AD-R169 247

UNCLASSIFIED

gnlmluw AND CONSISTENCY OF GLOBAL INFORMATION IN

SCU> CALIFORNIA UNIV BERKELEY
THY NRY 86 ARO-19159. 3-EL DﬂmSEgg-g;gOO‘

‘5.' .7.?.:','5",[,"5*‘.:;. ~
[. TR

g

;,“mt ‘.
. //,"7",-/,{_'
(AL AL A ‘7

[4

L .
A A
..:. -.:",.l’..'

LA

"ﬂl .0 2
== I

I

B 2

s

22 flie yoe

Ll

B CIe

. . Auh\ WL R T e e N
SRS L N . LA S [« S W LW ! A .
5 .t CRIPORIP R YRS Lo e RN - i .
T A T LR IS A N S DL P .. R

f PRD 19159.3-£1

Final Report
for Contract

DAAG29-83-K-0086

AD-A169 247

r

%

[ARG

haim i |
[I

_—

2;%

_;
L
2
=

o |
£
d,.n

[_‘ ! :l;ilh d(.\"‘:)“_;';;l;,. by hess (ZEJY-I\)VUJA}
tlor e M e o oty b |
jodWetrit, s . i

T — - . e

5

T BN W W WL TR AL TRVIPR Ty Wy TR D

PR T S e P PP O SR PRT
D Y VYN TS AN U N U P S S R VO AL AT TS

= ——y

——— ———— —
® (] ° e a b
L » (] e »
..... e e e g e s e+t e e e i e e .- R -
t
¢
B . §
» ! |
3
-«
.
i
.
&
R
| N
il
D er :
Ch . .
< . .
e L€ < :
P & . :
o : N .
b i ¢ . .
L= : N : . .
oz | i - ¢ :
= o - .
= 3 . - ‘
Y - « 4 1
[r e . H
'S : ; | | . :
O , - AM B . 4
- ' « i ; 5 :
o ! - - v .3 3 ;
. - ’
O : . . : : .
3l , |
@ v ol N
e - . boa Q.
3) .
- . r i< o
Vs : - 3 4z
R & - : A .
[B i .
: ;
- .Dl
I ! 1
, ! \
{o s . iz - :
{ H ' i WA
L. ir im = ¥]
i U .
° - . -
T e o i = -1 i

A e e e

R N

?. werer v vt v T C——y r—— Y oy - -

“ie oo of o wvarious kinds of
goeriaticon in the presence of

inowhiicn tajlures are

Y

coiooen ok an indetinite period

o loes tacility was S

S © Ul it the correctness of -
u St w e ddeveleped, i

. ' - e A ST duVulQpcd - -

"
» - ata
y -
RO
L
i «
- -
™ b
£ -
s

F . SRR T ..'.'.'.'l"._‘ (R T YA A LA A v BV o -u N Al i A WAN LT QNN L 2°8 6 £°% 2" LA A A R b st atd aNL md gl el gt gt R P aed oty
e

AVAILABILITY AND CONSISTENCY OF GLOBAL
INFORMATION IN COMPUTER NETWORKS

FINAL REPORT

=" C. V. Ramamoorthy QuALITY

NsreaTep

yry

[/
I

[l

Pttt

'.

""f-]'

N .l.
.
¥

PRI

AVAILABILITY AND CONSISTENCY OF GLOBAL
INFORMATION IN COMPUTER NETWORKS

ABSTRACT

A principal feature of computer networks is the ability of the various sites of the network to
access and update shared information. At the application level, the global information takes the
form of shared file systems, databases, etc., and at lower levels, it takes the form of status infor-
mation used in controlling the network. This report focuses on techniques for maintaining (i) the
availability of global information in the face of various kinds of failures and (ii) the consistency of
global information in the presence of concurrency.

Two failure models are considered: the crash model, in which failures are instantly detected,
and the malfunction model, in which an indefinite period of time may lapse before failures are
detected. In the latter model, failed sites in the network may execute arbitrary state transforma-
tions and emit arbitrary messages; they may exhibit malicious intelligence trying to disrupt the
functioning of the rest of the network.

A network status maintenance scheme based on a global clock facility is designed for the
crash model. The global clock is a system of local clocks, one at each site. Using the primitives
provided by this scheme, desired consistency and availability attributes can be provided for
higher-level software. A feature of this scheme is the guarantee that if site A has site B marked
DOWN at a certain time, then site B is really DOWN at that time. An algorithm for updating a

replicated file is constructed using the scheme.

For the malfunction model, an approach to maintaining the correctness of global informa-
tion and preventing error propagation is developed. A combination of an assertion-checking step
and a unanimity-reaching step is used, along with replication of the global information at multiple
sites, for this purpose. The requirements of the unanimity-reaching step are formalized as a more
general form of the Byzantine Generals Agreement and algorithms for reaching this generalized
agreement are presented.

Centralized and distributed deadlock detection algorithms are developed for distributed
databases. These algorithms use clock facilities to ensure the consistency of ‘snapshots’ taken of
the status of resources and transactions. It is shown that all genuine deadlocks are detected and

no spurious indications of deadlock are given by these algorithms.

R _-.' -“\u' ‘..:‘-‘ . _..'_‘ e
I I .r\.' ﬁ“ i\-' o

I SR AR I A

i XYY,

Vol

) .’ " " "

b 3 o tn e T]
l? = .""'. '

A
N

P
e

'-

% %

)

s dun Ao B du o bt S T A AS A0 S A A

\;V

FAAA

TABLE OF CONTENTS
S
CHAPTER 1. INTRODUCTIONccovveiiitiensrnntinncnnncssmensessssenesesssssssssssaesssses 1
- 1.1. Definition of Global INformationc...cccovvirmiriersnnenreesnesisiscnsnsessecnscnses 1
1.2. AVaIlability .cooiiiiimiieiiiiitns ettt ss s rerenseen s ssenree s ereeanesene 2
: 1.3. CONSISLENCY woieeiiiicireniiiiiieirretrticiestt et ssaane s vesaneanaes 6
. 1.4. Providing Facilities for
% Availability and ConsSiSteNnCy.......cceceervmevmerreeerrrererrereeereereereecrossness 8
1.5. Scope of Reportcoovviieieniiniininreineccinnsrsessc et cese e st seesnr e 8
E
CHAPTER 2. DESIGN AND USE OF A NETWORK STATUS
MAINTENANCE SCEEME THE PRESENCE OF CRASHEES.......ccccovcmviecnneerannn, 11
2.1, Introduction......ccivmiiimriciiiinenerrec e e s saseaneaee s aeanaes 11
. 2.2. Network Status Maintenanceccccceemeviiiiieiiinienneciiessscrnersesnasne. 11
. 2.2.1. OVEIVIEW.......uueeeeireiiicicrriee i eeinorennesssnanssee e sassssses sossonnensenssons 11
.'.::‘ 2.2.2. Requirements for the Global Clock Facility ...c.ccovveeeeenenveneeerenaeen. 12
" 2.2.3. Previous Work in Status Maintenance........cccccueeiiniiiereiniicsccnennen 14
2.2.4. Proposed SChemEcccccvcvcnirieininieneisinicnisenssennenecssssnssssnsansesanassas 17
2.2.4.1. OVEIVIEW ...eeceeceeriecsetseeneeteesssensesenssssesesssbassesssssssrasassnssassensss 17
- 2.2.4.2. ASSUMPLIONScoreriecieiieaerntisesseaesessaessssssensassnssssssssessesseasanns 20
= 2.2.4.3. Site N LINK SLBLES .orcvvvrvvrresrsrssssrnsess s smsssssssssssesnses 21 %
: 2.2.4.4. The Clock Synchrony Rule.........ccoceverinrereceencsenressenenessrassnesenens 24
o 2.2.4.5. Synchronizing with Real-Time CIOCKS......c..evvereveerevreenesssnansens 25 !
. 2.2.4.6. The Link Monitor MoguEcceeeuereireeverenreenesennsensensanesrssnscons 26 f.;:]
2.2.4.7. The Link State Reporter Moduleccccevuiriinverinrccnnencnnnn 28 }'Ej
2.2.4.8. The CRASE_OTHERS and CRASE_SELF Mocules.........ccccccvevneene 30 :‘,C'.E

=
SRy |

s

345
4 .

S A
Nt P

At Rhr i A a6 i SELSL I Rie TRL LIRS Saliiadl I

k
:I:-;' id
q 2.2.4.9. Correctness Arguments (1).......cccorvniiririiicinreeeerescsssnnenrerenecens 35
- 2.2.4.10.Recovery Proceduresccccovvvviirvniiereirrenieeevenmnennsnescnsssanaenns 39
‘::'_ R.2.4.10. 1. DVEIVIBW ...t triccrentrccr s resnceesnscesssiesensnesmssnsesnsens 39
~ 2.2.4.10.2. crashed #SYNC....ccceiiiiiiiiiiiiiiiiiinrereeeinrsereneereesenessssrsnonaesane 41
- 2.2.4.10.3. SYNC *PBUSE . ..ctiiinnnreriteiiereirrenuoie rosestrenaanmsssessssssessasesnnnns 4]
’ 2.2.4.10.4. The SYNC_LINK MOGUIE ..ovvrvvrvvveeereressseceessnesesssesesesece 43
j'.' 2.2.4.10.5. pause = OPerationalcc.cucurmeeeereiecinerererieeieeicssesnennnnnnns 45
- 2.2.4.10.6. The BROADCAST_LINKUP Modulecccevvmeiiimmmivieenreenicseneennnn. 47
2.2.4.11.Correctness Arguments (I1)......ccccccriiieiiiccveeenniiicineeiereeeeceeeenes 50
’ 2.2.5.0verhead Considerations and
é Choice of Parameters..........ccccvceniriciiirenniceeinnnnnieieceesorenensanees 57
N 2.3. An Algorithm for Multiple Copy Lpdatingcccvieerrimuniiicnrecnreneneneinne 58
'.¥: 2.3.1. INtrodUCIiON...coeiiiiiiteecree e re et e e e e e s ernan e e s ae e s 58
2.3.2. Previous Work in Updating Replicated Filesccccceeevvvvcnenenunnnnn. 59
. 2.3.3. States and State Transitions.......cccoceveeviceieeereverierriesrsssresssnnnsnnnnee 62
2.3.4. The ADA Multitasxing Facility
and Remote Procedure Calls.......cccccvcciveiiciiraniininniimenccnessninanneses 86
- 2.3.5. Interface to the Status Maintenance
. MechaniSm. ...t s s s ae e 71
2.3.6. Descriplion of the Algorithm. ..ccoeiiieiiiiieiiicrenr e e e enes 71
2.3.7. Choice Of Parameterscccoicveicieciininiiiniinnsiinrecntenenaesnaerennee 79
2.4. ConClUSIoN ..ottt rreeniens creaer e s s saeannes 83 RS
APPENDIX. .ccccrcsstetereeereesssssessessasess s ssaesseseessess o esssessssesesesesneees 85 '

CrAPTCR 3. ENSURING TEE CORRECTNESS OF

- GLOBAL INFORMATIONccecvvinrieenteiennnines e 104

e

3.1 INLPOGUCLION .ttt e e s ae e 104 o

t .

- o

-

r "
A e L A L T e e Ly

4 1

3.2. Redundancy Techniques for Storing

INformation.. ... s seee e 105
3.3. Effect of Malfunctions on Correctness...........ccccceeevvieeccrrenereenennnennee 107
3.4. Outline of Proposed Approach for
Maintaining Correctness.......ccocovcvviiiiiiiiiiiiviciiiiiiicnretirrreeseeneaneeees 110
3.5. The Byzantine Generals Problem........cooveiiiniciniicicniciecceneennennnn. 112
3.6. Details of Proposed Appro#ch......ccccceiiiiniriicineineinncerceenneniseesennennnnes 118
3.6.1. The Generalized Byzantine Generals
Problem.. i cr e s s s s s e sarenens 118
3.6.2. Malfunction-Tolerance Specification....cc.ccccererevcrecernvenenrereennen.. 119
3.6.3. Scheme Specification......c.ccemiirirmuiiciiiiiiiiiccnicccre e e 120
3.6.3.1. Scheme Specification A.......cccccviiiieiinierinenerrerreieeeeree e eereeens 120
3.6.3.2. Scheme Specification B.....cccccvcriiirmrmiiecireirineceeenencienneennn, 124
3.7. Inlermediate Cost Prolocols.....ccovereeiiiiienccriniiinneesrcrernsnereneannneens 126
3.7.1. Motivation..cveeeiiiii et e 126
3.7.2. Minimum Number of Sites for
GBGA under MTS M3 ..ot ittt enencenesnansesssensn e 127
3.7.3. Implementing GBGA under MTS M3
without Authenticationccvieiiiiiiiiiiiiinireiniini e, 132
3.7.4. Implementling GBCA under MTS M3
USING AUtheNtiCAtION....ccecverreecreeee e eeereesese e s sesaesann e eresanenes 138
3.8, CONCIUSION..cccicirrireieeriirieeseeseenireeeessrrnnnarrasesssasssrassseasssssasaneersanes 138
CEAPTER 4. DEADLOCK DETECTION IN DISTRIBUTED
DATABASE SYSTEMS....iiuitttitireeeierteneeersensensssssssesassnceseseacassmennes 141
4.1, Introduclion...ciiiiiciiiiiiiiiierriirrciesirerceseeeeaereseernneaeasessasnssesanansasnnen 141
4.2. Approaches Lo Deadlock Eandlingc.cccccveeririeiriniienennencieennennnsneness 141

iii

. .
Ry By By

PN,

n 4.3. Race Conditions in Deadlock Detectioncccouviveevieeueerineceseeaseroeennns 144

4.4. Terminology 8nd ASSUMPLIONScccceeiiiriierieerirrcrirecennrraireeeereereeens 145

;§ 4.5. Centralized AlGOTitAMSvreeeeieriieiireecrisseererereerirenrersrreeeressessssses 147
4.5.1. Detection under Conditions of

g 2-Phase Resource USBgE.......ccccvieiiiiiiiiinsiisnnecnssnnnnnnenenneeseesssneses 148
3 4.5.2. Detection under Conditions of

~: non-2-Phase Resouce USAGEcc.oiiivieeviciiincennniieninereneeienreesennnes 151

4.6. Distributed Detection......cccccccciiiiiiiniiiiiniiciciiercnnene s eeree e e 155

; 4.8.1. PASt WOTK -..covnruruieieerseinissastsnssnenssnssssssssassessaseesesssssssassesascoone »157

4.6.2. A Distributed Detection Algorithm......ccvevverrvmunicecirnnnennernnnnn.. 160

L . 4.6.2.1. TErMINOIOZY ..cvreieriirrrrericioieiccunuianensersersererneeereressonssnsnssmsnenes 181

4.6.2.2. Description of AlgOrithMm ..cueuiiiiireieieieermaiiirereenceeereerenreene 169
4.6.2.3. An Example of Deadlock Processing.......ccccceervrnereeneeinonennnen 177
i 4.6.2.4. Proofs of Correctness....cccccceeeeriniierenneicireneneennieneieseeeesnnniieenns 184

4.6.2.5. PerfOormAante .c...ccveiiienivriininreceninrscsnireissacenses Ceererecrnrencnsrennanne 188

4.7, CONCIUSION. .cevcevvveesvesasssssssnsssssssss s sssssssssssassssssse s 189

...

..

PR AT N TP
y "y e ey £,

PRI

»

v

- - G ar el TR PR R
g oot 2 s s EOE SR s SN et e SIS A e MERLARCLIC oA RN i ot S5 S AL G SO SRS M n L < W .
OGS SN LSS CAIMERCIIN AN STeT s e

e

f"ﬁ.Y -
de

| AP

wd

LIST OF ILLUSTRATIONS

2.1. Example to illustrate rule £3

.. 15
2.2. Scenario for sites in N, being
marked down by sites in Nz ..cccoieriiniiiiniiniiiciice e, 18
2.3. State transitions of 8 Site.........ccccvcviiiiiiriiicriricrnrirrierrrere e 23
2.4. State transitions of a UNIlNKccocvviviiiiiiiiiiciiee e, 23
2.5. Unilink state transitions in which
the Link Monitor Module is involvedcccccveereriieccrecriecscnnenrenennennnen. 29
2.6. The network graph NG and the corresponding
CRASE_OTHERS (or CRASE_SELF) graphscccveeeveeeveveeriiecneeeenne. 33
2.7. State diagram for a site carrying a flle
o o PP URUOPTNt 83
2.8. Configuration of sites for updating
the replicated flle ..ot e e e 85
2.9. Example to illustrate the ADA multitasking
FRCHILY oo s ee s e s e s s e s e e s s see e e ae s e e naennes 87
2.10 State diagram showing expected time of stay in
each state and transition probabilities.........iieeerreiiiiiniiiiiscinenne.. 81
3.1. X transmits the value of x to Y1,Y2and Y3.......ccccvvriierrcnncrencnnnnn. 108
3.2. Reaching BGA in the presence of one
malfunctioning Site. ... 113
3.3. Effect of use of authentication facility on
receiver set configuration in
Scheme Specification A.........ccooiiveviiiiiiiicinec e 123
3.4. Scheme Specification Bccccciivninimnmiiiiccninire e, 125

- A Dt St A LEPG ol d

o
n 3.5. Network configuration for showing that ‘
Naum D BTl oottt se et e s bt eeeessne s etassesese st sesesntanenesssasane 130 »
.} 4.1. Race conditions in deadlock detection......cccccvervmenccceerirrmnninrinnnann. 148 ‘
- 4.2 Cycle in proof of Theorem 4.1.ccvvuiiiivirecrneesrerernnemneenscsssrssssaneesans 150
- 4.3. Examples of cycles which do not,
. and do initiate confirm —ounership
' messages FesSPectively ... ce et ea e 156
4.4. Counterexample to algorithm in [TSA 82) ...cccoovvvereiriiererccrecreeee 158
4.5. Example to illustrate types of nodes and arcs
. used in distributed 8lgOrithML....cvoveueeeeeerieeiiieeeeeeesreaaeseserseeneeens 162
o 4.6. The previous figure with DOAs included.....c..ccocvvrueiirimencrecrnennnnenennes 165

4.7. Example to illustrate the working of the
distributed algorithm ..o 179

R . Ce e e e e T . - e PN F U U S
.. - . [R L T S S PO O
......

R S R . . FR T et R S N R N S O T
AT AT S T L T T A U R Y & A A A AW UR YL S5 TR Y VT VR AV TR YUY TS YV 3

o,

F

ST SIS NI P DD I I I AIEIY I APV U SO P S TGP - S-S S/ N SO0 U St U U e Yy

CHAPTER 1

INTRODUCTION

1.1. Definition of Global Information

A principal feature of computer networks, both an advantege and a
necessity, is the ability of the various sites in the system to esccess and
update shared information. We refer to such shared information.as global.
At the application level, the global information takes the form of shared file
systems, databases, etc. At lower levels, it takes the form of control or
status infcrmation for the purpose of such system functions as resource
management, synchronization, routing, reconfiguration, protection and error
control. In this thesis, we will focus on certain requirements arising in the
management of global information and developing techniques for satisfying
them. Our attention will be restricted to distributed computer systems that
use message-passing rather than shared-memory as the basic communica-

tion mechanism.

Just as with information stored in non-distributed systems, it is neces-
sary to manage global information in such a way that certain desirable attri-
butes are ensured. The meajor attributes are: |
(a) r;:pid accessibility: it should be possible to access and update the global
information with low latency and high bandwidth.

(b) security: no unauthorized entity should be able to access or update the
information.
(c) integrity: relevant invariants, e.g., functional dependencies between

different items of information, restriction to a set of permissible values, etc.,

v e e .

t??_f"i
P
™

:
\
!

L4
’
1

i
S

.
'
P

]
.

— -

el e
oy y ‘s "

AL P

Bl B

.._
4y
a & "

r

"‘0 - - - - . . - . - - « . - -‘- .~ ., 4.‘. t“ . --“ —-.. - --' . ’. \\ -.N-.. . .
RSN N N NIRRT TP N AR P IRP DA S S I 2RI, NI T Ry AP Y OGP S L ey vl P Py ¥

should be preserved.

(d) availability: in spite of failures of parts of the network, it should still be
possible to access and update the information.

(e) consistency: in spite of concurrent usage of the information, every entity

that accesses the information should be able to form a consistent view of it.

Our research is concerned with the closely-interacting attributes of
availability and consistency. Our objective is to develop techniques for
(i) ensuring the availability of global information in the face of various kinds
of failures, and
(ii) ensuring that the entities that access the information get a consistent

view of it, in spite of concurrency.

1.2. Availability

The availability of a system is usually defined as the probability that the
systemn will be functioning normally at any time during its scheduled working
period [BAR 65]. We can extend this definition and say that the availability of
a piece of global information for a given operation (e.g., read, update) is the
probability that an entity authorized to perform that operation is able to do
80. In order to make this definition meaningful, we must include the proviso
that the operation is carried out in a manner that satisfies certain require-
ments, e.g., the information obtained in a read operation should not be out-

of-date or corrupted as a result of prior failures.

The difficulty of ensuring the availability of information depends on the
kind and degree of failure that must be prevented from making the informa-
tion unavailable. We distinguish two models of site failures — the crash model
and the malfunction model. (Lamport makes the same distinction in
[LAM 78b] using different terminology.)

]

s

In the crash model, if a site fails at time ¢, o

(i) the site stops executing at t; any message it was in the process of send-

ing is not received, or if received, is recognized as mutilated.

(ii) the internal state and contents of the site’s non-stable storage are lost, 7

the contents of the stable storage remain intact.
(iii) while in the crashed state, the site does not execute any operations.

N (iv) on recovery, the site knows that it has been in the crashed state and ini- B

tiates the appropriate recovery procedures.
(v) the site executes correctly between crashes.

- The fail-stop processors of [SCH 83] exhibit essentially the above charac-
teristics in their failure behavior. Consider a set of sites {R{, called
receivers, which wish to obtain a piece of information from another site T,
called the transmitter. If T crashes, it can result in a subset of {R{ receiving .
‘ the information and the remaining sites in {R] not receiving it. However, a f
crash in 7 cannot result in 7 sending out incorrect information to any

receiver in {R{; crashes are benign failures in this sense.

- In the malfunction model, failures are more general and dangerous,
since failed sites can execute arbitrary state transformations and send arbi-
trary messages. If T malfunctions, it may give out incorrect information to
sites in {R{ and it may also give out different values to different sites for the
same piece of information. The protocols required to ensure that the
receivers reach some form of agreement on the received value are more
complex in this case. A site may malfunction because it has been taken over
by a malicious agent or because of some undetected hardware or software

error.

-
!
b
e

A P ST S P PR S N DEE UL\ W GRS uo ey e

L Y a g e g S e

T T YT

M aurs

< v " —— ——- v ﬁ—ﬁ‘ﬁv‘r.ﬁj

bt

-
P P W S VP CIP WP S

w

In order to show how the prolocols for dealing with malfunctions must
differ from those for crashes, we consider the example of a transactional dis-
trnibuted database. Assume that the crash model holds. From the viewpount
of preserving the availability of information in the database, the following
protocols used in managing it are relevant:

(a) read and update protocols]

A number of protocols exist for performing the read and updatle opera- {

-
™

tions. The selection of the protocols to be used in a design will affect the
availability of the information for read and update operations. For examp'e,
the read protoco! may involve reading any single copy uf the information and
the update protocol may involve updating all copies. Alternativelyv, we couid
read z copies and updale y copies where (z-y) is greater than the tota:
number of copies, using a timestamping mechanism to delermine the mos!]
up-to-date value if some of the x values read were no! concident Ye!]

another alternative would be to direct all reads and updates to a sing.e copy. 3
called the primary, which is responsible for distributing updates {o all thc
other copies. These protocols ensure diflerent degrees of availability for

read and update operations, as well as other attributes such as respons

PR

time, communication costs, etc.

R 3%

(b) commit praotocols

Commit protocols (such as the 2-phase commit protocol [GRA 78 are

used to ensure the atomicity of transactions, i.e., either all the efects of the
transaction are installed (comriv) inlo the globa! information structuyres
concerned or none are (abort). Frormn the viewpoint of preseryving ava latlity, 4
the important question is whether or not the protocol 1s nonblizcking
[SKE B1]. A commut protocol is said to be non-block.ng fo- & clas: of fal.re.

L

AP ca A TR MG T R e N N T e T U L .

T T W

— Yy v W W v = e ———— -

a L] - - - - - -~ LS -
)
f
]) .
. : ,
. o .
.
.
f .
: 7 -
’ - - - N
. ' .
. . N .
M ¢ , . .
f ¥
. ’. 1
. ’ . f
B - 1 '
I B " ' t
‘] t
. 2 - ¢
. ; t {
B A ’ - i
« .
. . R i
. P . 3
\ h
. /
. B N .
. ; . .
. . . . ’
N g
’ . . - . N
1 i B
. “) . . . ¢
. . e 14 p] :
v - e . . £
.
B} m “ R
.) p)
- ’ -
: o) - *
. 2 . M b ‘ ’
; " N - .
N . , . ! . ; e
;- N -
- 1 : . 1 ‘-
“ B ‘ . i 4 u S . N
B - EN v L i - [- <,
PRSP RAT YO | 1 oy S " g L. f\l’l’l b.?t[} 'L

6

L ¥ . o+ wre EKyrantne Generals Agreement
“icor oo bas heer shown to be inherently

ac v arg topniett manner and degree of its

e e e oottt B sed The most comprehen-
w o o oo deeisc o date s [LAM Bla) in whick com-

©- e odats at every site is assumed In
.- to. xrora opattally rephicated, case and propose

malf.nctions aganst the costs

. ' T cossterny regoirement for global informe-

/ oo s e e amyimber of concurrently execuling
oo s xltiatoperate - var.oos ways on the global infor-
Corooperates on Ui gintal S rmation through atormuce

- . oo e e i e sl o parts atorrue action on the information
Corsrsae e e npve!y has exclyove access to it during

) . P oxacy e a datatase context, the transaction is made

S i alt e Arpetter exartpivas the allocaltion table for a

« St roee T transacbions that share the resources perform
- coac i resoase actons on thie resources thus altering the allocation
tatus of tne resoarces 17 deadlock-detecting

re st ey 80 4t oreoor minre stes they wili need to executle read actions

ot a covati s A et acting Tseec” the eflect of other atomic

mL il e exer el eatlior e g .an the datat,ase example, a read

St u A% A e vt e TR TR R TR R TR AT TR TR T Riaciieeader- ol Al s 'v\‘!"l"."‘k“'.‘.v’i'}

......

Consistency requirements are restrictions placed on the permissible
interleavings of actions of the concurrent transactions and thereby on what
an atomic action may be allowed to see. In the database example, one
requirement that is usually made is that a read action of a transaction see
the effects of all actions of another transaction or see the eflects of none of
thern. In the example of the resource allocation table, a requirement may be
that if a read action of the deadlock detector sees the eflect of an acquire
action by a transaction, it should also see the effects of any resource release
executed by the transaction prior to the acquire operation. Otherwise, an
inconsistent picture of the status of resources and transactions may be
formed by the deadlock detector, resulting in the detection of false

deadliocks.

The techniques that can be used for ensuring consistency in distributed
databases have been elegantly classified in [BER B1]; they fall into the two
broad categories of locking and time-stamp ordering. The answer to the
question of which technique is preferable for distributed databases with
given requirements must await further research. [CAR 83] suggests, on the
basis of investigation of a restricted set of locking and timestamp-ordering
algorithms, that the former may be superior for single-site databases. On
the other hand, [GAL 82] and [LIN 83] find that timestamp-ordering is supe-
rior for distributed databases, at least in some environments. Whatever the
msv;er may be for databases, it can be concluded from the available litera-
ture that timestamp-ordering appears to provide a more versatile and
efficient mechanism for preserving the consistency of global information
used in the control of the distributed system. Examples of areas in which
timestamp-ordering has be'en used are database synchronization [BER 81],

network status maintenance [HAM B0), deadlock detection [TSA 82), dynamic

r g
Q.I

Y :
k: .
& 8 E’
™ N
v
'_ reconfiguration [MA 81), etc. In Chapters 2 and 4, we investigate the use of =
f clock facilities in network status maintenance and deadlock detection ‘E:
\ respectively. ;)
- Some sort of clock mechanism has to be available from which the time- .
: .", stamps can be derived. Such a facility should have the following characteris- _,
[tics:
- (i) it should be distributed for reasons of reliability, survivability and
efliciency of access.
(ii) the facility should assign time values which refiect the ordering of X
E events in the computer system. For most epplications, it would be .
sufficient if the values reflected the ordering of events at a single site ‘:'
;i: and the ordering of events at different sites imposed by the flow of mes- ::'.:'
. sages. -
. (iii) the value of the clock at a site should be close to the real-world time. l:
=l This in turn implies that clock values at different sites should not drift _
appreciably from one another. -:
! (iv) Maintenance of the clock facility should be inexpensive. :
. [LAM 7Ba)] bas proposed distributed clock mechanisms synchronized by
-2 messages which satisfy properties (i) and (ii). The mechanisms require the .".'.'-
clock at a site to be advanced when a message arrives bearing a timestamp i
value greater than the local clock value. Hence, all the clocks have a ten-
dency to catch up with the fastest one among them. This in turn may cause :::'
them to drift ahead of the real-world time. However, turning them back may _
v vitiate the required ordering of events. [BEL 79] suggests a slowing down of
v clocks, when too large a drift from the real-world time is noticed. This would
;'" provide property (iii). Much of the functionality required of the facility could :
e

rvy

v,
s, r

EYls
X

AR
% e

> -
N 9]
~
n. be implemented by hardware or microcode and this could help to satisfy the e
. efficiency requirement mentioned in (iv) above. [HAM 80] proposes tech- E;
u.:‘ niques for including site crashes among the events that the clock mechanism ::$
- imposes an order on. It relies upon the use of probe messages by means of ;
which a site in the network can ascertain the health of any other site in the ::_j:_
network. The defects of this approach and an alternative solution are
covered in Chapter 2. The problem of synchronizing clocks in the malfunc- '.'.'.:'
tion model is covered in [LAM 81b]. o
1.4. Providing Facilities for Availability and Consistency
o There is a paucity of systems that have implemented any but the sim- .
. plest options for providing availability and consistency. SDD-1 {HAM B0] is one ._I
: example of experimentation with a nove! distributed operating system (the _
- RelNet), which has attempted to provide timestamp based lower-level ;:'
‘. mechanisms on the basis of which the availability and consistency require- ,.
:‘:: ments can be fulfllled. But more experience with similar systems, which :}
~ select from the various options for providing availability and consistency to ::
’ achieve viable combinations, is required.
1.5. Scope of Report :
As mentioned above, it is our belief that timestamp-ordering based on a
global clock mechanism provides the most versatile basis that can satisty
the consistency requirements of both application and network control func-
\ tions. In the absence of failures, such a clock mechanism is simple to build _
) [LAM 782]. However, much of the difficulty in controlling distributed systems N
lies in the problem of providing failure-tolerance, which is closely intertwined \,
with the consistency problem. As will be seen in Chapter 2, it is more \

[R N et e . ., - S oo S .
-------- TS
.....................

. - - . . . - . . -
LN WP A iy RIS, Tyl S S AT e -"_‘L‘:A'...A'm-f.;‘;'

|

el

10

difficult to construct a clock mechanism that assigns times to failure-related

»
«

events in such a way as to make it useful for satisfying consistency and

failure-tolerance requirements. In Chapter 2, we provide a design for such a

clock mechanism for the crash model. The design gives each site a view of

-
YR %

the status of all the sites in the network at every instant of time. The net-
work status view is used to construct a solution to the problem of updating a
replicated file. This solution involves keeping some of the replicas continu-
ously up-to-date, while the others are updated periodically. When sites hold-
ing the up-to-date replicas crash, they have to be replaced. The syndhroniza-
tion requirements of this solution provide a good test of the capabilities of

b) the clock mechanism.

In Chapter 3, we address the problem of preventing error propagation in
global information due to malfunctions. A more general form of the Byzan-
i tine Generals Agreement is formulated and methods for adapting it to pro-
: vide diflerent degrees of malfunction-tolerance, according to the criticality

- of the global information, are developed.

Chapter 4 deals with deadlock detection in distributed database sys-
tems. The race conditions that render most of the algorithms in the litera-
ture incorrect are discussed, and algorithms making use of a clock facility
o are proposed. This feature of the algorithms helps in showing that all

genuine deadlocks are detected and no spurious indications of deadlock are

SETME Y S
0 DY

given.

’
A

»
\\ .
PR [A A
I PR pt o,
'y Ay e fe |

.
A

e r
.
SR P

-
- -)
Ut L I I s

: -
.
. N
.
.\ ‘J
.
) 3
-
e e e PG A N SR AN A P .
P

CHAPTER 2

DESIGN AND USE OF A NETWORK STATUS MAINTENANCE SCHEME

2.1. Introduction

In this chapter we propose a technique for maintaining information
about the operational status of the sites in a point-to-point network, e.g., the
Arpanet. We show how this technique can provide the basis for the solution of

& control problem concerned with file ypdating in such a network.

In the network, as different sites go out of operation and recover, the
aliocation of functions and tasks must be changed in accordance with net-
work status in order to preserve the services the network provides. For this

purpose, a view of the status of the various sites must be obtained and

updated as time proceeds.

In order to co-ordinate these functions and tasks as well as to ensure
the consistency of the view of systemn status, a synchronization mechanism is

necessary. The mechanism used in our method is a global clock facility.

In Section 2.2, we discuss the issues concerned in status maintenance
and the proposed method. In Section 2.3, we show how a reconfiguration con-

trol problem in file updating can be solved using this method.

2.2. Network Status Maintenance

2.2.1. Overview

Section 2.2.2 discusses the requirements placed on the gioba! clock

facility in order that it may serve as a synchronization mechanism for our

11

P/ |

.
RS

r
LR

|

R

o,

=

12

status maintenance scheme, along with previous work in designing such a
facility. Section 2.2.3 describes previous work in status maintenance. Sec-

tion 2.2.4 develops the proposed method.

2.2.2. Requirements for the Global Clock Facility

In constructing a global clock facility, we must ensure that it is con-
sistent with the notion of cousality. If an event X causally affects another

event Y, the global clock should assign a greater time to Y than to X.

Consider a failure-free distributed system. An event can causally
influence other events occurring after it at the same site e.g. a write opera-
tion on a piece of data will influence the result of & subsequent read opera-
tion. Again, when a message is sent from one site to another, an event occur-
ring before the sending of the message at the first site can influence events

occurring at the second site after the receipt of the message.

In order to achieve reliability and for eflicient accessibility, it is desir-
able to construct a global clock out of several local clocks, one at each site.
Events at a given site are assigned times using the current value of the local
clock. In order to ensure that these assignments satisfy the causal relation-
ships among events arising in the two ways mentioned above, Lamport
[LAM 78a) proposed two rules which each local clock should obey:

C1. At each site i, the local clock C(i) is incremented between any

two successive events.

C2. If event a is the sending of a message m by site ¢, then the mes-
sage contains a timestamp, the time assigned by C(i) to a. Upon

receiving the message, site § sets C(j) to a value more than the max-

imum of its current value and the timestamp. The receipt of m is

VA A o 0 I 4
| RN

R
..

.'. "
. 3, 4,

o

AT T TRLEWEL LWL WL WAL R, WL YL T "

2 13
! supposed to occur after the setting of C(5).

If these rules are followed, the causal relationships between events will

TRy ,'",

be reflected by the times assigned to them.

iy 2,

Next consider the case where site failures are among the events to be

4..---__-___-___
8 |

considered. If a site X fails, the time at which another site Y detects the
failure and marks X as DOWN should be greater than the time on X's clock
N when it failed. Similarly the time on Y's clock when it marks X UP on its
recovery should be greater then the value on X's clock when it recovers;

however there are some additional considerations relevant here which we

discuss below.

Consider a distributed system of two sites, X and Y. Assume that both
sites are operational and that Y wants to perform a read operation, to which

it has assigned the time T, on a local file. Further assume that the result of

- the read operation at 7 should reflect the effect of all updates to the file
. assigned times prior to 7. (Note that this requirement is not implied by
_ causality: whiie all updates which do influence the read operation are
= required by causality to have earlier times, not all updates with times less

than T are required to make their influence felt when the read operation is
performed ie. they may be performed after the read) To satisfy these
requirements, Y waits till it receives a message from X timestamped greater
than 7 (if desired, it could send a message timestamped T with a request for
acknowledgement). Assuming that messages are delivered from one site to
another in the order sent, and thet a site sends its messages in timestamp

order, Y knows now that it has now received all update messages originating

"
.o o. P
v .
P . . v,
‘4' aleive comn

. e
[

:::j from X which have update urnes less than T. It can perform all such updates

"N
(local and from X) and then perform the read operation. .‘j
N -
" w
L d

P T A S LT T T TR L T T g A A IS Uy P S RO T .
LA PRI T S S N A SR R N OIS Dl i i Il Tl T W Tl O W1 I G W W W TP W T Sow [WO 2D e S e

l..:..

14

Now assume instead that X failed some time prior to T and is known to
have done so by Y when it performs the read operation. If X recovers after
the read operation and issues an update timed less than T, the results of the
read operation will not fulfill the specified requirement. For this reason it is
desirable that on recovering, X should set its clock to a value greater than
any at which Y has it marked as DOWN. Earlier we saw that in order to
satisfy causality, the time at which X recovers should be less than that at
which it is marked UP at Y. Now we see that X should recover with a clock
setting greater than Y's clock value when it marked X UP. These two
requirements can be reconciled by assuming that X pauses, ie. does only

null operations till its clock value exceeds that at which Y marked it UP (Fig.
2.1).

Summarizing, we see that our global clock facility should obey rules C1

and £2 and a third rule:

C3. If a site i is marked DOWN at time t at another site § then site i

should not be operational at that time ¢.

2.2.3. Previous Work in Status Maintenance

Kuh! and Reddy [KUH 80] propose a scheme in which a site is tested by a
subset of its immediate neighbors who pass the test results to the rest of the
network. Only the test results sent by those sites which themselves have
been found to be operating correctly are relayed through the network. The
deficiencies of this scheme are:

(i) there is no notion of time attached to the test results so that it is difficult
to integrate the test results from different sites in a consistent manner and

to determine for what period they are valid.

T e T . -~
S T P S LU, A S L TN T I P SN I

K

'
s

1

.
! .
-

REVARS

..... T et e
........

S X L
T - . . e e A e e, .
B T i, W ST P ST WU SR T ST U LY S P PRI VTG WIS PR v |

AL RN S A% e MR o (ot 2 i il g hiatal) el Ll il el it S telt RN A i I A A A R AN SR N A S g M AR A S ARt s g s 4

= 15

& k- -~ = - o

b
b -
¢ i
. e X CRASHES
- P
— ”~
”~
”~
-
N b~
: - Y MARKS X DOWN >

X RECOVERS

[h____.,___-_

\
\

Y MARKS X UP

R

/

X STARTS
EXECUTION
|
\4
TIME ON Y'S TIME ON X'S
CLOCK CLOCK

F1G. 2.1. EXAMPLE TO ILLUSTRATE RULE C3

e '.-' - .o . L . R " " o o - - . LT W . . . - o L . . ". _-”- <~ '.- . K
G T Sl VU . L L N Y S A PR ol USRI T . S V- . S

S

.

»
-~

16

(ii) the question of link failures, which may cause correctly operating sites to
arrive at different conclusions concerning the status of a common neighbor,

is not considered.

The SDD-1 RelNet [HAM 80] performs site status maintenance using a
global clock facili*y which achieves the requirements described in the previ-
ous section. In this scheme, any site X in the network directly determines
the status of any other site Y in the network by trying to communicate with
it. If no response is obtained within a certain time, X marks Y as DOWFN in
its local status table. A YOU ARE_DOWN messege is sent to Y in .case the

lack of response were due to some other cause than a failure of Y. Receipt of

" this message causes Y to cease operation in order to comply with rule C3,

and then to execute a recovery procedure. To ensure that Y actually gets
the YOU_ARE_DOWN message it is deposited with another site called a guar-

dian of Y, with whom Y periodically checks for such messages.

