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ABSTRACT

A principal feature of computer networks is the ability of the various sites of the network to

access and update shared information. At the application level, the global information takes the

form of shared file systems, databases, etc., and at lower levels, it takes the form of status infor-

*. mation used in controlling the network. This report focuses on techniques for maintaining (i) the

availability of global information in the face of various kinds of failures and (ii) the consistency of

global information in the presence of concurrency.

Two failure models are considered: the crash model, in which failures are instantly detected,

and the malfunction model, in which an indefinite period of time may lapse before failures are

detected. In the latter model, failed sites in the network may execute arbitrary state transforma-

tions and emit arbitrary messages; they may exhibit malicious intelligence trying to disrupt the

functioning of the rest of the network.

SA network status maintenance scheme based on a global clock facility is designed for the

crash model. The global clock is a system of local clocks, one at each site. Using the primitives

provided by this scheme, desired consistency and availability attributes can be provided for

higher-level software. A feature of this scheme is the guarantee that if site A has site B marked

DOWN at a certain time, then site B is really DOWN at that time. An algorithm for updating a

:' replicated file is constructed using the scheme.

For the malfunction model, an approach to maintaining the correctness of global informa-

" tion and preventing error propagation is developed. A combination of an assertion-checking step

and a unanimity-reaching step is used, along with replication of the global information at multiple

sites, for this purpose. The requirements of the unanimity-reaching step are formalized as a more

general form of the Byzantine Generals Agreement and algorithms for reaching this generalized

agreement are presented.

Centralized and distributed deadlock detection algorithms are developed for distributed

. databases. These algorithms use clock facilities to ensure the consistency of 'snapshots' taken of

the status of resources and transactions. It is shown that all genuine deadlocks are detected and

no spurious indications of deadlock are given by these algorithms.

° - - * . .. , - CC
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J., INTRODUCTION

1.1. Definition of Global Information

A principal feature of computer networks, both an advantage and a

necessity, is the ability of the various sites in the system to access and

update shared information. We refer to such shared information .as global.

At the application level, the global information takes the form of shared fle

systems, databases, etc. At lower levels, it takes the form of cordrol or

status infcrmation for the purpose of such system functions as resource

management, synchronization, routing, reconf4guration. protection and error
A:.

control. In this thesis, we will focus on certain requirements arising in the

management of global information and developing techniques for satisfying

them. Our attention will be restricted to distributed computer systems that

use message-passing rather than shared-memory as the basic communica-

tion mechanism.

Just as with information stored in non-distributed systems, it is neces-

sary to manage global information in such a way that certain desirable attri-

butes are ensured. The major attributes are:

(a) rapid accessibility: it should be possible to access and update the global .

information with low latency and high bandwidth. - 4

(b) security: no unauthorized entity should be able to access or update the

information.

(c) integrity: relevant invariants, e.g., functional dependencies between

C different items of information, restriction to a set of permissible values. etc..

., - ,. .

-4-... . . .
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.. should be preserved.

(d) availability: in spite of failures of parts of the network, it should still be

possible to access and update the information.

(e) consistency: in spite of concurrent usage of the information, every entity

that accesses the information should be able to form a consistent view of it.

Our research is concerned with the closely-interacting attributes of

availability and consistency. Our objective is to develop techniques for

(i) ensuring the availability of global information in the face of various kinds

of failures, and

(ii) ensuring that the entities that access the information get a consistent

view of it, in spite of concurrency.

1.2. Availability

The availability of a system is usually defined as the probability that the

system will be functioning normally at any time during its scheduled working

period [BAR 65]. We can extend this definition and say that the availability of

a piece of global information for a given operation ( e.g., read, update ) is theU

probability that an entity authorized to perform that operation is able to do

so. In order to make this definition meaningful, we must include the proviso

that the operation is carried out in a manner that satisfies certain require-

ments, e.g., the information obtained in a read operation should not be out-

of-date or corrupted as a result of prior failures.

The difficulty of ensuring the availability of information depends on the

kind and degree of failure that must be prevented from making the informa-

tion unavailable. We distinguish two models of site failures - the crash model

and the malfunction model. (Lamport makes the same distinction in

[AM 78b] using different terminology.)
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In the crash model if a site fails at time t.

(i) the site stops executing at t; any message it was in the process of send-

ing is not received, or if received, is recognized as mutilated.

(ii) the internal state and contents of the site's non-stable storage are lost;

the contents of the stable storage remain intact.

(iii) while in the crashed state, the site does not execute any operations.

(iv) on recovery, the site knows that it has been in the crashed state and ini-

tiates the appropriate recovery procedures.

(v) the site executes correctly between crashes.

The fail-stop processors of [SCd- 83] exhibit essentially the above charac-

teristics in their failure behavior. Consider a set of sites JRJ. called

receivers, which wish to obtain a piece of information from another site T.

called the transmitter. If T crashes, it can result in a subset of JRI receiving

U the information and the remaining sites in JR not receiving it. However, a

crash in T cannot result in T sending out incorrect information to any

receiver in JR ; crashes are benign failures in this sense.

* In the malfunction model failures are more general and dangerous,

since failed sites can execute arbitrary state transformations and send arbi-

trary messages. If T malfunctions. it may give out incorrect information to

sites in JR; and it may also give out different values to different sites for the

same piece of information. The protocols required to ensure that the

receivers reach some form of agreement on the received value are more

complex in this case. A site may malfunction because it has been taken over

by a malicious agent or because of some undetected hardware or software

error.

". ........... ...... i.,. .......- • .".- .. ,, , .-. -- ,=,,.,;-- =
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In order to show how the protocols for dealing with malfunctions must

differ from those for crashes, we consider the example of a transactional dis-

tributed database. Assume that the crash model holds. From the viewpoint

of preserving the availability of information in the database, the fo'lowmng

protocols used in managing it are relevant:

(a) read and update protocoLs

A number of protocols exist for performing the read and update opera-

tions. The selection of the protocols to be used in a design w 'il aect thU

availability of the information for read and update operations. For exarnp'e,

the read protocol may involve reading any single copy uf the infornmtaon and

the update protocol may involve updating all copies. Alternative!y, we cou'd I

read z copies and update y copies where (z-y) is greater than the torn!

number of copies, usmng a timestarnping mechanism to determine the mc st

K up-to-date valu'e if some of the z values reaJ were not cu~nci.::t Yr".

another alternative would be to direct all reads and updates to a singe cop).

called the primary, which is responsible for distributing updates to a, tl,_-

other copies. These protocols ensure different degrees of avaiiab..ty for

read and update operations, as well as other attrib'tes such an re!-pa.

time, cormmunication costs, etc.

(b) comm protocoLs

Commit protocols (such as the 2-phase commit protocol [GRA 7!i" art

used to ensure the atomicity of transactions, i.e., either all the PM.ts of tY

transaction are installed (comma) into the global informatior, structJrv-

concerned or none are (abort). From the viewpoint of presvrn ag !A, .

the important question is whether or not th,' protzo. i-

[SKE 51] A commit protocol is said to bti nom-blockr f,.I- P clas c" fa



-, *1

a-

I

- S

hr

S z2

I

A * . . .

