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CHAPTER 1

INTRODUCTION

A common practice for solving a decision making problem is to formulate the

problem to fit into a mathematical model whose behavior is well understood. In most

cases, the model represents a simplified version of the problem since it is very diffi-

cult, if not impossible, to accommodate all the requirements into a comprehensible

model. It is expected, however, that the model captures the essence of the problem

and provides valuable information to the decision makers. One of the most powerful

and widely accepted models is the linear programming (LP) model. The model as-

sumes that all the decision variables are continuous and that all the requirements can

be expressed by linear constraints. The objective is to maximize or minimize a linear

function of the decision variables subject to the linear constraints. The popularity

of the LP model comes from its capability of handling large numbers of variables

and ccnstraints, plus other factors such as the ease of conducting postoptimality

analysis.

§1.1 Binary Integer Programming Problem

The LP model, however, has difficulty in handling discrete decisions. For ex-

ample, the Lorie-Savage problem (Lorie and Savage, 1955] involves decisions on

whether to undertake indivisible projects or not. The decisions are yes (undertake)

or no (reject), which can only be represented by discrete variables. This prompted

the development of the integer programming (IP) model, which resembles the LP

. , * ...'.-5x.- .. ....-....- ..... .r .. **.. . . . . . . . . ,*> . .S ..- . .. . . . . . .



model in every aspect except for the addition of the integrality riequirement. In

order to deal with lies-or-no decisions, the discrete decision variables need to be

further restricted to be binary(O or 1). In this dissertation, we will present a binary

integer programming (BIP) model with certain types of special constraints which

* arise naturally in the context of capital budgeting, as well as in many other appli-

* cations, and suggest an algorithm which seems promising in solving the problem

* more efficiently.

For a mathematical programming problem, the nature of its decision variables

* usually determines the approach we use to solve the problem. If all the variables are

continuous, for example, we might adopt the simplex algorithm (for the LP model)

* or some nonlinear programming algorithm, depending upon whether nonlinearity

* exists in the problem, to find an optimal solution. On the other hand, if all the

variables are required to be integers, we could use branch and bound algorithms to

search for an optimal solution. As reviewed in Section 2.2, there has been substantial

progress in the past twenty-five years in developing such algorithms for integer

programming. This work has revealed that it usually is advantageous to employ

* special-purpose algorithms to attack problems with special structure.

Many real-world problems can be formulated naturally as a pure BIEP model in

which all the decision variables are restricted to the values 0 or 1. These problems

* are not easy to solve in general. Theoretically, for a pure BIP problem, we can

* always enumerate all the feasible combinations since they are only of finite number.

* The difficulty is that the number of feasible combinations could be astronomically

* large, which prevents us from solving the problem within a reasonable time. An effi-

cient implicit enumeration BIP algorithm should have ways to quickly consider large

* numbers of potential solutions simultaneously and then to quickly check the opti-
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mality of a trial solution. For a structured problem, this sometimes can be achieved

by exploiting the special properties it possesses. The classical linear assignment
problem is an example, since its special properties guarantee that an optimal solu-

tion of the LP-relaxation (obtained by replacing the integrality constraints of the

binary variables by constraints stating that the variables can take values between 0

and 1) will be an optimal solution of the original problem, so we can actually use

the simplex algorithm to solve the problem. As discussed briefly in the next section,

other methods for solving integer programming problems include cutting plane al-

gorithms and the group theoretic approach. It is possible that such methods could

be very efficient for certain types of BIP problems. In this dissertation, however,

we only consider implicit enumeration algorithms.

§1.2 Solution Approaches for Integer Linear Programs

There are several different approaches that have been developed to solve integer

programming problems. The major ones are enumeration methods, cutting plane

methods, and group theory methods. Enumeration methods are by far the most

popular approach in practice, and widespread commercial programs now are avail-

able. However, other solution approaches are still valuable in the sense that some

may be particularly suitable for certain class of problems [Balinski and Quandt,

1964, and Toregas et al., 1971] and some can be used in conjuction with direct

enumeration methods to accelerate the enumeration process [Lemke and Speilberg,

1967]. In this section, we will provide a brief description of the cutting plane ap-

proach since the concept is used in the proposed algorithm. We will not describe

group theory methods here, but do provide a comprehensive list of references. The

framework of enumeration methods will be given in the next chapter.

The general principle of the cutting plane approach is to generate linear con-

3 .
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straints systematically that are implied by combining the original linear constraints

and the integrality requirement on the variables. Cutting plane algorithms can be

characterized by the following steps:

(Cl) Solve the LP-relaxation of the original problem.

(C2) If there is no feasible solution, stop since the original problem is infeasible.

(C3) If the optimal solution, z*, is a feasible solution for the original problem, stop

since it must also be an optimal solution for the original problem.

(C4) Introduce new linear constraints and optimize the LP-relaxation of the revised

problem. Let the new optimal solution, if any, be x*. Go to (C2).

The new constraints introduced in (C4) should force the current optimal solu-

tion for the LP-relaxation, x*, to become infeasible without eliminating any feasible

solutions for the original problem. The key issues for the cutting plane approach

include finite termination and the speed of convergence of the algorithm. The idea

- of introducing implied linear constraints was first used by Dantzig, Fulkerson, and

- Johnson (1954) and Markowitz and Manne (1957). The cutting plane approach was

systematized by Gomory (1958, 1960, 1963). More recent work can be found in,

e.g., Balas and Jeroslow (1975), Jeroslow (1979), and Wolsey (1979).

The group theoretic approach was first proposed by Gomory (1965). Subse-

quent work can be found in Shapiro (1968a, 1968b, 1970), Wolsey (1969), Glover

- (1969), Gorry and Shapiro (1971), and Johnson (1979,1981). Computational expe-

* rience on the approach is limited.

Special-purpose algorithms are abundant in solving IP problems, for example,

see Reardon (1974) and Kochman (1976). This is appropriate since there is no

proven IP algorithm which can solve all IP problems nearly as efficiently as the

simplex algorithm can solve LP problems. Furthermore, even the simplex algorithm

4



has difficulty in solving large scale LP problems and needs to take advantage of the

special structure.

Good sources for further information on all the topics discussed in this section

are Balinski (1965), Beale (1965, 1979), Garfinkel and Nemhauser (1972), Garfinkel

(1979), Geoffrion and Mausten (1972), and Geoffrion (1976).

§1.3 Model Overview

It is not common for a BIP problem to possess the property of the classical

linear assignment problem that solving it is equivalent to solving its' LP-relaxation.

However, many BIP problems do possess other useful special properties. In the

*- context of capital budgeting, mutually exclusive projects and contingent projects

[Weingartner, 1963, 1966] often result in constraints with special characteristics

which can be used to accelerate the enumeration process. There are two common

types of decisions in capital budgeting problems. One is to determine the level of

a project to be undertaken, which can be expressed as a nonnegative continuous

decision variable, and the other is to decide whether to accept or reject a specific

project, which can be expressed as a binary decision variable. In the most gen-

eral formulation of the capital budgeting problem, both types of variables would

appear and the problem is referred to as a mixed integer programming (MIP) prob-

lem. However, the focal point of this dissertation is on the mutually exclusive and

contingent projects which are associated with the latter category of decisions.

A set of n projects is said to be mutually exclusive if we can undertake exactly

one project out of these n projects. For example, this may represent the case where

we have n investment opportunities and need to select one, or where a computer

processor needs to select one of the n waiting tasks to execute next. Mathematically,

5
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let

1, if undertake project i,
S= 0, if don't.

Then the requirement that the projects be mutually exclusive can be expressed by

the constraint

E jj ---- 1. (1)
i

We call (1) a multiple choice constraint. Contingent projects occur when there exist

precedence relationships among various projects. For example, project 2 is said to

be contingent on project 1 if undertaking project 2 requires also undertaking project

1. This can be expressed by the inequality

1- X2 > 0. (2)

Again, z and x2 are binary variables and (2) is called a contingent constraint.

Note that X2 = 1 implies x, = 1. Examples of contingent decisions include ( )

projects with two stage decisions in which whether to undertake the project at

the second stage is contingent upon undertaking its first stage counterpart, and

(b) the selecti n of interrelated investment projects where the adoption of certain

projects may be conditioned on the outcomes of other projects. A more general

definition of contingent constraints will be given formally in Chapter 3. We also

call (2) a binary-valued constraint (BVC) since, for every solution satisfying (2),

the left-hand-side of (2) can only take the values 0 or 1.

The BIP problem with multiple choice constraints is termed the multiple choice

integer program (MCIP). Its formulation and solution techniques will be reviewed in

Chapter 2. We then introduce contingent constraints and binary-valued constraints

in Chapter 3 and show that many contingent constraints are actually binary-valued.

6
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Several examples of applications involving group contingent constraints also are pre-

sented in Chapter 3. The multiple choice constraints and the binary-valued con-

straints have a tendency to appear simultaneously. Adding the BVC into the basic

MCIP model, the resulting model is called MCIP/BVC, which will be the focal

* point of this dissertation. The proposed algorithm and its applications are given

in Chapter 4. In Chapter 5, we introduce three heuristic versions of the proposed

algorithm. These heuristic algorithms are designed to find a satisfactory (but not

necessarily optimal) solution with considerably less computer time. Numerical ex-

periments and implications are reported in Chapter 6 to demonstrate the efficiency

- of the new algorithm along with its heuristic counterparts. We conclude this dis-

sertation by summarizing the early results and their implications, and pointing out

potential areas for future research in the last chapter.

1
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CHAPTER 2

.4q

REVIEW OF THE MULTIPLE CHOICE INTEGER PROGRAM

Before we discuss the proposed algorithm for the multiple choice integer program

with binary-valued constraints, it would be beneficial to know the alternatives we

have for solving MCIP problems, since MCIP/BVC is a special case of MCIP. In

the following sections, we first present the MCIP formulation and then introduce

algorithms which are available for solving MCIP type problems. We will highlight

various branching schemes that are commonly adopted in these algorithms. The

chapter concludes with a comparison of the different branching schemes.

§2.1 Problem Formulation

For a general MCIP, we have

Minimize z: 1  - c,

subject to Ax > b
(1)

E = j= i=1,

i e {0, 1}, V ij.

We call each set of variables {Xi,z,2,... x,,} a special ordered set (SOS)*. We

further assume that each variable belongs to exactly one SOS. Hence, the problem

is to select one variable to have the value 1 out of each SOS and then set all other

variables equal to 0.

Following are several possible extensions of the above formulation:

• Beale and Tomlin (1969) call this a special ordered set of type 1.

8
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(a) If instead of selecting exactly one variable out of each SOS, we are allowed to pick
s."

at most one variable from each SOS, then the multiple choice constraint becomes
ni.

rLtdi %-

which we term a generalized upper bounding (GUB) constraint. In this case, we

can add a binary slack variable to this constraint and then set the coefficient of

this variable equal to 0 in the objective function. This will lead to our earlier

formulation.

(b) If there are overlapping variables among different special ordered sets, we can

introduce dummy variables into the system and convert it into the formulation (1).

For example, suppose that for some i, j, i $ j, we have

sos, nsosi = {} 0,

where SOSi denotes the ith SOS. Then we can create a dummy variable x1, and

define a new special ordered set j' where

sos,, = sos, - {Xk} + {x'J.

Replace the jth SOS by the j'th SOS and set the cost and general constraint

coefficients of x' equal to 0 in the objective function and all the other constraints.

Furthermore, we add a side constraint Xk = x', which can be accommodated as a

general constraint (Ax > b). The new formulation is equivalent to the old one but

with fewer overlapping variables. This procedure can be applied repeatedly until

all overlapping variables are eliminated.

(c) If there are some binary variables, say ak, that do not belong to any SOS, one

can introduce a (redundant) constraint,

xk <1,

9
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for each such variable and then proceed as described for (a) above to reach the

canonical formulation.

(d) It is also possible to consider constraints of the form

= k, (2)

where k is an integer greater than or equal to 2. One way to get around this problenrt

is to form k copies of the original variables. For example, if

fgi

Si =2, (3)

we introduce two sets of binary variables, (2h1,!2, ...,0!nj and {i ,' z2,

and constraints x!. + x?. < 1 for each j = 1,2,...,ni. Replace variables xii by

(xi% + z?,) in the original formulation for each j and eliminate constraint (3). Then

the modified system plus the constraints

j=I j=1

and the ni constraints stated above constitute a new system which is equivalent

to the original system. This procedure also can be applied to other constraints of

the form (2) when k > 2. However, this approach is cumbersome since originally

for each such constraint we have ('k') feasible combinations, where (',')is the usual

combinatorial notation defined as

i (n - k)!

In the latter formulation we have k!('') combinations, which is far larger.

10



§2.2 Branch and Bound Algorithms

Branch and bound is an optimization technique that utilizes a tree structure

to enumerate potential solutions. It involves selecting promising problems to inves-

tigate in the enumeration tree and calculating bounds on the objective function.

It is basically a strategy of divide and conquer. The expression branch and bound

was first used in Little et al. (1963). During the past twenty-five years, we have

witnessed substantial progress in developing such algorithms. Subsequent treat-

ments of the approach can be found in Lawler and Wood (1966), Mitten (1970),

and Garfinkel (1979). We will give a brief description of the elements of branch and

bound algorithms and then introduce relevant terminologies which are used later in

this dissertation.

For definiteness, we assume that the objective function is to be minimized.

Suppose that at the start of the algorithm there exists a known feasible solution to

the problem with objective value Z, (if none exists, Z, = oo). This solution is called

an incumbent . The algorithm begins by separating the feasible region of the original

problem into several (disjoint, if possible) subregions which are defined by imposing

constraints in addition to the original constraints. We refer to this procedure as

separation or partition. Each subregion corresponds to a node in the enumeration

tree, and defines a new optimization problem that is a reduced version of the original

problem. These reduced problems are called subproblems or descendants. The edge

in the tree that connects the current node and a new node is called a branch which

imposes new constraints. At each separation, some variables might become fixed

and others called free variables are still unrestricted. For each node, we try either

to find better feasible solutions to the original problem or to verify that no such

solutions exist to warrant further partitioning of the new problem. If successful

11
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in the former case, we will update the incumbent by replacing it with the best

newly found solution. If successful in the latter case, or in the case that the newly

found solution is an optimal solution to the new problem, we don't need to further

partition the new problem and we say that the node is fathomed. When a fathomed

node is detected, we backtrack in the enumeration tree u'Itil an unfathomed node is

found, at which point the procedure repeats itself. The procedure terminates when

all nodes become fathomed. We then have an optimal solution (Z. < oo) or the

problem is infeasible (Z, = oo). Verifying that no better feasible solutions exist

involves evaluating bounds, as well as other logic tests which may depend upon

the characteristics of the problems. Many fathoming devices and measures which

aid the decision on branching have been developed. We will mention some of them

briefly.

The use of surrogate constraints was first introduced by Glover (1965). They

are basically nonnegative weighted linear combinations of the original constraints

and the objective function, and often serve as a fathoming device. Depending

upon specific needs, different approaches exist to generate surrogate constraints.

Glover (1968) presented many definitions that measure the strength of surrogate

constraints. Geoffrion (1969) introduced a surrogate constraint which is designed

for the BIP problem and the computation results were very encouraging. Surrogate

constraints have been used for other purposes; for example, see Chapter 5.

Penalties are widely adopted as a fathoming tool in branch and bound type

algorithms. They can also be used as a criterion for choosing potential branches for

further investigation. We will discuss penalties in detail in Chapter 4.

