AD-R169 266 PARAMETRIC AND WMTRIC ESTIMTIM OF I‘ MEAN
NU'!BER OF CUSTOMERS IN SERVICE FOR AN HIB/I*INITV
UECU) lﬂVﬂL POSTGRADUATE SCHOOL MONTEREY Cﬁ
UNCLASSIFIED D K PARK MAR




p— Py 3 e O m

-

- Pl

k3
-

Py

\Dghd
LA et

AP Sl

LA ol §
al . e,

It
N N

D
e o B

v

td
o

e
B

LA XL,

e Y

B

3 S
N o~
L

u 2.0
lle
|

OM o~ o o
SR EY
%Y o “ R EN]
m—n—n_..._..:._.tu

)

|

L
I

16

14

2

.

JHR

MICROCOM




A PN e e P et Rt A N L S 2 At Dt )

L LI

© NAVAL POSTGRADUATE SCHOOL 2
g Monterey, California f!
- Ef
& :

DTIC

ELECTE
JUL 0 2 1986

PARAMETRIC AND NONPARAMETRIC ESTIMATION
OF THE MEAN NHMBER OF CUSTOMERS
IN SERVICE FOR AN M/GA® NUEUE
by
Park, Dong Keun
> 9
8 March 1986 >
o 3
:; Thesis Advisor: P. A. Jacobs \
Approved for public release; distribution is unlimited. ~

= "
g




| St e ST e i e st R T Cht il s on s e g Lot b gu ot o ek o e sn 0 o s o0 SR ER A
CORITY CLASSIFCATION OF YRR PA D f s o ©
REPORT DOCUMENTATION PAGE
la REPQRT SECURITY CLASSIFICATION b RESTRICTIVE MARKINGS
INCLASSIFIED
3 SECURITY CLASSIFICATION AUTHORITY 3 OISTRIBUTION/ AVAILABILITY OF REPORT
Approved for public release; distribution
b DECLASSIFICATION | DOWNGRADING SCHEDULE is unlimited.
PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)
NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL |73 NAME OF MONITORING ORGANIZATION
(If applicable)
Naval Postgraduate School Code 55 Naval Postgraduate School
ADDRESS (City, State, and ZIP Code) 7b  ADDRESS (City. State, and ZiP Code)
onterey, California 93943-5000 Monterey, California 93943-5000
NAME OF FUNDING s SPONSORING 8b OFFICE SYMBOL | 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGAN'ZATION (If applicable)
ADORESS (City, State. and 2iP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROECT TasK WORK UNIT
ELEMENT NO  [NO NO ACCESSION NO

1T TUE (Include Security Classification)

ARAMETRIC AND NONPARAMETRIC ESTIMATION OF THE MEAN NUMBER OF CUSTOMERS IN SERVICE FOR
N M/G/Ao QUEUE

SERSCONAL AUTHOR(S)
ark, Dong Keun

3 TYP. OF REPORT 135 TME COVERED 18 DATE OF REPORT (Year, Month Day) {'S PAGE COUNT
aster's Thesis FROM 10 1986 December 73

SULPPLENVENTARY NOTATION

Y

y COsAT CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
fE.D GROUP SUB-GROUP M/GA® queueing model, simulation, Parametric estimation,
Nonparametric estimation, Paired-jackknife, Separated-
jackknife, Bootstrap,

2357RACT (Continue on reverse !f necessary and :dentify by block number)

This thesis studies the estimation from interarrival and service time data of the
mean number of customers in service at time t for an M/G/0D queue. Two situations are
considered. In one the parametric form of the service time distribution is known. In
the special case in which the service time distribution is exponential the approximate
bias and variance of the estimate are derived and simulation is used to study an
approximate normal confidence interval procedure. Simulation is also used to illustrate
that assuming a wrong parametric model can lead to misleading results. In the other
situation, the parametric form of the serivce time distribution is unknown and the
empirical distribution of the service times is used in the estimate of the mean number
of customers in service. In the case in which the customer arrival rate is known the
distribution of the estimate is derived and an approximate normal confidence interval
procedure is suggested. The use of the bootstrap and jackknife procedure to estimate

0 TP 3UT CNCAVAILABILTY OF ABSTRACT 21 ABSTRACT SECURITY CLASSWFICATION
@~ ASSFEDLAUMITED [ SAME AS RPT Ooric Users UNCLASSIFIED
Ko “aME OF RESPONSIBLE 'NDIVIDUAL 22b TELEPHONE (Inciude Area Code) | c2¢ QFFHCE SYMBOL
ricia A, _Jacobs (408) 646-225° Code 55Jc
D FORM 1473, 84 mar 8) APR eaition may be used unt) exrausted SECURITY CLASSIFICAT'ON OF "ri§ DAGE

Ail otrner edit.ons are obsolete

1

R P
W ..‘.' O e e e e T e T e L T T T e e T e T N T
- L P SN S SR P Y ST S W R WA WA P R W T P R




. e H_8

P EAELE Al |

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered

19. ABSTRACT

variability and construct confidence intervals for the estimate is also
studied both analytically and by simulation.

SECURITY CLASSIFICATION OF TMIS PAGE(When Dete Entered)

D -

. . et et ate e R I T I i Y B N A At e A N e e e T e T e e . TR . e
o C e R T N Ay LN LA SRR LA U A G B SE S SRS
g R w " -




!"U'!','; L Dl e Ol g5 SEAa niafn i ALt SR e gep gour oA - i)

Approved for public release; distribution is unlimited.

b Parametric and Nonparametric Estimation of the Mean
Number of Customers in Service for an M/GAp Queue

by

. Park, Dong Keun
Lieutenant, Republic of Korea Navy
B.S., R.0.K Naval Academy,_ 1979
B.S., Korea University, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
March 1986

Author: JQQ/% 7\/% fﬁ%m / ééw ~

/77 "//j P7 ’
Ny -
Approved by: s /gbng/

v P. A.zﬁfcobs, Thesis Advisor
. . .Gaver, Seceond Reader
o // -

,//; (_éf;oaaf—\\\

-~ 7 A, R. Washburn, Chairman,
Department of Operations Research

M

shall,

neale T.
Dean of Information an lic ciences




Ar". ... E .7' -‘ ." 1~ - -‘. -

ABSTRACT

/ This thesis studies the estimation from interarrival and
service time data of the mean number of customers in service
at time t for an M/G%queue. Two situations are considered.
In one the parametric form of the service time distribution
is known. In the special case 1in which the service time
distribution is exponential the approximate bias and vari-
ance of the estimate are derived and simulation is used to
study an approximate normal confidence interval procedure.

Simulation is also used to illustrate that assuming a wrong

parametric model can lead to misleading results. In the
other situation, the parametric form of the service time
- distribution is unknown and the empirical distribution of

the service times is used in the estimate of the mean number
of customers in service. In the case in which the customer
arrival rate 1is known the distribution of the estimate is
derived and an approximate normal confidence interval proce-
dure is suggested. The use of the bootstrap and jackknife
procedure to estimate variability and construct confidence

intervals for the estimate is also studied both analytically

e, s . )

and by simulation. -
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I. CTIO

A. DESCRIPTION OF THE PROBLEM

The application of probability theory to a wide variety
of congestion problems has been described in many papers and
books [Refs. 1,2,3]. Results of queueing theory are
presented in terms of component distribution function:s and
stochastic processes (renewal, Poisson, etc) that are taken
as known; only rarely are 1issues addressed that arise when
actual data is to be used as a basis for inference from the
models; however, see Cox(1965) [Ref. 4].

The concern of this thesis is inference problems for a
particularly simple queueing model, the M/G/00 queue. In
this model, customers arrive according to a Poisson process
with rate x and there are an unlimited number of
independent servers. Service times for each server are
independent, identically distributed with distribution
function F. Let X(t) be the number of customers being
served at time t. It is well known that if there are no

customers being served at time O, then

K
pix(t)=n} = LI explom(e)) (1.1)
where
M(t) = N{‘F(s)as
with F(t)=1-F(t) [Ref. 2]. Thus the distribution of X(t) is

Poisson and is characterized by its mean M(t).

In this thesis we will assume that the service time
distribution F(t) is unknown and must be estimated from
service time data and that the arrival process is known to

be Polisson, except possibly for its rate . We will study

the estimation of the mean number of customers being served
at time t, M(t).
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B. SCOPE OF THE THESIS
The purpose of this thesis is to study the estimate of

NS

the mean number of customers being served at time t for a
M/G/0 dgueue. This mean completely characterizes the
distribution of the number of customers being served at time

P AR
2 x s

’ t. We will assume that the service time distribution and

possibly the customer arrival rate are unknown and must be

oo

estimated from data.

We generally divide the estimation method into two cases X

which we shall call "parametric estimation" and
"nonparametric estimation". In the parametric estimation

case, a particular probabilistic model is specified for the

service time distribution and the parameters of the
distribution are estimated. The resulting estimate of the

survivor function is then used 1in the estimate of the

f expected number of customers being served at time t. In the
: nonparametric estimation method, the empirical survivor

function is used 1in the estimate of the expected number of

customers.
N In most <cases, parametric assumptions concerning the
N service time distribution are difficult to justify. Hence o

nonparametric estimation procedure may well be preferred to

parametric estimation when actual data is used. However,

the nonparar- “ric estimates can be expected to be less >

efficient than the parametric ones.
The thesis i1s organized as follows. In Chapter II, the -

transient distribution for the number of customers being

served at time t for the M/GAD model is described and the

equilibrium distribution as time goes to infinity 1is

. obtained. In Chapter III, we study parametric estimates of

the mean number of customers being served under several

assumptions for service time distributions. In the special

.
P
« ‘.

case in which the service time distribution 1s exponential

« v
4 1
v 's

the approximate bias and variance of the estimate are

4




derived and simulation is wused to study an approximate
normal confidence interval procedure. Parametric estimates
for gamma, mixed exponential, and lognormal distributions
are also considered. Simulation is used to study the effect
of assuming a wrong parametric model. In Chapter 1V, a
nonparametric estimate of the mean number of customers being
served 1is described. This estimate 1is based on the
empirical distribution of the service times. 1In the case in
which the customer arrival rate 1is assumed known the
distribution of the nonparametric estimate is derived and an

asymptotic normal confidence interval procedure is

suggested. The jackknife and Bootstrap methods for
obtaining approximate confidence intervals are also
described. The different estimators are compared by
simulation. Chapter V describes the simulation and gives

the results.

In summary, this thesis studies the use of estimates of
the service time distribution to obtain estimates of the
mean number of customers being served for a M/GAD queue.
Both parametric and nonparametric estimates are considered

and compared by simulation.

11
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I1. M/G/oo QUEUE MODEL !

The M/G/o0 queueing model is specified by the following
assumptions. There are infinite number of servers.