N - - - - . - - - . -

-'---C .~,. - - - - - - . *
I' - . *

* . ~. -- -.

- .



6 i

' - Ia: -.2. *Generals Agreement

-t - : s.own to be inherenUy

"i.an7-er and degree of its

... . ~. " , , ".:":l. The most comprehen-

--- a in whicL Cor-

,' & B e Vr s 1tE is assumed In

. ,; Y. rt, p':mte.d case and propose

. . c: .to:: aganst the costs

r. .. fo globa: informe-

, .. . .. '.,, ,- .- cr o fC rren ,  execu tg

wAdvs on the g nobad rofor-

' 1!. rron th_-oug;L atormc

. ... . " : o' e 4, a ,o, on the information

:.m.o c cx- . vt, a' :ess to it during

i d i-t t.5:f. co : ,',x . th, trans-iction is made

S - • , . A- 7- ex i2 't. is thc al!catiori table for a

...- ...... . . .;'. s.L r, tL- resources perform

.: >_ t ) ..r. t :. t,. rf's ),;ce s thus altering the allocation

:. ., '. r....g ,ast t of rc reso.ir, us 1! deadlork-detecting

K .. ..'o. m -Y ' (W: (, , r ' t-o') wl'., nef to execute read acLons

' .. '. A: s- :-ti':, 'se' " the eftf ct of other atomic

*,X . ,x. , e K:,r e g i. r: the d ', lsL example, a read

** - -.' ** ..- -- *



- . ....-..

7

Consistency requirements are restrictions placed on the permissible

interleavings of actions of the concurrent transactions and thereby on what

an atomic action may be allowed to see. In the database example, one

requirement that is usually made is that a read action of a transaction see

the effects of all actions of another transaction or see the effects of none of

them. In the example of the resource allocation table, a requirement may be

that if a read action of the deadlock detector sees the effect of an acquire

action by a transaction, it should also see the effects of any resource release

executed by the transaction prior to the acquire operation. Otherwise, an

inconsistent picture of the status of resources and transactions may be

formed by the deadlock detector, resulting in the detection of false

deadlocks.

The techniques that can be used for ensuring consistency in distributed

3 databases have been elegantly classified in [BER 8l) they fall into the two

broad categories of locking and tine-starmp ordering. The answer to the

question of which technique is preferable for distributed databases with

given requirements must await further research. [CAR 63) suggests, on theU
basis of investigation of a restricted set of locking and timnestamp-ordering

algorithms, that the former may be superior for single-site databases. On

the other hand, [CAL 82] and [UN 83) ftnd that timestamp-ordering is supe-

rior for distributed databases, at least in some environments. Whatever the

answer may be for databases, it can be concluded from the available litera-

ture that timestarnp-ordering appears to provide a more versatile and

efficient mechanism for preserving the consistency of global information

used in the control of the distributed system. Examples of areas in which

timestamp-ordering has been used are database synchronization [BER 81],

network status maintenance [HAM 80], deadlock detection [TSA 62], dynamic

r

:* -. *- . . . . . . . . . .



reconflguration [MA 81]. etc. In Chapters 2 and 4, we investigate the use of

clock facilities in network status maintenance and deadlock detection

respectively.

Some sort of clock mechanism has to be available from which the time-

stamps can be derived. Such a facility should have the following characteris-

tics:

(i) it should be distributed for reasons of reliability, survivability and

efficiency of access.

(ii) the facility should assign time values which reflect the ordering of

fevents in the computer system. For most applications, it would be

sufficient if the values reflected the ordering of events at a single site

and the ordering of events at different sites imposed by the flow of mes-

sages.

(iii) the value of the clock at a site should be close to the real-world time.

This in turn implies that clock values at different sites should not drift

appreciably from one another.

(iv) Maintenance of the clock facility should be inexpensive.

[LAM 78a] has proposed distributed clock mechanisms synchronized by

messages which satisfy properties (i) and (ii). The mechanisms require the

clock at a site to be advanced when a message arrives bearing a timestamp

value greater than the local clock value. Hence, all the clocks have a ten-

dency to catch up with the fastest one among them. This in turn may cause

them to drift ahead of the real-world time. However, turning them back may

vitiate the required ordering of events. [BEL 79] suggests a lowing dojun of

clocks, when too large a drift from the real-world time is noticed. This would

provide property (iii). Much of the functionality required of the facility could

-.- : '-
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be implemented by hardware or microcode and this could help to satisfy the

efficiency requirement mentioned in (iv) above. [HAM 80) proposes tech-

niques for including site crashes among the events that the clock mechanism

imposes an order on. It relies upon the use of probe messages by means of

which a site in the network can ascertain the health of any other site in the

network. The defects of this approach and an alternative solution are

covered in Chapter 2. The problem of synchronizing clocks in the malfunc-

tion model is covered in [LAM 81b).

1.4. Providing Facilities for Availability and Conistency

There is a paucity of systems that have implemented any but the sim-

P lest options for providing availability and consistency. SDD-1 [HAM 80] is one

example of experimentation with a novel distributed operating system (the

-w ReBNet), which has attempted to provide timestamp based lower-level

mechanisms on the basis of which the availability and consistency require-

ments can be fulfilled. But more experience with similar systems. which

select from the various options for providing availability and consistency to

achieve viable combinations, is required.

1.5. Scope of Report

As mentioned above, it is our belief that timestamp-ordering based on a

global clock mechanism provides the most versatile basis that can satisfy

the consistency requirements of both application and network control func-

Lions. In the absence of failures, such a clock mechanism is simple to build

[LAM 78a]. However, much of the difficulty in controlling distributed systems

lies in the problem of providing failure-tolerance, which is closely intertwined

with the consistency problem. As will be seen in Chapter 2. it is more

%-2

. . . .. . . . . . . . . . . . . . . . . . -, -
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difficult to construct a clock mechanism that assigns times to failure-related

events in such a way as to make it useful for satisfying consistency and

failure-tolerance requirements. In Chapter 2. we provide a design for such a

clock mechanism for the crash model. The design gives each site a view of

the status of all the sites in the network at every instant of time. The net-

work status view is used to construct a solution to the problem of updating a

"-" replicated file. This solution involves keeping some of the replicas continu-

ously up-to-date, while the others are updated periodically. When sites hold-

ing the up-to-date replicas crash, they have to be replaced. The synEhroniza-

tion requirements of this solution provide a good test of the capabilities of

the clock mechanism.

In Chapter 3, we address the problem of preventing error propagation in

global information due to malfunctions. A more general form of the Byzan-

tine Generals Agreement is formulated and methods for adapting it to pro-

vide different degrees of malfunction-tolerance, according to the criticality

of the global information, are developed.

Chapter 4 deals with deadlock detection in distributed database sys-

terns. The race conditions that render most of the algorithms in the litera-

ture incorrect are discussed, and algorithms making use of a clock facility

are proposed. This feature of the algorithms helps in showing that all

genuine deadlocks are detected and no spurious indications of deadlock are

given.