Pseudocosts, which w..re originated by Benichou et al. (1971), serve as a guide

for the selection of future branches. They are designed to estimate the change in

12



objective value given that some variables are forced - to take certain values. Pseudo-

costs can not be used as a fathoming tool since they are only estimates rather than

actual bounds. Successful use has bcen reported by Gauthier and Ribiere (1977).

* There are many tradeoffs that need to be considered in any branch and bound

* algorithm. For example, how many subregions should be divided at each partition

* and should the subregions be roughly the same size? Another tradeoff is between

the computational effort devoted to obtaining bounds and the tightness of these

* bounds. In addition, when we partition in order to introduce new subproblems

(new branches leading to new nodes) into the enumeration tree, we need to decide

which problem to investigate first. A similar question arises when we backtrack in

* the enumeration tree and need to decide which unfat homed node to examine next.

* These decisions are not easy to make and may have great impact on the efficiency

of the algorithm. In fact, the behavior of enumeration type algorithms is difficult to

* predict in general. They might perform very differently on various sets of seemingly

* similar problems. Usually the only way to judge the comparative merits of such

* algorithms is to conduct extensive numerical experiments, and even that may not

- be enough to draw statistically significant conclusions.

Implicit enumeration is the name of a class of branch and bound algorithms

for the case in which all variables are required to be binary. This case merits

special attention because many real-world decision variables are naturally binary.

* Having binary variables also enables the derivation of efficient fathoming tests for

the algorithm. The algorithm proposed in this dissertation falls into the category of

* implicit enumeration. The specifics of the implicit enumeration algorithm pertaining

* to the proposed algorithm will be addressed in Chapter 4. For further discussion of

implicit enumeration and related algorithms, see Balas (1965), and Geoffrion and

13

......... *.****.*** *.*~ .. ,A



Marsten (1972).

§2.3 Algorithms for MCIP and Related Models

Multiple choice type constraints were first analyzed by W. C. Healy, Jr. in his

1964 paper 'Healy, 1964]. The problem he proposed is actually an extension of the

* MCIP model. It allows continuous variables as well as multiple choice variables.

Unfortunately, the solution procedure he suggested is not guaranteed to find an

optimal solution, or even a feasible one.

The multiple choice knapsack problem, which is a special case of the MCIP

problem, has been studied extensively. The problem takes the form of the MCP

model but with only one general constraint. Because of its special structure, spe-

cial algorithms are designed to accelerate the solution process. For example, the

algorithm by Sinha and Zoltners (1979a) begins by investigating the relationships

between the coefficients {cii} and {aj, . Some variables may be eliminated frorn

consideration if certain conditions are met. It then adopts a streamlined branch

and bound algorithm to solve the (possibly) reduced problem. Other specialized

algorithms also exist; for example, see Nauss (1975).

The multiple choice integer programming problem is also referred to as the

multi-item scheduling problem by Lasdon and Terjung (1971). Several algorithms

have been developed to solve MCIP. Sinha and Zoltners (1979b) extended their

work on the multiple choice knapsack problem to MCIP. Because of the efficiency

of their algorithm for the former problem, they derived a way to combine general

constraints into a single surrogate constraint and then applied this algorithm. An-

other algorithm was presented by Mevert and Suhl (1977). They use a branch and

bound approach to solve the problem. Bean (1980) described an additive algorithm

for the problem. It is basically a branch and bound approach. Unlike many other

14
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algorithms, the enumeration tree implicitly considered in Bean's algorithm is usu-

ally not binary. This algorithm utilizes the mutually exclusive property among the

variables in a SOS (to be discussed in Section 2.4) to form an enumeration tree

and often there are many descendants for each node which are not yet fathomed.

Detailed branching schemes are presented in the next section.

§2.4 Branching Schemes

We mentioned in Section 2.2 that the method of branching (defining new sub-

regions), is one of the key issues in designing enumeration type algorithms. In the

context of implicit enumeration, there are basically three types of branching schemes

for MCIP. We can illustrate these branching schemes through the following example.

Suppose that we have a problem with 6 binary variables and the constraints

X1 +2 2+ X 3 1 (SOS1)

(SOS 2)

According to the usual branch and bound method (BI), we can partition on a

selected variable, thereby introducing two new branches and two new nodes cor-

responding to the fixed values of zero and one for this variable. The partitioning

procedure repeats at each node that is not fathomed. In actuality, many nodes

may be fathomed very early in the process. However, the maximum number of

branches that needs to be enumerated explicitly in order to solve the problem is

Z = 2k = 126. We are interested in this quantity since whenever a new branch

is created, a revised problem needs to be solved, and the more potential problems

we have, the longer it is likely to take to find an optimal solution. However, we

must emphasize that this quantity is a worst-case estimate that greatly exceeds the

15
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actual number of branches that normally would need to be enumerated, so we use

it only as a rough measure to compare various branching schemes.

For the constraints (SOS1) and (SOS2), we note that only three combinations

satisfy (SOS1), namely,

1 =1, 2 =0, 3 =0;

M1 = 0, M2 = 1, 23 = 0;

M1  -" 0, M2 =- 0, M3 =  1;

similarly, for (SOS2), we have

T4 1, M5 0, L6 0;

M 4 = 0, 5 -1, 6 -0;

M4 =0, 5 =0, 6 =1.

Thus, there are only 32 = 9 combinations that need to be examined and the max-

imum number of potential branches is Z2_i=x 3 12. This observation leads to

the algorithm proposed by Bean (1980), and we call this branching scheme 2 (B2).

In general, the maximum number of potential branches equals " =1 no t, assuming

that there are m SOS constraints with no variables in each SOS.

The third kind of branching rule,(B3), is the dichotomy proposed by Beale and

Tomlin (1969). Observe that, for (SOS1), we can either have

X1 +22 = 1, (3)

* t If the number of variables differs among SOS's, then the expression will be more complicated

since the order we introduce the SOS constraints into the enumeration tree becomes relevant.

16
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or

X3=1. (4)

Equation (3) can be further partitioned into {:I = 1 or X2 = 1}. There are other

ways to partition the (SOS1), for example, we can have {al + z3 = 1 or X2 = 1}

instead of constraints (3) and (4), and then partition the constraint X1 + Z3 = 1 in

an obvious way. For a general multiple choice constraint

i= 1, N contains at least two elements,
iEN

the branching scheme works as follows:

(DI) Select non-empty disjoint proper subsets N, and N2 of N such that N, U N2 =

N.

(D2) Two branches, respectively associated with the constraints Z-iE N, z = i and

EiEN2 X' = 1, are created. Repeat step (D1) while replacing N by NI(N 2 ), if

N, (N 2 ) contains more than one element.

* (D3) If N, (N 2 ) contains a single element, no further partition is necessary for thi

branch.

One can prove that no matter what order the partition is made, the maximum

number of possible branches remains a constant. We have the following proposition:

Proposition 2.4.1. Given the multiple choice constraint

Xi (5)

and the branching scheme (133), then the maximum number of potential branches

that can be generated is 2(n-1).

Proof We prove this proposition by induction.

17
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When n = 1, the maximum number of potential branches equals 0 since no I
branch is needed.

Assume that the proposition is true for all n, n < m.

When n = m, we can first partition the constraint into 2 branches and have n,

and n2 variables in the respective branches, where n + n2 = n. Since nj > 0 and

n2 > 0, this implies that nl < m and n2 < m and the induction hypotheses can be

-" applied. The maximum number of potential branches for the nj and n2 branches

are 2(n, - 1) and 2(n 2 - 1), respectively. Therefore for (5), the maximum number

of potential branches is

2(ni - 1) + 2(n2 - 1) = 2(n - 2),

which is independent of n, and n2 . Counting the initial partition of 2 branches, the

maximum number of potential branches for the original constraint is

2(n - 2) +2= 2(n - 1),

which concludes the proof. l

In the present case, we have 2(3 - 1) = 4 branches for each SOS. We need

examine 42 = 16 branches at the most to solve the problem.

Table 2-1 Comparison of Branching Schemes

Branching Scheme Number of Potential Branches

Bi Enl2

B2 :_:

I B3 _ _ _ __

* 18
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In general, for an MCIP with m special ordered sets and no 2 variables in

each SOS t, there are n = in 0 variables in total. The number of potential branches

for branching schemes are shown in Table 2-1. For example, for a problem with

in=5, no = 10, we will get z: 2.25 X< 1O,.11 x 105, and ;:t 2.0 x 16possible

branches, respectively. One can see that (B32) or (133) require enumerating far fewer

potential branches than (131). Also note that by using (B32) or (133) we don't nee4d

to check the feasibility of any potential solutions with respect to the corresponding&

multiple choice constraints. Consequently, we have fewer constraints that need to

be considered explicitly. These ideas prompt the development of a -special-purpose

algorithm for solving MCIP/BVC problems.

Branching schemes (B2) and (B33) illustrate the difficulties involved in compar-

*ing algorithms. As indicated earlier, the maximum number of potential branches

is only one measure for comparing branching schemes. In the example above, (B32)

generates fewer branches than (B33). However, (B33) has the advantage that at each

separation we have more flexibility in assigning values to free variables and we have

a more powerful fathoming device. For example, suppose that the jroblem corre-

* sponding to the current node is (P) and the branch to investigate next, according

to (B3), is represented by the constraint

X1+X± + = 1

Also suppose that the new node is fathomed by some test. In order to achieve the

same result by using (B32), we have to examine k new nodes where the problem

defined at each node is (P) plus a constraint xi = 1, for some i = 1, 2, - - , k. This

suggests that more than one factor needs to be taken into consideration when we se-

tif no equals 1, the case is trivial and of little interest to us.

19



lect the branching scheme for a particular algorithm. The Beale-Tomlin dichotomy

(B3) will be the principle branching tool, for reasons to become apparent later, in

the MCIP/BVC algorithm.

Ir.i

.
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CHAPTER 3

GROUP CONTINGENT CONSTRAINTS

In this chapter, we will formally introduce grou contingent constraints and

discuss some of their properties. We show how we can take advantage of this special

structure to accelerate the enumeration process. In the last section, we provide

* examples containing group contingent constraints.

§3.1 Definitions

Recall from Section 1.3 that a constraint f of the form

f(y) = X y > 0,

where x E {0,1}, YE {0,1},
"."

is a contingent constraint. f(x,y) is a binary-valued function in the sense that

f(zo,yo) = 0 or 1 for every feasible solution.

Definition 3.1.1. We call a constraint f(x) > 0 binary-valued if all the variables

are binary and f(x) can only take the values 0 or 1 for any feasible combination

with respect to the constraint.

The notion of contingency can be generalized to contain variables from special

ordered sets. Letting Zi = {1, 2,... ,}, i _ 1, we have the following definition for

the group contingent constraint (GCC).

21
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Definition 3.1.2. Suppose that we have m mutually exclusive special ordered sets

with variables Mil, i2, , Mn, in the ith set. The group contingent constraint takes

the form

E X Zj > 0
iEbl jCNi iEl2 jENi

where 1, 54 0, 1, C Z,, 12 0, 12 C Zm, 1fl =0, (2)

NiCZn, and Ni0 ViEIU 2 .

In definition 3.1.2, we have assumed that Il and 12 are disjoint index sets. This

assumption is only technical and can be easily relaxed. By not requiring 11 and 12

to be disjoint, we can actually slightly strengthen the fathoming devices stated in

the proposed algorithm. In addition, when we refer to a constraint, f(x) > 0, as a

group contingent constraint in later sections, we mean the constraint f(x) > 0 with

the understanding that each variable belongs to a special ordered set.

Example: (group contingent constraint).

Let m = 4, n n2 -n3 n n4 - 3,

41 = {1}, 12 = {3,4},

N, = {1,2} C Z3 , N3 = {2,3} C Z3 , N 4 = {1} c Z 3 ,

then the group contingent constraint defined by (2) is

X11 + X12 X- 32 - 33 X- 41 >- 0.

Note that SOS constraints are implicitly considered.

We can characterize a group contingent constraint by the cardinalities of the

index sets I, and 12. Let JAl be the cardinality of the set A. We define

22
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* group contingent constraint of type S (I, contains Single element and 12 con-

tains Single element) : This is a special case where we have I I = 121 = 1 in (2).

Only two special ordered sets are involved. We also call it a simple group contingent

constraint. Type SS cnstraints are binary-valued.

* group contingent constraint of type SM (Ij contains Single element and 12

contains Multiple elements) If 111 = 1 and 1121 = I2 > 1 in (2), then the

resulting constraint (2) is called a group contingent constraint of type SM. Type

SM constraints are also binary-valued.

* group contingent constraint of type MS: Type MS constraints are obtained by

setting ItII = m, > 1 and 1121 = 1 in (2). Contrary to type SM constraints, type

MS constraints are not binary-valued.

* A group contingent constraint not of type SS, SM, or MS is called a general

group contingent constraint.

Variables in a group contingent constraint can be divided into two categories.

They are

* primary variable: Variables in a group contingent constraint with coefficient 1

are called primary variables with respect to the constraint.

* secondary variable: Variables in a group contingent constraint with coefficient

-1 are called secondary variables with respect to the constraint. We also refer to

secondary variables as contingent variables.

In the above example, zll and X22 are primary variables, whereas Z3 2, 33 and

z41 are contingent variables. Note that either primary or contingent variables are

defined with a specific group contingent constraint in mind. A variable can be

a primary variable with respect to one constraint and a contingent variable with

respect to another constraint.

23



We next define the relative strength of the group contingent constraints. This

concept can be useful in eliminating redundant constraints.

Definition 3.1.3. A group contingent constraint f(x) > 0 is weaker than the group

contingent constraint g(x) 0 if the feasible region defined by g(x) is a subset of

the feasible region defined by f(x).

Example: (relative strength of GCC's).

Consider the two constraints

f(X) ll z 1 2 - 21 -- z 22 > 0 and

g(x) = X11 + X12 - X21 X22 - X31 - 32 > 0.

It is clear that the constraint f(x) _ 0 is weaker since it defines a feasible region

larger than that defined by g(x) > 0.

§3.2 Properties of Group Contingent Constraints

Some properties of the group contingent constraints will be explored in this

section. To facilitate our discussion, the following conventions are used:

(a) mij's represent primary variables and yq's represent contingent variables;

(b) if II I = 1, then we write xz instead of zi for the primary variables; furthermore,

we assume that these xi's come from the first SOS, i.e., i = 1;

(c) if 1121 = 1, then we write yi instead of yi, for the contingent variables; also we

assume that these yi's are the variables of the last SOS, i.e., i =m;

(d) index sets Ni,i = 1, 2,... ,m, are non-empty proper subsets of Zn,; and

(e) Nj= Z,- Ni for i =1,2,...,m.

24
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§3.2.1 Simple Group Contingent Constraints

Our goal is to utilize the special properties that each type of' GCC possesses

and derive efficient ways to handle these constraints. For a type SS constraint

ZY ~ / 0, (3)
jENI jEN

Y~jEN Xj can only take the values 0 or 1. When F=jEN, Xi 1, (3) can be eimi-

nated from future consideration, since

j E EN

3EN1 lENin

which always holds because of the constraint -jEZ., - 1. Consequently, vari-

ables in SOS I which do not belong to N1 can be eliminated and the reduced problem

contains fewer constraints and variables. On the other hand, if XENI j = 0, we

need to set variables yi,j E N,,, equal to 0, since

Z - 0 EZ <-0,
jENx jEN.

whereas yj > 0 for all j. This again enables eliminating constraint (3) from fu-

ture consideration. The procedure we described above, i.e., set Z'EN z - 1 or

* ZENI z = 0 to simpify constraint (3), will be referred to as partitioning the con-

straint in later sections. In addition, we call -jEN, a 1 and ZEN, -j < 0 the

1-branch and 0-branch, respectively.

