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(3)

An algorithm is presented for the rapid evaluation of the potential and force fields in systems
involving large numbers of particles whose interactions are Coulombic or gravitational in nature.
For a system of NV particles, an amount of work of the order O(N?) has traditionally been required
to evaluate all pairwise interactions, unless some approximation or truncation method is used.
The algorithm of the present paper requires an amount of work proportional to NV to evaluate all
interactions to within roundoff error, making it considerably more practical for large-scale problems
encountered in plasma physics, fluid dynamics, molecular dynamics and celestial mechanics.
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1. Introduction

The study of physical systems by means of particle simulations is well-established in a number
of fields and becoming increasingly important in others. The most classical example is probably
celestial mechanics, but much recent work has been done in formulating and studying particle
models in plasma physics, fluid dynamics and molecular dynamics [4].

There are two major classes of simulation methods. Dynamical sxmula.txons follow the trajec-

tories of NV particles over some time interval of interest. Given initial positions {z;} and velocities,

the trajectory of each particle is governed by Newton’s second law of motion:

d2l','
dt?

m; = —V,-¢I> for i = 1, very N i
where m; is the mass of i** particle, and the force is obtained from the gradient of a potential
function ®. When one is interested in an equilibrium configuration of a set of particles rather than
their time-dependent properties, an alternative approach is the Monte Carlo method. In this case,
the potential function ® has to be evaluated for a large number of configurations in an attempt to
determine the potential minimum.

We restrict our attention in this paper to the case where the potential (or force) at a point is
a sum of pairwise interactions. More specifically, we consider potentials of the form

= ‘I’far + (‘I’near + (Dezlemal)y

where ®p.,, (When present) is a rapidly decaying potential (e.g. Van der Waals), ®.;¢ernat (When
present) is independent of the number of particles, and ®,,, the far-field potential, is Coulombic
or gravitational. Such models describe classical celestial mechanics and many problems in plasma
physics and molecular dynamics. In the vortex method for incompressible fluid flow calculations
(3], an important and expensive portion of the computation has the same formal structure (the
stream function and the vorticity are related by Poisson’s equation).

In a system of IV particles, the calculation of ®neqar requires an amount of work proportional
to .V, as does the calculation of ®.z¢ernai- The decay of the Coulombic or gravitational potential,
however, is sufficiently slow that all interactions must be accounted for, resulting in CPU time
requirements of the order O(iV2?). In this paper a method is presented for the rapid (order O(V))
evaluation of these interactions for all particles.

There have been a number of previous efforts aimed at reducing the computational complexity
of the N-body problem. Particle-in-cell methods (4] have received careful study and are used with
much success, most notably in plasma physics. Assuming the potential satisfies Poisson’s equation,
a regular mesh is layed out over the computational domain and the method proceeds by:

(1) interpolating the source density at mesh points,
(2) using a “fast Poisson solver” to obtain potential values on the mesh,
(3) computing the force from the potential and interpolating to the particle positions.

The complexity of these methods is of the order O(N + M logM), where M is the number of
grid points. The number of grid points is usually chosen to be of the same order as the number
of particles. and the resulting complexity estimate for the method is O(.V logV). Unfortunately,
the grid provides limited resolution, and highly non-uniform source distributions cause a significant
degradation of performance. Further errors are introduced in step (3) by the necessity for numerical
differentiation to obtain the force.

To improve the accuracy of particle-in-cell calculations, short-range interactions can be handled
by direct computation, while far-field interactions are obtained from the mesh. giving rise to so-
called particle-particle/particle-mesh (P3M) methods [4]. An adaptation of these techniques to
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vortex method calculations has recently been carried out by Anderson [1]. These algorithms improve

the local accuracy of the calculations, but their computational complexity remains of the order

O(N logN), and they still depend for their efficient performance on a resonably uniform distribution .
of particles.