Al

o

Customers arrive for service according to a Poisson process

with rate A . Service times are nonnegative independent

s,

identically distributed random variables with distribution
function F. When a customer arrives, he immediately starts
N service.
Let X(t) represent the number of customers in service at
time t. It is well known that if there are no customers
b being served at time 0O, then

1’4
Pix(t)=k} = LREMI niianp(t)) (2.1)

where p(t)= }:II-F(S)]ds: that 1is, X(t) has a Poisson
distribution with mean A p(t) [Ref. 2]. Taking the limit as
t 200 in equation 2.1, we obtain the equilibrium

[7 2 R

distribution

o0, w A

"' ( o

lim P{X(t)=k] = L AL Foyddd expl - A [ 1~F(x)dx] (2.2) N
t»00 k.‘

Thus, the limiting distribution of X(t) as t-00 is also

Poisson with mean 7\m, where m= S;”F(x)dx is the mean service

time. Therefore, the distribution of the number of a

customers being served at time t is Poisson with mean
t =
M(t) = A [ F(x)ax (2.3)

Here, the distribution of the number ' of customers being

(AN

served at time t is characterized by value of its mean M(t). 9

LR

" The value of M(t) depends upon the service time distribution

which is assumed unknown and must be estimated from data.

12 -
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This thesis considers the problem of estimating M(t) from
service and interarrival time data.

13
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III. PARAMETRIC ESTIMATION METHOD

A. DESCRIPTION

In this chapter, it will be assumed that the parametric
form of the service time distribution is known. In this
case the estimation of the mean number of customers being
served at time t, M(t), can be considered to be a function
of the parameter estimates of the distribution. In
particular, the estimate of M(t), when a parametric form of
the service time distribution is assumed, 1is denoted by
MP(t), then

Mo(t) =>\§:§(s)ds (3.1)

where f(t) is a survivor distribution of an assumed
parametric form.

In this chapter the rate of the arrival process will be
assumed to be unknown. Maximum likelihood estimates of the
mean interarrival times and the mean service times are used
in the estimate of MP(t)'

Four parametric service time distributions will be
considered: the exponential, the gamma, the mixed
exponential, and the lognormal distribution. In the
exponential case, moment approximations are used to assess
the bias of the estimate and to develop a confidence
interval procedure based on asymptotic normality. The
performance of the confidence interval procedure is assessed
by simulation. '

In the remaining three parametric models, simulation is
used to assess the performance of the parametric estimates.
Another source of error in using a parametric estimator is
that the wrong parametric form may be used. The effect of
using the (wrong) exponential model 1in these cases is also
assessed by simulation.

14
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Each simulation has 300 replications; each replication
: consists of 50 independent service times from the specified
. distribution, and 50 independent interarrival times from an
: exponential distribution. The average relative bias and the
\ average relative square error of Mp(t) are used to evaluate
the performance of the parametric estimation method. All
simulations were carried out on an IBM 3033 computer at the
Naval Postgraduate School using the LLRANDOMII, random
number generating package [Ref. 6].

B. EXPONENTIAL SERVICE TIME
In this section it will be assumed that the service time
distribution is exponential; that is, F(t) = 1-EXP(-t/u ),
where M 1is an unknown parameter and must be estimated from
the observed data. The maximum likelihood estimate of M 1is
. ﬁ=&L = X

L~ ae\

We will '30 assume that the rate of the Poisson arrival

i+, where x; is the service time of the i“‘customer.
process A 1s unknown and must be estimated.
The interarrival times of the customers are denoted by vy,
Yo oo 1 Yome Since the arrival process is Poisson with rate
N the interarrival times are mutually independent,
positive random variables with the exponential distribution
function having mean -% . The maximum likelihood estimate
X of A 1is 3\=n/é Y. - For an exponential service time
distribution, an estimate of the mean number of customers in

service at time t for an M/GA0 queue is
fal A - N
Mp(t) =N M (1-expl-t/i]) (3.2)

The estimate 1is a nonlinear function of the estimated
parameters, X and & . In most cases, when estimating a
function of the estimated parameters, bias is created by the
nonlinear relationship of the estimated parameters.
Approximate formulas for the bias and variance of ﬁP(t) will
now be derived.

15
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A A
Let 8 be the mean service time, @8 =

3k—

i=1,2,..,n.
By assumption, X; and Y, are independent. The estimate of

and 3( be the mean interarrival time, 3(=—§

L]
?\ X ,i=1,2,..,n,
Y.

P(t) can be represented by a function of the parameters &
and 6 as follows:

/\ A A
M( f;( p l-exp[-t/pl) (3.3)
There are no simple, exact formulas for the mean and
variance of the quotient of two random variables. However,

there are approximate formulas which are sometimes useful.
The approximation can be obtained from the partial Taylor
series expansions of M(&,é) about the true means, o and 8 .
The expansion is

MY, B) = Mo, @) + oM ,8) (=00 + FrM(,8)(B-8)

9 . 3 3"
B M8 (&m0 @ -0) + 3 53R & o) 2
) A
3 S-Q-M( @)(3'@)2 + Ry (3.4)

Since we assumed that the arrival process and the service
times are independent, the covariance terms turn out to be
zero when we take the expectation of both sides of equation
3.4. Thus, we get

A

A A - . t a | a_
E[M(,3)] = M(ai,8) + 3 Jd:M(d A8 )Var(o) + 1 5e ~M(of @)Var(@)
+ Rh (3.5)
where Ry converges to zero at the rate T%-' The variance of

estimate is
varim(,f)) = [{2-m(a,8)) 2Var(d) + [5%-M(°(,/3)12Var(fs)

+ Rp (3.6)

16




with Ry tending to zero at the rate ﬁ;. An approximate
bias term, denoted by é%(t), can be derived immediately from
the equation 3.5, that is, @,(t)=E[M(«, 8 )-E[M(X , (3, )17,
Subtracting BP(t) from the parametric value to correct the

B A S

N bias, leads to the bias corrected estimate of MP(t)’ i
2 In order to compare the two estimates, bias and ﬂ
‘. bias-corrected, we define the following notation. Let 8, be &

: the fraction of bias of M‘,(t) against the true value M(%t),
and 6. be the fraction of square error of Mp(t) against the
square of the true value: that is,

= 225z Del® (3.7)

= [-e=2IilL ]2 (3.8)

t-
where M(t)=X{ F(s)ds. 2

AVERAGE RELATIVE BAS

-0.020 -0.01% -0010 -0.00%

i L L N PR Rt T I PSPy QU]

0 b 0 13 2 Py
™E

Figqure 3.1 Average Relative Bias of MP(t)
for Exponential with M =2 at t=1
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. A simulation experiment was performed to assess the
| performance of the estimates. In the itk replication, 50
, exponential interarrival times having mean 1 and 50
. exponential service times having mean 2 were simulated and
- estimates
U}
A A A .
. MP(t) =N M (l-expl-t/al) (3.9)
. and *4
Ac A =
. MP(t) = MF(t) - @P(t) (3.10) \
%] where X
: (t) = L 2oma,p)var(d) + L 2iMe 0)var(d)
@P 2 ot B & 3@ 3 ” a
were computed. The estimated values of Y and 8 were used

in the variance formulas. The simulation was replicated 300
times and the average relative biases

" 6.(%) = o5 ‘?;-T [----M-U-:)- === (3.11)
X 200 ACA
Bi(t) = —iem = [ HRZe® (3.12)
300 A=\ Mt.t)

and the average square error

— 300 - 20 :.
Q.(t) = ---- 4 [_f*lt_‘cz__mtp_]z (3.13)
; 300 =t ™M@y '
_ 300 -
ej(t) = --‘-- Z [.ﬂ(}z-ME(_t.)._]z (3.14) .\

were computed.
Results of the simulation are presented in Figures 3.1
and 3. 2. In Figure 3.1, <the dotted line shows the average

18
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AVERAGE. RELATIVE SQUARE ERROR

Figure 3.2 Average Relative Square Error of MP(t)
for Exponential with 4 =2 at t=1. ( n=50 , r=300 )

relative bias, é\(t), as a function of t for the original
~ -
estimate MP(tL The solid line shows e&t) for the bias
A
corrected estimate IW?(t). This superimposed figure

indicates that é&tn for the bias~corrected estimate (with
solid line) is almost constant and is small. The bias
estimate produces large negative value of é(t) but lé«t)
approaches a limiting value as t 9®. Figure 3.2 shows of
the average relative square error é,(t) and é:(t) plotted as
a function of time. The dotted line gives @,(t) and the
solid 1line is éﬁ(t). It appears from figures that the
estimate of bias described in equation 3.5 does correct for
the bias. However, in Figure 3.2 the bias-~corrected
estimate has a slightly higher relative square error than
the original estimate. This higher relative square error
could be due to correlation between the estimate itself and
the estimate of its bias.

Simulation was used to assess the performance of the
following confidence interval procedure. In the ith
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TABLE I ;
COVERAGE AND LENGTH OF 1C0(1-o)% C.I. FO ;
THE ORIGINAL ESTIMATE ( N = 50, R = 300 ) =
ooy &8 % | g0 % | 90 % | ;
trial |===c---ccccccsleccmccecccrcnna (e e e e e e e e e -
Length |C. R Length |C. R Length |[C.R 4
(s.d) s.d) (s.d) i
0.2234 [10.67| 0.2879 4.00| 0.3695 1. 00 v
1 72.00 83. 00 90. 00 s
(0.0415)17.33|(0.0535)|13.00{(0.C687)| <.00
0.2237 9.33| 0.2882 4.33| 0.3699 1.33
2 73.33 81. 00 86. 33
(0.0396)|17.33[(0.0510){14.67|(0.0655)[12.33
0.2224 |11.00] 0O.2866 4.33| 0.3678 1.33 -
3 68. 67 79. 00 87.33 2
(0.0410)|20.33|(0.0529)[16.67{(0.0678)(11.33 .
0.2212 9.00]| 0.2851 3.67( 0.3659 1.00 -
4 66. 67 76. 00 83.33 -
(0.0402)(24.33((0.0519)[20.33|(0.0666)|15.67 -
0.2207 |13.33| 0.2844 4.67] 0.3651 0.67
5 62.33 77.67 88.67
(0.0409)(24.33|(0.0527)|17.67|(0.0677)|10.67
0.2269 [11.33| 0.2925 3.67f 0.3754 0. 33
6 70. 00 82.67 89, 33
(0.0433)|18.67((0.0558)|13.671(0.0717){10. 33 -
0.2223 {10.67( 0.2865 3.00 0.3677 0. 33 K
7 69. 00 82.00 89. 67 j
{0.0375){20.33(0.0483)115.00|(0.0620)(10.00 .
0.2246 7.67| 0.2895 2.33( 0.3715 0.33 .
8 71.67 81.33 87.67 -
(0.0425)(20.67|(0.0548)|16.33{(0.0704)({12.00 ’
0.2232 |11.00]| 0.2876 6.00( 0.3692 0.67
9 63.67 82.67 83.67
(0.0423)125.33](0.0545)|21.33|(0.0700)]15.67
0.2270 |13.67| 0.2926 3.00| ©.3755 0. 33
10 67.67 81.00 87.33 -
(0.0411)|18.67|(0.0530)(16.00(|(0.0680)({12.33 E
0.2235 [10.77| 0.2881 | 3.90| 0.3697 | 0.74 -
Average 68. 50 80. 63 87.33 -
(0.0410)|20.73((0.0528)(15.47|(0.0678)(11.93
replication of the simulation, 50 exponential interarrival