The defect of this status maintenance scheme is that sites may often be
made to cease operation needlessly. If the network becomes congested at
some spots, timers will begin to run out and sites will become busy, stopping
operation themselves and recovering, thus aggravating the problem. A site
may be too busy to reply in time to all the messages that it may receive from
various parts of the network, but it may well be able to sustain a low-level
protocol with its immediate neighbors to assure them that it has not failed.
Other reasons for a site not responding in time could include being in a criti-
cal section, in a recovery procedure, in a high-priority task, etc. To force the
site to cease operation in such situations is evidently not desirable. In the
RelNet, it is possible that two or more sites trying to recover at the same

time will force each other to stop operation repeatedly unless such a situa-

- e

foa V.
Lt

o e e
. ‘ >

| AR A A D A . A Y v A U e 3
. o e T Y I Tt i it bl A Al Aol wad o m o - -
. A A A e g i el o oan ofa Mdar- e g —— "YT.-YA"_--.-‘

r
atah i L

R An s e 4

n 17 ;_‘
"
L tion is detected and a random wait period observed before trying to recover : J
TN L
; again. The scheme of Kuhl and Reddy has distinct advantages in that the . j
- failures detected and communicated are much less likely to be spurious. D’i
Our method overcomes the deficiencies of both the above schemes. In 3
<
addition, it has a limited ability to dea! with network partitions, which nei- 1
ther of the above schemes has. :
-
2.2.4. Proposed Scheme
4
2.2.4.1. Overview
f
In the proposed scheme, every site periodically broadcasts the state of E?
each communication link attached to it to the whole network. The state of 4
the communication link may be broadcast as down either because the link 4
. itself has failed or because the site at its other end has failed. The state of a “ﬂ
given site is determined by other sites in the network on the basis of the
states of all the links attached to that site. This requires putting together
L reports from different sites, in a consistent manner. This is done with the

help of a global clock facility which fulfills the requirements stated in Section

222

Consider a network N composed of two parts N, and N; connected by

the set of links L (Fig. 2.2). Suppose the sites in the part N; which are con-

o
et e Lo don:

nected to the links L observe that the links have failed. This information is

circulated among the sites in Nz. Suppose further, that the sites in N, form
& minority (usually just one site). Then the sites in N, will mark the site(s) in

N, as DOWN on the basis of this information.

Jt may be that the sites in N, have actually failed, causing the links L to

appear to have failed to Lthe siles in Np. On the other hand, il may be the

F1G.2.2. SCENARIO FOR SITES IN N1 BEING MARKED DOWN BY SITES IN N,

LNV RPN

P . L et R A
Saladalsladel PWREAEE WK WP YOW W o e s a

i it A i i A e S A A o
e aam e n e e e naan sane e ia S A et naeh b e i Sl S SR g |
,
' 4
3 ~
Vo
o
L
L
16)
- -4
4
(3
Links that heve faled Yurther, not a'l the hnks may have faec simaltar:
ousls, Lot the news of the recovery of some of them: may nol have reaches al;
A)
thie s.tes in N when they made tne decision to mark the sitesin N, DOWA)
Iri the laller twn cases, the sites in N connected to the links [detec! thy L]
fa.ures of the links and circulate the information. By this means, the sites
in A, real.ze the possibility of their being marked DOWA and hence cease
operation. in tume Lo comply with rule O3 &

The sites in N, execute their recovery procedure as follows First the

sites thal are directly connecled with operatiora! sites in A; complete their
recovery and enter normal operation Then their neighbors who had no
d:rect connection with an operationeal site til ther, are able to start and
complele their recovery and enter norma! operation. This process continues

till ail sites in A, recover.

The recovery of any given site 1 1s performed by first informing the net-
work that its links are functioning and that it itself is about to resume nor- -

mal operation. In broadcasting this information, site 1 should not have to

wait for failed sites to recover and acknowledge that they have received this -
information. One possible way out of this difliculty would be to look at the
circulating information concerning link failures in the network and use it to
mark sites DOWN as above. Then site 1 need only wait for acknowledgement k.

messages from sites not marked DOWN stating that they know about its
impending transition to normal operation. The sites thus marked DOWN are
assurned to mark every site UP when they initialize themselves on recovery.
Kowever, this method is a double-edged sword for site ©. Other broadcast

messages of site and link recoveries occurring at the same time may not

reach site 1 since the broadcasters of these messages, who may have site 1 ..

| oulh uth Sl 200 Sadbtidh Tl Sl YA RN A0 ShAa bl 8 WSS dun 20 e 3 b2 — ¥ - - v . - T Ty -
.
»
IS
»
)
»
4

20

)|

marked as DOBA | would not have to ensure that the broadcast messages
rea-t site 1. Eence site 1 may form an incorrect picture of which sites are
DOP N and thus ot to inform sites that are in normal operation of its tran-
[] sition to norma! operation, leading to a violation of rule 3. Our solution to
this problem is for each site in its recovery procedure to have one or more

sites 1n normal operation to serve as guards in ensuri that broadcasts
P

! reach site 1. This is in contrast to the RelNet technique. There, if a site 4

concludes that another site J is DOWA, site 1 has a YOU_ARE_DOWN message
sent to site y. This ensures that the latter ceases operation in time to vali-

k ’ date site 1's mistaken assumption, if it has not really failed.

2.2.4 2 Assumptions
L The following assumptions are made:
(i) The network has a fixed topology with links connecting pairs of sites as in

e the Arpanet and each site knows this topology. This assumption, as well as
!

the use of a network-wide broadcast facility in our scheme, limits the size of

a the network to which it can be efficiently applied. For large networks, a
hierarchical scheme will have to be used.
(ii) If partitions occur, they occur in such a manner as to leave a majority of
sites connected. This assumption is required because our method handles

partitions as follows.

When the network gets partitioned, the partition(s) that have a minority
of sites cease operation. This is done because the sites in the majority parti-
tion (if one exists) will mark the sites in the minority partitions to be

DOWN. Hence, in order to comply with rule C3, the sites in the minority par-

titions must cease operation until the partition is repaired, while the sites in

the majority partition continue in operation.

Thus if the network partitions into more than two pieces with each piece
only having a minority of sites, all sites cease operation. Even when the par-
tition is repaired it is difficult for the network to bring itself up automatically
after this event for the following reason. }f a majority of sites is always
operational, they enable a failed site (or group of sites), on recovery to
make the necessary deductions about the clock values with which sites which
are still in failed states, went down. The recovering sites are then able to set
their local clocks to values which ensure compliance with rule C3 and then
resume normal operation. But if all sites cease operation at some time, it is
difficult for any of them, when the partitions are repaired, to recover and set
their clocks to such values until all sites have recovered and their clock
values have been ascertained. Our method does not handle the problem of a
network in which all sites have ceased operation, and will have to be
extended to deal with such a situation.

(iii) For similar reasons, we assume that the number of sites that have failed
is small enough to leave at least a majority of sites which are connected, in
operation. Otherwise the same catastrophe, namely, of all the sites ceasing
operation, will occur.

(iv) Sites are assumed to stop when they fail i.e. they do not fail in such a
way as to execute their algorithms incorrectly or exhibit malicious behavior.

Thus it is the crash model of Chapter 1 that we are assuming.

2.2.4.3. Site and Link States

A site or link is simply marked as UP or DOFN by every site in the net-
work in the data structures that it maintains to record its view of the system

state. However, in addition, a site itself maintains more detailed state

LRy
AN

o's,

PR

-~

a“

£

fL S

N)

)y |

¥
[l

22

information concerning itself as it goes through the various stages of
recovery and normal operation. Similarly, the sites attached to a link also
maintain more detailed state information concerning the link. In this section
we summarize this detailed state information. The data structures that are

used to record system state views are discussed in Section 2.2.4.8.

Fig. 2.3 shows the states and state transitions that a site may go through
as recorded in the site itself. The site enters the crashed state when it actu-
ally crashes because of a hardware or software fault or when it suspects that
some other site may consider it DOW¥N (ie. it crashes itself). Sync and
pouse are recovery states. In the sync state, the site synchronizes its logical
clock with the clocks of neighboring sites which are in the norrmal opera-
tional state. In the pause state, the site informs other sites in the network
that its links are functioning properly and that it is about to enter the opera-
tional state. Only when the site enters operational state does the higher-
level software (e.g. the file-updating software described in Section 2.3)
resume execution. The site may reenter the crashed state at any instant for

either of the two reasons given above.

Fig. 2.4 shows the states and state transitions for links. Consider a link
connecting two adjacent sites 1 and j. Although this is in reality one bidirec-
tional link, the two sites maintain their view of the state of this link in the
form of the state of the unidirectional links (i,5) and (j i) respectively. In
the sequel, we will refer to the actual bidirectional link as a bilink whereas
the unidirectional links whose states are recorded in the detailed state infor-
mation alluded to above and in the data structures described in Section

2.2.4.8 are referred to as unilinks. When the bilink itself fails (e.g. due to

hardware problems or noise) or when one of the sites connected to it

r_v‘l'_'—- « SR ,! Caiatalt ’_-"'J‘_’ k. . Slate et S St Jasc et Seiaiieoe S S At et SanAChal b it bl SO ay A ol B w4 w2 B0 Re A A b b as b Al A s S s SaCE S N
e
é

. * .
PR

- 4
-~ (m——— - -

P AL ‘a‘
ﬁ
A

N .M -
U), {

CRASHED SYNC PAUSE OPERATIONAL

Y

B

FIG. 2.3. STATE TRANSITIONS OF A SITE

*v
VY

BROKEN OK_UNSYNC OK_SYNC

FIG. 2.4. STATE TRANSITIONS OF A UNILINK

R

L

RIS AEIE IP S8 SEIPIP RPN

._" _-‘..‘. . . ',,’.... p e ~‘,.
N s a RSV

= :
. e
24 :.:r.

! crashes, the state of the corresponding u.nilinks is set to broken at both or ':.::.:
s one of the sites depending on which of the above situations exsts. _::5
S Ok_unsync is a recovery state, in which the clocks at the two ends of the t‘:
- unilink have not been synchronized, but the link is physically in usable condi- ,_,_-

. tion. Ok_sync is the normal operational state. The link may enter broken '.
state at any moment for either of the reasons given above. ’-

v e
2.2.4.4. The Clock Synchrony Rule -

Let C(i) denote the local logical clock (there is also a local real-time :Z‘- :;:

clock to be discussed in Section 2.2.4.5.) at site i, and N(i) denote the set of
immediately neighboring sites of i. For each site k in N(i) site i maintains a
register LTR(k,i} which contains the largest timestamp attached to a mes-

sage received by site ¢ from site k over the bilink between them. The follow-

. ing relation is always maintained: e
CSR: C()<A+min{ LTR(ki): k in N(i) and st (i,k)=ok_sync ,

where st (i k) is the detailed state of unilink (i.k). :

‘ This implies that, if at any instant two adjacent sites i and j record the :
unilinks (1,5) and (j,1i) respectively as in ok_sync state, then at that instant: :_

: |CE)-CG)l < 7

The local clock C(i) at a site i ma); have to be advanced for several rea-

sons. It is incremented by 1 for generating a new timestamp. and when a

message arrives with a timestamp greater than the current value of C(i),

. C(i) must be increased to a value beyond the timestarnp, if not already
greater than the timestamp. These advances of C(i) are required to imple-
ment the rules C1 and C2 described in Section 2.2.2 to satisfy causality. A

{- clock advance may be necessary also when other events occur e.g. the o

PR PP VEP T VS R L LU T U PR, U AU :.'.J

L_'.'.'m'.x'_x' LSRRI e e A i RS S A

W AP YU P QT D UL P Gy | Db abad

mL.'

h;',

)

LM

v,
P

KAS |

y v

25

timer which keeps C(i) in rough synchrony with a real-time clock runs out, &
recovering site needs to bump its clock ahead to synchronize with its neigh-

bors, etc.

If the advance cannot be made in compliance with CSR with the current
values of the LTR registers, the site ¢ sends a timestamped
REQ TIME_SIGNAL message to the appropriate neighbors depending on the
values in the LTR registers, the current clock value and the value to which it
has io be bumped. The neighbors will reply each with acknowledgements
bearing timestamps greater than the one attached to the
REQ TIME_SIGNAL. The acknowledgements will increase the values in the
LTR registers, permitting C(i) to be advanced. Note that C(i) cannot be
increased by more than A at a step so that greater increases have to be per-

formed in multiple steps.

2.2.4.5. Synchronizing with Real-Timme Clocks

It is desirable to keep each logical clock C(i) in rough synchrony with a
local real-time clock. This is necessary so that the local clocks do not drift
apart to the degree allowed by CSR (two sites can be as far apart in their
clock readings as the number of hops in the shortest path between them
multiplied by 4). Otherwise frequent REQTIME_SIGNAL messages will have
to be sent in order to receive messages in accordance with rule C2 and at
the same time maintain CSR. The method of ensuring this rough synchrony
depends on how well the real-time clocks at different sites are themselves

synchronized with respect to each other. We consider two cases:

(i) Close Synchrony: Here the real-time clocks develop differences of the

order of A only over very long periods of time. In this case, the SDD-1 Rel-

)

LA
«

2
'r‘- '\‘» ."‘

LR
A4

. o A A i ———— - et et e S et A S s ot i M AR A d & A e e dve A Au it S i 4 b R b dR SR AT R

bR

B |

r!.' n.' ’

26

net method can be used [HAM 80]. Once after every interval of duration 7,
(say 1 second) on the real-time clock, its reading in seconds multiplied
by a large number N (say 10°), is compared with the logical clock and if
the reading of the logical clock is less, it is set to the multiplied value.
Otherwise no action is taken. Usually, however, the increment in the logi-
cal clock during the period 7, is much less than N* 7, and the setting does
occur. When the real-time clocks develop differences of the order of an

appreciable fraction of A, they should be resynchronized in sorne manner.

(ii) Loose Synchrony: Here the real-time clocks may develop differences of
the order of A comparatively quickly. In this case, every 7. interval the
reading of the logical clock C(i) is stored away in a location RC(i). When
the next such interval elapses, the logical clock reading is compared with
RC(i)+N®*7. and, if less, is replaced by the latter. The new value of C(1) is
stored in RC(i). In this way, a steady increase of C(i) with respect to
real-time is obtained even if the real-time clocks are only in loose syn-
chrony. Use of the previous technique could result in sudden disruptive
jumps in C(i) when messages from other sites arrive, if the real-time
clocks develop large diflerences.

Increments in C(i) erising from the synchronization with the real-time clock

can be anticipated and REQ T/ME_SIGNAL messages sent out in advance as

in the RelNet [HAM 80}, so that incrementation does not get held up because

C(i) cannot be advanced in consonance with CSR using the current LTR

values.

2.2.4.6. The Link Monilor Module

-

The basic function of this module is to probe each unilink periodically,

and to warn other interested parties when the unilink appears to go dead and

-

g

- |

27

when it recovers.

Each site executes this protocol module on each of its unilinks to
immediate neighbors. If a neighbor does not respond in timely fashion to the
messages of this protocol, it runs the risk of having the unilinks to it marked
DOWN and then the site itself may be marked DOWN. This may cause the

site to have to cease operation in order to comply with rule C3.

The messages of this protocol are not timestamped since it is required
to execute when the clock has not been synchronized with the clocks of
neighbors during recovery. Again, it may be that the site is waiting for an
increment in its LTR registers in order to increase C(i). The protocol is
required to be sending messages during this waiting period, too. Therefore,
the protocol must have some independent sequencing mechanism to corre-

late messages sent with their responses.

The protocol requires every site i to periodically test each unilink
directed from site i by sending a REQUEST message to which an ACK
response is expected from the receiving site at the other end of the unilink
within some time-out period. If the ACK is not received before the timer
runs out, site i sets the unilink to droken if it is not already in that state.
The probing of the unilink is continued when the unilink is in broken state.
When the site i next receives an ACK to a REQUEST, it sends out a LINK-
DOWN message to ensure that the neighbor realizes that the unilink from
site 1 to it was in broken state. To this message a LINKDOWN_ACK response
is expected. If it arrives in the time-out period, the unilink (i.§) is set to
ok_unsync state. Symmetrically, if a LINKDOWN message arrives at site ¢, it
sets the unilink (i,5) to broken state, sends a LINkDOWN message if it has

not already sent one to which a response is pending, and then sends a

«
‘-l
L,

e

g "5 >

-

Y |

PR

[

28

LINKDOWN_ACK response. The probing of the unilink goes on in the
ok_unsync state, also.

If a message not related to this protocol arrives over a unilink (i) to
site i while it has the unilink (i,j) marked as broken then the message is
suppressed. Also site 1 itself is prevented from sending a message over the

unilink (1.7) while it is in broken state.

The link monitoring module provides a facility by which an interrupt is
generated to any process in site 1 which has requested to be informed when a
unilink (1,5) goes into broken state or comes back to ok_unsync state. If the
unilink is already in the state specified an immediate return is provided. Fig.
2.5 shows the unilink state transitions in which the link monitor module in

involved.

2.2.4.7. The Link State Reporter Module

The function of this module at a given site is to watch the state of the

unilinks directed from the site and to broadcast the state to the network.

Every 7, ticks of the local logical clock, at a site { in the operational or
the pause state, this module broadcasts the state of all the unilinks directed

from it with a timestamped message.

In addition, when a unilink is discovered to have gone from ok_sync state
to broken state, a fresh status report is generated at once and broadcast.

This is done so that a site that crashes is quickly detected to have done so.

The link state broadcast is transmitted through the network as a high-
priority message using the technique of flooding. Consider a site i which
initiates a link report broadcast at a local time t. Suppose there exists a

path of n unilinks from site © to site j. Assume that at time ¢ =A, all the sites

..........

. I\

4

"

B

-5
PR
AR

~

bl <:%:> OK_SYNC
|
- l

/ timer runout

€ —

N on REQUEST =
Y -
] BROKEN 2

::-}::.
- RS
B o~ ':

] timer ru.nout' s(i;:{;g;‘.oicx
on REQUEST -

OK_UNSYNC o
o

FIG. 2.5, UNILINK STATE TRANSITIONS IN WHICH THE LINK MONITOR Ill’
MODULE IS INVOLVED.)

L ardh e B A (B Y S A

- 30

' on that path are in pause or operational state and the unilinks are in ok_sync

o i state. Consider the subpath of this path, 7 hops long (1sr<n), excluding

\-: site © but including the other end site. If for all 7, in the subpath of length r,

" all the unilinks continue in ok_sync state, and all the sites continue in one of

) the two site states mentioned above till £ +74, then the report will reach site
J by t+nA.

This is achieved by each intermediate site relaying the received report
within a period A of the LTR value, immediately after receipt of the report,
for the site from which the report came, on its ok_sync unilinks to other

ﬁ sites. This procedure along with adherence to the CSR relation guarantees

the arrival of link status reports satisfies the time bounds described above.

The state of a unilink is broadcast as UPif it is in ok_sync state, and as

DOWN otherwise. How these link status reports are used to update the net-
work status views and to decide if a site should crash itself is described in

A the next section.

2.2.4.8. The CRASH-OTHERS and CRASH-SELF Nodules

- Basically, a site i marks another site j or a group of sites containing site

J DOWN when site i has marked all the unilinks to the site or group of sites

A

DOWN. Unless precautions are taken, the site §j thus marked DOWN may
actually be in operafional state thus violating rule C3. For example, it may
have been partitioned by physical failure of the bilinks corresponding to the
unilinks marked DOWN but may not itself have crashed. Further, even the
partition may not have actually occurred but the news of some of the unil-
ve inks having gone back into ok_sync state from broken state may not have

reached site i in time.

.........................
............

31

Therefore a site j must have a mechanism by which it can anticipate the
possibility of it being marked DOWN and cease operation in time and execute

a recovery procedure.

To this end, a site j maintains two graphs CRASH_OTHERS(j) and
CRASH_SELF(j). The first is used to detect when site § should mark other
sites DOWN and the second when it should crash itself. In each graph there
is a node for every site in the network. If a bilink connects sites € and j in
the network then there are two directed arcs (i,j) and (j,i) in each graph for
the corresponding unilinks. In each graph, for each node and each arc there
is a8 STATE field and a T/ME field. When a link state report arrives at a site,
it updates its graphs in the manner described below. Note that an update (
which consists of a {state time] pair) is effective only if the time field in the
update is greater than the TIME field for the node or arc in the graph being
updated, otherwise neither the STATU'S nor the T/ME field is changed.

(a) if unilink (p.g) is reported as DOWN by site p in a link state report
timestamped £ then the (STATE,T/ME) fields for arc (p.g) are set to
(DOWN.t) in both CRASH_DTHERS(i) and CRASH_SELF(3).

(b) if unilink (p.g) is reported as UP by site p in a link state report times-
tamped t then the (STATE,TIME) fields for arc (p.g) are set to (UP,t)
only in CRASH_OTHERS(3).

Before we describe under what conditions a site is marked DOWN we
introduce some notation. Let NG={V,E} be the undirected graph of the net-
work, i.e. it has a node for every site in the network and there is an arc con-
necting nodes p and g in NG if there is a bilink between the corresponding
sites in the network. A component C of NG is a subset {V, E.} of NG such

that (a) every node in ¥, is reachable from any other node in V. through a

32

path in NG containing only nodes in V., and (b) E. consists of all arcs in E

which connect nodes in V.

A node in ¥, which satisfles the condition that at least one arc exists in
NG connecting it to a node not in ¥, is called a boundary node of C. B(C) is
the set of boundary nodes of C. A node not in V, that satisfies the condition
that at least one arc exists in NG connecting it Lo a node in V; is called a

neighbor node of C. N(C) is the set of neighbor nodes of C.

The testing_arcs OT. of component C are the set of directed arcs run-
ning from N(C) to B(C) in CRASH_SELF or CRASH_OTHERS. The
self_testing_arcs ST, of component C are the set of directed arcs running

from B(C) to N(C) in CRASH_SELF or CRASH_OTHERS (Fig. 2.8).

The significance of the testing arcs and the self_{esting _arcs of a com-

ponent is as follows. Assume |V, {<

'zil, where n is the number of nodes in

NG. When a site j outside C has ell the arcs in 07, marked DOWN in
CRASH_OTHERS(j). it marks all the sites in C as DOWN. Let tpn,, be the
largest of the T/ME fields for these arcs in CRASH_OTHERS(j). Site § marks
every site in C DOWN with a T/IME fleld greater than or equal to
ton=tmaxt| Ve |A. In order to comply with rule C3, every site in C, if it bas
not really crashed, must crash itself by £py. It will be shown that every site 5
in C will find all the self_testing arcs of C (or a subcomponent of it) to be
marked DOWN in CRASH_SELF(j') by tpy. This condition is the signal for site
J to crash itsell. These preliminary remarks should help in understanding

the CRASH_OTHERS and CRASH_SELF algorithms given below.

The module for marking sites DOWN in CRASH_OTHERS(j) is invoked

whenever a link state report arrives at site j declaring a unilink (p.g) to be

L

33

. i~
) =

-

: R
- o
- BOUNDARY node of ¥
COMPONENT € 23

NEIGHBOR node of -

COMPONENT C e

e >
e

e

)}

~

o

!-\

- =
0 -~ TESTING_ARCS of -

COMPONENT C R

$ == SELF_TESTING_ARCS of -

) COMPONENT €

- FIG. 2.6, THE NETWORK GRAPH NG AND THE CORRESPONDING DR
o CRASH_OTHERS (OR CRASH_SELF) GRAPHS,

-

R
Koy 34
g DOWN where node g is not already marked DOWN in CRASH_OTHERS(j).
~, This module executes as described below:
xj’ (2) find a component C, if one exists, including node ¢ but not node j such » gf:
- that: %
(i) 1v.] < g‘} n being the number of nodes in NG.
; (ii) for all I in OT,, STATE(1)=DOWN in CRASH_OTHERS(5).
- (b) if such a component C is found, let f p,=max{T/ME(L):.l in OT.]. Then _:_
- (i) bump C(j). if necessary, to a value greater than tpy=t .. +|V,|A. 2
-:; not responding to any LINKUP or SITEUP messages in the interim. -
- ' (The latter are messages related to recovery procedures to be oo
,- explained in Section 2.2.4.10). ::':
(ii) mark every node 7 in V; not already marked DOWN by setting the r!:':
. (STATE,TJME) fields to (DOWN.C(;)) in CRASH_OTHERS and o
| CRASH_SELF. S
(o .,
a The module to detect if site § should crash itself is invoked whenever a unil- 5
ink (p.g) which was UP in CRASH_SELF(j) is set to DOWN as a result of
receiving a link state report from p. This module executes as follows: -
N Find a component C, if one exists including nodes p and 5 such that i‘:- :
] @I¥I< H =
s (ii)for all I in ST,, STATE(1)=DOWN in CRASH_SELF(j). et
If such a component exists, enter the crashed state.
- This procedure must be completed before C(j) exceeds a value A ”
E beyond the L7R value, immediately after receipt of the link status report, -'
=

J../

g

3% B i
PR
PV

for the neighbor from whom the report was received.

Table 2.1. summarizes the variables stored at site i, for ease of refer-

ence.

2.2.4.9. Correctness Arguments (I)

Before stating the recovery procedures for links and sites, it is of
interest to show that the above algorithms work if the unilinks which enter
broken state and sites which enter crashed state never leave those states.
This will also help in understanding the correctness of the algorithms after

recovery procedures have been incorporated.

Thm 1: If site p has site ¢ (#p) marked as DOWN in CRASH_OTHERS(p) at
local time t, site g is in crashed state at time t (i.e. enters crashed state

before time t).

Proof: Let t,<t be the time when site p marked site g DOWN along with the
other sites in the component C. For each ! in OT,, let T; be T/IME(l) in
CRASH_OTHERS(p) at the time the sites in component C was found to be
suitable for marking DOWN eand let n; and b; be the neighboring and boun-

dary nodes of C to which ! is attached.

INDUCTION HYPOTHESIS H1: For each ! in OT, every site m in C if still
operational at time Ty+kA, k= 1,2...,|V, |, has at least one arc in every path
of length k through nodes in C to n; marked DOWN in CRASH_SELF(m) by

that time.

BASIS: H1 is true for k=1 since CSR and the link monitor mechanism ensure
that the site b, has I' marked DOWN in CRASH_OTHERS(b;) (where I' is the

arc running from b; to n;) by (7, +4) if it is still operational at thal time.

........

&.
L)

13
"
y]

B0 |

L)
PAEA

e

L T

' -l. .'.

ald e S T SE R R

Variable Name

Description

c(i)
LTR(k i)

st (i,k)

state (1)

CRASH_OTHERS (i)
CRASH_SELF(i)

tssued (i)

the logical clock value

the largest timestamp attached to a
message received by site i from site k
over the bilink between 1 and k. &
ranges over the neighbors of site i.

the detailed state of unilink (i,k), which
may take the values broken, ok_unsync

or ok_sync. k ranges over the neigh-
bors of site 1.

the state of site i, which may take the

values crashed, sync, pause or opera-
tional.

directed graphs with a node for each
site and 2 arcs for each bilink in the
network. Each node and arc has an as-
sociated STATE and an associated
TIME field. The STATE field takes the
values UP or DOWN.

a variable in stable storage set to the
value of C(i) every X ticks.

Table 2.1.: Variables stored at site 1.

e
A4

&

)

aa A b

'r.l
&=

Y
.
P
%

| reses T W T Ty Mt s i o T BARdh o A A B R i A o b WA 4 T RS e Al M A b S alie INCE e iy B¢
PNy A A IR et AR G S i Rt R e Bathay et -

.....

37

s Assume H1 true for k =y (y<| V. |).
'.‘\: Consider a node g in C that has a path P of length y+1 containing only nodes
”

in C to n;. The next node h on this path has a path P’ of length y to n; which
q is P minus the arc from g to h.
- By our inductive assumption on H1, site A has an arc on P' marked DOWN by
' T,+yAif it is still operational at that time.

Hence, by T;+(y +1)A. site g has marked DOWN either the arc from node g to

node h or else the arc in P' which was marked DOWN by site A by time
& Ty +yA. since this information would be relayed to site A by T;+(y +1)A.
:::. Hence H1 is true for k=y+1 and hence for £=1,2,..| ¥, |.
i But 2 node in C can only have paths of length at most |V, | through nodes in

' Cton, foralll in OT,.

Hence there exists a component C containing ¢ such that V. is a subset of
] V. and for all ¥ in S7T,, STATE(U)=DOWN in CRASH_SELF(p) before
N max{7T;l in OT {+ |V, |A<st,. Hence site g will crash itself before t,<t.
— The next theorem gives a sufficient condition under which a site will not

have to crash itself. We deflne a component C as working in the time inter-
N val (,.tg) if:

‘_::' (l) A l),g'l

(ii) Sites corresponding to nodes in C are operational at ¢, and suffer no

hardware or software failures resulting in their crashing in the given time

- - R v . . - . ~ K B o " . ‘- R - ‘n -. » - .. '.» - R - - DR
et et o '{'.' P4 q’_.‘,-.- ~.." ..'. .". '-"c'\" -~'- LR N LY ., .-‘ e N \' . -~ LR -
A A R Y IS AP AP AP I AP AT PP ARSI PP SCIIE AT 2P A

o

u."-

k .
)

;\- .
‘}- A
o !

38

g interval. ,:‘:
>

o (ili) There exists a subset of E,, £, such that o
»", -u.
= (a) the graph (V. .E') is connected. -t
- (b) for each arc in E, both unilinks corresponding to the arc are recorded ::'.?-
as in ok_sync state at t,, and neither suffers any physical failure over the

: given time interval. i
'.::‘_ Thm 2: If a component C works over (t,,t3), no site in C has to crash itself in ::‘;_'
_ this time interval, 2
Proof: If possible, let one or more sites in C crash themselves in this interval. -
- Let p be the site in C which is the earliest to crash itself. Let C° te the com- :f::'
’ ponent which fulfilled the requirements for p to crash itself. Since .::t:

]

. | Veo < ;—l-l there must exist @ node g#p in C which is also in N(C°) and a
o path consisting of nodes and arcs in (¥,,E) to node g. Let r be the node in g
L e
this path in B(C®). Since p is the first site in C to crash itself, site g is still : L

- operational at the time p crashes itsell. Hence the unilink (r,g) cannot have :'_'::
been marked DOWN as a result of g going into crashed state and site r ‘-',:_‘..
, reporting the unilink to it as DOWN consequently. Also the bilink correspond- ,‘-"

B ing to this unilink suffers no physical failure in the given interval. Thus there

is no sequence of events that could cause this unilink to be marked DOWN in

CRASH_SELF(p). Thus C° does not fulfill the conditions for site p to crash ‘_::f,_

;ﬁ itself, contradicting our assumption. .
::f
R4 - i

e

Do e e Lo

A}
4

ot

a .
i"’

39
2.2.4.10. Recovery Procedures

2.2.4.10.1. Overview

In this section, we describe the recovery procedures for sites and links.
The procedures executed by a site as it recovers from crashed state through
sync and pause states to operational state are described and the recovery
procedures for links are described in this context since link recovery is part

of site recovery.

In order to motivate the rest of this section, we first briefly summarize

the recovery procedure as executed by site i.

In the crashed state, the site 1 sets its clock to a value greater than it
ever had hitherto. For this purpose, it makes use of a variable called
tssued (i) kept in stable storage, which is always maintained at most A behind

the clock value.

In the sync state, the site synchronizes one or more of its bilinks, i.e.,
its clock is brought within A of the clocks of the corresponding neighbors.
Next it appoints one or more neighbors as guards to ensure that broadcasts,
occurring in the network from now on till it enters operational state, reach it
even though it may be recorded as DOWN by the broadcasting sites in this

interval.

In the pause state, the site broadcasts news of the recovery of one or
more unilinks (1,k) through LINKUP messages. When all the sites that are
maintaining CRASH_OTHERS graphs at the time acknowledge that they have
marked the unilink (k,i) UP in their CRASH_OTHERS graphs, site i, through
a LINKSAFE message, broadcasts the information that they may now mark
unilink (i,k) UP in their CRASH_SELF graphs.

