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ABSTRACT

// This thesis studies the estimation from interarrival and

service time data of the mean number of customers in service

at time t for an M/G*queue. Two situations are considered.

In one the parametric form of the service time distribution

is known. In the special case in which the service time

distribution is exponential the approximate bias and vari-

ance of the estimate are derived and simulation is used to

study an approximate normal confidence interval procedure.

Simulation is also used to illustrate that assuming a wrong

parametric model can lead to misleading results. In the

other situation, the parametric form of the service time

distribution is unknown and the empirical distribution of

the service times is used in the estimate of the mean number

of customers in service. In the case in which the customer

arrival rate is known the distribution of the estimate is

derived and an approximate normal confidence interval proce-

dure is suggested. The use of the bootstrap and jackknife

procedure to estimate variability and construct confidence

intervals for the estimate is also studied both analytically

and by simulation. . ,
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I. INTRODUCTION

A. DESCRIPTION OF THE PROBLEM

The application of probability theory to a wide variety

of congestion problems has been described in many papers and

books [Refs. 1,2,3]. Results of queueing theory are

presented in terms of component distribution function! and

stochastic processes (renewal, Poisson, etc) that are taken

as known; only rarely are issues addressed that arise when

actual data is to be used as a basis for inference from the

models; however, see Cox(1965) [Ref. 41.

The concern of this thesis is inference problems for a

particularly simple queueing model, the M/G/wo queue. In

this model, customers arrive according to a Poisson process

with rate and there are an unlimited number of

independent servers. Service times for each server are

independent, identically distributed with distribution

function F. Let X(t) be the number of customers being
served at time t. It is well known that if there are no

customers being served at time 0, then

P{X(t)=n exp[-M(t)(.

where

M(t) = X F(s)ds

with F(t)=l-F(t) [Ref. 21. Thus the distribution of X(t) is

Poisson and is characterized by its mean M(t).

In this thesis we will assume that the service time

distribution F(t) is unknown and must be estimated from

service time data and that the arrival process is known to

be Poisson, except possibly for its rate We will study

the estimation of the mean number of customers being served

at time t, M(t).

9



B. SCOPE OF THE THESIS

The purpose of this thesis is to study the estimate of

the mean number of customers being served at time t for a

M/G/00 queue. This mean completely characterizes the

distribution of the number of customers being served at time

t. We will assume that the service time distribution and

possibly the customer arrival rate are unknown and must be

estimated from data.

We generally divide the estimation method into two cases

which we shall call parametric estimation" and
"nonparametric estimation". In the parametric estimation

case, a particular probabilistic model is specified for the
service time distribution and the parameters of the
distribution are estimated. The resulting estimate of the

survivor function is then used in the estimate of the

expected number of customers being served at time t. In the

nonparametric estimation method, the empirical survivor

function is used in the estimate of the expected number of

customers.

In most cases, parametric assumptions concerning the

service time distribution are difficult to justify. Hence

nonparametric estimation procedure may well be preferred to

parametric estimation when actual data is used. However,
the nonparair--ric estimates can be expected to be less

efficient than the parametric ones.

The thesis is organized as follows. In Chapter II, the

transient distribution for the number of customers being

served at time t for the M/G/D model is described and the
equilibrium distribution as time goes to infinity is

obtained. In Chapter III, we study parametric estimates of

the mean number of customers being served under several

assumptions for service time distributions. In the special

case in which the service time distribution is exponential

the approximate bias and variance of the estimate are

10



derived and simulation is used to study an approximate

normal confidence interval procedure. Parametric estimates

for gamma, mixed exponential, and lognormal distributions

are also considered. Simulation is used to study the effect

of assuming a wrong parametric model. In Chapter IV, a

nonparametric estimate of the mean number of customers being

served is described. This estimate is based on the

empiriual distribution of the service times. In the case in

which the customer arrival rate is assumed known the

distribution of the nonparametric estimate is derived and an

asymptotic normal confidence interval procedure is

suggested. The jackknife and Bootstrap methods for

obtaining approximate confidence intervals are also

described. The different estimators are compared by

simulation. Chapter V describes the simulation and gives

the results.

In summary, this thesis studies the use of estimates of

the service time distribution to obtain estimates of the

mean number of customers being served for a M/Gt0 queue.

Both parametric and nonparametric estimates are considered

and compared by simulation.
AZ
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II. MZQZo Q oUEUE MODEL

The M/G/o queueing model is specified by the following

assumptions. There are infinite number of servers.

Customers arrive for service according to a Poisson process

with rate A Service times are nonnegative independent

identically distributed random variables with distribution

function F. When a customer arrives, he immediately starts

service.

Let X(t) represent the number of customers in service at

time t. It is well known that if there are no customers

being served at time 0, then

P{X(t)=kl - exp[p t) (2.1)
k!

where p(t)= ja[1-F(s)]ds: that is, X(t) has a Poisson

distribution with mean \p(t) [Ref. 21. Taking the limit as
t 100 in equation 2.1, we obtain the equilibrium

distribution

lim PfX(t)=kl - -- ---C-F--- exp[- 4.I-F(x)dx1 (2.2)
t-o k!

Thus, the limiting distribution of X(t) as t-o is also

Poisson with mean ? m, where m= 1F(x)dx is the mean service

time. Therefore, the distribution of the number of

customers being served at time t is Poisson with mean

M(t) = F ( x ) d x  (2.3)

- Here, the distribution of the number' of customers being

served at time t is characterized by value of its mean M(t).

The value of M(t) depends upon the service time distribution

which is assumed unknown and must be estimated from data.

12



This thesis considers the problem of estimating M(t) from

service and interarrival time data. '

131



III. PARAMETRIC EIhATI METHOD

A. DESCRIPTION

In this chapter, it will be assumed that the parametric

form of the service time distribution is known. In this

case the estimation of the mean number of customers being

served at time t, M(t), can be considered to be a function

of the parameter estimates of the distribution. In

particular, the estimate of M(t), when a parametric form of

the service time distribution is assumed, is denoted by

Mp(t), then

MP(t) =\ F(s)ds (3.1)

where P(t) is a survivor distribution of an assumed

parametric form.

In this chapter the rate of the arrival process will be

assumed to be unknown. Maximum likelihood estimates of the

mean interarrival times and the mean service times are used

in the estimate of Mp(t).

Four parametric service time distributions will be

considered: the exponential, the gamma, the mixed

exponential, and the lognormal distribution. In the

exponential case, moment approximations are used to assess

the bias of the estimate and to develop a confidence

interval procedure based on asymptotic normality. The

performance of the confidence interval procedure is assessed

by simulation.

In the remaining three parametric models, simulation is

used to assess the performance of the parametric estimates.

Another source of error in using a parametric estimator is

that the wrong parametric form may be used. The effect of

using the (wrong) exponential model in these cases is also

assessed by simulation.

14
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Each simulation has 300 replications; each replication

consists of 50 independent service times from the specified

distribution, and 50 independent interarrival times from an

exponential distribution. The average relative bias and the

average relative square error of Mp(t) are used to evaluate

the performance of the parametric estimation method. All

simulations were carried out on an IBM 3033 computer at the

Naval Postgraduate School using the LLRANDOMII, random

number generating package [Ref. 61.

B. EXPONENTIAL SERVICE TIME

In this section it will be assumed that the service time

distribution is exponential; that is, F(t) = I-EXP(-t/k ),

where AU is an unknown parameter and must be estimated from

the observed data. The maximum likelihood estimate of A is

-=7 x-, where x- is the service time of the i customer.

We will so assume that the rate of the Poisson arrival

process \ is unknown and must be estimated.

The interarrival times of the customers are denoted by y,

,y ,.. ,y . Since the arrival process is Poisson with rate

the interarrival times are mutually independent,

positive random variables with the exponential distribution

function having mean The maximum likelihood estimate

of N is \=n/. y- For an exponential service time

distribution, an estimate of the mean number of customers in

service at time t for an M/GCo queue is

M (t) A -exp[-t/ (3.2)

The estimate is a nonlinear function of the estimated

parameters, and AA . In most cases, when estimating a

function of the estimated parameters, bias is created by the

nonlinear relationship of the estimated parameters.

Approximate formulas for the bias and variance of M (t) will

now be derived.

15
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Let 8 be the mean service time,_ -LxA,i=l,2,.. ,n,

and o( be the mean interarrival time, 0 = .y, i=I,2,.. ,n.

By assumption, X and Y. are independent. The estimate of

Mp(t) can be represented by a function of the parameters c<

and as fbllows:

M(,p) = -exp[-t/] (3.3)

There are no simple, exact formulas for the mean and

variance of the quotient of two random variables. However,

there are approximate formulas which are sometimes useful.

The approximation can be obtained from the partial Taylor

series expansions of M(&,I) about the true means, c and IS

The expansion is

M(o1,p) + _-M(Ol 'a + 4

+ a a

* +! t.Mo~()(3I3Z (3.4)

Since we assumed that the arrival process and the service

times are independent, the covariance terms turn out to be

zero when we take the expectation of both sides of equation

3.4. Thus, we get

,. E[= M(o ,I3) + M& , M ( ,a ) V a r (  ) .,

+ R h  (3.5)

where Rn converges to zero at the ratees t sThe variance of

estimate is

Var[M(O(, )- = M( , )12Var(&)+ [r M(O(, )zVar()

+ R (3.6)

16
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with R tending to zero at the rate - An approximate

bias term, denoted by p(t), can be derived immediately from

the equation 3.5, that is, 0?(t)=E[M( , )-E[M( , t )].
Subtracting pe(t) from the parametric value to correct the

bias, leads to the bias corrected estimate of Mp(t).