• ° o.
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CHAPTER 2

DESIGN AND USE OF A NETWORK STATUS MAINTENANCE SCHEME

2.1. Introduction

In this chapter we propose a technique for maintaining information

about the operational status of the sites in a point-to-point network, e.g., the

Arpanet. We show how this technique can provide the basis for the solution of

a control problem concerned with file updating in such a network.

In the network. as different sites go out of operation and recover, the

allocation of functions and tasks must be changed in accordance with net-

work status in order to preserve the services the network provides. For this

purpose, a view of the status of the various sites must be obtained and

updated as time proceeds.

In order to co-ordinate these functions and tasks as well as to ensure

the consistency of the view of system status, a synchronization mechanism is

P necessary. The mechanism used in our method is a global clock facility.

In Section 2.2. we discuss the issues concerned in status maintenance

and the proposed method. In Section 2.3. we show how a reconfiguration con-

trol problem in file updating can be solved using this method.

2.2. Network Status Mainteace

2.2.1. Overview

Section 2.2.2 discusses the requirements placed on the global clock

facility in order that it may serve as a synchronization mechanism for our

11

sU

. .. . .. . - ..



12

status maintenance scheme, along with previous work in designing such a

facility. Section 2.2.3 describes previous work in status maintenance. Sec-

Lion 2.2.4 develops the proposed method.

2.2.2. Requirements for the Global Clock Facility

In constructing a global clock facility, we must ensure that it is con-

sistent with the notion of causality. If an event X causally affects another

event Y, the global clock should assign a greater time to Y than to X.

Consider a failure-free distributed system. An event can causally

influence otber events occurring after it at the same site e.g. a write opera-

Lion on a piece of data will influence the result of a subsequent read opera-

tion. Again, when a message is sent from one site to another, an event occur-

ring before the sending of the message at the first site can influence events

occurring at the second site after the receipt of the message.

In order to achieve reliability and for efficient accessibility, it is desir-

able to construct a global clock out of several local clocks, one at each site.

Events at a given site are assigned times using the current value of the local

S. clock. In order to ensure that these assignments satisfy the causal relation-

ships among events arising in the two ways mentioned above, Lamport

[LAM 75a] proposed two rules which each local clock should obey:

Cl. At each site i, the local clock C(i) is incremented between any

two successive events.

& C2. If event a is the sending of a message m by site t. then the mes-
sage contains a timestamp, the time assigned by C(i) to a. Upon

receiving the message, site j sets C i) to a value more than the max-

imum of its current value and the timestamp. The receipt of m is

%.oO
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3, supposed to occur after the setting of C(j).

If these rules are followed, the causal relationships between events will

be reflected by the times assigned to them.

Next consider the case where site failures are among the events to be

considered. If a site X fails, the time at which another site Y detects the

failure and marks X as DOWN should be greater than the time on X's clock

when it failed. Similarly the time on Y's clock when it marks X UP on its

* recovery should be greater then the value on X's clock when it recovers;

however there are some additional considerations relevant here which we

discuss below.

Consider a distributed system of two sites, X and Y. Assume that both

sites are operati nal and that Y wants to perform a read operation, to which

it has assigned the time T, on a local file. Further assume that the result of

the read operation at T should reflect the effect of all updates to the file

assigned times prior to T. (Note that this requirement is not implied by

causality: while all updates which do influence the read operation are

* required by causality to have earlier times, not all updates with times less

than T are required to make their influence felt when the read operation is

.. performed i.e. they may be performed after the read.) To satisfy these

requirements. Y waits till it receives a message from X timestamped greater

than T (if desired, it could send a message timestamped T with a request for

acknowledgement). Assuming that messages are delivered from one site to

'* • another in the order sent, and that a site sends its messages in timestamp

order. Y knows now that it has now received all update messages originating

- from X which have update Limes less than T. It can perform all such updates

(local and from X) and then perform the read operation.

7m,
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Now assume instead that X failed some time prior to T and is known to

have done so by Y when it performs the read operation. If X recovers after

the read operation and issues an update timed less than T. the results of the

read operation will not fulfill the specified requirement. For this reason it is

desirable that on recovering, X should set its clock to a value greater than

any at which Y has it marked as DOWN. Earlier we saw that in order to

satisfy causality, the time at which X recovers should be less than that at

which it is marked UP at Y. Now we see that X should recover with a clock

setting greater than rs clock value when it marked X UP. These two

requirements can be reconciled by assuming that X pauses, Le. does only

t7 null operations till its clock value exceeds that at which Y marked it UP (Fig.

Summarizing, we see that our global clock facility should obey rules C1

and C2 and a third rule:

C3. If a site i is marked DOWN at time t at another site then site i

should not be operational at that time t.

m
-2.23. Previous Work in Status Maintenance

Kuhl and Reddy [KUH 80] propose a scheme in which a site is tested by a

subset of its immediate neighbors who pass the test results to the rest of the

network. Only the test results sent by those sites which themselves have

been found to be operating correctly are relayed through the network. The

deficiencies of this scheme are:

(i) there is no notion of time attached to the test results so that it is difficult

to integrate the test results from different sites in a consistent manner and

to determine for what period they are valid.

.oI
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(ii) the question of link failures, which may cause correctly operating sites to

arrive at different conclusions concerning the status of a common neighbor,

is not considered.

The SDD-1 RelNet [HAM 80] performs site status maintenance using a

global clock facil;'.y which achieves the requirements described in the previ-

ous section. In this scheme, any site X in the network directly determines

the status of any other site Y in the network by trying to communicate with

it. If no response is obtained within a certain time, X marks Y as DOWN in

its local status Lable. A YOU..AREJ)OWN message is sent to Y in case the

lack of response were due to some other cause than a failure of Y. Receipt of

this message causes Y to cease operation in order to comply with rule C3,

and then to execute a recovery procedure. To ensure that Y actually gets

the YOU.. A4RE_.POWN message it is deposited with another site called a guar-

I dian of Y. with whom Y periodically cbecks for such messages.

. The defect of this status maintenance scheme is that sites may often be

made to cease operation needlessly. If the network becomes congested at

! some spots, timers will begin to run out and sites will become busy, stopping

operation themselves and recovering, thus aggravating the problem. A site

may be too busy to reply in time to all the messages that it may receive from

various parts of the network, but it may well be able to sustain a low-level

protocol with its immediate neighbors to assure them that it has not failed.

Other reasons for a site not responding in time could include being in a criti-

cal section. in a recovery procedure, in a high-priority task. etc. To force the

site to cease operation in such situations is evidently not desirable. In the

RelNet, it is possible that two or more sites trying to recover at the same

time will force each other to stop operation repeatedly unless such a situa-

r"
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tion is detected and a random wait period observed before trying to recover

again. The scheme of Kuhl and Reddy has distinct advantages in that the

failures detected and communicated are much less likely to be spurious.

Our method overcomes the deficiencies of both the above schemes. In

addition, it has a limited ability to deal with network partitions, which nei-

ther of the above schemes has.