'h.- AA".' - - ¢.-‘¢'.'.'~ - .» * - -t - "o 1Y -
e A e e e N . .
L an e e At -". R, W ._.L R SR P A G S _1.144_;_._.\.-

~~~~~~

- - .\.-hn.,xu_ S




- v
T

40

Here a complication crops up. A unilink I by failing at a critical time
may delay the receipt of unilink status reports which would have caused a
site j to crash itself. In the case of no recoveries considered earlier, this
posed no problem. As we found in the proof of Theorem 1, the failed unilink {,
by being itself marked DOWN at site j eflectively ‘substituted’ for unilinks,
the news of whose failure is delayed in reaching j as a result of I's failure.
Hence, site j still crashed itself in time. In the environment we are consider-
ing now, in which recoveries do occur, l's failure may cause a delay in
reports reaching j but ! may then recover and be markeci UP in
CRASH_SELF(j), thus ending the substitution. Hence site § may not crash

itself when it should have.

For this reason, when site 1 collects acknowledgements for the LINKUP
message for a unilink (i,k), it ascertains which unilinks are marked DOWN in
CRASH_SELF graphs in the network ( and news of whose failures may have
been delayed in reaching sites as a result of the failure of (i,k) ). In the sub-
sequent LINKSAFE broadcast, the identities of these unilinks are included,
and every site on receiving the LINKSAFE marks themm DOWN in its
CRASH_SELF graph. Thus, when a substituting link is marked UP in the
CRASH_SELF graph of a site, that site also receives the information regard-
ing failures of unilinks which was delayed in reaching it as a result of the

failure of the substituting unilink.

We return to the sequence of site i’'s recovery actions. The site i broad-
casts news of its impending transition into operational state with a SITEUP
message. After collecting acknowledgements from all sites maintaining
CRASH_OTHERS graphs that they have marked site £ UP, it discards its

guards and enters operafional state. At this point, execution of higher-level

PRSP AT T ST I Tl Wl WA S ThY S Sl S Sy




- - o v W
Nb ZPE SOS (Ul S S i Sel ara s e e b b e Y M Akl ated Mt ot A i A A M

141

software, which makes use of the status maintenance scheme, may be

started.

We now give a detailed description of the above steps.

2.2.4.10.2. crashed - sync

In the crashed state, the recovery procedure consists in setting the loca!l
clock to a value greater than any it ever had before { ensuring the monotoni-
city of the clock through crashes ) and to wait till at least one neighboring

site in operational state is discovered.

Each site i has a variable issued (i) in stable storage [LAM 76]. (Writes

to stable storage are atomic and the contents persist through a crash.) On

recovery from crashed state, the site i adds A to issued (i), sets C(i) to this
value and sets issued (i) to this new value, too. From then on, issued(i) is

updated every A ticks of C(i) to the new value of C(i).

Next, it sets its attached unilinks to broken and activates the link moni-
tor. It then waits till at least one of the unilinks directed from it is set to
ok_unsync state by the link monitor. It periodically sends out a
STATUS_REQ message on all the ok_unsync links. (This message is not
timestamped. Timestamped messages are sent out on ok_sync unilinks
: only.) A site.j in N(i) responds to this message only if it is in operational
state. When at least one site in N(i) has responded that it is in operational

state, the site 1 enters sync state.

2.24.103. sync - pause

In the sync state, the recovery procedure consists in synchronizing the
local clock with neighboring sites, initializing the CRASH_OTHERS and

CRASH_SELF graphs and eppointing guards for its upcoming stay in the




Bl s e o rrve—— ~ ~—r————s
m A S A e W':v.(m.‘ L A A Nl e e e e AR ACS AL AYA AL gte aat g ——— B’
|

LN
h\: ..j. ::
< 42 o

“le
e
i pause state. -
- ‘A-"'
-t
The logical clock C(i) is now coupled to the local real-time clock. If the 4-'.:-;
o S
::; first technique described in Section 2.2.4.5 is used, the local real-time clock '?:'.
I’ L]

which may have stopped functioning in the crash must first be resynchron-

ized with other functioning real-time clocks in the network.

The site i initializes its CRASH_OTHERS and CRASH_SELF graphs to
show all the unilinks directed from it as in DOWN state and all other sites and
all other unilinks in the network as UP with the current value of C(i). iLe. the

TIME fields are set to the current value of C(i). Ry

5 Next the SYNC-LINK module is invoked sequentially on each of the .-"':;

ok_unsync unilinks to sites that have signified that they are operational.
o When a SYNC-LINK module invocation returns with the corresponding unil-
.- ink (i,7) in ok_sync state, the site i asks site j to be its guard during its
.. upcoming stay in the pouse state. It does this by sending an
- ENTERING_PAUSE message to site j which responds with an
ENTERING_PAUSE_ACK if still in operational state. When site i has
] appointed one or more guards, it enters pause state. If subsequently the

unilinks to all its guards go into broken state, before site i has completed its
stay in pause state and entered operational state, the site enters crashed .:’_-'.-_‘

state again. When a site j receives an ENTERING_PAUSE message, it replies —

with an ENTERING_PAUSE_ACK if in operational state. From then on, till it

"

(a) enters crashed state itself,or

(b) receives a LEAVING_PAUSE message ( to be described in the next sec-

tion) or —_
N : -
e (c) the unilink (5.i) leaves ok_sync state,
. in responding to any SITEUP.LINKUP or LINKSAFE messages ( to be dis- :}::’,-
) L




43

n cussed below ), site j specifies site ¢ to be in pause state in its response. In
the last case, site j bumps up its clock by A before replying to any of the

aforesaid messages, by which time site i will be aware of site j ceasing to be

its guard.

The larger the number of guards site i appoints before entering pause
state, the less likely it is that its recovery while in pause state will have to be
restarted from crashed state as a result of its unilinks to all its guards leav-

ing oic_s‘yn.c state.

-

2.2.4.10.4. The SYNC_LINK Module

(& The function of this module is to synchronize the clock of the invoking
site with that of the site at the other end of the unilink for which it is

invoked, thus setting the unilink ( and its reverse counterpart ) to ok_sync

- state.
N

A MY_TIKE_|S message carrying the current value of C(i) is sent on the
- unilink (i,5).

If the response ( we describe the appropriate responses to messages
sent out by this module below ) carries a clock value within A of the current
logical clock value, a SYNCHED message is sent on the unilink carrying the
current value of C(i). If a timestamped SYNCH_ACK message is received
- and the timestamp is within A of the current value of C(i), the state of the

link is set to ok_sync (the timestamp being used to set the corresponding

LTR register) and the module returns. If the timestamp on the SYNCH_ACK
is more than A less than the current value of C(i), the SYNC_LINK procedure

T is restarted.




12

XA

i

44

If the response to the MY_T/ME_|S message carries a clock value
exceeding the current value of C(i). by more than A, the clock synchroniza-
tion module is invoked to bump C(i) up to the clock value in the response.

Then the SYNC_LINK procedure is started again.

If the response to the MY_T/ME_]S message carries a clock value which
is less than the current value of C(i) by more than A, the module restarts

the SYNC_LINK procedure.

If a SYNCH_NACK message is received in response to the SYNCHED
message, it may bear a clock value exceeding that of the SYNCHED message
by more than A. In this case, the same procedure (described above) under-
taken when the response to a MY _T/ME_|S message exceeds the current
value of C(i) by more than 4, is executed. Otherwise, the SYNC LINK pro-

cedure is simply restarted.

A site j should respond to the messages of the SYNC_L/NK module only

when in operational state.

The response to a MY_T/ME_]S message from site 1 when unilink (j,i) is
in ok_unsync state ( the unilink is set to droken state if it is not in ok_unsync
state when this message arrives ) is to bump C(j) up to the clock value car-
ried by the message, if necessary. Then a MY_J/ME_|S_ACK message bearing

the curreut value of C(j) is sent.

The response to a SYNCHED message is, if the clock value borne by it is
within 8 of C(j), to set the unilink (§.1) to ok_sync state using the clock value
to set the corresponding LTR register and to return a timestamped
SYNCH_ACK message. If the clock value of the SYNCHED message is not
within 8 of C(j), a SYNCH_NACK message cérrying the current value of C(j)

is returned.

NN TN R TR AT




F‘.."‘l"'\".“_"'_"“"‘-,"‘.":.":.—“r:’i et iehliafias e diar diat Aediien et e gt et G A A ded A A Aot A Al S Ak B Sk i A A N Al A tn A Ah g un g\ gin Ao gk AN

rry.

EREN
.

45

When a site j in operational state sets a unilink (j,i) to ok_sync state, it
invokes the LINKUP_BROADCAST module (described below) on it.

If during the above procedure, the unilink (i,5) gets set to broken state,
the SYNC_LINK module returns at once.

In the pause and operational states, this module is invoked whenever a

unilink goes from broken to ok_unsync state.

2.2.4.10.5. pause + operalional

In the pause state, the recovery procedure consists in informing the
network of the recovery of the unilinks directed from the site and of the

intended transition of the site to operafional state.

The site i starts issuing and relaying link state reports, and processing
tbern to update its CRASH_OTHERS and CRASH_SELF graphs as described
in Section 2.2.4.8 with the exception that the CRASH_SELF module is ;xot
invoked for the time being. It responds to any LINKUP, LINKSAFE and

SITEUP messages received as described below,

Next, the site i invokes the BROADCAST_LINKUP module (described
below) in parallel on all ok_sync unilinks (i,5) attached to it. These invoca-
tions, if successful, will produce broadcasts of LINKSAFE messages for these
unilinks. (See the description of the BROADCAST_LINKUP module below for
a description of LINKSAFE messages.)

When all the BROADCAST_LINKUP module invocations have returned, if
not even one of the ok_sync unilinks has been marked UPin CRASH_SELF(i)

as a result of receipt of a LINKSAFE message, the site re-enters crashed

state. If at least one of the ok_sync unilinks has been marked up in
CRASH_SELF(i), the CRASH_SELF module is invoked. From this instant on,

l‘l' S

XA

';l'.","".“, .“ K
AR i)

'!

et

(&;“"‘: [ AL l‘l

.5

N

O [N
i)‘," /).' )

TS e v
»

P 2
A A A
. WAt




fr -
[N

PP

46

the CRASH_SELF module is invoked whenever a received link state report
makes it appropriate to do so as described in Section 2.2.4.8. If when the
module returns, the site has not entered crashed state, the following pro-

cedure is executed.

The site i broadcasts a timestarnped S/ITEUP message. (The responses
to this message as well as to the LINKUP and LINKSAFE messages should
carry the timestamps of the messages to allow themn to be matched up.) The
appropriate responses to the S/JTEUFP message for any site j in the network

are:

(i) if in crashed or sync states, respond with a timestamped SITEUP_ACK.

(ii) if in pause state or in operational state, set the (STATE,T/ME) fields in
CRASH_OTHERS(j) and also in CRASH_SELF(j) for site € to
(UP.current local time), provided the timestamp on this message is grea_ter
than the T/ME fields. If in operational state, the ids of all sites that site j is

currently guarding should be added to the acknowledgement.

Site 1 periodically resends timestamped S/TEUP messages till all sites
that have not responded are marked DOWN in CRASH_OTHERS(i). In addi-
tion, if any site k is specified as being in pause state by one of its guards, the
site and its guards are sent SITEUP messages, till either the site responds
or its guards cease specifying site & as being in pause state ( by .getting
markéd DOWN themselves in CRASH_OTHERS(i) or returning S/TEUP ack-
nowledgements without specifying node k ). In the latter case, either the
site k has entered UP state, in which case site ¢ will have received a S/TEUP

message from it, or all the guards have stopped being guards before site k

enters operational state, in which case site k reenters crashed state.




Chuting B hin Sria Sk s B linined MRMERA SRR Mt

3
- 47
n The site © next sends a LEAVING PAUSE message to those guards to
- which its unilinks have not left ok_sync state since the time they responded
< to site i's ENTERING_PAUSE message. It waits for a LEAVING PAUSE_ACK
-~ or for the corresponding unilink to enter broken state. When either of these X
':: events has occurred for each unilirk over which a LEAVING_PAUSE message .
. was sent, it enters UP state if at least one LEAVING_PAUSE_ACK is received, :;
2 otherwise it reenters crashed state. Only after entering UP state is execu- a
j tion of higher-level software resumed.
The original S/ITEUP message is sent by flooding ( but without the time
é constraints imposed on the flooding mechanism by the link state reports );

all responses and subsequent S/TEUP retransmissions can be sent by nor-
mally routed messages. Similar considerations hold for the LINKUP and

LINKSAFE messages discussed in the next section.

2.2.4.10.6. The BROADCAST_LINKUP module

The function of this module, when invoked on the unilink (i,j) is to
ensure that the CRASH_OTHERS graphs in the network have been updated to
show the unilink (j,i) UP and then to have the unilink (i,f) marked UP in
CRASH_SELF graphs.

Wben a link (1,5 ) is restored from broken to ok_sync state, this informa-
tion is broadcast by the link state reporting mechanism described in Section
2.2.4.7. and other sites appropriately update their CRASH_OTHERS graphs.
However, the updating of the link state in the CRASH_SELF graphs must be

postponed till it is certain that all other sites have updated their
CRASH_OTHERS graphs, in order to leave no chance of rule C3 being

violated.

m~.




———— — .
| a e jia Se i B s decen ) e at bttt et RhCR A SRR MacA i i e i et 4 =~ IR
3 ChA R R A A S

e 48

u Hence the BROADCAST_LINKUP module which is responsible for getting
unilinks marked UP in the CRASH_SELF graphs, does this job in two phases.

v Phase 1: The site 1, which is executing the BROADCAST_LINKUP module for
| - unilink (i,j) broadcasts a timestamped LINKUP message carrying the LTR

value, say ¢;, for node j. The responses to this message from any node k

are:

(i) if in crashed or sync state, return a timestamped LINKUP_ACK specifying
site k's current state.

(ii) if in pouse state, the (STATE,T/ME) fields for unilink (j.i) are set to
(UP.ty), in CRASH_OTHERS(k). A timestamped LINKUP ACK is returned.
The identities of unilinks directed from site & which are marked DOFN in
CRASH_SELF(k) are specified in the LINKUP_ACK along with their T/ME
fields in the same graph.

(iii) If site k is in operational state, the unilink (j,i) is set to (UP,t.) in
CRASH_OTHERS(k). A timestamped LINKUP_ACK is returned. The identi-
ties of those unilinks directed from node k which are marked DOWN in
CRASH_SELF(k) are sent along with their T/ME flelds from the same graph
in this acknowledgement. The ids of all guarded sites should also be
specified.

Timestamped LINKUP messages carrying a time f; are resent till all
sites not marked DOWN respond. Responses from sites specified by their
guards are also sought. For every site, whether specified as guarded or not,

from whom an explicit response is not received, the following procedure is

applied.

...........

...... T ORI R




LT LWL WYL YL Y T W me T

49

Let r be a site marked DOWN in CRASH_OTHERS(i) from which a
response is not collected. Let t-A be the maximum of the T/ME fields for
those neighbors of site ¥ marked DOWN in CRASH_OTHERS(i). Then a
LINKUP message timestamped ¢ must be sent to all the UP neighbors of
site 7, if any and their responses collected. ( lf'nny of these UP sites get
- marked DOWN before responding, the procedure should be restarted with
these neighbors newly marked DOWN included in the set of neighbors for

s an an S e fen an am e e o e 45 ATt e AR A e
PERY ., wo- Ll
S A IR A N

whom the maximum T/ME field is computed. ) If none of the UP neighbors

specify v as a guarded site in their response, site r if still marked DOWN
either has not appointed any guardians at time t or has reentered crashed
state as a result of all unilinks to its guardians leaving ok_sync state. Hence
site 7 is taken to have implicitly responded that it is in crashed or sync state

with a message timestamped ¢.

The responses are processed as follows:

(i) A response, implicit or explicit, from a site in crashed or sync state is
treated as specifying that all the unilinks directed from that node should be
marked DOWN in CRASH_SELF(i) st the time corresponding to the response
timestamp.

(ii) for each unilink specified as DOWFN at a time ¢ in responses from sites in
other states, the (STATE,T/ME) flelds for that unilink are set to (DOWN,t) in
CRASH_SELF(i).

The site i then enters Phase 1.
Phase II: The site i broadcasts a LINXSAFE message for unilink (1,5), carry-

ing the time t;. This message carries in addition, a list of all the unilinks

marked DOWN in CRASH_SELF(i) along with their T7/ME fields from this

B PR RS
RSN I TR I PRI RS G5 el U S V-




*,

:
- :
/ f 50 :
4
! graph. The responses to this message from a site k are:
‘I ~
E ~ (i) if site & is in crashed or sync state, return a timestamped
h LINKSAFE_ACK.
’ (ii) if k is in pause or operational state, set the (STATE,T/ME) fields for unil- lrf:
ink (i.5) to (UP.t;) in CRASH_SELF(k). For each unilink specified as DOWN %
at a time t in the LINKSAFE message, set the (STATE,TIME) fields for that
B unilink to DOWN at the time t in CRASH_SELF(k). A timestamped :
__ LINKSAFE_ACK is returned. If in operational state, the ids of all guarded g
. sites should be specified in the acknowledgement.
‘ E‘.‘-’ The LINKSAFE message should be resent till all sites not marked DOWN
o respond. Responses from guarded sites are collected as for S/TEUP mes-
“ sages. Then the module returns.
. . The module returns immediately if the unilink (i,5) goes to broken state .
) in Phase ] or Phase Il :
- 2.2.4.11. Correctness Arguments (II) :
! In this section, we develop analogs to Theorems 1 and 2 for our scheme .:
i with recovery procedures incorporated.
‘ In proving the analog of Theorem 1, we have to show that recoveries of :
~ unilinks and sites do not prevent a site from crashing itself in time when
. neede.d if it has been marked DOWN at some other site. -
’ Thm 3: If site p has site ¢ #p marked DOWN in CRASH_OTHERS(p) at local -
- time t, site ¢ is not in operational state at time t.
-
I3 Proof: Arrange the various e\;ents corresponding to marking DOWN of sites in
;". increasing order of the local times at which they occur ( if some occur at the :
fa-
"

T S R S
‘e’ . -« . " A S R N |
PP A W 3P 37 I IR

. . .
- . . - hd - . -
s’ PRI




o~ —— P T W T TN T W T W T W N Ve e W W T W
vl Sttt el Al el Gull AIE Al s © Sl A Sl Adits < < .

51
. same time, arrange according to increasing id of the site at which the event
Vs occurs ).
'
- Let t, be the logical time of the jth such event.
g '-'..
4 L
. INDUCTION HYPOTHESIS H1: If site p has site g#p marked DOWN in
. CRASH_OTHERS(p) at local time t<¢;, site ¢ is not in operational state at

w ) time t.

BASIS: Obviously true for j=1, since no site marks any other node DOWN

before ¢;.

Assume H1 true for j=x.

Consider the marking DOWN event at t;, which, say, is the marking DOWN at
site m of sites in component C. For each ! in OT,, let T} be TIME(l) in
CRASH_OTHERS(m ) at the time the component C was found to be suitable
for marking DOWN and n; be the node in N(C) to which I is attached. Let

temar = max {73} for l in OT, so that tg2t .+ |V, |A.

Consider a node a=r, in C which has a path k<|V,| hops long to n;=7¢ ( the
path being 73,72 _,. . . . .7,,7g). We will show that at £, site a has at least one

unilink on the path from a to n;, marked as DOWN in CRASH_SELFa).
Define a series of local times ¥p,9,;,..8; for nodes rp,r;,...7; as follows:

(i) 9o is defined as 7;.

(ii) If the report by site rg at 7; of unilink (r¢.7,) being DOWN was due to phy-
sical failure of the bilink between rg and r,, and if node r, is in pause or
operational state before 9g+A for a sufficiently long time, its link monitor will

detect this failure and initiate a link state report. Let 9, be the latest time




C

2 RO

LIS

I\..
[ A
[

52

before ¥y+A when the monitor initiates a broadcast and marks the unilink
(ry.70) DOWN in CRASH_SELF(r,). if this situation exists. On the other hand,
r; may not be in either of the above states during the period of the failure. 1t
is also possible that the report at 7; by r; may be caused by a crash of 7,,
which makes the unilink from 7g to 7, enter broken state. In these cases,
where the link monitor in 7, does not initiate any broadcast of the failure
which caused the report at 7;, we define ¥, as the latest time before ¥y+4A
when.r, enters crashed state.

(iii) For 1<i<k 9, is defined as follows:

(a) if ¥, is the time of marking DOWN in CRASH_OTHERS(r;_,) and
CRASH_SELF(r;_,) of some unilink on the path from r,_; to vy, as a resuit
of a link state report initiated by one of the sites 7,7, . . . , 74, and if this
report reaches 7; by 8,_,+A, ¥; is defined as the time at which this unilink
is marked DOWN in CRASH_SELF(r;) as a result of receiving this report.

(b) However, this report may not reach r; by ¥,_;+A because of the failure
of the bilink between 7;_; and 7. Alternstively, v;_, may have entered
crashed state at ¥,_;. In these cases, we define ¥, as the latest time
before ¥,.,+A when the link monitor in v; detected the broken or
ok_unsync state of the unilink from r; to ry_, and initiated a link state

report causing this unilink to be marked DOWN in CRASH_SELF(r;).

(c) Lastly, if site r; was not in operafional or pause state at a time before
Y;,+A to meke any of the above situations occur, we define 9, as the

latest time before ¥, _,+A when site r( enters crashed state.

INDUCTION HYPOTHESIS H2:




Al

.,

kil

C

53
(i) 9, ST, +iA

(ii) Site r; has some unilink on the path to rg in froﬁt of it marked
DOWN in CRASH_SELF(r;) from ¥, to ; at every instant it is maintain-

ing this graph.

BASIS: The first part of H2 is true for i=1 because ¥;<7;+A by

definition. The second part is true for the following reason. Since 7

"has reported the unilink (ro,r,) as DOWN at 7;, the unilink (r,,r;) can-

not become ok_sync before T;. Hence the LINKUP broadcast cannot be
started before 7;. But site m, which marks the nodes in C DOWFN at ¢,
cannot respond to this broadcast, whether in pause or operafional
state, before f;. Further, since site m has entered pause state before
T; site r, cannot avoid waiting till this response is received from site m
whichever state, pause or operational it is in. ( Remember that H1 is
assumed to be true for j=x, hence site r;, cannot incorrectly consider
sites in operational state, including those that might be guarding m, to
be DOWN ). Therefore, the corresponding LINKSAFE message can be
broadcast only after {; by ;. Hence the unilink (r,,r¢) remains marked
DOWN in CRASH_SELF(r,) from ¥, to t, at any instant that 7, is main-

taining this graph in this period.
Assume H2 true for i<y.

Consider r, which either crashed at ¥, or marked a unilink in front of it
on the path to ro, DOWN at ¥9,. In the first case, after recovery, the
unilink from r, to 7, _, cannot become ok_sync before ¥,_,. Hence the
LINKUP broadcast for this unilink ce;nnot be started before ¥,-,. In

the second case, the marking DOWN is the result of a link status report




SRR Jtac St S A e haith b i S M S it i i Sl S B il dh ALl Sl el A ol

...................................

" Y N4

54 )

l issued at ¥4 by ry for some d<y, reporting the unilink (r4.7¢-;) to be
DOWN. In this case, the LINKUP broadcast for the unilink (rg,rg-;)

804, b G

..
W
L. 2
]

. cannot begin before ¥4_;. In either case, it follows from our inductive

'f;',

= assumption on H2 and the way the responses to the LINKUP broadcast

are processed, that if these responses are received before ¢;, the ensu-

ing LINKSAFE will indicate some unilink (7r,.7,-;) on the path to g in

front of the unilink whose safety is being broadcast, as to be marked =

- (DOWN,t) in the CRASH_SELF graph , where ¥,st<t,, of every site
‘ receiving the LINKSAFE message.

L Yo

Hence the marking UP in CRASH_SELF(r,) of the unilink in front of 7,
marked DOWN by it at ¥,, or the marking UP of the link (r,.7,_,) on
recovery if it crashed at ¥, will be accompanied by the marking DOWN
of some unilink in front of the unilink being marked UP, if this marking

UP occurs before £;. If, in turn, this unilink is marked UP before t,,

ras

some other unilink in front of it on the path to rg will be marked DOWN.

V W 4 |
DR

[ Ultimately, the unilink (r,,r¢) may be marked DOWN and the LINK
. SAFE for this unilink cannot be issued, as already indicated, before ¢,.
h ] Hence site 7, will have some unilink in the path to 7o marked DOWN in \
CRASH_SELF(r,) from ¥, to f;. Moreover, since 9,<¥,_,+A by
definition and since 13,_,57',+(y-'1)A by our inductive assumption on

H2, it follows that 8, <T7;+yA.

Hence, H2 is true for i=y and hence for i=1,2,...k.
Thus at ¢, the site a has at least one unilink on every path from itself to n,

o marked DOWN in CRASH_SELF(a) for all I in OT,. =

Hence as in Theorem 1, no site in C will be in operafional slate at ¢,.

..................................
..............................

..................
........................
..............................
.............................



55

Thus at ¢;, the CRASH_OTHERS graph of every site in operafional or pause
state is correct in that it shows no site as DOWN that is actually in opera-

tional at that time.

After ¢;, no sites are marked DOWN in any CRASH_OTHERS graph till ¢, ,,
when the next marking DOWN of a site or sites occurs. Hence to show that
the graphs remain correct in this period, it suflices to show that no site
enters operational state before informing any site that has entered pause or
operational state and marked it DOWN that it is entering operafional state,
through a SITEUP message.

To show this, we order the events corresponding to sites entering operational
state in the above interval in increasing order of times that they enter this
state. Consider the first such recovery, say of site w. Site w's
CRASH_OTHERS graph was correct at ; and is correct at all instants to the
instant it enters operational state, since it is the first site to enter opera-
tional state after ¢;. Since a site can fail to have itself marked UP at sites
that have marked it DOWN, whether they have done so when they were in
pouse state or in the operational state, only by incorrectly considering sites
in operational state DOWN, it follows that site w does gel itself marked UPat
all appropriate sites before it enters operational state. Hence all the
CRASH_OTHERS graphs are correct at the time of the first entry into opera-
tional state after f;, and using the same arguments, at every subsequent

entry into operational state thereafter till £, ,.

Hence H1 is true for j =x+1, and therefore for all J, proving the theorem.




i

P

56 N

o
v

Before stating the analog of Theorem 2 for the case where recovery of :'?

links and sites does occur, we introduce some notation. A unilink (i,5) is -

rr;’;
Vel el

safe at time ¢, if it is marked UPin both graphs with 7/ME fleld values after .

which it has not left ok_sync state till time ¢ at all sites in pause or opera-

"."

tional state, i.e. it is safe from the time a LINKSAFE broadcast for it has

v e

completed, till it suffers the first failure after the initiation of the
corresponding BROADCAST_LINKUP. A dynamic component C(t) of
NG={V,E} is a time-varying graph {V.(t).E'(t){, such that V,(t) is a subset of

V and E'(t) is a subset of E, (t), the set of arcs in NG which connect nodes in

WYY Y

h V.(t). such that {V,(t),E'(t)] is connected for all £. Thus nodes and unilinks
enter C(t), stay for periods of time called membership periods and then -

leave.
A dynamic component is safe during the period (t;.tp), if N
. (i) each site in the component is operational at the beginning of each of its

membership periods in this interval and suffers no crashes due to hardware :;j;

or software failures in the membership period,

| (ii) if each unilink in the component is safe at the beginning of each member-
ship period and suflers no physical failures during the membership period,
and L

Y13

‘ ]
i (i) if |V, (t)]> '2‘—1 for all ¢ in the given interval.

Thm 4: If a dynamic component C(t) is safe during (¢,.t2). no site is forced to

Ce crash itself during any of its membership periods in this interval. =

Proof: If possible, let one or more sites in C(t) crash themselves during their

membership periods in this interval. Let p be the site in C which is the earli-

LA
.1

est to crash itself in this interval during one of its membership periods, say

A

NI SN




e e gt

L ae mm g h ang

57

at time t. Let C° be the component that satisfies the conditions of the self-

o

there must exist a node g#p in C(t) which is also in N(C*), and a path of

crash procedure which p finds in its CRASH_SELF graph. Since |V, .|<

nodes and arcs in {V;(¢),E(t)] to node g. Let r be the node in this path in
B(C"®). Since p is the first site in C(t) to crash itself in the given interval
during one of its membership periods, sites § and r are still operational at ¢.
Hence the unilink (r,9) which was safe at the beginning of its current
membership period, cannot have been marked DOWN in CRASH._.S'ELF(p)
either because r crashed and therefore a LINKSAFE message was able to
specify the unilink as DOWN or because ¢ crashed and site ¥ reported the
unii:nk DOWN subsequently. Further, the bilink corresponding to this unilink
suffers no physical failure in its current membership period. Hence there
exists no sequence of events that could have caused unilink (r,g) to be DOWN

in CRASH_SELF(p) at time t, contradicting our assumption.

2.2.5. Overhead Considerations and Choice of Parameters

In the Arpanet, link state reports are broadcast from every site every 1
minute or so for routing purposes and broadcast propagation times are less

than 1 second ( typically 100ms ) [MCQ 80).

Assuming that the networks under consideration have similar size and
communication bandwidth, we can choose the period of broadcast, 7,= 1
minute so that the communication overhead from the link state reports,
which in any case are neede‘d along with other information for routing pur-

poses, is of the same order. When no link or site failures occur, the only

:
E
o

A .
,
v 3 |

....
25" "'
PP PPN

>~



Ctahlin Sias 4 Sen By Sudh il S daidad

58

n additional comrunication overhead from our scheme arises from messages

for clock synchronization and for link monitoring. For every unilink

A2l

r5%t

recovery, the messages required are (i) the LINKUP and LINKSAFE broad-

casts and (ii) an acknowledgement from each site to the broadcaster for

.

each of the two broadcasts. As mentioned before, the broadcasting is done
by flooding. In our algorithm, as presented, when a bilink recovers, the com-
munication costs will correspond to two unilink recoveries. When a site with
L attached bilinks recovers from a crash, the communication costs will
correspond to 2L unilink recoveries plus a S/JTEUP broadcast and its ack-
nowledgements. Optimizations in which the me.sages are piggy-backed
should be straightforward but are not explored in this thesis. Even if the

LINKUP broadcasts for the 2L unilink recoveries are not piggybacked, they

can be performed in parallel. The same is true for the LINKSAFE broad-
l casts. Hence, the time required from the instant a site recovers physically
to the instant it enters operational state is the time required for 3 sequential
broadcasts ( LINKUP, LINKSAFE and SITEUP ) and their acknowledge-
ments. A is chosen so that sending a timestamped message every A interval
to each neighbor is not a burden. Even this burden is absent if other times-
tamped messages concerned with normal processing are being exchanged.
Further, the choice should give the site suflicient flexibility in its schedule
for flooding link state broadcast messages. A= 10 seconds is a reasonable
choice. 7, the real clock timer can be set to 1~2 seconds without consuming
an appreciable amount of site resources in updating the local clock. A, the
interval between stable storage writes can be chosen as ~30 seconds without

using up much disk bandwidth.

F

-

e e e L .‘_--._.". B T T T T P LR o B T
PO PRSI 008 ST S T SIS N S S St Dok v S TS Sy TR Ak VU, WS W I ST LIPS U Uhy . {

ATt et e
VTN (WA Y




LAm e g e 4B 2

- .
‘r... .'r ¥

-----
»

......

59
2.3. An Algorithm for Multiple Copy Updating

2.3.1. Introduction

In this section, we construct an algorithm to update a replicated file in a
point-to-point network, using the status maintenance scheme described in

the previous section. The algorithmn can be briefly characterized as follows:

(i) File copies that are used in executing commands from transactions can

be in either of two states, called the HOT and WARM states.

(ii) When an update command is executed, the HOT copies are (atomically)
updated immediately. Periodically, the HOT sites bring the WARM sites up-
to-date by sending them a list of updates, accumulated since the last time
the WARM sites were brought up-to-date. Thus the HOT copies represent the

latest version of the flie at all times.

(iii) A read command is directed to a HOT site if the current version of the
file is required. If it is not essential to obtain the current version, the com-

mand may be directed to a WARM site.

(iii) If the set of HOT sites is depleted due to site crashes, one or more WARM
sites joins the set as necessary. In order to detect such a depletion when it
occurs, the status maintenance scheme described in the previous section is

used.

2.3.2. Previous Work in Updating Replicatled Files

A file is replicated

(i) in order that its availability may be preserved in the face of failures.

(ii) in order to reduce the response time for read access. Jf a file copy exists




3 .
;
- 80
u- at the site of access or near it, the response time is less. The factors which "_
\,:r- constrain the degree of replication are storage costs, update execution costs ::E'.
v and the response time for updates. e
- The costs involved in processing an update result from startup (parsing :
the command, authorization checking, setting up the necessary processes
and communication ports)., concurrency control (obtaining the required '
locks), retrieval of appropriate data from storage, computing the new values -
and writing them back to storage, and commit processing. ~
The response time for an update increases with the number of sites that E::
e ) must be accessed before a ‘done’ can be returned to the originator of the
~ transaction. For example, in the ‘performance’ algorithms of distributed E_
. INGRES [STO 79]. only one specially designated copy, called the primary, is :
i - updated before the ‘done’ is signaled. lf most of the update t.ransaqtions ori- '-
ginate at the primary, then the response time for most update transactions :l'_f
: will be similar to that obtained if the file existed only at the site of origin of
B the transaction. However, if the primary fails before relaying the update to t-"
. the remaining copies, the update is ‘lost’ which can result in a catastrophe. N
Therefore, in the ‘reliability’ algorithms of distributed INGRES, all copies of
: tbe file are updated atomnically and then e ‘done’ is signaled. This results in
- higher communication costs, a higher load on the resources of the sites bold- '
- ing copies, as will as a higher response time.
Other schemes [THO 76, GIF 78] have been proposed in which there is no
g designated HOT set of copies, representing the latest version of the file, at a
:: given time. Rather the HOT set may ‘float’ from update to update even when }_
- there are no site or link failures. In these schemes, a majority of sites hold-
i':. ing copies ( or a set of sites holding a majorily of votes between them in =




81

Gifford's weighted voting scheme [GIF 78] ) must be accessed before any
update can complete, hence the costs per update and response time

increase with the number of copies.

In our solution, the response time and immediate costs per update do
not increase if the number of WARM copies is increased. Moreover, the
updating of the WARM copies can be scheduled when there is surplus capacity
in the sites involved and in the communication system. Further, there is no
commil processing in updating WARM copies and the storage accessing
sequence for installing a batch of updates can be more efficient than if they
are installed separately. Hence the costs for the deferred updating of a

WARM copy are less than for the immediate updating of a HOT copy.

The disadvantage resulting from the deferred update is that reading a
WARM copy may not give the latest version of the flle. However, in many
cases, the latest version may not be required for a read access. For exam-
ple, in a banking epplication, if a customer has just made a withdrawal of
funds and makes a subsequent query about his/her balance, the withdrawal
should be reflected in the value returned in answer to the query. Hence &
HOT copy should be used to answer the query. But a transaction computing
the sum-total of balances of all customers of the bank will not require the
latest value of each !;alance. and can make use of a WARM copy of this infor-
mation. In other situations, if an old version is obtained, it will be detected
as not current and a fresh read initiated. File catalogs which store the

whereabouts of flles in the network are an example of such a case.

An important component of any scheme for managing replication is the
method of recovery. In our algorithm, a recovering site first obtains a WARM

copy and then obtains . he additional updates ( if any ) to make it HOT if and

» 0 &_0_ F_ ®

tTe W CC R Y
Ay

'3 1"1.:'.‘/'7" '

L.




X

.lﬁl..l

82

n when the time comes for it to join the set of sites with HOT copies. If a HOT
copy were used right away, the file would be locked out to update access for
-~ the entire period the recovering site is accessing the HOT copy. The algo-
- rithms of [STO 79) and [BER 80] make use of a reliable queuing mechanism to
buffer updates for crashed sites. This queuing mechanism achieves reliabil-
ity by storing the queued messages at multiple sites in the network. As can
be seen from [HAM 80], the design of such a mechanism can be quite com-
plex. Besides, if a site is down for a long time, the number of queued mes-
sages for it may be so large that storing them in the above manner may be
infeasible. In [GIF 79] on the other hand, a recovering site places a read lock
on the file to obtain a HOT copy. thus preventing update access for the dura-
" tion this process is occurring. which may be appreciably long in a long-haul

network. In our algorithm, the recovering site obtains 8 WARM copy from a
. site which has a WARM copy if possible and thus avoids locking out update

access on the HOT copies. Only when a site with a WARM copy is entering the

set of sites with HOT copies is a read lock placed on a HOT copy. Update
n access to the file is prevented while the lock is held. However, if the refresh-

ing interval for the sites with WARM copies is properly chosen, the time for

obtaining the additional updates that have occurred since the last refresh

will be small compared to the time required to transfer the entire flle, hence

the locking out period will also be comparatively small.

2.3.3. States and State Transitions

The complete state diagram for a site holding a copy of the flle is shown
in Fig. 2.7. In the sequel, we will refer to sites in state S as S sites where S

may be DEAD,COLD,WARM, HOT or PRIMARY.




.
0 ..

~

’ "n(l‘
MR

4

T,

i

i

—~— - --{PRIMARY

A

. -"\. //J
=)
C ! \ /

8

5

.r"

Y
—~

FIG. 2.7. STATE DIAGRAM FOR A SITE CARRYING A FILE COPY.

83

>
“a
»

Ty F

MR

oo



B |

84

A site is in DEAD state if it is down or if it has recovered but not yet ini-
tiated the execution of software for file recovery. It is in COLD state from the
moment of initiation till it has obtained & WARM copy of the file. It enters
WARM state on obtaining a WARM copy. While in the WARM state, the site ser-
vices read reguests that do not necessarily require the latest version of the
file. If it does not crash, eventually it enters the head of the queue of WARM
sites waiting to join the set of HOT sites. When the next failure of a HOT site