times having mean 1, and 50 exponential service times having
mean 2 were generated, and @P(t) and ﬁ:(t) were computed.
The approximate variance of MP(t) was computed for t=1 using
equation 3.6 with R,=0. The 100(1-%)% confidence limits L
and U were computed by N
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TABLE 1II :
COVERAGE AND LENGTH OF 100&1 m&/ . ®
THE BIAS-CORRECTED ESTIMAT 50, R 3oo )
r
------------------------------------------------------ LEk
_ 68 9 80 ¥ 90 ¥ .l
1 - S R e i it it Dt .
Length |C. R. Length |C. R Length |C.R. Py
(s.4d) (s.d) (s.d) .
0.2234 |14.67| 0.2879 | 6.67| 0.3695 | 2.33
1 69. 00 80. 67 89. 00 -
(0.0415)(16.33{(0.0535){12.67({(0.0687)| 8.67 N
0.2237 {13.67| 0.2882 | 5.67| 0.3699 | 2.67 -
2 69. 67 80. 33 86. 33 5
(0.0396)|16.67((0.0510)|14.00{(0.0655)(11.00 5
0.2224 116.00| 0.2866 | 7.67| 0.3678 | 2.00
3 66. 00 76.33 87. 33 oy
(0.0410) {18.00|(0.0529)|16.00|(0.0678)|10. 67 X
0.2212 |14.33| 0.2851 | 6.00| 0.3659 | 1.67 -
4 62. 33 74. 33 83. 00 I~
(0.0402) |23.33((0.0519){19.67|(0.0666)|15.33 '
0.2207 |17.67| 0.2844 | 9.00| 0.3651 | 1.67
5 59. 67 74. 67 88.67 .
(0.0409)|22.67](0.0527)|16.33{(0.0676)| 9.67 :
0.2269 |18.67| 0.2925 | 6.33] 0.3754 | 2.00 :
6 64. 00 81.33 88. 00
(0.0433)|17.33](0.0558)|12.33[(0.0717)|10. 00
0.2223 [14.67| 0.2865 | 5.67| 0.3677 | 2.00
7 67. 00 80. 33 88. 67 .
(0.0375)(18.33{(0.0483)|14.00((0.0620)| 9.33 <
0.2246 [14.00| 0.2895 | 4.67| 0.3715 | 0.67 ;
8 67.33 80. 00 88. 00 .
(0.0425)|18.67[(0.0548)[15.33((0.0704)|11.33 ;
0.2232 |15.67| 0.2876 | 9.00| 0.3692 | 1.67
9 60. 00 70. 67 83.33 X
(0.0423)|24.33|(0.0545){20.33|(0.0670)|15.00 )
0.2270 |18.33| 0.2926 | 9.33| 0.3755 | 1.67 R
10 63.00 75.33 86. 00 -
(0.0411)|18.67|(0.0530)|15.33|(0.0680){12.33 -
0.2235 |15.77| 0.2881 | 7.00| 0.3697 | 1.84 i
Average 64. 80 77.40 86. 83 .
(0.0410)|19.43|(0.0528)}15.60|(0.0678)|11.33 g
L= Mp() = Zug [VorTmia 2,7 (3.13) .
and -
U= Mp(e) + zig [VarlMCAAD] (3.16) a
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where 2z ,_« is the upper l-r% point of the standard normal
S

distribution. Tables I and II show the results of 10

independent simulations for the original and the

/' v, Py

bias=-corrected estimate. Each simulation was replicated 30C

times. Tables report the average and standard deviation of

ol

the normal confidence interval length; the proportion, % of

h )
=

the intervals that covers the true value; the proportion of
intervals that are +too high, (e.g. M(t) < L ); and the
proportion of intervals that are too low,(e.g. M(t) > U ).
Since the simulation replications are independent, it is
possible to assess the uncertainty of 5. If the confidence
interval procedure is correct, then p should be within
approximately * nggﬁfgof 1-¢. The coverage rate 1in the
tables indicate that the parametric estimates tend to
underestimated. Obviously, the distribution of &P(t) 15
skewed right. However, the confidence interval procedure
works well, regardless for both the original and the
bias~corrected estimate. Both have a variable coverage
rate. The difference of performance between two estimates

is not significant.

C. OTHER SERVICE TIME DISTRIBUTIONS

1. Mixed Exponentjial Service Time
In this subsection, service times having a mixed

exponential parametric form will be considered. Customers
arrive according to a Polisson process with unknown rate

A which must be estimated. Customers are of two types; with

probability P, , a customer's service time is exponential
with mean u,; with probability P,, the customer's service
time is exponential with mean M,. If T is the service time

of an arbitrary customer, then

P(T > t) = P,expl~t/u, 1 + P,expl-t/m,] (3.17)

22
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where P, + P, = 1. In this case, the mean number of
customers being served at time t is

Me(t) = A Pk, Cr=expl-t/ud) + Padda (- exp (-t/uNf( 3. 18)

We will assume that a customer's type and service time are
observable.
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Figure 3.3 Average Relative Bias of MP(t) for
Mixed Exponential with W =2, M4.=.75, P, =.2 at t=1
{ n=50, =300 )

A simulation experiment was done to assess the
performance of MP(t). In the ith replication, service times
for 50 customers were generated, where the proportion P, of
them have a type 1 and the proportion P, have a type 2. A
random number was drawn to determine the type of customer.
If a customer was of type i, a service time was generated
from the exponential distribution with mean u:. For the
simulation, the proportion P, is assumed known. The 50

independent interarrival times were also generated. In this

23
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Figure 3.4 Average Relative Square Error of Mp(t) for
Mixed =zxponential with 4=2, Ww=.75, P, =.2 at t=1
( n=50, r=300 )

case , P, =0.2, U =2., ur=0.75, and A=1l. The estimate Me(t)
was computed; the estimate of P4 is the proportion of
customers that were type i; the estimate of the mean service
time Ui was the mean service time of type 1 customers; the
Estimate of A was the mean interarrival time. The estimate

Mp(t) of M(t) assuming that the service time distribution is

exponential was also computed, that is,
Me(t) =X\ M (1-expl-t/d]) (3.19)

A A
with M equal to the mean service time and X\ is equal to

the mean interarrival time. The procedure was replicated
300 times. Results of the simulation appear in Figures 3.3
and 3.4. g, (t) is the average relative bias of the estimate

and 6.(t) 1is the average relative square error as computed

in equation 3.11 and 3.13. The solid line 1s for the
A

correct parametric model estimate Mp(t). R The dotted line

represents the exponential model estimate M,(t%).
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In both figures, we compare the correct model
( represented by a solid line) with the erroneous exponential
model. As expected, the exponential model clearly does not
perform as well as the mixed exponential model. In Figure
3.3, the 1level of bias for the exponential model 1is very
high early in time, but is reduced, and stabilizes as t +©.
Notice that the estimate using the exponential model appears
too large. The average relative square error of the
estimates is shown in Figure 3. 4. Although the results of
exponential model shows a slightly higher mean square error
than that of the mixed exponential model, the results of
exponential model are not too much worse. This is not
surprising, since as t 9® the estimate just depends on the
mean.

2. Gamma Service Time

In this subsection, the parametric form of the
service time distribution is gamma. The probability density

function is

] Ko K=t o
£(t) = --- @t Rt (3.20)
Mo
where k and @ are strictly positive parameters of the
distribution, and k is further assumed to be an integer. By
successive integrations by parts, we get
W

E.(t) =1 - ’z e‘@f (Glt')

4=0 ! _/

(3.21)

its mean and standard deviation are

= X 5 = J I
@ ‘ :3
Thus, kX is the parameter that specifies the degree of
variability of the service times relative to the mean.
Since the arrival process is Poisson with rate ),

the interarrival times are mutually independent, positive
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random variables with the distribution function

G(y)=1-EXP(=- AY), where A\ must be estimated from
interarrival data y; , i=1 to n. Thus, the ﬁp(t) in this
case is obtained by the successive integrations by parts of
the survival function of the gamma distribution, that is

x
1

\

-

YL s 3 At (aty
MPm-xié'ﬁ(l—,}'Oe - )S (3.22)
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Figure 3.5 Average Relative Bias of Mp(t)
for Gamma with 8=1, k=2 at t=1. (n=50, r=300 )

The performance of &P (t) was evaluated by the
simulation. In the simulation, the parameter k of the gamma
distribution was assumed to be known, but the rate of the
arrival process is unknown and is estimated. Two simulation
cases were run. In the iﬁ‘replication of the simulation, 50
independent service times were generated, where the first
simulation case used the gamma distribution having 43=1 and
k=2 and the second case used the 3Jjamma distribution having
B =0.5 and k=4; 50 independent interarrival times having
B =1 were also generated. For k=2, the estimate is

26




Mp(t) = )\I-g-(l-eXp[-étl - t-expl-at]} (3.23)

and for k=4, the estimate is

: A A 4 o "l;
M,(t =\ {=z~(l-exp[-at] - exp{- dt] 3t + et + ---3t Tl
»
1)
A n
where ) =n/s Yy, and ‘é=kn/;‘:\ X, were calculated. An estimate
- AN s
. based on an erroneous exponential service time model -
parametric estimator was also calculated o
Me(t) =X i (l-expl-t/i]) (3.25) )
. A \ g
Wlth M = -rr-\ o x;- :
' s}
N o
A € L
) ==l ..
C o >
g 1 ~
N [+ ] -
O W O «J
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Figure 3.6 Average Relative Bias of Mp(t) =
for Gamma with B8=.5, k=4 at t=1. ( n=50, r=300 ) <
=
The simulation was replicated 300 times. The -
1 average relative bias é(t) and the average relative square %
S error B,(t) were calculated. These results appear in $
27
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Figure 3.7 Average Relative Square Error of M (%)
for Gamma with @8 =1, k=2 at t=1. ( n=50, ©r=300 )

Figures 3.5, 3.6, 3.7, and 3.8. The dotted lines in the
figures show the results of the erroneous exponential model.
The solid 1line represents the results of the gamma model.
ﬂ The figures clearly show that the performance of the
g exponential model is not as good as that of the gamma model
initially. However, both models have the same equlibrium
state for t > 15, approximately. Figure 3.5 shows the
average relative bias of the estimate in the case of k=2 and
Figure 3.6 shows the same in the case of k=4. In both
figqures, the erroneous exponential model has a high level of
bias and the bias of the gamma model is almost constant;

however, both models have exactly the same limiting value as

g t 200 . The average relative square error appears in the
] Figures 3.7 and 3. 8. Figure 3.7 represents the average
a relative square error of ﬁP(t) and ﬁe(t). in case of k=2,
- and Figure 3.8 represents the same in the case of k=4. In
§ Figure 3.7, the exponential model has a poorer performance
: than the gamma model, but the difference is small. In
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Figure 3.8, the exponential model has a large value of mean
square error initially and the level of mean sqQuare error
associated with the exponential model grows as the value of
parameter kX is increased.
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Figure 3.8 Average Relative Square Error of Mp(t)
for Gamma with g=.5, k=4 at t=1. ( n=50, 1r=300 )

3. Lodgnormal Service Time
In this subsection, the service time distribution is
assumed to be lognormal. Let X be a random variable, and
let a new random variable Y be defined as ¥=ln X. If Y has
a normal distribution, then X is said to have a lognormal

distribution. The density of a lognormal distribution is
given by

\ \
£ = amm——- - eeee(1 - 3.26
(%) = jmaszexel= —pzz(in x &)1 ( )

where =-0< § <c0 and d >O. Set Y=ln X -§ and by the
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integration
P{X<¢x} = Ek(x)
o1 (hx-t
Ty j-w exp (-7 as'] dy
= Gy (REE (3.27)

where G ( - ) is the standard normal distribution function.
If the service time has a lognormal distribution, then the
estimated mean number of customers being served at time t,
ﬁP(t), is obtained by integration-by-~parts

A

Mp(t) = A (t[1-F(£)] + [%sE(s)ds) (3.28)

Substituting equation 3.26 for f(t) and equation 3.27 for
F(t) in the equation 3.28, we obtain

;'IP(t) =3\H[\-Q\,(gﬂ%)]* exp[§1~-‘§]6n((l—“—t—:§—-d‘)§ (3.29)

where GY(‘) is the standard normal distribution function.
The lognormal distribution is positively skewed and the
level of skewness depends upon the value of mean and
variance of the distribution. If the value of mean 1is
decreased but the variance is increased, then the shape of
distribution tends to be more skewed and it approaches the
shape of the exponential model.

