dist(A, B) + 6. Therefore the
corresponding time is bounded as follows.

I"TP -' (-) G(.1

where
i <dist (A, B) + 6 < f/k + 6. (3.12)

(E) Hvpercubes
The problem of moving data among the nodes of a hypercube was examined in detail in [13]. Let
A and B be any two nodes of an n-cube and consider the problem of sending data from node A
to node B. Clearly, a path of length at most n between the two nodes is obtained by crossing
successively the nodes obtained by modifying the bits of A - ala2..a, successively into those of
B - blb 2 ..b,, starting from the left [11]. Recalling that the number of different bits between two
binary numbers A and B is called the Hamming distance between those two numbers, the minimal
path length between A and B is precisely the Hamming distance H(A, B) between the binary labels
A and B. This path length cannot exceed n, the dimension of the cube:

dist(A, B) !5 n = Log2 (k) (3.13)

If only one path is used to move data from a node to another, then the data transfer can
clearly be completed in time

2

TIF,H + vi-1)'r' (3.14)

where , satisfies (3.13).
.As in the previous nearest neighbor architectures we now raise the question, how many parallel

paths between A and B can be found? In the above path between .4 and B there is no reason why
we must start by correcting the leftmost, i.e.. the first, differing bit More generally we might start
(orrecting the . bit (where j S z) then the (; + 1)"' bit and so forth until the flth bit is reached.
After which we correct in turn bits L.2.. (, - 1). We can thus define i different paths. It was

hown ia 1 11 that these paths are parallel.

10

......................................

In particular, when i = n this result is optimal since there cannot exist more than n parallel
paths between two nodes. When i < n we have shown in (11] that there are n - i additional paths
tildt ale paraliel to eacl othei and parallel to the previous t paths. The length oi each ot these
additional paths is is I + 2. The following proposition summarizes these results.

Proposition 3.2. Let A and B be any two nodes of an n-cube and let i = H(A, B) their Hamming
distance. Then there are n parallel paths between the nodes A and B. foreover, i of these paths
are of length i and the remaining ones are of length i + 2.

We now wish to estimate the time it takes to transfer data between any two nodes. Assume
that the design of each node is such that it is capable of sending a different message to each of its n
adjacent nodes at cnce, i.e., that it is capable of overlapping communication in its n channels. This
capability will make it possible to use the n parallel paths of the above proposition simultaneously.
The data is first split in n equal parts. Then each part is moved along one of the n parallel paths.
Moreover, pipelining can be used along each path. It is clear that since the longest path has length
H(A, B) + 2, if H(A,B)<n and length H(A, B) otherwise, we have proved the following result.

tH ((Log2k)bH + (i-

where i .I(A,B) + 2 if H(A,B)<n and i = H(A,B) otherwise. Observe that the increasing
bandwidth of the system which is associated with increasing the number of edges per node, is
reflected by a division of the total data length N by n.

(F) Switch
In this model a simple shift to the required connection followed by the transfer will achieve the
data movement in the approximate time:

N
Tis = rS + Ns

3.2. Broadcasting

(A) Broadcast Bus
The time for broacasting a message of length N is

N
T2,B = -B + rB

(B) Shared Memory
To broadcast data from one processor to all others in a shared memory multiprocessor, one may
write the data into memory at the cost of N/bM + TM and then have max(l, k/k*) processors read
it up simultaneously from memory at the cost of (N/bM + Ts)max(l, k). However, we must be
careful that when all the processors will read simultaneously from the same location, this will result
in memory conflict. Assuming that the data is spread in sufficiently many different memory banks
and that there will be no bank conflict the total time comes to:

T2,Af = s + TM) I + max(, . (3.15)

(C) Ring
One way to send a data packet of size N to all processors in a ring is to pipeline the data around

11

.--.. . .. -.-...-....-... . .. -..... .-..- -..

in the maximum length path. According to Section 3.1 the time for this is given by (3.5) in which
i is replaced by the maximnum length k - 1, i.e.,

R R (3.16)

A better way is to broadcast the data to the processors on both sides of the transmitting node.
Thus the broadcasting node will have to send the same amount of data both ways but this time
the farthest node to reach in each way is only at distance [t] away from it. Hence the time,

T2R=(+) (3.17)

where =[1 .

Figure 9: Movement of first packet in the 6-th step of the

grid broadcasting.