In order to compare the two estimates, bias and

bias-corrected, we define the following notation. Let 9, be
the fraction of bias of M p (t) against the true value M(t),

and Ga be the fraction of square error of Mp(t) against the

square of the true value: that is,

M Ot)

i 8 : [M >- %)] a(3.8)

where M(t)= \\F(s)ds.

V 8

o ..--...--- ..--

0 '0 II 20 n1
?Nc

Figure 3.1 Average Relative Bias of M,(t)

for Exponential with )A=2 at t=l

17
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A simulation experiment was performed to assess the

performance of the estimates. In the it  replication, 50

exponential interarrival times having mean 1 and 50

exponential service times having mean 2 were simulated and

estimates

M t) = 1'(-exp[ -t/A (3.9)

and

A c A

Me(t) = Mr(t) - p(t) (3. 10)

where

PP(t) - -M(')Var(&) + -- M(c ,/)Var((a)

were computed. The estimated values of and were used

in the variance formulas. The simulation was replicated 300

times and the average relative biases

A oL

( ) - 300 ^-- M[ )

and the average square error
A C

H(o .)- M~t;C,(t) - '_ [. ..] (3.12)

300 A-- k

A

- Z [JL!M" -- 2 (3. 14)

300 0- MC.)

were computed.

Results of the simulation are presented in Figures 3. 1

and 3.2. In Figure 3.1, the dotted line shows the average

18
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Figure 3.2 Average Relative Square Error of M,(t)

for Exponential with 44=2 at t=l• n=50 ,r=300)

relative bias, 6,(t), as a function of t for the oiia

.estimate MP(t). The solid line shows 6(t) for the bias

corrected estimate M p(t). This superimposed figure

indicates that ,t) for the bias-corrected estimate (with

solid line) is almost constant and is small. The bias

estimate produces large negative value of %(t) but 6,(t)

approaches a limiting value as t Po. Figure 3.2 shows of

the average relative square error 6 (t) and u t) plotted as
a function of time. The dotted line gives R(t) and the

solid line is G.,(t). It appears from figures that the

estimate of bias described in equation 3.5 does correct for

the bias. However, in Figure 3.2 the bias-corrected

estimate has a slightly higher relative square error than

the original estimate. This higher relative square error

could be due to correlation between the estimate itself and

the estimate of its bias.

Simulation was used to assess the performance of the

following confidence interval procedure. In the i %

19
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TABLE I

COVERAGE AND LENGTH OF 100(1-0)% C.I. FOR
THE ORIGINAL ESTIMATE ( N = 50, R = 300 )

68 % 80 % 90 %trial - - - - - - - - - - - - - - - - - - - - -

Length C. R. Length C. R. Length C.R.
(s.d) (s.d) (s.d)

0.2234 10.67 0.2879 4.00 0.3695 1.00
1 72.00 83.00 90.00

(0.0415) 17.33 (0.0535) 13.00 (0.0687) 9.00

0.2237 9.33 0.2882 4.33 0.3699 1.33
2 73.33 81.00 86.33

(0.0396) 17.33 (0.0510) 14.67 (0.0655) 12.33

0.2224 11.00 0.2866 4.33 0.3678 1.33
3 68.67 79.00 87.33

(0.0410) 20.33 (0.0529) 16.67 (0.0678) 11.33

0.2212 9.00 0.2851 3.67 0.3659 1.00
4 66.67 76.00 83.33

(0.0402) 24.33 (0.0519) 20.33 (0.0666) 15.67

0.2207 13.33 0.2844 4.67 0.3651 0.67
5 62.33 77.67 88.67

(0.0409) 24.33 (0.0527) 17.67 (0.0677) 10.67

0.2269 11.33 0.2925 3.67 0.3754 0.33
6 70.00 82.67 89.33

(0.0433) 18.67 (0.0558) 13.67 (0.0717) 10.33

0.2223 10.67 0.2865 3.00 0.3677 0.33
7 69.00 82.00 89.67

(0.0375) 20.33 (0.0483) 15.00 (0.0620) 10.00

0.2246 7.67 0.2895 2.33 0.3715 0.33
8 71.67 81.33 87.67

(0.0425) 20.67 (0.0548) 16.33 (0.0704) 12.00

0.2232 11.00 0. 2876 6.00 0.3692 0.67
9 63.67 82.67 83.67

(0.0423) 25.33 (0.0545) 21.33 (0.0700) 15.67

0.2270 13.67 0. 2926 3.00 0.3755 0.33
10 67.67 81.00 87.33

(0.0411) 18.67 (0.0530) 16.00 (0.0680) 12.33

0.2235 10.77 0. 2881 3. 90 0.3697 0.74
Average 68.50 80.63 87.33

(0.0410) 20.73 (0.0528) 15.47 (0.0678) 11.93

replication of the simulation, 50 exponential interarrival

times having mean 1, and 50 exponential service times having
AA

mean 2 were generated, and M,(t) and M (t) were computed.

The approximate variance of M,(t) was computed for t=l using

equation 3.6 with Rn=0. The 100(1-0)% confidence limits L

and U were computed by

20
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TABLE II

COVERAGE AND LENGTH OF 100(1-X)% C.I. FOR
THE BIAS-CORRECTED ESTIMATE (-N50, R=300

f-,

ta 68% 80 % 90%I"trial - - - - - - - - - - - - - - - - - - - - -
Length C. R. Length C. R. Length C.R.
(s.d) (s.d) (s.d)

0.2234 14.67 0.2879 6.67 0. 3695 2.33
1 69.00 80.67 89.00

(0.0415) 16.33 (0.0535) 12.67 (0.0687) 8.67

0.2237 13.67 0.2882 5.67 0. 3699 2.67
2 69.67 80.33 86.33

(0.0396) 16.67 (0.0510) 14.00 (0.0655) 11.00

0.2224 16.00 0.2866 7.67 0.3678 2.00
3 66.00 76.33 87.33

(0.0410) 18.00 (0.0529) 16.00 (0.0678) 10.67

0.2212 14.33 0.2851 6.00 0.3659 1.67
4 62.33 74.33 83.00

(0.0402) 23.33 (0.0519) 19.67 (0.0666) 15.33

0.2207 17.67 0.2844 9.00 0.3651 1.67
5 59.67 74.67 88.67

(0.0409) 22.67 (0.0527) 16.33 (0.0676) 9.67

0.2269 18.67 0.2925 6.33 0.3754 2.00
6 64.00 81.33 88.00

(0.0433) 17.33 (0.0558) 12.33 (0.0717) 10.00

0.2223 14.67 0. 2865 5.67 0.3677 2.00
7 67.00 80.33 88.67

(0.0375) 18.33 (0.0483) 14.00 (0.0620) 9.33

0.2246 14.00 0. 2895 4. 67 0.3715 0.67
8 67.33 80.00 88.00

(0.0425) 18.67 (0.0548) 15.33 (0.0704) 11.33

0.2232 15.67 0.2876 9.00 0.3692 1.67
9 60.00 70.67 83.33

(0.0423) 24.33 (0.0545) 20.33 (0.0670) 15.00
-- - --- - - -- - - - - - I- - ---- - _--__

0.2270 18.33 0.2926 9.33 0.3755 1.67
10 63.00 75.33 86.00

(0.0411) 18.67 (0.0530) 15.33 (0.0680) 12.33

0.2235 15.77 0.2881 7.00 0.3697 1.84
Average 64.80 77.40 86.83

(0.0410) 19.43 (0.0528) 15.60 (0.0678) 11.33

A

L M (t) z,[ ]  (3. 15)

and

U = Me(t) + z,_ 4  VArEM(OA)7 (3.16)
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where z ,- is the upper 1- ! point of the standard normal

distribution. Tables I and II show the results of 10

independent simulations for the original and the

bias-corrected estimate. Each simulation was replicated 30C

times. Tables report the average and standard deviation of
A

the normal confidence interval length; the proportion, p of

the intervals that covers the true value; the proportion of

intervals that are too high, (e.g. M(t) < L ); and the

proportion of intervals that are too low,(e.g. M(t) > U ).

Since the simulation replications are independent, it is

possible to assess the uncertainty of p. If the confidence

interval procedure is correct, then p should be withln

approximately ± 2 of 1-o(. The coverage rate in the

tables indicate that the parametric estimates tend to

underestimated. Obviously, the distribution of MP(t) is

skewed right. However, the confidence interval procedure

works well, regardless for both the original and the

bias-corrected estimate. Both have a variable coverage

rate. The difference of performance between two estimates

is not significant.

C. OTHER SERVICE TIME DISTRIBUTIONS

1. Mixed Exponential Service Time

In this subsection, service times having a mixed

exponential parametric form will be considered. Customers

arrive according to a Poisson process with unknown rate

which must be estimated. Customers are of two types; with

probability P1 , a customer's service time is exponential

with mean u,; with probability Pj, the customer's service

time is exponential with mean AA,. If T is the service time

of an arbitrary customer, then

P(T > t) = P, exp[-t/u I + P.exp[-t/m..1 (3.17)
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where P, + P = 1. In this case, the mean number of

customers being served at time t is

MP( t) = . ,(-exp (-t /U,) -"A. (I ~- expc-/ 3. 18)

We will assume that a customer's type and service time are

observable.