Appel (2] introduced a “grid-less” method for many-body simulation with a computational
complexity estimated to be of the order O(V logN). It relies on using a monopole (center-of-mass)
approximation for computing forces over large distances and sophisticated data structures to keep
track of which particles are sufficiently clustered to make the approximation valid. For certain types
of problems, the method achieves a dramatic speed-up compared to the naive O(N?) approach. It
is less efficient when the distribution of particles is relatively uniform and the required precision is
high.

The algorithm we present uses multipole expansions to compute potentials or forces to whatever
precision is required, and the CPU time expended is proportional to N. The approach we use is
similar to the one introduced in (6] for the solutior of boundary value problems for the Laplace
equation. In the following section, we describe the necessary analytical tools, while section (3) is
devoted to a detailed description of the method.

2. Physical and Mathematical Preliminaries

In this paper, we consider a two-dimensional physical model which consists of a set of .V charged
particles with the potential and force obtained as the sum of pairwise interactions from Coulomb’s
law. Suppose that a point charge of unit strength is located at the point (zo, yo) = Xo € R%. Then,
for any x = (z,y) € R? with x # xo, the potential and electrostatic field due to this charge are
described by the expressions

$xo(z.y) = —log([x=x0 )  and
X — Xo)

A P
respectively.

It is well-known that ¢y, is harmonic in any region not containing the point xo. Moreover,
for every harmonic function u, there exists an analytic function w : C' — C? such that u(z,y) =
Re(w(z,y)), and w is unique except for an additive constant. In the remainder of the paper we
will work with analytic functions, making no distinction between a point (z,y) € R? and a point
z+iy =z € C!. We note that

bxo(x) = Re(log(z = 20)),

and, following standard practice, we will refer to the analytic function log(z) as the potential
due to a charge. As we develop expressions for the potential due to more complicated charge
distributions, we will continue to use complex notation, and will refer to the corresponding analytic
functions themselves as the potentials. The following lemma is an immediate consequence of the
Cauchy-Riemann equations.

Lemma 2.1. If u(z,y) = Re(w(x,y)) describes the potential field at (x,y). then the corresponding
force field is given by

Vu= (u,,uy) = (Rg(w’)’ —Im(:n’))‘

where w' is the derivative of w.

The following lemma is used in obtaining the multipole expansion for the field due to m charges.

2
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Lemma 2.2. Let a point charge of intensity q be located at z9. Then for any z such that |z| > |z,

o0

$20(2) = g log(z — 20) = ¢ (log - % (2) ) (2.1)

k=1

Proof. Note first that log(z — 20) — log(z) = log (1 — £) and that |£| < 1. The lemma now follows
from the expansion

[ -]
wk
log(1 - w) = (~1) Z—k— ,
k=1
which is valid for any w such that {w| < 1.
|

Theorem 2.1. (Multipole Expansion). Suppose that m charges of strengths {g;, 1 = 1,...,m} are
located at points {z;, i = 1,...,m}, with |2;| < r. Then for any z € C' with |z| > r, the potential
#(z) is given by

8(z) = Q log(z) + ) Z—'Z (2.2)
k=1

where

Q= Zq. and ak—z % (2.3)

i=1

Furthermore, for any p > 1,

P
o(z) = Q log(z) = 3_ 3

k=1

< aE]pH < (C’_‘l) <%)p (2.4)

A
1- |3

where
z

m
c=‘;l , A=Z|q,~[ ,and a=

(2.5)

Proof. The form of the multipole expansion (2.2) is an immediate consequence of the preceding
lemma and the fact that ¢(z) = I, 65 (2). To obtain the error bound (2.4), observe that

) 0
ak ak
¢(Z)"Q109(Z)—§:z_k= z pral
k=1 k=p+1

Substituting for a; the expression in (2.3), we have

ad b k G k +1 p
a r T rip A 1
lz <4 gmsa ) (7)) =elf -<c_1><z)'
| k=p+1 k=p+1 k=p+1

t:

wlk

In parsicuiar. if ¢ > 2. then
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‘Finally, we demonstrate with a simple example how multipole expansions can be used to speed
up calculations with potential fields. Suppose that charges of strengths q1,42,...,gm are located at
the points z;, 22, ..., Zm € C* and that {y1,¥2,...,¥n} is another set of points in C! (Figure 1). We
say that the sets {z;} and {y;} are well-separated if there exist points zo,y0 € C! and areal r > 0
such that

|zi = zol <7  foralli=1,.,m,
lyi—w|<r forallj=1,..,n, and
|zo = yo| > 3r.