2.2.4. Proposed Scheme

2.2.4.1. Overview

In the proposed scheme, every site periodically broadcasts the state of

" -each communication link attached to it to the whole network. The state of

the communication link may be broadcast as down either because the link

itself has failed or because the site at its other end has failed. The state of a

given site is determined by other sites in the network on the basis of the

states of all the links attached to that site. This requires putting together

* reports from different sites, in a consistent manner. This is done with the

help of a global clock facility which fulfills the requirements stated in Section

-'. 2.2.2.

Consider a network N composed of two parts N, and N 2 connected by

the set of links L (Fig. 2.2). Suppose the sites in the part N 2 which are con-

nected to the links L observe that the links have failed. This information is

circulated among the sites in Nz. Suppose further, that the sites in N, form

a minority (usualy just one site). Then the sites in Ne will mark the site(s) in

N, as DOWN on the basis of this information.

It may be that the sites in N, have actually failed, causing the links L to

appear to have failed to the sites in N2 . On the other hand. it may be the

r"



IN

-- L

FIG.2.2. SCENARIO FOR SITES IN NI BEING MARKED DOWN BY SITES IN N2
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ir. N rea'.ze the p s.bithty of ther berir marked DO; V and hence ce f

opjriio,. in ti nc: to comply with rule C3.

TnF, sAis in Ni execute their recovery procedure as follows First th-

sites that are directly connected with operational sites lin N 2 complete their

recovery and enter normal operation Then their neighbors who had no

drect connection with an operatlonal site tiU ther,. are ab!e to start and

complete ther recovery and enter normal operation. This process contLnues

till a: sftes in N, recover.

The recovery of any given site i is performed by first informmig the net-

work that its links are functioning and that it itself is about to resume nor-

mal operation. In broadcasting this information, site i should not have to

K wait for failed sites to recover and acknowledge that they have received this

information. One possible way out of this dificulty would be to look at the

circulating information concerning link failures in the network and use it to

mark sites DOWN as above. Then site i need only wait for acknowledgement

messages from sites not marked DOWN stating that they know about its

impending transition to normal operation. The sites thus marked DOWN are

assurned to mark every site UP when they initialize themselves on recovery.

however, this method is a double-edged sword for site i. Other broadcast

messages of site and link recoveries occurring at the same time may not

reach site i since the broadcasters of these messages, who may have site i

iS
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',1,,
1-kE a DF ', w'-';!, o' have to ensure that the broadcast messages

reei.I sitE i. erice site i ma> form an incorrect picture of which sites are

DORN and thus or.-r to inform sites that are in normal operation of its tran-

sition to normal operation, leading to a violation of rule C3. Our solution to

this problem is for each site in its recovery procedure to have one or more

sites in normal operation to serve as guards in ensuring that broadcasts

reach site i. This is in contrast to the RelNet technique. There, if a site a.

concludes that another site j is DOWN., site i has a YOU ME_4DOWN message

sent to site j. This ensures that the latter ceases operation in time to vali-

date site i's mistaken assumption, if it has not really failed.

2.?.4.2 Assumptions

The following assumptions are made:

£ (i) The network has a fixed topology with links connecting pairs of sites as in

the Arpanet and each site knows this topology. This assumption, as well as

the use of a network-wide broadcast facility in our scheme, limits the size of

U the network to which it can be efficiently applied. For large networks, a

hierarchical scheme will have to be used.

(ii) If partitions occur, they occur in such a manner as to leave a majority of

sites connected. This assumption is required because our method handles

partitions as follows.

When the network gets partitioned, the partition(s) that have a minority

of sites cease operation. This is done because the sites in the majority parti-

tion ( if one exists ) will mark the sites in the minority partitions to be

DOWN. Hence, in order to comply with rule C3, the sites in the minority par-

titions must cease operation until the partition is repaired, while the sites in

I-
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the majority partition continue in operation.

Thus if the network partitions into more than two pieces with each piece

%

only having a minority of sites, all sites cease operation. Even when the par-

tition is repaired it is difficult for the network to bring itself up automatically

after this event for the foUowing reasor If a majority of sites is always

operational, they enable a failed site ( or group of sites ). on recovery to

make the necessary deductions about the clock values with which sites which

are still in failed states, went down. The recovering sites are then able to set

their local clocks to values which ensure compliance with rule C3 and then

resume normal operation. But if all sites cease operation at some time, it is

difficult for any of them. when the partitions are repaired, to recover and set

their clocks to such values until all sites have recovered and their clock

values have been ascertained. Our method does not handle the problem of a

network in which all sites have ceased operation, and will have to 6e

extended to deal with such a situation.

(iii) For similar reasons, we assume that the number of sites that have failed

U is small enough to leave at least a majority of sites which are connected, in

operation. Otherwise the same catastrophe, namely, of all the sites ceasing

operation, will occur.

(iv) Sites are assumed to stop when they fail i.e. they do not fail in such a

way as to execute their algorithms incorrectly or exhibit malicious behavior.

Thus it is the crsh model of Chapter I that we are assuming.

'."

.2.4.3. Site and Link States

A site or link is simply marked as UP or DOWN by every site in the net-

work in the data structures that it maintains to record its view of the system

state. However. in addition, a site itself maintains more detailed state

. . . . ...
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information concerning itself as it goes through the various stages of

recovery and normal operation. Similarly, the sites attached to a link also

maintain more detailed state information concerning the link. In this section

Pswe summarize this detailed state information. The data structures that are

used to record system state views are discussed in Section 2.2.4.8.

Fig. 2.3 shows the states and state transitions that a site may go through

as recorded in the site itself. The site enters the crshed state when it actu-

ally crashes because of a hardware or software fault or when it suspects that

some other site may consider it DOWN (ie. it crashes itself). Sync and

pause are recovery states. In the sync state, the site synchronizes its logical

clock with the clocks of neighboring sites which are in the normal opera-

tional state. In the pause state, the site informs other sites in the network

that its links are functioning properly and that it is about to enter the opera-

tional state. Only when the site enters operational state does the higher-

level software (e.g. the file-updating software described in Section 2.3)

resume execution. The site may reenter the crashed state at any instant for

either of the two reasons given above.

Fig. 2.4 shows the states and state transitions for links. Consider a link

* - connecting two adjacent sites i and j. Although this is in reality one bidirec-

tional link, the two sites maintain their view of the state of this link in the

form Of the state of the unidirectional links (Q) and (j,i) respectively. In

the sequel, we will refer to the actual bidirectional link as a bilink whereas

the unidirectional links whose states are recorded in the detailed state infor-

mation alluded to above and in the data structures described in Section .'

2.2.4.8 are referred to as uniinks. When the bilink itself fails (e.g. due to

hardware problems or noise) or when one of the sites connected to it

I16
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crashes, the state of the corresponding unilinks is set to broken at both or

one of the sites depending on which of the above situations exists.

Ok_-usync is a recovery state, in which the clocks at the two ends of the

unilink have not been synchronized, but the link is physically in usable condi-

Lion. Mlpyvw is the normal operational state. The link may enter broken

state at any moment for either of the reasons given above.