CD

LA 0

-I I I I I I I I I . I

5 10 15 20 25

Figure 3.3 Average Relative Bias of Mp(t) for

Mixed Exponential with U,=2, J.=.75, P,=.2 at t=l

n=50, r=300

A simulation experiment was done to assess the

performance of M,(t). In the i k replication, service times

for 50 customers were generated, where the proportion P, of
them have a type 1 and the proportion P, have a type 2. A

random number was drawn to determine the type of customer.

If a customer was of type i, a service time was generated

from the exponential distribution with mean u. For the

- simulation, the proportion P, is assumed known. The 50

"* independent interarrival times were also generated. In this
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Figure 3.4 Average Relative Square Error of Mp(t) for

Mixed -Exponential with u%=2, 0=.75, P,.2 at t=l

n=50, r=300 )

case , P,=0.2, I,=2., ux.=O.75, and N=1. The estimate M,(t)

was computed; the estimate of P4 is the proportion of

customers that were type i; the estimate of the mean service

time U. was the mean service time of type i customers; the

estimate of was the mean interarrival time. The estimate
A

Me(t ) of M(t) assuming that the service time distribution is

exponential was also computed, that is,

A 
A,Mt( t) = (1-exp[-t/J]) (3. 19)

A

with AA equal to the mean service time and N is equal to

the mean interarrival time. The procedure was replicated

300 times. Results of the simulation appear in Figures 3.3

and 3.4. &1(t) is the average relative bias of the estimate

and ((t) is the average relative square error as computed

in equation 3.11 and 3.13. The solid line is for the
A

correct parametric model estimate Mp(t). The dotted lineA

represents the exponential model estimate M,(t).
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In both figures, we compare the correct model

(represented by a solid line) with the erroneous exponential

model. As expected, the exponential model clearly does not

perform as well as the mixed exponential model. In Figure

3.3, the level of bias for the exponential model is very

high early in time, but is reduced, and stabilizes as t +.

Notice that the estimate using the exponential model appears

too large. The average relative square error of the

estimates is shown in Figure 3.4. Although the results of

exponential model shows a slightly higher mean square error

than that of the mixed exponential model, the results of

exponential model are not too much worse. This is not

surprising, since as t *co the estimate just depends on the

mean.

2. Gamma Service Time

In this subsection, the parametric form of the

service time distribution is gamma. The probability density

function is

f(t) - %K _%(3.20)

where k and a are strictly positive parameters of the
distribution, and k is further assumed to be an integer. By

successive integrations by parts, we get

F(t) = 1- e (3.21)

its mean and standard deviation are

k 3
(33

Thus, k is the parameter that specifies the degree of
variability of the service times relative to the mean.

Since the arrival process is Poisson with rate >
the interarrival times are mutually independent, positive

25



random variables with the distribution function

G(y)=I-EXP(- \y), where \ must be estimated from

interarrival data y, , i=l to n. Thus, the Mp(t) in this

case is obtained by the successive integrations by parts of

the survival function of the gamma distribution, that is

I -J -"t (tat)"
N = ~{ ( i~ ~~ A(3.22)

.

0 i0 15 20 25
TII

Figure 3.5 Average Relative Bias of Mp(t)

for Gamma with 3=1, k=2 at t=l. (n=50, r=300

The performance of Mt (t) was evaluated by the

simulation. In the simulation, the parameter k of the gamma

distribution was assumed to be known, but the rate of the

arrival process is unknown and is estimated. Two simulation

cases were run. In the it replication of the simulation, 50

independent service times were generated, where the first

simulation case used the gamma distribution having i=l and

k=2 and the second case used the gamma distribution having

(I =0. 5 and k=4; 50 independent interarrival times having

=1 were also generated. For k=2, the estimate is

26
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M (t) : - -(l-exp[-pt] - t-exp[-t] (3.23)

and for k=4, the estimate is

M (t) -- ( 1 -exp ( -atj - exp[- t](3t t+ '
~ 3.2

where n/y- y, and 1 =kn/M x. were calculated. An estimate

based on an erroneous exponential service time model

parametric estimator was also calculated

AN

Me(t) A (1-exp[ -t/]) (3.25)

with A= x-.

0

1.0 13 20 2
TUI

Figure 3. 6 Average Relative Bias of MP(t)

for Gamma with G =. 5, k=4 at t=l. (n=50, r=300

The simulation was replicated 300 times. The

average relative bias ,(t) and the average relative square "

error ;,(t) were calculated. These results appear in

i27
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0 5 10 15 20 25

Figure 3.7 Average Relative Square Error of M (t)

for Gamma with = 1, k=2 at t=l. ( n=50, r=300 )

Figures 3.5, 3.6, 3.7, and 3.8. The dotted lines in the

figures show the results of the erroneous exponential model.

The solid line represents the results of the gamma model.

The figures clearly show that the performance of the

exponential model is not as good as that of the gamma model

initially. However, both models have the same equlibrium

state for t > 15, approximately. Figure 3.5 shows the

average relative bias of the estimate in the case of k=2 and

Figure 3.6 shows the same in the case of k=4. In both

figures, the erroneous exponential model has a high level of

bias and the bias of the gamma model is almost constant;

however, both models have exactly the same limiting value as

t -J . The average relative square error appears in the

Figures 3.7 and 3.8. Figure 3.7 represents the average

relative square error of M,(t) and Me(t). in case of k=2,

and Figure 3.8 represents the same in the case of k=4. In

Figure 3.7, the exponential model has a poorer performance

than the gamma model, but the difference is small. In

28
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Figure 3.8, the exponential model has a large value of mean

square error initially and the level of mean square error

associated with the exponential model grows as the value of

parameter k is increased.

V;;

0 5 10 15 20 25
IME

Figure 3.8 Average Relative Square Error of Mp(t)

for Gamma with =.5, k=4 at t=l. ( n=50, r=300 )

3. Loanormal Service Time

In this subsection, the service time distribution is

assumed to be lognormal. Let X be a random variable, and

let a new random variable Y be defined as Y=ln X. If Y has
a normal distribution, then X is said to have a lognormal

distribution. The density of a lognormal distribution is

given by

f(x) ------ exp[-----(ln x -. ] (3.26)

where -0o< § <0 and & >0. Set Y=ln X - and by the

29



integration

PIX < x} = F(x)

-- (3.27)
where G ) is the standard normal distribution function.

If the service time has a lognormal distribution, then the

estimated mean number of customers being served at time t,
A

Mp(t), is obtained by integration-by-parts

A A

Mp(t) = ) {t[l-F(t)I + ysF(s)dsi (3.28)

Substituting equation 3.26 for f(t) and equation 3.27 for

F(t) in the equation 3.28, we obtain

A A (.)Mi (t) C A [I-Cy q] eL[§tsc ]C~(L  (3. 29)

where Gy() is the standard normal distribution function.

The lognormal distribution is positively skewed and the

level of skewness depends upon the value of mean and

variance of the distribution. If the value of mean is

decreased but the variance is increased, then the shape of

distribution tends to be more skewed and it approaches the

shape of the exponential model.

The performance of the parametric estimate was

assessed by simulation. In each replication of the

simulation, 50 independent lognormal service times and 50

independent exponential interarrival times were generated.

The simulation generated two sets of the service times. One

set of service times is from the lognormal distrbution with

=0. 193 and &'=l ,and the other set is from the lognormal

distribution with S=0.568 and 6"=0.5. To estimate the mean

and variance from the data, the logarithm of the service

30
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Figure 3.9 Average Relative Bias of Mp(t) for

Lognormal with . 193, Ta'=l at t=l. ( n=50, r=300

Ci

6 d

6.A

01

0 5 10 13 Al 25
TmAE

Figure 3.10 Average Relative Bias of Mp(t) for

Lognormal with d'= . 5 at t=l. ( n=50, r=300

time data, t =ln x , i=l to n was computed. The mean and

variance are expected by

31
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Thus the estimate is

Mf'(t) C"(3.30)
4-_

where X is the estimate of the arrival rate. An estimate

based on an erroneous exponential model

M'(t) =\M(1 - exp[-t/A]) (3.31)

was also computed, where A = x .

a

Lj-

10 1 oi 20 25"

MnE

Figure 3.1.I Average Relative Square Error of M,(t)

for Lognormal with §=.193, 62=l at t=l. ( n=50, r=300 )

The simulation was replicated 300 times. Figure 3.8

shows the tendency of 9,(t), the average relative bias of

M,(t), for the correct model (shown with a solid line) and

the erroneous exponential model (shown with a dotted line)

for the simulation with =0.193 and T=I in Figure 3.9, and

with p=0.568 and e=0.5 in Figure 3.10.
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for Lognormal with §=. 568, c = . 5 at t=l. (n=50, r=300 ).

* Iq

In both figures, the average relative bias of the"-
exponential model is also large initially. As expected, the.

average relative bias of the exponential model in Figure

3.10 is larger than the results in Figure 3. 9. As t Peo

the exponential model shows better performance and has a ":

limiting value. Figures 3.1II and 3. 12 show the tendency of .

6.(t), the average relative square error, for the correct

. model (shown with a solid) and the erroneous exponential

i model (shown with a dotted line). For Figure 3.1Ii the "

parameters, §=0. 193 and 6-=l, are used to generate data. -"

And for Figure 3. 12 the parameters, §=0. 568 and d-'-=0.5, are

used. Thue 2 of average relative square error of the

exponential model in Figure 3.12 is also higher than the

results in Figure 3. 9 .