occurs, it makes itself completely up-to-date and enters HOT state. While in
the HOT state, the file copy at the site is updated atomically with other HOT
copies when an update request is received. In addition, the site also services
read requests, which thereby obtain the latest version of the flle. The
number of HOT copies is maintained at P. If the set of sites holding HOT
copies falls below P in strength, update requests are not accepted till the set
regains its full strength. This is done to maintain the probability of ‘losing’
the latest version of the file below a given level determined by the value of P.
One of the sites holding a HOT copy is designated as the PRIMARY. The PRI-
MARY performs two tasks in addition to those done by a member of the set of
HOT sites. First, it is responsible for broadcasting lists of accumulated
updates periodically to the WARM sites. Second, when the strength of the set
of HOT copies falls below P, it is responsible for helping the WARM sites, which
join the HOT set as a result, to make their copies HOT. A site in HOTV state
enters the PRIMARY state, when all the sites that were in the HOT or PRIMARY
states when it entered the set have crashed. In order to have at most one
PRIMARY and at most P-1 HOT sites at a given time, the sites holding copies
of the file forn themselves in a queue which determines their priority for

entering the HOT state or becoming PRIMARY ( Fig. 2.8 ). This queue is

ordered in increasing order of the times on the global clock that the sites

N N ot e e Ty,
¥ LG )_‘I’f’f’f'f’

LK

\J



-

o . .-
g .

o

R AN

K 25

|'~\ S,

-~ [

85 b

tala
PR
LA

0T

deferred update lists

- gy
i
hy
: 5 o
s e | o
[ / / . -

queue of/sites with file copies <4 S

e " o
PRIMARY/,HOT €OLD .COLD DEAD  DEAD £
= pt

e Celre O

« -
. -~
» .
. .

-t

1 2 P P+l N

A

o oy

s messages to '(:;’.‘_

co-ordinate atomic e
“,[update

~ update %
' transaction L
co-ordinator RN
8
fe :l“:l
-._' . v:-\..
s FIG. 2.8. CONFIGURATION OF SITES FOR UPDATING THE REPLICATED FILE. o

el e




86

not in DEAD state entered the COLD state. The DEAD sites are at the rear of
the queue in arbitrary order. The queue is maintained at each site not in
DEAD state. The global clock allows these queues to be maintained in a con-
sistent yet autonomous manner, i.e. the queues are not updated atomically,
but still they permit the sites to regulate their entry into the HOT or PRI-
MARY states on the basis of the local queue while maintaining the constraint
on the number of sites in the HOT state and the requirement of a single PRI-
MARY. Previous algorithms for selecting primaries e.g. those in [STO
79.GAR 82] rely on some form of atomic updating of status information.
Therefore, they suffer from complications which arise if sites crash or

recover during the atomic update.

2.3.4. The ADA Multitasking Facility and Remote Procedure Calls

In the appendix of this chapter, we specify our algorithm in ADA. The
program displayed in the appendix does not represent an existing implemen-
tation of the algorithm, but is intended to be a more formal specification
than the informal description given in Section 2.3.6. In this section, we out-
line the multitasking facility of ADA and a remote procedure call mechanism

adeguate for the problem at hand.

Consider the example task READER_WRITER taken from the ADA Refer-
ence Manual [HON 78] (Fig. 2.9). The procedure READ and the entry WRITE in
the task declaration at the top can be called by other tasks. The entries
START and STOP declared in the task body can only be called within the task
body itself. The procedure READ can be executed on behalf of several tasks
simultaneously. But the pf'ocedure entry WRITE is executed by the task
READER _WRITER in mutual exclusion and only when it reaches an accept

statement for the entry. The select statement allows the task to choose any




o 87 x

, tesk READER_WRITER s i
procedurs READ (V : out ELEM); N
entry WRITE(E : in ELEM); )

ond; o)

ey

latals
-T "
b o

tesk body READER_WRITER s

f RESOURCE : ELEM;
% READERS : INTEGER = O; o
‘ entry START: -
T entry STOP; -
' procedurs READ(V : out ELEM) is
- — READ is a procedure, not an entry, hence concurrent calls of READ asre possible S
—~ READ synchronizes such calls with the entry calls START and STOP ‘
begin *
START; V = RESOURCE; STOP;
ond
v
e begin
sccept WRITE(E : In ELEM) do
vl RESOURCE = E:
o ond;
loop
i sslect
. sccept START;
READERS := READERS + 1;
- or
- sccept STOP;
READERS := READERS - §;
or when READERS = 0 =>
(| sccopt WRITE(E : in ELEM) do
RESOURCE = E;
end WRITE;
ond select;
ond loop:
ond READER_WRITER;
,_ FIG., 2.9. EXAMPLE TO ILLUSTRATE THE ADA MULTITASKING FACILITY
(HON 79]

P L e s
. U S A
LR AP U U b W RN P G S e |




] '
*

v e x
L B

 J
oo

88

one of several alternatives. In the example, the accept statements for the
entries START, STOP and WRITE are the alternatives in the select statement.
A condition may be associated with an alternative and acts as‘h ‘g;.xard' which
controls when a called entry may be executed. For example, the condition
READERS=0 controls the execution of the entry WRITE. A delay statement
(not used in the given example) can be used as an alternative to allow the
task to take some action in case none of the other alternatives are execut-
able over a given period of time, either because there are no calls or because

the guards do not permit execution. .

Tasks are started through an initiate statement. If an entry or pro-
cedure is called when the task containing the procedure or entry is inactive
( either because the task has not been initiated or because it has ter-

minated ) the exception TASKING_ERROR is raised in the task issuing the call.

Although communication between tasks through shared variables is pos-
sible in ADA, our program makes use only of procedure and entry calls for
communication. Therefore a remote call facility has to be available to permit

communication between tasks at different sites.

Apart from performance considerations, the most critical issue concern-
ing the design of the remote call facility is that of call semantics. As a result
of duplication of messages in the communication system or as a result of
retrying a call ( when the return does not come in time or because of crashes
in the caller or callee ) multiple executions of a procedure may occur as a
result of a single call. Nelson [NEL B1] considers the alternative ways of deal-
ing with this possibility. In at~least —once semantics, the results obtained
by the caller may be the ones obtained from any one of multiple executions

of the procedure caused by the call. In last —of —many semantics, the

et e P A S e S A T Ve, T P P S
PR PP S AP P, P . O, - a2l i S s s, PTG Y. Y S

Nt e

et . PN .
DRI QR S ST WY TN,




)

¥ -
LA

..".. N '. '

L Te e e e T T T T e e e R e T AR et - A e ".'...'.-h* et
PP SRS S CRPAPAR ISP SIDE NI P PSPPI B BPIP AP R JPCOITRITNS S SET G TP SIS TV I PG G LS b U5 U6 U P T UL & Y S PL

BT
NS

88

)

results obtained correspond to the last of the multiple executions. Achieving

G
the latter is complicated by the occurrence of crashes, since a crashed site t-:.::
can leave calls that continue to execute on other machines. Lampson :_j:
[LAM B1] calls executions, whose return messages do not reach the calling -
task, orphans. In order to get last-of-many semantics, a crashed site on : ’
recovery must exterminate its orphans before retrying the call or else adopt ,'-:
them i.e. use their results in completing the call rather than retrying :;:':;
[NEL 81, LAM B1]. Neither option is inexpensive to implement. T
Here we do not develop a generalized remote procedure call (RPC) _:1
mechanism but restrict ourselves to outlining a simple design that is ade-
quate for our flle update algorithm. Some simnplifications arise in the case of '
our algorithm. First, all remote calls are to entries rather than procedures. -'
Hence nothing has to be done to serialize the multiple executions that may \
be caused by a given call. Lampson's solution for last-of-many semantics
given in [LAM 81] makes use of an extra unique id, which is assigned to every "1:;-
call and is included in all retries of the given call, to effect this serialization. -_‘:}:_-
Second, our algorithm does not assume extermination of orphans before the P
recovery of a crashed site is begun, hence one or more orphans may still be _
executing or awaiting execution in an entry queue when it starts its recovery. ~
The algorithm does not require any task to retry its calls after a crash. But '::;‘
it is required that orphaned executions of an entry terminate before a new
call to the same entry by the recovered site is started. Our requirements for
the RPC are satisfied by the following design.
Each remote call is converted to a message by the RPC mechanism, AT
timestamped and sent to the destination site. A timer is set and the mes- '\
sage resent with a new timestamp at timer runout unless one of the following ';E




AR AN S

events occurs before the runout:

(i) A return message, bearing the timestamp of the message and carrying the

E} results of the entry execution caused by the message, is received.

- (i) The destination site is marked DOWN at the calling site. (If the site was
N already marked DOWN at the time the call was received from the calling task,
e the message is not sent at all.)

i (iii) A message, bearing the timestamp of the message sent, is received, sig-
nifying that the task containing the entry is not active.

. In the first case, the calling task resumes execution with the results of
E’i the return message. In the latter two cases, the exception TASKING_ERROR

is raised in the calling task. The message is resent as many times as neces-

sary until one of the above events occurs within the timeout period.

When the RPC mechanism at site 1 is initiated after recovering from a
crash, it reads the global clock and stores the obtained value, TSTART. it
ignores all received call messages bearing timestamps less than TSTART. It
maintains a variable,.MAX(j) for each site § which sends a remote call mes-
fa sage to site i with a timestamnp greater than TSTART. MAX(y) always carries
the largest timestamp received in a call message from site j. A call message

p from site j is ignored unless its timestamp exceeds MAX(j).

When a call message is received by site i which is not to be ignored for
either of the reasons cited above, MAX(j) is set to the timestamp of the mes-

sage and

o (i) if the task containing the entry is active, the call is added to the queue for
the entry called. When a call completes, the results are sent in a message to
the calling site with the timestamp of the call'message.

(ii) if the task is not active, a message is sent to the calling site, carrying the

............
......................

B [N - " . -, . ) - - e Te e .
PR P T VA ) . % PRI . L - . .
o te . - »



o

. v,-
»

- w e -
L. R . - e - «" . L el e T . e A LN
T N P P TR WAL TR T . e a2 "2 e BT S S I I U I T S DA S B
Pe _“a -_'_-._'._\_‘._,-_'._._g,_-.g,;.-. PO IS W UL S W i IR YO Sy W WP T i S GO RS OV RRr TR WY TS W Y

timestamp of the call message and signifying that the task is not active.

Our design ensures last-of-many semantics for the no-crash case. If the
caller crashes, it does not, on recovery, retry any call it may have been exe-
cuting at the time of the failure. Rather the task is simply restarted. Thus
we do not obtain last-of-many semantics here. However, in this design all the
orphaned executions of a given entry are guaranteed to terminate before the

eniry is executed as a result of a call made by the recovered site.

2.3.5. Interface to the Status Maintenance Mechanism

Two primitives are provided by the site maintenance scheme based on

the global clock facility described in Section 2.2.

First, the function READCLOCK returns the current value of the globa!l
clock. Second, the non-blocking primitive WATCHDOWN can be invoked on
any site n other than the local site. The site status maintenance software
invokes a designated entry in the task invoking the watch, immediately if the
site is already DOWN, otherwise when the site is next marked DOWN in the
CRASH_OTHERS graph. The id of the site on which the watch was invoked
and the current reading of the global clock are supplied as parameters when
the designated entry is invoked. If WATCHDOWN is invoked by a task on a site
when it already has a watch on that site which has not yet returned, the invo-

cation has no effect.

2.3.8. Description of the Algorithm

We now give the description of the algorithm and the motivation behind
the steps involved. It is assumed that the granularity of locking is the entire
file. There is a version-number associated with the file which is incremented

on each update. The N copies of the flle are assumed to be at sites 1 through

....... o N

AL W

4
a4
‘
K
y
d

i

L

- e e e ey

. Pyt e S T "

R AN
Vet

. v
L
a2

. «
DU Y

Tt
w il

e v e
DR

SR R
e .".".".

/
s

P '.‘-.'

DA W




LML N i ALt At AL RARC LRt
PR W -- - a8t o - " =~ ..A -7 -

v
m

g
b ‘ 72
~..> " N. The following is a description of the actions taken by each of the sites
o bearing a file copy in each of the states shown in Fig. 2.7.
\'t
- The following actions are undertaken by site 1 ( 1<i<N ) in state COLD:
-
(i) read the local clock to determine the time of entry into COLD state and
store it in the variable TREC(1).
- (ii) broadcast the triad ( local id, local state, TREC(i) ) to all other sites which
have a copy of the file.
- (iii) invoke WATCHDOWN on all sites which have a file copy.
(iv) send requests to all sites which have file copies to send their current
ol
' state values together with the times at which they entered COLD state most
recently.
’ (v) Wait till, for each of these sites, the required information has been
. ’ obtained or the watch on it has returned.
. The status information obtained is assembled into a queue ( in step (vi)
below ) that is ordered in increasing order of the TREC values for sites which
P have reported their status, while the DEAD sites, fro:n which no report was
! received, follow in any order after them. Consider any site j ( # i ) holding a .1
A
- file copy. If the watch on § has returned, then clearly, site j can re-ente: o
- -
COLD state when it recovers only with TREC(j) > TREC(i). Therefore, when it n
Bt recovers and forms its queue, it will find that site i has a smaller TREC value -
and will put itself behind site { in its queue. Also sites which have reported ::'_i
. larger TREC values will do the same. Thus these sites which site 1 will put :j::j
o
behind it in its queue in step (vi) will put themselves behind it in theirs and
g thus their queues will be consistent in this sense. Similarly sites which have ‘-'_'.‘:
lower TREC values than i and which therefore are ahead of it by site © will put \j
\ »
[; it after themselves in their queues. q
tf:
A
e
.-:'o‘
U
P -

et et e Tt
I SN0 P Po> O S I P




B T T T T ey
-

€ .

Y.
an

Rc!

s
4,

The wait in step (v) will always terminate since for every site § # i either

(a) site j will respond to the request in step (iv) or

1::3 (b) the WATCHDOWN placed on it at step (iii) at site 1 will return or

(c) if site j recovers from a crash before the WATCHDOWN on it is placed ( so
F that the WATCHDOWN does not return ) but the status request from site i in
A step (iv) arrives while .t.he site has not initiated its file update software ( so
that the request does not get a response ), then site j will send the neces-
e sary information when it itself executes step (ii).

(vi)For each site with a file copy, form the triad ( site id, site state, time of
ﬁ entry TREC into COLD state ). For sites that have had WATCHDOWN on them
5 . return, the site state is set to DEAD and the time of entry into COLD state,
::' TREC, is set to the time supplied by the site maintenance mechanism when it
., returns the watch. For the others these variables are set to values obtained
.' from their status reports. The triads are then ordered in a queue called
STATUS_Q according to increasing values of TREC for the non-DEAD sites, with
the triads for the DEAD sites following in arbitrary order. Moreover from now
» on till the site i crashes, the status of these sites is updated as status

reports are received from them concerning their state transitions and as the
site status maintenance mechanism reports crashes among them ( a WATCH-
DOWN is always maintained on all file-copy-bearing sites other than i itself,
which are recorded as not DEAD in the STATUS_Q. ) After each update, the
queue is rearranged if necessary to reflect the ordering rules mentioned
B above. '
N (vii) Initiate tasks to receive and buffer update lists broadcast by the PRI-
7 MARY.

(viii) Start a task to maintain a list of received updates so that if and when




N

L
S

| RO SR MC AR LA A AL RAn Al T T T R R T R T eV VoV TW LW T YT VY VY Uy

74

Lne site becomes PRIMARY it is able to carry out its responsibility of bringing
WARM sites up-to-date at regular intervals.

(ix) Wait till the first update list broadcast by the current PRIMARY arrives.
(x) Obtain the lowest version number V corresponding to an update in the
first update list received.

(xi) Obtain a copy of the file warmer than V. For this purpose, a site marked
WARM in the STATUS_Q is used in preference to the sites marked HOT or PRI-
MARY in order to avoid locking out the file to update access. The latter sites
are used if no site marked WARM is in STATUS_Q.

With reference to step (viii) some explanation is required. A site i must,
from the time it begins receiving update lists, maintain a list L of updates
that it cannot be sure have reached all the appropriate sites, i.e. the sites
that have initiated tasks to receive update lists in step (vii) above. Let X be
the version number of the latest update it knows to have reached all the
appropriate sites. { When it receives its first update list, X is set to one less
than the lowest version number of an update in the list. This is because the
PRIMARY always finishes sending one list of successive updates to the
appropriate sites before starting the next batch. ) When the next update list
arrives, site i sets X to max (X,Y) where Y is the number one less than the
lowest version number in the new list and only preserves in L those updates it
has received that have version numbers greater than X. In this way it contin-

ues till it enters HOT state.

In the HOT state, site i itself takes part directly in every update and
updates are added to L as soon as they are committed. When an update list
arrives from the current PRIMARY, then, if Y bas the same significance as

above, all updates prior to Y are deleted, as they can be inferred to have




(AP L I A R b ACh LN € S e i et e e "M Ao Mafh el bl Ak Saf Al AR At ihg W d e AU AL S St SRR K S e A LRI A AIE R aPi p i gl e b e
5
2
- 75
u already received by the appropriate sites.
. In the PRIMARY state, updates continue to be directly added to L as they
¥ are committed. Periodically all the updates in L are broadcast to the
"l appropriate sites and when the broadcast is complete, the updates that have
been broadcast are deleted from L.
‘ 1t is possible thal no update list is ever received, or even if it is, that
- step (xi) above cannot be completed. This can happen if there is a sequence
of failures such that only WARM or COLD sites, if any, are left in front of site 1
in STATE_Q. In the latter case, the reason for not being able to complete
gj step (xi) will be that these sites had not been sent the update corresponding
to version number V ( the lowest version number in the first update list
’ received ) when the last HOT site failed, leaving them stranded. This means
_. . not only that site ¢ cannot enter WARM state, but that the site at the front of
i STATE_Q cannot enter HOT state. This is a catastrophic failure since updates
;::. can no longer be performed on the file and hence requires manual interven-
o tion to reinitialize the system. The signal for manual intervention is made by
- the WARM or COLD site that finds itself at the head of its STATE_Q.
After step (xi) above has been performed, the site i has entered WARM
state. In this state its actions are:
g (i) Broadcast the news of the state transition to the other sites having file
copies.
(ii)Initiate tasks to do the following tasks:
" (a) Respond to sites wishing to acquire WARM copies of the file
: so that they can enter WARM state.
] (b) Consolidate the buffered \;pdate lists with the local copy of
I_f the file, as these lists become available.




) J‘
W
! (iii) Wait till it is time to enter HOT state.
X This wait terminates when site 1 perceives itself to be in one of positions
?:-' 1 through P in its STATE_Q. Typically this will happen when site { moves from
i 'F the (P+1)th position to the Pth position as a result of a failure of one of the

sites in the first P positions. But sometimes site i when entering WARM state

may already find itself in one of the first P positions because of a large

number of failures. When the wait terminates the following steps are exe-

cuted prior to entering HOT state.

(iv) Obtain the id of the PRIMARY from the local STATE_Q.

(v) Request the PRIMARY to supply the current version number of the file.

The PRIMARY locks out update access on the flle for a period of time, expect-

ing site 1 to complete its transition to HOT state in this time.

. ) (vi) After getting the current version number, wait till the version number of
its local copy reaches this version number as a result of the merging of

, received update lists.

(vii) Inform all other sites with file copies by means of a status report that it

is entering HOT state.

(viii) Perform a handshake with the the site from which the version number

was obtained in step (v). If the bandshake is successful, this means that no

updates have occurred since. Further, every site that can become PRIMARY

from now on till site i itself becomes PRIMARY or crashes, has site i marked

as HOT in its STATE_Q. This ensures that site i always participates in every

M SN

future atomic update of HOT copies till it crashes. This guarantee holds since
the update transaction co-ordinator, before committing an update, checks
with the current PRIMARY to make sure that all HOT sites have signified their

agreement to commit the update ( see below ). Hence site i can enter HOT

.............



T

state. On the other hand, the handshake may not complete successfully.
This may happen for one of two reasons. The site which supplied the version
number in step (v) may have crashed. It may have removed the readlock it
had placed on its local file copy because site i did not perform the
handshake in the allotted period, in wh.ch case it will refuse to participate in
the handshake. In either case, the guarantee mentioned above cannot be

provided and hence site i must go back to step (iv).

lt. may happen that all the sites in front of site i crash before it can
complete the handshake. This is again a catastrophic failure since no site can
become HOT now without outside intervention. The same signaling mechan-
ism mentioned above comes into play, i.e. site i in WARM state finds itself at

the head of STATE_Q and therefore invokes manual intervention.

In HOT state, site © performs the following actions:

(i) Initiate a task to participate in performing atomic updates in co-operation
with the other HOT sites, the PRIMARY and the transaction co-ordinator.
(ii) Wait till it is time to become PRIMARY.

The wait terminates when site i becomes the first in its STATE_Q. It then

enters PRIMARY state, in which it performs the following acticns:

(i) participate in performing atomic updates in co-operation with the HOT
sites and the transaction co-ordinator.

(i) periodically broadcast all the accumulated updates, completing one
broadcast before starting the next.

(ii) initiate a task to respond to requests from WARM sites for help in enter-

ing HOT state. This task does the following. When a request for the current

version number is received from a WARM site, it sets a readlock on its local

N W R WL\ Y
o




78 \
3
file copy. It then obtains the local version number and returns it to the ’
! requesting site, at the same time initiating a broadcast of an update list car- f':,
o rying updates upto to the current version number, so that the requesting :
w site can quickly make itself current. It waits for a given period of time for '
" the requesting site to perform a handshake signifying that it has accom-
plished this and informed all all the sites with file copies that it is ent'er'mg
HOT state. 1f the bandshake occurs within the given period, site i releases
the readlock after the handshake. Otherwise the readlock is released at the
end of the allotted period and site i refuses to do a handshake with the .
) requesting site, obliging it to start all over again by asking for the current
g": version number. :
Lastly, we describe how the stomic update occurs. The co-ordinator of
. the update transaction sends the updates to the sites it believes to be HOT o
. and to the site it thinks is the PRIMARY. (The site where the co-ordinator :
resides can, when needed obtain this information either from one of the sites "
\ with flle copies, or these latter can themselves broadcast their transition :
~ into HOT and PRIM."_ [ states to the entire network.) On receiving the update, }
. a HOT site obtains a writelock on its local copy and responds ‘ready’. The PRI-
MARY obtains a writelock, and then gets the set of HOT sites from its "
STATE_Q. If the number of HOT sites is not P-1, the PRIMARY releases the wri-
. telock and rejects the update, otherwise it responds ‘ready’ and sends the '
- list of HOT sites along with its response.
The co-ordinator commits the transaction if and only if:
- (i) exactly one site sends a list of HOT sites, i.e. only one site responds in PRI N
MARY state, along with its response. : ._
Py (ii) all the sites indicated in the list and the PRIMARY respond ‘ready’.
L _
= "

et et N A e e .
5" . U A f AN e, .. AR
s ‘..4.1“"\-' LW QAP " IO P W SOV |

LS P




&

-

VN

9

Otherwise the transaction is aborted. On receiving the commit or abort
signal, the HOT sites and the PRIMARY perform or ignore the update accord-

ingly and release the writelock.

In addition, the co-ordinator must make use of a reliable commit facility
that ensures that even if the co-ordinator crashes at any time during the
transaction, the sites being updated all receive an abort or all receive a com-
mit signal. This can be done using commit backups [HAM 80]. This is to
ensure that sites being updated are not left holding the writelock, not know-

ing whether to commit or abort the transaction.

The algorithm for the co-ordinator and its backups is given in [HAM 80)

and hence is not displayed in the appendix to this chapter.

2.3.7. Choice of Parameters

The parameters of the algorithm are TBROD, the refresh interval; N, the

total number of copies; and P, the number of HOT copies.

The choice of TBROD should be made on the basis of how up-to-date the
information in the WARM copies is required to be, and the constraints on the

buffer space in which updates being accurnulated for broadcast are stored.

The value of N-P will depend on the number of sites where the frequency
of read commands, which do not require the most up-to-date information, is
high. It can be quite large since increasing N does not cause a penalty to be

paid in the response time and immediate processing required for updates.

The value of P depends on the number of sites where the frequency of
read commands which do require the latest information is high, and on the
amount of protection desired against the possibility of the catastrophic

failure in which no HOT copies are left with UP sites. This failure requires

U i gt



L g o g e

| .45

RRAN

ry v

.

il

R

80

manual intervention to determine which sites have the most current version

and re-initialize the system.

We show below a rough computation to determine how much protection

a given value of P gives against catastrophic failure.

Given the value of TBROD and the frequency and average size of updates,
we can compute the amount of data that must flow from the PRIMARY to a
WARM site to make its copy HOT, and thence the amount of time required.

Assume that this time period is exponentially distributed with time constant
7;.=-:‘—. We assume that N is large enough that there are always a sufficiently

large number of sites which have been up long enough to become WARM.
Thus when the set of HOT copies suffers a loss of one or more copies, the
introduction of new HOT copies is not delayed by the non-availability of WARM
copies.

Assume that the period for which a site is UP is exponentially distri-

buted with a time constant 7, = %—

We wish to find the expected time that elapses starting from a state in

which P HOT copies exist to a state where none exist.

Fig 2.10 shows the state diagram with the state transitions. The updates
broadcast for the purpose of a mak'm,g. a WARM copy HOT reach the. other
WARM 'sites in parallel, and there is always a large number of WARM sites
assumned present. Therefore when a WARM site in the process of making its
copy HOT fails, its place is just taken by the next WARM site in the queue and
the process of making its copy HOT continues where it was left off for the
crashed site. Therefore we neled not concern ourselves with failures of WARM

sites. Note that because of our assumption of exponential distributions, the

. ‘\ N

RPNy

%

IR

A et A




e Bt | v S Ay m s v Ty ey e me i o vy -y
Lot St = il S A bl T YN T S Sl S M PR A e (e g i A GHE B S A e She e i miedte et tn She i e At Ale Nin A St S Bin-Bhe Bte S\a S0 N eon ¥ By Ain o ien g
.

<r “ -":_"'

I I

e |
[

[y

_ 1
@ H=Px
1 — K
(P-1)A+u ‘
N S
@ K STy
‘P’l!k : |. E
(P-1DA+u (P=2)\+pu
(r+1)) : ; 7]
(r+1)A+p rA+u
-1
@ T'-r)\-o»p
A ! A S,
A+ r=1)A+pu
A, P
B+l / 2A+a
_ 1
@ Te= eA+u
2\ I
A+u Aty
. |
@ = A+u
A
Aty

FIG. 2.10. STATE DIAGRAM SHOWING EXPECTED TIME OF STAY IN EACH

STATE AND TRANSITION PROBABILITIES.

81




W

82

random variable NP(t), the number of HOT copies at time ¢t is memory-less.

From probability theory, it can be shown that for states
NP=rr=12,..,P-1, the time spent in the state, given the next state, has

the same distribution.

1
T(r)= TA+L

forr=1,2,...P~1, and

TP By

where T(.) is the mean of the time spent in a state.

Further, the transition probabilities are

A
Ar+u
forr=12,...P-1,

P(r r-1)=

P(P.P-1)=1
and

P(r,r+l)= -A—T%

forr=1,23,...P-1.

Let X, be the mean time taken for the first transition from state NP=r
to state NP=0. Then we get

1

= nt aea e )
-1 A
X = hin T Tae ot ()

for r=2,3...P-1 and

1
Xp= 'ITA—*XP-I (3)

i Vel
o_ 8 5 &

¢
L DN

-, ) e
B SURT .L.A_u_‘_




e
»

>

-

. _-'

- w

)"" -,
) 83 -

‘ ! A closed form solution for X, from the above equations could not be N
g' " found, hence a lower bound was computed as follows. ~

From equation (1), we get

E!! 2!1-i> 1-— 2&- Ef.
T X2 M o

Substituting in equation (2) with 7 =2, we get,

X2 A2
—>1-2(3)
Xs (#

*
L P
A

Proceeding in this manner we get from the substitution in equation (2)

with 7=P-1, R
» .
-1 A P-1 .
>1=-(P-1)! -
1P R
Substituting in equation (1) we get
co 1 P-1
-. %> AP! (I)‘:_)

Assuming, for instance, that a site fails once a day and that refreshing

LN
O L

takes 5 minutes, we get, for P=2 and P=3, expected times to catastrophic

| failure greater than 5 months and 40 years respectively.

2.4. Conclusion

-~ In this chapter, we proposed a status maintenance scheme for a point- :
T to-point network. This scheme has two important features:

(e) It is based on a global clock facility. If any site i has another site j

marked as DOWN at time t on this clock, then site j is really DOWN at time

& t. Therefore, site i can have the assurance that site § will perform no — .
": actions ( visible above the status maintenance layer ) from t to the time it ::
" informs site i that it is back UP. t‘_\:: A,
!.: (b) The marking of a site as DOWN is based on data gathered from its neigh- 0

.

'

','_‘/ St

«

[




g |

-

et e e e O R .
Uiy WO UMD S it .

84

bors, rather than its response ( or lack thereof ) to a probe message from an
arbitrary point in the network. This prevents sites from being mistakenly
marked as DOWN, when there is a routing failure, or the sites are heavily

loaded and slow to respond, etc.

The overhead caused by the schemne is of the same order as the new
Arpanet routing method. In fact some of the processing is common and can

be merged.

Based on this status maintenance scheme, we developed a method for
updating a replicated file. The use of the status maintenance scheme allows
the sites to perform reconfiguration actions (e.g. to take over the functions
of a crashed site) independently rather than making the reconfiguration
decisions collectively, with all the file-copy-bearing sites taking part. The
method allows read access to be performed inexpensively when it is not
necessary to obtain the latest information, through the use of WARM copies.
The addition of WARM copies does not cause the performance of update tran-

sactions to deteriorate.

TE I TETRL Y U e
~d

1O

e, .‘.
iy N WY Wy

5

.
L)

L L EENEN .‘-"'- e
jk" PR W ™

14

R/
4

. .- . e R .
ST, 0 . .
R e
R RN Lt e
P e a?ata’a’a o ’ . et

e
-
s
e
.
A
RN
TR R S




PR YA N AR A T M I . S A A 6Ch 5 b B Bre dan i b A2 od

85

2~ |

APPENDIX

"< The total number of sites carrying a copy of the file is N. Further
-

assume the total number of HOT sites plus the PRIMARY is sought to be main-
T tained at P. Below we specify the package COMMON and a set of task families

each having N members, one for each site bearing a file copy. The program
for each such site consists of the package COMMON and one member of each

task family.

package COMMON is

k- type SITE_STATE is (DEAD,COLD,WARM,HOT,PRIMARY);
type SITE_ID is INTEGER range 1..N;
type COPY_SET is array(1..N) of BOOLEAN;
type VERSION_NUMBER is O..SYSTEM'MAX_INT;
type TRIAD is record

NO: SITE_ID;
.. STATE: SITE_STATE;
. TR: TIME;

end record;--this record type is used to transmit
--and store site status.
type UPDATE_PACKAGE is record
e LVN: VERSION_NUMBER;
HVN: VERSION_NUMBER;
UPDATES: array (LVN..HVN) of UPDATE:
| end record;--used in broadcasting update-lists
--to WARM sites.

function GET_MY_ID return TASK_]D;--returns the id of
--the calling task.

end COMMON;
First we give the task family declarations.

task FILE_RECOVER(INTEGER range 1..N);

—this task initiates the other local tasks and co-ordinates
~ —~the entire recovery process.
task STATUS_REPORT_SENDER( INTEGER range 1..N) is

;": --this task sends the site status in response to requests.
h entry STATUS_REQUEST(NOD:SITE_ID);




AD-R169 247 IIVMLHIII.ITV AND CONSISTENCY OF GLOBAL I#mtlu N 2/3
COMPUTER NETWORKSCU> CALIFORNIA UNIYV BERKELE
C ¥V RANANOORTHY MAY 86 AR0-19139. 3-EL MM—OI-K-““
UNCLASSIFIED G 9/2




.,

o .

.0

e
1y o~
o &
= =

23

I

E

852

H O
o 3-3-m-
EE ool W

BEE ddya14d

=

—

I
|

——

1.6
=

li2s e g

MICROC




E ‘J ’
4

."a v:: t

* 86 o

n‘ end STATUS_REPORT_SENDER; o

TN

{{;2 task STATUS_REPORT_RECEIVER(INTEGER range 1..N) is X

) --this task receives status reports fran other sites and 2L

--calls another task to update the £
b --locally stored status inforrmtion accordingly. iy
- entry STATUS_REPORT(T:TRIAD): ';‘_'.
end STATUS_REPORT_RECEIVER: v

task SITE_CRASH_DETECTOR(INTEGER range 1..N) is

O --this task places WATCHDOWNS on the sites bearing file copies DA

v --which are up and calls another task to update the locally .
--stored status information when a watch returns.

. . entry SITEUP(NOD:SITE_ID); =

E entry WATCE_DOWN_INTERRUPT(NOD:SITE_]ID;T:TIME); i

end SITE_CRASE_DETECTOR; R
task UPDATE_RECEIVER(INTEGER range 1..N) is T::'.

o --this task receives update-lists fran whichever site is =

. --currently PRIMARY til! the site in which the task resides
--itself enters PRIMARY state.
entry UPDATE_LI1ST(UP: UPDATE_PACKAGE) ;
entry ENTERING_HOT;
entry QUIT;

» end UPDATE_RECE]VER;

task COPY_STATUS_KEEPER(INTEGER range 1..N) is -
--this task maintains the status of each site bearing a file
--copy in a queue hereafter referred to as STATUS_Q. o
entry GET_PRIMARY_ID(NOD:out SITE_ID);

o entry WAIT_TO_BECOME_PRIMARY; o
entry WAIT_TO_ENTER_HOT; o
entry WAIT_TILL_INIT;

. entry GET_HOTLIST(S:out COPY_SET); R

e entry GET_STATUS(NOD:SITE_)D;STATE:out SI1TE_STATE;T:out TIME); e

Y entry UPDATE(T:TRIAD);

. end COPY_STATUS_KEEPER; o

.:\ ._':.

&, \-

task UPDATE_COLLECTOR( INTEGER range 1..N) is }‘;

- K

: --this task performs the buffering for update_lists received L

’ :1;‘;

‘»j'

r -

R P ST e o e e AT e e T O i L et T T __A’ .
e ) RS .



87

--fran the PRIMARY till they are integrated into the local
--copy of the flle.

entry ADD_TO_LI1ST(UP:UPDATE_PACKAGE) ;

entry GET_FIRST_VERSION_NUMBER(VN:out VERS]ON_NUMBER);
entry GET_FROM_LIST(UPA:out access UPDATE_PACKAGE):

entry QUIT;

end UPDATE_COLLECTOR;

tesk READER_WRITER( INTEGER range 1..N) is

--this task perforrns read and update operations on the local file

--copy and provides the synchronization through locks.

entry INITIALIZE; --creates an empty file with version number 0.

entry CET_READLOCK(TID:TASK_]D); :
--callable for a read request fran a transaction only
--after the site has entered WARM state.

entry GET_WRITELOCK(TID:TASK_ID);
--as above for a write transaction but in addition the task
--FILE_RECOVER calls this entry in procedure TRANSFER_FILE
--to write a a WARM version into the initialized file when the
--site holding this task is in COLD state.

entry RELEASE_READLOCK(TID:TASK_ID);

entry RELEASE_WRITELOCK(TID:TASK_ID);

entry READ(...):

entry WRITE(U:UPDATE; V: VERSION_NUMBER; FV:out VERS]ON_NUMBER) ;
--if the current version nurber is 0, the update is performed
--and the value of V is returned in FV.1f the current version
--nurber is not 0 and if V is not equal to one more than the
--current version nurber, the procedure simply returns with
--the current version nunber in FV. Else, the update is
--performed and the version number increamented by one, and
--the procedure returns the new version nurber in FV.

entry GET_VERSION_NUMBER(V:out VERSION_NUMBER);

end READER_WRITER;

task LATEST_VERS10N_NO_REQ HANDLER( INTEGER range 1..N) is

--this task executes when the local copy is in PRIMARY state
--and provides the latest version nurber of the flle to any
--site trying to enter HOT state.
entry HOT_VERSION_NO_REQ(NO:SITE_JD;V:out VERSION_NUMBER):
entry HANDSHAKE(NOD: S1TE_1D;V: VERS1ON_NUMBER;

ST:out (SUCCESS,FAILURE)):

end LATEST_VERSION_NO_REQ HANDLER:

task UPDATES_CONSOLIDATOR(INTEGER range 1..N) is




l.’\: e

a8

--this task does the merging of buffered update_lists
--into the local file copy when in WARM state.
procedure WAKE_AT(V:VERS]ON_NUMBER) ;

entry WAKEUP;

entry QUIT,;

end UPDATES_CONSOLIDATOR;

task UPDATE_HANDLER( INTEGER range 1..N) is

--this task along with peer tasks in the PRIMARY and
~--HOT sites and the transaction coordinator atamically
--updates the HOT and PRIMARY copies.

entry UPDATE(U:UPDATE):

entry BECOMING_PRIMARY;

end UPDATE_HANDLER;

tesk UPDATE_L1ST_BROADCASTER( INTEGER range 1..N) is

--this task does the broadcasting of update-lists
--in PRIMARY state.
entry PICKUP_PACKAGE(UP:UPDATE_PACKAGE) ;

end UPDATE_LI]ST_BROADCASTER;

task BROADCAST_TIMER( INTEGER range 1..N);
--this task designates the times for the periodic update-list
--broadcasts.

task UPDATES_TO_BE_BROADCAST_MAINTAINER(INTEGER range 1..N) is

--fran the time that the site holding this task starts receiving
--update-lists, this task maintains a list of updates that it is
--not certain have been received by all appropriate sites; it
--provides the update-lists to be broadcast in PRIMARY state.
entry REPLACE(UP:UPDATE_PACKAGE);

entry ENTERING_HOT;

entry DELETE_UPTO(VN: VERSION_NUMBER) ;

entry PREPARE_PACKAGE;

entry ADD_UPD(U:UPDATE;V: VERSION_NUMBER) ;

entry BROADCAST_ON_REACHING(V:VERS]ON_NUMBER) ;

end UPDATES_TO_BE_BROADCAST_MAINTAINER:

Next we specify the task bodies.

. g

'

-

(XX R ARA]

DA R AT

v .
%%

P ROy




(%Y

'i =

- =

% A
. 89
! task body FILE_RECOVER is ;
’
o LN]l: constant := FILE_RECOVER' INDEX; ¢
p—: TREC: constant TIME; $‘,
' LOCAL_STATE: SI1TE_STATE:; _ cole
- procedure BROADCAST_STATE(S:SITE_STATE) is Y
Yo --used to broadcast state transitions; s
begin o
for 1 in SITE_]D loop %
if LNI # | then o
begin A
STATUS_REPORT_RECE]VER( ] ) . STATUS_REPORT( (LN],S, TREC) ) : _
exception I
when TASKING_ERROR=>;--ignore exception if call S
--does not camplete e
end;
end if; :;
ﬁ end loop; o
end BROADCAST_STATE;
procedure FILE_TRANSFER (V:VERSION_NUMBER) is L\:j'
--This procedure obtains a copy of the file ‘warmer’' than V. NN
--Jt uses a WARM site in preference to a HOT or the o~
' ) --PRIMARY site to avoid interference in updating them. e
. --1t will not return if all the sites which received