The performance of the parametric estimate was
assessed by simulation. In each replication of the
simulation, 50 independent lognormal service times and 50
independent exponential interarrival times were generated.
The simulation generated two sets of the service times. One
set of service times is from the lognormal distrbution with
§ =0.193 and JA=1 ,and the other set is from the lognormal
distribution with §=0.568 and §=0.5. To estimate the mean

and variance from the data, the logarithm of the service
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Figure 3.9 Average Relative Bias of Mea(t) for
Lognormal with § =.193, §'=1 at t=1. ( n=50, r=300 )
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Figure 3.10 Average Relative Bias of MP(t) for :
Lognormal with §=.568, ¢ =.5 at t=1. ( n=50, r=300 ) -

time data, ¢t (=ln x;, 1=1 to n was computed. The mean and
variance are expected by
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b
9% Thus the estimate is
2
‘ Lt -5-&"
> Mo(t) = At f'*\«(“{g LRI *efﬂ;v— 3G (_T—)S (3.30) .
N where X\ is the estimate of the arrival rate. An estimate
™ based on an erroneous exponential model i
A A A R :-
Mo(t) =AM (1 =~ expl=-t/m]) (3.31)
a v A
was also computed, where M== 3 X,
An t
3t L
o
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g 3t
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: Figure 3.11 Average Relative Square Error of MP(t)
for Lognormal with §=.193, &°=1 at t=1. ( n=50, r=300 )
The simulation was replicated 300 times. Figure 3.8
shows the tendency of @(t), the average relative bias of
~
MP(t), for the correct model (shown with a solid line) and ]
’ the erroneous exponential model (shown with a dotted line) ;
‘j for the simulation with §=0.193 and §"=1 in Figure 3.9, and -

with §=0.568 and ¢ =0.5 in Figure 3.10.
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Figure 3.12 Average Relative Square Error of Mp(t)
for Lognormal with §=.568, §=.5 at t=1. ( n=50, r=300 )

In both figures, the average relative bias of the
exponential model is also large initially. As expected, the
average relative bias of the exponential model in Figure
3.10 is larger than the results in Figure 3.9, As t »00 ,
the exponential model shows better performance and has a
limiting wvalue. Figures 3.11 and 3. 12 show the tendency of
é‘(t), the average relative square error, for the correct
model (shown with a solid) and the erroneous exponential
model (shown with a dotted 1line). For Figure 3.11 the
parameters, g =0.193 and §°=1, are used to generate data.
And for Figure 3.12 the parameters, ¢&=0.568 and d}=0.5, are
used. The value of average relative square error of the
exponential model in Figure 3.12 is also higher than the
results in Figure 3.11.

D. SUMMARY
The general conclusions of this chapter are that the

parametric estimation method is a highly efficient for
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obtaining estimates of M(t) whenever the correct assumption
for the model 1is given. The structure of the estimate of
M(t) 1is clearly biased since it 1is a nonlinear function of
the estimated parameters for the service time distribution
and the customer arrival rate. However, for the service
time distributions considered the indications are that the
bias 1is small. Hence the parametric estimation method
performs very well, whether or not the estimate is corrected
for bias, when the correct parametric form is used. However
the performance of the parametric estimation is very poor
when the wrong parametric model is used. For instance, the
erroneous exponential model often has a high 1level of bias
and mean-squared error. Notice that the exponential model
converges to the same limiting value as the correct model as
t 9o in all the cases considered. This is because as t =»x
all estimates use the mean service time to estimate the

integral of the servivor functions.
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IV. NONPARAMETRIC ESTIMATION

A. DESCRIPTION

Nonparametric methods are statistical techniques which
are applicable regardless of the form of the distribution
function that the measurement comes from. In this chapter,
these techniques will, for the most part, be based on the
order statistics.

Let x, ,%x, ,...,Xy,n denote a random sample from a CDF F,
and let s, ,S,, ,.--.,S~, denote that corresponding order

statistics. Then the sample CDF is defined by

%n(t) = f;(number of qé)less than or equal to t)
='ﬁ %;IW-w,tn SG)
For fixed time t, ?n(t) is a statistic since it is a
function of the sample. In fact, for fixed time t, %n(t)

has the same distribution as that of the sample mean of a
Bernoulli random variable. We know by the central limit
theorem that ﬁn(t) is a asymptotically normally distributed
with mean F(t) and variance ( )F(t)[1-E(t)].

Recall that (in chapter II) the mean number of customers
being served at time t, M(t), 1is a function of the arrival
rate X\ and the survivor function of the service times.
Hence a nonparametric estimator, denoted by My(t), can be
represented by the estimated values of X and %(t). The
estimated survivor function of service time is

A

Fo(t) = 1 if 0 s t < s,
noAl if s ¢t < s for i=1,2,..,n-1
n ) G
0] if t > Qn)
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Now, using the fact that My(t)= A\:'f(s)ds, we obtain a
nonparametric esimate

A A
M(t) = A\t if 0 ¢ t < s

N ¢ m-a .

- .t mme= L if s £t < s

| ﬁ\%qh ™ ]

Ao .

;“W%%J if t 2 s (4.1)
where X 1is the estimated arrival rate. Note that the
nonparmetric estimate has a limiting value as t »x , that
is, aim Mn(t)=;\m where m is the mean service time.

200
In this chapter, we will consider two different
situations. In one case, we will assume that the arrival

rate 1is known but the distribution of service times is
unknown and must be estimated. Based on this assumption,
n

My(t) 1is expressed simply in terms of the order statistics

of the service times as follows

A & o
My(t) = \{-h-‘zﬂs + e t] (4.2)
< . .
when %“\ts. gxﬂ). In the Appendix A, we derive the
distribution of My(t) in this case. Its mean and variance
are
A
E[My(t)] =A{F(s)ds (4.3)
Var[My(t)] = +{ [IsF(ds) - [ §IsF(ds)]2 + £2F(t)F(t)
= t
- 2tF(t)[ | sF(ds)]} (4. 4)
A
Thus, My(t) is an unbiased estimate of My(t). Further, as
A
the sample size n is increased, My(t) is asymptotically
normal. Thus an approximate normal 100(1-% )% confidence

interval for ﬁu(t) is given by
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A
M(t) % 2z«

=

fvar{M (t)] (4.5)

T L e T e TaTTEE Yy T .

where Y is Eﬁe upper 1l- § point of standard normal
- distribution and Var{M,(t)] is given in Appendix A. In this
: chapter, we will also study the jackknife and the bootstrap
procedures for obtaining confidence intervals for ﬁﬂ(t) in
the case in which XA 1s known. In the second case, we will
assume that the arrival rate A is also unknown and must be
estimated. Then, a nonparametric estimate &g(t) is the
product of two estimates,

Ma(t) =Al-Zs + T35-q (4.6)

»e

AN A
where )\=n/:%yx and K is the number of service times that

are less than or egual to t. There are no exact functional
forms for the mean and variance of &N (t) in this case.
However, the jackknife and the bootstrap methods can be used
to obtain confidence intervals. This will be described

below.

B. JACKKNIFE ESTIMATION METHOD

In this section, we will study the jackknife procedure
for obtaining a confidence interval for My (t). The
jackknife was first introduced by Quenouille (1949) for the
purpose of reducing the estimate bias, and the procedure was
later utilized by Tukey (1958), to develop a general method
for obtaining approximate confidence intervals [Refs. 7,8].

The basic idea of the jackknife estimation method is to
assess the effect of each of the groups into which the data
have been divided, not by the results for that group alone,
but rather through the effect upon the body of data that
results from omitting that group. The two bases of the
jackknife are that we make the desired calculation for all
the data, and then, after dividing the data into groups, we

make the calculations for each of the slightly reduced
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bodies of data obtained by leaving out just one of the
groups. A special case of Jackknife estimation 1is called
the "complete jackknife estimation", where the number of
subgroups is n (the size of sample); the i*“ subgroup is
obtained by deleting the ith observation; thus the size of
each subgroup is n=1 [Ref. 9]. Attention will be restricted
to complete jackknife estimation in this study.

Let ﬁ:ﬂ(t) be the estimated mean number of customers
being served at time t on the portion of the sample that
omits the i*“ sample. Let &Q“ (t) be the corresponding
estimator for the entire sample and define the i*h
Pseudo-value by

A A

M,(t) = oM, (t) - (n-1)M)(t)

A

The jackknife estimate My (t) and an estimate 3

variance are given by

A \ LA
My(t) = == Z M((¢t)
m o a

| noa

= mmene- T [Mi(t) - My(t)]2 (4.9)
mEn-1d ast

Tukey (1958) proposes that the n estimated pseudo values be
treated as approximately independent and identically
distributed random variables [Ref. 9]. Hence, the statistic

A A
\/’F ( Mjkt) - Mal\&‘, )

Ua5 T (b - Aoyt 17
(4.10)
has an approximate t-distribution with n-1 degrees of
freedom, which leads to the approximate 100( 1= )%
confidence interval

A A
M,(t) t‘_% S,
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where t\_% is the upper l-fé critical point of the
t-distribution with n-1l degrees of freedom. The confidence
interval given by equation 4.11 is a function of the
estimated variance. In the remainder of this section, we
will describe several methods of implementing the confidence
interval procedure. We will also obtain an analytic
expression for the jackknife estimate and its wvariance
estimate for the case in which the arrival rate A is known.

1. Jackknife Estimate with Known Arrival Rate

In this subsection, the arrival rate 1is asssumed
known. In this case the closed form expression for the
jackknife estimate and its variance estimate can be derived.