D. SUMMARY..
The general conclusions of this chapter are that the

parametric estimation method is a highly efficient for

33
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obtaining estimates of M(t) whenever the correct assumption

for the model is given. The structure of the estimate of

M(t) is clearly biased since it is a nonlinear function of

the estimated parameters for the service time distribution

and the customer arrival rate. However, for the service

time distributions considered the indications are that the

bias is small. Hence the parametric estimation method

performs very well, whether or not the estimate is corrected

for bias, when the correct parametric form is used. However

the performance of the parametric estimation is very poor

when the wrong parametric model is used. For instance, the

erroneous exponential model often has a high level of bias

and mean-squared error. Notice that the exponential model

converges to the same limiting value as the correct model as

t -oo in all the cases considered. This is because as t *oc

all estimates use the mean service time to estimate the

integral of the servivor functions.

.3
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IV. NONPARAMETRIC ESTIMATION

A. DESCRIPTION

Nonparametric methods are statistical techniques which

are applicable regardless of the form of the distribution

function that the measurement comes from. In this chapter,

these techniques will, for the most part, be based on the

order statistics.

Let x 1 ,x, ... , x, denote a random sample from a CDF F,

and let su , ,s,, .... s,,,) denote that corresponding order

statistics. Then the sample CDF is defined by

A

Fn(t) = - (number of s. less than or equal to t)

= -' , : oo 3 S(o

For fixed time t, Fh(t) is a statistic since it is a
A

function of the sample. In fact, for fixed time t, FI(t)

has the same distribution as that of the sample mean of a

Bernoulli random variable. We know by the central limit

theorem that F.(t) is a asymptotically normally distributed

with mean F(t) and variance ( !)F(t)[1-F(t)].

Recall that (in chapter II) the mean number of customers

being served at time t, M(t), is a function of the arrival

rate \ and the survivor function of the service times.

Hence a nonparametric estimator, denoted by MA(t), can be

represented by the estimated values of N and F(t). The

estimated survivor function of service time is

Fn(t) = 1 if 0 < t <

if s < S, for i=1,2,.. ,n-l

0 i f t >' S '-).-.'

35
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Now, using the fact that M,(t)= )I\F(s)ds, we obtain a

nonparametric esimate

A A

M4(t) = Xt if 0 < t < s

A 4 +[ - - t] if s < t < s

{ M-- s s(- )  if t > s (4.1)

where \ is the estimated arrival rate. Note that the

nonparmetric estimate has a limiting value as t -oo , that

is, lim Mg(t)=3 m where m is the mean service time.
VP CO
In this chapter, we will consider two different

situations. In one case, we will assume that the arrival

rate is known but the distribution of service times is

unknown and must be estimated. Based on this assumption,

M~j(t) is expressed simply in terms of the order statistics

of the service times as follows

A K
^ I ts + S - t] (4.2)

when s t< sK't . In the Appendix A, we derive the
(K) 

-distribution of MA(t) in this case. Its mean and variance

are

E[MW(t)] =  IF(s)ds (4. 3)

Var[M,,(t)] = - sF(ds) - [ sF(ds)] + tF(t)F(t)

- 2tF(t)[ IsF(ds)Il (4.4)

A

Thus, Mg(t) is an unbiased estimate of MW(t). Further, as
A

the sample size n is increased, MW(t) is asymptotically

normal. Thus an approximate normal 100(1-3()% confidence

interval for M,(t) is given by
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MW(t) ± z_2 Var[ M (t)1 (4.5)

where z,-9 is the upper 1- point of standard normal

distribution and Var[Mj(t)] is given in Appendix A. In this

chapter, we will also study the jackknife and the bootstrap
procedures for obtaining confidence intervals for M,,(t) in

the case in which \ is known. In the second case, we will

assume that the arrival rate X is also unknown and must be

estimated. Then, a nonparametric estimate MA(t) is the

product of two estimates,

-
Mr (t) =[- -s + .... t (4.6)

where A =n/.Zy, and K is the number of service times that

are less than or equal to t. There are no exact functional

forms for the mean and variance of Mt (t) in this case.

However, the jackknife and the bootstrap methods can be used

to obtain confidence intervals. This will be described

below.

B. JACKKNIFE ESTIMATION METHOD

In this section, we will study the jackknife procedure

for obtaining a confidence interval for Mg (t). The

jackknife was first introduced by Quenouille (1949) for the

purpose of reducing the estimate bias, and the procedure was

later utilized by Tukey (1958), to develop a general method

for obtaining approximate confidence intervals [Refs. 7,81.

The basic idea of the jackknife estimation method is to

assess the effect of each of the groups into which the data

have been divided, not by the results for that group alone,

but rather through the effect upon the body of data that

results from omitting that group. The two bases of the

jackknife are that we make the desired calculation for all
the data, and then, after dividing the data into groups, we

make the calculations for each of the slightly reduced
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bodies of data obtained by leaving out just one of the

groups. A special case of Jackknife estimation is called

the "complete jackknife estimation", where the number of

subgroups is n (the size of sample); the i subgroup is

obtained by deleting the i %  observation; thus the size of

each subgroup is n-I [Ref. 9]. Attention will be restricted

to complete jackknife estimation in this study.

Let M,%.t(t) be the estimated mean number of customers

being served at time t on the portion of the sample that

omits the i ' sample. Let M (t) be the corresponding

estimator for the entire sample and define the i k i
Pseudo-value by

A A
M (t) =nM,,(t) - (n-l)M,, 1 (t) (4.7)

4. A.

The jackknife estimate M3 (t) and an estimate S. of its

variance are given by

AA

M3(t) -_ M (t) 14.8)

A A

- Z[M (t) - M 3(t) a (4.9)

* Tukey (1958) proposes that the n estimated pseudo values be

treated as approximately independent and identically

distributed random variables [Ref. 91. Hence, the statistic

AA

. ( r- - M"1 &,.
r A A

(4.10)

has an approximate t-distribution with n-I degrees of

freedom, which leads to the approximate l00( 1-os )%
confidence interval

AM.3(t) + t 1_1 S-7  (4.1II) .
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where t ,_ is the upper 1- 4 critical point of the

t-distribution with n-I degrees of freedom. The confidence

interval given by equation 4.11 is a function of the

estimated variance. In the remainder of this section, we

will describe several methods of implementing the confidence

interval procedure. We will also obtain an analytic

expression for the jackknife estimate and its variance

estimate for the case in which the arrival rate N is known.

1. Jackknife Estimate with Known Arrival Rate

In this subsection, the arrival rate is asssumed

known. In this case the closed form expression for the

jackknife estimate and its variance estimate can be derived.

The nonparametric estimate of the mean number of
A

customers being served at time t, Md t), can be expressed in

terms of the service times as follows:

M =(t) =S, + t] (4.12)

where SO's are the order statistics of independent and

identically distributed random quantities from the unknown
A

probability distribution F, and the variable K is the number

of S' s which are less than t. This equation shows

immediatel-! that M,(t) is the linear function of the order

statistics of service times.

The jackknife estimate is based on sequentially

deleting point SA and recomputing the estimator. Removing

point S from data set gives a different empirical

probability distribution F,-, with mass -- at SO1)

,.... CI ) S and a corresponding recomputed value of

the estimate. In the jackknife process, the i% pseudo

value is
A A

Ml(t) = t if i > K

A

if i $ K (4. 13)
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for the fixed time t. Accordingly the pseudo values Mi(t)
A

have just K+l different values. The jackknife estimate is

A A

M3(t) 7 [ s ------- t] (4.14)

, This result is exactly the same as the original estimate.

*This is because the estimate M-S(t) is unbiased. In Appendix

"" B, the jackknife variance estimate is derived as follows:
A A

Var[M = __-_ - 2t t)[ ]- [ -2] 2

A
+ t Fr(t)Fr(t)} (4.15)

where F, (t) is the sample survivor function. Comparing
M I A

equation 4.15 with equation 4.3 we see that (-;- -)[Var {M.
. (t)} = E[Var[M3 (t)l]. Thus the jackknife variance estimate

* tends to be conservative in the sense that its expectation

is greater than the true variance of MO(t). We will now

describe two selected procedures to obtain confidence

intervals for the jackknife estimate. Tukey suggested that

the statistic in equation 4.10 has an approximate

t-distribution with n-l degrees of freedom, which leads to

the approximate two-sided I00(I-oQ% confidence interval

MT(t) ± t_ Var[M(t) 1  (4.16)

for MI(t), where t,_1 is the upper 1-3 critical point of

the t-distribution with n-l degrees of freedom. However,

the n estimate pseudo values have just K+I different values.

Hence, another possible procedure is to adjust the degrees

of freedom of the t-distribution, that is, subtract one from
.A

the number of different pseudo values (K I), and use the

result as the degrees of freedom. The length of confidence

interval generated using the adjusted degrees of freedom (K)

is slightly wider than that generated using the usual
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degrees of freedom (n-1) and the coverage rate should be

increased.