In order to obtain the potential (or force) at the points {y;} due to the charges at the points
{z;} directly, we could compute

m
Z ¢z (v5) forally =1,...,n. (2.7)
i=1

This clearly requires order nm work (evaluating m fields at n points). Now suppose that we
first compute the coefficients of a p-term multipole expansion of the potential due to the charges
41,92, .--sqm about zo, using Theorem 2.1. This requires a number of operations proportional to
mp. Evaluating the resulting multipole expansion at all points y; requires order np work, and the
total amount of computation is of the order O(mp + np). Moreover, by (2.6),

1 p
€4 ('2') ’
and in order to obtain a relative precision € (with respect to the total charge), p must be of the
order —logz(¢). Once the precision is specified, the amount of computation has been reduced to
O(m) + O(n} ,

which is significantly smaller than nm for large n and m.

- p
Z¢z;(yi) - Q log(y; = zo) =~ Z: Gk

2.1. Translation Operators and Error Bounds

The following three lemmas constitute the principal analytical tool of this paper, allowing us
to manipulate multipole expansions in the manner required by the fast algorithm. Lemma 2.3
provides a formula for shifting the center of a multipole expansion, lemma 2.4 describes how to
convert such an expansion into a local (Taylor) expansion in a circular region of analyticity, and
lemma 2.5 furnishes a mechanism for shifting the center of a Taylor expansion within a region of
analyticity. We also derive error bounds associated with these translation operators which allow
us to carry out numerical computations to any specified accuracy.

Lemma 2.3. Suppose that

[e -]
a
() = ao log(z - 20) + ) ——— (2.8)
k=1 (Z-— Zo)
is a multipole expansion of the potential due to a set of m charges of strengths ¢q1,92,-..,¢m, all of

which are located inside the circle D of radius R with center at zg. Then for z outside the circle
Dy of radius (R + |zg|) and center at the origin,

8() = ao log(2) + 3 =, (2.9

I=]

“r
A
*a
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with (i) the binomial coefficients. Furthermore, for any p > 1,

by A |ZQI+RP.H
#(z) — ag log(z) - - < 2.11
() =eoteotr) = 231 < | iz (211)

with A defined in (2.5).

Proof. The coefficients of the shifted expansion (2.9) are obtained by expanding into a Taylor series
the expression (2.8) with respect to zo. For the error bound (2.11), observe that the terms {4} are
the coefficients of the (unique) multipole expansion about the origin of those charges contained in
the circle D, and Theorem 2.1 applies immediately with r replaced by |20| + R.

Remark: Once the values {ag,ay,...,ap} in the expansion (2.8) about zp are computed, we can

obtain {by,...,bp} exactly by (2.10). In other words, we may shift the center of a truncated multipole
expansion without any loss of precision.

Lemma 2.4. Suppose that m charges of strengths q1, ¢, .-.,qm are located inside the circle Dy with
radius R and center at zo, and that |zo| > (c+ 1) R with ¢ > 1. (Figure 2.} Then the corresponding .
multipole expansion (2.8) converges inside the circle Dq of radius R centered about the origin. it
Inside Dj, the potential due to the charges is described by a power series:

0
= Z bl -z, (212)
{=0
where o
b0=2(j—k(—l)"+ao log(—20), (2.13)
k=1 “0
and .
1 ar f[l+k-1 a
b‘=<727( k=1 >(_1)k)—z-t" fort 2 1. (2.14)
“0 k=1 “0 0

(2.15)

c(e-1) c

< A(de(p+c)(c+ 1) +¢c?) <1)"+1‘

where A is defined in (2.5) and e is the base of natural logarithms.