--the update corresponding to version nurber V and ahead e
--of the caller in STATE_Q fail before the transfer campletes. o
- --1n this case, same site not in HOT or PRIMARY state will find .
o --itself at the head of STATE_Q and invoke rmanual intervention. P
o : W
' end FI1LE_TRANSFER; R
begin '
initiate COPY_STATUS_KEEPER(LNI): ek
- initiate STATUS_REPORT_RECEIVER(LNI);
- initiate READER_WRITER(LNI]); Lo
LOCAL_STATE: =COLD; o
_ TREC: =READCLOCK; N
b" ‘.".“
& COPY_STATUS_KEEPER(LN1) . UPDATE( (LN1,LOCAL_STATE, TREC) ) ;
--initialize the queue elament for the site
--in which the task resides, in STATUS_Q.
- initiate STATUS_REPORT_SENDER(LNI!);
: --after the above- initialization,status
. --requests can be replied to. e
N, BROADCAST_STATE(COLD); --inform all fiie-copy-bearing sites of >
tﬂ --local status. o
N




-

o %
AR

g

-
L4

.';.

.

T

80

initiate SITE_CRASH_DETECTOR(LNI);--this task initially places
--WATCHDOWNs on all other
--file-copy-bearing sites.
for NOD in SITE_ID loop
if NOD # LNI then
STATUS_REPORT_SENDER(NOD) . STATUS_REQUEST(LN1);
end if; --to all other file-copy-bearing sites
end loop; --send status requests.
COPY_STATUS_KEEPER(LN] ) .WAIT_TILL_INIT;
--at this point the state of all sites is initialized in
--STATE_Q; either WATCHDOWN on them has returned or they
--have returned status reports.

declare--in this block a WARM copy is obtained.
INV: VERS10ON_NUMBER;

begin
initiate UPDATE_COLLECTOR(LNI);
initiate UPDATES_TO_BE_BROADCAST_MAINTAINER(LNI);
initiate UPDATE_RECEIVER(LNI]);
UPDATE_COLLECTOR(LN1).GET_FI1RST_VERSION_NUMBER( INV);
FILE_TRANSFER( INV) ;

end;

LOCAL_STATE : =WARM;
BROADCAST_STATE(WARM):--inform all other sites of
--the state transition;
COPY_STATUS_KEEPER(LN] ) . UPDATE( (LN1,LOCAL_STATE, TREC) ) ;
--update STATE_Q:
initiate UPDATES_CONSOLIDATOR(LN]):
COPY_STATUS_KEEPER(LNI).WAIT_TO_ENTER_HOT:
--wait terminates when the
--gite holding the task enters one of the
--first P positions in STATE_Q.

declare --in this block the site makes its file copy
-~correspond with the latest version.
P:SITE_ID;
BDONE: BCOLEAN:=FALSE;
DONE, RES1,RES2: (SUCCESS,FAILURE) :=FAILURE;
HOT_VN: VERS1ON_NUMBER;
begin
while RES1=FAILURE loop
-- loop till successful handshake occurs.
while RES2=FAILURE loop --loop till latest version
-- number is obtained.
begin
COPY_STATUS_KEEPER(LN1) .GET_PRIMARY_ID(P) ;
LATEST_VERS1ON_NO_REQ HANDLER(P).
HOT_VERS10N_NO_REQ(LN1,HOT_VN);
RES2:=SUCCESS; -
exception
when TASKING_ERROR =>; --continue inner loop.
end;




W
A
NS' p\
3 2
81 ~
end loop; oo
UPDATES_CONSOL1DATOR(LN1) .WAKE_AT(HOT_VN): N
F --;aitv;}erminates when the version nurber reaches (3N
\ - -HOT_VN. -
7 if not BDONE then BROADCAST_STATE(HOT): BDONE:=TRUE; end if; .-
--inform sites ahead in STATE_Q that the site is It
L] --entering HOT state if this has not been done in o
‘ --previous iterations of the loop. Oy
begin e
LATEST_VERS]ON_NO_REQ_HANDLER(P). RN
HANDSHAKE(LN1,HOT_VN,DONE) ;
i f DONE=SUCCESS then S0
RES1:=SUCCESS; --handshake terminates successfully. -
,e else RES1:=FAJLURE; --handshake fails. T
r end if; S
' exception . i
when TASKING_ERROR => L
--the primary has failed since Ry
--it supplied the latest version nurber. oad
- RES1:=FAILURE;
end; O
en? loop; <
UPDATES_COLLECTOR(LN]).QUIT; P
UPDATES_CONSOLIDATOR(LN!).QUIT;
. UPDATE_RECE] VER(LN]) . ENTERING_HOT;
i UPDATES_TO_BE_BROADCAST_MAINTAINER(LNI) .ENTERING_HOT; =
end; _
LOCAL_STATE:=HOT; o
COPY_STATUS_KEEPER(LN1).
UPDATE( (LN1,LOCAL_STATE, TREC) ) ; --update STATE_Q.
initiate UPDATE_HANDLER(LNI): SR
| COPY_STATUS_KEEPER(LNI] ) .WAIT_TO_BECOME_PRIMARY ; -
. UPDATE_RECEIVER(LN]).QUIT; o
UPDATE_HANDLER(LN] ). BECOMING_PRIMARY, DA
initiate LATEST_VERSION_NO_REQ HANDLER(LNI); o
--respond to requests for the latest version number et
--fran sites wanting to enter HOT state. e
- initiate UPDATE_LIST_BROADCASTER(LNI); o
--camence periodic broadcasts of update lists -y
' initiate BROADCAST_TIMER(LN]); .
LOCAL_STATE:=PRIMARY; o
. COPY_STATUS_KEEPER(LN1). -
- UPDATE(&LN].LOCAL_STATE.TRBC));--update STATE_Q. L
= BROADCAST_STATE(PRIMARY) ;--inform all other file-copy bearing ~
--gites of state transition.
end FILE_RECOVER: =t
PN
task body STATUS_REPORT_SENDER is o
"o IN]:constant SITE_]D:=STATUS REPORT_SENDER' INDEX; NS
¥ S:SITE_STATE: o
L




y o
5 .
. £
4
% -
) 92 v;’\
. l'.'
s T:TIME;
r‘- beg in .:::::'
e loop ey
N accept STATUS_REQUEST(NOD:SITE_ID): i
COPY_STATUS_KEEPER(LN]) .GET_STATUS(LNI,S.T); -
begin
= STATUS_REPORT_RECEIVER(NOD) . STATUS_REPORT( (LN1.S,T)): .
- exception o
. when TASKING_ERROR =>; e
s end; e
B end loop; S
. end STATUS_REPORT_SENDER; o

task body STATUS_REPORT_RECEIVER is

g ‘. l' Y 1'

‘; begin
loop
accept STATUS_REPORT(T:TRIAD) do

if (T.STATE=COLD) then By
SITE_CRASE_DETECTOR(LNI).SITEUP(T.NO): o
--T.NO is back up, so a WATCHDOWN should g
--be placed on it. S
& end if; ey
Il COPY_STATUS_KEEPER(LN1) .UPDATE(T): - -update STATE_Q. .
end STATUS_REPORT; :
end loop;
= end STATUS_REPORT_RECEIVER;
!! task body SITE_CRASH_PETECTOR is
tN]:constant SITE_ID := SITE_CRASH_DETECTOR' INDEX;
egin
for NOD in SITE_ID loop --place WATCHDOWN on file copy
--bearing sites. S
—_ if (NOD »# LNI]) then i
" WATCHDOWN (NOD) ; '
end if;
end loop;
- loop X
-2 select o
L accept WATCH_DOWN_INTERRUPT(NOD:SITE_ID;T:TIME): -
--this entry is invoked by the status
- -sqmeintenance scheme when a watch returns. e
- COPY_STATUS_KEEPER(LN1) . UPDATE( (LN] ,DEAD,T)): e
or ~
sccept SITEUP(NOD:SITE_ID); AN
. WATCHDOWN (NOD) ; RGRX
f end select; )




- -
.

-
o

s |

83

end loop:

end SITE_CRASH_DETECTOR;

task body UPDATE_RECEIVER is

HOT : BOOLEAN: =FALSE;
LN]:constant SITE_ID := UPDATES_RECEIVER' INDEX;
begin
loop
select
when not HOT=>
accept UPDATE_LIST(UP: UPDATE_PACKAGE)
UPDATES_TO _BE_BROADCAST_MAINTAINER( L.\l) REPLACE(UP) ;
--receipt of this list may nodify the updates that
--are known to have been broadcast.
UPDATE_COLLECTOR(LN1) .ADD_TO_LIST(UP);
--add this list to buffered update-lists.
or
accept ENTERING_HOT;
HOT:=TRLE;
or
when HOT=>
accept UPDATE_LIST(UP:UPDATE_PACKAGE):
UPDATES TO_BE_BROADCAST_MAINTAINER(LNI)
DELETE_UPTO(UP.LVN-1);
--updates upto version number UP.LVN-1 must bave
--already been broadcast.
or
accept QUIT;--PRIMARY state is being entered, fram now on
--the site holding this task will do the
--broadcasting of update-lists.
exit;
end select;
end loop;

end UPDATES_RECEIVER;

task body UPDATE_COLLECTOR is

INI:constant SITE_JD:=UPDATE_COLLECTOR' INDEX;
type LIST_ELEM is record
LUP: UPDATE_PACKAGE;
SUCC:access LIST_ELEM;
end record;--buffer for update-list.
HP,TP:access LIST_ELEM;
MIN_VN,MAX_VN: VERS]ON_NUMBER;
--MIN_VN is the first update received after
--entry into COLD- state;MAX_VN is the latest
--update received.
WAITING: BOOLEAN:=FALSE; --signifies when TRUE that the task

1'0/4‘
(4

A I A T
v "
‘ LI LI

”

P
Sy Ay Ay 2,




=¥
.l. o l'

‘l'

.-

94

--UPDATES_CONSOLIDATOR is waiting for
--the next update list.
begin
accept ADD_TO_L1ST(UP:UPDATE_PACKAGE):
KP:=TP:=new LIST_ELEM(LUP=>UP, SUCC=>null);
MIN_VN:=UP.LVN;MAX_VN.=UP.HVN;
loop
select
accept GEI_F]RST_YERS]ON_NUMBER(VN:out VERSION_NUMBER) do
VN:=MIN_VN;
end GET_FIRST_VERS]1ON_NUMBER;
or
accept ADD_TO_LI1ST(UP:UPDATE_PACKAGE):
it (UP.HVN>MAX_VN) then--if the new list contains updates
--not already received.
if (TP:=null) then--if all received updates have already
--been picked up by UPDATES_CONSOLIDATOR.
HP:=TP:=new LIST_ELEM(LUP=>UP,SUCC=>null);
else
TP.SUCC:=new LI1ST_ELEM(LUP=>UP,SUCC=>null);
TP:=TP.SUCC;
end if;
MAX_VN:=UP.HVN;
if WAITING then
UPDATES_CONSOLIDATOR(LN]) .WAKELP;
WAITING:=TRUE; - -one WAKELUP for each time GET_FROM_LIST
--returns zero updates.
end if;
end if;
or
accept GET_FROM_LIST(UPA:out access UPDATE_PACKAGE) do
if (HP=null) then--if no updates on hand
UPA:=new UPDATE_PACKAGE(1vn=>0, hvn=>0);
-~return a null list.
WAITING:=TRLE; - -remember that UPDATES_CONSOLIDATOR will
--be waiting to be informed when same
--updates are available.
else
UPA:= new UPDATE_PACKAGE(HP.all):
HP:=HP.all;
end if;
end GET_FROM_LI1ST;
or
accept QUIT:exit;--the site holding this task is entering
--HOT state.
end select;
end loop:

end UPDATE_COLLECTOR;

task body UPDATES_CONSOLIDATOR is

PEPAF AES VPR O, SN PP PP R TR B G S FA‘L{_\“L\‘ L PO iy PP R TP

Ak d N Gl Gl el St St e i Al lh At S-S s e ot a-h ot e aeeoved vt soun




TID:constant TASK_]D:=COMMON.GET_MY_JD;

WAITING:=BOOLEAN:=FALSE; --when TRUE, this variable signifies that
-~this task is waiting for more updates to arrive.

P. access UPDATE_PACKAGE;

CVN.VERSION_NUMBER; - -current version number of the local copy.

TRAP_VN: VERSION_NUMBER;

TRAP_SET . BOOLEAN: =FALSE;

LNl:constant SITE_ID:=UPDATES_CONSOLIDATOR’ INDEX;

entry SET_TRAP(V:VERSION_NUMBER) ;
entry REACEED;

procedure WAKE_AT(V:VERSION_NUMBER) is
--is used by FILE_RECOVER to be informed when the local copy
--reaches the latest version number, so that it can enter
--HOT state. .

begin
SET_TRAP(V);
REACHED; --the latest version number has been reached.

end;

begin

READER_WRITER(LN1) .GET_VERS10N_NUMBER(CVN) :
<<OUTER>>
loop
while not WAITING loop--loop till all update lists received
--have been merged into the local copy.
UPDATE_COLLECTOR({LN1).GET_FROM_LIST(P):
if (P.HVN=0) then--if a null list has been obtained
WAITING:=TRULE,; --then wait till same updates arrive.
else
READER_WRITER(LN1).GET_WRITELOCK(TID);
for J in P.LVN..P.HVN loop--merge updates.
if J=CVN+1 then
READER_WRITER(LN1).WRITE(P.UPDATES(J),J,CVN) .
end if;
end loop;
READER_WRITER(LN]).RELEASE_WR] TELOCK(TID);
end if;
end loop;
<<INNER>>
loop
select
accept SET_TRAP(V:VERS]ON_NUMBER) ;
TRAP_VN:=V;
TRAP_SET:=TRUE;

or
when (TRAP_SET and then CVN = TRAP_VN)=>
--version nurber has reached the latest version number;
accept REACHED;
or :
accept WAKEUP;WAITING:=FALSE;exit INNER:
--go to process the newly arrived updates.
or

At R '..‘.-".’."..','.’-‘-".."" A -t -~ RN L e T . - A
VIRCIIE T IR T T DR Ty S LA R AR, 9 FVITE TV Iﬁ'liﬁ D S TSV AL TR VS T PR IS L P e

e dadaia Sl o n




]
P

‘a"s e
1]
L4

rv

.....
-----

86

accept QUIT; exit OUTER;
--site is entering HOT state.
end select;
end loop;
end loop;

end UPDATES_CONSOLIDATOR;

task body COPY_STATUS_KEEPER is
type SITE_REC is
record
T:TRIAD;
PRED,SUCC:access SITE_REC;
end record;
HOTLIST:COPY_SET:=(1. .N=>FALSE) ;
SITES_NOT_JINITIALIZED:=(1. .N=>TRLE) ;
INIT: BOOLEAN:=FALSE;
ENTER_EOT : BOOLEAN : =FALSE;
BECOME_PRIMARY : BOOLEAN: =FALSE;
PRIMARY_KNOWN: BOOLEAN:=FALSE;
HP,TP:access SITE_REC:=null;--head and tail pointers to STATE_Q.
LOCAL_POS: INTEGER range 1..N;--position of site in which task
--resides in STATE_Q. .
LN]l:constant SITE_]ID:=COPY_STATUS_KEEPER' INDEX;

procedure RETRIEVE (N:SITE_JD;S:out SITE_STATE;T:out TIME) is
--This procedure searches the queue to find the elament for

--the site corresponding to N and returns the values of
--T.STATE and T.TR.

end RETRIEVE:

procedure MODIFY(T:TRIAD) is
--This procedure changes the queue-element for the site
--specified in T to the values specified in T provided T.TR is
--greater than or equal to the corresponding carmponent of
--the queue element; it then moves the elarent if necessary
--so that STATE_Q is still sorted in increasing order of
--the value of this carponent for non-DEAD sites with the DEAD
--gites following in any order.

end MODIFY_REC;

procedure GET_LOCAL_POS(POS:out INTEGER) is
--This procedure gets the position of the queue-elerent
--corresponding to site LN], measured fran the head of the
--queue,i.e.if site LN] were at the head, Lhe procedure will
--return with P0OS=1.

.-~
-
)




87

end GET_LOCAL_POS:

begin
for NOD in SITE_ID loop --form STATE_Q.
if (TP=null) then
HP:=TP:.=
g new SITE_REC(triad=>(NOD, DEAD,0),PRED=>null, SUCC=>null);
g else
TP.SUCC: =
new SITE_REC(triad=>(NOD,DEAD,0),PRED=>TP,SUCC=>null);
TP:=TP.SUCC;
end loop:
LOCAL _POS:=LNI;
loop
select
when PRIMARY_KNOWN =>
accept GET_PRIMARY_ID(NOD:out SITE_ID) do
, NOD:=HP.T.NO;--PRIMARY is at the head of STATE_Q.
-~ end GET_PRIMARY_ID;
when BECOME_PRIMARY=>
accept WAIT_TO_BECOME_PRIMARY;
when ENTER_HOT=>
accept WAIT_TO_ENTER_HOT:
when INIT=>
accept WAIT_TILL_INIT;

or
when INIT=>
accept GET_HOTLIST(S:out COPY_SET) do
S:=HOTLIST:
end GET_HOTLIST,;
or
accept GET_STATUS(NOD:SITE_ID;STATE: out SITE_STATE;
T:out TIME) do
RETRIEVE(NOD, STATE, T) ;
end GET_STATLS;
or
accept UPDATE(T:TRIAD);
MODIFY(T);
if (T.STATE=HOT) or (T.STATE=PRIMARY) then
HOTLIST(T.NO) :=TRUE;
end if;
if not INIT then
SITES_NOT_INITIALIZED(T.NO) :=FALSE;
if SITES_NOT_INITIALIZED=(1. .N=>FALSE) then
INIT:=TRUE;
end if;
end if;
GET_JL.OCAL_POS(LOCAL_POS);
if §LOCAL_POS < P) then ENTER_HOT:=TRUE;end if;
if (LOCAL_PCS=1) then
BECOME_PRIMARY :=TRUE;
if (HP.T.STATE=PRIMARY) then

AR
P

fd
P
P



[ B B 2l
ae s
P

KRS

EEEN

f

PRIMARY_KNOWN:=TRUE;
else
PRIMARY_KNOWN:=FALSE;
end if;
if INIT and §(LOCAL_POS=1) and ((HP.T.STATE # HOT)
or (HP.T.STATE # PRIMARY)) then
f{signal and wait for menua! intervention to reinitialize
the file copy bearing sites {:
end if;--the site at the head of STATE_Q is unable to enter
--HOT state, therefore no further update
--transactions can be processed.
end select;
end loop;

end COPY_STATUS_KEEPER;

task body UPDATE_HANDLER is
IN]l:constant SITE_)D:=UPDATE_HANDLER' INDEX;
HOT: BOOLEAN:=TRUE; - -flag to distinguish whether the state
--is HOT or PRIMARY.
CVN:VERSION_NUMBER; --current version nurber.
TID:constant TASK_]D:=COMMON.GET_MY_JD;
TR_ID: TRANSACTION_ID;
COUNT: INTEGER range 1..N;
READY : BOOLEAN;
UP: UPDATE;
begin
READER_WRITER(LN1) .GET_VERS]1ON_NUMBER(CVN);
<CMAIN>>
loop
select
accept UPDATE(U_JD:TRANSACTION_ID;U:UPDATE;
AM_PRIMARY :out BOOLEAN;RES:out (ACCEPT,REJECT):
HL:out COPY_SET) do
--protection and integrity checks are assumed
--to have been done.
TR_JD:=U_]D:
UP.=U;
READER_WRITER(LN1).GET_WRITELOCK(TID);
it HOT then --in HOT state
AM_PRIMARY : =FALSE;
RES:=ACCEPT.
READY : =TRUE;
else --in PRIMARY state
AM_PRIMARY : =TRUE;
COPY_STATUS_KEEPER(LNI!) .GET_HOTLIST(HL):
for 1 in SITE_JD loop
if HL(1)=TRUE then
COUNT: =COUNT+1:
endif;
end loop;
if COUNT # P then --accept update only if P HOT copies

........
.

‘»'{ A T Rl S UL SO SN .. e -
- “ P N D S e e e T e e et s e
- [y . . “ . - . L L R

L RN
T e




43
ﬁ‘ %y
oye
v [N
:J': r::f-*
- 99 =
{'-
- --(including the PRIMARY) exist. N5
. READY:=FALSE; N
RES:=REJECT; Iis
[ READER_WRITER(LN] ) . RELEASE_WRITELOCK(TID); ratal
. else v
%ADY::T]}%;’%; w{d
S:=ACCEPT; :
vp': end if; :\.":?:
& end if; S
end UPDATE; -
-, <<COMMIT_OR_ABORT>> RO
t:; if READY then e
- loop
accept DECISION (U_JD: TRANSACTION_JD:COMMIT: BOOLEAN) do G
v if TR_ID=U_ID then L
v if COMMIT then
- READER_WRITER(LN]) .WRITE(UP.CVN+1,CVN); O
- UPDATES_TO_BE_BROADCAST_MAINTAINER(LN]). NG
ADD_UPD(UP,CVN) ; Y
» end if;
READER_WRITER(LN1) . RELEASE_WRITELOCK(TI1D);
. exit COMMIT_OR__ABORT; NGy
--exit this loop only if the fate of the DAY
--transaction has been decided. Ny
end if; N
- end DECISION; el
. end loop:
end if; RS
or
accept BECOMING_PRIMARY; e
s HOT:=FALSE; e
end select; iy
m end loop;
end UPDATE_HANDLER;
task body LATEST_VERS]ION_NO_REQ HANDLER is Ve
LN]:constant SITE_]D:=LATEST_VERS]ON_REQ _HANDLER' INDEX;
NOD:SITE_JD;
s ST: (SUCCESS, FAILURE) ; e
T VN: VERSION_NUMBER; O
TID:TASK_)D:=GET_MY_I1D; SR
T: constant TIME:=..;--should be set to a value sufficient for vl
. --the site requesting the latest version -
--nurber to get all updates up to this -~
. --version nurber, inform all sites of its ORI
“ --entry into HOT state and then perform a B
) --a handshake with this task. N
begin NS
loop ‘ AN
E loop i
o s
»



v,
O"'

vy
e

100

select
accept HOT_VERSION_NO_REQ(NO:SITE_JD;V:out VERSION_NUMBER)
do
NOD:=NO;

READER_WRITER(LN1) .GET_READLOCK(TID):
--block updates while the process of getting the
--caller site into HOT state is going on.

READER_WRITER(LN1).GET_VERSION_NUMBER(VN) ;

V:=VN;

end HOT_VERSION_NO_REQ:

UPDATES_TO_BE_BROADCAST_MAINTAINER(LNI1).

BROADCAST_ON_REACHING(VN);

--initiate a quick update list broadcast so that
--the caller site does not have to wait till the
--next of the periodic broadcasts.

exit; --go to wait for bandshake;

or
accept HANDSHAKE (NO:SITE_]ID;V:VERSION_NUMBER; ST:out
(SUCCESS,FAILURE)) do
ST:=FAILURE; - -a HANDSHAKE entry accepted here indicates
--that the call did not core in tinme.
end HANDSHAKE;
end select;
end loop:

loop
select
accept HANDSHAKE(NO:SITE_JD;V:VERSION_NUMBER; ST:out
(SUCCESS,FAILURE) ) do
if (NO=NOD) and (V=VN) then
ST:=SUCCESS; --succesful broadcast
READER_WRITER(LNI ) . RELEASE_WRITELOCK(TID);
exit; --go to wait for the next request for the latest
--version nunber.
else
ST:=FAJLURE; --this call did not came within the set
--period or is a duplicate of a call that
--either did not care in time or which
--resulted in a successful handshake.
end if; '
end HANDSHAKE;
or
delay T; --time period for the site that requested the
--latest version number to call HANDSHAKE.
READER_WRITER(LN1).RELEASE_WRITELOCK(TID) ;
exit;
--expected handshake did not occur, so go back to wait
--for the next request for the latest version nurber.
end select;
end loop;
end loop;

end UPDATE_HANDLER;




-" '.'.!‘h

-

L.
S

Dl RACA i A bl ol tad bl Sa b st il Sl Sy Y o S et fivg 2 A ir e Aars S iy

101

task body UPDATE_L.1ST_BROADCASTER is

IN!:constant SITE_J)D:=UPDATE_L]1ST_BROADCASTER' INDEX;
begin
loop
accept PICKUP_PACKAGE(UP:UPDATE_PACKAGE):
for all NOD in SITE_ID loop
if LN] # NOD then
begin
UPDATE_L1ST_RECE1VER(NOD) . UPDATE_LIST(UP)
exception
when TASKING_ERROR=>;
end;
end if;
end loop;

end UPDATE_LI1ST_BROADCASTER;

task body BROADCAST_TIMER is

INl:constant SITE_)D:=BROADCAST_TIMER' INDEX;
TBROD:constant TIME:=....; --period of update lists broadcasts.
begin loop
delay TBROD;
UPDATES_TO_BE_BROADCAST_MAINTAINER(LNI ) . PREPARE_PACKAGE;
end loop;

end BROADCAST_TIMER;

task body UPDATES_TO_BE_BROADCAST_MAINTAINER is

LNI:constant SITE_I1D:=UPDATES_TO_PROADCAST_MAINTAINER' INDEX;

LUPV,V:VERSION_NUMBER; --LUPV is the version nurber up to which
--updates have already been broadcast.

P.Q:access UPDATE_PACKAGE;

LO,H1:VERS]ON_NUMBER;

HOT : BOOLEAN: =FALSE;

TRAP_SET: BOOLEAN:=FALSE; --used to initiate special broadcasts
--when a site entering HOT state.

TRAP_VN_NO: VERS 1ON_NUMBER;

NO_UPD_ON_HAND: BOOLEAN: =TRUE;

begin

UPDATE_COLLECTOR(LNI).GET_FIRST_VERSION_NUMBER(V):

LUPV:=V-1;

loop

select
when not HOT=>
accept REPLACE(UP:UPDATE_PACKAGE) ;
if NO_UPD_ON_HAND then --if no updates are in this
--gite's possession which have
--not been broadcast
if (UP.HVN>LUPV) then --if this list contains any




.......................

§-. S
102 -
S’ --updates not known to have :
--been broadcast o
(o NO_UPD_ON_HAND: =FALSE; ~
‘: P:=new UPDATE_PACKAGE(LVN=>LUPV+1,HVN=>UP.HVN) ; co
- for VN in P.LVN..P.HVN loop --store the list, .
P.UPDATES(VN) : =UP.UPDATES(VN) ;
- end loop;
else --this site has sare updates that it cannot be sure
. --have been broadcast
- if (UP.HVN>P.HVN) then --if this list contains sam
S --new updates
Q:=new UPDATE_PACKAGE(P.all);
.- if (P.LVN>UP.LVN) then v,
o LO:=P.LVN; -
. else y
LO:=UP. LVN; '
v end if; --updates with version nurber less than N
Eﬁ --LO are known to have been broadcast. o
HI :=UP.HVN;
LUPV:=L0O-1; -
P:=new UPDATE_PACKAGE(LVN=>LO,HVN=>HI): o
for V in LO..HI loop N
if V. in Q.LVN. .Q.HVN then o
P.UPDATES(V) :=Q.UPDATES(V): "
“ . else =
. P.UPDATES(V) :=UP.UPDATES(V) ; "
end if; o
end loop; --merge the newly arrived list with the %
--updates on hand. N
end if; S
end if;
or
. when not HOT=>

' accept ENTERING_HOT;
HOT:=TRUE; --fram now on updates are directly added to
e --the set on hand as they are camnitted,
--instead of being received in periodic
--broadcasts.
or

when HOT and not TRAP_SET=>
accept BROADCAST_ON_REACHING(V: VERS1ON_NUMBER) ;
if (NO_UPD_ON_HAND and LUPV < V) or e
((not NO_UPD_ON_HAND) and P.HVN < V) then o
--do not set trap if the update corresponding to V .
--has already been broadcast or if not is in the
--the set of updates on hand. =
o TRAP_SET:=TRUE; e
o TRAP_VN_NO:=V; . oo
’ else --if the update has not been broadcast but is at
--hand then initiate a broadcast. -
if ((not NO_UPD_ON_HAND) and X
P.LVN £ V and P.HVN 2 V ) then

e

A

o

--------




........

103

UPDATE_L ] ST_BROADCASTER(LN1) .PICKUP_PACKAGE(P.all);

NO_UPD_ON_HAND:=TRUE;
LUPV:=P.HVN\;
end if;
end if;
or
when HOT=>
accept ADD_UPD(U:UPDATE;V:VERS10ON_NUMBER) ;
if (NO_UPD_ON_HAND and V-LUPV+1) then
P:=new UPDATE_PACKAGE(LVN=>V,HVN=>V, UPDATES(V)=>U);
NO_UPD_ON_HAND: =FALSE;
elseif ((not NO_UPD_ON_HAND) and V=P.HVN+1) then
Q:=new UPDATE_PACKAGEéP.all);
P:=new UPDATE_PACKAGE(LVN=>P.LVN,HVN=>V);
for VN in P.LVN. .P.HVN loop
P.UPDATES(VN) : =Q. UPDATES(VN)
end loop;
P.UPDATES(V) :=U;
end if;
if (TRAP_SET and then P.HVN 2 TRAP_VN_NO) then
--if the trap is set and the new update sets it off
UPDATE_L1ST_BROADCASTER(LNI]).P1CKUP_PACKAGE(P.all);
--initiate a broadcast.
NO_UPD_ON_HAND: =TRUE;
LUPV:=P.HVN;
TRAP_SET:=FALSE;
end if;
or
when HOT=>
accept PREPARE_PACKAGE; --periodic broadcast
it (not NO_UPD_ON_KFAND) then
UPDATE_L]ST_BROADCASTER(LN]).PlCKUP_PACKAGE(P.ull);
NO_UPD_ON_HAND:=TRUE;
LUPV:=P.HVN; end if;
or

when HOT=>
accept DELETE_UPTO(V:VERS]ON_NUMBER) ;
if (not NO_UPD_ON_HAND) then
if (P.HWN < V) then
LUPV:=V;
NO_UPD_ON_HAND:=TRUE;
elseif (P.LVN < V) then
Q:=new UPDATE_PACKAGEEP all);
P:=new UPDATE_PACKAGE(LVN=>V+1,HVN=>Q .HVN);
for VN in P.LVN..P.HVN loop
P. UPDATES(VN).-Q UPDATES(VN)
end loop;
end if;
end if;
end select;

end loop;
end UPDATES_TO_BE_BROADCAST_MAINTAINER;

s s % v,
SR A
L 2

T
AN

L3
7.

(AL AP RN

CRRAPAAL
»
3

rf
ale

'P



»
o0
.
.

. "o
ah, :\
W o
W “a 9
4
p -:.’p
2 CHAPTER 3
l..-
.
R <

voy !
1

ENSURING THE CORRECTNESS OF GLOBAL INFORMATION

P
S
e
-
.
v

3.1. Introduction

In this chapter, we address the problem of maintaining the availability of
global information in a computer network, in the presence of maltunctioning

sites in the network.

> Our model of the network is that it consists of a set of sites attached to
- e communication subsystem. We assume that this subsystem provides per-
fect site —to —site communication so that all messages are delivered intact in
.- . a known period. Note that in this model, the communication subsystermn does -

not provide a reliable broadcast mechanism and in fact the difficulty of per- B

forming a reliable broadcast will be a major issue in the following discussion.

P frh
LA

A NN

Further it is assumed that no site A can masquerade as another site B and -

f / -l' ll ,l' v-‘ v

u send messages as originating from B. The ideas presented below can be
extended to the case where the communication is imperfect; the assumption

of perfection is made to simplify the presentation.

In Chapter 1, we distinguished between two kinds of failure models for
network sites. In the model in which crashes are the only mode of failure, a
site exhibits fail -stop behavior [SCH B3] and performs a recovery pro-
.:' cedure as its first act after each crash. In the other model, malfunctions
. are the mode of failure. A malfunctioning site may go through arbitrary

state transformations and emit arbitrary messages. In the extreme case, a

malfunclioning site may exhibit malicious intelligence attempting to disrupt

the functioning of the rest of the network. In Chapter 2, we showed how to

104




AN

L}

-3

~—~

F

L an i atvEabde s sha ae sedc

105

detect site crashes and maintain a view of network status for the former
model. The essence of malfunction as a model of failure, however, is that the
existence of a malfunctioning site may go undetected for an indefinite period
of time. Hence, it is necessary to develop techniques that preserve the avai-
lability of global information in the presence of arbitrary, undetected

failures, and this is the aim of this chapter.

In Section 3.2, we discuss why and under what conditions replication
should be used to deal with malfunctions. Section 3.3. explains the
phenomenon of error propagation which can occur when malfunctioning sites
are present, and which can progressively render all the global information
stored in the network incorrect. Section 3.4. outlines our approach to
preserving correctness. Section 3.5. deals with relevant past work in this
area and the reasons why it cannot be directly used to solve the problem
being considered. Section 3.6. describes the extensions to, and modifications
of this work necessary to carry out our approach. Section 3.7. further
develops our approach by describing protocols that prevent error propaga-
tion when a particular form of bound on the number of malfunctioning sites

holds, and which have some nice properties.

3.2. Redundancy Techniques for Storing Information

In order to protect the availability of information against crashes and
malfunctions, some form of redundancy is required. One form of redundancy
is replication, in which multiple copies of the information are made and
stored with each copy at a different site. Another form of redundancy that
could be used is errordetecting and correcting codes. Consider a n-bit piece

of information. It could be encoded in N=n+k bits, where & =lloggN] using a

distance-3 Hamming code and stored in N sites, one bit in each site. Then

SO IP AP I NN AP IR R PRI PO LRI .., LN et ‘-—_-ﬁ——-“ PUDNEEIARIENIEN




- - v D AN (O n e e S 0 o s e e e e
| e A RASCANE AL A s Y g A LD SR UL e S el e s S IO A i gna pray T—— T T T T Iy T T W W W

106

[ e the piece of information would rermain available, as long as no more than one
site crashes or malfunctions. However this solution will incur a large amount
~ of communication overhead, since a large number of sites may have to be
F consulted to retrieve the information. Also since the information is parti-
tioned among many sites, it is not possible to process it locally at any of
these sites. Rather, the information must be first assembled at some point
before processing, further increasing the communication overhead. Since
communication bandwidth is, and is expected to remain [OUS B80], a
bottleneck in most distributed systems, we do not consider this approach
l';' further. Thus although error-deterting and correcting codes can be used
locally at each site e.g. in the memory and ALU, to lessen the likelihood of its
crashing or malfunctioning. and also in the communication subsystem, the
appropriate redundancy technique for stored information at the system level
. where the unit of failure is a site, is to replicate the information at multiple

sites.

In order to preserve the availability of an item of information in the
! presence of m malfunctioning sites, it is necessary to replicate the informa-
tion at 2m +1 sites. Then by consulting each of the 2m +1 replicas and taking
8 majority vote, the correct value is obtained, as long as there are at most m
malfunctioning sites. The larger the number of replicas, the greater the pro-
tection against the information getting lost due to malfunctioning of sites.
But this is true only if the probability p of a site malfunctioning is less than
0.5 If p > 0.5, replication only reduces the probability of obtaining the
correct value. Assume the number of replicas is increased from 2r -1 to
2r+1. There are two possible situations in which this addition of two extra
replicas makes a difference in determining whether a majority vote yields

! the correct value or not:

r =y

- .-1
Cd
a

1

1

[N S U P S L P Ry R P, i L% RO S T A L T T GV R-IP T VO P O I GIPILIPR C UL PRI YRR WO YR W AL W ol WP S PO 2 |




-

'rl
M

-
g

NI

Cali

N o et S S Y A G S S iy 4 '.“m:'." Al il Sl S L Al adh AN and otk otd Sl add-idiri et

107

(a) There are r—1 malfunctioning sites among the original 2r -1 sites, but
both the additiona! sites are malfunctioning. Here a majority vote with the
original 2r —1 replicas will yield the correct value, but a majority vote after

the addition of the two replicas, will not. The probability of this occurring is
pl= p'[z,'_'f]p"‘(l-p)'

= [2::11]])'”(1_?),-
(b) There are r malfunctlioning sites among the 2r -1 original replicating
sites, but both the additional replicas are failure-free. Here, while the origi-
nal set of replicas might not yield the correct value in a majority vote, the
augmented set will. The probability of this occurring is
p2= (l—p)’[z',’l]p'(l—p)"’

= ?:Jl]p'(l—p)"‘-

Therefore, the improvement in the probability of obtaining the correct value
is

p2-pl= ";':ll]p'(l-p)'(l—ep)

which is greater than 0 iff p<0.5. Hence replication is desirable only if p <0.5.

In the rest of this chapter we assume that this condition holds.

3.3. Effect of Malfunctions on Correctness

Let t:y+f(z) be a transaction entered into the network which seeks to
updaté ¥ to a new value which is a function of the current value of z. We call
z the read-variable and y the write-variable. Assume we have one copy of
at site X and three copies of y at Y1, Y2 and Y3 ( Fig. 3.1 ). Assume that site
X is malfunctioning. Then the values of z or f(z) (depending on where f(z) is
computed) sent to Y1, Y2 and Y3 may be incorrect and may be different. If

no precautions are taken, the copies of y will take on incorrect and divergent

O . S e . ., . ST, L . . B A I A
il St P At adalael N D PN Ty U [VU TN TG PY YUY VR VENGOUIV LY TW PR T Y TR VTN TR TS VS YN




108

TRANSACTION Y == F(X)
-
%
// i
L/
, N

- ® MALFUNCTIONING SITE
O FAILURE-FREE SITE
-

FIG. 3.1. X TRANSMITS THE VALUE OF x TO Y1, Y2 AND Y3.

P
dainbaitheniintlondtton s




pe,
7

109 Ay

values. For Y1, Y2 and Y3 to reach agreement is non-trivial, since there
may be malfunctioning sites among them too. If other portions of the global
RS information are thereafter updated directly or indirectly as a function of y, .'Q.‘:;':
= the incorrectness of the latter gets propagated. This kind of error propaga- ..

tion, if unchecked, will increasingly disrupt the functioning of the network.

To check it, in some cases it will be suflicient if Y1, Y2 and Y3 take on some
common value for ¥ but in others additional restrictions on this common

value will have to be enforced.

As an example to illustrate the importance of maintaining the correct-
- ness of global information, consider a dynamic packet radio network in which
a group of sites wishes to perform some task, composed of a set of subtasks. "-::'
Assume that the group has first to determine how many sites are present in
the group and how they are connected and then, based on this topology infor- '_".:f:
. mation, to assign subtasks to sites. Assurmne that for reliability these steps 5
are to be done in a distributed manner and that the following method is
chosen. Each site communicates with the rest of the group and determines ('.';‘-
a the topology.. Then each of the sites applies a common algorithm to compute
the assignment of subtasks to sites. Then we require that a) the correctly -:
operating sites arrive at a common view of the topology so that assignment
of subtasks, though done in a distributed manner, is consistent and b) this
commmon view at least "closely” represent the true topology. otherwise the
assignment may prove ineflective. (Consider what may happen if a large
- number of non-existent “ghost” sites are imported into the view by malfunc-

tioning sites. Then critical subtasks may be assigned to ghost sites.)

¥

R R S T '-._'-..'- e :
Bt o ol s o 2°a 22 2




EY

L SE T

110

3.4, Outline of Proposed Approach for Maintaining Correctness

As explained in Section 3.2, we can replicate global information and
store the copies at different sites in order to guard its correctness against

malfunctioning sites.

Suppose a piece of information is replicated at ( 2m+1 ) sites, m=
0.1,2... As long as no more than m of these sites malfunction, any site can,
by consulting all 2m+1 sites and taking the majority value obtaiu the correct
value.

In stating that the correct value can be obtained by the above pro-
cedure, we are assumning that the following conditions hold: (a) the failure-
free sites have the same stored value and (b) this value is correct. However,
even if a majority of the 2m+1 sites are failure-free, conditions (a) or (b) or
both could be violated if precautions are not taken when updating the infor-
mation. This is because of the phenomenon of error propagation explained in

Section 3.3.

The problem of preventing error propagation can be stated as follows.
Assume that the update y«f (z) has been submitted to the system. There
are 2t+1 copies of z each at a different site. This set of sites is called the
transmitter set {7]. Similarly there are 2r+1 copies of y stored in the
receiver set {R]. ( The sites bolding copies of a write-variable in a transac-
tion are called receivers, and the sites holding copies of a read-variable of
the transaction are called transmitters. Note that the same site may be a
transmitter in one transaction and a receiver in another. ) We will assumne in

this chapter that { T{N{R{ = nil, i.e. the sets are disjoint.

In order to prevent error propagation as a result of processing the

update, two steps must be taken:

PNEATAT AN
PR e [
..‘ LI A )

[



———vw-

111

(i) the failure-free sites in {#} must reach agreement on the value of z. We

call this the unanimity-reaching step.

(ii) the value of x agreed on must be verified to be correct. The extent to

which this can be done depends on the knowledge that the sites in {#] have

laman an
.<’ -

regarding what values of z are reasonable. This knowledge is stored in the
form of assertions. We call this step of verifying that z satisfies these asser-
tions the acceptability-checking step. The limitation here is that in some
cases, it may be diflicult to develop assertions that can, to a useful extent,

restrict wrong values from passing. In cases where such assertions cannot

T T

".. be generated but it is crucial to protect the updated information, the only
solution appears to be to increase the degree of replication of the read-

variable and thus diminish the probability of obtaining a wrong value.

We use the the example given above of the group of sites that wish to
determine their topology and assign subtasks to different sites in the group.
Here the receivers {R] are the sites in the group. ¥ is the topology informa-
' tion. z is the position of any given site and §T{ is the set of sites reporting
. the position.

In the unanimity-reaching step, the sites in {®] reach agreement on the
position of a site. The acceptability-checking step can be used to try to
screen out "ghost” sites. For instance, the assertion we may require to be
satisfied may be that all the sites in some appropriately defined "vicinity"” of
an alleged site confirm the existence of that site. How effective the assertion

o is depends on the presence of failure-free sites in the vicinity.

- In general, the unanimity-reaching and acceptability-checking steps
may be intertwined or follow one another in either order depending on the

f problemn at hand. For example, if the size of z's representation is large, and

LT et e T e T e . S e . el L -
N IR S PP A, PR i Y - 2 " . PR P P, S A T .
PRI b N, Y A > PO inehinimadatdhand o oo B Aemda bttt o d ol R U PR i G P P




N 3
2 :
- 112 i
E if the value received is found to fail the acceptability-checking step a special -
- symbol denoting an unacceptable value may be used in the unanimity- _';.'t
r: reaching step. .. ,
- The nature of the acceptability-checking step is very much dependent
o on the problem at hand. Hence we will not discuss it further. We will discuss ”'.
j:"‘ the unanimity-reaching step in detail, but first we give a brief description of
= the results available from the literature that are relevant. -

3.5. The Byzantine Generals Agreement Problem
Z:;‘ A number of papers have appeared on the so-called Byzantine Generals ‘
e Agreement (BGA) problem [PEA 80, LAM 80, DOLB1, DOL 82a, DOL 82b,

DOL 82c].

Consider a site T which wishes to transmit a value Vto a set of receiving :;f

i sites {/#]. Then the Byzantine Generals Agreement is reached among the -
.. sites in {R} if the following conditions are fulfilled:
1. If the transmitter is failure-free, all failure-free receivers agree on Vas the -.
- common value.

2.All failure-free receivers arrive at the same value, whether the transmitter ;

is malfunctioning or failure-free. ' :".

To show the nature of this agreement, we show an example of a network ;lf»;

of four sites in Fig. 3.2. Assume that the transmitting site (marked T in the =
figure) is required to transmit the value 5 to the receiving sites (marked & in :-'l
) the figure). We show two possible situations, in the left and right parts of the oy
*E figure respectively, the first involving a malfunction in one of the receivers :
.. and the second in the transmitter itself. We show how an algorithm given in :‘:".
’ [LAM 80] is applied to this network to reach the BGA, assuming, as is true for .

ER T L Y F
Aalima

[N e s . [ . s At DN - TR
P DN RP AP I 2E NP 2P e e e e B A e B Bt M B S 8 B B e




A B ISR A 2 ok AR A B S T g e S i A b

113
CASE 1: CASE 2:
ONE RECEIVER TRANSMITTER
MALFUNCTIONING MALFUNCTIONING
T
PHASE 1
!
57L > (TRANSMIT)
©, @

PHASE 2

5 (EXCHANGE)

g

3 1
@ MALFUNCTIONING SITE

O FAILURE-FREE SITE

FIG. 3.2. REACHING GBGA IN THE PRESENCE OF ONE MALFUNCTIONING SITE

-
’
x
‘e
[ &
o
A I T S A A A R T T N R e AT T e e NI
P N L e, L BLO " N P R A IAR PRt I JP AL o > ¢ N



I

! t:f ¥

" 114 >

Y ’_ the two situations described above, that there is at most one malfunctioning R

p

t .. site in the network. The algorithm requires two phases of comrmunication in t
e .
L. our example, under the assumption made above. In the first phase, the o
- transmitter sends its value i.e. 5 to all the receivers. Note that in the first

P - situation the transmitter is malfunctioning and does this incorrectly. In the
second phase, each receiver sends the value received in the first phase to all
receivers including itself. Note that in the second situation, one of the
receivers is malfunctioning and executes this phase incorrectly. After this

phase, each receiver computes the median of the values received in the

Cont Rt g }

‘-.' second phase. A quick look at Fig. 3.2 will verify that all correctly operating

receivers arrive at the same value, 5 in the first situation, 2 in the second. In

R s
P
.

. .
N N

the first situation, the transmitter is failure-free and each failure-free
receiver has received a majority of values corresponding to the transmitter
. value. The median computed is thus the transmitter value. In the second
situation, the transmitter is malfunctioning. Although the receivers compute :i::
a median value which is different from the correct value (5), they all com-
= pute the same median value (2). Thus the conditions of BGA are fulfilled in "
§ both situations. j‘;“

The BGA problem has two variants corresponding to whether an authen-

tication facility is available or not. (The example shown above did not use

authentication.) Authentication permits a site to seal its messages so that

another site receiving them can assure itself that their contents have not

been altered even though the messages were handled on the way by other -

[ »

sites before reaching it. Thus although a malfunctioning site can abstain

:;'--" from relaying a message which, had it been failure-free it would have relayed, -

.

it cannot tamper with its contents and then relay the message without being

HE detected. The authentication facility can be implemented using public-key




T R T L T TN A T L N W W e
F.-_!‘_ PR O AL AC NSRS AAR A

O
."- 'Y
\ o

i ':;'r'
}{“.I ;,

R AR AR ik
h T TS
~

115

2
-' ~
hAA

%
P

encryption [DIF 76,RIV 78].

Consider a network of N sites with al most M malfunctioning sites. It has

P Py

been shown [PEA 80] that if authentication is not available, it is necessary

that N > 3M and whether or not authentication is available, at least M+1

phases of communication are required [DOL 82c].

Table 3.1 shows some of the features of the published algorithms to solve
the BGA problem. It can be seen that algorithms of polynomial complexity

L are available for both variants of the BGA problem.

The required number of messages mentioned in the table reflects the

worst case. Considering the algorithms which do not employ authentication,
the algorithm indicated in the last row has polynomial worst-case communi-
S cation cost whereas those in the second row {the algorithms indicated in this
row are variants of the same basic approach) have exponential worst-case
communication costs. But the former algorithm requires more than twice
the number of phases and is vastly more complex Further, the algorithms
- in the second row can be modified so that while they can still handle upto M
malfunctioning sites, they require only about N® messages when there are
actually no malfunctions [LAM 81a], which will usually be the case. For these
reasons they may be preferred to the algorithm indicated in the last row.

We have assumed so far that there is a direct, failure-free link between

every pair of sites. In [DOL 81}, it is shown how these algorithms can be
extended to a point-to-point network, where the connectivity is not complete