2. Jackknife Estimate with Unknown Arrival Rate

In this subsection, it will be assumed that the rate

of Poisson arrival process is unknown and must also be

estimated. The maximum likelihood estimate is X= V1

where y; is the interarrival time between iY' and (i-l)"

customers. A nonparametric estimate of mean number of

customers being served at time t is given by

A A

A K lK

where SL.)'s are the order statistics of independent,

identically distributed random quantities from the unknown

probability distribution F. It is assumed that the S(j) s and

Y's are independent. The variable K is the number of S 's

which are less than t. The data consist of two independent

random samples,
S ,S . . S - F and Y, ,Y,,-.- ,Y, -

F and Q being two possibly different distribution on the

real line with Q, the exponential distribution with mean
"° A

From equation 4.17, the estimate M,(t) is the product of two

estimates. One is the function of yA , \='/X, and the

other is the function of s. , H(s)= .*-s,+--t. there are

many possible ways to perform a two-sample jackknife

procedure. We will call one method the "paired sample

jackknife" procedure. Since the size of both samples is the

same, we make the one set of observations by pairing

respective observations, that is, (s,,y, ),(s Jy....(s,y

). As with the one-sample jackknife, we estimate the Mwk%(t)

for all the data, and then, we estimate M,,(t) based on the

remaining data obtained by leaving out just the i pair.
A

Thus the i"' pseudo value M4(t) is

M4 (t) = nM,,(t) - (n-l)MM(t) (4.18)
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and the jackknife estimate M,(t) and variance estimates are

given by
% A

M,(t) = M(t)

,-- ----- [M(t) M 3(t) 
2

Based on these statistics, an approximate two-sided 100

(1-o)% confidence interval is given by

N

M (t) t I S (4.19)

where t %-2 is the upper 1-O point of t-distribution with

n-1 degrees of freedom. A second method is called the

"separated sample jackknife" procedure. Since we assumed

that the X-'s and Y 's are independent, we can perform the

. jackknife procedure separately for each sample, and then,

- estimates which combine jackknife estimates and the

jackknife variance estimate can be computed.
AA

Let M,,(t) be the jackknife estimate of and V beA

the jackknife variance estimate for N- Let M:,(t) be the
t A

jackknife estimate of TF(s)ds and Vs be its jackknife

variance estimate. Then the combined jackknife estimate of
A

MZYC(t) is

A A A
MSC t M M 1( t ).M a( t )  (4.20)

and the combined jackknife variance estimate is

AL . ' A

SS Vs + V [M:(t)]2 + Va[M-3(t) a (4.21)

The approximate two-sided 100 (1-co confidence interval is

given by

A

MJC(t) ± t I- S3c /rn (4.22)
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where t,_? is the upper 1-4 point of t-distribution with n-i

degrees of freedom.

C. BOOTSTRAP ESTIMATION METHOD

Efron(1979) introduced the bootstrap method for

estimating the distribution of a statistic computed from

observations [Ref. 101. The bootstrap estimate is obtained

by replacing the unknown distribution by the empirical

distribution of the data in the definition of the

statistical function. In practice, the distribution of the

statistic is approximated by Monte Carlo methods.

For convenience, the arrival rate is assumed to be known

and equal to 1, then the nonparametric estimate Mo(t) is

just a function of service times. This is a one-sample

problem. The bootstrap procedure is as follows:

1. Suppose that the data points x1 ,x .... ,x are
independent observations from the unknown distribution
F. hen the true estimate is

M (t) = (s)ds (4.23)

2. We can estimate the distribution F by the empirical
probability distribution Fn.

Fq : mass - on each observed data point x;
i=1,2 ....... n

3. The bootstrap estimate of Mo(t) is

"1( = t) Fn(s)ds (4.24)

To obtain an estimate of variability for M,(t), we procede

as follows

(1) Construct F., the empirical distribution function,
as just described.

(2) Draw a bootstrap sample x ,xI ,... x , by
independent random sampling from Fn.

Notice that we are not getting a permutation distribution

since the values of X, are selected with replacement from
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the set (x.,x,....x , x1 ). As a point of comparison, the

ordinary jackknife can be thought of as drawing samples of

size n-I without replacement.

(3) Compute an estimate of MN (t) for each bootstrap
replication, Mt) that is, the value of statistic
evaluated for the bootstrap sample.

M (t) = -+ -[n- _I(x! t)]t (4.25)

where I(x ,t)= 1 if x - t
10 otherwise

(4) Po step (t) some large number "B" times obtaining
independen bootstrap replications M' (t),(t), .. M " (t).

Based on the bootstrap replications, the approximate

estimate of M,4(t) and its variance are obtained by

A

MS(t)M (t) (4.26)

Var[MM (t)] = M"M(t) - M(t)) (4.27)

A formula for the conditional variance of Ma (t) given the

original sample data is derived in Appendix C. This

expression is given bI A.

Var[MB (t) ] = -- ,Xa -2 2[x. .+ - -

-2t[---][-1-x 1  (4.28)

Notice that the expected value of the conditional variance

of the bootstrap estimate is approximately equal to the

variance of the nonparametric estimate of Mat) which is

derived in Appendix A.

So far we have considered the problem, where the arrival

rate is known. The bootstarp methodology also applies if

the arrival rate is unknown and is estimated from
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interarrival data. Suppose the data consist of a random

sample X=(X ,X ,... ,X. ) from unknown service time

distribution F and an independent sample Y=(Y, ,Y, ...

from the exponential interarrival time distrbution G with

unknown parameter \. One bootstrap procedure to estimate

the expected number of customers being served at time t is

to construct Fn~ and GY , the empirical probability

distribution corresponding to F and G. Bootstrap samples

4 i=l,2,...n, Y-' Gn, j=1,2,...n, are independently

drawn, an estimate of M,(t)

-n
MW(t)- - x 4 + -L[n - I(xt) t} (4.29)

is calculated. As before there are a large number B of

bootstrap replications. For this case, the bootstrap

estimate of M, (t) and its variance are still given by

equations 4.26 and 4.27. There appears to be no closed form

of the analytical variance of Ma (t) in this case. Now we

will describe methods to obtain approximate confidence

intervals for the bootstrap estimate MS(t).

1. The Percentile Method

A simple method for assigning approximate confidence

intervals to the nonparametric estimate Mj(t) is as follows:

Let

A I
C(t) = (4.30)

be the cumulative distribution function of the bootstrap

distribution of MW (t); B is the number of bootstrap

replications. For a given 0<0< <0.5, define
A A.

= C (_e = ,

Usually denoted simply by L and U. This definition runs

into complications when we actually try to compute quantiles
A A

L and U from a set of bootstrap replications. To overcome
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these difficulties, we order the bootstrap replications from

smallest to largest, obtaining the sorted data M. (t), for

i=l to B. Letting represent any fraction between 0 and

1; take Q(0) to be M, (t) whenever Q is one of the
functions o = for i=l to B. Thus L(c<) turns out to

be the (B *X + 0.5) MKI (t) and U(o) to be the (B * (I- )

+0.5) M (t). The percentile method consists of taking

A A

L(o) U(o) 1 (4.31)

A

as an approximate 1-2o( confidence interval for M,(t) since

X =C(L), 1-o(=C(U), the percentile method interval consists

of the central 1-2 o( proportion of the bootstrap

distribution.

2. The Bias-corrected Percentile Method

Efron(1980) suggests the following bias correction

for the percentile confidence interval procedure [Ref. 11].
A

He argues that if MB(t) is not the median of the bootstrap

replication distribution, then a bias correction to the

percentile method is called for. To be specific, define

z= [C(Me(t))] (4.32)

A 40~2 v 4
where C(t)= as in equation 4.30, and is the

cumulative distribution function for a standard normal

variate. The bias corrected percentile method consists of

taking

[C"{ 1(2z0 - z') I _(2z,,+ z.)} (4.33)

as an approximate 1-2o( central confidence interval for
AM%(t). Here z is the upper point for a standard normal

(z)
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Notice that if M,(t) is the median of the bootstrap

distribution then z,=0 and equation 4.33 reduces to equation

4.31, the uncorrected percentile interval. However, even

small differences of Pr{M, (t) . Ma(t) I from 0.5 can make

equation 4.33 much different from equation 4.31.
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V. SULAION RESULTS

The purpose of the simulation in this chapter is to

assess the performance of the nonparametic estimation

methods, the jackknife and the bootstrap. Since the

estimate of M(t), the mean number of customers being served

at time t, is a function of the customer arrival rate and

the integral of the survivor function of the service time

distribution, two simulations cases are done. The first

simulation case was performed to estimate M, (t), the

nonparametric estimate of M(t), as a function of the service

times with the arrival rate assumed to be known and set

equal to 1. For this case, the jackknife and bootstrap

estimate of the variance were derived in the chapter IV, and

compared with the numerical estimate obtained by the

simulation. The second case assumed that the customer

arrival rate is also unknown and must be estimated using

interarrival times.

In each replication of the simulation for case 1, 50

independent service times from a specified service time

distribution were generated. For the bootstrap procedure,

500 bootstrap replications were performed. The simulation

was replicated 300 times. For the purposes of comparison,

we considered four types of service time distributions,

which were the exponential, the mixed exponential, the

gamma, and the lognormal distribution. The arrival process

is known to be Poisson process with known rate A=i. The

same generated service times were used for each estimation

procedure in a replication. This reduces the variability of

the differences in performance between the procedures. All

programming was done on IBM 3033 computer at the Naval

Postgraduate school using the LLRANDOMII, random number

generating package [Ref. 6].
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TABLE III

STATISTICAL DATA OF ESTIMATE OF M(T)
N=50 R=300 (B=500)

True Parametric Nonparametric

value Correct Errors Jack Boot

Exponential 0.7869 0.7830 - 0.7820 0.7819
( U = 2) (0.0268) (0.0451) (0.0452)

Mixed expon. 0.5992 0.5871 0.6246 0.5991 0.5989
U,=2, uF.75,f=. ) (0.0023) (0.0026) (0.0512) (0.0512)

Gamma 0.8963 0.8952 0.7861 0.8965 0.8967
(=l, K=2) (0.0009) (0.0010) (0.0325) (0.0325)

Lognormal 0.8094 0.8140 0.7844 0.8139 0.8138
Y93, i(0.0021) (0.0020) (0.0383),(0.0383)

Table III presents the results of several estimation

methods when the arrival rate is given and equal to 1. The

top of each cell gives the mean estimate of M(t) at time

t=1, where M(t)= ,F(s)ds. The bottom part of each cell

gives the standard deviation of the estimate. For service

time distributions other than exponential, a parametric

estimate based on an erroneous exponential model is also

given. The estimate in the case of an exponential model is

[1-EXPj-t/j] where A is the mean service time. For each

service time distribution, the standard deviation of the

parametric estimate of M(t) is smaller than that of the

nonparametric estimate of M(t). That is, the efficiency of

the parametric estimation method is better than the

efficiency of the nonparametric estimation method. However,

the results of a parametric fit assuming an erroneous

exponential model show the worst performance. The true
value of M(t) is not included within plus or minus three

standard deviations of the erroneous estimate M(t). In the

table, the nonparametric estimation methods seem to perform

well in all cases with the cost of an inflation of variance.