Proof. We obtain the coefficients of the local expansion (2.12) from MacLaurin’s thecrem applied

to the multipole expansion (2.8). To derive the error bound (2.15). we let v = ao log(— o).

v = -(l—"ﬁr) for ! > 1.and 3y =b = v forl > 0. Then
=n

‘ p | =
o= b =Y s -5 {2.16)
| =0 ;l=p4-l i
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with

0 20
S = vazl and S; = ZB,-:‘.

l=p+1 l=p+1

A bound for 3, is easily found by observing that

To obtain a bound for Sz. let C be a circle of radius s where s = cR (&;—‘) (Figure 2). Note first

that for any p > C-Z_Ll

¢cR+R
t)

R< < s < cR.

Defining the function ¢, : C!'\ D; — C! by the expression

1(2) = &(z) — ao - log(z - 20).

and using Taylor’s theorem for complex analytic functions (see (5}, p. 190), we obtain

P I} > i M 'Z' p¥t
Sp=lo(z) =Y A=) A< lil(?) .
)

=0 I=p+1 1

where

I mg\lol(t)l

Obviously. for any ¢ lying on C.

ak

lo1(8)] < E
k=1

AR
[_30|

and it is easy to see that

. 'R
{ag < ARF and t—z2/>2R+cR-s=R+ {-T
!

After some algebraic manipulation, we have

Iz ‘R -
and 1 - -—l > - R

~ ¢R+ R’

pR+ CR)

<
M < .4( —

VA

Observing that for any positive integer n and any integer p > 2.

1 n , 1 2
(1+—> <e aud <1+ ) < 4.
. n y p-=1
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we obtain

S2

IA

A@R+cm&R+R)Cﬂ>”1<z,>w1

cR(cR - R) ¢R p-1

<A () (1) )
< Me(ptc)(c+1) (l>"+"
- c¢(c-1)

(s
Adding the last expression to the error bound for S} completes the proof.

The following lemma is an immediate consequence of MacLaurin’s theorem. It descrites an
exact translation operation with a finite number of terms, and no error bound is needed.

Lemma 2.5. For any complex 29, z and {ax}, k= 1,2,...,n,

Zak(z -z)F = Z (Z ak (?) (-20)"") z* (2.17)

k=0 =0 \k=l

3. The fast multipole algorithm

In this section, we present an algorithm for the rapid evaluation of the potentials and/or
. electrostatic fields due to distributions of charges. The central strategy used is that of clustering
particles at various spatial lengths and computing interactions with other clusters which are suf-
ficiently far away by means of multipole expansions. Interactions with particles which are nearby
are handled directly.

To be more specific, let us consider the geometry of the computational box, depicted in Figure
3. It is a square with sides of length one, centered about the origin of the coordinate system, and is
assumed to contain all V particles of the system under consideration. The eight nearest neighbor
boxes are also shown, and will be needed in the next section when considering various boundary
conditions. First, we will describe the method for free-space problems, where the boundary can be
ignored, and the only interactions to be accounted for involve particles within the computational
box itself.

Fixing a precision ¢, we choose p &~ logs(€) and specify that no interactions be computed for
clusters of particles which are not well-separated. This is precisely the condition needed for the
error bounds (2.4).(2.11) and (2.15) to apnly with ¢ = 2, the truncation error to be bounded by
2-?. and the desired precision to be achieved. In order to impose such a condition. we introduce
a hierarchy of meshes which refine the computational box into smaller and smaller regions (Figure
4). Mcsh level O is equivalent to the entire box, while mesh level [ + 1 is obtained from level [ by
subdivision of each region into four equal parts. The number of distinct boxes at mesh level [ is
equal to 4/. A tree structure is imposed on this mesh hierarchy. so that if tboz is a fixed box at
level (. the four boxes at level [ + 1 obtained by subdivision of i{boz are considered its children.

Other notation used in the description of the algorithm includes

D, the p-term multipole expansion (about the box center) of the potential field
created by the particles contained inside box i at level [,

L the p-term local expansion about the center of box ¢ at level [. describing the
potential field due to all particles outside the box and its nearest neighbors.
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vy the p-term local expansion about the center of box i at level [, describing
the potential field due to all particles outside ¢’s parent box and the parent
box’s nearest neighbors.