In both cases described above, we need to set certain variables to the value 0.

From the computational point of view, there are at least two ways to accomplish this

task. In the latter case, for example, we can either use the constraint -IEN, Yj !5 0

or set their corresponding cost coefficients to a very large constant M (the Big-M

method). Advantages of altering cost coefficients are

25
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(a) by not adding new constraints, the dimension of the basis matrix remains the

same over the entire solution process, and V

(b) ease of implementation.

However, we also know that by using the Big-M method, it usually

(a) requires more pivot steps to reoptimize the problem, and

(b) creates numerical problems.

In our testing code, we adopted the Big-M method mainly for its ease of implemen-

tation. Consequently, we have compromised the efficiency of the tested version of

the proposed algorithm.

The partitioning procedure has other advantages. Ignore the integral require-

ment on the variables zmi's for the moment. Observe that when we partition (3) into

"' two alternatives according to whether the value of the first summation is 0 or 1, we

have strengthened the constraint implicitly. For example, xj's and yi's satisfying

1 1

3EN iEN 1  (4

Y -0 , j y -1,

IENR3N,

are feasible solutions of (3). However, (4) contains no feasible solution for the

original problem (with the integral requirement) and the feasible combinations of

(4) are also excluded by our partitioning procedure.

§3.2.2 Type SM Group Contingent Constraints

Type SM constraints are of the form

Z Z Yij 0. (5)
jENI iEI2 jEN,
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They are more complex than the simple GCC's. However, the basic approach to

partitioning (3) remains valid here. We know that

Sz+ z -1 => j= -E z

so (5) becomes

1 - 2E J-E YqJ - 0.
ie7i iEI2 jENi

Rearranging terms, we have

Sz+ Yqj :5 1. (6)

jEN1  EI 2 jeNi

Constraints (5) and (6) are equivalent since they define the same feasible region. In

analyzing (6), first partition it on SO, (or any other SOS whose index belongs to

2). If 2EN = 1, then

iE12 jENi

Since yii > 0 for all i, j, we have yii = 0 for all i E 12, i E Ni. We then apply

the procedure as described for the type SS constraints to fix yq,'s at value 0 and

eliminate (5). For the opposite branch, EjE 2 = 0, (6) becomes

Yii 51, (7)
iE12 jENi

which is still an active constraint and cannot be eliminated. However, constraints

(6) and (7) have the same form, so the partition procedure applied to (6) can again

be applied to (7). Successively using this partition, the number of free variables will

be reduced at each iteration, so (5) will be eliminated eventually. An interesting

property of the type SM constraints is that the feasible region they define can be

duplicated by a set of simple contingent constraints.

27
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Proposition 3.2.1. The feasible region defined by (5) can be expressed as the

finite intersection of feasible regions defined by type SS constraints.

Proof. Let I 12 U {I}, and define

= { N, if i=1;
Ni, if iE 2 .

Also let

Mi Z, Mi, for i = ,2,...,m.

Rewriting (6), we have

_< 5. (8)
iEl jEMi

Consider the set of constraints

E Yi i +  E yi,i <1, V il EI, i2 EI,iil i2. (9) '

jEMj' jEMi

We show that (8) and (9) are equivalent.

Since yi*, > 0 for all ij, every feasible combination of (8) is feasible in (9).

Conversely, for every feasible combination of (9), either

Yij 0, ViE I,
j E M "

which is feasible in (8), or

L Ykj =1, for some k E I, (10)
jE Mh

* since all yii's are integers. (9) and (10) imply that

SZ y,= 0 for iEI,i k. (11)
jEM

28
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(10) and (11) characterize a feasible combination for (9) which is also feasible in

(8).

Rewriting (9), we have

hyi + (1- <

jEMiI jEMi 2

Rearranging the above expression and multiplying both sides by -1, we get

Y iE. yi, j 0 V i I E 1,i 2 E I~ 1 # 2,

which is a set of type SS constraints. n

Proposition (3.2.1) shows that for any type SM constraint, we can transform

it into a set of type SS constraints with the identical feasible region. However, the

number of type SS constraints required usually is quite large. Using the procedure

described in the proof of this proposition, we need (,2+1) type SS constraints.

Generally, this conversion is very cumbersome and is not recommended for real

applications. However, it is useful for analyzing type SM constraints.

§3.2.3 Type MS Group Contingent Constraints

Type MS constraints can be treated in a similar way. Let

Z Z z, - 0 J - 0, where III1 = ml > 1, (12)
iEli ,ENi j-N.

be the constraint under consideration. Since

SYi-l + Yi-1 y,--1 ,1

3EN. lENi NEN,,

we have

zi + Yj 1 , . (13)
iEfi jEN. jEN

29
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If Zje. yj = 1, then (13) becomes

I.-

iE11 jENj .

which is always truc, so (13) can be eliminated. If 0E: y, - 0, then (13) becomes
lf.

" ij (14)
iEl jEN.

which is of the same functional form as (13), so we can repeat the same procedure

on (14). Contrary to the type SM constraints, the type MS constraints cannot be

represented by the intersection of the type SS constraints.

Proposition 3.2.2. The feasible region defined by (12) cannot be expressed as the

finite intersection of feasible regions defined by type SS constraints.

Proof. We first prove this proposition for the case of III 1 2. The type MS

constraint of (12) has the form

z Yj 0 (15)
jEN, lENh 3ENm

where the zi's are the variables from the kth SOS. We assume that (15) can be

represented by a set of type SS constraints, W, and note that we need not consider

the variables belonging to the SOS's other than those appearing in (15) because

these variables are unconstrained with respect to (15). The feasible region defined

by any constraint in W is larger than that defined by (15) since, by assumption,

their intersection is the feasible region defined by (15). Let f(x,y) 0 be a type SS

constraint in W containing variables from SOS , and SOS m. Then the combinations

satisfying

i r,-O, yj 1, E z- 1 (16)
jENI jEN. jENI,
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are feasible solutions of f(x,y)> 0 since they are feasible solutions of (15). This

implies that the combinations satisfying

Z = O, Z ,= , Z i =0 (17)
jENI jEN.,, jENb

are also feasible solutions of f(x,y) _ 0 because the z3 's do not appear in f(x,y).

From (16) and (17), we know that any combination satisfying

x -, =o, Yj 1
jEN jEN."

is a feasible solution of f(x,y)> 0. We already know that the combinations satisfy-

ing

Z i = ,Yj,=0jENI jEN,

:j 01N 1, ,

jENI lEN,.

or .7

Zi =O, Yj = 0

jEN1 jEN.,

are feasible solutions of f(x,y) 0, since they are feasible combinations of (15).

Hence, f(x,y)> 0 does not exclude any point with binary coordinates from con-

sideration and is a trivial constraint. A similar argument goes through for any

constraint in TV of the form f(x,z) _ 0 as well as f(y,z) _ 0. Thus all constraints

in IV are trivial constraints and their intersection is the whole space. This is a

contradiction since the combinations satisfying

Z j z,0, Y,=, zi=0
jEN1  jEN., jENA,

are not feasible solutions of (15).
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For the case that [i t > 2, a similar approach can be applied. The only com-

plication is that we need consider more simple GCC's than those mentioned earlier.

Hence, we conclude the proof. I

§3.2.4 General Group Contingent Constraints

General group contingent constraints are not binary-valued and cannot be

. represented by type SS constraints. The focus of this dissertation is on binary-

*- valued constraints, so we are not going to discuss the type MS and general GCC's

at great length. How to exploit these special structures is an important topic for

future research.

It is not difficult to characterize the weaker GCC's so they can be eliminated

from the constraint set. Given a GCC, it becomes stronger when some primary

variables are deleted from the constraint or when some contingent variables are

added into the constraint. Note that when a type SM GCC is represented by a set

of type SS GCC's, the type SM GCC is a stronger constraint than any one of those

type SS constraints. A

Before we conclude this section, we want to show the relationship between the

GCC's and the binary-valued constraints. We call a binary-valued constraint non-

trivial if there exists at least one variable with a negative coefficient. Assuming that

all variables are binary and each variable belongs to exactly one special ordered set,

we have the following proposition.

A

Proposition 3.2.3. A non-trivial binary-valued constraint, with coefficients 1, 0,

or -1, is either a simple GCC or a type SM GCC.

Proof. Let f(z)> 0 be a non-trivial binary-valued constraint. Rearranging terms,

we have
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f(z) fl(x)- f2(Y) >_ 0

where x and y consist of variables in z with coefficients 1 and -1, respectively.

fi and f2 are defined in an obvious way. Since f(z)> 0 is binary-valued, x must

consist of vaAables from only one special ordered set, since otherwise f(z) can take

values greater than 1. The non-triviality of f(z) implies that f2 is not identical to

0, so f(z) is either a simple or type SM GCC. I

Note that in the above proposition, we dropped the requirement that variables

in x and variables in y must come from different special ordered sets (i.e., i i '2 =

0). Recall that definition (3.1.2) can be relaxed by not requiring i1 'I2 0 and the

proposed solution methodology is still applicable. We will use the terms, binary-

valued constraints and group contingent constraints, interchangably in the subse-

quent presentation with the understanding that the GCC's under consideration are

binary-valued.

§3.3 Examples

Group contingent constraints appear in many applications. Most commonly,

they are associated with scheduling type problems. In this section, we give three

examples in which binary-valued constraints arise naturally in the formulation.

The first example is a generalization of a problem which can be found in Hillier and

Lieberman (1980).

Example 1 : Factory-warehouse problem

Suppose that a company has decided to build a factory in one of n possible

locations. In addition, the company is also considering building a warehouse. For

each possible factory site, there are several locations where a warehouse can be
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built. Let

1, if site i is selected to build a factory,
O, if otherwise,

and

{ 1, if site j is selected to build a warehouse,
-= 0, if otherwise,

Then the company requirements can be expressed as

xj y = 1, f-n

E

where all the variables are binary. m represents the number of possible sites for the

warehouse and Ni represents the subset of potential sites where a warehouse can

be built provided that the factory is located at site i. The constraint set consists of

*multiple choice decisions and contingent constraints, which together represent the

*% basic model which we are going to explore in the next chapter. However, note thatMm
in this particular case, the constraint =Y <5 1 is redundant.

The next example illustrates a scheduling problem where the contingent con-

straints arise because of geographic requirements. We introduce this example in the

context of a road maintenance problem. Interested readers may refer to Armstrong

et al (1981) for a more detailed description.

Example 2 : Road Maintenance Problem

Suppose that there are n road sections that need to undergo maintenance work.

For each road section, we have a number of possible maintenance strategies, for

example, we may resurface the entire road section or patch the road section as

34
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needed. Clearly, these strategies are mutually exclusive. In addition, there are

certain geographic constraints. For example, if road sections 1,2 and 3 are in close

proximity, we may not want to resurface sections 2 or 3 unless section 1 is to be

resurfaced. Requirements of this nature constitute the group contingent constraints.

In mathematical terms, we introduce a binary varie.ble

1, if strategy j is adopted for road section i,
= 1=0, if otherwise,

for all combinations of road sections and strategies under consideration. The mul-

tiple choice constraint can be expressed as

S:i= 1, for i= 1,...,n

jE M,

where Mi is the subset of potential road maintenance strategies that is under consid-

eration for road section i. To describe the geographic constraints mentioned above,

we define index sets Ni,, where i E Nk, indicates that to adopt strategy j on road

section i, the jth strategy must have been adopted on road section k. Contingen

constraints are of the form

zki- Xii >0.

Other group contingent constraints as well as general constraints may also exist. The

resulting problem probably will involve a large number of variables and constraints.

Therefore, it may be necessary, or at least advisable, to use heuristic algorit:'ms to

solve the problem.

As we have indicated in Chapter 1, many contingent constraints arise from capi-

tal budgeting problems. The following example is from Hanssmann(1968). The con-

tingent constraints result from technological dependence among potential projects.
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• ?Example 3: Technologically Dependent Projects

Suppose that we have n projects and T time periods. Introduce the binary

variables

f 1, if project i selected in period j,
j= 10, if project i is not selected in period j,

where i = 1,... ,n designates the projects and j = 1,...,T designates the point in

time when the project is selected. Assuming that each project can be selected at

most once, we have
T

- i 1,
j=1

which constitute the multiple choice constraints. Furthermore, if we assume, for

example, that project i must be carried out before (or simultaneously with) project

k, then we have a set of T group contingent constraints

t t

X iJ- x Ai 0, t 1,...,T.
il= j=1

Let the budget available in period j be B, and let a i be the investment outlay

required for project i in period j if it is selected in period j. We assume herp

that each investment would require an outlay only in its initial period and that

any unused budget from early periods can not be applied toward future budgetary

requirement. Then we have T budgetary constraints, i.e.,

n

Saijij i Bigj 1, ... 9,T.

i=1

Similarly, let Eij designate the return of project i if it is selected in period j and ui

designate the return function on the unused budget in period j. Then the objective

function is to maximize the total return E, where

n T T nE E Z Ei,,, + E ui(Bi- aixi,)-
i=1 j=1 j==
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For simplicity, we have ignored cash flows from investment except in their initial

period and have not provided a proper discounting factor, but it is not difficult to

incorporate such additional factors. If ui's and any other constraints all turn out

to be linear, then this problem fits nicely into the model we are going to discuss in

detail in the next chapter. t

The resulting mathematical formulation of Example 3 could become very conm-

plicated if the precedence relationships among the projects are complex. Special

algorithms may be worth developing for this particular application, but they are

beyond the scope of this dissertation.

These examples demonstrate the importance of exploring group contingent

constraints.

Our standard formulation assumes minimization, whereas we maximize the objective function

in this example, but converting from maximization to minimization only requires multiplying

through the objective function by (-1).
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CHAPTER 4

STATEMENT OF THE ALGORITHM

A detailed statement of the model and the algorithm will be presented in thiq

* chapter. The specifics of the branching and fathoming schemes are discussed. We.

also show the data structure of the group contingent constraints. Ezamples are given

in the last section.

§4.1 Model Description

We will focus our discussion on the model

inimize i2 " 1 l cozj

subject to Am > b

Go >_ o (P)
nd

j~lZij= 1 i =1,2 ,..., I

z3, E {0,1} Vi,j

where A is a matrix of dimension 11 x E'01 ni,

b is a column vector of length 11,

Go > 0 represents a set of binary-valued constraints, and

G is a matrix of dimension 12 X " 1 ni.

We call (P) a multiple choice integer program with binary-valued constraints

(MCIP/BVC). For simplicity, we assume that the BVC's under consideration are

simple group contingent constraints. If 11 = 1, we have a knapsack MCIP problem

with binary-valued constraints which can be solved by the proposed algorithm very

efficiently. If 12 = 0, then (P) is reduced to a MCIP problem.
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Problem (P) can be treated as a MCIP problem and solved by the methods

described in Chapter 2. Regardless of which method we adopt, there are underlying

linear programming problems we have to solve. If the Tomlin-Beale approach is

used, the working basis* of the LP problems is of dimension (11 + 12 + 1) x (11 +

12 + 1). An alternative approach is to consider constraints Am > b and Gz >

0 independently. We can accomplish this by first excluding Gz > 0 from our

constraint set, which will reduce the size of the working basis to (l + 1) x (11 + 1),

and then bring back individual constraints belonging to Go > 0. Since we can

branch on a binary-valued constraint just as we branch on a binary variable in the

usual implicit enumeration algorithms, bringing back such constraints will not alter

the dimension of the working basis. Another advantage arises when the model (P)

without constraints Gz > 0, i.e.,

Minimize E=I E"=s cijz-j

subject to Am > b
(R)E :Izj -1 i- 1, 2,...m

q E {0' 1} V i-j.

possesses additional special structure. For example, if

(a) there is only one general constraint, then (R) is a knapsack MCIP problem and

efficient algorithms exist to solve (R);

(b) the constraint set of (R) is a totally unimodular matrix, then (R) can be solved

by linear programming algorithms; and

(c) (R) is a special network problem, then the procedure to solve the LP-relaxation

of (R) can be accelerated.

