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Abstract. We compare several implementations of the Gaussian elimination algorithm for solving
dense linear systems on hypercube parallel processors. We-distinguish between two classes of
methods: methods that require to move the elimination row (or column) to all processors before the
elimination proceeds, and methods that require only moving data to nearest neighbors. Algorithms
of the second class, which’ wg call fnpelmed algonthms, require only a ring or grid structure which
is embedded into the hypercube. One of e#§ main conclusions is that for Gaussian elimination the
additional connectivity of the hypercube topology over that a twofalmensxonal grid of processors
does not help much in improving efficiency. Another result of our, analysis is that there is little
reason for using row or column type algorithms instead of grid algorithms. One of the goals of the
paper is also to show a simple model of complexity analysis at work, by comparing the estimated
times that it provides with the actual execution times. .- _
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1. Introduction

. This paper considers the implementation of a standard method, namely Gaussian elimination,
on a multiprocessor based on the hypercube topology. Our objective is not to present new and
better algorithms, but rather to analyze the behavior of two different implementations of Gaussian
elimination in a hypercube based architecture. Suppose that the rows (or columns) of the system
are distributed in some way among the processors. At each step j of the first implementation,
which we call a broadcast algorithm, the elimination row (or column) is sent to all processors that
hold at least one of the rows ¢ +1,:+2,...,N. This data movement is a broadcast type operation :
one processor sends the same data to all others or to a subset of all others. Once the elimination
row (or column of multipliers) has been broadcast, the arithemtic corresponding to the #*# step of .
Gaussian elimination is performed. N

The second approach differs only in its organization. Processors are no longer required to
perform the j'* step of Gaussian elimination at the same time (or approximately at the same o
time). A processor awaits for the j'P row, passes it to the next processor as soon as it arrives and
then proceeds with the arithmetic. The next processor will in turn pass the row to a neighbor "3
and proceed with arithmetic. This idea of pipelining Gaussian elimination is an old idea which is .
predominant in particular in systolic architectures, |7, 14, 15]. -

These two approaches are well-known and there is an extensive literature on their performance -
and their implementations on various architectures, see for example [9, 8, 5, 6, 4, 15, 13, 19, 20]. .
Both of them can be implemented on hypercubes, but the second only requires a one-dimensional
or a two-dimensional grid of processors. The question then arises: can we expect the broadcast
methods, which take advantage of the complex hypercube topology, to outperform the pipelined
methods? As will be seen if the matrix is mapped by stripes, i.e., a few rows or columns per pro-
cessor, then the answer is clear-cut: there is no compelling reason for using a broadcast algorithm. 3

Similar broadcast and pipelined algorithms can also be derived for grid mappings, in which the .
matrix is split into squares blocks that are mapped to the nodes of a processor grid embedded in a
hypercube. In case these grid mappings are used, and no pivoting is needed, then again pipelined
methods are superior. When pivoting is needed a solution of choice appears to be a pairwise
pivoting technique, see [4, 20, 22].

This paper will present a few techniques based on both ring and grid mappings and will provide
the estimated exection times for each algorithm. Numerical experiments will be proposed to verify
the accuracy of the model and then a conclusion based on the estimated execution times will be \
drawn. -
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2. Hypercube topology: properties and assumptions

e
SRR .

Hypercube multiprocessors have been very successful in the recent years among academic
institutions as well as industrial research groups. There are currently several comercially available
paralle] processors based on the binary n-cube network. For example, we can mention Intel's iPSC
with up to 128 processors, Ametek’s System 14 with 256 processors, Ncube's NCUBE-10 with 1024 ‘
processors, and Thinking Machines’ Connection Machine with 64000 processors. It is likely that
many others will soon appear in the market.

By definition, an n-dimensional hypercube, or binary n—cube, consists of k = 2" nodes num- D)
bered by n-bit binary numbers, from O to 2" — 1 and interconnected so that there is a link between ] ‘
two processors if and only if their binary labels differ by exactly one bit. An alternative definition
which is perhaps more helpful in undestanding the nature of the topology. is to define the hvercube /w—

in a recursive fashion: r"v
R S e % B¢

e A zero-cube cousists of only one node;




e To obtain an (n + 1)— cube take two identical n-cubes and link their corresponding nodes in
a one-to-one fashion.

This is illustrated in Figure 1. Thus, for the case n = 3, the 8 nodes are simply at the vertices of a
three-dimensional cube. In an n-cube each node has n neighbors with which it can communicate.
For further details see the references [2, 16, 17, 21] and the references therein.