Interaction list: for box i at level [, it is the set of boxes which are children of the nearest
neighbors of i’s parent and which are well-separated from box i (Figure 5).

Suppose now that at level | — 1, the local expansion ¥;_;,; has somehow been obtained for all
boxes. Then, by using lemma 2.5 to shift (for all t) the expansion ¥;_; ; to each of box i’s children ,
we have, for each box j at level [, a local representation of the potential due to all particles outside
of j's parent’s neighbors, namely ¥, ;. The interaction list is, therefore, precisely that set of boxes
whose contribution to the potential must be added to \ffu in order to create ¥, ;. This is done by
using lemma 2.4 to convert the multipole expansions of these interaction boxes to local expansions
about the current box center and adding them to the expansion obtained from the parent. Note
X also that with free-space boundary conditions, ¥o; and ¥;; are equal to zero since there are no
: well-separated boxes to consider, and we can begin forming local expansions at level 2.

Following is a formal description of the algorithm.

Algorithm
Initialization

Choose a level of refinement n = log4.V. a precision ¢, and set p = loga(e).

Upward Pass
Step 1

Comment | Form multipole expansions of potential field due to particles
in each box about the box center at the finest mesh level.]

do tboz =1,....4"

Form a p-term multipole expansion ®, 50z, by using Theorem 2.1.
enddo

Step 2

Comment | Form multipole expansions about the centers of all boxes
at all coarser mesh levels, each expansion representing the potential
field dne to all particles contained in one box. ]

dol=n-1.....0
do tbor = 1..... 4
Form a p-term multipole expansion ®,p,,. by using
lemma 2.3 to shift the center of each child box’s expansion
to the current box center and adding them together.
enddo
enddo

Downward Pass

(V7]
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Comment [ In the downward pass, interactions are con-istently computed
at the coarsest possible level. For a given box, this is accomplished
by including interactions with those boxes which are well-separated

and whose interactions have not been accounted for at the parent’s
level. ]

Step 3

Comment [ Form a local expansion about the center of each box at each mesh level [ < n - 1.
This local expansion describes the field due to all particles in the
system that are not contained in the current box or its nearest neighbors. Once
the local expansion is obtained for a given box, it is shifted, in the second

inner loop to the centers of the box’s children, forming the initial expansion
for the boxes at the next level. ]

A

3

Set \1’1'1 = \1’1_2 = ‘1’1'3 = \1’1'4 = (0,0, ,0)
dol!=1,....,n—-1
do ibor = 1,..., 4
Form ¥y ;s0; by using lemma 2.4 to convert the multipole expansion
®,; ; of each box 7 in interaction list of box ibox
to a local expansion about the center of box ibox, adding these
local expansions together, and adding the result to ¥, ;50z-

enddo
do iboz =1, ..., 4 .
Form the expansion ¥, ; for iboz’s children

by using lemma 2.5 to expand ¥; ;.- about the children’s box centers.
enddo

enddo

Step 4
Comment [ Compute interactions at finest mesh level |
do tbor=1,...,4"

Form ¥, 5oz by using lemma 3 to convert the multipole expansion of
each box in interaction list to a local expansion about the center of box tboz,
adding these local expansions together, and adding the result to the

local expansion obtained from iboz’s parent.
enddo

Comment [ Local expansions at finest mesh level are now available.
They can be used to generate the potential or force due to all
particles outside the nearest neighbor boxes at finest mesh level. |

Step 5

Comment | Evaluate local expansions at particle positions. |

do iboz = 1,....4"

For every particle p; located at the point z, in box rboux.
evaluate ®p 502 (2;).
enddo




Sl

NERENCS

Step 6

Comment [ Compute potential (or force) due to nearest neighbors directly. ]

do iboz = 1,...,4"

For every particle p; in box tboz, compute interactions with
all other particles within the box and its nearest neighbors.

enddo

do iboxr=1,...,4"

Step 7

For every particle in box iboz, add direct and far-field terms together.

enddo

Remark: Each local expansion is described by the coefficients of a p-term polynomial. Direct

evaluation of this polynomial at a point yields the potential.