* Working basis is ',e basis matrix that we need to update at each simplex iteration. See

Section 4.3 for further explanation.
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These reasons, among others, motivate the algorithm which will be discussed 4.

in the following sections.

§4.2 The Framework of the Algorithm

Before we get into the details of the algorithm, let us first state the framework

of the algorithm.

Algorithm G (Solve MCIP/BVC ).This algorithm is designed to solve MCIP/BVC

problems by taking advantage of the fact that certain constraints are binary-valued.

GO. [Initialization.] Solve the LP-relaxation of (R). If the problem is not feasible,

then (P) is not feasible. Initialize the list map M. Set Zpt = 00.

G1. [Integrality?] If there are variables with fractional values, go to G4.

G2. [Feasibility?] If the current solution is not feasible in (P), go to G5. This

indicates that some binary-valued constraints are violated.

G3. [Backtrack.] Update incumbent if necessary. Update list map M. Go to G9.

G4. [BVC exhausted?] If all BVC are branched, go to G8.

GS. [Branch.] Compute penalties and decide which branch to use next. Update list

map M.

G6. [Fathom?] Perform various fathoming tests. If fathomed, go to G3.

G7. [Reoptimize.] Modify cost coefficients and reoptimize the resulting problem. If

there is no feasible solution which has better objective value than the incum-

bent, go to G3. Otherwise, go to G1.

G8. [Solve.] Solve the reduced IP problem by applying an appropriate algorithm

for this MCIP problem. Go to G3.

G9. [Terminate?] If the list map M is empty, stop. Either the problem is solved or

the problem is not feasible. Otherwise, go to G5.
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Several points are worth mentioning here. At GO, we initialize the list map M

which contains information about how branches have been made, which branches

I.

are already fathomed, and which branch should we explore next when we begin

to backtrack. Z0,t represents the best (smallest) objective value of (P) we have r

found so far. At G1, we test whether a variable is of integer value or not. Be-

cause of the roundoff errors, we consider a positive number r to be an integer if

min{fr, 1 - f,} < c, where fr is the fractional part of r and c is a given small num-

ber, usually around 10-6 . At G2, we check the feasibility against the unbranched

(yet to be introduced into the reduced system) binary-valued constraints, if any.

We backtrack (step G3) in the enumeration tree when a branch is faihomed. At G8,

we have an integer programming problem with a smaller number of variables and

*- constraints than the original problem. This problem may possess special structure

as discussed in the immediately preceding section. Appropriate algorithm in G8

means an algorithm which suits the special structure of the reduced system. After

we solve this problem, this branch is automatically fathomed. The original problem

will be declared infeasible if Zov equals to oo.

Step G5 addresses the question of how to introduce new constraints into the

reduced system. Suppose that there still exist unsatisfied binary-valued constraints

and we have to decide

(a) whether we should add a new constraint into the system or leave the current

branch as is and switch to another unfathomed branch. In the proposed algorithm,

we always introduce new constraints into the system.

(b) if adding a new constraint, which constraint should be brought in and which

branch (0-branch or 1-branch) should be investigated first.

There is no single best criterion which governs the selection of new branches. In
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the next section, we introduce the concept of penalty associated with each binary-

valued constraint. Penalties provide a partial answer to the above questions.

Finally, we note that the algorithm G will terminate in a finite number of

iterations. This is clear since

(a) the number of binary-valued constraints to be reintroduced into the system is

finite, so the binary tree is of finite length,

(b) the objective value decreases as we update the incumbent and this eliminates

the possibility of cycling, i.e., investigating already fathomed branches, and

(c) the appropriate algorithm specified in step G8 should be of finite termination.

§4.3 Penalty Computations and Branching Schemes

Penalties are very useful in two ways. They can be used to calculate better

bounds and hence increase the chance that a branch becomes fathomed earlier.

Penalties also serve as an indicator to select promising branches. The use 9 f penal-

ties was proposed by Driebeek (1966). Subsequent work on penalties and related

topics can be found in Beale and Tomlin (1969), Tomlin (1970), Davis, Kendrick

and Weitzman (1971), to name a few. Initially, penalties are computed with re-

spect to a single integer variable. However, it is not difficult to extend the concept

of penalty to a set of variables.

We assume that the LP-relaxation of (R) and its succeeding problems t are

solved by the generalized upper bounding (GUB) algorithm, and we will discuss

penalties in the context of GUB algorithms. For a complete treatment of the GUB

algorithm, interested readers are referred to Dantzig and Van Slyke (1967), and

Kaul (1965). We will explain several terms that often are used in the algorithm.

t Descendants of (R) with modified cost coefficients.
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Recall that we have 11 general constraints and rn special ordered sets. Consider

the LP-relaxation of (R). It can be easily shown[Dantzig and Van Slyke, 1967] that

for any feasible basis for the system, at least one variable from each SOS will appear

as a basic variable. Thus, we can choose one basic variable from each SOS and call

it the key variable. A basic variable which is not a key variable is called a non-key

variable. Clearly, the selection of key variables is not unique. The working basis

is composed of columns associated with key variables. We also adopt the following

notation:

K: the set of key variables. (Note that for each SOS, there is only one key

variable. This implies that I K I - M.)

* B: the set of non-key variables. (I B 1 -I + 1.)

* K,: the ith key variable (assumed to be in the ith SOS).

* B,: the ith non-key variable.

R TZ: the set of non-basic variables.

* 5,: Si = {iplp E Z,,}.

* T: Ti = {ipjp E Ni}.

* Qj: Qj = {tiB, = i}.

* Ti: T, = Si - Ti.

Suppose that the qth binary-valued constraint for which the penalties are cal-

culated is of the form

x -Z z>0.(1
jETi jET2

Two branching alternatives,

(2)
jET
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and

are being considered. The task is to choose a constraint for which the branching will

take place and decide which branching alternative we should pursue first. Recall

that we referred to (2) as a 1-branch and (3) as a 0-branch in Chapter 3.

To illustrate how to compute penalties, consider any optimal solution of tht

LP-relaxation of the current problem, which is (R) or (R) wiLh certain constraints

added, given by

T , = aioo + E K,(-zj), for i = 0, 1,...,.,I (4)
jEIZ •

W/q = 1- E Mi, for i= 1,2,...,m (5)
jESi
j# K,w

Mi = 0, for j E 7I.

Observe that in the above formulas, index j has two components and the subscript

of a has three components. zoo represents the objective value.

For each of the alternatives of (1), a penalty may be computed. Adopting (2)

amounts to forcing variables in Ti to zero. A pseudo up penalty is obtained if a

1-branch is chosen. Specifically, if all basic variables in the first SOS are in TI, then

(2) is satisfied and the up penalty equals zero. If the key variable is in TI but not

all non-key variables are in TI, then substituting (5) into (2) yields

23+ + y
iETifl 1z jETxflB ,

jES-

Rearranging and cancelling corresponding terms, we get

j - 0. (6)
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Substituting (4) into (6), this yields

-X - z 0.
,EF,n 1z jEF1 nl13 tEl?

iEQi

Moving constants to the right hand side and exchanging summation signs, we have

Z (2) - Z it(-Xt) aioo.-

iEQ, iEQ,

Finally, combining terms and exchanging indices t and j in the second term, we get

* ~I (1 ii a)(zj)+ Zi (- Z £l,( j~

iE~g ~T1  ~(7)

> z iO -
tETFlBn

iEQ.

Denote

mE Qg f E ,n z

EQi

~tETFlnBisoo if j=01

and (7) becomes

jEl?

If the right hand side of (9) is a positive number, then (9) is not satisfied by the

current solution. In other words, it is a valid cut. To introduce (9) into the reduced

system and find a feasible solution of its LP-relaxation, dual simplex iterations are

required. The pivot column will be determined by

kq aq,
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and the corresponding increase in xoo after the initial dual simplex iteration is

a 9' 0 " 6ko/a k. Let

U9 Min a 0) (10)
j E" a qj

which is an up penalty for partitioning on the qth binary-valued constraint. It is a

lower bound on the increase in zoo, since more dual simplex pivots may be required

to restore primal feasibility. A similar procedure can be applied to compute an up

penalty in the case that the key variable is not in set T1 . In particular, we have

1+ YtET 3 a j  ifj E Tl z;
iEQt

j-- ZtETI ai if ER, j

iEQt

1- ,T n 13 f i0oo if j=0,

iEQe

and an up penalty can be evaluated accordingly. For the special case where all basic

variables are in T 1 , (10) is still valid if the convention 'jE zj = 0 is adopted. We

have

Proposition 4.3.1. An up penalty of (1) can be computed by (10) where the a-oj's

are defined in (4), whereas the 2,j's are defined in (8) if the key variable is in T,

ind defined in (11) if the key variable is not in T 1. I

For the alternative 0-branch, a pseudo down penalty can be computed. We

have

0 -0
jET1  jET2

so we calculate a down penalty with respect to the constraint

Z Z+ Z:, 0.
jETI jET 2
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The same procedure as before can be applied to obtain the coefficients aj's. How-

ever, the results are more complicated because we have to consider whether the two

key variables are in T, and T2 , respectively. Cases (a) through (d) summarize the

results.

Case (a). K, F T, and K 2 E 72. Coefficients of (9) are

E = B ETti Et nz3 1iij ifjE(TI U T2)iz;
iEQt iEQ.

- tEfl nu i: +E tET23l ii if E R, .~T7 1 U T 2 ;
EQ iEQ

2- tET flaoo - tET2 L 0  ifj =0.

iEQ. iEQ.

Case (b). K1 E T1 and K 2  T T2 . We have

F-ZtET,fnu ia2ZF ET 2 flal ijTylZ
iEQt iEQ.

-- Et , fnBa_ ij _ ET r 3i +1 if j E T2 ;
a = iEQ. iEQ.zTF,nf B aij - iE 2 ~~aii if j FRZ, j TI U T 2 ;

iEQt iEQ.

1- tEF-3af io00 + tET- nBioo ifj =0.
iEQt iEQ.

Case (c). K, q TI, and K 2 E T 2 .

Results followed by exchanging indices 1 and 2 in case (b).

Case (d). K , TI, and K 2  T T2 .

a ifj E (T UT 2 )f l;
iEOt iEQ,

-,J tET n3 - -tETT n- 3iJ ifj ER, T UT2 ;
iEQt iEQt

aO0 + Z tETflB aoo if j =0.
iEQt iEQ.

A down penalty can be computed as in (10). This gives us
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Proposition 4.3.2. A down penalty Dq can be calculated by

-. D -m (i aq°'a°, -i<o
SjE. a. q .,

where the "5oi's are defined in (4) and the -a 's are defined in cases (a) through (d).* I

So far, we only use the fact that an additional constraint needs to be satisfied

to compute the penalties. Another property that can be utilized to strengthen the

penalty calculations is that the nonbasic variables are required to be integers. In

the present case, the nonbasic variables must increase to one and the penalty for

such an increase is simply their respective reduced costs. The improved up penalty

can be expressed as

U min (max (q -°,i)

An improved down penalty D; can be obtained similarly. Penalties U* and D* are

calculated in the algorithm. However, other improvements of the penalty calculation

can easily be incorporated into the algorithm.

Penalties can be used as a tool to select the constraint we are going to introduce

into the system as well as to select the new branching alternative. As we have

mentioned earlier, there is no single best criterion in selecting new branches. Each

criterion has its own rationale and merits. One possible strategy is:

(A) Introduce the kth GCC where

k =Argmax max {D,,U,}.

(B) If the penalty Pk = Dk, perform a 1-branch. Otherwise, perform a 0-branch.
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We call this the worst alternative branching heuristic. The rationale behind this

criterion is that the subproblems we store are likely to only contain poor solutions.

Hopefully many of them will never be considered after we find some potentially good

solutions. Computational results for this criterion and other selection heuristics are

available in Chapter 6.

In the case where there are several indices, say C={kl,k 2 ,... ,k}, such that

Pk = Pk, = Pk, = "" = Pk,, then an additional tie-breaking rule in selecting k is

required. We choose the index ki such that

ki= Argmin qeC min {D*,U,}. (12)

If we still have more than one ki satisfying (12), then the smallest such index, which

is uniquely defined, will be picked.

Penalties are also used as a device to accelerate the enumeration process. One

way we calculate penalties is to perform one dual simplex iteration. This operation

may or may not be able to restore primal feasibility, but it provides a lower bound

for how much the objective value has to increase in order to find a feasible solution.

The same consideration applies for other methods in evaluating penalties. If we can

estimate this lower bound very accurately, then many nodes can be fathomed with-

out actually investigating their descendants and hence accelerate the enumeration

process.

§4.4 Fathoming Tests

In branch-and-bound algorithms, it is very important to reduce the number of

potential branches. Using integer programming terminology, we say that we want

to fathom a branch as quickly as possible. Various fathoming tests are available and

following are the ones adopted in the algorithm.
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Fathoming Test 1 : Suppose that the incumbent and the LP-relaxation of the

current subproblem have objective values Zopt and Z respectively. This branch is

fathomed if 
.

Z + min (D*,U;) Zo.p (13)

for any GCC which has not been partitioned yet. It is clear that if (13) is satisfied,

no better solution can be found along this branch.

Fathoming Test 2 Let Fi be the set of free variables in the ith SOS and V be-

the set of variables already fixed at value 1. If there exist a k, 1< k < I,, such that

m

aZ + max (aki,j E Fi) < bk,'
jEV i=l

or

Z cki + min (cki,j E Fi) Zop,,
jEV i=1

then the branch is fathomed. Either there is no feasible completion or no better

solution exists.

Fathoming Test 3 If constraint (1) has not been partitioned and a 1-branch

is required, then

F NT, = (14)

implies that the branch is fathomed. Similarly, if a 0-branch is required, then

FnT= F1  (15)

indicates that there is no need to partition further.

A by-product of fathoming tests is the forced branch. A forced branch can

accelerate the algorithm in finding an optimal solution because it eliminates un-

promising branches. For example, if Dq = oo and (13) is not satisfied, then we
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have to make the 1-branch and need not consider the alternative branch. There are

other instances where a forced branch exists. Basically, we check whether there are

unpartitioned GCC's in which the set of primary (secondary) variables is a subset

or superset of the set of corresponding free variables. Suppose that the constraint

set contains contingent constraints

XJi- E y _0, for i =1,2,3
.lE Gi .Eli H

where xi's are variables from the first SOS and yi's are from the mth SOS. Gi

and Hi are subsets of their respective SOS's. Consider the case where we make the

0-branch for constraints 1 and 2; then A= Z,, - (GI U G 2 ) represents the set of

free variables for the first SOS. If A C G 3 , then the third constraint must make a

1-branch. In particular, if JAI 0, then the branch is fathomed; and if JAI = 1, we

can fix the only remaining free variable at value 1. If A n G3 = 0, then the 0-branch

for the third constraint is required. We also have =-EH yJ - 0 and ZEH i/ = 0,

so the same argument goes through if we define A= Zn - (Hi U H 2 ). In addition,

if A C H3 , then EjEG, Xj 1. More elaborate uses of the above procedure can be

found in the examples of Section 4.6.