Z2.4.4. The Clock Synchrony Rule

Let C(i) denote the local logical clock (there is also a local real-time

clock to be discussed in Section 2.2.4.5.) at site i. and N(i) denote the set of

immediately neighboring sites of i. For each site k in N(i) site i maintains a

register LTR(k,i) which contains the largest timestanp attached to a mes-

sage received by site i from site k over the bilink between them. The follow-

ing relation is always maintained:

C:SR: C(i) < A +mini LTR(ki): kin N(i) and st (i,.k)=ok._yncJ

where st(i.k) is the detailed state of unilink (ik).

This implies that, if at any instant two adjacent sites i and j record the

unilinks (i,j) and (j,i) respectively as in okync state, then at that instant:

I c(i)-C,)I <A
The local clock C(i) at a site i may have to be advanced for several rea-

sons. It is incremented by I for generating a new timestanp. and when a

message arrives with a timestamp greater than the current value of C(i).

4. C(.) must be increased to a value beyond the timestarnp, if not already

greater than the timestamp. These advances of C(i) are required to imple-

ment the rules Cl and C2 described in Section 2.2.2 to satisfy causality. A

clock advance may be necessary also when other events occur e.g. the

. "
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timer which keeps C(z) in rough synchrony with a real-time clock runs out, a

recovering site needs to bump its clock ahead to synchronize with its neigh-

bors. etc.

If the advance cannot be made in compliance with CSR with the current

values of the LTR registers, the ite i sends a tirnestamped

REQ TIME..,IGNAL message to the appropriate neighbors depending on the

values in the LTR registers, the current clock value and the value to which it

has to be bumped. The neighbors will reply each with acknowledgements

bearing timestamps greater than the one attached to the

REQ.TIME._5IGNAL. The acknowledgements will increase the values in the

LTR registers, permitting C(i) to be advanced. Note that C(i) cannot be

increased by more than A at a step so that greater increases have to be per-

formed in multiple steps.

2.2.4.5. SynchronizLng with Real-Time Clocks

It is desirable to keep each logical clock C(i) in rough synchrony with a

* local real-time clock. This is necessary so that the local clocks do not drift

apart to the degree allowed by CSR (two sites can be as far apart in their

clock readings as the number of hops in the shortest path between them

multiplied by A). Otherwise frequent REQ.TIME_.SIGNAL messages will have

to be sent in order to receive messages in accordance with rule C2 and at

the same time maintain CSR. The method of ensuring this rough synchrony

depends on how well the real-time clocks at different sites are themselves

synchronized with respect to each other. We consider two cases:

(i) Close Synchrony: Here the real-time clocks develop differences of the

order of A only over very long periods of time. In this case, the SDD-l Rel-

veycae
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net method can be used [HAM 80]. Once after every interval of duration ;.,

say I second ) on the real-time clock, its reading in seconds multiplied 1*

"- by a large number N ( say 100 ), is compared with the logical clock and if

the reading of the logical clock is less, it is set to the multiplied value.

Otherwise no action is taken. Usually, however, the increment in the logi-

cal clock during the period r, is much less than N';, and the setting does

occur. When the real-time clocks develop differences of the order of an

appreciable fraction of A. they should be resynchronized in some manner.

(ii) Loose Synchrony: Here the real-time clocks may develop differences of

the order of A comparatively quickly. In this case, every ;*, interval the

reading of the logical clock C(i) is stored away in a location RC(i). When

the next such interval elapses, the logical clock reading is compared with

RC(i)+N*T, and, if less, is replaced by the latter. The new value of C(i) is

stored in RC(i). In this way, a steady increase of C(i) with respect to

real-time is obtained even if the real-time clocks are only in loose syn-

chrony. Use of the previous technique could result in sudden disruptive

S jumps in C(i) when messages from other sites arrive, if the real-time

clocks develop large differences.

Increments in C(i) arising from the synchronization with the real-time clock

can be anticipated and REQ.JIME_GNAL messages sent out in advance as

in the RelNet [HAM 80], so that incrementation does not get held up because

C(i) cannot be advanced in consonance with CSR using the current LTR

values.

2.2.4.6. The LUnk Monitor Module

The basic function of this module is to probe each unilink periodically,

and to warn other interested parties when the unilink appears to go dead and

o,
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when it recovers.

Each site executes this protocol module on each of its unilinks to

immediate neighbors. If a neighbor does not respond in timely fashion to the

messages of this protocol, it runs the risk of having the unilinks to it marked

DOWN and then the site itself may be marked DOWN. This may cause the

site to have to cease operation in order to comply with rule C3.

The messages of this protocol are not tirnestamped since it is required

to execute when the clock has not been synchronized with the clocks of

neighbors during recovery. Again. it may be that the site is waiting for an

increment in its LTR registers in order to increase C(i). The protocol is

required to be sending messages during this waiting period, too. Therefore.

the protocol must have some independent sequencing mechanism to corre-

late messages sent with their responses.

The protocol requires every site i to periodically test each unilink

directed from site i by sending a REQUEST message to which an ACK

response is expected from the receiving site at the other end of the unilink

within some time-out period. If the ACK is not received before the timer

runs out, site i sets the unilink to broken if it is not already in that state.

The probing of the unilink is continued when the unilink is in broken state.

When the site i next receives an ACK to a REQUEST. it sends out a LINK-

DOWN message to ensure that the neighbor realizes that the unilink from

site i to it was in broken state. To this message a LINKDOWN,4CK response

is expected. If it arrives in the time-out period, the unilink (iJ) is set to

ok._u.s-inc state. Symmetrically, if a LINKDOWN message arrives at site i. it

sets the unilink (,#) to broken state, sends a LINKDOWN message iT it has

not already sent one to which a response is pending, and then sends a
I-

. . . .. -- .-. . . . . ... ••. . . .
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iLINKDOWAACK response. The probing of the unilink goes on in the

ok.._nsync state, also.

If a message not related to this protocol arrives over a unilink (j~i) to

site i while it has the unilink (Q.) marked as broken then the message is.

~~suppressed. Also site i itself is prevented from sending a message over the '-

unilink (ij) while it is in broken state.

. The link monitoring module provides a facility by which an interrupt is

.-. ~generated to any process in site i which has requested to be informed when a - -

• " ~unilink (ij) goes into broken state or comes back to ok unsy/nc state. If the ".

-'.unilink is already in the state specified an immediate return is provided. Fli.

2.5 shows the unilink state transitions in which the link monitor module in .-.

.involved.

2.2.4.7. The Link State Reporter Module.'-

The function of this module at a given site is to watch the state of the

ounnsdrctte, alom.h ieadt racs h tt otentok

Every rL ticks of the local logical clock, at a site i in the operational or -" "

fthe pau ese state, this module broadcasts the state of all the unilinks directed

from it with a timestamped message.