But, by lemma 2.1, the force is

immediately obtained from the derivative which is available analytically. There is no need for
numerical differentiation. Furthermore, due to the anlyticity of ®’. there exist error bounds for the

force of exactly the same form as (2.4),(2.11) and (2.15).

A brief analysis of the algorithmic complexity is given below.

Step Number

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Operation Count

order Np

order Vp?

order < 28.Vp?

order < 27N p?

order Vp

order 2Nk,

10
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Explanation

each particle contributes to
one expansion at the finest
level.

At the [*h level, 4!
shifts involving order p?
work per shift must be
performed.

There are at most 27 entries
in the interaction list for

each box at each level.

An extra order Vp? work

is required for the second loop.

Again. there are at most 27
entries in the interaction
list for each box and

~ .V boxes.

One p-term expansion is
evaluated for each particle.

Let &, be a bound on the
number of particles per box
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at the finest mesh level.
Interactions must be

computed within the box

and its eight nearest neighbors,
but using Newton's third law,
we need only compute half

of the pairwise interactions.

E

Step 7 order V Adding two terms for
each particle.

The estimate for the running time is therefore
N (—2a loga(e) + 56b (loga(€))? + 4.5 d kn + ¢€)

with the coustants a, b,c,d, and e determined by the computer system, language, implementation,
etc.

Remark: It is clear that the operation count for Step 6 assumes a reasonably homogeneous distri-
bution of particles. If the distribution were highly non-homogeneous, then we would need to refine
only those portions of space where the number of particles is large. Although its description is
more involved, an adaptive version retains both the accuracy and the computational speed of the
algorithm.

4. Boundary Conditions

A variety of more complicated boundary conditicns are used in particle simulations, such
as periodic boundary conditions, homogeneous Dirichlet conditions, and homogeneous Neumann
conditions. Here, only the periodic case will be treated in detail, the treatment of the other two
cases being quite similar.

We start by reconsidering the computational domain depicted in Figure 3. At the end of the
upward pass of the algorithm, we have a net multipole expansion

14
®o.1(z) = Z -
k=1 z

for the entire computational box. This is then the expansion for each of the periodic images of
the box with respect to its own center. All of these images except for the ones depicted in Figure
3 are well-separated from the computational box itself, and their induced fields are accurately
representable by a p-term local expansion, where as before, p ~ —loga(¢) is the number of terms
needed to achieve a relative precision ¢. We assume that the periodic particle model has no net
charge and, therefore, that the local representation given by lemma 2.4 can be written as

Ed

(4.1)

o

P
Vou= D bm-2™ (4.2)
m=1
with ,

by = Lng_:(mﬁ-k— l)(—l)k. with m=0.1,....p, _ (4.3) 1
g\ k-l 2
11 <
~
-
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with zg the center of the image box under consideration.

Remark: In certain problems (e.g. cosmology), the computational box obviously cannot satisfy the
condition of no net charge (mass). This condition is necessary for the potential to be well-defined,
since the logarithmic term becomes unbounded as zp — co. Force calculations, however, may still
be carried out. Indeed, using the notation of the algorithm, &;,,¥;, \I’l,, are expansions of analytic
functions representing the potential, so that their derivatives are also analytic functions (with the
same regions of analyticity). Moreover, it is clear from Theorem 2.1 that the derivatives $;, are
described by pure inverse power series. Therefore, the identical formal structure of the algonthm
can, due to lemma 2.1, be used to evaluate force fields everywhere, bypassing the difficulty intro-
duced by the logarithmic term. The only change required is that the initial expansions computed
be the derivatives of the multipole expansions and not the multipole expansions themselves.

e, VR TY Y TV LY,." T T AR -, T

Note now that well-separated images of the computational cell are boxes whose centers zp have
integer real and imaginary parts, with Re(zg) > 2 or Im(z9) 2 2. Let S be the set of such centers.
To account for the field due to all well-separated images, we form the coefficients for the local
representation by adding the local shifted expansions of the form (4.3) for all zg € S to obtain

P , _
b:;w'=zak("‘:_’°l 1)(-1)* (Z m1+k> (4.4)

k=1 s <0

The summation over S for each inverse power of zy can be precomputed and stored. For
(m + k) > 2, the series is absolutely convergent. However, for (m + k) < 2, the series is not
absolutely convergent, and the computed value depends on the order of addition. Choosing a
reasonable value for the sum of the series requires careful consideration of the physical model.