The nonparametric estimat? of the mean number of

customers being served at time t, M (t), can be expressed in

terms of the service times as follows:

A
A

M (t) = Al LSs + ARy 4.12)
WE) =X ™ Gy n (4
where S,'s are the order statistics of independent and

¢
identically distributed random quantities from the unknown

probability distribution F, and the wvariable % is the number
of Su)'s which are less than t. This equation shows
immediatels that ﬁu(t) is the 1linear function of the order
statistics of service times.

The jackknife estimate is based on sequentially

deleting point Su)and recomputing the estimator. Removing
point %J) from data set gives a different empirical
A
probability distribution Fm., with mass ;%T at Susy Q)
""%fﬁ ’iﬁO""%ﬁ) and a corresponding recomputeéﬂyalue of
the estimate. In the jackknife process, the 1 pseudo
value 1is A
M(t) =¢ At if 1 > K
\su) if 1 ¢ K (4.13)
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for the fixed time t. Accordingly the pseudo values M,(t)
A

have just K+1 different values. The jackknife estimate is

i d

K -
My(t) = A[%E sg, - “ooo-t] (4.14)

] This result 1is exactly the same as the original estimate.
A
This is because the estimate My(t) is unbiased. In Appendix

B, the jackknife variance estimate is derived as follows:
A A

A = ) 2 I 2
Var[M (t)] = _T{--E.s - 2tE‘ (t)l %sb [w\ésu)]
A A
+ tPF,(t)F(t)} (4.15)
2
- where F,, (t) is the sample survivor function. Comparlng

equation 4.15 with equation 4.3 we see that (----)[Var {Mu
(t)})

tends to be conservative in the sense that its expectation

0

E[V£}{M3(t)}]. Thus the jackknife variance estimate

is greater than the true variance of My(t). We will now
describe two selected procedures to obtain confidence
intervals for the jackknife estimate. Tukey suggested that
the statistic in equation 4.10 has an approximate
t-distribution with n-1 degrees of freedom, which leads to

»Y the approximate two-sided 100(1-%)% confidence interval

&T(t) + t\-%jvﬁrlms(t)] (4.16)

for My (t), where t,_§ is the upper 1"i critical point of
the t-distribution with n-1 degrees of freedom. However,
the n estimate pseudo values have just §+l different values.
Hence, another possible procedure is to adjust the degrees
of freedom of the t-distribution, that is, subtract one from
the number of different pseudo values (§+1), and use the
: result as the degrees of freedom. The length of confidence
i interval generated using the adjusted degrees of freedom (ﬁ)

is slightly wider than that generated using the usual
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degrees of freedom (n-1) and the coverage rate should be

increased.
2. Jackknife Estimate with Unknown Arrival Rate
In this subsection, it will be assumed that the rate

of Poisson arrival process is unknown and must also be
estimated. The maximum likelihood estimate is &:n/é Y,
where y; 1is the interarrival time between i* and (i-1)*"
customers. A nonparametric estimate of mean number of
customers being served at time t is given by

A A n—te

Mu(t) = A=r T8, -;T-t} (4.17)

where S(,'s are the order statistics of 1independent,
identically distributed random quantities from the unknown
probability distribution F. It is assumed that the Sujs and
Y.'s are independent. The variable % is the number of S 's
which are less than t. The data consist of two independent
random samples,
S.,Sl,...,sm ~ Fand ¥,,.% ,..., Y, ~ @

F and Q being two possibly different distribution on the
real line with Q, the exponentialAdistribution with mean i

From equation 4.17, the estimate My(t) is the product of two

L)
estimates. One is the function of vy; , &5=T/EEK, and the
other is the function of s; , H( s)=—-,‘;\- é s; t ﬁ:—,‘f— t. there are

many possible ways to perform a two-sample jackknife
procedure. We will call one method the "paired sample
jackknife" procedure. Since the size of both samples is the
same, we make the one set of observations by pairing
respective observations, that is, (s‘,y‘),(sL,yQ,...;(s“,y“
). As with the one-sample jackknife, we estimate the M,,(t)

for all the data, and then, we estimate ﬁ;*(t) based on the

remaining data obtained by leaving out just the iH‘pair.

Thus the i*h pseudo value ﬁ;(t) is

Mi(t) = nM,(t) - (n-1)Ma(t) (4.18)
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A .
and the jackknife estimate M,(t) and variance estimates are .

* given by

M = - 3Mt

My(t) = - ZMi(t)

A U D VI S 2 -
3T wans ZIMAE) = My(t)] 5
Based on these statistics, an approximate two-sided 100
(1-X)% confidence interval is given by =
A
M(t) £ t_« S (4.19)
= 3

where t -2 is the upper L-é_point of t-distribution with
n-1 degrees of freedom. A second methed is called the

." ‘l. '4’ 21

Py

"separated sample jackknife" procedure. Since we assumed
that the X;'s and Y;'s are independent, we can perform the
jackknife procedure separately for each sample, and then,
estimates which combine jackknife estimates and the
jackknife variance estimate can be computed.

Let ﬁz‘(t) be the jackknife estimate of A and %} be

g the jackknife variance estimate for A . Let M;,(t) be the -
- — A O
. jackknife estimate of S: F(s)ds and Vg be its jackknife Q
- variance estimate. Then the combined jackknife estimate of R
A K

Myc(t) is §

; " ; . B

MIc(t) = MJ‘(t)-MIJ(t) (4.20) .:
and the combined jackknife variance estimate is .2
' A, A A - A N __
3 S; = \}-VS + V/v[IVIJ‘.‘_(t)]2 + Vs[MJ\(t)]2 (4.21) i
The approximate two~-sided 100 (1=-X) % confidence interval is -
- given by Zf
A A :“
Msc(t) * t -2 Ssc/f?f (4.22) ::

'
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where t . 4 is the upper 1-3 point of t-distribution with n-1
degrees of freedom.

C. BOOTSTRAP ESTIMATION METHOD -
Efron(1979) introduced the bootstrap method for :
estimating the distribution of a statistic computed from X
observations [Ref. 10]. The bootstrap estimate is obtained :
by replacing the unknown distribution by the empirical '-
distribution of the data in the definition of the ﬁ
statistical function. In practice, the distribution of the 0
statistic is approximated by Monte Carlo methods. i

For convenience, the arrival rate is assumed to be known
A
and equal to 1, then the nonparametric estimate DMy(t) is

just a function of service times. This is a one-sample

problem. The bootstrap procedure is as follows:
1. Suppose  that the data points X are

lnde%endent observations from the unknown dlstrlbutlon
hen the true estimate is

My(t) = |SF(s)ds (4.23)

2. We can _estimate the distribution F by the empirical
probability distribution Fn.
Fp : mafszh on each observed data point Xx;
i=1,2,..... ,n

3. The bootstrap estimate of My(t) is

'Ax,,(t) = j: Fn(s)ds (4.24)

A
To obtain an estimate of variability for Mg(t), we procede

as follows

RN A L
bt °

(1) Construct Fy the empirical distribution function,
as just described.

(2) Draw a_  bootstrap sample  x¥ f L. XE by
independent random sampling from F <
Notice that we are not getting a permutation distribution a
- since the values of Xf' are selected with replacement from @
.
L
N
o
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e the set (x\,xL,...,x“ ). As a point of comparison, the
) ordinary jackknife can be thought of as drawing samples of
size n-1 without replacement.

(3) Compute an estimate of My (t) for each Dbootstrap -

e replication, Mn£t) that is, the value of statistic
3 evaluated for the bootstrap sample.
x
% \ + { n +
M S e LR, t == -2 .St 4,
] We) = =g Txp o+ grln- Zi(d<e)le (4.25)
n where I(x st)={1 if x<t
g 0] otherwise
» (4) Do step (2)  some large number "B" times obtaininﬁ
independens bootstrap replications Mf} (t), :L
(t),..., M*8(¢). :
Based on the bootstrap replications, the approximate -
. estimate of My(t) and its variance are obtained by
) A t & w2
- Ma(t)= -B'-EM"(t) (4.26)
.
. A v & " 2
Var[Mg(t)] = -B:T'S;t[M")(t) - Mu(t)] (4.27)
A
A formula for the conditional variance of Me_(t) given the :
original sample data is derived in Appendix C. This -
§ expression is given by A A A
: Var[Mg(t)] = ={-kEx2 - [-‘-é)i)" + g2 X
N 8 m UM T R m = M n
: A Q
o _ =K.+ :
2t( ' Hsrzxll (4.28)
Notice that the expected value of the conditional variance
of the bootstrap estimate is approximately equal to the by
variance of the nonparametric estimate of M,{t) which is
B derived in Appendix A.
f So far we have considered the problem, where the arrival
ﬁ; rate is known. The bootstarp methodology also applies if
; the arrival rate 1is unknown and 1is estimated from

.................
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L and U from a set of bootstrap replications, To overcome
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interarrival data. Suppose the data consist of a random
sample X=(X, ,X, ""'Xm ) from unknown service time
distribution F and an independent sample Y=(Y,,Y, ,...,Yn)

from the exponential interarrival time distrbution G with
unknown parameter \. One bootstrap procedure to estimate
the expected number of customers being served at time t is
to construct F, and Gn the empirical probability
distribution corresponding to F and G. Bootstrap samples
X:\,Fq, i=1,2,...n, Y:k Gy, J=1,2,...n, are independently

drawn, an estimate of M,(t)

% m \ & \ 4 *
My(t) = =p==={~=Z xT + ==-[n - Z I(x’¢t)]t 4.29
W t) i)’;“'{'\n‘st * h[ a3 (x'<t)lt] ( )
I
is calculated. As before there are a large number B of
bootstrap replications. For this case, the bootstrap

estimate of M, ,(t) and its variance are still given by
equations 4.26 and 4.27. There appears to be no closed form
of the analytical variance of &e (t) 4in this case. Now we
will describe methods to obtain approximate confidence
intervals for the bootstrap estimate ﬁa(t).
1. The Percentile Method

A simple method for assigning approximate confidence
intervals to the nonparametric estimate My(t) is as follows:
Let

C(t) = =LBLSE ( 4.30)
B
be the cumulative distribution function of the bootstrap
distribution of My (t); B is the number of bootstrap
replications. For a given 0<x <0.5, define
Lx) =), U(x) = C(1-%)
Usually denoted simply by L and %. This definition runs

into complications when we actually try to compute quantiles




............

these difficulties, we order the bootstrap replications from f
smallest to largest, obtaining the sorted data ﬁﬁ?(t), for

i=1 to B. Letting represent any fraction between 0 and

1l; take Q(xX) to be Nﬁgﬁt) whenever Q 1is one of the . ;
functions o = iﬁfi , for i=l to B. Thus L(X) turns out to ;'
be the (B *x + 0.5/ MT(t) and U(«) to be the (B * (1-X) o

+O.5f“ Mty)(t). The percentile method consists of taking

( E(q) . fJ(o() ] (4.31)

as an approximate 1-2d confidence interval for &e(t) since
X =C(L), 1-4=C(U), the percentile method interval consists
of the central 1-2 K proportion of the bootstrap
distribution. 3
2., The Bias-corrected Percentile Method

Efron(1980) suggests the following bias correction
for the percentile confidence interval procedure {Ref. 11].
He argues that if &B(t) is not the median of the bootstrap
replication distribution, then a bias correction to the

percentile method is called for. To be specific, define

-l A A

zo=8 [C(Mg(t))] (4.32)
A t{MIdr et § , . .

where C(t)= —— &  as in equation 4.30, and is the

cumulative distribution function for a standard normal

variate. The bias corrected percentile method consists of

taking K

<.