Hence the nonparametric estimation method is to be preferred

when the service distribution is unknown.
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To illustrate the efficiency of the nonparametric

estimation methods, we simulated two possible ways to
construct the approximate confidence interval for MN(t) for
the bootstrap and the jackknife methods. Those ways are

presented in chapter IV. For the jackknife estimation

method, one piocedure was to construct the confidence

interval with t'ie -egular degrees of freedom, n-1, and the

other used the reduced degrees of freedom, which is the

number of different pseudo values. For the bootstrap

estimation method, one way used the percentile method by the

Monte Carlo process, and the other used the bias-corrected

percentile method; there were 500 bootstrap replications.

Nominal 68%, 80%, and 90% confidence intervals were

constructed for each replication using each method. It was

noted whether the confidence interval formed by a given

method covered the true value M(t). The entire process was

independently replicated with R=300 times. From these R

replications we computed, for each method, the proportion p

of the R confidence intervals which contained M(t), as well

as the average length of the confidence intervals. If a

method was performing adequately, p should be near 1-X , and

a small mean length is desirable.

Tables IV to VII show the simulation results of several

confidence interval procedures for four types of service

time distribution; the exponential, the mixed exponential,

the gamma, and the lognormal. The arrival process is

Poisson with known arrival rate \=l.

In order to compare the performance of these procedures

to the normal confidence interval procedure, simulations

were conducted, and nominal 68%, 80%, and 90% confidence

limits were constructed for time t=l for each replication.

The normal confidence interval procedure is based on the

order statistics of the service times. By the central limit

theorem, the distribution of MA(t) is asymptotically normal
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TABLE IV

COVERAGE AND LENGTH OF 100(1lco )0 C.I
FOR EXPONENTIAL WITH u=2, ) =1 AT T=

68 % 80 % 90 %

Length C. R. Length C. R. Lenqth C.R.
(s.d) (s.d) (s.d)

Normal C.I. 0.0888 19.33 0.1147 12.00 0.1477 4.67
69.33 83.67 92.00

Procedure (0.0089) 11.33 (0.0101) 4.33 (0.0141) 3.30

Reduced 0.0911 17.67 0.1187 11.00 0.1548 3.33
71.33 85.33 94.00

Jack- d.f (0.0089) 11.00 (0.0102) 3.67 (0.0142) 2.67

knife Regular 0.0897 18.38 0.1163 11.33 0.1505 4.00
70.67 84.33 93.00

d.f (0.0090) 11.00 (0.0103) 4.33 (0.0144) 3.00

Percen- 0.0884 18.67 0.1132 12.00 0. 1462 4.33
tile 69.00 82.00 92.00

Boot- method (0.0098) 12.33 (0.0112) 6.00 (0.0154) 4.67

strap Bias- 0.0887 16.67 0.1137 10.67 0.1467 2.67
correct 71.00 83.00 92.67
method (0.0098) 12.33 (0.0112) 6.33 (0.0154) 4.67

distributed as the number of data points n co . Thus, the

100(1-)% normal confidence interval is given by

MW(t) ± z 1_1jVar[ M4 (t) ] (5.1)

where z ,_R is the upper 1-2 point of the standard normal
distribution and Var[M,4(t)] is given by equation A.14 in

appendix A.

Each cell in the tables contain the average and standard

deviation of confidence interval length; and the proportion

of intervals that are too high, (e.g. M (t)<L), where L is

the lower bound of interval; the proportion of intervals

covering the true value M(t), p; the proportion of interval

that are too low, (e.g. M(t)>U), where U is the upper bound

of interval. Table IV is for the exponential service time

case with with A =2; Table V is for the mixed exponential

service time case with M=2, )=0. 75, and P, =0. 2; Table VI
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TABLE V

COVERAGE AND LENGTH OF 100(!-O)% C.I. FOR
MIXED EXPONENTIAL WITH u,=2, =.75, 2 =.2, \ =1 AT T=1

68 % 80 % 90 %

Length C. R. Length C. R. Length C.R.
(s. d) (s.d) ( s. d)

Normal C.I. 0.0914 14.67 0.1169 10.00 0.1509 5.00
71.67 83.00 90.67

Procedure (0.0084) 13.6- (0.0102) 7.00 (0.0143) 4.33
-- - -- - -- -- - -- -----. -- - -- -- - - -- - - - -

Reduced 0.0936 14.00 0.1208 9.67 0.1581 4.33
73.00 83.33 91.67

Jack- d.f (0.0085) 13.00 (0.0103) 7.00 (0.0143) 4.00
knife Regular 0.0923 14.67 0.1185 10.00 0.1538 4.33

72.00 83.00 91.33
d.f (0.0085) 13.33 (0.0103) 7.00 (0.0145) 4.33

Percen- 0.0911 14.33 0.1156 11.33 0.1490 4.33
tile 71.67 81.33 89.67

Boot- method (0.0094) 14.00 (0.0112) 7.33 (0.0153) 4.33

strap Bias- 0.0913 14.00 0.1161 9.00 0.1495 4.00
correct 71.00 83.00 89.67
method (0.0094) 15.00 (0.0112) 8.00 (0.0153) 6.33

is for the gamma service time case with 3=1 and K=2; and

Table VII is for the lognormal service time case with

=0. 193 and =1.

The overall examination of the tabulations of confidence

limit coverage and also the average and standard deviation

of confidence interval length suggest that the bootstrap

procedure is slightly better than the jackknife procedure;

however, the difference is negligible. The normal

confidence interval is also about the same as the jackknife

and bootstrap procedures indicating that a sample size of 50

is large enough for the central limit theorem approximation

to be adequate. All procedures produce almost the same

average length of confidence interval with a good coverage

rate, which falls within ± 2 of I- r< Although the3oC

method of the reduced degrees of freedom used in the

jackknife and the bias-correct percentile method applied in

the bootstrap improved the coverage rate, the variance was
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TABLE VI

COVERAGE AND LENGTH OF 100(I-0O)% C.I.
FOR GAMMA WITH p=!, K=2, =I AT T1

68 % 80 % 90 %

Length C. R. Length C. R. Length C.R.
(s.d) (s.d) (s.d)

Normal C.I. 0.0595 22.00 0.0774 12.33 0.0989 10.67
68.33 80.33 86.33

Procedure (0.0100) 9.67 (0.0120) 7.33 (0.0174) 3.00

Reduced 0.0617 21.00 0.0813 11.33 0.1062 8.33
70.00 82.67 89.00

Jack- d.f (0.0102) 9.00 (0.0122) 6.00 (0.0178) 2.67

knife Regular 0.0601 21.67 0.0785 12.33 0.1008 10.33
69.33 80.67 86.67

d.f (0.0102) 9.00 (0.0121) 7.00 (0.0177) 4.00
-- -.-- - - - -- - - - --. - - --.- ------ -- -----

Percen- 0.0589 21.33 0.0766 12.00 0.0981 9.33
tile 69.97 80.33 86.67

Boot- method (0.0091) 9.00 (0.0122) 7.67 (0.0179) 3.00

strap Bias- 0.0595 19.33 0.0777 10.67 0.0990 8.67
correct 69.33 81.00 87.00
method (0.0100) 11.33 (0.0121) 8.33 (0.0180) 4.33

inflated. Furthermore, the amount of improvement was small

and not significant. Hence, the original procedures for

constructing the confidence interval for the jackknife and

bootstrap are preferred in this case. Note that the

coverage rates are skewed left slightly but almost balanced.

It is a reason that the normal confidence interval procedure

performs well.

Results will now be reported for the simulation of the

case in which the arrival rate of the Poisson process is

also unknown and must be estimated from interarrival time

data. More computations are required for this case;

however, the procedure is same. Each replication of the

simulation generated 50 independent service times and 50

independent exponential interarrival times having mean 1.