"- In addition. when a unilnk is discovered to have gone from ok-npnfc state

- to brok en state, a fresh status report is generated at once and broadcast.
s ris is done so that a site that crashes is quickly detected to have done so.

uniThe link state broadcast is transmitted through the network as a high-

priority message us ting e ie flit. Consider a site i which .
initiates a link report broadcast at a localme to ose there exists a
path ofn unilinks from site i to site Assume that ate time - all the sites

Ever 1
L icksof te loal lgica clok, a a stet n•th opeotioal o

S th-asesaeti odl rodat-tesat fal•h niik drce
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on that path are in pause or operation~al state and the unilinks are in ok -.nc

state. Consider the subpath of this path. r hops long ( 1!5r!9n ). excluding

site i but including the other end site. If for all r, in the subpath of length r,

1 all the unilinks continue in ok_s-yn state, and all the sites continue in one of

the two site states mentioned above till t +rA, then the report will reach site

j by t+nA.

This is achieved by each intermediate site relaying the received report

within a period A of the LTR value, immediately after receipt of the report,

for the site from which the report came, on its okjsjnc urilinks to other

sites. This procedure along with adherence to the CSR relation guarantees

the arrival of link status reports satisfies the time bounds described above.

The state of a unilink is broadcast as UP if it is in okjsync state, and as

DOWN otherwise. How these link status reports are used to update the net-

work status views and to decide if a site should crash itself is described in

the next section.

2.2.4.8. The CRASH-OTHERS and CRASH-SELF Modules

-• "Basically, a site i marks another site j or a group of sites containing site

, DOWN when site i has marked all the unilinks to the site or group of sites

DOWN. Unless precautions are taken, the site j thus marked DOWN may

* ." actually be in operationa2 state thus violating rule C3. For example. it may

have been partitioned by physical failure of the bilinks corresponding to the

unilinks marked DOWN but may not itself have crashed. Further, even the

partition may not have actually occurred but the news of some of the unil-

.1 inks having gone back into ok..ync state from brbken state may not have

reached site i in time.

t
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Therefore a sitej must have a mechanism by which it can anticipate the

possibility of it being marked DOWN and cease operation in time and execute

a recovery procedure.

To this end. a site j maintains two graphs CRASHOTHERS&) and

CRASI-_SELFU). The first is used to detect when site should mark other

sites DOWN and the second when it should crash itself. In each graph there

is a node for every site in the network. If a bilink connects sites i and j in

the network then there are two directed arcs (i) and (j.j) in each graph for

the corresponding unilinks. In each graph, for each node and each arc there

is a STATE field and a TIME field. When a link state report arrives at a site.

it updates its graphs in the manner described below. Note that an update (

which consists of a staLte .time I pair ) is effective only if the time field in the

update is greater than the TIME field for the node or arc in the graph being

updated, otherwise neither the STATUS nor the TIME field is changed.

(a) if unilink (pq) is reported as DOWN by site p in a link state report

timestamped t then the (STATE.TIME) fields for arc (p.q) are set to

(DOWN.t) in both CRASHOTHERS(i) and CRASHI.3ELF(i).

(b) if unilink (p.q) is reported as UP by site p in a link state report times-

tamped t then the (STATE.TIME) fields for arc (p.q) are set to (UP.t)

only in CRASH_OTHERS(i).

Before we describe under what conditions a site is marked DOWN we

introduce some notation. Let NG=IV,El be the undirected graph of the net-

work. i.e. it has a node for every site in the network and there is an arc con-

necting nodes p and q in NG if there is a bilink between the corresponding

sites in the network. A component C of NG is a subset I V , .E c of NG such

that (a) every node in V is reachable from any other node in V through a

-' ' . ." . . " -.r- i " ' . . . . " " . . ' ' 2 . . . . j . . .. . . -- o . ( " ." , : " = , ' " ." , " _ '
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E4 path in NG containing only nodes in V, and (b) E. consists of all arcs in E

which connect nodes in V,

A node in V which satisfies the condition that at least one arc exists in

N, NC connecting it to a node not in V, is called a boundary node of C. B(C) is

the set of boundary nodes of C. A node not in V, that satisfies the condition

that at least one arc exists in NG connecting it to a node in V, is called a

neighbor node of C. N(C) is the set of neighbor nodes of C.

The testing_.arcs OT, of component C are the set of directed arcs run-

ning from N (C) to B(C) in CRASH..5ELF or CRASH_OTHERS. The

seLf jestingrcs ST, of component C are the set of directed arcs running

from B(C) to N(C) in CRASH_5ELF or CRASH_OTHERS (Fig. 2.6).

The significance of the testing-Arcs and the self jesting_jp~rcs of a com-

TL

ponent is as follows. Assume V, < M'j where n is the number of nodes in

NG. When a site j outside C has all the arcs in OT, marked DOWN in

CRASHOTHERS(J), it marks all the sites in C as DOWN. Let tmz be the

* largest of the TIME fields for these arcs in CRASH_THERSO). Site j marks

every site in C DOWN with a TIME field greater than or equal to

tDNt=f V IA . In order to comply with rule C3, every site in C, if it has

not really crashed, must crash itself by tDN. It will be shown that every sitej'

in C will find all the self._estinL_prcs of C ( or a subcomponent of it ) to be

marked DOWN in CRASH.5ELFU') by t pN. This condition is the signal for site

' to crash itself. These preliminary remarks should help in understanding

the CRASH_OTHERS and CRASH.ELF algorithms given below.

The module for marking sites DOWN in CRASH_PTHERS(j) is invoked

whenever a link state report arrives at site . declaring a unilink (pq) to be

L.. .

F -
• "
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DOWN where node 9 is not already marked DOWN in CRASHLOTHERS(j).

This module executes as described below:

(a) find a component C, if one exists, including node q but not node j such

*that:
iii

(i) I V I < n , being the number of nodes in NG.

(ii) for all I in OT, STATE(I)=DOWN in CRASH_.THERS(j).

"- (b) if such a component C is found, let t .=maxlTIME():l in OT, . Then

(i) bump C(j), if necessary, to a value greater than t v t .r+z I, JA.

not responding to any LINKUP or SITEUP messages in the interim.

(The latter are messages related to recovery procedures to be

explained in Section 2.2.4. 10). %

(ii) mark every node r in V, not already marked DOWN by setting the

(STATE, TIME) Belds to (DOWN.CU)) in CRASH_OTHERS and

CRASHIL.ELF.

* The module to detect if site j should crash itself is invoked whenever a unil-

ink (pq) which was UP in CRASHI..ELF(J) is set to DOWN as a result of

receiving a link state report fromp. This module executes as follows:

Find a component C, if one exists including nodes p and 7 such that

(i)I V, i<"

(ii)for all I in ST.. STATE()=DOWN in CRASHAELF(j).

If such a component exists, enter the crashed state.

This procedure must be completed before C(j) exceeds a value A

beyond the LTR value, immediately after receipt of the link status report,

Sn

.1. .- ..
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for the neighbor from whom the report was received.

Table 2.1. summarizes the variables stored at site i, for ease of refer-

ence. .'

P22.4.9. Correctness Arguments (I)

Before stating the recovery procedures for links and sites, it is of

interest to show that the above algorithms work if the unilinks which enter

broken state and sites which enter crashed state never leave those states.

This will also help in understanding the correctness of the algorithms after

recovery procedures have been incorporated.