AL Aoy ::
(C{ g (220- 2)) . C [ (2z,+ z)}) (4.33)

as an approximate 1-2« central confidence interval for

al

A
Ma(t). Here z 4 is the wupper point for a standard normal

§ (2x)=1-7%.

o
-
K3
g
<
<
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Notice that if Mg(t) is the median of the bootstrap .
distribution then z,=0 and equation 4.33 reduces to equation :
4.31, the uncorrected percentile interval. However, even
: small differences of Pr{M:(1ﬂ £ ﬁa(t)} from 0.5 can make <
: equation 4.33 much different from equation 4.31. y
- N
- Y
-
2
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V. SIMULATION RESULTS

The purpose of the simulation in this chapter is to
assess the performance of the nonparametic estimation
methods, the jackknife and the bootstrap. Since the
estimate of M(t), the mean number of customers being served
at time t, is a function of the customer arrival rate and
the integral of the survivor function of the service time
distribution, two simulations cases are done. The first
simulation case was performed to estimate Mg (t), the
nonparametric estimate of M(t), as a function of the service
times with the arrival rate assumed to be known and set
equal to 1. For this case, the jackknife and bootstrap
estimate of the variance were derived in the chapter IV, and
compared with the numerical estimate obtained by the
simulation. The second case assumed that the customer
arrival rate 1is also unknown and must be estimated using
interarrival times.

In each replication of the simulation for case 1, 50

independent service times from a specified service time

distribution were generated. For the bootstrap procedure,
500 bootstrap replications were performed. The simulation
was replicated 300 times. For the purposes of comparison,

we considered four types of service time distributions,

which were the exponential, the mixed exponential, the
gamma, and the lognormal distribution. The arrival process
is known to be Poisson process with known rate A =1. The

same generated service times were used for each estimation
procedure in a replication. This reduces the variability of
the differences in performance between the procedures. All
programming was done on IBM 3033 computer at the Naval
Postgraduate school using the LLRANDOMII, random number
generating package [Ref. 6].
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TABLE III
STATISTICAL DATA OF ESTIMATE OF M(T)
N=50 R=300 (B=500)
oIy True | Parametric | Nonparametric |
value |(Correct Errors Jack Boot
Exponential 0. 7869 . 7830 - 0.7820 0. 7819
2) (0.0268) (0.0451)[(0.0452)
Mlxed expon 0. 5992 0.5871 0. 6246 0. 5991 0. 5989
W=2,u 5,p= .2) (0.0023)|(0.0026)|(0.0512)[(0.0512)
Gamma 0. 8963 0. 8952 0. 7861 0. 8965 0. 8967
( A=1, k=2) (0.0009)((0.0010)[(0.0325){(0.0325)
Lognormal 0. 8094 0.8140 0. 7844 0.8139 0.8138
(§=.193, 4=1) (0.0021)|(0.0020)|(0.0383)(0.0383)

Table III presents the results of several estimation
methods when the arrival rate is given and equal to 1. The
top of each cell gives the mean estimate of M(t) at time
t=1, where M(t)={ F(s)ds. The bottom part of each cell
gives the standard deviation of the estimate. For service
time distributions other than exponential, a parametric
estimate based on an erroneous exponential model is also
given. The estimate in the case of an exponential model is
[1-EXP{-t/}] where M is the mean service time. For each
service time distribution, the standard deviation of the
parametric estimate of M(t) is smaller than that of the
nonparametric estimate of M(t). That is, the efficiency of
the parametric estimation method 1is better than the
efficiency of the nonparametric estimation method. However,
the results of a parametric fit assuming an erroneous
exponential model show the worst performance. The true
value of M(t) 1is not included within plus or minus three
standard deviations of the erroneous estimate M(t). In the
table, the nonparametric estimation methods seem to perform
well in all cases with the cost of an inflation of variance.
Hence the nonparametric estimation method is to be preferred

when the service distribution is unknown.
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To 1illustrate the efficiency of the nonparametric
estimation methods, we simulated two possible ways to

construct the approximate confidence interval for My(t) for

the bootstrap and the jackknife methods. Those ways are
presented in chapter 1IV. For the jackknife estimation
method, one piocedure was to construct the confidence

interval with the »—egular degrees of freedom, n-l, and the
§~ other used the reduced degrees of freedom, which is the
J; number of different pseudo values. For the bootstrap
estimation method, one way used the percentile method by the

Monte Carlo process, and the other used the bias-corrected

percentile method; there were 500 bootstrap replications.
Nominal 68%, 80%, and 90% confidence intervals were
constructed for each replication using each method. It was

noted whether the confidence interval formed by a given
method covered the true wvalue M(t). The entire process was
independently replicated with R=300 times. From these R
replications we computed, for each method, the proportion %
of the R confidence intervals which contained M(t), as well
as the average length of the confidence intervals. If a
method was performing adequately, ﬁ should be near 1-X , and
a small mean length is desirable.

Tables IV to VII show the simulation results of several
confidence interval procedures for four types of service
time distribution; the exponential, the mixed exponertial,
the gamma, and the lognormal. The arrival process 1is
Poisson with known arrival rate \=l.

" In order to compare the performance of these procedures
g to the normal confidence interval procedure, simulations
were conducted, and nominal 68%, 80%, and 90% confidence
limits were constructed for time t=1 for each replication.
,? The normal confidence interval procedure is based on the
;i order statistics of the service times. By the central limit

theorem, the distribution of My(t) 1is asymptotically normal
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TABLE 1V :
COVERAGE AND LENGTH OF 100(1- Q)y I "
FOR EXPONENTIAL WITH m=2, A =1 AT T=1 :
"""""""""" 68 % | 80% | _eoyg 7 s
Length [C. R.| Length |[C. R.| Length |C.R !
s.d) (s.d) _|_(s.4) R
Normal C.I. 0.0888 |[19.33| 0.1147 |12.00] 0.1477 | 4.67
69.33 83.67 92.00 8
Procedure (0.0089)111.33((0.0101)| 4.33[(0.0141){ 3.30 n
Reduced| 0.0911 [17.67| 0.1187 |11.00( 0.1548 | 3.33 3
71.33 85.33 94. 00 -
Jack-| d.f [(0.0089)|11.00{(0.0102)| 3.67|(0.0142)| 2.67 .
knife|Regular| 0.0897 |18.38| 0.1163 }11.33| 0.1505 | 4.00 "~
70.67 84. 33 93.00
d.£f |(0.0090)|11.00|(0.0103)| 4.33|(0.0144)| 3.00
Percen-| 0.0884 [18.67| 0.1132 {12.00] 0.1462 | _4.33
tile 69. 0C 82.00 92.00
Boot~| method|(0.0098){12.33((0.0112)| 6.00((0.0154)| 4.67
strap| Bias- | 0.0887 [16.67| 0.1137 [10.67| 0.1467 | 2.67 -
correct 71.00 83. 00 82.67 A
method|(0.0098)|12.33{(0.0112)| 6.33|(0.0154)| 4.67 i
distributed as the number of data points n 2o . Thus, the
100(1~A)% normal confidence interval is given by )
My(t) %z, g [VarlM ()] (5.1) )

where Z -4 is the upper 1—2' point of the standard normal
distribution and Var[My(t)] is given by equation A.14 in
appendix A.

Each cell in the tables contain the average and standard
deviation of confidence interval length; and the proportion
of intervals that are too high, (e.g. M (t)<L), where L is
the lower bound of interval; the proportion of intervals
covering the true value M(t), p; the proportion of interval
that are too low, (e.g. M(t)>U), where U is the upper bound
of interval. Table IV is for the exponential service time
case with with wu=2; Table V is for the mixed exponential
service time case with M, =2, M.=0.75, and P, =0.2; Table VI
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TABLE V

COVERAGE AND LENGTH OF lOOSW-N)% C.I. FOR

¢ =2,

MIXED EXPONENTIAL WITH wu,=2,

Normal C. I.

Procedure

=
W
[e]ele]
[e]ole)
WO
w-J0

o d i
IRTRANS
000
o000
W
owo
oW
oow
oW

ba~di
IRTNNS
wWom
WO~
WO
000
olele)
WWwW
WWW

J
b
oW
O~Ww
N
WWWw
www
wWoW
W~Jw

=~
T[N
lelole)
000
W0
lolole!
lelele)
WO
ANTs

the gamma service time case with 8=1 and K=2; and
Table VII 1is for the lognormal service time case with
§ =0.193 and § =1.

The overall examination of the tabulations of confidence
limit coverage and also the average and standard deviation
of confidence interval length suggest that the bootstrap
procedure is slightly better than the jackknife procedure;
however, the difference is negligible. The normal
confidence interval is also about the same as the jackknife
and bootstrap procedures indicating that a sample size of 50
is large enough for the central limit theorem approximation
to be adequate. All procedures produce almost the same
average length of confidence interval with a good coverage
rate, which falls within * 2 GEE?TOf l1-o . Although the
method of the reduced degrees of freedom used in the
jackknife and the bias=-correct percentile method applied in

the bootstrap improved the coverage rate, the variance was
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TABLE VI e
COVERAGE AND LENGTH OF 1Q00(1-x)% C.1I. N
FOR GAMMA WITH g=1, K=2, x\=1 'AT T=1 :
"""""""""" 68 4 | 80y |  soyx |
Length |C. R Length |C. R Length |C.R
(s.2)_ (s.9) s |
Normal C. I. 0.0595 |22.00; ©.0774 ([12.33| 0.0989 [10.67
68. 33 80. 33 86.33
Procedure (0.0100)| 9.67{(0.0120)| 7.33[(0.0174)| 3.00
Reduced| 0.0617 (21.00{ 0.0813 |11.33( 0.1062 8.33
70. 00 82.67 89. 00 :
Jack~ d. f (0.0102)| 9.00{(0.0122)]| 6.00((0.0178)] 2.67 .
knife|Regular] 0.0601 [21.67| 0.0785 [12.33| 0.1008 }10.33
69.33 80.67 86.67
d. £ (0.0102)} 9.00((0.0121)| 7.00}(0.0177)| 4.00
Percen-| 0.0589 ;21.33| 0.0766 (12.00| 0.0981 9.33
tile £9.97 80. 33 86. 67
Boot~| method|(0.0091)| 9.00(0.0122)| 7.67((0.0179)| 3.00
strap| Bias- 0.05985 [18.33| 0.0777 [10.67| 0.0990 8.67
correct 62. 33 81.00 87.00 g
method | (0.0100)(11.33((0.0121)] 8.33((0.0180)] 4.33 ot
l}
inflated. Furthermore, the amount of improvement was small
and not significant. Hence, the original procedures for