To summarize, steps G4, G5, and G6 in the algorithm G can be written as

Procedure B(Refinement of the Branch Procedure ).This procedure is the detailed

statement of steps G4-G6 in the algorithm G.

B1. [GCC exhausted?] If all GCC are exhausted, go to G8.

B2. [Forced Branch?) If there is no forced branch, go to B4.

B3. [Fathom?] Fathoming tests. If fathomed, go to G3. Otherwise, update list

map M and go to B1.

B4. [Penalty.] Compute penalties.
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B5. [Fathom?] Perform fathoming tests. If fathomed, go to G3.

B6. [Branch.] Select constraint to partition next. Update list map M. Go to G7.

§4.5 Handling Binary Data

Another advantage of the proposed algorithm is that the computer core re-

quired to store the group contingent constraints is less than for the general con-

straints, which upgrades the computational efficiency. For any specific group con-

tingent constraint, its coefficients can take value 0 or 1 in the SOS which contains

primary variables, take value 0 or -1 in the SOS which contains secondary vari-

ables, and take value 0 otherwise. Hence we can use a bit instead of a computer

word to record these coefficients. Table 4-1 illustrates how this is done.

Table 4-1 : Bit Map for Group Contingent Constraints

GCC Primary Var. Secondary Var. Bit Map for Bit Map for

No. in SOS No. in SOS No. Primary Var. Secondary Var.

1 3 1 10100 00101

2 2 3 10111 01011

The first column in Table 4-1 indicates which GCC is under consideration. The

second and the third column record the special ordered sets involved. We number

the bits in a word as in Table 4-2.

Table 4-2 Bits Representation of a Word

6 5 164514 3 2_1

In the computer science literature, bits are numbered in the reverse order and the first bit is

bit 0.
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To simplify our discussion, we assume that the number of bits in the corn-

puter word under consideration is greater than the number of variables in the SOS.

The last two columns of Table 4-1 represent the coefficients of group contingent

constraints . The rth bit of the word takes the value 1 if the rth variable in the

corresponding SOS is a primary or secondary variable. Specifically, the primary

variables, represented in the first row of Table 4-1, are in the third SOS, and th,

secondary variables are in the first SOS. The GCC it represents is

X33 + 035 -X - X 13 > 0.

Similarly, the second row summarizes the constraint

021 + X22 + X23 + X25 X- 31 0- 32 X- 34 0.'

It is clear that the required storage space can indeed be reduced.

We can also accelerate the algorithm by using logic operations instead of arith-

metic operations to conduct certain fathoming tests. Let W be a mapping from the

set of indices to a computer word such that the rth bit of the word is of value one

*. if r is in the index set, and zero otherwise. Now, (14) can be expressed as

W(F) D W(T) = 0,

and (15) becomes

W(F) ® W(T 1 ) = W(F)

where ® stands for the boolean AND operator which operates on computer words

bit by bit. To test whether j E Fi, one can ask if

W({j}) 0 W(F) =0.
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Other index manipulations can also be performed by boolean algebra and hence

improve the efficiency of the algorithm.

§4.6 Examples

We present two examples to demonstrate how the proposed algorithm works.

The first example illustrates the flow of the algorithm. The second example shows

how logical relationships among contingent constraints can be utilized to fathom

unpromising branches.

Example 1:

This is a knapsack MCIP problem with binary-valued constraints. A single

general type constraint often occurs, for example, when we have budgetary restric-

tions. Suppose that we want to

Minimize zl+3X2+4X 3 +2y,+3y 2 +4y 3+2z,+3z 2 +4z 3

subject to 2zi+5X2 +9z 3 + yl+2y 2 +3Y 3+3z,+4z2+5z3 12

3 -Y3 > 0 (i)

Y1 -z 3 _ 0 (ii)

ZI+ Z2+ Z 3  -1

YI1+ Y2+113 = 1

Z1+ Z2+ Z3= 1

where all variables are binary variables. To simplify our presentation, we replaced

the branching scheme (G5) by a straightforward selection criterion. We will bring

back the BVC's according to the order they appeared in the original system. In

addition, we always undertake the 0-branch first. A step by step account of the

procedure follows.

[GO] Solve the LP-relaxation of (R). Non-zero values are x, 1 3 = 6, Y =

z =1, and Z = .3
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[Gi] Certain variables take fractional values.

[G4] BVC's have not been exhausted.

[G5] Execute 0-branch on (i), i.e., z = 0.

[G6] Current branch can not be fathomed yet.

[G7] Reoptimize. Non-zero values are 2 = 1, Y2 = 1, z 3 = 1, and Z=10.

[G1] Current solution contains integers only.

[G2] Current solution is not feasible.

[G5] Perform 0-branch on (ii), i.e., y1 = 0.

[G6] Fathomed. By setting 23 = Yl = 33 = Z= 0, the general constraint can never

be satisfied.

fG31 Update map M.

[G9] Map M is not empty.

[G5] Execute 1-branch on (ii), i.e., yl = 1.

[G6] Fathomed. X3 = 1 and y1 = 1 imply that the general constraint can never be

satisfied.

Repeat steps [G3], [G9].

[G5] Perform 1-branch on (i), i.e., 23 = 1.

[G6] Current branch can not be fathomed.

[G7] Reoptimize. Non-zero values are 23 = 1, Y3 = 1, and z, = 1.

[G1] All variables take integer values.

[G2] Current solution is feasible.

[G5] Update incumbent Z,, = 8. Update map M.

[G9] Terminated.

In this particular example, the time-consuming step G8 was never executed.
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Example 2:

In this example, we want to demonstrate how the logical operations are per-

*" formed. The problem is

Minimize zI+2X2 +4z 3 +2y,+5y 2 +6y 3 +9y4+9z1 +0z2+0z 3

subject to x, + W3 - 2- Y3 - 0 (i)

-W2 + Y3 -Z - z3_0 (ii)

- 23 1/ - Y4 + z 3 _ 0 (iii)

X1- X2+ W3 =1

YI+ Y2+ Y3+/4 Y1

Z 1 + Z2+ Z3 = 1

where all variables are binary variables. There is no general constraint in this

example and the LP-relaxation of (R) can be solved by inspection. We again adopt

the selection criterion described for Example 1 at step G5.

[GO] Solve the LP-relaxation of (R). Non-zero values are x 1, y, = 1, and

ZI 1.

[G1] All variables take integer values.

[G2] Solution is not feasible.

[G51 Execute 0-branch on (i), i.e., Z + 23 = 0.

[G6] 22 = 1 (since 21 + 02 + 23 = 1), and Y2 = Y3 = Z2= 0 (from (i)).

Since 2 =1, we can only partition (ii) on 1-branch.

By Fathoming test 3, this is not possible. This branch is fathomed.

[G3] Update map M.

[G9] Map M is not empty.

[G5] Execute 1-branch on (i), i.e., XI + X3 = 1.

[G6] Unable to fathom.
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[G7] Reoptimize. Solution remains unchanged.

Repeat steps (GI, [G21.

[G51 Perform 0-branch on (ii), i.e., Y3 = 0. ,

[G61 z1 + z3 = 0 (from (ii)) implies z2 = 1 (since zI + z2 +z 3 = ).

Z2 = 1 implies Y2 + Y3 = 0 (from (i)).

2 +Y ~= 0 implies y3 + 4 = 1 4 y, =).

YI + Y4 = 1 forces z 3 = 1 (from (iii)).

This branch is fathomed by Fathoming test 3.

Repeat steps [G31, [G91.

[G5] Execute 1-branch on (ii), i.e., Y3 = 1.

[G6] Unable to fathom.

[G7] Reoptimize. Non-zero values are i = 1, y3 = 1, and z1 = 1.

[G1] All variables take integer values.

[G2] Solution is feasible.

[G3] Update incumbent Z0pt = 16. Branch fathomed automatically. Update map

M.

[G91 Terminated.

Logical tests are very important for the fathoming tests involving BVC's. An

exhaustive test of logical relationships among all BVC's can be very expensive.

Compromises must be made when deciding which of the possible logical tests should

be conducted.
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CHAPTER 5

HEURISTIC ALGORITHMS

Exact algorithms for integer programming problems often require substantial

* computational effort in order to locate and verify an optimal solution. Heuristic

* (approximate) procedures are designed to produce satisfactoryj solutions of the IP

* problems with much less computational work. Three different heuristic approaches

are presented in this Chapter.

§5.1 Introduction

The efficiency of a branch and bound (BB) algorithm usually deteriorates very

* fast as the number of integer variables increases. Many problems simply are too

- large to be solved exactly. Even special-purpose BB algorithms are not able to

solve some large sized problems within reasonable computer time. The class of NP-

* complete problems serves as a good example. Many well-known problems belong

* to this class, e.g., the traveling salesman problem, and the set partitioning problem

[Carey and Johnson (1978), and Savage (1976)]. One can expect the solution times

* for these problems to increase exponentially as a function of the number of integer

variables. The MCIP problems are also NP-complete [Martin, 1980]; hence, it is

important to have good heuristic procedures that can locate good solutions of large

sized problems very quickly.

Besides the computational difficulty mentioned above, there are other reasons

that prompted the development of heuristic algorithms. A decision-maker some-
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times prefers to have several good solutions rather than a guaranteed optimal solu-

tion. Recall that a mathematical model approximates a real-world problem and an

optimal solution provides only limited information. It is possible that the optimal

solution violates certain considerations that can not be captured explicitly by the

model. In addition, the optimal solution may be very sensitive with respect to cer-

tain unknown parameters and the decision-maker would be reluctant to adopt such

an unstable solution. If there are several good solutions available, further analyses

can be conducted to evaluate the risks and the uncertainties associated with these

solutions and the decision-maker can then select the best solution available. Many

heuristic procedures produce a number of good solutions within very reasonable

computer time and so may serve this end very well. Another reason is that some

problems require solutions on a real-time basis. The exact algorithm, even if it does

-A not take a very substantial amount of time to find an optimal solution, may still

not be the proper tool to adopt.

Heuristic procedures also are used to supplement exact algorithms. Good so

lutions located by heuristic algorithms serve as incumbent solutions in the exact

BB algorithm, thereby accelerating the enumeration process. A simple two-phase

hybrid BB algorithm emerges. The first phase is to apply a heuristic algorithm to

locate good solutions, and the second phase is to use an exact approach to improve

upon the solutions obtained earlier and eventually to find and verify an optimal

solution. Such procedures have been adopted by Hillier (1969b).

Good solutions produced by heuristic algorithms can also be useful in cutting

plane algorithms. Suppose that we have an IP problem with the objective function

c-x which is to be minimized. If a feasible solution x, is located with the objective
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value Zinc (inc stands for incumbent), then the inequality

C • X < Zic

can be used as a cut, or as a source row for a cut.

Heuristic procedures may be devised according to specific goals that we want

to achieve. For some applications, we are interested in finding a feasible point

which is reasonably good very quickly, e.g., solutions which are required on a real-

time basis. For other applications, we may want the feasible solution to satisfy

some requirement, e.g., the objective value associated with the solution is within

a certain range of the optimal objective value. Some algorithms are designed to

accommodate all the constraints very rigorously, whereas the other algorithms may

allow flexibility in certain constraints. In addition, we can also take advantage of

the problem structure in designing special-purpose heuristic algorithms.

Early work on heuristic procedures was done by Healy (1964), Senju and Toy-

* oda (1968), and Trauth and Woolsey (1968). Subsequent development was carried

out by Hillier (1969a,b), Toyoda (1975), and Balas and Martin (1978), among othL

ers. Additional discussion can be found in, for example, Wolsey(1980).

§5.2 General-Purpose Heuristic Procedures

We will introduce two simple general-purpose heuristic procedures. The first

* procedure (HI) is actually an option which can be implemented with any exact BB

- algorithm. Recall that for a BB algorithm, we first locate a feasible solution and

-then make improvements upon this solution. For the procedure (Hi), we simply

" restrict the number of times that an improvement is to be made. For example, we

can terminate the updating process after two improvements beyond the initially

found solution are observed. Procedure (I11) works best if a good solution can be
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located after only a few improvements and the optimality conditions are difficult to

verify.

As we shall see in Chapter 6, procedure (Hi) is very promising for the problems

we have tested. For most of our testing problems, an optimal solution is found with

just one or two improvements after we located a feasible solution. The bulk of the

computational effort is to verify the optimality of the incumbent. A major drawback

of this approach is that we don't know how good is the solution we found. If we have

* an optimal solution of the LP-relaxation of the original problem, we can compare

the objective values associated with the two solutions. The difference between the

two objective values is an upper bound on the error. However, this can be a very

loose bound because the optimal objective values of an IP problem and its LP-

relaxation can differ substantially. By setting the number of improvements allowed,

we can provide a reasonable tradeoff between the computational time required and

the quality of the solution. For example, if the updating process is allowed to

continue sufficiently many times, an optimal solution often results.

The second heuristic procedure (H2) is so designed that it provides a statement

as to the quality of the solutions found. It usually produces several fairly good

feasible points. To simplify our presentation, we assume that the objective function

has nonnegative coefficients and is to be minimized. Recall that for any enumeration

type algorithm, one way to fathom a branch is to show that no better solutions exist

along the branch. Heuristic procedure (H2) relaxes this fathoming requirement.

Assume that an incumbent x, with the objective value Zic, is available. A branch

*is considered to be fathomed by (112) if the best objective value that could be

attainable along this branch, Z1, is not more than p percent better than the value
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Zinc. This fathoming criterion may be expressed as
* b

Z1(i + p%) _ Zi (1)

-. and p is given by the user to control the accuracy of the optimal solution. Note

that if ZI and/or Zinc can take negative values, the inequality (1) will not properly

represent the fathoming criterion adopted by (H2). When p = 0, the heuristic

algorithm becomes an exact algorithm. There are many ways to evaluate Z1. In the
.4

context of the proposed algorithm, the easiest way is to define

Zi= Z + min{ D;,U;}

where Z, D*, and UO are defined in Chapter 4. Replacing the fathoming test 1

(Chapter 4, (13)) by (1) in the MCIP/BVC algorithm, the resulting procedure is

the heuristic procedure (H12).

It is easy to show that the best objective value produced by (H2) is within p

percent of the optimal value, as stated in Proposition 5.2.1.

Proposition 5.2.1. Suppose that the objective function of (P) has nonnegative

coefficients and is to be minimized. Then the best solution of (P) attained by the

procedure (112) yields an objective value which is within p percent of the optimal

objective value of (P).

Proof. If (H2) produces no feasible solution, then the original problem is infeasible

and the proposition is trivally true.

Suppose that the best solution produced by (112), xin, has the objective value

Zinc. Furthermore, let the objective values associated with the sequence of in-

cumbents leading to xic be Z! c, Z c,"", Z = Zinc. This is a monotone de-

creasing sequence. For any optimal solution with the objective value Zopt, either .,
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zopt Zin, in which case the proposition is true, or it is fathomed by (H2) for

some Z! _ t <_ k, such that

Z1 (1 + p%) _ Z i

where Z is defined earlier and Z0 pt > Z1 . Consequently, we have

Z 0P (I + p%) _ Z(1 + p%) _ Z t
c _Zi,

which concludes the proof. I

Testing results of (H1) and (H2) are in Chapter 6. Both procedures can be

easily incorporated with any exact BB algorithms. Thus, we call them general-

purpose heuristic procedures.