Thm 1: If site p has site q (iep) marked as DOWN in CRASH._THERS(p) at

local time t, site q is in crashed state at time t (i.e. enters crashed state

before time t). .

Proof: Let t,-t be the time when site p marked site q DOWN along with the -

other sites in the component C. For each I in OT,, let T, be TIME(l) in

CRASHOTHERS(p) at the time the sites in component C was found to be

suitable for marking DOWN and let 'T and b, be the neighboring and boun- ..

dary nodes of C to which I is attached.

INDUCTION HYPOTHESIS HI: For each I in OT,, every site n in C if still

operational at time T4+kA, k= 1.2.... I V 1. has at least one arc in every path

of length k through nodes in C to n marked DOWN in CRASH..gELF(rra) by

that time.

BASIS: HI is true for k=I since CSR and the link monitor mechanism ensure

that the site b, has I' marked DOWN in CRASH...PTHERS(bj) (where I is the

arc running from b, to N'.) by (Tg+A) if it is still operational at that time.

.4 ,"w
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Variable Name Description
C(i) the logical clock value

LTR(k,i) the largest tirnestamp attached to a
message received by site i from site k
over the bilink between i and k. k
ranges over the neighbors of site i.

st (i.k) the detailed state of unilink (i.k), which
may take the values broken, okw-nsnc
or ok s'gnc. k ranges over the neigh-
bors of site i.

state (i) the state of site i. which may take the
values crashed, sync. pause or opera-tional,"-

CRASHOTIERS(i) and directed graphs with a node for each
CRASH..ELF(i) site and 2 arcs for each bilink in the

network. Each node and arc has an as-
sociated STATE and an associated

:: TIME field. The STATE field takes the
values UP or DOWN.

issued(i) a variable in stable storage set to the
value of C(i) every X ticks.

Table 2.1.: Variables stored at site i.

.'

-. ,. - -- -- .---.- .. . . .-.-. : .- - ",....-, .. -.. ..,-v.-. . ..., . .-.. , . .-.-... ... . .. y . .". :,' ' n ,- -
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Assume HI true for k y (y<] V!).-

Consider a node g in C that has a path P of length y+1 containing only nodes

in C to Yk. The next node h on this path has a path P of length y to ng which

is P minus the arc fromg to h.

By our inductive assumption on Hi. site h has an arc on P marked DOWN by

T+VA if it is still operational at that time.

Hence, by Tj+(y +I)A, site g has marked DOWN either the arc from nodeg to

node h or else the arc in P' which was marked DOWN by site h by time ".

T +A, since this information would be relayed to site h by T1 +(y + 1)&

Hence HI is true for k=y+l and hence for k=I,2,..l V I.

But a node in C can only have paths of length at most I V.! through nodes in

C to nj for all I in OT,.

Hence there exists a component C' containing q such that V. is a subset of .-

V and for all U in ST,. STATE(U)=DOWN in CRASH..ELF(p) before

maxl T,:/ in OT+ I+ V, IAt,. Hence site q will crash itself before t,!t.

The next theorem gives a sufficient condition under which a site will not

have to crash itself. We define a component C as working in the time inter-

val (f .t1 ) it:

-.. W (I, I>

(ii) Sites corresponding to nodes in C are operaticnn at t, and suffer no

C hardware or software failures resulting in their crashing in the given time

a ''
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interval.

(iii) There exists a subset of E, E', such that

(a) the graph (V ,.E') is connected.

(b) for each arc in t. both unilinks corresponding to the arc are recorded

as in okAsync state at ft, and neither suffers any physical failure over the

given time interval.

Thnm 2: If a component C works over (t ,t), no site in C has to crash itself in

this time interval.

Proof: If possible, let one or more sites in C crash themselves in this interval.

Let p be thL site in C which is the earliest to crash itself. Let C be the com-

ponent which fulfilled the requirements for p to crash itself. Since

i V ,.,< 2j there must exist anode qop in C which is also in N(C*) and a

,. path consisting of nodes and arcs in (V,.E') to node q. Let r be the node in

this path in B(CO). Since p is the first site in C to crash itself, site q is still

operational at the time p crashes itself. Hence the unilink (r.9) cannot have

been marked DOWN as a result of 9 going into crashed state and site r

reporting the unilink to it as DOWN consequently. Also the bilink correspond-

ing to this unilink suffers no physical failure in the given interval. Thus there

is no sequence of events that could cause this unilink to be marked DOWN in

CRASHI5ELFXp). Thus C" does not fulfill the conditions for site p to crash

6:_ .itself, contradicting our assumption.

- ' . ...-
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2.2.4.10. Recovery Procedures

S2.Z4.10.1. Overview

In this section, we describe the recovery procedures for sites and links.

The procedures executed by a site as it recovers from crashed state through

saync and pause states to operational state are described and the recovery

procedures for links are described in this context since link recovery is part

of site recovery.

In order to motivate the rest of this section. we first briefly summarize

the recovery procedure as executed by site i.

In the crashed state, the site i sets its clock to a value greater than it

ever had hitherto. For this purpose, it makes use of a variable called

iss-ued(i) kept in stable storage. which is always maintained at most X behind

the clock value.

In the syinc state, the site synchronizes one or more of its bilinks, i.e.,

its clock is brought within A of the clocks of the corresponding neighbors.

PNext it appoints one or more neighbors as guards to ensure that broadcasts,

occurring in the network from now on till it enters operational state, reach it

even though it may be recorded as DOWN by the broadcasting sites in this

interval.

In the pause state, the site broadcasts news of the recovery of one or

more unilinks (i,k) through LINKUP messages. When all the sites that are

maintaining CRASH.{THERS graphs at the time acknowledge that they have

marked the unilink (k.i) UP in their CRASHOTHERS graphs. site i, through

a LJNKSAFE message, broadcasts the information that they may now mark

unilink (i.k) UP in their CRASHSELF graphs.

* ,. . . . . .... . . . . . . .-.. . . . . . . .
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5 Here a complication crops up. A unilink I by failing at a critical time

may delay the receipt of unilink status reports which would have caused a

IP site j to crash itself. In the case of no recoveries considered earlier, this

posed no problem. As we found in the proof of Theorem 1. the failed unilink 1.

by being itself marked DOWN at site j effectively 'substituted' for unilinks,

the news of whose failure is delayed in reaching j as a result of I's failure.

Hence. site still crashed itself in time. In the environment we are consider-

ing now, in which recoveries do occur, I's failure may cause a delay in

reports reaching . but I may then recover and be marked UP in

CRASH_SELFT), thus ending the substitution. Hence site) may not crash

itself when it should have.

'.* For this reason, when site i collects acknowledgements for the LINKUP

message for a unilink (i,k), it ascertains which unilinks are marked DOWN in

CRASHSELF graphs in the network ( and news of whose failures may have

been delayed in reaching sites as a result of the failure of (i,k) ). In the sub-

sequent LINKSAFE broadcast, the identities of these unilinks are included,

and every site on receiving the LJNKSAFE marks them DOWN in its

CRASH-SELF graph. Thus, when a substituting link is marked UP in the

CRAS IL5ELF graph of a site, that site also receives the information regard-

ing failures of unilinks which was delayed in reaching it as a result of the

failure of the substituting unilink.