(D) Grid
An analogue of the second method used for the ring can be developed. The broadcasting node starts

by sending the same data packet to its four neighbors which in turn relay it to their neighbors and so

on while receiving the second packet and so forth. During the pipelined transfer, each receiving node
forwards the received packet to some of its neighbors. In order to avoid unnecessary duplication of
the data in the receiving processors, some order is necessary in the transfer. Let us assume that
the processors are numbered by the double index (i,J) , where i is the number of the row to which

the processor belongs and j is the column number, relative to the transmitting processor, which is
numbererd (0,0). The indices can assume negative values: the x/-k/2 columns at the left of (0,0)
are number decreasingly -1.-2 We make a similar convention when numbering the rows. Then
after the first step, processors (-,0), (0, 1), (1, 0), and (0.,- 1) will have received their first packet.
%lore generally, after the i t h step of the algorithm. all processors labeled (i,) with Ih + jI = i

have just received the first packet. At the next step we proceed as follows. Processors (z,0) and

12

• . • - . ,- . , . -. % . • . . . , - ."

':,- " ' ' ' "- .'-' _" _ .: '7- -'- ':' " i 4-0": " : " '- - - ; '" ' " ' - ' " " ' i

(-i.0), i.e., those located at the north and south of the origin (0,0), will transfer the first packet
to the north and south respectively, i.e., to processors (0, i + 1), and (0, -i - 1) respectively while
receiving the second packet from the processors (0,i - 1) and (0,-i + 1) respectively. Meanwhile.
processors to the east of the origin, i.e., processors labeled (h,j) with 1h + j = i and h>O will
transmit the first packet to their eastern neighbors, i.e., to processors (h + 1,j) while receiving the
second packet from their western neighbors, i.e., from (h - 1,j). On the western side, processors
labeled (h,j) with 1h+jI = i and h<0 will transmit the first packet to their western neighbors, i.e..
to processors (h - 1,j) while receiving the second packet from their western neighbors, i.e. from
(h + 1,j). This is illustrated in Figure 9. Pipelining inside the square of nodes (h,j) such that
Ih + jI = i is performed in a straightforward way. For all the data to reach all processors, we need
the same time as if we pipelined it along a single path of from node (0,0) to the farthest node from
it which is at the distance 2[v9 -j. According to Section 1, this takes the time

T2,G +-- N V(,_ 1)rG , (3.18)

wherei =2[/J.

It is important to observe that the vertical links of the processor grid are idle most of the time.
This implies that the algorithm is not optimal and raises the question of whether it is possible to
improve its performance. The idea of the version proposed next is to try to optimize the above
algorithm by sending half of the data vertically and the other half horizontally.

Let us split the data in two equal parts and call these two parts D, and D.. Each part is
further split into smaller packets for pipelining. In the very first step we send the first packet of
D in the horizontal direction both ways and the first packet of D1 in the vertical direction both
ways. In the second step the nodes (-1,0) and (1,0) forward horizontally the first Dy-packet they
just received and receive the next Dy-packet. A similar movement takes place for the nodes (0, 1)
and (0,- 1) on the vertical axis. Meanwhile the nodes (i,j) where neither i nor j is zero send the
packets they just received south and north as follows: a D, packet is sent in the horizontal direction
outward from the origin, and a Dy packet is sent vertically outward from the origin. The ith step
consists of the processors (0,j) and (0, -j) sending the D, packet received in the previous step
to processors (0,j + 1) and (0,-j - 1) respectively, the processors (j,0) and (-j,0) sending the
Dy packet received in the previous step to processors (j + 1,0) and (-j - 1,0), and the processors
(hj).h :A 0,j # 0 sending the D, packets horizontally and DY vertically and outward. This is
illustrated in Figure 10

There is one important detail which we must now address: with the above algorithm processors
numbered (0,j) will never receive a Dy packet and processors (j,O) will never receive a D, packet.
All other processors will get all the desired packets after vopt + 2v steps. An easy remedy to this
is therefore to have the neighbors of these particular nodes send the missing data to them. But
a more attractive solution is to observe that after the last pair of Dz, D. leaves from node (0,0)
there are still 2v"k pipelining steps left which can be used to pipeline the D, data to the processors
(J,0) and the D. data to processors (0,j). An important observation is that these two additional
restricted broadcast operations in the horizontal and vertical lines will end at the same time as the
rest of the broadcast operation. As a result the time required by this optimal algorithm is

T2.G= N+ (i-1)r) (3.19)

13

D,-,

D, " " D

Dy •y

D,
D U D

DDy
0 0

. DSi

D,

Figure 10: Movement of first packet in the 6-th step of the
optimal grid broadcasting algorithm

where i= 2[.I
A third method, which is somewhat simpler, is to pipeline the data along the vertical line on

which the processor lies, i.e., to all processors labeled (i, 0) and then each processor (i, 0) broadcasts
the data in its horizontal direction, i.e., to all processors (i, *). This requires the time

2 ":

2,G 2 + V/(i-i),r) (3.20)

where z = . This is always larger than the time (3.18).