Confidence intervals were computed using both separated and

paired jackknife procedures and the percentile method for

the bootstrap. The number of bootstrap replications was
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TABLE VII

COVERAGE AND LENGTH OF 1OO(1-0)% C.I.
FOR LOGNORMAL WITH §=.193, , 1=" AT T=I

68 % 8o % 90 %
Length C. R. Length C. R. Length C.R.(s.d) (s.d) (s.d)

-- - -- - - S - - ----- -( -- -m---- --(---

Normal C.I. 0.0769 16.67 0.1007 10.00 0.1272 6.67
71.00 78.00 89.33

Procedure (0.0075) 12.33 (0.0096) 12.00 (0.0126) 4.00

Reduced 0.0787 16.33 0.1208 9.67 0.1330 6.33
71.33 79.67 89.67

Jack- d.f (0.0076) 12.33 (0.0097) 10.67 (0.0127) 4.00
knife Regular 0.0763 16.67 0.1021 10.00 0.1297 6.67

70.33 79.00 89.33
d.f (0.0076) 13.00 (0.0097) 11.00 (0.0128) 4.00

-- -_-- - - - -- - - -- -_ - -- - --- -------- w- --

Percen- 0.0763 16.67 0.0998 10.33 0.1258 7.33
tile 69.33 77.00 88.67

Boot- method (0.0084) 14.00 (0.0105) 12.67 (0.0133) 5.00

strap Bias- 0.0768 16.00 ).1004 8.67 0.1263 6.33
correct 68.33 78.33 88.67
method (0.0084) 15.67 (0.0106) 13.00 (0.0133) 5.00

1000. Nominal 68%, 80%, and 90% confidence limits were

computed for each replication. The simulation was

replicated 300 times.

Tables VIII to X report the results of the simulation.

The quantities in the left part of each cell are the average

and standard deviation (within parenthesis) of coverage

interval length. The right part of each cell contains three

quantities; the top value is the proportion of intervals

that are too high; the center value is the proportion of

intervals that cover the true value, p; and the bottom part

is the proportion of intervals that are too low.

In Table VIII (the case of 68% C. I. ), the average length

from the bootstrap shows outstanding performance with a

small value of standard deviation. The paired jackknife

procedure performs as well as the bootstrap procedure. This

procedure reduced the standard deviation by more than half

of that in the separated jackknife procedure, and also
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, improved the coverage rate. From the results of coverage

rate in the table, it can be recognized immediately that the

jackknife estimate, regardless of the application method, is

often too low, while the bootstrap estimate tends may a

little too high but is almost balanced in the number of

confidence intervals that are too high or too low. It is

the reason that the bias-corrected percentile method was not

required in this case.

In this simulation, all the coverage rates fall within

+ 2 of - c<, (62.61, 73.38). Note that the average

length of the confidence interval in the gamma service time

case is the highest. When the arrival rate was known, the

gamma service time case had the smallest average length.

This indicates that the variability of the estimated arrival

rate may be the dominate effect in the width of the
confidence interval.

The results of Tables IX and X support the facts of

discussion about Table VIII, This is the reasonable since

the same random numbers were used to compute these

confidence interval. The presentation of Table IX is

exactly the same as the case of table VIII. All the

coverage rate are fall within (75.38, 84.61), though the

• value of coverage rates fluctuate over the service time

distribution cases. Obviously the paired jackknife

procedure performs very well. The bootstrap procedure still

has the best performance; however the value of coverage rate

fluctuates greatly for the different service time

distributions. For the 90% confidence interval case

reported in Table X, some coverage rate fall outside the

range (86.53, 93.46). The separated jackknife procedure

produces low coverage rates outside of (86.53, 93.46),
except for the exponential service time distribution. The

paired jackknife procedure improved the coverage rate

tremendously. Although the average lengths in the paired
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jackknife procedure are slightly bigger than those in the

bootstrap procedure, the overall performance is better than

the bootstrap. Furthermore, the procedure in the case of

gamma service time distribution, the bootstrap produced one

coverage rate outside of (86.53, 93.46). However, this

could be due to sampling fluctuation.

In general, all the confidence interval procedures

performed very well for the exponential service time case,

regardless of the level of the confidence interval. The

procedures also worked well in general to produce 68% and

80% confidence interval. However, performance was more

variable in the 90% confidence interval case. In most

cases, the average length produced by the bootstrap

procedure is the smallest, but the value of the coverage

rate fluctuates for different service time distribution.

The overall examination of the tabulations suggests that the

paired jackknife procedure performs very well compared to

the separated jackknife procedure and in some cases shows

better performance than the bootstrap procedure.
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TABLE VIII

COVERAGE AND LENGTH OF 68% C.I.
WITH UNKNOWN ARRIVAL RATE (N=50, R=300, B=1000)

Jackknife Bootstrap

Separated Paired Percentile

Length C. R. Length C. R. Length C.R.(s.d) (s.d) (s.d)

Exponential 0.2674 7.00 0.2525 9.67 0.2436 18.33
70.00 70.33 66.67

( = 2) (0.1282) 23.00 (0.0570) 20.00 (0.0510) 15.00

Mixed exponen 0.1999 12.00 0.2077 15.00 0.2009 21.67
(,u=2 M.75 65.67 68.00 64.00
P =.) (0.0832) 22.33 (0.0429) 17.00 (0.0398) 14.33

Gamma 0.2917 10.00 0.2746 13.33 0.2632 21.67
68.00 67.67 66.00

A=l, k=2) (0.1376) 22.00 (0.0599) 19.00 (0.0557) 12.33

Lognormal 0.2533 7.67 0.2513 10.00 0.2415 19.33
72.00 72.33 69.67

(.=.193,cf =1) (0.0998) 20.33 (0.0486) 17.67 (0.0461) 11.00

TABLE IX

COVERAGE AND LENGTH OF 80% C.I.
WITH UNKNOWN ARRIVAL RATE (N=50, R=300, B=1000)

Jackknife Bootstrap

Separated Paired Percentile

Length C. R. Length C. R. Length C.R.(s. ) (s.d (s.d

Exponential 0.3447 5.33 0.3282 8.00 0.3162 12.67
79.67 82.00 83.00

( M = 2) (0. 1329) 15.00 (0.0641) 10.00 (0.0585) 4.33

Mixed exponen 0.2558 0.2688 5.67 0.2553 12.67
(A =2 =75 75.67 82. 33 83.00
(P (0.1088) (0.0569) 12.00 (0.0490) 4.33

Gamma 0.3646 5.00 0.3504 6.67 0.3375 16.33
78.67 81.67 75.67

§=I, k=2) (0.1509) 19.33 (0.0703) 11.67 (0.0657) 8.00

Lognormal 0.3259 4.67 0.3231 6.33 0.3115 14.67
77.67 79.33 75.67

(S=.193, f'=l) (0.1279) 16.67 (0.0624) 14.33 (0.0585) 10.00
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TABLE X

COVERAGE AND LENGTH OF 90% C.I.
WITH UNKNOWN ARRIVAL RATE (N=50, R=300, B=1000)

Jackknife Bootstrap

Separated Paired Percentile

Length C. R. Length C. R. Length C.R.

Exponential 0.4464 1.33 0.4231 2.67 0.4091 8.67
90.00 92.33 89.00

(M= 2) (0.1680) 8.67 (0.0844) 5.00 (0.0761) 2.33

Mixed exponen 0.3199 0.67 0.3387 2.33 0.3301 8.00
(u =2 .=-. 75 83.33 88.00 86.67

=. (0.1213) 16.00 (0.0679) 9.67 (0.0609) 5.33

Gamma 0.4891 2.00 0.4586 3.33 0.4416 9.00
85.33 88.67 85.67

(i=I, k=2) (0.2321) 12.67 (0.1053) 8.00 (0.0959) 5.33

Lognormal 0.4371 1.67 0.4228 3.00 0.4074 7.00
85.33 90.00 88.67

(§=.193, &"l) (0. 1974) 13.33 (0.0920) 7.00 (0.0847) 4.33
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VI. SUMMARY A CONCLUSIONS

This thesis consider the problem of estimating M(t), the

mean number of customers being served at time t for an

M/G/co queue, using service time and interarrival time data.

It is assumed that there are no customers being served at

time 0. Two cases are considered. In one the parametric

form of the service time distribution is assumed known. In

this case M(t) is a function of the estimated parameters.

In the situation in which the arrival rate of the Poisson

process is also assumed known and the parametric form of the

service time distribution is exponential, approximation to

the bias and variance of the estimate are derived. Further,

simulation is used to study a normal confidence interval

procedure.

For the other case the parametric form of the service

time distribution is unknown. The empirical distribution of

the service time distribution is used in the estimate of
M(t). In the situation in which the arrival rate \ is

assumed known, the distribution of the estimate is derived

in Appendix A. The bootstrap and jackknife estimates with

known are studied in Appendix B and C. Simulation was used

to assess the performance of confidence interval procedures

using a normal approximation the jackknife and the

bootstrap. The simulation results for the case in which the

arrival rate is known indicate that:

(1) The parametric estimation method appears the most
powful method when the parametric assumption is
correct, but the performance is seriously degraded if
the assumption is not appropriate.

(2) When an erroneous parametric (exponential) model is
assumed, the in.ial estimates of mean number in
service are poor. However as t 4o , the erroneous
parametric estimate approaches the same value as the
other estimates. This is because as t .o all the
estimates approach the sample mean of the service
time data.
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(3) The estimate obtained bY using the empirical
distribution is unbiased with a larger variance than
a parametric estimate based on a correct model.

(4) Simulation results indicate there is not much
difference between jackknife and bootstrap confidence
interval procedures.

(5) The nonparametric normal confidence interval
procedure performs as well as the procedure in (4)
since the distribution of the estimate is almost
symmetric. The improvement by the use of adjusted
degrees of freedom in the jackknife and the
bias-corrected percentile in the bootstrap is small.

We now discuss the simulation results for the case in

which the arrival rate for the Poisson process is also

unknown and is estimated using interarrival time data. The

service times are generated from four types of distribution.