§5.3 Special-Purpose Heuristic Procedure

Heuristic procedures that are designed based upon certain assumptions and to

meet specific goals are termed special-purpose heuristic procedures. These proce-

dures take advantage of the special structure of the problem as well. In this section,.

we will develop a special-purpose heuristic procedure which solves the MCIP/BVC

problem. We first state the basic assumptions imposed and then describe the algo-

rithm in the context of a capital budgeting problem. The computational results are

in Section 6.5.

It is often difficult to state the constraints precisely when we formulate a real-

world problem, especially if the constraints represent restrictions in the uncertain

* future. The basic assumption of the proposed special-purpose heuristic procedure

is that we allow some flexibility in the constraints. In addition, we would like

the algorithm to provide a wide range of potential alternatives by having multiple
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solutions. The procedure is a Lagrange based approach. Refer to Geoffrion (1974)

for a good discussion of this approach as applied to integer programming problems.

A sequence of simplified MCIP/BVC problems is generated and each problem may

produce a good solution. The procedure terminates when certain stopping criteria

are met.

The standard formulation (P) of the MCIP/BVC problem assumes that the

objective function is to be minimized. In order to interpret the example given

below in a more natural way, we convert (P) from a minimization form to a maxi-

mization form. Coupled with other minor modifications in formulating the general

constraints, the new problem (P') becomes

Maximize =I E7=I cjij

subject to Ax < b

x> 0 (P')

x= ii = 1 i = 1 , 2 ,. ..,I r n

-T E {0, 1} V i,j

where A and G are matrices with appropriate dimensions and b = (bi, b2 , ",bl)T

is a column vector of dimension 11.

We use a capital budgeting problem to illustrate the objectives that the algo-

rithm is designed to achieve. Suppose that we are to develop an investment strategy,

i.e., to select a good investment portfolio among the potential projects, for the next

11 years. Besides the multiple choice and the contingent properties that exist among

the projects, we assume that the only other constraints are the budget restrictions.

Referring to the formulation (P'), the general constraints Ax < b would represent

the annual budget restrictions where b, is the budget for the current year and the

remaining bi's are budgets for future years. An important characteristic of the
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problem is the uncertainty pertaining to the right-hand-side coefficient vector b.

The budgets for future years are only projected values and the decision-maker may

actually have some controls over these figures. A solution which does not require

unreasonable annual expenditures beyond the projected budgets may be considered

as an acceptable solution of (P') and hence a viable proposal. This fact suggests the

desirability of having multiple solutions since these acceptable solutions can satisfy

the budget restrictions differently and each solution may enjoy certain advantages

over other solutions. The final decision rests on the decision-maker's judgement.

The optimal solution obtained by the MCIP/BVC algorithm, or other algorithms,

plays a very restrictive role insofar as the decision-maker is concerned.

As we shall see later in Section 6.2, the MCIP/BVC algorithm performs ex-

* tremely well when there is only one general constraint. Its performance deteriorates

as the number of general constraints increases. Together with the fact that multiple

solutions are desired, a Lagrange based heuristic approach is proposed. It incor-

porates the Lagrange multipliers in a specific way which accommodates the above

objectives and efficiently utilizes the MCIP/BVC algorithm. The multipliers can

also be used in ways other than what we describe next, and different objectives may

then be accomplished.

Before applying the proposed procedure, we first select one general constraint

out of the 11 general constraints. All the solutions found are required to satisfy

this selected constraint but none of the other general constraints. In the capital

budgeting example provided earlier, this constraint may correspond to the budget

restriction for the current year. (If none of the original general constraints had

been required to be satisfied precisely, we may add a constraint to the system and

consider it to be the constraint that every solution needs to satisfy. For example, we
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could add a constraint that represents the restriction of the overall spending level

over the planning horizon.) The procedure begins by replacing the existing objective

function by a weighted sum of the original objective row and the general constraints

that are not required to be satisfied. We then eliminate these general constraints

from consideration. The resulting problem possesses the knapsack MCIP/BVC

structure which can be solved very efficiently. The weights associated with the

general constraints are then updated and the process repeats itself. This iterative

scheme will be terminated when certain stopping criteria are met.

For simplicity, we assume that the first general constraint of Ax < b is the

one that is required to be satisfied at all times. Let ai be the row vector that

corresponds to the ith row of the matrix A. Denote

* (a2'

1a31
A'=, :i

so then the problem (P') can be written as

Maximize ":? ci.'zij .

subject to a 1 z < b,

A 'x < bV-.-

Gx > 0 ";i

E n i  

-

= 1 i =1,2,.m

r,, E {O, 1} V i,j

where b = (b2 ,b 3 ," ,bl, )T is a column vector and A' and G are matrices of appro-

priate dimensions. The Lagrange based approach can be explained more readily by
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first forming the Lagrangian dual problem (D),

Minimize u Maximize ., ijij - U(A'l - b')

subject to al. < bl

, Gx > 0

(D)Y :"=I ij = 1 i =1,2,..,

'h > 0 k =2,3,...,11

zi E {0,1} V ij

where U = (p2,.3,...,pj) consists of the Lagrangian multipliers. Note that xij,'s

are still required to be integers and they are variables in both (P') and (D). Define

D(U t ) to be the reduced dual problem where the Lagrangian multipliers in (D)

are replaced by a known vector Ut = (A,,., ) Let ZD and ZD(Ut) be the

optimal objective values of the problems (D) and D(Ut), respectively.

The underlying rationale of the procedure is to solve a sequence of the reduced

dual problems D(Ut). It begins by solving the problem D(U1 ) for a given U1 . It is

clear that the minimization part of D(U 1 ) is redundant and the resulting problem

is indeed a knapsack MCIP/BVC problem. We then check whether the solution zT ,

which is an optimal solution found at the tth iteration, is an acceptable solution

with respect to (P'). Specifically, we consider the solution ot to be acceptable if for

each general constraint a, > bb, k = 2,3,...,11, the inequality

akxt > bk(1 -p%)

holds for a given p. If it is acceptable, we record it for future reference and a check

for termination is executed. The procedure repeats itself for a new U if the stopping

criterion is not met. Typically, the initial U1 vector is a zero vector or assumes the

values of the dual variables associated with an optimal solution of the LP-relaxation
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of (P'). Successive U vectors are obtained according to the standard subgradient.

method:

t+1 t

where t is the iteration counter which starts with 1 and St is a positive scalar step

size at the tth iteration. The step size St is defined by

W(ZD(U,)-Z) (
IIA': t - 'II

where IIvII represents the Euclidean norm of the vector v, W is the relaxation '.

coefficient which satisfies 0 < W < 2, and Z is a lower bound on ZD. We will not

discuss the subgradient method in great length here. The interested reader should

refer to Crowder, Held, and Wolfe (1974) for the theoretical and computational

aspects of the approach.

It is well-known that the optimal objective value of (P'), Z, is less than or

equal to ZD. Their difference, (ZD - Z), is often referred to as the duality gap. The

duality gap usually is a strictly positive number in integer programming. From the

inequalities

Z < ZD ZD(Ut), (4)

it is clear that the objective value of any feasible solution of (P') can serve as a lower

bound Z of ZD. The initial Z can be defined as the sum of the objective coefficients

that are the smallest in each SOS. This objective value may not correspond to a

feasible solution of (P'), but it is the smallest objective value that (P') can achieve.

Subsequently, Z is updated by any feasible solution of (P') which yields a larger

objective value.

The expression (ZD(us) -Z) in the nominator of (3) represents the amount that

the current optimal dual objective value can be decreased. The denominator of (3)
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can be zero only if the solution obtained at the previous iteration is an optimal

solution of (P'). A solution which makes the denominator of (3) zero implies that

it is a feasible solution of (P'). In addition, it produces the same objective value for

the problems D(U') and (P'). Using (4) and the fact that Z is the largest objective

value of (P), we have Z = ZD and the solution obtained earlier must already be

an optimal solution of (P).

In the current implementation, the iterative scheme will be terminated if one

of the following three stopping rules is met. The stopping rules are

(a) When the objective values ZD(u,) and Z become close enough,

(b) When the number of iterations reaches a prescribed limit, and

(c) When a given number of acceptable solutions is found.

The stopping rule (a) can be expressed as

;(5)

where Z; is the best objective value of the dual problem (D) (the smallest ZD(Uti)

found so far. The iterative scheme is terminated when (5) holds for a given q.

Stopping criteria (b) and (c) are technical provisions which guarantee that the

process has a finite termination. The step-by-step description of the procedure

(H3) is given below.

Algorithm H3 (Heuristic). This algorithm is designed as a special-purpose heuris-

tic approach to solve MCIP/BVC problems.

AO. [Initialization.] Let Z; = oo, Z -oo, t = 1, and U 1 = 0.

Al. [Solve.] Solve D(Ut). If ZD(U,) < Z;, set Z = ZD(U).-

A2. [Acceptable.] Record z' if it is an acceptable solution with respect to (P').
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A3. [Feasible.] If z' is a feasible solution with respect to (P') and its objective value

Zp is larger than Z, then set Z = Zp.

A4. (Terminate.] Check for the stopping criteria (a)-'(c) stated above. If any one

of the conditions is met, stop.

AS. [Update.] Set t = t + 1. Update Ut according to (2) and (3). Go to step (Al).

When we check for termination at (A4), we use Z; instead of ZD(U') to see

whether the criterion (a) is satisfied. The numerical assumptions on how to deter-

mine if a solution z t is acceptable and how small the duality gap should become

before the process stops will be addressed in Section 6.5.

A
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CHAPTER 6

COMPUTATIONAL RESULTS *.

We commence this chapter by describing the testing procedure. Three sets of

problems are run under various algorithms and the results are compared. We also

examine the effects of different branching criteria adopted in the algorithm. Results

by applying heuristic approaches are reported in the last two sections.

§6.1 Testing Procedure

In order to compare the relative merits of the MCIP/BVC algorithm to other

algorithms, we have selected three sets of problems with which to do extensive

testing. Each set of testing problems is designed to examine a particular aspect of

the algorithm. The first set of problems aims to determine the overall efficiency of

the algorithm and to identify the key parameters pertaining to the efficiency of thk

algorithm. Recall that the standard formulation takes the form

Minimize -:7=1 AL Cjk2

subject to Az > b

Cz >0

ZiA 3k 1 j =1 .

jE O, 11 Vj k

Let a11& denote the coefficients of the constraint matrix A, where the element a11k

represents the entry for the ith constraint and the kth variable in the jth SOS. For

the first set of test problems, each a,,k as well as cjk is a random number generated
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uniformly over a prescribed interval and the right hand side, bi, is calculated by

bi [max(aiik) + min (aj)]/Tj,

where Ti is called the tightness ratio of the ith constraint. We assume that the

endpoints of these prescribed intervals take nonnegative values. Furthermore, the

random numbers generated are rounded to their nearest integers. These restrictions

should not alter our testing results because the proposed algorithm does not take

advantage of the coefficients being nonnegative. As T increases, the right hand side

decreases and the ith constraint becomes less restrictive since the constraint takes

the form of greater than or equal to in the standard formulation. The binary-valued

constraints are also generated randomly. For each binary-valued constraint, we

first select the special ordered sets that contain primary and contingent variables,

respectively. We then generate non-zero entries within each SOS. To make our

comparisons easy to follow, we adopt the following values as the base case:

Number of general constraints = 3,

Number of binary valued constraints = 8,

Number of SOS = 10,

Number of variables in each SOS = 5, and

Tightness ratio = 2.0.

The total number of binary variables is 50, which is considered to be a moderate

sized problem. Tightness ratios are assumed to be the same for all general con-

straints. These numbers will be altered in the subsequent sensitivity studies in

order to show how each parameter affects the efficiency of the algorithm.

The second set of testing problems is the multiple choice knapsack problem with

binary-valued constraints. For these testing problems, our goal is to determine
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whether the MCIP/BVC algorithm can be accelerated if the matrix A possesses

some special structure. In the present case, the reduced problem is a multiple choice

knapsack problem, for which there are efficient algorithms available. The algorithm

adopted in the current implementation can be found in. Sinha and Zoltner(1979a).

The testing problems are also generated randomly as described earlier but with

different numerical specifications. The number of variables ranges up to 400.

The last set of problems is the National Basketball Association (NBA-) schedul-

ing problems developed by Bean (1980), as discussed in detail in the Appendix.

These problems resemble the classical assignment problems to a certain extent,

but the optimal solutions to their LP-relaxation do allow fractional values. The

procedure used by Bean to generate these testing problems can also be found in

the Appendix. Since Bean has documented computational results for solving these

problems with his algorithm, our major concern is to compare the relative efficiency

of his and our algorithms.

§6.2 Testing Results

All the computational work was done at Stanford University's Sierra computer

facility. Sierra is a DECSYSTEM-20. Before we present the testing results, a few

words of caution seem appropriate. Sierra is a time-sharing system and requires

various overhead operations, so it is very difficult to observe the precise CPU times

(which include the input/output times). Depending upon the time of day, which

affects the load of the system, the observed CPU times can deviate as much as

15%. All of our testing was performed in approximately the same time slot when

the system load is relatively light, so we expect that the CPU time deviation was

much less than 15%. Also note that each entry in the following tables is the average

time of ten (10) problems, unless otherwise specified, which should lessen the effect
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of the randomness of the problems generated as well as the usually large -variance in

the computing times associated with integer programming algorithms. The source

code is written in FORTRAN 66.

§6.2.1 Problem Set 1: General Efficiency

Table 6-1 reports the overall efficiency of the MCIP/BVC algorithm along with

two other approaches. Tables 6-2 through 6-6 summarize the sensitivity results by

altering various parameters one at a time. CPU times are measured in seconds.

Table 6-1 CPU Times for Different Algorithms

# of Binary- CPU Time CPU Time CPU Time

Valued Const. (Branch-Bound) (MCIP/BVC) (Beale-Tomlin)

4 3.36 1.90 2.68

6 4.53 2.34 2.89

8 4.21 3.02 4.76

10 3.65 3.28 5.02

12 4.95 3.69 6.06

14 6.87 4.07 8.24

16 7.34 4.30 11.16

Table 6-1 compares the average CPU times for the usual branch and bound

algorithm, the MCIP/BVC algorithm, and the algorithm developed by Beale and

Tomlin (1969) when applied to 7 different sets of 10 MCIP/BVC problems. The

usual branch and bound algorithm refers to the BB algorithm, as described in

Garfinkel and Nemhauser (1972), which does not take advantage of any special

structure. The MCIP/BVC algorithm performs somewhat better than the other

two algorithms. The percentage increases of the computing times, as a function of

the number of binary-valued constraints in the system, are about the same for the

BB and the MCIP/BVC algorithms, whereas it is somewhat higher for the Beale-
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Tomlin approach. This latter result is counter intuitive. A possible explanation is

that the computer code for the BB algorithm adopted here is an established one

developed by Reardon (1974), whereas the code for the Beale-Tomlin algorithm has

been written by the author with a straightforward implementation, which might

downgrade its efficiency. The same argument applies to the MCIP/BVC code since

it also has been written by the author with a straightforward implementation. It is

possible that the performance of the MCIP/BVC algorithm can be improved if the

code is carefully implemented.