(E) Hypercube
Broadcasting data on hypercubes was considered in detail in [111 where we proposed an algorithm
based on a spanning tree of the hypercube. The optimal time, using pipeling is approximately

T2,H + ,(Log 2 k- 1)) (3.21)

(F) Switch
Many switching networks provide for a broadcasting mechanism by making each of the 2 x 2 crossbar
s'itche capable of broadcasting from one input to two outputs. Thus the Omega network is able
to broadcast information from any input to all outputs.

Others do not offer this capability and broadcasting must be done by software. For the
latter case we will propose several solutions of improving quality. The first method consists of

14

: ' • I I i l l l -" a

~ 797 9 4 0

embedding a linear array into the switch and then using one of the algorithms described for the
ring. The permutation needed to achieve the embedding of a ring into the switch is the following
n(j) (j Mod k) + 1.

ThE time required to complete the algorithm using pipelining along one direction only of the
ring as given by (3.16), becomes

T2,s N + ((k 2) rs (3.22)

Note that we do not use the two way pipelining in the ring here, i.e., we only travel in one way
around the ring. The reason is that the ring to switch embedding described above does not allow
a given node to send data to more than one processor, which implies that the transmitting node
cannot move data in two directions at once.

A second algorithm is to first send the data to one other node. Then the two nodes send in
parallel their data to two other nodes and so on. After i steps, 2' nodes will have received the data.
We therefore need a total of Log 2 (k) steps to complete the broadcast and a total time of

T 2s Log 2 (k) Ns + TS (3.23)

A third algorithm consists of emulating a binary tree with the switch and then pipelining the
data in the tree. Assume, conceptually, that the k nodes are the nodes of a binary tree. We now
consider two partial permutations of the switch. The first maps every parent in the tree into its
left child and the second maps every parent to its right child. We can now pipeline the data into
all processors by alternating left and right transfers: in each step of the transfer a node at some
level i receives a packet and then transmits it to its left child first then to its right child. If the
data is split into v packets of equal size the first packet reaches the leaves at step Log 2 k - 1, and
then we need another v - I steps to have all packets in every node. The total time required for
this data transfer is therefore

(Log2 k - 1 + v - 1).2. vs + rs)

which is optimized for

(Log 2 (k) - 2)No bSr.s (3.24)

and yields the optimal time:

2,Ss = 2)rV/-s)+ /(Log 2 (k)-) . (3.25)
2's

2

3.3. Total exchange
We assume in the following discussion that a data set of N/k words must be moved from

every processor to every other processor. This sort of data permutation is of importance in many
numerical algorithms, see [13) for a few illustrations.

15 "w

• ',':,'-'.' .-, , . .,, . ,' -,. -;/ /'- ", ,¢,."", - . . -'' :"" ." " . . ." .

(A) Broadcast Bus
We must simply broadcast k times a set of size N/k in time

(N\ NT3,B=k - +rB) = + krB (3.26)

(B) Shared Memory
We can map all the data into memory and then read it back to all processors. In the write part
each processor writes N/k words into memory in time (N + rM)max (1, L&) and in the read part

every processor reads N words in time (+ tM)max (1, L-). Therefore,
A,4

k (N(k -- 1)
T3,M= max (1, -7)+ 2 rM (3.27)

kkbM

(C) Ring
An effective method consists of rotating the data in a round-robin or daisy chain fashion. In the first
step every processor sends its data to the right. In all subsequent steps, every processor forwards
to its right the data that it has just received in the previous step. After k - I such rotations, every

processor will wind up with the data from every other processor. The total time required is:

T3,R = (k-i1) (.+ TrR) (3.28)

(D) Grid
There are several methods which we will describe in increasing order of efficiency. The simplest
method of all is to broadcast from every node in turn. According to Section 3.2, this sequential
broadcasting algorithm takes time

2
3,G k N + (7k- 1)-T , (3.29)

in the case where Vk- is even.
A second method, which we refer to as daisy chaining, is based on embedding a ring into the

grid and then using the algorithm for the ring. It is possible to embed a ring into a grid when the
number of grid points is even. The length of the ring is then equal to the number of nodes, i.e., to
k. Hence,

TrDC (k 1 N

3,C - (k-i) + TG. (3.30)

Clearly, daisy chaining is suboptimal because it uses a very small portion of the total bandwidth
of the grid of processors.