Figure 1: A Hypercube of Dimension 4.

One of the main advantages of hypercubes, perhaps the most important one, is that many of
the classical topologies such as two-dimensional or three-dimensional meshes, rings, trees, can be
embedded preserving proximity in them [11, 3, 16, 21, 10, 1]. An important consequence of this is
that we can design algorithms for ring or grid structures and be able to map them on hypercubes.
This allows us to choose the best alternative among all of the possible choices. In the present paper,
we will show how to exploit this feature when implementing a simple algorithm such as Gaussian
elimination.

Some properties of hypercubes have been developed in [I6] and communication problems in
the hypercube have been examined in detail in [17]. We would like to summarize some of the
properties that will be useful in the remainder of this paper. For details see [16].

An obvious property is that the n-cube is a connected graph of diameter n. It is usual to
number the nodes of an n-cube by binary numbers from 0 to 2" - 1 = k — 1 according to the
definition of an n-cube, i.e., so that two labels of any two neighbors differ only in one bit. We will
denote by H(X.Y) the Hamming distance between two binary numbers X and Y. i.e., the number
of bits that differ between X and Y7,

A particularly important notion for the hypercube topology is that of Gray codes. A Gray
code of dimension n 1s a finte sequence {_q((,").g)f").. . '.‘1'(2":)—1 ! of 2" binary numbers which represent
all »-bit binary numbers and so that

H™ ol =1 v

where the subscripts should be considered modulo 2" Thus, 1+ Gray code defines a sequence of all
the nodes of a hypercube so that any two successive nodes in the sequence are neighbors: in graph

9




theory terminology this is a Hamiltonian circuit. Therefore we can embed a ring of 2" nodes into
a hypercube. Throughout the paper when we refer to a ring we will always mean a ring embedded
in the hypercube in this manner.

Gray codes can also be used to map two-dimensional or three-dimensional grids into hyper-
cubes. For example if we want to embed an 2™ by 2"2 two-dimensional grid into an n-cube with
n1 +ng = n it suffices to map the node (i, 7) of the grid, where0 <1 < 2™ —~1,and0< j < 2" -1,
into the node of the hypercube whose binary label is

y'(ﬂl) Ag}"z)
where A denotes concatenation. Observe that the set of nodes obtained by fixing one coordinate
and letting the other vary, forms a subcube. In other words every row or column of processors of
the embedded processor grid forms a subcube of the cube. Again, in this paper a grid will always
mean a grid embedded in an n-cube in the manner just described.

We should briefly mention how Gray codes can be generated. Let G, = {g0,92,..-.9271}
be the n-bit Gray code, with G; = {0,1} and denote by GR the sequence obtained from G,, by
reversing its order, and by 0G, (resp. 1G,) the sequence obtained from G, by prefixing a zero
(resp. a one) to each element of the sequence. Then Gray codes of arbitrary order can be generated
by the recursion:

Gny1 = {0Gn,1GR}, n=1,... (2.1)

For example,
G2 = {00,01, 11,10},

G3 = {000,001,011,010, 110,111, 101, 100}. (2.2)

The particular Gray code generated by the above algorithm is called the binary reflected Gray code.

Except for the Connection Machine which is SIMD and bit - serial, the currently existing
hypercubes function in MIMD message passing mode: a processor executes its own program which
runs independently from the programs of other nodes, except that it will sometimes require data
that is provided by processes running on other nodes. Thus, synchronization is achieved only
through availability of data: when an operand is needed the processor waits until it is available
before pursuing the execution of its program.

In order to estimate the total time that is required to execute a given algorithm, we will use
a simple model for timing both arithmetic and interprocessor communication. For arithmetic we
will assume that it takes the time w to execute a pair of operations consisting of an addition and
a multiplication. Performing m such pairs will require the time mw.

For communication, we assume that it iakes the time

B+ mr, (2.3)

to transfer m words from one processor to any of its n neighbors, where 3 is the communication
start-up in seconds and 7 is the elemental transfer time, in seconds per word. Moreover, commu-
nication in all the n channels can take place simultaneously: a node can do either a receive from
or a send to any neighbor while doing a receive or a send with another neighbor. This assumption
is important because it implies that the total communication speed from a node is proportional to
its fanout and therefore that the hardware can be effectively utilized.

In some of the Gaussian elimination algorithms we need to move the same data. i.e., a row or
a column, from a given node to all other nodes. This is called a broadcast operation. A standard
algorithm to broadcast a data packet D from node 0" to all other nodes in an n-cube is the following.