Table 6-2 CPU Times by Varying the Number of Binary-Valued Constraints

# of Binary- Number of # of IP Branches CPU Time CPU Time

Valued Const. Improvements Solved Fathomed (Seconds) (Beale-Tomlin)

4 0.3 1.6 5.0 1.90 2.68

6 0.7 2.0 7.5 2.34 2.89

8 1.1 3.1 11.6 3.02 4.76

10 1.3 2.7 15.4 3.28 5.02

12 0.9 3.6 23.9 3.69 6.06

14 1.1 3.0 26.9 4.07 8.24

16 0.9 2.3 29.2 4.30 11.16

In Table 6-2, additional information is provided to evaluate the performance

of the MCIP/BVC algorithm. There are several quantities we are particularly in-

terested in to describe the performance of the algorithm other than the overall

computational time. The number of improvements represents the number of times

beyond the initially found incumbent that a better solution than the current in-

cumbent is located. This quantity provides us with a clue as to how fast an optimal

solution can be located and a basis to judge the heuristic procedure (HI). From

our testing problems, we found that on average this number is rather small (ap-
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proximately one). In addition, this number stays 'relatively flat as the number of

1binary-valued constraints increases. This suggests that the procedure (111) could

be effective for this set of testing problems.

The number of IP solved indicates the number of times that the step 08 was

executed. This quantity is crucial since the step G8 is usually the most time-

consuming operation in the entire procedure. If this quantity is large, then the value

* of the proposed algorithm wiUl certainly be in doubt. From the table we see that the

number of IP solved is small (usually around 3) and does not necessarily increase

as the number of binary-valued constraints increases. A plausible explanation is

that as we have more binary-valued constraints, the general constraints become

relatively less restrictive and many branches will be fathomed, either by locating

*a better incumbent or otherwise, at an early stage without going through the step

08.

Branches fathomed indicates how many branches are being explicitly examined.

A small number shows that many branches are fathomed very quickly, which may in

turn demonstrate that the fathoming devices are powerful. In the case that the num-

- ber of binary-valued constraints is 14, the potential number of branches fathomed

could be as high as E,=4_ 2k 32766. The average number of branches fathomed in

- this case is 26.9, which is only about 0.08 % of the potential branches. Furthermore,

* this ratio decreases as the number of binary-valued constraints increases. This is

encouraging because it indicates that the efficiency of the MCIP/BVC algorithm

does not deteriorate as the numb er of binary-valued constraints increases. Also

note that the number of IP solved is far fewer than the branches fathomed, which

Shows that other fathoming devices are useful.

The last two columns of Table 6-2 report the CPU times of the MfCIP/BVC and
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Beale-Tomlin algorithms, respectively. We will use these two algorithms in future

comparisons because we feel that they are at about the same level of efficiency as

far as their implementation is concerned and they both utilize the GUB algorithm.

Table 8-3 : CPU Times by Varying the Number of General Constraints

# of General Number of # of IP Branches CPU Time CPU Time

Constraints Improvements Solved Fathomed (Seconds) (Beale-Tomlin)

1 0.9 2.5 11.6 1.52 2.33

2 1.2 3.0 14.4 2.18 3.16

3 1.1 3.1 11.6 3.02 4.76

4 1.8 6.6 19.3 9.10 16.68

5 1.3 5.7 17.0 10.64 35.50

6 1.4 7.4 17.8 16.02 > 60

Table 6-3 displays another set of sensitivity results. We systematically change

the number of general constraints. It is observed that the number of improvements

is still a small number, but the number of IP solved as well as the CPU times

increases very rapidly as the number of general constraints increases. This leads to a

conjecture that the one key factor which determines the efficiency of the MCIP/BVC

algorithm could be the ratio between the numbers of binary-valued constraints and

general constraints, i.e.,

the number of binary-valued constraints

the number of general constraints

As r increases, the algorithm is likely to become fairly efficient. This perhaps can

be explained by the reason we provided earlier, i.e., as the number of binary-valued

constraints increases, the general constraints become relatively less restrictive and

many branches can often be fathomed without undertaking the expensive step G8. p

Also we note that when r is small, one can argue that the problem becomes less
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structured and the special-purpose algorithm MCIP/BVC may not be the proper ~

tool to adopt in solving the problem.

The increasing number of IP solved reflects the increases of the computing time.

The number of improvements stays small, so the suggested heuristic procedure (Hi1)I
can still be effective. The Beale-Tomlin algorithm requires more CPU times on the

averages in all cases and its rate of CPU time growth is also larger than that of the

MCIP/BVC algorithm for these problems.

Table 6-4 CPU Times by Varying the Number of Variables in Each SOS

# of Var. Number of # of IP Branches CPU Time CPU Time

in Each SOS Improvements Solved Fathomed (Seconds) (Beale-Tomlin)

5 0.6 2.3 12.0 3.31 7.71

6 1.4 4.9 15.9 6.32 8.12

7 1.3 4.2 16.1 7.78 13.16

8 1.1 4.5 14.4 8.69 14.28

9 0.9 5.1 17.7 8.10 16.04

10 1.1 3.7 14.1 5.92 16.83

Usually in integer programming problems, the number of variables plays a

*very important role in determining whether the problem can be solved within a

reasonable computer time. The CPU time required to solve a problem tends to

increase rapidly when the number of variables is increased. In Table 6-4, however,j

we found that this is not necessarily the case for the MCIP/BVC algorithm. As

we increase the number of variables in each special ordered set, the average CPU

times did not grow as we expected. There is no obvious reason which accounts for

the decreases of the average CPU times in the last two rows except the randomness

of the testing problems. What we can expect is that the CPU times should not

increase very rapidly. Observe that by adding one binary variable into each SOS,
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the number of potential solutions increases

n n

times where m is the number of SOS and n is the number of variables in each SOS.

As n increases, p becomes smaller and converges to 1. In a general HIP problem,WO

adding m binary variables will increase the number of potential solutions by 2 m

times, which is far larger than p.

Again, the number of improvements remains small and the CPU times for the

Beale-Tomlin approach increase somewhat faster than that for the MCIP/BVC

algorithm. It seems safe to conclude that the number of variables in each SOS is

not a crucial factor as to the performance of the MCIP/BVC algorithm.

-'In the base case, we assumed that the tightness ratios for all general constraints

are the same, with the value 2. This quantity affects the right hand sides and

determines the size of the feasible region. In the next sensitivity study, we shall see

the effect of altering the tightness ratio.

Table 6-5 :CPU Times by Varying the Tightness Ratio

[Tightness Number of # of I Branches CPU Time CPU Time

Ratio Improvements Solved Fathomed (Seconds) (Beale-Tomlin)

1.7 1.0 4.8 16.3 6.32/4.75 18.93/12.37

.. 8 0.7 4.7 16.6 6.23 12.29

1.9 1.3 4.0 14.7 5.86 13.93

2.0 1.1 3.1 11.6 3.02 4.76

2.1 1.0 2. 5 L 11.0 1 2.45 1 4.77

*The first number is the average time of the 6 feasible problems obtained' by generating 10 prob- '

lems. The second number is the average time of these 6 and the remaining 4 problems which are

not feasible when the tightness ratio becomes too small.
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Table 6-5 shows that as the tightness ratio decreases, the problem becomes

more difficult to solve. On average, the number of IP that need to be solved increases

as the tightness ratio decreases. This indicates that we are more likely to exhaust

all the binary-valued constraints without fathoming the branch. In other words,

feasible regions are determined largely by the general constraints and the binary-
--p1

valued constraints become less relevant. Hence we conclude that the MCIP/BVC

* algorithm should become more effective as the binary-valued constraints .contribute

more to the determination of the feasible region. The number of improvements is

still very small, which again suggests that the heuristic procedure (Hi) can be an

effective one.

Table 6-6 CPU Times by Varying the Number of Special Ordered Sets

While Keeping the Total Number of Variables Fixed

*# of Special Number of # of IT' Branches CPU Time

Ordered Sets Improvements Solved Fathomed (Seconds)7%

3 0.7 4.7 18.6 3.29

4 1.2 3.6 16.7 2.92

5 1.6 4.8 17.4 4.04

6 1.1 3.0 13.4 3.97

10 1.4 4.9 15.9 6.64

12 0.6 4.3 15.9 6.40

15 0.5 3.1 12.9 7.10

20 0.8 3.0 11.7 7.98

* *Total number of variables =60.

Finally, we investigate how the number of special ordered "sets affects the per-

formance of the MCIP/BVC algorithm. To achieve this goal, we alter the number

* of SOS while keeping the total number of binary variables fixed. This will also
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change the number of variables in each SOS. Note that the number of variables in

each SOS varies inversely with the number of SOS.

Table 6-6 demonstrates the case with 60 binary variables. As the number of

* SOS increases, the CPU time increases. It seems that the number of SOS plays

a more important role than the number of variables in each SOS. In fact, we can

argue that the problem becomes less structured when we have too many SOS, so that

* the efficiency of the proposed algorithm deteriorates. However, the computational

results are not very conclusive. The difficulties of the problem raised by introducing

more SOS can often be offset by the reduced number of variables in each SOS. The

randomness of the testing problems here may play a more crucial factor than that

* in other testing results.

From the extensive testing we have conducted (over 250 testing problems in

different sizes), we conclude that the MCIP/BVC algorithm generally is reasonably

efficient on MCIP/BVC problems of moderate size, especially when the ratio r i s

ft fairly large. In the next two subsections, we will test its performance on problems

which possess other special structure.

§6.2.2 Multiple Choice Knapsack Problem with BVC

The second set of testing problems is the multiple choice knapsack problem

with binary-valued constraints. If we set aside the binary-valued constraints, the

reduced problem is a binary multiple choice knapsack problem, for which there are

very efficient algorithms available. Recall that the most time-consuming operation

in the MCIP/BVC algorithm is usually step G8. Having the special structure

* at hand, we can substantially reduce the CPU times required at step 08 and so

improve considerably the overall efficiency. Again we assume that the number of

binary-valued constraints is 8 and the tightness ratio is 2.
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Table 6-7: CPU Times for Knapsack Problems with Binary-Valued Constraints

-_ _ _Number of Variables in Each SOS

No. of SOS 10 12 14 16 18 20

10 2.05 2.84 2.35 3.24 2.83 3.56

12 2.56 2.81 3.69 4.24 4.34 5.49

14 3.29 3.33 3.89 5.36 4.70 5.38

16 4.75 4.20 4.41 5.32 6.54 8.28

18 4.30 5.18 6.22 8.45 7.12 7.85

20 4.87 5.35 6.95 9.28 9.69 9.27

Table 6-7 investigates the CPU times associated with the different numbers of

special ordered sets and the different numbers of variables in each SOS. The total

number of variables can be as high as 400 and, on average, less than ten seconds

of CPU time are required. Furthermore, the rate of growth of CPU time seems

to be approximately linear with the number of variables in each SOS and only

slightly more than linear with the number of SOS. This encouraging performance

suggests strong potential for the algorithm in cases where special structure that can

be exploited is present in the reduced problem.

The merits of the MCIP/BVC algorithm are demonstrated very favorably by

this set of testing problems because step G8 consumes a relatively small portion of

the total computational time. Table 6-8 provides detailed information regarding

the performance of the MCIP/BVC algorithm on problems of this type when the

number of binary-valued constraints varies. In each case, the number of SOS is 10

and there are 10 variables in each SOS, so the total number of (binary) variables is

100. We first note that the number of improvements remains small in all cases, which

suggests that the heuristic procedure (111) will be effective. The number of branches

fathomed increases very slowly in absolute terms, and decreases in percentage terms,
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when the number of binary-valued constraints increases. In the case of 16 binary-

valued constraints, only 0.03 percent (40.2/ " 2k) of the potential branches are
investigated explicitly before we find and verify an optimal solution. Figure 6-1

plots the total CPU times versus the number of binary-valued constraints and we

see that the CPU times increase approximately quadratically.

Table 6-8 CPU Times by Varying the Number of Binary-Valued

Constraints in Knapsack Problems

No. of Binary Number of # of IP Branches CPU Time

Valued Const. Improvements Solved Fathomed (Seconds)

4 0.6 1.5 5.2 5.14

6 1.0 2.0 7.8 6.07

8 0.8 2.7 11.0 6.86

10 1.3 3.2 15.9 8.76

12 1.7 3.5 21.9 10.57

14 2.0 4.7 33.4 13.34

16 2.2 4.9 40.2 15.14

§6.2.3 NBA Scheduling Problem

The last set of testing problems involves the NBA scheduling problem. A

detailed description of the problem can be found in the Appendix. There are no

general constraints in these problems. The group contingent constraints are of type

SM, which complicates the enumeration process. The IP problems that need to be

solved at step G8 are trivial. We only need to assign the value 1 to each variable

that is still a free variable in the SOS and has the smallest cost coefficient among

the remaining free variables in the SOS.

Table 6-9 summarizes the relevant results. Each entry is again the average of
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10 problems, if applicable. First we note that the number of improvements is very

small, which indicates that most of the computational effort is spent on verifying

optimality if the initial trial solution and improvements can be quickly located. It

also indicates that the heuristic procedure (H1) is worth exploring. The range of

the CPU times is large, which usually happens in IP algorithms and also accounts

for the large standard deviation obtained. The CPU times reported by Bean(1980.

appear in the last column. We find that the average CPU times in the MCIP/BVC

algorithm are much better than those obtained by Bean's algorithm on the same

computer. Figure 6-2 shows that the CPU times increase approximately quadrati-

cally as the number of teams being scheduled increases.

Table 6-9 CPU Times for Scheduling Problems "_

# of Teams Number of Range of CPU Average Standard CPU Time

Selected Improvements Time (Seconds) CPU Time Deviation (Bean)

10 0.1 2.7- 4.4 3.06 0.47 12.1

12 0.1 4.1- 9.0 5.22 1.38 19.4

14 0.7 7.4-15.8 9.55 2.68 36.9

16 0.3 12.3-29.3 15.57 5.13 65.4

18 0.4 17.7-47.2 23.43 9.59 88.5

§6.3 Effect of Different Branching Criteria

In Chapter 4, we introduced the branching heuristic based on choosing the

worst alternative. It is a conservative measure because the rationale is to postpone

the search on potentially bad branches rather than to locate good solutions which

are likely to be nearby optimal. Two alternative selection criteria are presented in

this section and the computational results on all three criteria are reported in Table

6-10.
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PIP

Using the notation described in Chapter 4, the alternative criterion 1 is defined

as

(A) Introduce the kth BVC where

k = Argmax9 max{D ,U,}, P = max {D*,U;}.

(B) If the penalty Pk = D, execute a 0-branch. Otherwise, execute a 1-branch.

If the index k is not unique, the smallest such k is picked. By selecting the

branch with the largest penalty, we hope to fathom the branch very quickly.

The alternative criterion 2 is defined as

(A) Introduce the kth BVC where

k = Argminq min {D*,U }, P. = min {D;,U;}.

(B) If the penalty Pk = D , execute a 0-branch. Otherwise, execute a 1-branch.

Again, if the index k is not unique, we select the smallest such k. This is an

aggressive selection criterion. The rationale is to pick the branch that is most likely

to contain good solutions. By finding a good solution very quickly, we hope to

expedite the fathoming process for the remaining branches.

Table 6-10: Comparison of Different Selecting Criteria

No of Old Criterion Alt. Criterion 1 Alt. Criterion 2

BVC's Brh. Fathom CPU Brh. Fathom CPU Brh. Fathom CPU

4 5.0 1.90 5.4 2.06 5.0 1.94

6 7.5 2.34 10.4 2.71 8.5 2.62

8 11.6 3.02 16.2 3.30 12.2 3.09

10 15.4 3.28 27.3 4.63 16.0 3.30

12 23.9 3.69 46.0 6.31 24.6 3.78

14 26.9 4.07 52.4 7.04 28.1 4.27

16 29.2 4.30 75.7 9.01 33.0 4.89
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The problems tested are the base case problems with the number of binary-

valued constraints varied (as originally used for Table 6-2). From Table 6-10,

we see that the original criterion and the alternative criterion 2 produced very

similar results, with slightly higher figures for the latter criterion. Becaure the

CPU times cannot be observed precisely and the problems are random in nature, we

consider these differences to be statistically insignificant. The alternative criterion 1.

generated substantially higher figures, especially when the number of BVC becomes,

large. We conclude that the alternative criterion 1 is inferior to. the other two

criteria. No further tests will be conducted regarding this subject. We merely

'. want to point out that a good branching criterion indeed is important as to the

performance of the proposed algorithm.