Our third method is a combination of daisy chaining in the vertical and horizontal directions
of the grid. In the first pass, consisting of / - 1 steps, all noodes collect the data items of the
other nodes on their vertical line by the daisy chaining algorithm of the ring. Since each vertical
line forms a ring of vk processors. this first pass requires a total of (vlk - 1)(N + rG). In the
second pass, each node will perform a daisy chaining in the horizontal direction to get the data
collected from the first pass. The data packet moved around each horizontal line has now swelled

16

.5

" " . .

F-'PwF_ I Z 1L ' LV797*7 -..

to V/LN/k = N/vf/ and therefore the total time for the second pass is (vfN- 1)(- + rG), leading
to a total time of

(A N
3,C (1 +- + 7-2 (3.31)

Notice that for large k this is approximately,

..
3,C + 2V/kr (3.32) *

Observe that the latency time is divided by a factor of \/k/2 as compared with the time of the
"" daisy chaining algorithm.

(E) Hypercube
Several methods for exchanging data from every node to every other node have been seen in [13].
The most effective one described there is a total exchange algorithm which essentially keeps all the
links busy exchanging a, ,a all the time. The corresponding time for large k is of the form

2N
T 3,1 H 2(Log 2 k)rH + (3.33)(Log2 k)bH

(F) Switch
A first method would be to emulate the ring (see Section 3.2) and use the daisy chaining algorithm
of the rings. The corresponding time would be

T3.= (k - 1) T-- + Ts (3.34)

A better time can be achieved by a simple variation of the daisy chaining scheme. For example,
a permutation used in emulating the ring is, rI(j) = (j Mod k) + 1. In the first step of the daisy
chaining, each processor has its data plus the data of its right neighbor. What we would like at the
nex\t step is that any given processor collects the two data items accumulated two processors away
(at the right) from it. Thus, processor 1 will receive from processor number 3 the data of processor
3 and that of its right neighbor. which processor 3 has obtained in step 1. At step 3, we should get
the 4 data items accumulated in the processor at distance 4 from it and so on. The algorithm can
be sketched as follows:

For I= 1,2,..,. Log2k - I do

Every processor j reads the data collected in processor number [(j - 1 + 2) Mod kj + 1.

This main loop of the above algorithm can be performed in parallel thanks to the switch mapping

used at the i - th step fl(j) - 1 + 2') Mod k] + 1. The data to be moved doubles at every
step. and the number of steps is Log 2 (k). This leads to the total time:

N
T-s F + Log2 (k)rs. (3.35)

We should point out that this algorithm is a simple adaptation of a similar algorithm called
thc alternating direction exchange algorithm for hypercubes in [13).

17

'4. ,

3.4. Scattering and gathering
We consider the problem of scattering k vectors each of size N/k from one processor to all

others.

(A) Broadcast Bus.
It suffices to send the data packets successively, in time

IN SN
T4,B =k +r = krB + - (3.36)

(B) Shared Memory

To scatter k different vectors of length N/k each from one processor to all others in a shared

memory multiprocessor, we may write the data into memory at the cost of N /bM + rTA and then
have all processors read it up simultaneously from memory at the cost of (#t + rM)max(l, k).
Again we should be aware of memory conflict. Assuming no memory conflict te total time comes
to approximately,

T4,M + krM max (1, -) + 1). (3.37)

(C) Ring
To scatter data around a ring we will pipeline it around in both directions in parallel, the first packet
being the packet sent counter-clockwise to processor [k/21 and the second being sent clockwise to
processor [k/21 + 1 and so on. The data transfer will be completed as soon as the first packet
reaches its destination, i.e., in time N k

T 4 , R + [rR)• (3.38)

(D) Grid
To scatter data from node (0,0) in the grid, we can proceed as for the broadcast operation. We
can do a scatter in the horizontal direction, where we send to processor (i, 0) all packets that are
destined to all processors with indices (ij). In the second phase all processors (i,O) scatter in the
vertical direction those data packets they received in the first phase. According to the previous
paragraph, the time for phase 1 is about

N kN+ [-1..-
2bR ".,1

The second phase will take the time

N/
V'k2b- +

and the total is,
N k-N/(3)

- (+ k - /2) + 2 [+ \/k + /-7- . (3.39)
2bG F[2 1rG 2bR

(E) Hypercube
Scattering algorithms can be easily derived by analogy with broadcasting algorithms. The difference

18

between the two is that the first sends the same data to all processors while the second sends a
different data packet from a particular node (say node 0 = On) to all other processors. Assume
that we want to scatter the vectors vo, vi vk-1 to the nodes 0, 1.... k - 1 respectively. In [13]
we have derived the following algorithm based on this observation.