The percentile method for the bootstrap and paired and

separated techniques for the jackknife were used to

construct the confidence intervals. Tables I and II, which

are the results of a parametric confidence interval

procedure in chapter III, are compared with the results of

the nonparametric confidence interval procedures. The

simulation results indicate that:

(1) The nonparametric confidence interval procedure works
as well as the parametric case even though the
length of the confidence intervai is wider than the
parametric one.

(2) In the overall examination, the percentile method of
the bootstrap shows the best performance. The paired
jackknife procedure also has similiar results to the
bootstrap approach. The results of these two
nonparametric procedures show the almost same level
of performance with the parametric one. However the
separated jackknife procedure produces poor resuits.

(3) The results of the jackknife procedures produce
intervals that are always biased upward. Efron(1981) reported similiar results. [REt. 13]

(4) Since the bootstrap procedures require a large amount
of computation, the jackknife is the method of choice
if one does not want to do the bootstrap
computations.

In general, the nonparametric methods of the bootstrap

and the jackknife performs very well, regardless the

complexing of the estimation problem. Of cource, if the

parametric estimation method can be applied, the results are

clearly superior. However, the application of the
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parametric estimation is a highly limited because the

parametric assumption is often difficult to verify. When

the estimate is simple enough, which is the nonparametric

estimate when the arrival rate is known, and the asymptotic

distribution of estimate can be obtained, the nonparametric

normal confidence interval procedure performs well, and more

complicate computations such as the jackknife and the

bootstrap method are not required. However, the jackknife

and the bootstrap method have a good performance for the

more complicated problem in which the arrival rate is

unknown. The bootstrap confidence intervals show the best

performance but the paired jackknife procedure achieve the

same level of performance with less computation than the

bootstrap in this problem.

.4.
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2.1

APPENDIX A

CALCULATING THE BIAS AND THE VARIANCE OF MO(T) WITH KNOWN

ARRIVAL RATE

It will be assume that the rate of Poisson process N is
known and is equal to 1. The nonparametric estimate MA(t)

is given by

M-(t) = It[1-F(s)]ds (A.1)

Using the empirical cumulative density function Fn, the

nonparametric estimate is

MN(t) = + t (A. 2)

where the observation S()'s are the order statistics of the

indeprndent and identically distributed service times with

unknown distribution F. To find the distribution of Mt(t),

we will study the distribution of IS,)).

Let X,,X, ..... X be independent, identically distributed

random variable with distribution function F. Let N be the

number of X-'s which are less than t. Let X4)denote the i

smallest X4. By the definition of conditional probability,

P{xl) x N =- -= (A. 3)

for x<t. Since the random variable NT has a binomial

distribution with a parameter F(t), we can rewrite the

equation A. 3 to obtain

P {X,).< xjNt= = [ V.
('At F (t L -PT -r

(A.4)
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Let f(x) be the density of the distribution function F. The

conditional probability given Nt=2,

P x,X, x + dx, , x<X,)4x,_+ dxjNt=2}

=2 - - - - - - -(A. 5)

for x <x..

Given Nk=K, the conditional distribution of the values

of the unordered Xj that lie in (O,t] is that of independentF")i
random variables with distribution function F , for 0,<x:t.

Thus, given Nt=K, M4t) has the same distribution as a

constant plus the sum of K independent identically

distributed random variables. Thus the expectation of M,4(T)

can computed by the property of conditional expectation,

E[Mt(t)] = E[E[ Mt( t) INt (A. 6)

Given Nt=<,

A'

E[MO(t) Nt=K] = - t(A.7)

Since the random variable Nt has a binomial distribution

with the parameter F(t),

E[Mt4(t) A'K + t

= xF(dx) + {l-F(t)]t (A.8)

To check the bias of the estimate M. 4 (t), using the

integration by part of equation A. 1, the true estimate is

given by

MN(t) t[l-F(t)] + tF(dx) (A. 9)
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Thus the estimate MW(t) is unbiased. Using conditional

expectations, the variance is computed by

Var[MA(t)] = E[(MI(t) - E[MW(t)] )2 ]

= E[(MI(t) - E[Mj(t)IN t])2 ]

+ 2E[(MI(t) - E[M~ t)jN-L])(E[Mj(t)jN] E[Mw(t)])]

+ E[(E[M,(t)INt] - E[Mw(t)]) 21 (A.10)

Computing each of the individual terms, we obtain

E[(Mw(t) - E[M,(t)IN ] )2 ]

{ x z t4 )  'x 2 (A.1II)

-. and

E[(E[MO(t)jNt] -E[M (t))

= _'. F(t)F(t)[ t x E&L t]2  (A. 12)

where F is the survival distribution function of F. The

second term of right term of equation A. 10 turn out to be

zero. Thus the variance of MO(t) is obtained by sum of two

equations. The resulting variance is

Var[M,,(t)] = _ X {x2F(dx) _ [ fxF(dx) 2+t2F(t)F(t)

- 2tF(t)( 3xF(dx) I (A.13)

Notice that the variance estimate of MN(t) is equal to

-- Var(X) as t-o . A nonparametric estimate of Var[MW(t)] is

V,.
,. , Var[ Mw(t) l = -- M - S 2; - s[ > , t a .[I
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-2t (A. 14)

where K is the number of service times that are less than t.

65



APPENDIX B
JACKKNIFE ESTIMATE OF NONPARAMETRIC ESTIMATE

It will be assumed that the arrival rate \ is known and

equal to 1. The nonparametric estimate is given by

A
A K

- .scZ + t (B. 1)

where S,) s are the order statistics of the service times and
assumed that the random variable K exists such that

S. " The estimate M(t) for the data set
obtained by deleting the i' point from the sample is

,,t) = M.. s + t if i > K

A, -

s . + t if i K (B.2)

The pseudo-value M,(t) is computed by

A AAI-

M (t) = nM (t) - (n-l)M(t) (B.3)

A
where Mo1 (t) is the estimate of M j(t) based on all the data.

A-substituting the estimate M,,. (t) in equation B.3, we get

A

M'(t) =SU) if i K (B. 4)

t if i > K
Since the jackknife estimate is the average of the

pseudo-values, the estimate is given by

A 1 K
M = -- + t (B. 5)

M t AA ) r)
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Thus, the jackknife estimate is the same as the original

nonparametric estimate of MN(t). The jackknife estimate of

variance is

A rA

Var[M,(t)] = --- [~M;(tfl 2 
- -TM.(tfl 2 1 (B.6)

whereA
r A K
~M.( t)l =:s2 -(n-K)t

2I

andA
V" ~ KA

[MM-(t)1 2 = ~(m,) + (n-K) t] 2

Thus the variance car be rewrit,,ten as

Var[ M,(t)] 1 ;1-)2 2 
- -

Comparing equation B. 7 with equation A. 14, it is seen that

the jackknife estimate of variance is greater than the

estimate of equation A. 14 by a multiplicative constant-

67



: ,. .". ., . , ;. -. <' . .L -. " - -. , - '' . " - .'' - ". .- -W r " ", -r- - . -

,

.

APPENDIX C

CONDITIONAL DISTRIBUTION OF BOOTSTRAP ESTIMATE

J.

It will be assumed that the arrival rate )\ is known.

and is equal to 1. Let S,,S ,..,S,, denote random service

times from a CDF F, and let S, S . .S t- S S, denote

the corresponding order statistics. The nonparametric

estimate of JF(s)ds is

M a(t) = n [)+ -- t(C. 1)

Let B4, i=l to n, be independent random variables having the

same distribution as draws with replacement from (s, ,s,,..,s

), and let b),i= to n, be the corresponding order

statistics. A bootstrap realization of the nonparametric

estimate is

b= - X b -- [n- ( (C.2)

where

I(x 4 t) =$ 1 if x! t

0 otherwise

To compute the distribution of M,(t), the Laplace transform

is used [Ref. 121. The Laplace transform of M8 (t) is

~~~El exp( -§ M,(T) )] =E[ Elexp( -§ M,(t) )IN+l] ( C.3 )

by the property of conditional expectations, where N- is the

number of bootstrap samples which are less than or equal to

t. We compute the right hand side of equation C.3

separately. First

E[exp(-§ Mq(t))IN = 11
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= - (C. 4)

is computed, where the random variable Nt has a binomial

distribution with the parameter F(t)- Thus, from
A

equation C.3 the Laplace transform of M (t) is

E[exp(- M (t)= exp(-§t) [exp( ---)C-exp(- )1

Sexp(-f t)[- exp(li))-exp(-§- 3- )  + --- (C.5)

Let us define a random variable Y having the following

distribution

Y if i4 K (C. 6)

r\i if i > K

Then the Laplace transform of Y is

=~x( ) -2- 2exp(- + -K-exp(-§- ) (C. 7)E[ exp(4-Y)] = - =\

A
Thus, Mg (t) has the same distribution as the sum of n

independent random variables having the same distribution as

Y. For the fixed time t, given the order statistics, Sc,<t,

<.. <S <t<S <.. < ), the expectation of AA(t) is written by
E[S(t)jdata = nE[YIdata]

-- = + 7-t (C.8)

Thus, the bootstrap estimate is asymptotically an unbiased

estimate of M,3(t). The variance is

Var[Mt(t)Idata] = nVar[Y (C. 9)

The variance of Y can be derived using the equation C. 6

Since
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E[ Y2I A Z. (C. 10)

Hence the asymptotic bootstrap variance estimate of M,(t) is

given by L A

Var[ M,( t) Idata] X SI L12.+-$t.J

2t 21(C.11)

That is, the asymptotic bootstrap estimate of variance is

the same as the nonparametric estimate (equation A.14).
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