t and the links are not failure-free. Instead of having a bound on the number
of malfunctioning sites, a bound is imposed on the number of malfunctioning

sites plus failed links. Each message from one site to another is sent along a

sufficient number of disjoint routes, so that eflectively perfect virtual con-




.......

L2 A Sl Rk el S

........
-----

Table 3.1. Algorithms for Byzantine Generals Agreement.

........

'%:
"
:.a
“
®
e
%] source authentication # of messages # of phases
= PEA BO, LAM B0 yes O(N¥+1) M+1
PEA 80, LAM 80, no O(N¥+1) M+1
DOL 81, DOL B2a _
< DOL 82c yes O(N?®) M+1
- DOL 82c yes O(NM) M+2
- DOL 82c yes O(NM) M+1
<o DOL 82b no O(NM + M310g M) 2M+3
™ for a 1-bit message
N =tota! number of sites
i M =bound on total number of malfunctioning sites.

-------

- Sa - ek oadn” i B ube

118

L

I}

BNy

o« o v
)

LA
p 2




ERa A A A i bt A it el
.

2 4

.

'
P

117

nections are provided between every pair of sites. In presenting our results

"3

below, we will continue to assume perfect connectivity, but the techniques of

%

[DOL 81] can be used to relax this assumption.

-
(]

In [LAM Bla) a scheme for using BGA solutions to implement distributed
systems that are able to tolerate malfunctioning sites is described. The
basic version of this scheme involves replication of all functions and informa-
= tion at every site in the system. Transactions entering at any point in the
systemn are timestamped and broadcast using BGA techniques so that mal-
functioning sites are unable to prevent agreement among failure-iree sites
as to the transactions received. Control messages exchanged among the
sites e.g. for commit processing, also use this reliable broadcast mechanism.
Thus all failure-free sites see the same input strearn of messages and exe-
cute the same sequence of actions. As long as the number of malfunctioning
i sites satisfies the bounds assumed by the BGA algorithm being used, the sys-

tem as a w',ole performs correctly. If the bounds are exceeded, the informa-

tion stored in the failure-free sites may diverge and from that point on, the

". l‘ l'

system may perform incorrectly until appropriate repair actions are ini-

s, I.

tiated from outside.

In many, if not most, networks, such complete replication would be
infeasible since it would require too much storage at each site. It is sug-
gested in [LAM B1a] that in such cases, only critical functions be completely
replicated and managed according to the above scheme, constituting a syn-
chronizing kernel for the system. Other functions and information would be
managed by a separate mechanisrn. The example of a distributed flle system

- is given as an illustration. Here the directory information and the open file

and close file operations would be in the synchronizing kernel but not the

A AL
[P WP A W P T




" ' 118

g fles themselves or the read file and write file operations; these would be

handled by a separate mechanism.

sy

This separate mechanism would be used to access information at a

remote site when it is unavailable locally. Here the danger of error-

MR |

propagation discussed in Section 3.3 arises, since the remote site may be

malfunctioning. Our solution to this problem, as discussed in Section 3.4

consists of a unanimity-reaching step and an acceptability-checking step.

For the unanimity-reaching step, the BGA problem is relevant. However, we
may have a multiplicity of transmitters ( since the information is replicated,
ﬂ though partially ) whereas the BGA has been stated for the case of one
transmitter. Also it may be too expensive to use BGA techniques on each

remote access to global information. We discuss these issues in Section 3.6,
i 8.8. Details of Proposed Approach

3.6.1. The Generalized Byzantine Generals Agreement Problem

The requirements of the unanimity-reaching step of Section 3.4 may be
! stated as follows.
Given a set of transmitters § 7] each of which has a copy of a given piece
of information ( the read-variable ), and a set of receivers R} ( which hold
copies of the write-variable ) which wish to access this information, Lhe Gen- -

eralized Byzantine Generals Agreement (GBGA) is reached by the receivers if

a) All failure-free receivers agree on the same value.

L
.

.
t

b) If a majority of transmitters are failure-free, and each of the transmitters

A

in this majority has the same value V for the information, then the receivers

agree on V as the common value.

-. ."
- .
q" “.
~..‘
AN
e
.
e
, 8
"- Ly
oL . " d
'~:.‘.~,;;r".‘rx A R T T GO A A TS LA R P U v SN e e ettt o
A S B W S R R S O S e S S P L VOV G SR CrI S
- P PRSI YR G PR, Y, a " YWY Sata e P




. 118

‘ Clause a) is the same as for the BGA. The changes for clause b) are sim-
ple to understand. lf a majority of transmitters are not failure-free, i.e. if a _'-‘;V-

v el

:'.- majority of malfunctioning sites exists, the latter by acting in collusion can o

make it impossible to deduce that the remaining minority of transmitters
are the ones from which the correct value is to be obtained. The reason for

requiring that the failure-free site majority of transmitters should have the

same value is that there is a possibility that they may have divergent values
because of prior error propagation, in which case, clause a) already specifies

the best the receivers can hope to do.

r 8.6.2. Malfunction-Tolerance Specification e

If we wish to use GBGA to process an update transaction y« f (z) then we
rmust specify the bounds on the number of malfunctioning sites called the
malfunction-tolerance specification,(MTS). The protocols used in processing
the update will then be such that as long as the actual number of malfunc-

tioning sites is within the MTS, GBGA will be reached by the receivers.

Assumne that there are (2¢ +1) sites, forming the set of transmitters {7,
which hold copies of z and (2r +1) sites forming the set of receivers {R{ hold-
ing copies of y. F(S) denotes the number of malfunctioning sites in the set
S. Examples of possible MTSs are:

(a)F(tT})=0
(b)F(tTi)=1
(c)F(1T))st
: (@F(1R})sr
(e)F(LRJULT])sr, etc. . o

These MTSs specify different degrees of malfunction-tolerance and the ?’"

'r protocols that achieve GBGA given these MTSs have different communication B

F




e e A 5 A A S A Al bt a0

!

P W T T STy Ty ; _ v b B g b
At AR A A AL A A SRRl Rt S he At e oia g o B S T EPe G o

L
120
.ﬂ and computation costs associated with them. For example, for MTS (a), any

single transmitter can be accessed to get the value of z; for MTS (b), three
- transmitters can be accessed ( assuming |T|23 ) and the majority value
- taken, and so on. Thus a tradeofl exists between these costs and the degree

of malfunction-tolerance obtained.

3.6.3. Scheme Specification

The global information consists of a set of data items. Suppose we are

given the update interactions between them in the form of a set of ordered

pairs (x,,z;) where the existence of a pair (z.-.z,-) implies the existence of an
update interaction z« fy, ,,(z,-). [We assume update interactions of this form
for simplicity.] Suppose we are also given the degree of replication for each
item z;.

' The scheme specification (SS) specifies a protocol for each update
interaction pair. For example, SS could specify that for a given pair (z,,z;)
the protocol for this interaction should achieve GBGA with the MTS F({R])<sr.

- ( Here the degree of replication of z; is 2r+1.)

Given the data items, the update interactions, the degrees of replication
and the scheme specification, the behavior of the system information as to
its correctness characteristics in thg presence of malfunctioning sites
(including the error propagation effects) can be deduced. Hence in order to
obtain the desired behavior, the degrees of replication and the scheme

specification should be chosen appropriately. Below we give two examples of

possible scheme specifications.




121

. 3.6.C.1. Scheme Specification A

In Section 3.4, we commented that the correct value of a piece of infor-
mation ¥ could be obtained as long as a majority of the sites holding copies
’ of it were failure-free, provided they were not contaminated by error propa-
- gation. This contamination occurs when the information is being used as a

write-variable, i.e. when the sites holding copies of it are acting as receivers
in & transaction y«f(z). If the failure-free sites among the sites holding
copies of y are a minority, the correct value of ¥y would not be available and
there would be no point in trying to ensure that these failure-free sites arrive
g at the same value of the read-variable z (or f(z) if the transmitters do the
computation of f(z)). Hence it is reasonable to use the following scheme

specification:
. ’ SS A GBGA must be reached in { R} whenever F({R{)<r.

SS A achieves the extreme of absolutely no error propagation in the following
sense. Consider a chain of update interaction pairs: { ..x5;¢z,¢zjex,¢....)
! [i.e. 2, is updated with z; as read-variable, x; is updated with z; as read-
- variable in turn, etc.). Suppose the malfunctioning sites among those sites
which hold copies of z; constitute a majority. As a result of the particular
scheme specification used here, z, will not get contaminated by the update
interaction z;+z;. Hence, as long as the sites holding copies of any item z

have a failure-free majority, x; will be correct, since it cannot be contam-

inated by error-propagation.
SS A can be implemented by the following algorithm:

Ng :

(1) Each member of { R} samples each member of {T] and computes the




122

>
s majority of the | T| values received. .:.
(2) Each member of {R} broadcasts the value obtained in step (1) to all the S
- sites in { R} using & BGA algorithm with a bound 7 on the number of malfunc- )
tioning sites in {R}.

(3) Each member of {R] computes the median of the |R| values received in
step (2). | :_‘:-'_:

Note that the median of a set of values coincides with the majority value, if
one exists, and is unique for a given set of values. Thus if each receiver
receives the same set of values ( which may not have a majority value ), or if
r' all receivers receive sets of values having a common majority value, then ‘:':'

computing the median as the final value ensures unanimity.

As mentioned in Section 3.5 BGA bas two variants. When authentication
i : is not available, step (2) can be executed only if |R| is at least 3r+1. Only i
2r +1 copies of a piece of information are required to preserve its availability e

in the presence of upto r malfunctioning sites. Hence there must be r extra

%y

tAAS

sites among the receivers, which need not have physical copies of the infor-

mation, but which take part in the algorithm described above (in Fig. 3.3(a),
they are shown as having "phantom" copies). At the end, the sites with physi-
cal copies update thern to the median value computed in step 3. "{R}" in the

scheme specification must be taken to mean these 3r +1 sites out of which '

only 2r +1 actually have copies of the information and take part in transmit- S

ting it when it is used as read-variable in some update transaction. As shown

£ in Fig. 3.3(b), no phantomn copies are required when authentication is avail-
able.

For both variants, r+2 phases of communication are required. Hence

l{' this schemne specification would be prohibitively expensive in the amount of .-';t:




¥s

e el bl 2"

00 O]

1 2 eve s 2t+1

123

[ A

2w 2 I B S )
P R R )
« ¢

00

~

phantom copies

WITHOUT AUTHENTICATION

(a)

OO O|LO0O

1 2 L 2r+1 2”2......3”1

N —

WITH AUTHENTICATION

O

2 ..0..............2”1 "‘

FIG. 3.3. EFFECT OF USE OF AUTHENTICATION FACILITY ON RECEIVER

SET CONFIGURATION IN SCHEME SPECIFICATION A.




Boe ol e e N o

| NN s AR R A e g e o o
- IR N, - e T N . At e o o, o

R, > "

124

[~

communication required and the time taken to process an update. Thus, it is E!
; feasible to use it only if updates are very rare and the need to protect the :::::::::
= information is critical. :'}:;l’;:;

i,

. VN
;.j- Below we present another scheme to remedy the drawbacks of SS A Y

8.6.3.2. Scheme Specification B BESa

SS B as in SS A except that when |T|2|R |, majority voting on the
values sent out by the transmitters is used by every member of {R{ to get

the value of the read-variable.

_: Conceptually, the global information can be divided into domains
depending on the degree of replication, e.g. a 1l-copy domain, & 3-copy
domain, a 5-copy domain.etc (Fig. 3.4). SS B has the property that contami-
» nation can spread within a given domain and into lower-order domains but
not into higher-order domains. By properly allocating the global information
to the domains, the number of updates which require GBGA protocols can be
reduced and thus the number of updates incurring the high communication

costs and processing time typical of SS A. A critical piece of information

should be placed in a higher-order domain so that it is less likely to become
unavailable as a result of a majority of the sites that hold copies of it mal-
functioning. By the same argument, a less critical piece of information
should be placed in a lower-order domain. Thus it is more likely to become
unavailable. However, it is prevented from contaminating the more critical

information by the protocol which governs such interactions.

For example, in a banking epplication, all information relating to
accounts larger than or equal to a dollars could be placed in the 3-copy

domain, and information relating to accounts smalier than a dollars could be

e

placed in the 1-copy domain. Most transactions would be limited to a single

..............



[ St ki B SAAA A I T ——
- . RSt At ARl

7

. N
e "
2 .
N e
e .
125 -
e,
E ..‘:.-
S
e
AN
. .
- l‘. L9
VT, <,
%
- N
u

‘¢,
a_r

’l

7 1-COPY DOMAIN 3-COPY DOMAIN

l'!

~ 7

~

5-COPY DOMAIN

MV SIMPLE MAJORITY VOTE . N

G GBGA WITH MIS F(R)ST

FIG. 3.4. SCHEME SPECIFICATION B B

'Yu" -
-'." v' v. T
IR -

)
"f.

-
. [

LN L S e

Y T LR LR .o B . -
L.‘J:,\,'A"A‘_-‘_,‘,‘A L R B R e N - . .
ey PR S W W B D o 5 St N I R L T . S -
fitorn i, o PRI P S W ey \_A"’.A‘_“_“.‘_'"-."~A -

S S A TP
Y _-A__-'."’_.‘A-EJ\ ot atalara




bl by il WOAR

126

domain. A funds transfer from an account in the 1-copy domain to another
in the 3-copy domain would cause the GBGA protocol to be invoked in updat- .\}

ing the latter. :
3.7. Intermediate Cost Protocols

3.7.1. Motivation

Consider the following MTS:
M1: F(§T})st with all failure-free transmitters having the same value.

Reaching GBGA under M1 can be done simply and inexpensively by hav- G
ing each receiver take the median of the values of all the transmitters. But
consider the update chain ...Zy +Z;+z;+z, «Z;..... If for any of the variables,
the number of malfunctioning replicas is a majority, error can propagate

backwards along the chain. This MTS is used in SIFT [WEN 78].

Consider next the following MTS:
M2: F({R})=r.

This is the MTS used in SS A. Although reaching GBGA under M2 is SN

expensive as mentioned in Section 3.8.3.1, there is no error propagation.

Now consider the MTS:

PR

M3 F({T}UIR{)s7, with all failure-free transmitters having the same value. \
It will be shown below that to reach GBGA for this MTS, it requires an algo- _ i
rithm whose costs are a function of the difference in the degree of replica- :\\
tion of the read and write-variables decreasing as the difference decreases. \"
This is an appealing property, for as we noted in Section 3.2, the degree of A
replication is a measure of the probability of the information becoming una- ‘:
veilable because a majority of the sites holding copies of it are malfunction- '-E\
ing. One would like to be more careful (at the expense of higher incurred I

---------------




127

costs) in interacting with information that is more likely to be incorrect.
This MTS facilitates this. However, it permits error-propagation because of
the following reason. Considering any update in the chain mentioned above,
if the bounds specified on the number of malfunctioning transmitters and
receivers is exceeded, GBGA may not be reached among the copies of the
variable updated. Then, considering the preceding update in the chain, the
condition in the MTS specifying that all failure-free transmitters should have
the same value is not satisfied. Hence GBGA may not be reached for this
update, even though the bound on the number of malfunctioning
transmitters and receivers for this update is satisfied. In this way error can
propagate backwards along the chain. Therefore, at appropriate points on
the chain, an MTS which prevents error propagation e.g. M2, should be used,
and between these points MTSs such as M1 and M3 could be used.

In Section 3.7.2, the minimum total number of sites required to reach
GBGA without authentication under MTS M3 is determined. In Sections 3.7.3
and Sections 3.7.4, algorithms for reaching GBGA without and with authenti-

cation under this MTS are developed.

8.7.2. Minimum Number of Sites for GBGA under MTS M3

Consider the following situation. A network has N sites of which a set
§T}, | T| =2t +1<N has a value to transmit to the rest of the sites in the net-
work which are the receivers. It is assumed that all failure-free transmitters
have the same value. The number of malfunctioning sites in the network <m.
The problem is to find the minimum value of N, Np,. such that GBGA can be
reached among the receivers. If t>m or there is only one receiver, then a
simple majority vote solves i.he problem. Hence, from now on we only con-

cern ourselves with the case where f<m and there is more than one

......A
e e
INRARASS

’
.
L
Pl

""l
a's'a

. .
v'-"‘-.'
AN
. PR
. S e )




- -
>

Couae
o

A

128

receiver.

It is clear that N, <3m+1, for if N2 3m+1, each transmitter can
send its value to all the sites in the network using a BGA algoritbm
parameterized for a bound of m malfunctioning sites. Then each receiver
can take the median of the 2f+1 values received to be the value of the
transmitters and GBGA will be reached. [ Note however that the costs of
reaching GBGA with this procedure are not a function of the difference in the
numl;er of transmitters and the number of receivers. Algorithms which do

have this property will be presented in Sections 3.7.3. and 3.7.4. ]

We show that the above bound is tight, i.e. Ny = 3m +1. For this pur-
pose, we use the concept of scenarios introduced in [PEA B0]. Our proof is a
non-trivial extension of the proof given in [PEA 80] to establish that at least
3m +1 sites are required to reach BGA in a network with at most m rﬁalfunc-

tioning sites, if authentication is not used.

Let {P{ be the set of sites in the network, and define a scenario S as a
mapping from the set of non-empty strings ¥ ove: {P] and ending with a
transmitter, to V, the set of values. For a given r in {R{, define the r-
scenario S, corresponding to a scenario S as a restriction of the mapping S
to strings in W beginning with r.

Let {X} be a set of sites in the netw.ork which are failure-free. A chnario
Sis t;onsistent with {X}, if for each ge{X), pelP], we W, S(pqw)=S(gw), Le.
each site in {X{ always relays values it receives correctly.

For each r in {R}={P}-{T{, let F, be a mapping that takes a r-
scenario S, and returns a value in V, which is the value of the transmitters
arrived at by r finally. In order for {F,{re{R}| to provide GBGA for each

scenario S consistent with some set of sites §X1,| X |2N-m, we must have




.....

128

(A1) if a majority of transmitters are failure-free and have a value v,,

Fr(Sy)=vy for all rel RINX].
(A2) for p,getRINX], F,(S,)-‘-F.(S,).

Suppose N<3m and if possible let {F, |re{R}} provide GBGA. Divide {R}
into three sets A,B,C each having at most m sites, with A having a majority
of transmitters, B having the remaining transmitters, and both B and C hav-
ing at least one receiver( Fig. 3.5 ). This division is possible since £ <m and
there are at least two receivers. Let v and v' be two distinct vn!ues in V.
Define the scenarios S1,52,53 consistent with A\ yB,AC,BJC as shown
below. In the following specifications, a; and b; represent any transmitter in
A and B respectively, a,b,c represent any sites in 4,B,C respectively and w

represents any string in W.

S1:
S1i(aag) = S1(bay) = S1(ca;)
= S1(ad,) = S1(bd;) = S1(cd;) = v.

Si(acw) = Si{aw) Si(adw) = S1(dw)
Si(bew) = S1{aw) S1(ddw) = S1(dw)
Si{caw) = Si{ew) Si{cdw) = S1(dw)

S1(ccw) = S1(cw)
S1(acw) = S1(cw)
S1i(dbew) = S3(cw)

S2.

52(aa) = S2(bay) = S2(ca,) = v'
S2(adb;) = S2(bbd,) = S2(cd,) = v.

.
¥ O N

PN
R
ata’

.
-

o
A

LI SRy A WA

~
=
~
>
-




| AL Ad A S B0 B i S e Sae 4o S doacai a2
R ARG SN

LR e Sl Bte Maachen e 2t B\ st B 2t 2 TR LW TN TS LY S

» -.:_.
Y

‘]

>

! 12 -
130
. # transmitters

|
t# sites m

é' B c
; —_——— [ — e mem—

2 # transnmitters
<t —

# sitesgnm # sites {m

FIG. 3.5. NETWORK CONFIGURATION FOR SHOWING THAT Npin, > 3m.




v IR

- -
-

A
[3

oo
1y

131

S2(aaw) = S2(aw) S2(adbw) = S2(bw)
S2(baw) = S2(aw) S2(bdbw)= S2(bw)
S2(caw) = S2(aw) S2(cdw) = S3(bw)

S2(acw) = S2(cw)
S52(bew) = S2(cw)
S2(ccw) = S2(cw)

S3:
S3(ag;) = S3(bag) =v S3(ca;) = v
S3(ab;) = S3(bd,) = §3(cd;) = v.

S3(aqw) = S3(aw) S3(adw) = S3(dw)
S3(bew) = S1(aw) S3(bdbw) = S3(dw)
S3(caw) = S2(aw) S3(cdbw) = S3(dw)

S3(acw) = S3(cw)
S3(bcw) = S3(cw)
S3(ccw) = S3(cw)
Next we show that
E:(i) S3(bw) = S1(dw)
(ii) S3(cw) = S2(cw)

E is true when w is of length 1. This follows directly from the fact that

W is then either a; or b; and from the scenario specifications.

Assume E true for |w|<l. Let w; be a string in W of length .
(a)From the scenario specifications, we have
S3(baw;) = S1(aw,) and
S1(baw;) = Si{ow;).

ey
T 1

l-’_" "

P S LS
RN
- AR

R



132

Therefore
S3(baw;) = S1(dbawy).

(b)From the scenario specifications, we have
S3(bbw;) = S3(bw,) and
S1(ddwy) = S1(dwy).

By our inductive assumption,
S3(bw,;) = S1(dw,).

Therefore
S3(bbw;) = S1(bdwy).

(c)From the scenario specifications, we have
S3(bcw;) = S3(cw,;) and
S1(bcwy) = S3(cwy).

Therefore
S3(bcw,) = S1(bcw;).

From the above it follows that S3(bw) = S1(dw) for |w|<l+1. Similarly
S3(cw) = S2(cw) for |w|sl+1.

Thus E is true for |w |<€l+1, and therefore for all |w].
Let b, and ¢, be receivers in B and C respectively. Then S3, = Sy,
and 53;' = 52".
By A1,
F.'(SS.,) = F.'(S 1,,) =v and
F (53,) = F (s2. ) =v.
By A2,
F,(53y,) = F. (S3;,)

implying v=v'. This contradicts our earlier assumption. Hence Ngu,=3m +1.




o5 133

3.7.3. Implementing GBGA under MTS M3 without Authentication

The previous section shows that if GBGA is to be reached without using

authentication under the MTS

.
tga o

M3:F({T} UtR])sT with all transmitters having the same value,

then, if t<r ( where |T|=2t+1 ), a minimum of 3r +1 sites is required. The
updated variable is replicated at 2r +1 sites. Hence a number of “phantom”
receivers equal to maz (0,(2r +1)+(2¢ +1)—(3r +1)) = maz (0.2t +1-r) will be
required. [R] is then the set of receivers {R.| which replicate the updated
variable plus the set of phantom receivers {R,]. However, the procedure
given in the previous section for reaching GBGA using this configuration
requires r+1 phases { and hence, as mentioned there, its costs are not a

function of r -t ).

As mentioned in Section 3.7.1, it is possible to construct GBGA algo-
rithms for MTS M3 using fewer phases. This is done by using BGA algorithms
in a different manner from that in the previous section. For the reasons
mentioned in Section 3.5, we choose the BGA algcrithm BG1 described in
[PEA 80,LAM BO,DOL 81,DOL B2a)] as the kernel of the GBGA algorithm

described below.

Consider a network consisting of & transmitter T and a set of receivers
{R{ with |R|23m. It is required to have the receivers reach BGA on the
value of T as long as the total number of malfunctioning sites in the network

<m. The algorithm BG1 is as follows:

Algoritbm BG1( {R}. m ):
(1) The transmitter 7 sends its value Lo every receiver in {R{.
(2) If m>0 then

{a) for every re{R], let vy, be the value receiver r has obtained in step 1.

. S e e
PP W S SR




134

Receiver r acts as the transmitter in the algorithm BG1( {R}—r,m -1 ) to
send the value v, to every other receiver in {R{—r.
(b) for every r't{R} and each r #r' in {R], let v, (r) be the value receiver r'
receives from receiver 7 in step 2a. If no value is received, set v, (r) to D.
Let v (7') be the value receiver ¥ has received from transmitter T in step
1. Receiver ¥ determines the value cf the transmitter as
medianiv, (z)|ze{R}].

Now, we show how to use algorithm BG1 to implement GBGA under MTS M3

with fewer phases than r+1.

Consider a network with |T|=2f+1 transmitters, with all failure-free
transmitters having the same value, and with at most r (r>¢) malfunctioning
sites in the network. Let the remaining sites in the network {®} be of

number |R{23r-t.

Algorithm GBG1:

(1) Each transmitter in {T} sends its value to a designated subset of
receivers {R,}, |R,|=2r+1<|R|.

(2) Each receiver 7, in {R,} computes the median of the (2f+1) values
received in step 1 to obtain Yy,

(3) Each receiver 7, in {R,] broadcasts its value vy, to every otber receiver
using BG1({R}—7,,r~£-1).

(4) Let {X;] be the set of 2r values received in step 3 and the single value
computed in step 2 by the receiver r in {R]. It computes the value of the

transmitters as median {X,].

Thm 3.1: Algorithm GBG1 provides GBGA under MTS M3 in r ~f +1 phases.

Proof: Steps 1 and 2 together involve one phase of communication. Steps 3

'v.""n. .
s
i)
ooyl

TR
»
. i

....,
T
"’




| DA A 3 e e A b et i e A BN AACE CACE LN AL PR i g DR AT AT AT A A R A A AR S AR SRR SRR R
----- . A - PN . B . . L - . -
o
I.._
“~
o 135
.

n and 4 involve (r—t-1)+1 or (r—t) phases. Hence GBG1 involves r—t +1
phases in all.

o Case 1: A majority of failure-free transmitters does not exist. Then GBGA

requires each failure-free receiver to arrive at the same final value. Since

there are at least £ +1 malfunctioning transmitters, there are at most r—£ -1

malfunctioning receivers. From the correctness of BG1, it follows that every

failure-free receiver r has the same set of values {X,} in step 4 and hence

unanimity is reached.

Case 2: A majority of failure-free transmitters exists and v is their common
value. Then GBGA requires each failure-free receiver to arrive at the final
value of v. Let {CR,] be the set of failure-free receivers in {R,]. |CR,>r+1
since |R,|=2r+1 and there are at most r malfunctioning sites in the net-

work.

Each site cr, in {CR,| computes the value v in step 2. We claim that v
will be the value received from cr, by every failure-free receiver in step 3.

Then the final value computed in step 4 will be v.

The proof of our claim is based on a lemma given in [DOL 82a] for the
BGA algorithm BG1. This lemma states that, in a network with a single
transmitter 7', a set of receivers {R'] with at most m malfunctioning sites,
BG1( {R'}. z ) provides BGA if the transmitter is failure-free and | R''>2m +z.
In step 3 of GBG1, as executed by c¢r,, we have cr, as a failure-free
transmitter, executing BG with z=r ~t —1. The set of receivers it is transmit-

ting to, has cardinality 3r -t —=1=2r +(r —t ~1). Hence our claim is proved.

For completeness, we give below the proof of the above-mentioned

lemma. Consider a network consisting of a failure-free transmitter 7" with a

value v, and a set of receivers {R'}, | R''>2m +z with al most m malfunction-




136

X ing sites. To prove that BG1( {R'{, z ) produces BGA, we use induction on the
value of z. If =0, the final value arrived at by each failure-free receiver is
the value received in step 1 of BG1 from the transmitter, namely v". Hence

BGA is reached for z=0.

S |

Assume the lemma holds for x=k(20). Consider z=k +1. In step 1, each
failure-free receiver,r receives the value v'. In step 2a, it applies the algo-
rithm BG1( {R'{—~r", k ) to send the value v’ to all the receivers in the set
{R'|~r’ which contains at least 2m +k sites, and hence the induction
hypothesis implies that every other failure-free receiver obtains from r’ the

?“ value v". The set {R'] contains at least 2m +k +1 sites. Since k20, and there

are at most m malfunctioning sites in {R’}, every failure-free receiver com-

putes a final value v’ in step 2b. This proves the lemma.

Using the algorithm GBG1, we can implement GBGA with MTS M3 in r~t +1
phases and with (3r =t )—(2r +1) = r -t -1 phantom receivers. Thus, this algo-
L rithm reduces the communication overhead and number of phases to a func-
tion of the dif ference in the degrees of (physical) replication of the read-
and write-variables. As mentioned in Section 3.7.1., this is a desirable pro-

perty.

3.7.4. Implementing GBGA under MTS M3 using authentication

A similar reduction in the number of phases can be realized in con-
structing an algorithm for reaching GBGA under MTS M3 using authentica-
tion. The use of authentication sharply reduces the number of messages
needed. Our algorithm uses as its kernel a BGA algorithm BG2 suggested in
t [DOL 82c] that uses authentication.

’l
%

-‘)."‘"“
e v, 'y "l"- ‘Y

?

.
.
z



.,

»

E
’ -v
Ja

i n'.\

5 137 N

4 .

' k;-

Consider a network consisting of a transmitter T and a set of receivers

'-
.

{R| which has at most m malfunctioning sites.

A’
.
r

’

,
s

.
s
.

Algorithm BG2: NN
- (1) The transmitter T signs and sends its value to all receivers.
(2) Each receiver waits for the receipt of messages. If during phase k, a
receiver receives a message containing value v and signed by k distinct sites
( beginning with the transmitter ), then the receiver inserts v in its list of
received values if not already in it and if the list does not already contain two S
values. If the value v gets inserted, and k <m +1 then the receiver signs the
if! message and sends it to all receivers, whose signatures are not in the mes- :;'-
sage, in phase k +1. N
- (3) After phase m+1, if a receiver has exactly one member in its list of

received values, then that is chosen as the final value, otherwise it agrees on

. a default value.

This algorithm requires O(N2) messages, where N is the total number of e
receivers. -l

We use BG2 to construct an algorithm GBG2 providing GBGA under MTS o
M3. Consider a network consisting of a set of transmitters {7}, |T|=2f +1

and a set of receivers |R], |R|=2r+1, t<r, F({T)}UiR])<r, and all the

failure-free transmitters have the same value. . -

Algorithm GBG2: s
(1) Each transmitter sends its value to all receivers. o
(2) Each receiver computes the median of the 2¢ +1 values received.

(3) Each receiver acts as transmitter of the value.computed in step 2 to all

. other receivers using algorithm BG2 parameterized for a maximumof r -t -1

"I.
~ .

.........

AT IST NS ¥ 3P T : ; :



| x40

XA

w

»-

R
.
Aﬂ‘l‘

138

malfunctioning receivers.
(4) Each receiver computes the median of the 2r values arrived at in step 3

and the value computed in step 2. This median is the final value agreed on.
Thm. 3.2: Algorithm GBG2 provides GBGA under MTS M3 in r—£ +1 phases.

Proof: Steps 1 and 2 contribute one phase and steps 3 and 4 contribute r -t
phases. Hence a total of r—t +1 phases is required.

Case 1: A majority of malfunctioning transmitters exists. Therefore there
are at most r-¢ -1 malfunctioning receivers. Hence, by the correctness of
BG2, each failure-free receiver has the same set of 2r+1 values whose
median it computes in step 4. Therefore, all failure-free receivers unani-
mously agree on somne value.

Case 2: A majority of failure-free transmitters exists and they have the com-
mon value v. In step 2, each failure-free receiver r computes the value v,
and in the first phase of step 3, sends this value, signed, to all other
receivers. Moreover, since this is the only value it signs as transmitter in
step 3. each failure-free receiver will agree on v as the value transmitted by
r in step 3. Since a majority of receivers is failure-free, each receiver will

compute v as the final value in step 4.

For this algorithm again, the communication overhead and the number
of phases is a function of the difference in the degrees of replication of the

read- and write- variables.

» DL e 20/
-‘v.'l 'I'.‘,’ '
LSRN

"-";-‘

.' 'I 'l
Y "* "'n. Uy

*e
)

k

ey

T

\..-l
Fas




3

-
(Y

139

n 3.8. Conclusion e

8 4

1
> '
. _8

In this chapter, we introduced the correctness aspect of the availability

.-
/!

v A

s

attribute of global information. Correctness becomes important when toler-

3 "

Ly

ance to malfunctioning sites is required. We advanced some theoretical con-

siderations for dealing with this mode of failure. It is clear from the above
discussion that the GBGA can be used in a flexible manner to obtain the -_:
required degree of tolerance of malfunctions. GBGA protocols can also be

mixc:d with cheaper protocols which provide a lower degree of tolerance in e
such a way that meaningful guarantees can be given as to the correctness of

the global information.

1t is evident that malfunctions are expensive to cope with. But the mal-
function as a model of failure is appealing since it represents the worst kind

of faulty behavior a site can exhibit. It would require very complex reasoning

_. to show the probability of hardware or software failures which could result in
. a site malfunction to be small enough to ignore. Further even if such reason-
ing could be provided, a site could be taken over by a malicious agent. For

» these reasons, we believe that techniques must be developed to deal with

. 8
e

malfunctions. One possible approach around the difficulty of the high costs

P

.
T

of such techniques is to attempt to use them sparingly and selectively and we

18 Ay &

i3

have explored this approach in this chapter.
In our approach, the information is selectively replicated to different
degrees, depending on its criticality. 1If, in spite of this replication, the

correct value of some of this information becomes unavailable due to the

'-", ’.

malfunctioning of a number of sites, we try to prevent updates from pro-

»
v

pagating error to information whose correct value is still available. A combi- ~'l'::"'

nation of an acceptability-checking step in which assertions are used to weed

rﬁ

e T T e, . P T P A ST
" ° M : N . N - AR - . . . . . . - -
W . » R P I PP U Y i U VU W, Y S T Pl Dis DS YU G S ew'y




140
.g- out wrong values of the read-variable, and a unanimity-reaching step ( whose
o requirements are formalized in the GBGA ) which provides consensus on the
8 value of the read-variable, is used for this purpose. 'We presented a variety of
- protocols which achieve GBGA for different kinds of bounds on the number of
) malfunctioning sites. These protocols differ in the amount of malfunction-
o tolerance they provide and in their associated costs, and thus allow; the

designer to make appropriate tradeoffs.

@ e s e
PR A 4

PSP PSP NP NP Iy -




........

- N
&
S
n CHAPTER 4 5
& DEADLOCK DETECTION IN DISTRIBUTED DATABASE SYSTEMS :
- RS
. 4.1. Introduction ‘
__ In this chapter, we present centralized and distributed algorithms for
deadlock detection in distributed database systems. These algorithms use a ,,_::
clock facility to ensure that deadlocks indicated really exist and that no :‘_;
o existing deadlocks go undetected.
e In Section 4.2, the various approaches available for deadlock handling
are discussed. In Section 4.3, race conditions that complicate deadlock
detection in distributed systems are discussed. Section 4.4 introduces ter-
i minology and lists some assumptions. In Sections 4.5 and 4.8, centralized -
R and distributed schemes for deadlock detection are presented, along with
past work in the area. _:
TN
- 4.2. Approaches to Deadiock Handling
- Deadlock may be described as a situation of mutual wait among a set of
: blocked processes, each of which is waiting to acquire one or more resources .
_ held by other processes in the set. The easiest approach to deal with ._
. deadlock is to use timeouts to abort any process that has been waiting too ‘
long ( or to abort the process that has been causing another to wait too "
, long ). Though this approach is feasible for lightly loaded systems in which ‘-
- contention is rare, it runs into difficulties in congested situations. At such
times, timers will run out often causing mahy processes to be aborted, and :.‘::
" prolonging the congestion [GRA 78]. Other deficiencies of this approach are ::':

s

141

F

ORI ARAT RN R R I A S

e AT A e
A NI R IR s S o Sy IS AP SO A A WS S8 OV P J e o




& ) "
Y 142 :;;t‘
J n cyclic restart or livelock [ISL B0), and wastage of resources arising from j:.
. aborted computations. -:
oy S
::: Three approaches have been developed to deal with the deadlock prob- R
- lem: prevention, avoidance and defection. :
g In deadlock prevention techniques, the requests for resources are con- “
V- strained to occur in particular ways so that deadlocks never occur. Such
= techniques include requesting all resources needed by the process at once,
imposing a total ordering on the resources and requesting needed resources
in this order, the WOUND-WAIT and WAIT-DIE algorithms of [ROS 77]). These ...
!! techniques restrict the amount of concurrency as a result of the constraints ‘-'-
' they impose. Further, the first two approaches are not appropriate for data- :
base systems, since it is not always possible to predict ahead of time which -
.. resources will be needed by a process. :—'
- Deadlock avoidance techniques permit the granting of a requested _:::
o resource only if to do so would still allow all processes at least one way to ':
i complete execution. Habermann’s algorithm [HAB 86] is the best-known :z:
- deadlock avoidance scheme. Since a worst case scenario for future requests ]
- is assumed in determining if a resource grant is safe, concurrency is still \*
,'-:;‘ restricted. The deficiency of having to kmow ahead of time which resources :
- are going to be required is also present. in avoidance schemes. Further, in a %
» distributed system, the computation of whether a resource grant is safe or '
not, requires knowledge of the states of the various processes at the various .

sites in the system. Hence it is difficult to do resource allocation in an

eflicient yet decentralized manner.

Deadlock detection techniques allow a maximum of concurrency by

' granting resources whenever they are available. At appropriate times, the
[ - -‘
-
E‘ ~
e e e
S L g g L T e e T e e L )




?-: 143

status of resources and processes in the system is examined to see if a
e deadlock exists. In order to do so, this status is maintained in the form of a
- graph in which the nodes represent processes and resources, the process-
N to-resource arcs represent outstanding requests and the resource-to-process
"" arcs represent possession of resources by processes. The necessary and
. suflicient conditions for deadlock in systems containing reusable resources,
:’.;‘i e.g.. iles, memory, etc. and/or consumable resources, e.g.. messages, have
- been developed in [HOL 72]. In the case of distributed databases, under the
assumption that all resources are one-of-a-kind and that a process must wait
. till all resources it has requested have been granted before it can proceed,
-5 the necessary and sufficient condition is the existence of a cycle in the

process-resource graph.

. Deadlock detection in a distributed systern may be done in a central-

i ized, hierarchical or distributed manner. In centralized detection, a single

site is designated as the deadlock detector. It collects the status of

- processes and resources in the systern and checks for deadlocks in the

assemnbled graph. ( Detection of deadlocks confined to one site may be done
c locally. ) The disadvantage of this method is its vulnerability to failure of the
deadlock-detecting site. Also, if the network is large, the load imposed on

the deadlock-detecting site may be too large.

Both of the above problems are ameliorated in the hierarchical method.

Here, the sites are partitioned into a hierarchy of clusters, with each cluster

.. having a deadlock detector site. A deadlock conflned to sites within a cluster

& is detected by the local deadlock detector; a deadlock spanning multiple

clusters is detected by the deadlock detector in the lowest cluster which is a

parent of all the clusters involved. Here, as in the centralized case, detec-

..............................................
''''''''''''''''''''
LY B



t

AR

’

r-.,-' f'.

o

e

144

tion of a deadlock may be delayed by the failure of sites other than the
deadlocked sites. There is also the problem of choosing the clusters
eppropriately in order that most of the deadlock computation may be done
at the local cluster level instead of having to refér to higher levels in the

hierarchy.

In the distributed scheme, the deadlock detecting facility is distribﬁted
equally among all the sites in the network. In general, distributed schemes
invoh;'e more communication overhead than the centralized schemes. This
happens because in distributed schemes graph traversals initiated at