ALGORITHM: Hypercube Scatter Algorithm

For j = 1,2,..n do:
All processors numbered on-i+:a,, where ai is any (j - 1)-bit binary number, move all sub-vectors
vX with labels x bn--1 laj where bn-.-i is any (n- j - 1) bit binary number in parallel to nodes
0"-J a.

At the Jth step of the algorithm, every node A with a label of the form 0-jla,, contains the
subvectors with labels xaj, x being an arbitrary (n - j + 1)-binary number. Each node A keeps
the subvector that is destined to it and drops those for which x has a trailing bit one to the lower
levels. We observe that as the algorithm progresses, the amount of data to be moved shrinks by a
factor of 2 at each step. The corresponding timing estimate is easily seen to be:

T4,= (Log2 k)TH + N/bH (3.40)

(F) Switch
Numbering the nodes by binary numbers, we can easily adapt the scatter algorithm devised for the
hypercube, on the switch provided the switch can to perform the partial mapping:

on-j+laj . on-jlaj,

where aj is any (j - 1)-bit binary number. This is in effect a , ower of two shift since On- j laj=
0n-j+la, + 2j, and is easily realized by most switches. The corresponding time is similar to (3.40):

T 4 ,s = (Log 2 k)rs + N/bs (3.41)

3.5. Data Transposition
This is a scatter operation from each processor. Taking the transpose of matrix which is

originally distributed by rows or columns is an excellent example.

(A) Broadcast Bus.
Each processor broadcasts all its data in turn. Using the result from Section 3.2 we have the time
estimate,

N N
TSB = k TB + = krB + -.

kbB bB'

(B) Shared Memory
All the processors write their data into the shared memory (each processor contributes N/k data)
and read the appropriate N/k data back. This requires the time

N k*
TSXf 2 (k+ TAt) max (1)(3.42)

19

k..

(C) Ring
The simplest method is to rotate the data and drop a piece of it after each stop. The corresponding r.
time is

T5,R= (R+(k-i+ 1) = Y IN + krR. (3.43)

(D) Grid
We can proceed in two stages. First every processor on the main diagonal of the grid of processors,
i.e.. those with label (i,Z), gathers all other blocks of data in the processors belonging to its row.
Second each processor on the main diagonal scatters the data to the processors belonging to its
columns. This consists of a gather in a ring of vf/ processors and a scatter in a ring with the same
number of processors. From (3.38) the total time is therefore,

Ts,G 2 (N +V rc (344)

(E) Hypercube
The idea of the algorithm considered in 113] is as follows. We start by splitting the matrix into 4
equal square blocks, Then the first step of the algorithm consists of exchanging the blocks that
are in upper right and lower left positions of the large matrix. In the second step each of the 4
blocks of the resulting inatrix is further split into 4 equal parts and the resulting (1,2) and (2,1)
sub-blocks are again exchanged. The rest of the algorithm can be deduced recursively. The total
tinie required to perform the algorithm is

N2m

(F) Switch
For the switch we can simulate the algorithm employed for the hypercube outlined above. At
every step of this algorithm, half of the processors exchange their data packets with the other half.
Looking at the detailed description in [131, we observe that we need at every step to connect an
arbitrary node X with its neighbor (in the hypercube) X + 2' Mod k. Here additions are bit-wise.
Thus all the nodes whose i-th bit is zero must be connected to those whose ilh bit is one in a
one-to-one fashion. This can be realized by one pass in a shuffle exchange network on which most
switches are based. The time that it takes to achieve this algorithm is therefore derived from the
above time for the hypercube.

T5,s 2Log2 (k) t + 2rs.