3
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ALGORITHM: Hypercube Broadcast

In every node L do:
For 7 =1,2,3,...n do: . .
If L<2/~! move D to node L + 2/~1.

4 This basic algorithm is not optimal. If D consists of N words it will take an approximate time
of
n [Nt + 8] = (Log2k) [N7 + B] (2.4)

to execute the above algorithm. To improve efficiency, one can partition the data set D into v
equal packets and pipeline the data packets in succession. There is an optimal number of packets
and the corresponding optimal time to broadcast N words in an n-cube is [17] :

topt(N,m) » (VT + V= 1B) . (25)

However, in this paper we will use the simple upper bound given by the following inequality

vervrvVvrew

Cilan]

topt(N,n) < 2(N7 4+ np) = 2(N7 + BLogak). (2.6)
This upper bound is within a factor of about 2 of the actual best time (2.5).

3. Row and column oriented algorithms

3.1. Broadecast Row Algorithm

The simplest way to implement Gaussian elimination in parallel is to subdivide the matrix A
into k£ blocks of % rows each and assign one block to each processor of the ring successivily. If
Py, Py, ... Pi_; are the nodes of the hypercube, in a natural order, then let processor P, hold rows
i-]il +1to (i+ l)% of A and the corresponding components of the right hand side vector b, as
indicated in Figure 2.

Processor Py (Idle)
\ Processor Py (Idle)
| Processor Pp (Active)

11 @&

Processor P3 (Active)

Processor Pr_; (Active)

L1

Figure 2: Gaussian Elimination on a Block Row Partitioned
Matrix.
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At step j, row ;7 must be sent from the processor where it is located. say processor F;. to ;
processors P, ...Px_; in order to perform the eliminations in each of them. From Section 2 we ’
know that transferring a row of length N ~ j + 1 to all processors requires a time bounded from
above by

2(8Logk + (N =3+ 1)r). (3.1)

Here we do not have to move the row to all processors but only the processors Pi4y,..., Pr—;.i.e., to
k — i — 1 processors. Since the data is initially arranged so that block 1 is in Processor P,_,, then it
is easy to see that the processors P, Piy;, P42, ... Pi—; are in a subcube of dimension [ Logy(k —1)]
and therefore we can perform a limited broadcast in [Logz(k — 1)] steps. The communication time
for each step is then bounded from above by

2([Loga(k - )13 + (N - j)7) < 2((Loga(k — i) + 1)B + (N — j)).

Summing up for y = 1,... N:

N ey N N-1
3 gf Loga(k —3)]8 +2 ,.Z:;‘N — J)r < 27 (k + Loga(k1)B + 2 ;m - ).

From Stirling’s formula we get the approximate communication time

k k
tc~ N(1+ Logg—c;)ﬂ + N = N(Logg-ze—)ﬁ + N?r.

To determine the time for arithmetic, we note that at step j a processor performs at most -l,:—

eliminations which require the time
N )
T(N -J+ 1w (3.2)

Summing up over N — 1 steps, we obtain the estimated arithmetic time

tg  ——w (33)

Hence the total estimated time for this algorithm is

N? k
Tr & -sz + 23\'Logg—éﬂ + N7, (3.4)

Notice the deterioration in efficiency in the arithmetic time due to the denominator 2k instead Y
of the ideal 3k in the w term of (3.4). The reason for this loss of efficiency is that at the end of the
elimination process many processors. in fact most of them at the very end. are idle. A remedy is
to interleave the rows with respect to processors, an idea used in [9]. The corresponding mapping
is illustrated in Figure 3.

To estimate the communication time for this new version of the algorithm. we only observe
that the difference with the previous algorithm is that a row must now be sent to all processors at
every step (except the very last k steps but the corresponding difference is negligible.) Thus com-
munication contributes to each step of the algorithm a time bounded from above by the expression
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Processor Py
Processor P
Processor P;
Processor P;
Processor Py
Processor P;
Processor P
Processor P

Figure 3: Gaussian Elimination with Interleaved Rows for k = 4.

(3.1), whose total over the N — 1 steps of Gaussian elimination is about N'2r + 2N Logy(k)B. Con-
cerning arithmetic, observe that at step j, a processor typically performs the linear combination of
row j with [(N — j)/k] rows. Therefore, each step will now cost

f%](h' - J+ 1w, (3.5)

instead of (3.2). Defining the function

-1 .
J(NK) =) (210 +1),

i=1

we get the estimated time

Trp = f(N.k)w+ N2r + 2N (Logak)B.