constructing the confidence interval for the jackknife and .i
bootstrap are preferred 1in this case. Note that the —
coverage rates are skewed left slightly but almost balanced.
It is a reason that the normal confidence interval procedure
performs well.
Results will now be reported for the simulation of the
case in which the arrival rate of the Poisson process is
also unknown and must be estimated from interarrival time
data. More computations are required for this case;
however, the procedure 1is same. Each replication of the
simulation generated 50 independent service times and 50
indepeandent exponential interarrival times having mean 1.
Confidence intervals were computed using both separated and
paired jackknife procedures and the percentile method for

the bootstrap. The number of bootstrap replications was
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TABLE VII
COVERAGE AND LENGTH OF 100( 1-%)% I.
FOR LOGNORMAL WITH §§=.193, ¢*=1, N\ =1 AT T=1
"""""""""" 68 % | 80% | e0% |
Length {C. R Length |C. R Length [C.R
S-S . (s.2)__ Jsd) )
Normal C. I. 0.0769 [16.67| 0.1007 }10.00| 0.1272 6.67
71.00 78. 00 89. 33
Procedure (0.0075)112.33{(0.0096)|12.00]|(0.0128)| 4.00
Reduced| 0.0787 [16.33( 0.1208 9.67( 0.1330 6.33
71.33 79.67 89. 67
Jack- d. £ (0.0076)(12.33|(0.0097)|10.67|(0.0127)| 4.00
knife|Regular| 0.0763 |16.67| 0.1021 |10.00]| 0.1297 6.67
70.33 79. 00 89. 33
d. f (0.0076)|13.00((0.0097)(11.00((0.0128)| 4.00
Percen-| 0.0763 |[16.67| 0.0998 |10.33| 0.1258 7.33
tile 69.33 77.00 88. 67
Boot=-| method|(0.0084)({14.00((0.0105)]12.67((0.0133)| 5.00
strap| Bias- 0.0768 |[16.00| 7.1004 8.671 0.1263 6.33
correct 68. 33 78.33 88. 67
method| (0. 0084)|15.67|(0.0106)|13.00{(0.0133)| 5.00
1000. Nominal 68%, 80%, and 90% confidence 1limits were
computed for each replication. The simulation was

replicated 300 times.

Tables VIII to X report the results of the simulation.
The quantities in the left part of each cell are the average
and standard deviation (within parenthesis) of coverage
interval length. The right part of each cell contains three
gquantities; the top value is the proportion of intervals
that are too high; the center wvalue is the proportion of
intervals that cover the true value, 5; and the bottom part
is the proportion of intervals that are too low.

In Table VIII (the case of 68% C.1.), the average length
from the bootstrap shows outstanding performance with a
small value of standard deviation. The paired jackknife
procedure performs as well as the bootstrap procedure. This
procedure reduced the standard deviation by more than half

of that in the separated jackknife procedure, and also
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improved the coverage rate. From the results of coverage
rate in the table, it can be recognized immediately that the
jackknife estimate, regardless of the application method, is
often too low, while the bootstrap estimate tends may a
little too high but is almost balanced in the number of
confidence intervals that are too high or too low. It is
the reason that the bias-corrected percentile method was not
required in this case.

In this simulation, all the coverage rates fall within
+ 2 XD of 1., (62.61, 73.38). Note that the average
length of the confidence interval in the gamma service time
case is the highest. When the arrival rate was known, the
gamma service time case had the smallest average length.
This indicates that the variability of the estimated arrival
rate may be the dominate effect in the width of the
confidence interval.

The results of Tables 1IX and X support the facts of
discussion about Table VIII, This 1is the reasonable since
the same random numbers were used to compute these
confidence interval. The presentation of Table IX is
exactly the same as the case of table VIII. All the
coverage rate are fall within (75.38, 84.61), though the
value of coverage rates fluctuate over the service time
distribution cases. Obviously the paired jackknife
procedure performs very well. The bootstrap procedure still
has the best performance; however the value of coverage rate
fluctuates greatly for the different service time
distributions. For the 90% confidence interval case

reported in Table X, some coverade rate fall outside the

range (86.53, 93. 46). The separated jackknife procedure
produces low coverage rates outside of (86.53, 93. 46),
except for the exponential service time distribution. The

paired jackknife procedure improved the coverage rate
tremendously. Although the average lengths in the paired
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jackknife procedure are slightly bigger than those in the
bootstrap procedure, the overall performance is better than
the bootstrap. Furthermore, the procedure in the case of
gamma service time distribution, the bootstrap produced one
coverage rate outside of (86.53, 93.46). However, this
could be due to sampling fluctuation.

In general, all the confidence interval procedures
performed very well for the exponential service time case,
regardless of the level of the confidence interval. The

procedures also worked well in general to produce 68% and

80% confidence interval. However, performance was more
variable in the 90% confidence interval case. In most
cases, the average length produced by the bootstrap

procedure is the smallest, but the value of the coverage
rate fluctuates for different service time distribution.
The overall examination of the tabulations suggests that the
paired jackknife procedure performs very well compared to

the separated jackknife procedure and in some cases shows

better performance than the bootstrap procedure.
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TABLE VIII
COVERAGE AND LENGTH OF 68§_gb1

WITH UNKNOWN ARRIVAL RATE (N=50, 0, B=1000)

Jackknife Bootstrap

Separated Paired Percentile

Length [C. R Length {C. R Length |C.R
______________ 5.9) SN S -0 DRI DS N R
Exponential 0.2674 7.00| 0.2525 9.67| 0.2436 |18.33
70. 00 70.33 66. 67
(m= 2) (0.1282)23.00((0.0570)(20.00({(0.0510){15.00
Mixed exponen| 0.1999 |12.00/| 0.2077 |15.00Q| 0.2009 |21.67
(s =2, M=, 75 65. 67 68. 00 64. 00
P, =.2) (0.0832)122.33((0.0429)|17.00((0.0398)|14. 33
Gamma 0.2917 [10.00| ©0.2746 |13.33| 0.2632 [21.67
68. 00 67.67 66. 00
( 8=1, k=2) [(0.1376)|22.00{(0.0599)|19.00|(0.0557){12.33
Lognormal 0.2533 7.67| 0.2513 (10.00| 0.2415 [19.33
. 72.00 72.33 69. 67
(§=.193,d =1)[(0.0998)|20.33|(0.0486)}17.67|(0.0461)|11.00

TABLE IX

COVERAGE AND LENGTH OF 80% C.1I.
WITH UNKNOWN ARRIVAL RATE (N=50, =300, B=1000)

Jackknife Bootstrap

Separated Paired Percentile

Length |C. R Length [C. R Length |C.R
P P ¢ s9) ... (s 9) |oo..|-L5.2) .
Exponential 0. 3447 5.33] 0.3282 8.00] 0.3162 |12.67
79.67 82.00 83. 00
(M= 2) (0.1329)}15.00](0.0641){10.00|(0.0585)| 4.33
Mixed exponen| 0O.2558 0.2688 5.67| 0.2553 |12.67
Mo=2 0 =, 75 75.67 82.33 83.00
=2 (0.1088) (0.0569)(12.00((0.0490)| 4.33
Gamma 0. 3646 5.00] 0.3504 6.67] 0.3375 !16.33
78. 67 81.67 75.67
( 8=1, k=2) [(0.1509)|19.33|(0.0703)!11.67{(0.0657)| 8.00
Lognormal 0.3259 4.67| 0.3231 6.33] 0.3115 (14.67
a 77.67 79.33 75.67
($§=.193,d =1)|(0.1279)|16.67|(0.0624)|14.33|(0.0585)|10.00
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TABLE X

COVERAGE AND LENGTH OF 90% C. 1.
WITH UNKNOWN ARRIVAL RATE (N=50, =300, B=1000)

Jackknife . Bootstrap

Separated Paired Percentile

Length |C. R Length [C. R Length [C.R
_________ (s8] | __|.(d) (s.8) | ..
Exponential 0. 4464 1.33( 0.4231 2.67| 0.4091 8.67
90. 00 92.33 89. 00
(M= 2) (C.1680)| 8.67((0.0844)| 5.00((0.0761)| 2.33
Mixed exponen| 0.3199 0.67| 0.3387 2.331 0.3301 8. 00
(s =2, un=.75 83.33 88. 00 86. 67
P =.2) (0.1213)16.00|(0.0679)| 9.67|(0.0609)| 5.33
Gamma 0. 4891 2.00| 0.4586 3.33} 0.4416 9. 00
85.33 88. 67 85. 67
( =1, k=2) [(0.2321)12.67](0.1053)| 8.00|(0.0959)| 5.33
Lognormal 0.4371 1.67| 0.4228 3.00( 0.4074 7.00
N 85. 33 90. 00 88. 67
(§=.193, d'=1)|(0.1974)|13.33|(0.0920)| 7.00([(0.0847)| 4.33
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VI. SUMMARY AND CONCLUSIONS

This thesis consider the problem of estimating M(t), the
mean number of customers being served at time t for an
M/G/® gueue, using service time and interarrival time data.
It is assumed that there are no customers being served at
time O. Two cases are considered. In one the parametric
form of the service time distribution is assumed known. In
this case M(t) is a function of the estimated parameters.
In the situation in which the arrival rate of the Poisson
process is also assumed known and the parametric form of the
service time distribution is exponential, approximation to
the bias and variance of the estimate are derived. Further,
simulation is wused to study a normal confidence interval
procedure.

For the other case the parametric form of the service
time distribution is unknown. The empirical distribution of
the service time distribution 1is used in the estimate of
M(t). In the situation in which the arrival rate X is
assumed known, the distribution of the estimate is derived o
in Appendix A. The bootstrap and jackknife estimates with R
known are studied in Appendix B and C. Simulation was used
to assess the performance of confidence interval procedures ' -
using a normal approximation the jackknife and the
bootstrap. The simulation results for the case in which the
arrival rate ) 1is known indicate that:

(1) The arametric estimation method appears the most
powfu method when the parametric assumption 1is o
correct, but the performance is seriously degraded if I\
the assumption is not appropriate. -

(2) When an erroneous parametric exponential) model is

assumed, the initial estimates of mean number in .
service are poor. However, as t »® , the erroneous r
parametric estimate approacﬁes the same value as the 5
other estimates. This 1is because as t =+ all the v
estimates approach the sample mean of the service -

time data.
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(3) The estimate  obtained b using the  empirical
distribution is unbiased with a larger variance than
a parametric estimate based on a correct model.

(4) Simulation results  indicate there is not much
difference between jackknife and bootstrap confidence
interval procedures.

(5) The nonparametric normal confidence interval
procedure performs as well as the procedure in (4
since the distribution of the estimate is almos
symmetric. The improvement by the use of adjusted
degrees of freedom in _ the %ackknlfe . an the
bias-corrected percentile in the bootstrap is small.

We now discuss the simulation results for the case in
which the arrival rate for the Poisson process is also
unknown and is estimated using interarrival time data. The
service times are generated from four types of distribution.
The percentile method for the bootstrap and paired and
separated techniques for the jackknife were used to
construct the confidence intervals. Tables I and II, which
are the results of a parametric confidence interval
procedure in chapter III, are compared with the results of
the nonparametric confidence interval procedures. The
simulation results indicate that:

(1) The nongarametric confidence interval procedure works
as well as the parametric case, .  even though the
length of the confidence interval is wider than the
parametric one.