different points in the process-resource graph in order to check for
deadlocks, go over the same portions of the graph. This repetition is to some
extent unavoidable in a distributed algorithm. The advantages of distribution
are that the detection of a deadlock involves only the sites involved in the
deadlock. Hence, the vulnerability to failures of the designated deadlock
detecting sites which characterizes the centralized and hierarchical schemes

is not present here.

4.3. Race Conditions in Deadlock Detection

In a single computer system, the deadlock detector can stop all activity
in the computer, while it examines the necessary tables, queues, etc., to con-
struct the process-resource greph. In ihe case of a distributed system, it is
not feasible to stop the entire system in order to take a similar snapshot of
the processes and resources in the systemn and the messages that may be in
transit. -'merefore the status of the processes and resources at each site

must be recorded asynchronously and the global status comnputed in a con-

sistent manner from these recordings. A tomplicating factor here is that’

messages may take arbitrary periods of Ltime to reach their destinations.

Anl Sl i s dic a8 4 - A W e Wy W T Ty w Y

B L
LA
PR .

[ . . e

s f~rkr..r_-r..r .
P X AAAS

A



LN,

145

As an illustration of the problems involved, consider two sites S1 and S2

of a network in which a third site DD acts as a centralized deadlock detector.

W Suppose process Pl and resource R1 reside at site S$1 and process P2 and

= resource R2 reside at site S2 ( Fig. 4.1 ). Initially P1 and P2 request and

acquire resources K1 and R2 respectively. Next P2 sends a message to S'1

;?:: requesting resource R1, and gets blocked. At this point the resource con-

- troller at site S1 reports to DD indicating P1 to be in possession of K1, and

.‘5‘. P2 to be in wait for it.
. Next, P1 releases R1 and requests R2. The corresponding request mes-

E sage, arriving at S2, causes P2 to get blocked. The resource controller at

, S2 now reports to DD indicating P2 to be in possession of R2 and P1 to be

-'- waiting for it. On putting these two reports together, DD detects a cyclic

‘. wait P2+R1-+P1+R2+P2 and may detect a deadlock unless its algorithm

. takes other steps to verify that a cycle really exists. In this case the cycle

does not exist, since P1 is no longer in possession of R1.

Another danger is that a deadlock detection algorithm may fail to detect

- a deadlock that really exists. Typically this happens when an algorithm fails :::
. to take into account that messages may arrive after indefinite delays. As a -

result, all the deadlock computations that arise as a result of a sequence of :'.::

- events causing a deadlock, may operate on incomplete information, and thus

- the deadlock goes undetected.

) 4.4. Terminology and Assumptions

The database is accessed and updated through transactions. A transac-
tion consists of one or more processes, called agenis. An agent may request

to acquire either of two kinds of resources: reusable resources ( which will be

L referred to simply as resources from now on ) and consurnable resc urces (




ST LR RN Ty Ny TR TR Y &y

F1G. 4.1. RACE CONDITIONS IN DEADLOCK DETECTION

...................................................
..............................
..............................

........................



147

which will be referred to as messages from now on ). Messages are used by
agents of a transaction to co-ordinate their work. 1n the case of resources, it
is assumed that any agents currently in possession of a resource must all
relinquish it before any of the agents currently waiting for the resource can
gain possession of it. This assumption is necessary to make existence of a

cycle a sufficient condition for deadlock.

A transaction agent may be in one of two states: active or waiting. Ini-
tially it is in active state. It may enter uniting state if:
(i) it wishes to receive messages from each of a set of agents belonging to the
same transaction. For example, the agent co-ordinatity the commit pro-
cessing for the transaction may enter waiting state and remain there till it
has received prepared—to —commit messages from all other agents of the
transaction.
(ii) it wishes to acquire each of a set of resources (in specific modes (e.g.

shared ,ezclusive )).

When all the messages or resources have been received, the agent re-

enters aclive state.

4.5. Centralized Algorithms

Early work in centralized deadlock detection [GRA 78, GOL 77] does not
correctly solve the problem of race conditions. The algorithm of [GRA 78]
works under the assumption of two —phase usage of resources ( explained
below ). However, if this assumption is made, an algorithm which is much
more eflicient can be constructed as shown later. Similarly, a timing prob-

lem in the centralized algorithm of [GOL 77] was shown in [SUN 78].

In [HO 78] two algorithms were proposed to address the problem of race

conditions. The first is a two-phase algorithm in which first one set of reports



Y PV VR 3

v

r

148

is collected from all sites and then another set is collected. Only the infor-
mation common to the two sets of reports is assemnbled to check for global
deadlocks and it is shown that spurious indications are thereby avoided. In
the second algorithm, each inter-site arc is replicated at both the sites

involved and a deadlock is detected after only one set of reports is received.

However, these algorithms require that all sites in the network which
access the resources as well as the sites controlling the resources should
report to the deadlock detector. Typically, the number of sites controlling
the resources will be much smaller than the number of sites accessing the
resources. For example, in a network running distributed INGRES [STO 79),
the control is done only from the primary sites in the network. In the next
two sections, we show under what conditions we can construct algorithms

which utilize reports from only the resource-controlling sites.

4.5.1. Detection under Conditions of 2-Phase Resource Usage

By 2-phase usage [ESW 78] of resources, we mean that the execution of a
transaction can be divided into two distinct phases: a growing phase and a
shrinking phase, the latter following the former. In the growing phase,
resources are acquired but not released. In the shrinking phase, resources
are released but not acquired. The implication is that, under this discipline,
a transaction does not release any resources until after it has acquired all

the resources it needs.

Suppose that only the resource controllers send reports to the deadlock
detector, giving for each resource the list of transactions in possession, and
the list of transactions in wait. The identity of the specific agent of the tran-
saction which is in possession or waiting is not given. Periodically, the

deadlock detector takes the latest report from each controller and

et

ST
s .

T



i

rr
RESES

-

L4 P

«" " LY - "
IS RPLEVCIAI DI ey

149
assembles the reports.

Thm 4.1: Suppose a cycle is found in the transaction-resource graph created

by the above procedure. Then the transactions in the cycle are deadlocked.

Proof: Let the cycle take the form shown in Fig. 4.2.

For each resource node in the graph, the incoming arcs represent tran-
saction agents waiting to acquire the resource and the arcs running out of
the nbde transactions in possession of the resource. By our earlier assump-
tion that all requested resources must be acquired before the agent making
the request can proceed, none of the arcs representing a wait for the
resource can vanish before all the arcs representing possession of the

resource vanish.

For each transaction node, the incoming arcs represent resources in
possession and the outgoing arcs represent resources the transaction is wait-
ing for. Since each transaction uses resources in a 2-phase manner, no
incoming arc at a transaction node can vanish before all its outgoing arcs
vanish.

Let <y indicate that arc ¥ can vanish only after arc z vanishes. Apply-
ing the arguments given above to the incoming and outgoing arcs at the
nodes‘ R1,T2,R2,T2....TN.RN we get 8,<0;<84<....<azy.p<moy_;<q2x ie.
a,;<agy. But applying them to the incoming and outgoing arcs at node T1, it
foliows that agy<a,. This contradiction implies that no arc in the cycle can
vanish ( unless one of the transactions in the cycle is aborted ). Hence the

cycle represents a genuine deadlock.




PRl A Ao A i g g s . A A AN A g Charth it gt M ar gh Rl N R e PR g

.
'. . .- '.- 'l'.‘l‘.-" 1

"y
L8

150

A
\

ré."

N
.
S
o
.
Sa -
. -
[}
bRy o

“’."’-"’n“‘l?’:"_ w{'

1
A

:

W e
[ N

FIG. 4.2. CYCLE IN PROOF OF THEOREM &.1. ‘




| RS A e G it Jbad et Snth Al el s g

o
N 151
D Further, every genuine deadlock wili be detected, since none of the arcs f'_-"
h in the deadlock cycle will vanish till the deadlock is broken and thus the ‘
ti cycle must eventually appear in the deadlock detector’'s assembled graph. :*
- Thus, we have shown that when resource usage is 2-phase, status reports
‘\. need be collected only from the resource-controllers. All algorithms for cen-
tralized detection published hitherto have involved gathering reports from
all sites in the network. Two-phase usage of resources is used in many sys- i
tems to satisfy the requirement of serializability of transaction execution
histories [ESW 76). Therefore the detection procedure described above can
h be utilized in these systems e.g. distributed /NGRES.
4.5.2. Detection under Conditions of non-2-phase Resource Usage .
. In some database systems, resource usage is not constrained to be 2
. necessarily 2-phase. For example, System R [AST 76] allows three different :
degrees of data consistency from which the user may specify one for his
;:; transaction. The highest degree of consistency is the one corresponding to
n 2-phase resource usage. The advantage of using lower degrees of consistency e
- is less lock contention. )
o When the resource usage is not necessarily 2-phase, the possibility of
- false indication of deadlock in situations such as the one illustratzd in Fig. -‘:
- 4.1. arises. For the most general case, where the agents of a transaction
may execute in parallel, an algorithm such as those described in [HO 79,
o GRA 78), in which all sites in the network have to send status reports to the
. deadlock detector, is necessary. However, there is one transaction model in DT
which intra-transaction concurrency is not present. This is the "migrating” -
. transaction model! [ROS 77, GRA 81), used in System R°, the distributed ver-
E; sion of System R Here, a transaction starts at one site and moves from site -
¢ o
5

I

e . N Y R CST e RN Lol
m e et T e e e e T T T T T T T T T s ST e e e
A T VUL AL PRLREVIL YR PAC WAL DIPT. WIE WP T VS P A At O i S o Sealbndsedeadotdindondoodun oo din i iad




A A A A A Sl i e i A A e Ay S Anciiee 8 §

152

Y

to site as necessary to access remote resources. At every site visited by the

transaction, there is a single agent that does the work at that site on bebalf

of that transaction. The agent of the transaction at the site that the transac-
tion is currently visiting is called the front of the transaction. A list of

unreleased resources is carried along by the transaction front and messages

LAt aa gt a2

are sent releasing them when the transaction terminates. ( Acquired
resources may be released prior to transaction termination, for example if
the highest degree of data consistency is not desired for the transaction. ) It
is assumed that the transaction front does not migrate from a site before it

r has acquired the resources it has requested while at that site.

A global clock facility fulfilling Lampson's clock rules [LAM 78a], men-
tioned in Section 2.2.2 of Chapter 2, is assumed to exist. Timestamps are
i assigned to resource requests using this facility. Uniqueness of timestamps
is assured by taking the clock reading to include the site id as its less
significant part. These rules imply that
(i) given two requests issued by a transaction front while at a given site, the
timestamp assigned to the later request is greater than that assigned to the
earlier request, and
(i) if the transaction front migrates from site a to site b, then timestamps
associated with requests issued at b are greater than those associated with

requests issued by the front when at a.

Each request for a resource sent to a resource controller by a transac-
tion front is accompanied by the timestamp assigned to the request. This
timestamp is relained by the controller till it is informed about the release
of the resource by the transaction. The resource may be released by the

front at a site other than the one where it was requested and acquired.

PO T P S e . B L e Sl
BRSNS A R Tt G S e, S S e e e e e e A Tt VU T VU U T ol S
PRI, AU URPIE W IR S TG T, I, S By Sy Yy P T Wy I WP R LR A e et S IPEP ST WS B IR NP A A S P P PR




Ww_*. M S A AL S AR okt s e e s e iat Al And. Aag

153

Further, as mentioned before, the transaction front maintains a list of
resources which it has acquired but not released and the corresponding

request timestamps.

From time to time, a site may receive a confirm_ownership message
from the deadlock detector. This message specifies a transaction 7, a
resource R and a timestamp t. The site returns a positive acknowledgement
if
(i) the front of the transaction T is currently at the site and
(ii) in the list of unreleased resources maintained by the transaction front,

the resource K is present with associated timestamp ¢.
The site returns a negative acknowledgement otherwise.

Periodically, every resource controller sends a report to the deadlock
detector, giving for each resource under its control
(i) the set of transactions in possession, along with the timestamps of the
corresponding requests and
(ii) the set of transactions waijting, along with the timestamps of the

corresponding requests.

The deadlock detector executes the following algorithm:

(i) Periodically, it selects the latest report from each resource controller and
assembles the reports.
(ii) If one or more cycles is detected in the assembled graph, the following
procedure is executed for each cycle C:
Let c be the sequence of arcs
TO+R0+T1+R1....+T(N=-1)+R(N=-1)=T0.

Let t, (i), i=0....N~1, be the timestamp associated with the arc T% <R\i.




154

2 2

Let t,(i).i=1,..N-1, be the timestamp associated with the arc
R(i-1)+Ti and let ¢,(0) be the timestamp associated with the arc
R(N-1)-To.

1°y,
s )

.v'.
s T

If for every transaction 7%, 1=0,1,..N-1, in cycle C, ¢, (i)<t,, (i) then
(a) to every site ORIG(t,(i)).i=1,...N—-1, send a confirm_punership
message (Ti,R(i-1),t,(i)) [ ORIG(t) represents the site at which
timestamp £ is issued, and can be computed from ¢t itself. ] and to

ORIG(t,, (0)) send a confirm_ownership message (T0,R(N ~1).t,,(0)).

.
o
[

(b) if all acknowledgements are positive, declare cycle C to
represent a deadlock.
Thm 4.2 Every cycle C declared to represent a deadlock represents a true
deadlock.

Proof:The argument is the similar to that for Thm 4.1, namely that for each

node in the cycle, the incoming arc can vanish only after the outgoing arc.
This holds for resource nodes for the same reason as before. It holds for a
- transaction node 7% because
T (i) since ¢,(i)<t,(i), the resource request for the acquired resource
occurred at the same time or before the resource requested by 7% and
- (ii) at a time later than ¢, (i), the acquired resource has not been released,
since a positive acknowledgement from ORIG(t,, (1)) is received.

Therefore C represents a genuine deadlock.

Thm 4.3: Every gerniuine deadlock is detected.
E Proof: Let the deadlock be represented by the cycle

........................................................
.......................................................
............

...................
..................
..........



(.'II '

Y

-

I S

155

C:TO+RO-T1...oT(N~1)+R(N=1)+T0 with 2,(i), £,(i). £=0,1...N-1 being
defined as before. Since the deadlock is genuine, none of its arcs will vanish
until the deadlock is broken. Hence the cycle will be detected by the
deadlock detector. Further, since the resource acquired by 7§, i=0,..N-1, in
the cycle C must have been requested at the same time or before it requests
Ri, t,(i)sty(i). Therefore, the deadlock detector will send out
confirm —ownership messages to ORIG(f,(i)), €=0,..N-1. Since the
deadlock is genuine, the front of transaction 7t will be trapped at the site it
requested Ri, i.e. ORIG(¢,(i)). Hence positive acknowled,gement.s will be

received for all the confirm_pumership messages sent out and a deadlock

will be declared.

Since a cycle is likely to occur only rarely in the assembled graph at the
deadlock detector, the confirm_oumnership messages will occur oniy rarely.
Hence, the participation of non-resource-controlling sites will be only rarely
required for deadlock detection. The lower communication overhead that
this algorithm causes is obtained at the expense of a larger time to detect a
deadlock compared to the one-phase algorithm in [HO 79). The
confirm ~ouwnership messages and acknowledgements constitute an extra

phase which increases the detection time by one round-trip delay.

Fig. 4.3.a shows a case where the extra phase is not initiated since

t,(1)>,(1). Fig. 4.3.b shows a case which does invoke the extra phase.

4.6. Distributed Detection

L%

N

SRy

'
.i . .

»y

-
.

b2

)
¥

.
LG s
Y

"- .
P
e

AL A A

-




“t'—‘_r.r‘rr_‘.v’_r‘.Ar“r:?".v\-:v'.‘?‘-r, T',,."_-r_. ‘vxr_m_ e PV e aid aed sub i -0 s da e arh o aiat SR P It 8 A T T T YT T T T LA

156

68 80

f. O
- 65 85
- 57 52

Y G’

= (v)

N FIG. 4.3, EXAMPLES OF CYCLES WHICH DO NOT, AND DO INITIATE

CONFIRM-OWNERSHIP MESSAGES RESPECTIVELY




e

[N t.:‘

Y

A

Dadindy \ oy Maaiie sh o gt e et ail

157

4.6.1. Past Work

The first distributed detection algorithms are in [CHA 74, MAH 76). In
both, issued requests for resources are divided into those that are incapable
of causing a global deadlock and those that are capable of doing so. In the
latter case, resource tables from all sites in the network are assembled to
check if a global deadlock exists. Besides causing excessive communication
overhead, both algorithms have been shown in [GOL 77] to fail in detecting
certain kinds of deadlocks. In the “on-line” algorithm of [ISL 78), a complete
global view of resource status is maintained at each site. This algorithm also

suffers from excessive communication overhead.

[GOL 77] presents a distributed algorithm which is similar to many
subsequently-appearing algorithms [MEN 79, CHA 82, OBE 82, BAD 83). The
common element in these algorithms is forward traversal of the global
status grapb ( i.e. traversal in the direction 6f the graph arcs ), which may
cause the deadlock computation to migrate from site to site as intersite arcs
are encountered. In [BAD 83), a request from a transaction is accompanied
by its previous lock history; this hastens detection of intersite deadlock
cycles of length two. In [OBE 82], an intersite arc is traversed only if the tail
node id is greater than the head node id; this optimization reduces the
number of deadlock detection messages caused by & cycle of arcs by half. In
[MEN 78], the results of graph traversals are also recorded in the graph in
the form of arcs representing indirect independencies (i.e. a chain of arcs
al-a2-+...+aN may cause the addition of an arc a1-+aN). However, there is
no provision in the algorithm for updating this "condensed” informsation, and
bence false deadlocks may be detected. ]t‘ygs shown in [GL] 80] that the

algorithm also fails to detect some deadlocks. One of the authors of




-------- R NN - N - . Ll LSk b A Sl ae ik S Jibie gt oy Jan ol Ane - 3 3 Sar 5 Y baarmud

i~

) 158

A

. [MEN 78] proposed a solution, presented in [GL] BO), purporting to remedy

;'\ this last deficiency. But in [TSA 82] it was shown that this solution, too, does

g not detect all deadlocks.

‘.. [TSA 82] proposes a solution which differs from previous solutions in that

- it traverses the graph in reverse, ie. it proceeds from one transaction to

' another waiting for the first to release some resource. With forward tr;aver-
sal of a chain of arcs, the transactions in the chain yet to be traversed must
release one or more resources before the transactions in the chain already
traversed can leave their waiting state. But with reverse traversal, this is

o not true. Therefore, if a node already encountered is re-encountered in the

- backward traversal, the algorithm must verify that the forward path to that

- npode still exists before declaring a deadlock. In fact, [TSA 82] indicates

'." . deadlock in some cases where they do not exist.

In Fig. 4.4.a, a chain of arcs
«. R20+T21+R21+T22+R22....+T2i+R2i+T2(i+1) is shown Suppose the
‘ request of T2i for R2i occurs at £o. In the algorithm of [TSA 82], the wait of
- 72i for R2i will be propagated backwards in the form of a "reaching edge”.

This, when it reaches the site where T21 resides, creates the "resource
reaching edge” T21+R2i.
- In Fig. 4.4.b, transaction T2(i +1) has released R2i which is now free.

In Fig. 4.4.c, transaction Tz acquires R2i. Let this be at time ¢;. Then
it requests resource R10 which is the first node in the chain
- R10+T11+R11+T12+...«R1(j =1)~T1j.

- Next, in Fig. 4.4.d4, T1j requests the resource R20 and is blocked. Let
- this occur at tg>t,. The indirect wait of 721 for R2i ( which is, unknown to
E the site where 721 resides, not valid any more ) is propagated backwards till




oK

R2i

N\
R20 T21 R21 T22 > 9@ T2(i+1
(b)

P ———”
P
= X
~ R20 > T21 R21 T22 —> -~ 9@ @ T2(i+l)
. \j_" ) /

.

(e)

@ T11 R11

(d)

FIG. 4.4. COUNTEREXAMPLE TO ALGORITHM IN [TSA 82].

.
Vs
IR

"".l

(]



[E

160

the resource reaching edge Tx +R2i is created, forming a cycle. Moreover,
the timestamp that accompanies the reaching edge is £, which will indicate
that some transaction reachable by following arcs forward from 7Tz
requested K27 after Tir acquired it. Hence, the algorithm declares deadlock.
Thus, although the timestamp mechanism was introduced to prevent spuri-

ous indications of deadlock, a false deadlock is detected here.

It does not appear difficult to correct this error. One solution appears
to be to associate a timestamp of {; with every resource reaching edge whose
creation originated with a resource request occurring at t,. However, there
is another reason why the algorithms of [TSA 82, OBE 82, CHA 82, BAD 83] are
deficient in comparison with centralized algorithms. In a centralized algo-
rithm, a deadlock can be detected by the detector site one message delay
after the last arc of the deadlock cycle comes into existence. But with the
distributed algorithms just mentioned a delay equal to the time to go around
the cycle is usually required. If all arcs of the cycle come into existence
more or less simultaneously this delay cannot be avoided. But if the last arc
comes into existence an appreciable time after all or most of the other arcs
come into existence, it should be possible to reduce the detection time by
the use of "condensed” information. In the algorithm proposed below, both
forward and backward traversal are used to achieve this goal. Further, a
timestamp mechanism is used to prevent false deadlock indications. In this
algori(hm. timestamps have no ordering role to play, but act as unique

identifiers.

4.8.2. A Distributed Detection Algorithm

o

P
Lk ]
. % 8 4

‘»

“
.

X

A. l'
A

- L3
font

g

s 1B
.

v

P
. "‘t/:'i

A9,

LW I

~r




161

4.8.2.1. Terminology

In the algorithm proposed below, the information necessary to detect
deadlocks is represented in the form of a transaction_agent-resource-
message (TRM) graph at each site. In the graph, there are agent, resource
and message nodes. The former two types of nodes represent transaction
agents and resources respectively. T.x represents the agent of transaction
T at node z. For each pair of communicating agents 7.a and 7.b of a tran-
saction T at sites a and b respectively, there can exist two nodes M(7,a,b)
and M(T.,b.a), the former representing messages sent by 7.a to 7.b and the
latter representing messages sent by T.b to T.a. Let TRM(s) be the TRM
graph at site s. Then the nodes in TRM(s) representing (a) transaction
sgents residing at site s (b) resources whose lock controllers are at site s
and (c) messages sent to a transaction agent local to site s are said to be

local nodes. Other nodes are non -local.

Fig. 4.5 shows an example involving four sites a,b,c, and d. Local to site
a are the agent nodes T1.a,72.a; the resource node K1 and the message
nodes M(T1,b,a) and M(T1l,c,a). Local to site b are the agent nodes
T1.b, T6.b, the resource node R2 and the message node M(T1,a,b). Local
to site ¢ are the agent nodes T1.c, T3.c, the resource node R 3 and the mes-
sage node M(T1,a,c). Local to site d are the agent nodes T4.d, 75.d, the

resource nodes K4, k5, R6.

The transaction 71 is a distributed transaction. T1l.a does the commit
co-ordination of the transaction; it also updates K 1. As can be seen from the
figure, R1 has been locked by T1l.a. It is not waiting for M(71,b.a) since

T1.b has already sent the prepared —to —commit message to T1.a. T1.b is

supposed to update R2 on which it has obtained a lock. But T1.c, which is




( _
Rl T2.a 162
! local nod/e\_—‘ B
site a j,
b
L non-local node .@ Tl.a (Tl,c,a
-

2¢ \

g

CED D

(8s)
D

.............................

FIG. 4.5. EXAMPLE TO ILLUSTRATE TYPES OF NODES AND ARCS

USED IN THE DISTRIBUTED ALGORITHM

..............

...........



‘
.l

Ki

LE

v
‘

va

163

supposed to update R3, has not yet got a lock on it and hence it has not yet
returned a prepared —to ~commit message to T'l.e, which is therefore wait-
ing for M(T1,c.a). Tl.a has sent one message each to T1.b and T1.c ( con-
veying the work they are to do ), hence the arcs from M(T1l,a,b) and
M(T1,a,c) to Ti.a are marked 2b and 2c respectively , signifying that the
second message from T1l.a to T1.b and the second message from Tl.a to
Tl.c are in Tl.a's possession, i.e. have not yet been sent by it. The second
part of the marking refers to the site to which the message is being sent.
Since T1.b has sent one message to Tl.a, the arc from M(T1,b,a) to T1.b is

marked 2a. The transaction T2.a is waiting to lock F1.

At site ¢, Tl.c has not yet sent its prepared —to —commit message to
T1.a, hence the marking 1a on the arc from M(T1,c,a) to Ti.c. Tic is
waiting to lock R3, which has been locked by T3.c. T3.c is waiting to lock
R4 whose lock controller is at site d. The number 737 on the corresponding

arc is a timestamp showing the time at which the lock request was made.

At site d, T4.d has locked R4 and is waiting for a lock on RS which has
been locked by T5.d. T5.d in turn is waiting to lock K6 which has been
locked by the T6.6. The marking 600 on the arc from K6 to 76.b is the time

at which the lock was granted.

Note that arcs between nodes local to two diflferent sites are reproduced
at both sites, and that they have a marking corresponding to a message
number concatenated with a site id, or a timestamp. This marking is done so
that the graphs at different sites can be put together consistently for graph

traversals. Arcs between nodes local to the same site are not marked and

are called infernal arcs.

...........
.~ e Nt

RIS
. AN
Py APV %

BEAR NS e S it i Bt gt it e i bt S AR I Do md &4

‘S‘

LN
Py

L4
.
.

DA AT i ]




[«

LA
LI

[}

164

At any site, arcs running from non-local nodes to local nodes are
referred to as direct incoming arcs(D/As) and the corresponding local
nodes are referred to as in~nodes. Arcs running from local nodes to non-
local nodes are referred as direct outgoing arcs(DOAs) and the correspond-
ing local nodes are referred to as out —nodes. At site @ in Fig. 4.5, T1.a is an
in-node and M(Tl;b.a) and M(Ti,c,e) are out-nodes. The arcs
M(T1,a,b)+Tl1a and M(Tl,e,c)+Tla are DlAs and the arcs
M(T1,c,a)+T1.c and M(T1,b,a)+T1.b are DOAs. Note that a DIA at one site

is a DOA at another, and vice versa.

The outgoing arcs defined so far represent direct relationships between
out-nodes at one site and in-nodes at another. In order to speed up deadlock
detection, condensed information in the form of
indirect outgoing arcs(JOAs) are maintained. 10As represent indirect rela-
tionships between out-nodes at one site and in-nodes at a different or the

same site.

Fig. 4.6 shows Fig.4.5 augmented with I0As shown in dotted arcs. For
example, the out-node M(T1,a,b) at site b and the in-node T6.b at the same
site have a seguence of arcs connecting them:
M(T1,a,b)+; Tl.a, Tla+-M(T1,c.a), M(Tl,c.a)+,,T1l.c, Tl.c+R3
R3+T3.c, T3.c %3:R4, R4+T4.d, T4 d-+RS5, R65-+T5.d, T5.d+R6,
RB-440076.b. This connecting sequence of arcs is represented concisely by
the 10A M(T1.,a,b)+gn7B.0 at site b. Each I0A is associated with a DOA,
namely the DOA which is first in the connecting sequence. Thus the 10A
M(T1,8,b)+40T6.b is associated with the DOA M(T1,a,b)~p, T1.a. If T6.0

tries to lock R2 in a mode incompatible with the mode in which T1.b6 has

locked it, the arc 76.b +R2 will be created causing a deadlock to be detected

]

. 0
vy e 4

LA A

s

.

e
s, .

""."'t-'l lﬂl
)

. l'
1y

“wp



SN 165
- local node

Rl T2.a
site a 737 ,
-

J

non-local node Tl.a (Tl,c,a _4 /6D0— T6.b

S ‘ la
‘ 2b 2c m N

—————

Tl.a @l.c.l
2¢ la

nee)

R3,

r 5

e R ot
e

it |

T3.c

M 600 site ¢

737 .

R6

FIG. 4.6. THE PREVIOUS FIGURE WITH DOAs INCLUDED.

(shown in dotted lines)




R
« 4
A A

o

e e T W TR SRS R IR S W S S W IR PO BN S AN

N A ol X

166

at site d due to the cycle T1.0+M(71,a,b)g076.0 +R2+T1.b. Thus the
deadlock is detected at once instead of having to wait for several message

delays till information from all four nodes is gathered as in, e.g., [OBE 82].

If an arc a runs from node z to node ¥, we refer to z as the head and to
y sas the tail of a, respectively. DIAs and DOAs have message numbers con-
catenated with site ids or timestamps associated with them, which are called
the marks of these arcs. The arc —identifier of a DIA or DOA, d, is the pair of
values (head(d),mark(d)). The 10As associated with a DOA are stored as arc-

identifiers in the ioas field of the DOA.

The algorithm utilizes timeout periods in such a manner that under
lightly loaded conditions, i.e., when requested locks and messages become
available to the requestor within the specified timeout periods, and acquired
locks are released within specified timeout periods, no checks for the
existence of deadlock cycles or attempts to construct 10As in order to hasten
the detection of deadlocks occur. For this reason, with each arc there is an
associated field timed out taking the values TRUE or FALSE according as
the timeout period for the arc has completed or not. [In some cases, as will
be seen, there will be no need to even start the timeoul, so the timed_out

field takes the value TRUE as soon as the arc is created.)

Not only a wait by an agent for a resource or message, but also the
granting of a resource to a message may cause a deadlock [1SL 80). If, how-
ever, the grant causes the transaction agent to enter active state, no
deadlock can occur as a result of such a resource grant and the algorithm

can be optimized accordingly.

In the next section, we present the algorithm for deadlock detection as

executed at a site s. In order to distinguish units of communication

-----
........




LA s Sar St it e e St M e i et day o S ASS NE RS -aid A Ak e o

¢

b

{‘..

AN
» A

v
LS
.

¥

LYY

167

¢
i )

exchanged between between transaction agents and those between resource

I.' PP

'l_:

controllers for the purpose of resource allocation and deallocation as well as

.,.,}.};
L

4

deadiock detection, we refer to the latter as signals, the former being

Ly

X |

referred to, as before, as messages.

.
.

There are 5 kinds of signals:

(i) resource request (RR): This signal is sent when a lock on a non-local
resource is requested by a local transaction agent. The signal carries infor-
mation identifying the requesting agent, the name of the resource and the .
mode of lock desired, and is accompanied by a timestamp TSk generated at o

the requesting site.

(ii)resource grant (RG): This signal is sent in response to a RR signal, to the
- . requesting site. In addition to information identifying the RR signal to which
it is a response, it carries a timestamp 7S; generated at the site that is

sending the RG signal.

;| (iii) resource free(RF): This signal is sent to the resource controller at m
another site when a local transaction agent no longer requires a lock on a
remote resource under the control of that resource controller. It carries N;

information that enables the resource controller to delete the appropriate

- DOA and associated 10As.
(iv) agent create (AC): When a local agent T.s wishes to create an agent at :.‘_‘._'

- another site 7, this signal is sent to the site r. A full duplex channel is esta- -
blished between the two agents. v

(v) backward propagation(BP): This signal is used to establish ]JOAs to speed :'.:j

<. T
{ up deadlock detection. It has two fields : JA_SET and OA_SE7T. The former is i
~

.

r o




E‘.

l’v a' o
YNy

168

¥ ]

& set of DlAs, with the tail of each DIA being local to the same site 7, the site

t: to which the BP signal is sent. OA_SET is a set of arc-identifiers, correspond-
- ing to a subset of the DOAs at site s and associated 10As. On receipt of a BP
. signal, further BP signals may be sent. The BP signals flow backwards along
the TRM graphs.
) (vi) forward propagation (FP): This signal is sent in order to detect possible
multisite deadlocks. Each FP signal may spark off further FP signals at the
. recipient site, and these signals are said to belong to the same
If! deadlock computation. Basically, the FP signals of a deadlock computation
- traverse the TRM graphs in the forward direction. A FP signal has five fields:
o (a) ORIGIN: This is the id of the site that began the deadlock computa-
Lo tion to which the FP signal belongs.
' (b) VICTIM: This is the transaction that is to be aborted if the deadlock
\ computation finds one or more deadlock cycles.
(c) CHECK_SET: This is a set of DlAs at the ORIGIN site. If the deadlock
. computation reaches one or more DOAs or ]OAs at some site

corresponding to one or more members of the CHECK_SET, then the
transaction VICTIM is deadlocked and must be aborted.

(d) TRAVERSED_SET: This is a set of arc-identifiers corresponding to
DiAs along which the deadlock computation has already traveled,
hence no new traversals along these D]As should be initiated in this
deadlock computation.

(e) OA_SET: This is a set of arc-identifiers corresponding to DiAs at the
site to which the FP signal is being sent. These DiAs are the arcs along

which the graph traversal is continued at the recipient site.

-
'y

AR A D M o Sl o B it e RERREIT I

NN
S

L4

e
":1\ - ¥4

R
RIS

Ny

,

l""‘ ©
LA SN

{f

1

3
[T
I R

[ ',", %y A .l"l‘.l‘ Nt
N LT
sl RN "fl'v h

’

Y13

(‘ll"ll

. I [ RIS . L AN

PRI IC I IFIPIE I SO SR SRER AT SRS AR AL IO SO SRV IPY)




169

The resource controller algorithm is event-driven. The relevant events

are

(i) timeouts and arrivals of signals

(ii) locally originating requests for (a) obtaining locks on resources and
releasing them, (b) creating agents at other sites and (c) sending to, and
waiting to receive messages from, agents of the same transaction at other
sites.

It is assumed in the following description that when a transaction completes,

the nodes representing its agents and arcs incident at them are deleted. C;

represents the current value of the local clock.

4.6.2.2. Description of Algorithm

Below we describe the actions taken by the resource controller on the

occurrence of each event:
Requesting, Granting and Freeing Resources
(1) Agent T's requests resources R1, R2, R3.....RN (in specified modes)

(2) If not all requested resources are local, or if not all requested local
resources are available in the required modes, set the status of T.s to
waiting .

(b) For each resource available in the required mode, create the
appropriate internal arc ( indicating resource possession ), with
timed ~out set to TRUE. (COMMENT: A timeout need not be started
for this arc, since if its creation results in a deadlock cycle, it will be
detected when the timeouts for the arcs created in (c), {(d) below,

complete.)

{c) For each local resource unavailable in the required mode, create




170

the appropriate internal arc ( indicating resource wait ), with
timed_out set to FALSE. Start a timeout of period T1.

(d) For each non-local resource, create the appropriate DOA (indicat-
ing resource wait), with timed_out set to FALSE, mark set to C;, and
ioas set to null. Start a timeout of period 72 and send a RR signal to
the site that controls the resource, with TSg, set to the same value as

the mark field.
(2) A RR signal arrives from T.s', s'#s for resource i with a timestamp TSp.

() If the resource is available in the required mode,
(i) create the appropriate DOA ( indicating resource possession
), with timed_out set to FALSE, mark set to C; and ioas set to
null, and start a timeout of period T4.
(ii) send a RG signal to the requesting site, with TS; set to the
same value as the mark field.
{b) If the resource is unavailable in the required mode, create the
appropriate DIA (indicating resource wait), with timed out set to
FALSE, mark set to TSy and start a timeout of period T1.

3. A RG signal in response to a request from a local agent T.s for a non local

resource K arrives, with timestamp TS ¢.

(a) Delete the DOA that represents T.s waiting for ® and abort the
associated timeout if timed ouf is FALSE.

(b) Create the appropriate DIA ( indicating resource possession ) set-
ting the mark field to 7S¢. If no outgoing arcs remain at the node
T.s, set its status to active and set timed_out on the DIA to TRUE.

Otherwise set the field to FALSE and start a timeout of period T3.

Wt T
N e
\Aﬁ‘l'.".l -




-
r,

17

(4). Agent T.s releases resources R1,R2,R3...RM.

(a) For each Ri that is local,

(i) delete the appropriate internal arc ( indicating resource
possession ), aborting the associated timeout if timed_out is
FALSE.

(ii) choose, if possible, a set of transaction agents waiting to
access Ri that can now be given access to it.

(iii) for these agents, delete the appropriate internal arcs or
DIAs (indicating resource wait), aborting associated timeouts
when the timed out fields are FALSE.

(iv) for each non-local agent, follow the steps given in 2(a)(i)
and 2(a)(ii).

(v) for each local agent granted access to Ri in (ii) above,
create the appropriate internal arc ( indicating resource pos-
session ). If no outgoing arcs remain from the agent node, set
its status to ready and set the timed_ouf field on the internal
arc to TRUE. Otherwise, set the field to FALSE and start a

timeout of period 73.

(b) For each non-local resource, delete the appropriate DIA, aborting
the associated timeout if timed_out is FALSE. Send a RF signal to

the site controlling the resource.

(5) A RF signal, indicating that T.s" has released a resource Ri local to s,

(a) Delete the DOA from Ri to T.s', aborting the associated timeout if
timed_out is FALSE.

(AN RAE
MARAAANTR  1CRRR

N

s gl WORS 2P 39




Pl Sad YA e e A

’P\
=

172
s (b) Perform steps 4(a)(ii)-(v).
&:‘ Agent Creation, Sending and Receiving Messages
- (6) T.s requests creation of an agent at site r #s.
"
(a) Create a DIA ( indicating message-possession ) from M(T,s,r) to
N T.s with mark set to 17 and timed_out set to TRUE.
- (b) Create a DOA ( indicating message possession ) from M(7,r,s) to
T.r with mark set to 1s and timed put set to TRUE. COMMENT: Note
e that creation of DIAs and DOAs that indicate message possession do
“ : not create a cycle and hence no timeout need be started. It is waif-
ing to receive a message that can complete a cycle.

(c) Send a AC signal to site 7.

(7) A AC signal is received is received from site 7 #s for creation of an agent

of transaction T'.
- Carry out steps 6(a) and 8(b) with T' replacing T.
(8) T.s sends a message to .71, T.72,7.r3...T.7K.

For each rj,

(a) increment the message number in the mark field on the DIA from
M(T.s1j)to Ts by 1.

(b) send the message to site rj.

e

. (9)T.s waits for a message from T'.r1,7r2... . TrL.

(a) If at least one message is queued for 7.s from each of

N

Tr1,Tr2..T.rl, then remove the message at the head of each queue

r

2

’
'.\"- - '.'.-.“-."I-...--"--. '.'- "..". S -"
O D T Tt T, A N




as

e

173

and supply the messages to T's.

(b) If at least one of the queues is empty
(i)set the status of 7's to waitirg.
(ii) For each ri such that there are no messages queued from
Tri to T.s, create an internal arc ( indicating message wait )
from T.s to M(T.ri,s) with timed out set FALSE and start a