Note that if tue integer division of N — 1 by kis N — 1 = ks + r then we have
(s+1)(k+3)+k(32— 1) r(s+1)

F(N. k) = sk 3

+ (2N -r+1).

When k << N, then f(N.k) can be approximated by N3/(3k) which yields
N3
TrB ~ ﬁw-# N2r 4+ 2N (Logak)3 for k << N. (3.8)

Notice that a loss of efficiency takes place when & ~ N. In fact. for A = N we obtain
that f(N.k) = %(N — 1)(N + 2), which means that the algorithm ha< an arithmetic efficiency of

6
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approximately 2/3. By arithmetic efficiency we mean the efficiency that would be obtained in an
ideal situation where communication times were negligible.

We should also point out that the above scheme can be generalized into a column oriented
scheme in a straighforward manner. One of the reasons why column schemes have often been
preferred to row oriented schemes is that row interchange is easy to implement with them. However,
they have the disadvantage of leading to more inefficient triangular systems solutions [9]. Moreover,
note that for row schemes column interchange can be used instead of row interchange.

3.2. Pipelined Ring Algorithm

In the pipelined ring algorithm, the computation is rearranged so that only nearest neighbor
communication is required. We consider the general case where the number of processors k is larger
than &V, in fact ideally much larger, and assume the interleaved distribution illustrated in Figure 3.
Here we denote by Py, Py,...Pr_; the sequence of processors that form a ring embedded in the
hypercube using the Gray code embedding of section 2. The idea of the algorithm is that every
processor executes the NV — 1 successive elimination steps of Gaussian elimination on the rows that
it holds. To do so it must receive and store the pivot row, send it immediatly to the next processor
in the ring, and then proceed with the elimination. Schematically the algorithm is as follows.

For j =1,...,N — 1, do in every processor P;:
1. Receive the j*» row from processor P;_, and store it.

2. Send the j** row just received to the processor Py,
3. Perform the elimination step number 7 for all rows m,m>7 that belong to processor P;.

It might seem more natural at first to interchange 2 and 3, i.e., to compute as soon as the row
is available and send the row to the next processor after the arithmetic is completed but this is not
as efficient since the next processor will be idle waiting for the row to arrive while the Processor P;
is computing.

Let us now estimate the execution time of this a'gorithm. To this end we look at the block
consisting of the k last rows of the system, see Figure 3. Without loss of generality we will make the
additional assumption that the size N of the matrix is a multiple of k, the number of processors.
The key observation is that the last row of the linear system, which is held in the last processor
Pi_,, is the critical row in the sense that the job will be completed when the last step of Gaussian
elimination will be performed on this last row.

Row 1 will reach the last processor Pi_ after crossing k — 1 processor, i.e., after the time

(k= 1)[g + N1] (3.9)

Thereafter, processor Py will use it for the elimination and then receive the next row which should
be ready to be moved from processor Pi_5. Thus, each step j requires the linear combination of
the row j with [(N — j)/k] rows, namely all those rows among rows j + 1,5 + 2,..., N that are
held in processor Pi_;. This is followed by a communication task to receive the next row which is
of length N — j. Therefore, in Processor Pi_) each step j of Gaussian elimination will require the
time )
N-—y . .
[-—k——](N -Jj+Dw+(N-j)r+8.

Summing up these times over j = 1,.... N — 1 and adding the result to the delay time (3.9), we
get by use of the definition (3.6) and by dropping lower order terms:

Tpg = f(N. k) + %J\'(]\' +2k)r + (N +K)3 (3.10)
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Figure 4: Interleaving of a linear system in a 4 x 4 processor
grid.

For k << N we can again approximate f as in section 3.1 to obtain the approximate total
time
Ns

' 1
Tpr~ vt §N(N +2k)r+ (N+k)B for k<< N (3.11)

Notice that the arithmetic time is the same as that of the broadcast algorithm. Incidentally,
this means that when communication is very fast with respect to arithmetic, then the two algorithm
will show the same performance. For the particular case where k = N, i.e., in the case of one row
per processor, we have f(N.k) = %(N — 1)(N + 2), and therefore an arithmetic efficiency of 2/3 is
achieved just as for the broadcast algorithm.