4. Summary and conclusion

In Tables 1 and 2 we summarize the timings for the communication algorithms considered
in this paper. For convenience we show the upper bounds for the best possible times instead of
the actual best times which are not simple to compare. Moreover, for the expressions of the form
(+ + v!F)2 that occur when pipelining is used we will use the inequality (v'2 + \/b)

2 < 2(o + b).
l"aillV. for the shared memory model we assume that k>k* so that the factor rnx(1. k/k) is
alwas equal to k/k*n

20

2o ""m

Bus Shared Memory Ring

One to one N +7B 2 N +r 2 N-+ krRN N k 2 N

One to all B + rB (A+4 M 2+R + krR

All to all F + krB F9 + I.M .I y+

Scatter N + +,rM)A k N k

Multiscatter N (+ M) +k N
V -- krB 2 + (1+ . TR +rFB + VA kT R

Table 1: Timing estimates for the broadcast bus, the shared
memory machine and the ring

Grid Hypercube Switch

One to one + (V'/ + 6) 2N + (2 + Log 2k)rH N+ rs

One to all + v/ikTr 2 + (Log2k)rH) 4 + (Log2k)s)

AlNoal 2V'ira 2N N-

All to all + 2 rG (L092k)b + 2(Log2k)rH - Log 2 (k)rs

Scatter N + 2V- 7 N + (Log2k)rH + (L• 2k)r

Multiscatter 2 + /i rG) Log 2 (k)[l. + 2rH Log 2 (k)[+2rs

Table 2: Timing estimates for the grid, the hypercube. and
the switch.

21

21.

References
[11 N.E. Batcher, The FLIP network in STARAN. Proceedings of the 1976 international conference

on parallhl processzrg. IEEE, IEEE, 1976. pp. 65-71.
[2j \. Chuan-Lin, On a class of multistage interconnection networks. IEEE Trans. Comp.,

C-29(1980), pp 694-702.

131 XV. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Williken. T. Blackdar. Performance
measurements on a 128-node butterfly parallel processor, D. Degroot ed.. Proceedings
of the 1985 international conference on parallel processing, IEEE Comp. Soc. and
A.C.M., IEEE, 1985, pp. 531-540.

[4] Frailong, J.M, Jalby, WV. and Lenfant, J., XOR Schemes: A Flexible Data Organization
in Parallel Memories., Proc. 1985 Int. Conf. Parallel Processing, IEEE. 1985. pp.
276-83.

[5] Gannon, D. and van Rosendale, J., On the Impact of Communication Complexity in the Design
of Parallel Algorithms. Technical Report 84-41, ICASE, 1984.

[6' Gentleman, W.M, Some Complexity Results for Matrix Computation on Parallel Processors,
JACM., 25 (1978), pp. 112-115,

71] Gottlieb, A., Grishman, R., Kruskal, C.P., McAuliffe, K.P., Rudolph, L. and Snir. M., The
NYU Ultracomputer - Designing an MIMD Shared Memory Parallel Computer. IEEE
Trans Comp., C-32 (1983), pp. 175--89.

18] I.C.F. Ipsen. Y, Saad and M.H. Schultz, M.H., Complexity of Dense Linear System Solution
on a Multiprocessor Ring, Lin. Alg. Appl., (1986).

19] D. H. Lawrie. Access and Alignment of Data in an Array Processor. IEEE Trans. Comp..
C-24 (1975), pp. 1145-55.

]101 Y Saad, Communication Complexity of the Gaussian Elimination Algorithm on Multiproces-
sors. Research Report 348, Dept Computer Science, Yale University. 1985

' N Saad and M.H. Schultz. Topological Properties of Hypercubes. Research Report 389. Dept
Computer Science, Yale University, 1985.

121 N. Saad, and MH. Schultz. Direct Parallel Methods for Solving Banded Linear Systems.
Research Report 387, Dept Computer Science, Yale University, 1985.

1131 Y Saad and MIH. Schultz. Data Communication in Hypercubes. Research Report 428. Dept
Computer Science. Vale University, 1985

14 A.H. Sameh, Solving the Linear Least Squares Problem on a Linear Array of Processors. Pur-
due Workshop on Algorithmically-Specialized Computer Organizations - W. Lafayette.
Indiana, Sept. 1982. Academic Press, New York. 1982.

15' Shapiro. H.D., Theoretical Limitations on the Efficient Use of Parallel Memories. IEEE Trans.
Comp.. C-27 (1978). pp. 421-28.

16' H.i. Siegel. Interconnection Networks for Large Scale Parallel Processing. Lexington Books.
Lexington Massachusetts. Toronto, 1985.

22

----------. .

N6