(2) 1In the overall examination, the percentile method of
the bootstrap shows the best performance. The paired
%ackknlfe procedure also _has similiar results to the
ootstrap approach. The results of these two
nonparametric procedures show the almost same level
of performance with the parametric one. However, the

separated jackknife procedure produces poor results.

(3) The results of the _jackknife procedures produce
intervals that are always Dbiased _upward, Efron
(1981) reported similiar results. [Ref. 13]

(4) Since the bootstrap procedures require a large amount
of computation, the jackknife is the method of choice
if one does not  want to do the bootstrap
computations.

In general, the nonparametric methods of the bootstrap
and the jackknife performs very well, regardless the
complexing of the estimation problem. Of cource, if the
parametric estimation method can be applied, the results are

clearly superior. However, the application of the
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3
parametric estimation is a highly 1limited because the Ef
parametric assumption is often difficult to verify. When E:
the estimate is simple enough, which is the nonparametric )
estimate when the arrival rate is known, and the asymptotic g,
distribution of estimate can be obtained, the nonparametric E
normal confidence interval procedure performs well, and more }
complicate computations such as the jackknife and the -
bootstrap method are not required. However, the jackknife f
and the bootstrap method have a good performance for the ?
more complicated problem in which the arrival rate is o
unknown. The bootstrap confidence intervals show the best
performance but the paired jackknife procedure achieve the ;j
same level of performance with less computation than the ﬁ
bootstrap in this problem. ;
]
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APPENDIX A .
CALCULATING THE BIAS AND THE VARIANCE OF M(T) WITH KNOWN Co
ARRIVAL RATE )

[l ' 't

It will be assume that the rate of Poisson process A is
known and is equal to 1. The nonparametric estimate My(t)
is given by

My(t) = § [1-F(s)]ds (A.1) B

Using the empirical cumulative density function Fy, the
nonparametric estimate is

My(t) = -L\-?\Els + -’-"‘-;“-‘- t (A.2)

where the observation Su;s are the order statistics of the

indeprndent and identically distributed service times with

unknown distribution F. To find the distribution of Ma(t),
we will study the distribution of ({§;].

. Let X,,X,,...,X, be independent, identically distributed
random variable with distribution function F. Let N be the
number of X;'s which are less than t. Let Xuy denote the ith
smallest X;. By the definition of conditional probability,

P{ﬂl){(} '\)t“}

P{X, < X|Ng=1} = =S-=Soctacaa- (A.3)
) PS\ N\ 2 1
N for x<t. Since the random variable N has a binomial -3
. distribution with a parameter F(t), we can rewrite the -
equation A.3 to obtain -t -
- !“ - ‘..
' P{XU)S xth=1} = Q.L)-E(f)-E-E(-*l.].-- :_:
: (ME® L Fey ™ o
5 .
I (A. 4) :
F)
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Let f(x) be the density of the distribution function F. The
conditional probability given N;=2,
P{x‘SXd§X‘+ dx, ., X, $X ¢x ¢+ dx, |N, =2}

= > jﬁfﬁf&& Fuodr (A.5)

for x <x,.

Given Nt=ﬁ, the conditional distribution of the values
of the unordered X; that lie in (0,%t} is that of independent
random variables Yith distribution function %%% , for Ogx«t.
Thus, given N,=K, M(t) has the same distribution as a
constant plus the sum of % independent identically
distributed random variables. Thus the expectation of M(T)

can computed by the property of conditional expectation,
E[My(t)] = E[E[Mu(t)[Ng]] (A.6)

A
Given N.=K,

A y -R
E[M,( t) |Ng=K] =—\é 5:)(%%% + lﬁ_t (A.7)

Since the random variable Nt has a binomial distribution

with the parameter F(t),
nF®_(tFEdo | m-nFE)

EMg(t)] = D702- 58 + ~=pi= ¢
t
= SoxF(dx) + [1-F(t)]t (A.8)
To check the bias of the estimate My (t), using the
integration by part of equation A.1l, the true estimate is
given by
t
My(t) = tl1-FE(t)] + [ tF(dx) (A.9)

e e e n
el . L e
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Thus the estimate My(t) is unbiased. Using conditional -
expectations, the variance is computed by
Var[Ma(t)] = E[(My(t) - E[My(t)])?]

= E[(My(t) - E[My(t)|N¢l)?]

+ 2E[(My(t) = E[M(t)INg])(E[M (L) INg] = E[Mg(t)])]
+ E[(E[M,(t)INg] = E[My(t)])2] (A.10)

Computing each of the individual terms, we obtain
E[(My(t) - E[Mu(t)INg])2?]

= .F‘? 2E80 _ [ty F¥9,.
t (x [ <=gr1?) (A.11)

and
E[(E[Mu(t)INg] = E[My(t)])23]

= -= F(t)F(t X ==== = t]? A.12
- F(OFOL] R‘:)’ ] (A.12) ,_
where } is the survival distribution function of F. The

second term of right term of equation A.10 turn out to be

zero. Thus the variance of Muy(t) is obtained by sum of two
equations. The resulting variance is
Var[My(t)] = -q‘; { [fx2F(dx) - [ [PxF(dx)]2+t2F(t)E(t)
- + .
- 2tF(t)( | xF(dx)]} (A.13) :

Notice that the variance estimate of My(t) is equal to

{;Var(X) as t»® . A nonparametric estimate of Var[My(t)]l is

N

S _ \AK K K \2
Var[Mu(t)] = o~{-5%ss - [ San 12 + 257 [1- ]

................

“ .
L, RN R )




T K-

Ty T N

O
- 2t -=
m

['«qusi” (A.14)

Pl
where K is the number of service times that are less than t.
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APPENDIX B v
JACKKNIFE ESTIMATE OF NONPARAMETRIC ESTIMATE .
d
It will be assumed that the arrival rate A is known and N
equal to 1. The nonparametric estimate is given by
A A
A { L[S n- K
= = + === .1
M (t) n%s@) oot (B.1)
where S,/'s are the order statistics of the service times and
assumed that the random variable K exists such that §”$§»
A »
< £8S ¢.% . i ‘
. Smft %MS qA) Th?\estlmate M _(t) for the data set
obtained by delgting the it point from the sample is
~a _ vX W5 - Do .
M (t) = m:f§5(5>+ et t if i > K
K y
oS s n if 1 €K (B.2)
LWL J n-
LA
LY
The pseudo-value M;(t) is computed by i
A A AL E_
Mi(t) = nM () = (n-1)M,(t) (B.3) {
A r
where MN‘(t) is the estimate of My(t) based on all the data.
A -
substituting the estimate M, (t) in equation B.3, we get
A -
M. (t) =5y, if i £ K (B. 4) -

t if i > K
Since the jackknife estimate 1s the average of the
pseudo-values, the estimate is given by

A
My(t) = wESet Th (B.5) X




Thus, the jackknife estimate is the same as the original
nonparametric estimate of Muy(t). The jackknife estimate of

varilance is

A =l Sm 2 S 2 B.6
Var[My(t)] = ;x-lo7 ZIMA(E) 12 = (53 EM(£)}2) (B.6)
where A
= - R K)t2
T2 = =82 - (n-K)t
and . ~
K A [ S A 2
(FM ()12 = [Zsu,* (n-K)t]
Thus the variance caq be rewritpen as N
SN . N B 2 2_:E K
Var[MJ(t)]— n\{'\;Iasw isw] + t r\]
: \2
n'K ‘ I
- 76 R Fad) (2.7)

Comparing equation B.7 with equation A.14, it is seen that
the jackknife estimate of variance 1is greater than the

estimate of equation A.14 by a multiplicative constant jer.
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APPENDIX C
CONDITIONAL DISTRIBUTION OF BOOTSTRAP ESTIMATE

It will be assumed that the arrival rate A is known.

and is equal to 1. Let S,,8,,...,8, denote random service
i < <s < <<

times from a CDF F, and let %n‘%ﬂf"“§xrts %«d""“aﬂ> denote

the corresponding order statistics, The nonparametric

A
estimate of ,LF(s)ds is

M=

n—

T E S, * t (C.1)

Let B;, i=1 to n, be independent random variables having the

same distribution as draws with replacement from (s,,s,,..,sS,
), and let qj),i=1 to n, be the corresponding order
statistics. A Dbootstrap realization of the nonparametric

estimate is

A \ 2
Mgit) = =7 > Buy * -,“-[n-gl(lz‘)ét)]t (C.2)
byst
where
I(x £t) =51 if x4t
i 0 otherwise
To compute the distribution of ﬁa(t), the Laplace transform
is used [Ref. 12]. The Laplace transform of &B(t) is
A
El exp(=- & Ma(T))] = E[E[exp(-§ Mg(t))Nel] (C.3)

by the property of conditional expectations, where Ny is the
number of bootstrap samples which are 1less than or equal to
t. We compute the right hand side of equation C.3
separately. First

E[exp(-§ Mg(t)) |Ng= 1]




A ._
exp(-§t) [ exp(-§-y) T ~-exp(-§-3¢)] (C.4) 3
is computed, where the random variable N. has a binomial ;
A
distribution with the parameter F(t)= %% . Thus, from e,
A wy
equation C.3 the Laplace transform of Mg(t) is p ~
+ S,
f. Elexp(- M (t)] = exp(-§t) & [exp(-§-5)& rexp(-§-5-)] W
Ml mog R
(a\("k)(mﬁﬁ‘) e L S nt n N
= exp(-gt)[-ﬁexp(§-w)§\-€exp( -§-%-) + -x-1 (C.5) 2
Let us define a random variable Y having the following ;;
distribution
S { e s D -
Y =(3R W.p if 1<K (C.6)
A
—ﬁ- w.p “_h if i > K
Then the Laplace transform of Y is -
" . e ¢ s
- = -3 =% 29, A -&- .
Elexp(-§Y)] = <= Zexp(-§-%-) + -prexp(-3-2) (c.7)
A
Thus, MB (t) has the same distribution as the sum of n
independent random variables having the same distribution as
Y. For the fixed time t, given the order statistics, §;,<§,
<"<%Kft<%M§"<§ﬁ>’ the expectation of ﬁa(t) is written by ;
E(Mg(t)|data] = nE[Y|data] -
A ;;
= 3s Lo, (C.8)
nis @ n ) .
Thus, the bootstrap estimate is asymptotically an unbiased ?
estimate of My(t). The variance is %
. .
Var[MB(t)ldata] = nVar| Y] (C.9)
The variance of Y c¢an be derived using the equation C.6 =
Since "
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K .
E[Y2] = -X [ L (C.10)

Hence the asymptotic bootstrap variance estimate of My(t) is
given by .

A A
A _ 1,1 ¥ | ¥ 2K N
Var{Mg(t)ldata] = -"\--{---Zs2 - [ S.su)]2 + t sl

n ia G N = ﬁ

n 2 { t
- cam [ - 2
2t " [ W %\su)] } (C.11)

That is, the asymptotic bootstrap estimate of variance is

the same as the nonparametric estimate (equation A. 14).
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