An important difference between the above estimate and that of the broadcast algorithms is
that the contribution of communication start-ups, i.e., the § term, is now linear in k¥ and N while
for the broadcast algorithm this contribution was of the form O(SN Logok). If 3 is large compared
with the coefficients 7 and w, as is the case with Intel's iPSC for example, then this term may
dominate the total time when k = O(N). This is widely verified by our numerical experiments.

4. Grid algorithms

In this section we assume that the number of processors, denoted by k, is of the form &k = 2",
where n. the dimension of the cube, is even, and we define k = Vk = 2"/2. We consider the
assignment of the linear system into the nodes of the hypercube that is the result of mapping the
system into a vk x Vk square grid of processors which is embedded into the hypercube. This is
illustrated in Figure 4, where a label (¢,7) in a block means that this block is mapped into the
processor which in the row ¢ and column j of the processor grid.

Similarly to row oriented algorithms we will consider broadcast and pipelined algorithms.

4.1. The broadcast grid algorithm
In the broadcast grid algorithm, we must now broadcast in two directions: we must send the
elimination sub-rows to every processor in the same vertical line of processors of the grid. and the
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sub-column of multipliers horizontally. Moreover, the multipliers must be computed before being
moved. In other words the j-th step could be described simply as follows:

1. Broadcast the element a;; vertically.

2. Compute the multipliers a, ;j/a; ; in the processors that hold the elements a, ;.

3. Broadcast the sub-columns of multipliers horizontally and the elimination sub-rows vertically.
4. Proceed with the elimination process in each processor.

Remember that each column or row of processors in the embedded processor grid is a subcube
of dimension n/2. Therefore step 1, which is a broadcast of a single element, takes the time
(Log2k)(B+7). Step 2 consists of at most [ (N — 5)/k] arithmetic operations and costs [(N —j)/K]w.

Step 3 is a broadcast of at most [(N — 7)/k] words in each direction. The two data transfers
can be overlapped in the two horizontal and vertical subcubes of dimension n/2 and therefore the
time required for the broadcast in step 3 is bounded from above by

2([(N = j)/k]r + BLogzk)
Note that as usual we take the largest time as given by the ceilings [.] since these reflect the times

taken by the processors that finish last.

Finally, step 4 cousists of linear combinations of [(N ~ j)/«k] rows of length [(N — 7)/x] each
and hence the time for this step is
(N = 5)/w]%.

Adding the above times and summing them over the steps 7 = 1,..., N — 1 we find the following
the total time valid when N is divisible by &

1 1 3
Tpg = §N(q + 1){g + 2)w + §1\'(q +1)r + 51\’6Log2k, (4.1)

where here

= |z

q (4.2)

Observe that in the limiting case where k = N? the time to solve a linear system by this
algorithm is dc. .aated by the communication start-up time %\B]\'LogQN. Therefore. this is not an
effective method for this case since there are algorithms that realize Gaussian elimination in O(N)
time using O(N?) processors. The pipelined method described next s one such algorithm.

4.2. The pipelined grid algorithm

We now consider a pipelined Gaussian elimination algorithm for the grid mapping of Figure 4.
It is assumed here that no pivoting is used. The generalization of the ring pipelined algorithm
can be easily understood if, conceptually, we view each row of processors in the processor grid.
as one processor which is part of a ring of k processors. To implement the pipelined ring algo-
rithm we observe that the multipliers must now be also moved from left to right in each row of
processors. Thus we must pipeline the information in both horizontal and vertical directions. The
implementation is a straightforward generalization of the pipelined ring algorithm. A processor
typically receives a pivot row, then forwards it to the next processor down and a similar operation
is done for the column of multipliers. As soon as both data have arrived the processor proceeds
with the arithmetic. An important detail is that at the 7th step. the multipliers are computed in
the processors that contain the elements a,;.
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Looking at the first block-row of A4, contained in processors P ., the rightmost column of A,
will receive the N/x multipliers with a delay of

- -

N N
(k= 1)(=7+8) + —w

i.e.. the time to travel across x — 1 processor and to form the multipliers in the leftmost processors.
This assumes that each processor receives the column then sends it immediatly to its right neighbor
before proceeding with the arithmetic.

Looking at the rightmost column of processors, we use again the fact that, as for the ring
algorithm. the last row is critical. in the sense that it determines the total time of the algorithm.
Every new step will consist of an arithmetic task whereby [(N — 7)/k] sub-rows of size [(N - 7)/k]
each are combined with the pivot sub-row, and then sending the previously received pivot sub-row
downward. Thus every new step j in the bottom rightmost proceesor will require the time

7 ; y
ERASEATHINY St L P
K K

Summing these times over the steps 7 = 1,2,... N — 1 and adding the above starting delay we get
the approximate time

1 1
Tpg = éN(q +1)(2¢+ 1w+ EN(q +5)r + (N + 2x)8, (4.3)
where again ¢ is defined by (4.2). Observe that as noted earlier a time of O(N) can be achieved.