Suppose first that the only particle in the simulation is a charge of unit strength located at the
origin. Then the periodic model corresponds to a uniform lattice of charges, and Newton’s third
law requires that the net force on each particle be zero. But the net force on the particle at the
origin corresponds to the summation over S of 1/z0, so that we set

1
Si-o
s 0
To determine a value for the second term,
S

suppose that the only particle in the simulation is a dipole of strength one, oriented along the x-axis
and located at the origin. Then the periodic model is again a uniform lattice and the difference in
potential between the equivalent sites (—},0) and (4.0) must be zero; i.e.

ow' -

(+1.0)
/ F-ds=Ad=0. (4.5)
(—%,0)

-
.'.“
..J.‘
o e

=

.

The contribution to the potential difference, [ F - ds, of a single dipole located at zq is
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Thus, we find that the potential difference due to the original dipole located at the origin is —4.

For an image dipole located at zo, with |zg] > 1, we can expand the contribution to [ F - ds as
follows:

/(*‘%0) 1o Lo _ 1 1
(-40) (2= 2)? d-% B |l-5=
—11+<1 +(12+13+
T3 422 422 4z}
1
1 1 [ %7
=7t 7|12
% 0 =
0
1 1
S 4 -4

Now let S’ be the set of the centers of all image boxes. That is, S’ is the set of all points zg with
integer real and imaginary parts, excluding the origin. Then

(+4.0 1
F.ds = -4 +
J B R

-4.0) =

A somewhat involved calculation shows that

Therefore, to satisfy (4.5), we set

S! 20
Now
L 1, 3]
Z=2 ol
St 2 s 29 S\S o]

and the summation over S for every inverse power of 2 is defined.

The procedure of converting the multipole expansion of the whole computational cell ®p; into
a local expansion Vg ; which describes the potential field due to all well-separated images can be
written, in the notation of the algorithm. as

\IIO,I = T . (I>O.l~
where T is a constant p bv p matrix whose entries are defined by the formula

Tma= ("5 T -0 (Z ‘) -

s <0
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This can be viewed as the first step in the downward pass of the algorithm for periodic boundary
conditions. At this point, we have accounted for all interactions excluding the ones within the
immediate neighbors of the computational box as depicted in Figure 3. But the expansions &;;
for boxes inside the computational cell are also the expansions of the corresponding boxes inside
the nearest neighbor images of the computational cell. By adding to the interaction list the appro-
priate boxes, we maintain the formal structure of the algorithm and the associated computational

complexity.
X
;—: 5. Numerical Results
.'.‘_: A computer program has been implemented utilizing the algorithm of the present paper and ca-
b+ pable of handling both free-space and periodic boundary conditions. The ability to handle Dirichlet
i and Neumann boundary conditions will be added in the near future.

For testing purposes, we randomly assigned charged particles to positions in the computational
cell (Figure 7), with charge strengths between O and 1, and with the numbers of particles varying
from 100 to 12800. The calculations were performed on a VAX-8600, and the number of terms in
the expansions ¥;;, ®;;, $;, was set to 20, guaranteeing roughly 5-digit accuracy of the result.
- In each case, we performed the calculation in three ways: via the algorithm of the present paper
i in single precision arithmetic, directly (via formula (2.7)) in single precision arithmetic, and via
formula (2.7) in double precision arithmetic. The first two calculations were used to compare the
speed and accuracy of our algorithm to those of the direct method. The direct evaluation of the
. field in double precision was used as a standard for comparing the relative accuracies of the first
. two computations. In all cases, the calculation was performed for a periodic model, the periodic
boundary condition being imposed by means of the algorithm described in Section 4 of the present
paper.