timeout of period T5.
(iii) For each ri such that the queue of messages from T.ri to
Ts is non-empty, remove the message at the head of the queue

and supply it to T's.
(10) A message from T'.r for T'.s is received.

(a) Increment the message number in the mark field on the DOA from
M(T.r.s)to T'r by 1. Set the ioas field to null.

(b) If there is an arc from T'.s to M(7,r.s), delete the arc, abort the
associated timeout if timed_out is FALSE, and supply the message to
T'.s; otherwise queue the message. If there are no remaining outgoing

arcs from 7'.s set its status to active.
Timeouts, Forward and Backward Propagation
(11) Timeout on an internal arc a completes.

(a) Set the timed_out field on the arc to TRUE.

(b) Check for a cycle of internal arcs involving the arc a. If one or
more such cycles exist, abort the transaction involved in the arc and
stop. (Aborting the tfansaction involves releasing the resources held

by the agents of the transaction, deletion of the nodes representing

-..-.
e * 7 v .
[T RN

LA

e T,
PN
'.l ';l'a‘..

2 s

.
.
P

.'-"a"'-r
Ao B 0 0 0,
.'l:;'\ N e

A
2, 4 !
2

L TR R )
4 s 4

P
.
. 4, 0

[y

g s v w
i.nll.l'l' .
.
U



174

the agents, deletion of the arcs incident at these nodes and abortion
N of associated timeouts, as necessary).
(c) Traverse the graph forwards from the head of a, along internal
. arcs with their timed_out fields TRUE, to find all the DOAs and associ-
ated I0As that can be reached. Let
LT ROA(a,*) = U[ROA(a v1).ROA(a ,v2),...ROA(a,up)]. be the set of arc-
identifiers corresponding to these DOAs and associated 10As, where
ROA(a,vi) is the set of arc-identifiers corresponding to DOAs and asso-
ciated JOAs reachable by the above procedure from a whose head

Eg nodes are local to site vi. Let ROA(a,*) be computed in a similar way

to ROA(a,®) with the added restriction that only DOAs with timed_out

flelds set to TRUE and their associated I0OAs are considered.

i (d) Traverse the graph backwards from the tail of a, along internal
arcs with their timed_out fields TRUE, to find all the D]As with their

- timed_out fields also TRUE that can be thus reached. Let
RIA(a,*)=U[RIA(a,w1),RIA(a,w2)....RIA(a ,wg )], be the set of these

- DlAs, where RIA(a,wj) is the set of DlAs at site s, whose timed_out

h fields are TRUE, whose tail nodes are local to site wj and from the
heads of each of which, a path of internal arcs with timed out fields
set to TRUE, leads to the tail of a.

- (e) If one of the members of {1}, say v,. is the site s itself, and

ROA(a,vp) contains a member that corresponds to a DIA in R/A(a,*),

> v
LI I

then a deadlock exists, hence abort the transaction involved in @ and

stop.

)

It R/A(a,*) is non-empty then

t (i) Backward Propagation: if ROA(a,®) is non-empty, then for




b R
< 2
R 175 3
n each site wj send a BP signal with 1A_SET set to R/A(a,wj) and .
7 OA_SET set to ROA(a,*): ‘ ';‘é
o (ii) Forward Propagation: if ROA(a,®) is non-empty, then for ;:s"'
f- each site v;, send a FP signal with ORIGIN set to s, VICTIM set to 2
s the transaction associated with the arc a, CHECK_SET set to

RIA(a,*), TRAVERSED_SET set to ROA(a.*) and OA_SET set to \

ROA(a v,). ’ ,
I‘l COMMENT:Suppose a chain of arcs consisting of a DIA d|, zero or more
o internal arcs and a DOA d, is formed at the site 5. This will result in
]

the sending of a BP signal to the site to which the tail of d; is local. In
order to prevent possible multiple identical BP signals from being sent

when the timeouts on the arcs on this chain complete, the algorithm

. ' is designed so that the last of the arcs on the chain to have its

timed_out field set TRUE is the only one whose timeout completion 1-.L
‘ results in a BP signal being sent. E‘:‘:'.::

~

[ ] A similar situation exists in the case of the FP signals. However, the .

completion of the timeout on a DOA does not initiate a FP signal ( it ‘{‘_
- would be redundant, since there is a DIA corresponding to the DOA, at ‘:
-‘ another site, whose timeout completion would trigger FP signals if o
.'__ necessary ). Hence, here the algorithm calls for an FP signal to be
) sent when the last arc on the chain ezxcluding d,. has its timed_out : -
field set TRUE. o
S (12) Timeout completes on DIA, d;. ~:
" . _\'
3 (a) Set timed_out field of d; to TRUE. E
e

{ (b) Let R/A(d,.*)=RIA(di.,w) = di where w is the site to which the tail




176

of d; is local. Compute ROA(d,,*) and ROA(d;.*) analogously to step

::' 11(c) above, starting the graph traversal from the head of d,.
N

(c) Perform backward and forward propagation in the same manner as
’ in step 11(e).
‘- (13) Timeout completes on DOA, d,.

() Set timed_out on d, to TRUE.

(b) Let ROA'(d,.*) = ( arc-identifier of d, ) | (ioas field of d,). Com-
. pute RJA(d,.,*) analogously to step 11(d), starting the backward
- traversal from the tail of d,.

(c) If RIA(d,.*) is non-empty, perform backward propagation in the

manner described in step 11(e)(i).

4

(14) An FP signal f is received.

(2) From OA_SET(f), check which members tally with the arc-identifier
of a DIA whose timed_put field is set TRUE. Let X={d,} be the set of
such DlAs.

(b) For each d; in X determine ROA(d,,*) as in step 11(c). If the head
of any member of ROA(d,.*) is local to the site ORIGIN(f), and the
member tallies with a member of CHECK_SET(f), a deadlock exists,
hence abort transaction VICTIM(f) and stop. Delete those arc-
‘ identifiers from ROA(d;.*) that tally with a member in
. TRAVERSED_SET(f). Let the remaining set of arc-identifiers be desig-
r.. nated XROA(d;.*). Let S = {OA(v,),0A(vy).....04(v, )} be the union of
< XROA(d,.*) for all d, in X, partitioned according to the sites {v;] to
N which the heads of the outgoing arcs are local.

(c) For each v;, send an FP signal to site v; with ORIGIN set to

" . et et et T LTt LTttt . “ - L -oa
.’ - . o . - L) - LR - - A L. - - . - - - ot [ - o



i £
& ¥
o
B
- ;
177 -~
re :-:.
ORIGIN(f), CHECK_SET set to CHECK_SET(f), TRAVERSED_SET set to ‘.:
:E TRAVERSED_SET(f) US and OA_SET set to OA(v;). \::
Wl
- (15) A BP signal b is received. NS
. For each member d of 1A_SET(b), if a DOA d, exists that tallies with d,
; (i) add the members of OA_SET(b) to the ioas field of the DOA, :
ignoring those whose head is the same as the tail of the DOA. ( This N
situation can arise when a cycle exists. ) .
o (ii) if the timed_ouf field of d, is TRUE, compute R/A(d,.*) analo- '
¥ gously to step 11(d), performing the backwards graph traversal )
[‘: from the tail of dy. Then, if R/A(d,.®) is non-empty, send BP signals '
as in 11(e)(i),with the OA_SET set to the set of new members in the
i foas fleld of d. ,
:~* The timeout periods of 71,72,T3,T4,TS are started when an agent is \
m wailing to acquire a lock on a local resource, an agent is waiting to acquire a o
lock on & remote resource, a resource is waiting to be released by a local
agent, a resource is waiting to be released by a remote agent and when an
agent is waiting to receive a message. They should therefore have values .
appropriately in excess of the average times required for these respective ;
events to occur. It is clear that 72—-T1 and 74-T3 should be of the order of \L’ !
:Z:: a message delay. : ]
_ 4.6.2.3. An Example of Deadlock Processing o
e In this section, we give an example to show how the algorithm works. \
L: The same conventions are used in Fig. 4.7.a-g as in Figs. 4.5 and 4.8, except 5 :

that the value of the timmed_out field on each arc is also shown ( T and F stand




178
P for TRUE and FALSE respectively ). Further the flow of BP and FP signals is
e also shown. There are 3 sites A, B, Cin this example.
>
Fig. 4.7.a: The transaction agents T1.4, T1.B and T1.C request locks on local
, '. resources R1, R2, B3 respectively and acquire them. Since no outstanding

4 arcs from the agents remain, no timeouts are started and the timed_out

fields are set to TRUE as soon as the arcs are created.

Fig. 4.7.b: The following events have occurred since the situation depicted in

Fig 4.7.a existed. :

(i) 72.B and T3.C requested locks on remote resources R3 and R1 respec-
tively at times 80,61 respectively. This leads to these agents’ status being

o~ set to waiting and to the creation of DOAs at sites B and C respectively. The
fimed ou! field on each of these arcs is set to FALSE and timeouts are

. started on both of themn. RR signals are sent to C and A respectively.

(ii) The RR signals are received. Since the requested resources are unavail-

able, DlAs are created at sites C and A with their timed out fields set to

m FALSF and timeouts are started on the DlAs.

(iii) 71.A requests creation of an agent T1.FB at site B. This leads to the

creation of appropriate message nodes and incident arcs at site A An AC sig-

na!l is sent to site B to create an agent T1.B4.

(iv) On receiving the AC signal, appropriate message nodes and incideﬁt arcs

are created at site B.

NG Fig. 4.7.c: (i) T1.B has requested a lock on R2. Since R2 is unavailable, the
- status of T1.P is set to waiting, the timed_out field on the arc from 71.B to
R2 is set to FALSE and a timeout started.

: (ii) At site A, T1.A completes its local processing and now waits to receive a

|

“""..‘.-"- - . N - . .0 R - LT e
Lt ATy T e e T T e T




- c Y a P ¢ . g ey
P Ty ) 3 . . [ AR - e Bl - v v i 5 ) s o s AR EARARIRS S
PARA g . i ] RV ) PP RPN R . g f RARAAR . f ) .
LA AN PPN e L S I s BT S R oo RN A AR i

RHITYODTV Q3LNAIULSIA JHL 4O ONINYOM FHL JIVHISATII Ol ITdRVXI °L°% °OId

179

2°¢l

094

£ LR

‘€L

€y




180

message from T1.B. It enters waiting status, an arc from T1.4 to
M(T1,B,A) is created, its timed_out field set Lo FALSE and a timeout is

started.

Fig. 4.7.d:(i) The timeouts on the DiAs 73.C-g,R1 at site A and T2.8 +gR3 at
site C complete, and therefore the timed _out fields are set to TRUE. Condi-
tions are now satisfied for site C to send an FP signal to site A with its
CHECK_SET containing the DIA T2.F-+gR3 and its OA_SET containing the
arc-identifier (F1,81).

(ii) On receipt of this FP signal, site A finds a DIA with its timed_put field set
to TRUE and its arc-identifier tallying with the arc-identifier in the OA_SET.
However, there is no DOA reachable from this DIA through a path of internal
arcs with their timed_out fields TRUE. Hence, this deadlock computation

stops here.

Fig. 4.7.(e) (i) The timeouts on the DOAs T2.B -+g,R3 at site B and 73.C~¢,R1
at site C complete and therefore the timed_out fields are set to TRUE. A BP
signal is sent by site C with 1A_SET containing the DIA T72.B +gR3 and 0A_SET
the arc-identifier (R1,61).

(ii) On receiving this BP signal, site B finds that the 1A_SET member matches
a DOA and hence the arc-identifier (F1,61) is added to the ioas field of this
DOA. Backward propagation from site B is inhibited since the arc from T1.B

to #2 has not completed its timeout.

Fig 4.7.f (i): The timeout period on the arc from T1.B to R2 completes and
the timed _ou! field is set to TRUE. The following signals get sent:
—an FP signal f1 to site C with ORIGIN set to B, VICTIM set to T1,
TRAVERSED_SET set to {{#3,60).(R1,61){, OA_SET set to {(R3.60){ and

~ g ",'."l'~ll".l ‘.“.’uy |
.l:»_xsj-':-:v.'v:.[’.g Sl

v
P Y .

N
B,

l.'
¥

o
v

r v

L

L N T
1 Juls e

I e el
B L
. P T




-

bl SRS ]

T YW T W,

e AR, 2, P AR I S A AR O S

Te .VEE . 7T C T R . . a8 s T _ammee e v v - - . -

‘puo
( J) WHLIIHWOYTIV dILNEIYISIA 3HL 4o ONINHOM FHL IIVYLSNTII oL TIdRVXT L'y D14

181

1 4 a1
€y . _ ]
: 09°1 <L VT DE VDD
r 1
(p)
| 2 aa o >
00-& <HAH. <.H-H.

s
?‘!G.l.ﬂ jm.nmw m<ma;.a\: @ > 1L

QME @?JSJ A 571
H\ N

Ehe—s p.@.ﬁ@.

a1

f Ve e e LI ot S y .
.' xt .t .... toTete M.i LN T LA e % famad S




3/3

AVAILABILITY AND CONSISTENCY OF GLOBAL 1 WOR'VIRTIDI N

CWUTER NETHORKSCU> CALIFORNIA UNIV

I4
BERKELE'
¥V RAMANOORTHY MAY 86 AR0-19139. 3-EL DMIGZ’-OI-K-“GC

UNCLASSIFIED




. LA g
PMIE S SLIC N UT S P L APURAP SL MRS ARSI ALY e

A RN I A s S A A Ay a8 I A B eV Rt o Tt B o Wt "Be? W YTy YT

~W.-—.‘..L.‘..‘..&-‘~l.‘.

3
A
[
t
L
l -
45 28 -
1.0 &= R -

= iz 3 ;
. —— :'_‘ IEI2 “m22 .
: ' I36
X - OIs

[

rer
T
rr
5
——
"fw
o

I

=
a2 fie s
MICRACOP NIER

-t

SR

PIII L

el




| L At A IS A S A D B M SR L S Sab S Al Seftel S A A AR 8 g A i S s S i M A ARt S

BB

o
.

e

Sl

182

]
o

CHECK_SET set to {M(T1,B,A)~ 4 T1.B).

—an FP signal f2 to site A the same as above, except that OA_SET is set
to {(R1,81)].

—a BP signal b1 to site A with 1A_SET set to {M(T1,F,4)+,4T1.B] and

L

OA_SET set to {(73,60).(R1,61)i.
(ii) The FP signal f1 reaches site C. The OA_SET member matches the sole
DIA at C. However, although its sole DOA is reachable by a path of internal
arcs with their timed_out fields set TRUE from this DIA, its arc-identifier is
) included in the TRAVERSED_SET field of f1, hence no FP signal is generated.
b (iii) The FP signal f2 reaches site A. Although the OA_SET member matches a
DIA, no DOA is reachable from this DIA through a path of internal arcs with

- their timed_out flelds set TRUE, and again no FP signal is generated.

. Jf the BP signal! bl reaches site A and is processed before the timeout period
on the arc T1.A-M(T1,B,A) completes, then the deadlock will be detected
locally when the latter event occurs. In our example, the BP signal does not

reach site A in time for this to occur.

Fig. 4.7.g: (i) The timeout period on the arc from T1.4 to M(T1,B,A) com-
pletes and the timed_put fleld is set to TRUE. This leads to two signals being
sent:
- an FP signal £3 to site B with VICTIM set to 71, ORIGIN set to A,
OA_SET and TRAVERSED_SET set to §{(71.B,14)} and CHECK_SET set to
§73.C~q;R1}.
-~ a BP signal b2 to site C with OA_SET set to {(T1.8,14)} and 1A_SET

Po's's

iy
> %

S set to §73.C+4,R1].
(ii) On receipt of 13, site B finds that the OA_SET member matches its DIA

)

M{(T1,B,A)+,,T1.B. From this DIA the DOA 72.B+gR3 and its associated

T e T T UL L A SO AP IO
. MR R R e L P A D A A A T S St S e S SRS SU S S P L e i T . e S

e .’ '~ . o . s - . . - » - - -~ . -, " . T
- - - - - - - - ot - .t et " . - . w T - MR ML) .
S VAR S VP A . . T o s A L T L A VL o, L O A T AL S Ak a Aadad




| B RS R

. (°P3u0)) WHLIINOYIV @3l 4IMISIA IHL J0 ONINOILONNA FHL FIVYISATII Ol FTdWVXI °*L°*v °9143
]

L ]




- e W P et A,

s

[ ¢

184

JOA with arc-identifier (R1,61) can be reached through a path of internal arcs
on which the timed out fields are set to TRUE. But the arc-identifier
(R1,61) tallies with the CHECK_SET member of the FP signal. Hence a

deadlock is declared and transaction 71 aborted.

4.6.2.4. Prools of Correctness

In this section we show that the algorithm detects all genuine deadlocks

and does not give any indications of deadlock when none exists.

Thm 4.4: Every genuine multisite deadlock is detected by the above algo-

rithm.

Proof: Suppose there is a global deadlock cycle: e(1)~e(2)+e(3)....«e(m)
where e(.) is a transaction agent, a resource or message node, with each

node being distinct.

Each dependency is represented as an internal arc or DIA at some site. The

cycle takes the form of a chain of arcs C: {d,(s,).i(s;,1).i(s 128 (s 11y N

tdi(se).i(se 1).i(s2.2)..... 0 (Sam )....... {di(sm).i(sm 1) i(5m.2)......8(Sm .1y )}

The arcs enclosed within a pair of curly braces represent a contiguous por-
tion of the cycle contained at one site, with neighboring portions of the cycle
being at a different site. Each such contiguous portion consists of a DIA and
zero or more interna! arcs. The head of the last arc is the tail of a DOA that

coincides with the DIA for the next portion of the cycle.

Every transaction agent in C is blocked. Inspection of the algorithm
shows that when an agent in C enters waiting state, and the arc in C that is
directed away from the agent is created a timeout period is started for the

arc. Hence at leasl one timeout period is started in connection with the

.....................
...............
- - -




r':. .

185

creation of an arc in C. Since C represents a deadlock, a timeout started will

not be aborted and will complete

Let a be the arc in C whose timeout is last to complete among all the
timeouts that are started in connection with the creation of arcs in C and let
t be the time this last timeout completes. We claim that all arcs in C will
have their timed_out fields set TRUE by t. By definition of t, all arcs in C
that have timeouts started on their creation, will have their timeouts com-
plete and their timed_out fields set TRUE by t. But each arc in C that does
not have a timeout started on its creation, occurring at t1, and therefore has
its timed_oput fleld set TRUE immediately at t1, must, by inspection of the
algorithm, be an internal arc indicating resource possession or a DIA indicat-
ing message possession. The transaction agent at the head of this arc must
at a time equal to or greater than ti, enter waifing state as a result of
requesting the resource or message to which there is an arc in C from the
agent. A timeout will be started for this arc ( by inspection of the algorithm
) which completes at t2 <t. Since t1<t2,t1 <t

Let the arc a be in site s, (without loss of generality). Att, an FP signal
f1 will be sent to sp with the arc-identifier of d, (s in its OA_SET and d,(s,) in
its CHECK_SET (unless the arc-identifier of d(s,) is present as an 10A reach-
able from a, in which case the deadlock is detected locally). If on receiving
this signal, s; does not send an FP signal f2 to s with the arc-identifier of
d,(ss) in its OA_SET and di(s,) in its CHECK_SET, it will be either because
(i) the TRAVERSED_SET of f1 already contains this arc-identifier, which means
that s, simultaneously with sending f1 to s, sent an FP signal f1' to sy with
the arc-identifier of di(ss) in its OA_SET, or because

(ii) the deadlock cycle is detected at sp, as a result of the presence, as an J0A




186

G

Lo

LS
-~
N ALY

In any case, unless the deadlock is detected at s, or s, site s3 will receive an

|

A

| reachable from di(s;), of the arc-identifier of d,(s,).
-

L4

F
"

FP signal with the arc-identifier of d;(ss) in its OA_SET and d;(s,;) in its

2

- CHECK SET. Proceeding in this manner, we can show that unless the
I

Wy
A
v _i

1. l’-

deadlock is detected at one of the sites s;,..,5,-;, an FP signal will be

P S

o 2
o

received by S, with dy(Sp) in its OA_SET and d,(s,) in its CHECK_SET. But the

IR PR
on

.- o
Y

existence of the cycle C means that there is a DOA at s,,, reachable through a
:ff path of internal arcs with their timed_out fields set TRUE and corresponding
B to d;(s,). Hence the deadlock will be detected.

Thm 4.5: No false indications of multisite deadlock are given by the given

. . algorithm.
" Proof: Suppose a multisite deadlock is detected at the origin of a deadlock
t? computation, as a result of the presence of an 10A reachable from a DIA, _
" which corresponds to the 10A itself. The presence of such an 10A means that .‘_‘:._
. the DIA cannot vanish until after it vanishes, i.e. it will not vanish {(except by :
transaction aborts). Hence the deadlock is genuine. :':_.
Suppose that a deadlock be detected as the result of the following =
o sequence of FP signals f0,f1.f2.....f(I-1), originating at sites sq, s,, §p,......5;-;
and sent to sites s,, sp, Ss....5; respectively. Receipt of fj (j=0.1,2...,1-2)
._ triggers sending of f(j+1). Let the sending of fj (j=0.1.....,1-1) occur at time t;. o
_ Consider the set of DIAs in the CHECK_SET of f0. At t0, s has not sent the ::::.
: signals that will accompany the deletion of any of these DIAs. Further, it can -
. do this only after all the arcs correspon:iing to the arc-identifiers in the
t OA_SET of f0 have been deleted at sy, X
"o fn
:
S a
L




m=

e
LA

v« o v
L
LA

Ll

187

At t,, when f0 is received at site s§,, it is found that one or more entries in
OA_SET(f0) coincide with DlAs in s,. Unless and until these D]As are deleted
at s, and the corresponding signals sent to sy, it is not possible to delete all
the DOAs in OA_SET(f0). But all these DiAs cannot be deleted before all the
arcs corresponding to the arc-identifiers in OA_SET(f1) are deleted. Thus it is
not possible to delete any of the DlAs in CHECK_SET(f0) before all the arcs
corresponding to the arc-identifiers in OA_SET(f1) are deleted.

Proceeding in this manner, we conclude that none of the DIlAs in
CHECK_SET(f0) can be deleted before all the arcs corresponding to the arc-
identifiers in OA_SET(f(1-1)) are deleted.

Since the deadlock is detected at site s,, on receipt of f(1-1)) it follows that:
(i) at the time of declaration of deadlock, there are DlAs in s; that
coincide with members of OA_SET(f(}-1)).

(ii) from these coincident DIAs, it is possible to reach, at the time of
declaration of deadlock, DOAs or 10As that are coincident with
members of CHECK_SET(f0).

Hence, using the same reasoning as above, it follows that these coincident
members of CHECK_SET(f0) cannot be deleted until after they are deleted,

which implies that they cannot be deleted at all ( unless by transaction

aborts ). Hence the deadlock indication is correct.




......

2 W

e

188

"‘

4.6.2.5. Performance

The proposed algorithm detects multisite deadlocks faster than other

algorithms that have been proposed in the literature. This is because both

B

forward and backward propagation are used on this algorithm.

s
.-
»

In the worst case, when all the wait dependencies in an intersite cycle
::'.j form at approximately the same time, the time required to detect the
deadlock is approximately half the time it would require to go round the

cycle. All distributed schemes proposed so far require a detection time

equal to, if not greater than, the time to go round the cycle.

If the last wait dependency occurs after a substantially long time from
the rest of the w:it dependencies in the cycle, the deadlock will be detected
locally without having to go round the cycle. For cases in between the two

." extreme cases cited above, the detection time will be intermediate.

3
rh
‘n “y

Y

The penalty paid for the improvement in response time is higher mes-

3
N

.

.
[

sage trafTic. For a deadlock involving n sites, our algorithm requires a max-

“e,
v 0 _

imum of approximately n® FP signals. ( Each site may send one signal to

each of the other n-1 sites, serially if no 10As are present ( the signals
flowing around the loop ) or in a combination of sequential flow and parallel
flow if 10As are present ). Algorithms proposed till now use only serial flow
- and in such algorithms it is possible to reduce the amount of commurﬁcation
by balf by requiring a serial flow of messages originating from a given tran-
. saction to stop when it encounters a transaction of higher id than the ori-
ginating transaction. This optimization is difficult to incorporate in our algo-

rithm, in which FP signals can "'skip over" one or more sites, and thus over

the nodes in the cycle in those sites.




| S

l‘ l..-l.;l

c’ Py

-A.'Ab u\i‘

185

Secondly, there is the overhead of backwards propagation which is also

approximately of the order of n® signals for a cycle encompassing n sites.

In practice, chains of dependencies spreading over a large number of
sites are unlikely to occur except under conditions of severe contention. It
appears reasonable to pay the cost of higher communication traflic at such
times in order to quickly detect any deadlock that may exist and which if not

detected for a longer time, would exacerbate the contention.

4.7. Conclusion

In this chapter, we have discussed centralized and distributed detection
of deadlocks in a distributed system. For the case of centralized detection,
we showed that reports only from resource-controlling sites are sufficient, if
usage of resources is 2-phase, to detect deadlocks correctly. For the case
where detection is centralized but resource usage is not 2-phase, we con-
structed an algorithm for the "migrating” transaction model, in which non-
resource-controlling sites are only rarely required to participate in deadlock
detection. Since resource-controlling sites will be generally few compared to
the number of sites accessing the resources, the communication costs for
deadlock detection are sharply reduced by this algorithm. Lastly, we con-
structed a distributed detection algorithm which uses both forward and
backward traversal of the transaction_agent-resource-message graph to

speed up deadlock detection.

The algorithms utilize clock facilities to address the problem of race
conditions. In the centralized algorithm, timestamps derived from the clock
facility are assigned to every request for a resource. When the deadlock
detector site assembles reports from the resource controllers in the system,

it uses these timestamps to ascertain if an observed cyclic wait represents a

.
.
’

'l,

5 4




190

genuine deadlock. In the distributed scheme, timestamps (or message

. numbers concatenated with site id) are affixed to every intersite arc. This

d

allows use of "condensed” information to hasten the detection of deadlocks.

Without the timestamps, it would be difficuit to ascertain if the condensed

3

information is up-to-date. 1t is difficult, as pointed out in [GL] 80] to update

this condensed information soon enough to prevent spurious indications of

deadlock. By affixing marks as mentioned above to the condensed informa-

- .
T

tion, the urgency of updating it is removed. RN

v
PRSI
.

.

-
A
.

v
.
¢

Pttt
AP P )
P

PP

|." - K
o~ .

i~ RN
X ,;

- - -
W .:‘.‘
S

LA

LS

R

l‘~.-.

SRS
LY




p e

.

s
.

CHAPTER 5

CONCLUSION

In this report, we addressed the problems of maintaining the availability
and consistency of global information in computer networks. Below, we sum-
marize our results, describe some experiences during the research and sug-

gest future directions.

In Chapter 2, we described a network status maintenance scheme based
on a global clock mechanism. Our scheme differs from that of [HAM B0] in
that it relies upon the nearest neighbors of a site to determine its status and
propagate it, whereas in the latter scheme, probe messages are sent by any
site to determine the status of another site. An important lesson we learned
was how to put together reports from the neighbors of a site to determine its
status. The problem here is that all the links to a site may appear dead at
different times to its neighbors, but the site itself may never have crashed or
noticed that it was partitioned from the rest of the network. But these
status reports may be put together at another site which may then conclude
that the site bas crashed. Rule C3 would then be violated The natural
approach to solving this problem seemed to be to require that the report
timestamps should lie within a small time window. However, difficulties were
encountered in ensuring that a partitioned site observed its links to the rest
of the network to be down in a similar time window and crashed itself in time
to comply with rule £3. The solution adopted in the end involved putting
together the latest reports from all neighbors of a site to determine if the

site should be marked DOWN. The problem mentioned above was solved by

191




S T,

. ':’;;

-’.‘_l(-'q .

192

having a site mark a recovered link to a neighbor as UP in its CRASH_SELF
graph only after all other sites have marked it UP in their CRASH_OTHERS

graphs.

A promising extension of our approach is in the direction of dynamic
networks. Such networks will typically consist of non-overlapping clusters of
sites, each cluster functioning more or less independently of other clusters.
Sites may migrate from one cluster to another. In order to maintain the
consistency of information concerning membership of sites in clusters, the
following modification of rule C3 seems appropriate:

C3: If site z in cluster C does not have site y included in its list of sites in C

at time ¢, then site y does not consider itself to be a member of C at time £.

Our approach to realizing rule C3 in static networks, described in
Chapter 2, suggests how C3 may be realized in a dynamic network. Site z
would remove ¥y from its list of sites in C only when it finds that sites in C are
unable to communicate with y. Site ¥ finding that it has lost contact with
sites in C would consider its membership in C to have lapsed. It would cease
to carry out the actions it was carrying out as a member of C, and institute
appropriate recovery actions, e.g., reapplying for membership in C, becom-

ing a member of another cluster, etc.

In searching for a control problem to test out our network status
maintenance scheme, we found that many problems become simple to solve
using the scheme. An example is the election protocol of [GAR 82]. The
problem here is to choose a unique co-ordinator for a group of sites, when
the current co-ordinator crashes. At all times it is desired to have the site
with highest id which is UP as co-ordinator. The solution given is to make

the election of a co-ordinator atomic by using a 2-phase protocol to broad-

A S adte i Nk af e o ate sl b i SN gl gl s i el g A P AP S i e BN AR

N

AR ad ST A Sl gl

XAy
3

LA XS

a0

¢




T Y P Y T YT TV TV YV OR TN T T

>
s
e 4

183

2

cast the id of the new co-ordinator, similar to the 2-phase protocol in distri-

i buted database systems [GRA 78). The proof that the protocol works
-

t‘f correctly is not simple. But using our network status maintenance scheme,
- the solution is quite straightforward: a site simply considers the site with

highest id marked UP in its CRASH_OTHERS graph as the current co-
ordinator. Rule C3 then ensures that no two sites consider themseives co-

ordinator at the same time.

Wé developed a solution to the replicated file update problem in Chapter

2. Without the use of the clock facility, it would be difficult to ensure that "

.’ two ( or more ) different WARM sites do not join the set of HOT sites when a -
HOT site crashes. If two different WARM sites do join, it would be necessary

either to force one and exactly one of them to quit the set subsequently, or

else to incur the overhead of updating an extra site before a ‘done’ signal is ""

- returned to the originator of an update transaction.

In Chapter 3, we addressed the problem of preventing error propagation

in global information due to malfunctioning sites. We found that a more gen-
! eral form of the Byzantine Generals Agreement was required and formulated
. it. The notion of diflerent kinds of malfunction —tolerance —specification
was introduced as a way to trade off tolerance to malfunctions against the

costs involved. There are still many areas where knowledge of ways to pro-

= 1

vide robustness against malfunctions is inadequate. These include synchron-

2
.

£ XRNIANE| bosHR

ization, security, eflicient transfer of bulk data, update interactions involving

y;-

R more than one updated variable, etc. A prototype for testing out BGA algo-
rithms is currently under construction at the San Jose ]BM Research Labora-

tory [STR B2] and experience in this project should contribute in this direc-

e tion.
f.
\“:'
- . \'..
0._ .-i .
Dy o
L .
e
w
F A

.t
0 e,

/
2
0
[
.

w v

. . - . - - . . ~ - et et et - -
St e e e e e e . ST A, EOIRPC TR R R DA
- c . . . T . e o DN . - . e LD .

........

o N T T e A e - i S
:n..;b RIS SIS SRS Y ST e Lo e e




2, 2&‘;{.’&(

.......
....

--(A.A -_L

194

In Chapter 4, we addressed deadlock detection in distributed databases.
Algorithms for centralized and distributed detection were proposed. For
centralized detection it was shown that 2-phase usage of resources simplifies
the problem of dealing with race conditions. An eflicient centralized algo-
rithm was proposed for the 'migrating’ transaction model. A distributed
algorithm using both backward and forward propagation to hasten detection
was described. In both algorithms, a clock facility was the means whereby

the consistency of ‘snapshots’ of system status was ensured.




Ll m

[AST 76)

[BAD 83)

[BAR 85]

[BEL 79]

[BER 80]

[BER B1]

[CAR 83]

(CHA 74]

[CHA 82)]

195

REFERENCES

Astrahan, M.M. et al, "Systemn R: Relational Approach to Data-
base Management", ACM Transactions on Duafabase Systems,
Vol. 1, No. 2, 1876.

Badal, D.Z., and Geh],M.T., "On Deadlock Detection in Distributed
Computing Systems", Proc. COMPSAC, pp 36-45, 1983.

Barlow, RE., and Proschan, F., “Mathematical Theory of Reliabil-
ity”, Wiley, New York, 1965.

Belford, G.G. and Grapa, E. "Setting Clocks 'back’ in a Distri-
buted Computing System,” Ist Intl. Conf. Distributed Comput-
ing Systems, Huntsville, Ala., Oct. 1878.

Bernstein, P.A., Shipman, D.W., and Rothnie,J.B., "Concurrency
Control in a System for Distributed Databases (SDD-1)", ACH
Transactions on Database Systems, pp 18-25, March 1980.

Bernstein, P.A. and Goodman,N., "Concurrency Control in Distri-
buted Database Systems", ACH Computing Surveys, pp 185-222,
June 1981.

Cearey, M.J., "Modeling and Evaluation of Database Concurrency
Control Algorithms"”, Ph.D. thesis, University of Cealifornia at
Berkeley, Sept. 1883.

Chandra, A.N. et al, "Communication Protocols for Deadlock
Detection in Computer Networks”, IBM Technical Disclosure Bul-

letin, vol. 16, no. 10, March 1974.

Chandy, KM., and Misra,J)., "Deadlock Detection in Distributed

Databases”, Tech. Report TR-LCS-8205, Department of Computer




t‘}-}

‘“.: [DIF 76]
3
r [DOL 81]
ro
L-
[DOL B2a)
o [DOL 82b]
b

[DOL 82c]
‘. [ESW 76)
S
]
f

[GAL 82)
i
] [GAR 82]
o (GLI 80)
k
w
.

196

Sciences, The University of Texas at Austin, March 1882.

Diflie, W. and Hellman, M., “New Directions in Cryptography",

IEEE Transactions on /nformation, June 19786.

Dolev, D., "Unanimity in an Unknown and Unreliable Environ-
ment,” 22nd Annual Symposium on Foundations of Computer
Science, 1981.

Dolev, D., "The Byzantine Generals Strike Again,” Journal of
Algorithms, vol. 3, no. 1, 1982,

Dolev, D., Fischer, M., Fowler, R, Lynch, N. and Strong, H.R.,
“Efficient Byzantine Agreement without Authentication,” sub-

mitted for publication.

Dolev, D. and Strong, H.R, “Authenticated Algorithms for Byzan-

tine Agreement,” IBM Research Report RJ3416 (1982).

Eswaran, KP. et al, "The Notions of Consistency and Predicate
Locks in a Database System", Communications of the ACM,
November 1976.

Galler, B., "Concurrency Control Performance Issues”, Ph.D.

thesis, University of Toronto, Sept. 1982.

Garcia-Molina, H., "Elections in a Distributed Computing Sys-
tem", /EEE Trans. on Computers, pp 48-59, January 1982.
Gifford, D.K., 'Violet: An Experimental Decentralized System,”

Operating Systems Review, vol. 13, no. 5, 1979.

Gligor, V. and Shattuck,S., "On Deadlock Detection in Distri-

buted Systems", /JEEE Transactions on Software Engg., pp 335-

340, Sept. 1980.

g

el
o S,

.
v Aty

.._
.
‘y 4

AR

v

[N

,....
L A N
o ' e 8 & 50
PO N
I.l.’.l' s %0




N

- -

[GoL 77]

[GRA 78]

[GRA B1]

[HAB 89]

[HAM 80)

[HO 79]

[HOL 72)

[HON 79)

(ISL 78]

{1SL 80]

L s L0 i e e ey s s o

197

Goldman, B., “Deadlock Detection in Computer Networks",

Technical Report, M.1.T./LCS TR-185, Sept. 1977.

Gray, J.N., Notes on Database Operating Systems, in Operating
Systerns: An Advanced Oburse, Lecture Notes in Computer Sci-
ence 80, Springer Verlag, 1978, pp 393-481.

Gray, J.. 'The Transaction: Virtues and Limitations”, Tandem

Tech. Rep. TR 81.3, June 1981.

Habermann, A.N., "Prevention of Systern Deadlocks", Communi-

cations of the ACM, pp 373-377, July 1976.

Hammer, M. and Shipman, D., "Reliability Mechanisms for SDD-1:
A System for Distributed Databases,” ACH Transactions on Data-

bases, Dec. 19880.

Ho, G.S..,"A Systematic Approach for the Design and Analysis of
Distributed Computer Systems,” Ph. D. Dissertation, University
of California at Berkeley, 1979.

Holt, R.C., "Some Deadlock Properties of Computer Systemns",
Computing Surveys, pp 179-196, Sept 1972.

Reference Manual for the ADA Programming Language,
Honeywell Inc., Minneapolis and Cii Honeywell Bull, Louvici-
ennes, France, March 1979.

Isloor, S.S., and Marsland, T.A., “An Effective "On-Line” Deadlock
Detection Technique for Distributed Data Base Management Sys-

tems", Proc. COMPSAC 1878, pp 283-288.

Isloor, S.S., and Marsland, T.A., "The Deadlock Problem: An Over-
view"”, Computer, pp 58-77, Sept. 1980.

........
........

AL 3. | K
Y X4 -’(Rﬂ SRR

(\l‘c
Y

PR
S ARY

ity
'y %
LAY

)

s
B A

.
."-
s

v, v, .
.

'r
M)
o e

f

]
o




198

§ [KUH 80]  Kuhl, J.G., Reddy, S.M., "Distributed Fault-Tolerance For Large
iy Multiprocessor Systems”, Proc. of 7th Symp. on COomputer
Architecture, May 1980.

E [LAM 76] Lampson, B. and Sturgis, H.E., “Crash Recovery in a Distributed
Data Storage System”, Internal Report, Comput. Sci Lab, Xerox

Palo Alto Research Center, Palo Alto, Ca, 1976.

[LAM 78a] Lamport, L., "Time, Clocks and the Ordering of Events in a Dis-
tributed System”, Communications of the ACM, vol. 21, pp 558-

o 584, July 1978.

b [LAM 78b] Lamport, L., “The Implementation of Reliable Distributed Mul-
tiprocess Systems”, Computer Networks, vol 2, May 1978.

. {LAM 80] Lamport, L., Shostak, R and Pease, M., "The Byzantine Generals

. Problem,” Technical Report, Computer Science Lab., SRI

o Intl.,1880.

e [LAM Bla] Lamport, L, "Using Time instead of Time-out for Fault-Tolerant

'. Distributed Systems,” Technical Report, Computer Science Lab.,

' SRI Intl., 1981.

[LAM 81b] Lamport, L., and Melliar-Smith, P.M., "Synchronizing Clocks in
the Presence of Faults”, Tech Report, Computer Science Lab.,

s SRl Intl., 1981.

[LAM 81c] Lampson, B.W., Applications and Protocols, in Distributed Sys-
ol tems: Architecture and /mplementations, An Advanced Coburse,
Chapter 14, Springer Verlag, 1981.

[LIN 83] Lin, W. and Nolte, J., "Basic Timestamp, Multiple-Version Times-
tamp, and Two-phase locking”, Proceedings of Symposium on

............................................
..................

................
---------



F‘v'-'ﬂ"ﬁ-"-"'.".-_v—‘- LARE Al S S RSl SRR S a" i it NP it B A durastet ey Jheupat aa iy bt e Jn o d A M A 4 24 Rl A0 bl B A8 D A

- W

-

199

Reliability in Distributed Software and Database Systems, Palo
Alto, Ca, Oct. 1883.

&l

[MA B1] Ma, Y., "Techniques for the Design and Management of Dynamic

Computer Networks”, Ph.D. Dissertation, Univ. of California,
Berkeley, 1981.

[MAH 76] Mahmoud,S. and Riordon,).S., "Protocol Considerations for

Software Controlled Access Methods in Distributed Databases”,

- .

Proceedings of the International Symposium on Computer Per-
Jormance Modeling, Measurement ond Evaluation, Harvard

l."q
'a'.

University, Cambridge, March 1976.

[MCQ 80]  McQilan,J.M., Richer,l., and Rosen,E.C., “The New Routing Algo-

rithm for the ARPANET", JEEE Trans. on Cornm , May 1980.

[MEN 79] Menasce,D. and Muntz,R., "Locking and Deadlock Detection in

Distributed Databases”, JEEE Transactions on Software
Engineering, May 1979, pp 195-202.

[NEL 81) Nelson, B.J., "Remote Procedure Call", Ph.D. Thesis, Carnegie-
Mellon University, May 1981.

[OBE 82] Obermarck, R, "A Distributed Deadlock Detection Algorithm”,
ACM Transactions on Database Systems, pp 187-209, June 1982.

[ous 80] Ousterhout, J.K., "Partitioning and Cooperation in a Distributed
Multiprocessor Operating System: Medusa”, pp. 18-20, Ph.D.

Dissertation, Carnegie-Mellon University, 1980.

[PEA 80] Pease, M., Shostak, R and Lamport, L., "Reaching Agreement on
the Presence of Faults,” Journal of the ACM, vol. 27, no. 2, 1898C.



200

[RIV 78] Rivest, R.L., Shamir, A. and Adleman, L., "A Method for obtaining

E} Digital Signatures and Public-Key Cryptosystems"”, Communica-
: tions of the ACM, January 1978.

g [ROS 77]) Rosenkrantz, D.J. et al, “A System Level Concurrency Control for

Distributed Database Systems”, Proc. 2nd Berkeley Workshop on

Distributed Database and Computer Networks, Berkeley, Ca,

[',"'.‘_'-

May 1977.

b [SCH 83] Schlichting, R.D. and Schneider, F.B., "Fail-Stop Processors: An

Approach to Designing Fault-Tolerant Computing Systems", ACM

' .

Transactions on Computer Systems, pp 222-238, August 1983.

[SKE 81] Skeen, D., “"Non-blocking Commit Protocols”, S/IGMOD Interna-

£y ¥
R A

tional Conf on Management of Data, 1981.

(STO 79] Stonebraker, M., “Concurrency Control and Consistency of Mul- ;
tiple Copies in Distributed INGRES", JEEE Transactions on \

Software Engg., May 1979. ;:"':-. 2
o

[STR 82) Strong, H.R, and Dolev, D., "Byzantine Agreement”, Technical
Report RJ 3714, IBM Research Division, Dec. 1982,

[SUN 78] Sun, H.C., "Deadlock Detection in Distributed Systems- A Pre!-
iminary Evaluation”, Master's Report, Dep. Comput. Sci., Univer-

sity of Maryland, 1978.

[THO 76] Thomas, R H., "A Solution to the Update Problem for Muiltiple
Copy Data Bases which uses Distributed Control”, BBN Report
3340, July 1976.

[TSA 82) Tsai, W.-C. and Belford, G., "Detecting Deadlock in a Distributed
System"”, Proceedings INFOCOM, pp B9-95, Las Vegas, April 1982.




201

[WEN 78]  Wensley, J.H. et al, "SIFT: Design and Analysis of a Fault-Tolerant

Computer for Aircraft Control’, Proceedings of the IEEE, vol.
80, no. 10, Oct 1978.