5. Numerical experiments

As an experiment we tested the broadcast row algorithm and the pipelined ring algorithm on
Intel’'s iPSC-d7, which is a hypercube of dimension seven. The linear system was taken so that its
solution is known. More precisely we chose a system of size size N = 127, and the matrix

ajj=1 forj#1t:, and a;;=N+1

All components of the right hand side b are taken equal to 2V, so that the exact solution is known
to be r=(1,1.1...1)7.

We implemented a column oriented algorithm rather than a row oriented one. The linear
svstem is therefore assigned by columns using interleaving, the right hand side being considered as
the last column of the matrix. For the pipelined algorithm we used the Gray code to embed a ring
Py.Py..... Pi_;. This was not d-ne for the broadcast algorithm for which it is not needed.

We solved the linear system with the two methods varving the number of processors from
k= 2to k = 128 in each case. This can be easily done by varving the dimension of the iPSC. Thus
the results shown are only for numbers of processors that are powers of 2. The comparison of the
performances of two methods shown in Figure 5 confirms the prediction that pipelined methods
are generally faster.

To check the accuracy of the models of performance analysis proposed in this paper and in
other papers [9. 12, 18, 17]. we compared the real times and the estimated times provided by our
models. For the broadcast algorithm we used the non-optimal formula (2.4) instead the upper
bounds (2.6). as it reflects the present state of the iPSC. The iPSC uses packets of length of 1KB:
hence in our case the number of packets is always one. The communication start-up time was
measured to be approximately 6.5 ms. The peak bandwidth of each channel is 10Mbits/sec which
gives 7 = 3.2us. However. various measures conducted elsewhere lead to the the actual measured
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time 7 X 8us. corresponding to less than half the optimal speed. As for the parameter .. we
used w & 9.25 x 107°. This was obtained by using two processors and evaluating the number of
operations performed as well as estimating the communication time which is then deducted. Thus
this time for one pair of multiplication and one addition includes such times as memory fetches.
loop up-dating and so on. The plot in Figure 6 shows the result for the broadcast algorithm while
that of Figure 7 shows the result for the pipelined algorithm. The dashed lines in both plots are
the estimates. Both are relatively accurate given the simplifving assumptions made to derive the
models. Moreover. our experience is that in the pipelined algorithm the communication start-up
varies substantially. For example, it seems that when a receive command is issued while a send
command is still being executed, then 3 is increased, possibly doubled. In fact. as is shown in
Figure 8. a much better agreement is obtained for 3 = 10 ms. which roughly assumes that the
above conflict occurs half of the time.

6. Discussion

In what follows we make a few concluding remarks and examine briefly some of the issues such
as pivoting, that have not been addressed in this paper.

1. There are no particular reasons for using a broadcast algorithm. Plots of the theoretical times
for various values of the parameters 8,w, 7, show the pipelined algorithm to be always either
faster than, or very close to (for small k), that of the broadcast algorithm.

o

. Similarly, grid algorithms seem to be generally superior to row or column oriented algorithms.
Ring algorithms cannot be used for k>N but this is only part of the story. Not only do
pipelined grid algorithms have smaller communication times but also when b = O(N) the
arithemtic efficiency of the row algorithms deteriorates to 2/3. On the other hand since in this
situation vk << N, an arithmetic efficiency of nearly one is achievable for the grid algorithms.

3. Partial pivoting is easy to implement for column or row mappings. For grid mappings. partial
pivoting is no longer attractive and should be replaced by pairwise pivoting which is straight-
forward to implement [4].

4. An interesting conclusion is that the hypercube topology does not seem to do any better than
the grid topology for Gaussian elimination. Hypercubes would be superior if partial or total
pivoting were crucial for stability but the recent paper by D. Sorensen [22] seems to indicate
that pairwise pivoting will always be good enough in practice.

(3]

. Various methods for solving the resulting triangular system have been devised for various
mappings. except grids in [9]. For reason of space we defer the study of these to another
report. We should only point out that there are efficient ring algorithms for & << N and grid
algorithms for vk << N. However when vA = O(N) then it may be a better idea to switch
to the Gauss-Jordan method which avoids triangular systems solutions.
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