§6.4 Testing Results on Procedures H1 and H2

Heuristic procedure (Hi) utilizes the proposed exact algorithm but limits the

number of times that improvements can be made upon the incumbent. As in most

heuristic approaches, we expect the procedure to produce good solutions within very

reasonable computer times. Testing results on the randomly generated problems

with different numbers of general constraints are reported in Table 6-11.

Table 6-11: Testing Results on Procedure H1

# of General CPU Time No Im rovement Two Improvements

Constraints (Optimal) CPU time Reach Opt. CPU time Reach Opt.

1 1.52 1.31 40% 1.45 100%

2 2.18 1.62 40% 1.95 80%

3 3.02 2.01 30% 2.77 90%

4 9.10 3.25 10% 6.04 60%

5 10.64 4.12 30% 7.02 70%

6 16.02 6.47 30% 10.91 70%
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The figures in Table 6-11 indicate that for many problems, an optimal solution

is located after only a few (if any) improvements have been obtained. By restrict-

* ing the number of possible improvements allowed, the average computer times are

* considerably reduced. For example, in the case that at most two improvements are -

* allowed, optimal solutions are obtained in about 80% of the testing problems and

* the percentages of average time savings range from 5% to 32%. In general, the time

savings become more significant when the problem becomes more difficult to solve,

* as demonstrated in the last three rows of Table 6-11. The quality of the solutions,

- as measured by their percentage deviations from the optimal values, depends upon

how many improvements are requested. In the case of no improvement, the devi-

* ations of the objective values can be as high as 20%. For two improvements, the

deviations are all under 5% in this set of problems. However, there is no ruie of

thumb which we can provide at this point to assure the quality of the solutions, and

this is a major drawback of this approach.

Many other problems were tested. The results will not be reported here siace

they all have about the same pattern as presented in Table 6-11. However, we

notice that a) initial improvements are more significant and pronounced in terms of

the objective value than those at later stages, b) the quality of the final solutions

obtained are fairly decent. All the solutions are within 10% of the optimal objective

values if at least two improvements are requested, and c) computer time savings

tend to increase as the problem requires more computational work. Unfortunately,

we are not able to draw any statistically significant conclusions from the data on

hand.

For the heuristic procedure (H12), the testing was conducted on problems with

a varying number of binary-valued constraints as well as with a varying number of
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general constraints. For each problem, we assigned two levels .. , namely,

within 1% and 5% of the optimal objective values, respectively. The numerical

results are in Tables 6-12 and 6-13.

Table 6-12: Testing Results en H2- Varying # of BVC

# of Binary CPU Time Within 5% of Opt. Within 1% of Opt.

Valued Const. (Optimal) CPU time Reach Opt. CPU time Reach Opt.

4 1.90 1.53 80% 1.59 90%

6 2.34 1.99 80% 2.29 100%

8 3.02 2.29 60% 2.67 100%

10 3.28 2.39 60% 2.92 100%

12 3.69 2.59 70% 3.22 100%

14 4.07 2.88 70% 3.80 90%

16 4.30 3.57 70% 4.23 90%

We found that the testing results are generally encouraging. As demonstrated

in Table 6-12, if an accuracy of 5% is desired, optimal solutions are located in about

70% of the problems. By increasing the accuracy criterion from 5% to 1%, only 3

out of the 70 tested problems did not find an optimal solution. The computer time

savings are not substantial if the 1% criterion is adopted. However, if we are satisfied

with the 5% accuracy, computer time savings can be as high as 43% in some cases.

As the problems become more difficult to solve in terms of the computational effort,

optimal solutions are obtained less frequently, as shown in Table 6-13. It appears

that for a difficult problem, there exist many potential solutions with objective

values close to the optimal value. They can shield the optimal solution from being

uncovered.

0.
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Table 6-13: Testing Results on 112- Varying # of Gen. Const.

# of General CPU Time Within 5% of Opt. Within 1% of Opt,

Constraints (Optimal) CPU time Reach Opt. CPU time Reach Opt.

1 1.52 1.43 100% 1.51 100%

2 2.18 1.84 40% 2.01 80% F

3 3.02 2.29 60% 2.67 100%

4 9.10 6.00 50% 7.78 80% ;

5 10.64 6.02 30% 8.96 . 60%

6 16.02 10.48 70% 14.27 90%

Procedures (H1) and (112) apply different philosophies in getting good solu-

tions and it is not easy to compare them. Both procedures can be time-consuming

if very good heuristic solutions are required. Procedure (112) is capable of generat-

ing many good solutions because it examines all the branches, but with a weaker

fathoming criterion. It is conceivable that different circumstances may warrant

different heuristic procedures.

§6.4 Testing Results on Procedure H3

In Section 5.3, we discussed the p:ocedurc (113) in terms of the formulation

(P'). Testing problems are still generated according to the original formulation (P)

since we had established a systematic way of doing this. Some modifications of

the algorithm (113) are required in order to properly accommodate the alternative

formulation (P), but the modifications can be easily made. Before we proceed with

the testing, we need first to define several tolerance levels which are relevant to

whether we consider a particular solution to be acceptable and when the algorithm

should be terminated. Recall that a solution x, is considered to be acceptable if for
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*" each general constraint ak > bk, k = 2,3,... ,11, the inequality

akxc > bk(l -p%)

*" holds for a given p. The tolerance level of 5% is assumed in our testing.

The values of three parameters are required to fully describe the stopping rules.

Using the notation in Section 5.3, rule (a) is expressed as

KZ (1 -q%)Z;

*and the task is to determine an appropriate q. For the testing cases, we allow

* a 5% gap between Z and Z;, i.e., q=5. These values for p and q are selected

. simply because we think that they are of reasonable magnitude. The primary

* objective of the stopping criterion (b) is to assure that the iterative scheme is of

finite termination. The number of iterations allowed is assumed to be 100 here.

This number should provide enough room to let the algorithm fully develop. As

for the criterion (c), we stop the iterative searching process when we find at least 5

acceptable solutions. When the algorithm is applied to larged sized problems, these

* particular values should be changed in order to assure that a reasonable number of

acceptable solutions can be located.

The numerical experiment conducted on (H3) is rather limited. Extensive stud-

ies are required before we can draw any definite conclusions as to the effectiveness

of this algorithm. Since the algorithm is designed to accommodate special require-

ments, it would not be appropriate to compare it with other heuristic approaches.

The best way to evaluate the algorithm is to apply it to real problems and inves-

tigate whether good alternative proposals are generated. Unfortunately, no such

problems are available for testing.
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The problems tested are those referred to in Table 6-13 with three or more

general constraints. The relaxation coefficient W in Section 5.3 takes the value 1.0.

Testing results are reported in Table 6-14.

Table 6-14 Testing Results on Procedure H3

# of General Acceptable CPU Time

Constraints Solutions Found (Seconds)

3 2.1 1.05

4 2.5 1.32

5 3.9 3.07

16 4.6 4.11

As the problem becomes more difficult to solve, (113) tends to find more ac-

ceptable solutions. This is encouraging since real problems often are complex and

* it certainly is helpful to have many alternative solutions. As expected, the CPU

* times are small since we adopted the special knapsack algorithm. The number of

* acceptable solutions should increase as we narrow the gap between Z and Z;. Ad-

* ditional tests can be conducted along this line. The effect of W on the performance

of the procedure can also be addressed by the sensitivity study.
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CHAPTER 7

CONCLUSIONS

We summarize our findings in the first section. Directions for future studies,

as well as some concluding remarks, are given in Section 7.2.

§7.1 Summary

We have asserted in Chapter 1 that an IP problem with special structure should

call for a special-purpose IP algorithm. Throughout this dissertation, we found that

this is indeed the case. By applying the specially designed MCIP/BVC algorithm,

we can solve the MCIP/BVC problems much more effectively. In the extreme case

where there is only one general constraint, the proposed algorithm performed much

better than all other tested algorithms. However, we should emphasize that if the

problems become considerably less structured, as in the case where we have many

general constraints, the specially designed algorithm may be inappropriate to adopt.

In extensive testing, the performance of the MCIP/BVC algorithm generally

has been good. One conjecture that we have drawn is that the efficiency of the

proposed algorithm is very closely related to the ratio, r, between the number of

general constraints and the number of BVC's. This ratio serves as an indicator

to predict whether the MCIP/BVC algorithm can be effectively applied. When r

becomes larger, the proposed algorithm generally becomes more efficient. Other

* factors, such as the total number of binary variables and the number of BVC's, are

. less important than the ratio r. The rate of CPU time growth for the proposed
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algorithm, as demonstrated in Chapter 6, is usually slower than that for the other

approaches tested. For one set of problems for which the computational results are

* available in the literature, the MCIP/BVC algorithm out-performed the existing

algorithm by a factor of about 4.

The solving of integer programming problems is inherently time-consuming.

We have introduced three heuristic procedures to reduce the amount of CPU time

* required. Each approach has its own special characteristics that make-.it suitable

for certain circumstances. The general-purpose heuristic algorithms (Hi) and (H2)

are important because any enumeration type algorithm can readily be generalized

in the ways described in Chapter 5 in order to operate as a heuristic algorithm. The

computational results are encouraging. The heuristic procedure (H3) is very useful

* because it highlights certain concerns that sometimes are encountered by a decision-

maker. The importance of the approach derives not only from the way in which we

* deal with the problem but also from the philosophy behind the development of the

algorithm. We feel that both the problems with special structure and the problems

with specific requirements merit the development of a special-purpose algorithm.

* At times, the two concerns can be utilized simultaneously.

§7.2 Future Study

We mentioned in Chapter 6 that the current implementation of the proposed

-algorithm is not very efficient. In order to fully understand the scope of the approach

and compare results with other algorithms, we need to improve the coding and

* conduct more numerical experiments. Both the exact algorithm and the heuristic

* algorithms should be applied on large-sized problems to form a complete spectrum

of computational results.

This dissertation deals with binary integer programming problems. However,
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many real-world problems are more complicated and involve general integer vari-

ables and/or continuous variables. It would be interesting to know whether the
4*

proposed algorithm can serve as a basis to solve these mixed type integer program-

ming problems. Furthermore, generalizing the heuristic approaches, especially the

.procedure (H3), to accommodate these non-binary variables is also important and

worth exploring.

In Chapter 3, we introduced four types of group contingent constraints. Two

of them are binary-valued, and it is MCIP problems containing these types of

constraints that the proposed algorithm is designed to solve. The other two are

not binary-valued constraints but often appear in real-world problems. Special

algorithms should be developed to take advantage of these special structures as

well.

For heuristic procedure (113), it would be desirable to use real-world problems

to test its effectiveness. We are interested to know whether the procedure can really

aid the decision-makers and what improvements can be made. It is important to

realize that from a practical point of view, a set of good feasible solutions may be

more valuable than a single optimal solution. The procedure (113) should serve as

.. an example to illustrate this point.
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APPENDIX

The NBA Scheduling Problem

§A.1 Formulation

The National Basketball Association (NBA) scheduling problem is a MCI"

with binary-valued constraints. It resembles the classical assignment roblem in

many aspects. A major difference between the two problems is that an optimal

basic feasible solution of the LP-relaxation of the NBA scheduling problem is not

necessarily integer valued. This property makes the problem an ideal candidate for

testing the MCIP/BVC algorithm.

Suppose that we have n basketball teams, each based in a different city. Among

the n teams, [11] teams will play at home and [1] teams will play away from home,

where [k] denotes the largest integer which is less than or equal to k. If n is an

even number, every team is required to play. If n is odd, one team will not play.

For practical purposes and the ease of presentation, we assume that n is even. The

objective is to find a playing schedule which minimizes the total traveling distance.

Denote the binary variables by

1, if team i plays at city j,
L 0 , otherwise,

where i = 1,... ,n and j = 1,... ,n. zii = I implies that team i is playing at home.

The SOS constraints,
n .

. state that every team has to play and can play only at one city. If team j stays at
a,
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home, at most one team can visit city j. The constraints,

A iit 3 - _> 0, = 1,... ,n, (1)

represent this requirement. When n is an even number, the requirement should read

that if team j stays at home, exactly one team will visit city j. The greater than

or equal to sign in (1) can be replaced by an equal sign. However, we maintain the

inequality relationship in (1) to highlight the contingency property. In addition, we

shall define the coefficients of the objective function in such a way that one other

team definitely will visit city j when team j plays at home.

The traveling distance of team i depends on its current location, which may be

either its home city or the city in which it played its last game. Let

ci= distance that team i needs to travel to reach city j,

where i - 1,... ,n and j = 1,... ,n. If team i is not allowed to play at city j, simpl'y

set cii = o. The NBA scheduling problem takes the form

Minimize x42 4

subject to - 0, 1 2, n

(s)
= ;= z - 1, i =n

z., E (0, 1} V ,j.

To guarantee that one other team definitely will visit city j when team 1 is at home,

we set cii = M, a very large positive number that is larger than any of the travel

distances, for all i. Setting cii this way assures that exactly [!*teams play at home,

as we will see in Section A.2. When team j is not allowed to play at home, set

ci= co as before.
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§A.2 Properties and Testing Problems

We shall first show that exactly 1 teams will play at home. Recall that n is

assumed to be an even number and the zii are binary variables. Summing up all

contingent constraints and SOS constraints, we have

n n
2 E xii n > zj

j=1 3=1

Since the cii are very large positive numbers and the problem is to be minimized,

as many of the xii as possible should take the value zero. This implies that

-n

-2'3=1

which states that exactly teams play at home. By the contingent constraints, the

remaining 2 teams can not visit city j when xii = 0 and only one team based in2

another city can visit city j when xj, - 1.

If we selected the n teams, e.g., team 1 through team 1, to play at home, then
2 2

the problem (S) can be simplified substantially. After eliminating the variables

which are forced to take value zero, the problem (S) becomes

Minimize j2= cii + En=M+l =I cii
subject to 1 i- E n O = 1,...

i- 1, + 1 n

xii E 10, 1} V ij.

Note that the greater than or equal to sign in the contingent constraints can be

replaced by the equal sign as discussed early. The new problem (S') then is the

classical assignment problem. Solving (S') is equivalent to solving its LP-relaxation.

When all the teams currently are at home, e.g., just before the beginning of the

season, (S) takes a special form. The coefficient cii should equal cji for all j i.
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This makes the coefficient matrix C = {cj} a symmetric matrix, Furthermore,

for any playing schedule, its reverse playing schedule, defined by interchanging the

home teams and the visiting teams, is equally good. For the testing problems,, we

assume that the matrix C is symmetric, which eliminates the necessity of specifying

the current location of each team when generating the testing problems.

The testing problems were generated by Bean (1980) in a straightforward fash-

ion. He first selected 20 U.S. major cities to form the reference group. Each se.,

of problems had a fixed (even) value of n < 20, depending upon how many teams

are needed. For each problem in the set, he randomly selected the required number,

of cities from the reference group. The coefficient cij is assigned to be the actual

distance between cities i and j. All other constraints are explicitly defined and they

are not random in nature.

10
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