.- The results of these numerical experiments are summarized in Table 1. Its first column contains

- the numbers .V of particles for which calculations have been performed. The second and third
r columns of Table 1 contain the CPU times T4y that were required by the algorithm of the present
paper to obtain the fields at all IV particles, and the greatest relative error 8, obtained at any
of the particles, respectively. Columns 4 and 5 contain the CPU times Ty, that were required by
the direct algorithm (2.7) to obtain the fields at all IV particles, and the greatest relative error g,
obtained at any one particle, respectively.

Remark: For the example involving 12800 particles, the algorithm of the present paper required

about one minute of CPU time (see Table 1). However, it was not considered practical to use

the direct algorithm to evaluate the field at all 12800 points, since it would take about 5 hours of

CPU time, without producing much useful information. Therefore, we used the direct algorithm to

evaluate the field at only 100 of 12800 particles, both in single and double precision, and used the

resulting data to estimate 47y and 64ir. The value for Ty, in this case was estimated by scaling.
The following observations can be made from Table 1.

1. The accuracy of the results produced by the algorithm is about the same as that predicted by
the estimates (2.4),(2.11) and (2.15) for the number of terms we are using in the expansions
&, ¥;,. ¥;,. There is no evidence of accuracy problems due to truncation errors.

2. The calculation time grows linearly with the number »f charges in the model, even though its
behaviour is somewhat erratic.

3. For as few as 1600 particles in the model, the computational effort required by the direct
algorithm is roughly 40 times greater than that required by the algorithm of the present paper.
For 12,800 particles, the effort is nearly 300 times greater.
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6. Conclusions

An algorithm has been constructed for the rapid evaluation of potential fields generated by en-
sembles of particles encountered in plasma physics, molecular dynamics, fluid dynamics (the vortex
method), and celestial mechanics. The algorithm is applicable both in the context of dynami-
cal simulations and Monte Carlo simulations, provided that the fields to be evaluated are either
Coulombic in nature (for example, in plasma physics, molecular dynamics, and celestial mechan-
ics) or can be approximated by Coulombic fields (as, for example, in the vortex method for fluid
dynamics simulations {1]). The asymptotic CPU time estimate for the algorithm of the present
paper is of the order O(V), where N is the number of particles in the simulation, and the numerical
examples presented in Section 5 indicate that even very large-scale problems result in acceptable
CPU time requirements. In the present paper, a two-dimensional version of the algorithm is de-
scribed. Generalizing this result to three dimensions is fairly straightforward, and will be reported
at a later date.

It is the authors’ pleasure to thank Professor M.H. Schultz for drawing their attention to the
subject of this paper, and for his continuing interest and support.
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N N Tatg (secs.) datg Tuir (secs.) Sqir

" 100 0.6 1.1 x 1073 1.1 1.9 x 1078
200 1.4 4.1 x 10~% 4.5 3.2 x 1073
400 2.0 3.6 x 10~8 18 6.6 x 10~3

, 800 3.8 4.6 x 10-5 69 7.3x10°%

;; 1,600 6.6 1.4x107° 272 7.0 x 107°

5 3,200 16.5 0.9 x 107° 1088 3.1x107°

6,400 24.7 7.2 x 1078 4480 6.8 x 103

12,800 60.9 3.0x 1075 | 17920 (est.) | 1.8 x 1073

- Table 1: Computational Results.
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Figure 1: Well-separated sets in the plane.




Figure 2: Source charges ¢1,¢2,...,qt are contained in the
circle D;. The corresponding multipole expansion about zg
converges inside Dy. C is a circle of radius s, with s > R.
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Figure 3: The computational box (shaded) and its nearest
periodic images. The box is centered at the origin 0" and
has area one.
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Figure 5: Interaction list for box t. Thick lines correspond
to mesh level 2 and thin lines to level 3. Boxes marked with
an “x” are well-separated from box i, and contained within
the nearest neighbors of box ¢'s parent.
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