We return to the sequence of site i's recovery actions. The site i broad-

casts news of its impending transition into operational state with a SITEUP

message. After collecting acknowledgements from all sites maintaining

CRASH-OTHERS graphs that they have marked site i UP, it discards its

guards and enters operalional state. At this point, execution of higher-level

~~~~~~~~~~................-................... ....... .........- .... ,-... . .,.,,,. - 'i" .
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software, which makes use of the status maintenance scheme, may be

started.

,tat We now give a detailed description of the above steps.

2.2.4.10.2. crashed -. sync

In the crashed state, the recovery procedure consists in setting the local

clock to a value greater than any it ever had before ( ensuring the monotoni-

city of the clock through crashes ) and to wait till at least one neighboring

site in operational state is discovered.

Each site i has a variable issued(i) in stable storage [LAM 76]. (Writes

to stable storage are atomic and the contents persist through a crash-) On

recovery from crashed state, the site i adds A to issued(i), sets C(i) to this

value and sets issued(i) to this new value, too. From then on, issued(i) is

3 updated every X ticks of C(i) to the new value of C(i).

Next, it sets its attached unilinks to broken and activates the link moni-

tor. It then waits till at least one of the unilinks directed from it is set to

ok_unsync state by the link monitor. It periodically sends out a

STATUS..?EQ message on all the okunsync links. (This message is not

timestarnped. Timestamped messages are sent out on ok..rjnc uniLinks

only.) A site j in N(i) responds to this message only if it is in operational

state.. When at least one site in N(i) has responded that it is in operationa

state, the site i enters sync state.

.'4

2.2.4.10.3. sync -. pause

.. In the sync state, the recovery procedure consists in synchronizing the

local clock with neighboring sites, initializing the CRASHOTHERS and

CRASHA5'ELF graphs and appointing guards for its upcoming stay in the
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pause state.

The logical clock C(i) is now coupled to the local real-time clock. If the

first technique described in Section 2.2.4.5 is used, the local real-time clock

which may have stopped functioning in the crash must first be resynchron-

ized with other functioning real-time clocks in the network.

The site i initializes its CRASH_OTHERS and CRASH.,5ELF graphs to

show all the unilinks directed from it as in DOWN state and all other sites and

all other unilinks in the network as UP with the current value of C(i), ie. the

TIME fields are set to the current value of C(i).

Next the SYNC-LINK module is invoked sequentially on each of the

ok_ unync unilinks to sites that have signified that they are oper tiona.

When a SYNC-LINK module invocation returns with the corresponding unil-

ink (ij) in ok-hync state, the site i asks site j to be its guard during its

upcoming stay in the pause state It does this by sending an

ENTERINGPAUSE message to site . which responds with an

ENTERING_'AUSEA4CK if still in operational state. When site i has

appointed one or more guards, it enters pause state. If subsequently the

unilinks to all its guards go into broken state, before site i has completed its

stay in pause state and entered operational state, the site enters crashed

state again. When a site j receives an ENTERINGJAUSE message, it replies

with an ENTERINGJAUSE4CK if in operational state. From then on, till it

(a) enters crashed state itself,or

(b) receives a LEAWVNG..AUSE message ( to be described in the next sec-

tion) or

(c) the unilink (ji) leaves ok..s-ync state,

in responding to any SITE UP.LINKUP or LINKSAFE messages Cto be dis-

., . . -

-. . .. . . . . .
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cussed below), site j specifies site i to be in pause state in its response. In

the last case, site j bumps up its clock by A before replying to any of the

aforesaid messages, by which time site i will be aware of site j ceasing to be

its guard.

The larger the number of guards site i appoints before entering pause

state, the less likely it is that its recovery while in pause state will have to be

restarted from crashed state as a result of its unilinks to all its guards leav-

ing ok s-ync state.

2.2.4.10.4. The SYNCJINK Module

The function of this module is to synchronize the clock of the invoking

site with that of the site at the other end of the unilink for which it is

invoked, thus setting the unilink ( and its reverse counterpart ) to okj sync

state.

A MYTIMEJS message carrying the current value of C(i) is sent on the

,:..: unilink (ij). ,

If the response ( we describe the appropriate responses to messages

sent out by this module below ) carries a clock value within A of the current

logical clock value, a SYNCHED message is sent on the unilink carrying the

current value of C(i). If a timestamped SYVCH_.,ACK message is received

and the timestamp is within A of the current value of C(i). the state of the

link is set to okj.ync (the timestamp being used to set the corresponding

LTR register) and the module returns. If the timestamp on the SYNC-L4CK

is more than A less than the current value of C(i), the SYNCJ.JNK procedure

is restarted.

F -

• - . . .- : -,. . • . , " . nmlnad. . . .. .I .-'l I l a l l



44

IIIf the response to the MYIMEIS message carries a clock value

exceeding the current value of C(i). by more than A. the clock synchroniza-

tion module is invoked to bump C(i) up to the clock value in the response.

Then the SYNC.INK procedure is started again.

If the response to the MY.JMEJS message carries a clock value which

is less than the current value of C(i) by more than A. the module restarts

the SYNC.INK procedure.

If a SYNCH_NACK message is received in response to the SYNCHED

message, it may bear a clock value exceeding that of the SYNCHED message

by more than A. In this case, the same procedure (described above) under-

taken when the response to a MYJIMEJS message exceeds the current

value of C(i) by more than A. is executed. Otherwise, the SYNCIJJNK pro-

cedure is simply restarted.

A site j should respond to the messages of the SYNC.INK module only

when in operoIonal state.

The response to a MY.JIME.JS message from site i when unilink (j,i) is

in okunsync state ( the unilink is set to broken state if it is not in ok_unsync

state when this message arrives ) is to bump C(j) up to the clock value car-

ried by the message, if necessary. Then a MYJ'IMEJS.ACK message bearing

the curreit value of CU) is sent.

The response to a SYNCHED message is, if the clock value borne by it is

within A of C(j), to set the unilink (j.i) to okJFync state using the clock value . -

to set the corresponding LTR register and to return a timestamped

SYNCH_,4CK message. If the clock value of the SYNCHED message is not

within A of C(j), a SYNCHNACK message carrying the current value of C(U)

is returned.

.'7
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When a site j in operational state sets a unilink (j) to ok.j state, it-

invokes the LINKUPBROADCAST module (described below) on it.

If during the above procedure, the unilink (.) gets set to broken state,

the SYNC.JINK module returns at once.

In the pause and operational states, this module is invoked whenever a

unilink goes from broken to okun.sync state.

2.2.4.10.5. pause -, operational

In the pause state, the recovery procedure consists in informing the

network of the recovery of the unilinks directed from the site and of the

intended transition of the site to operational state.

The site i starts issuing and relaying link state reports, and processing

them to update its CRASHOTHERS and CRASH-SELF graphs as described

in Section 2.2.4.8 with the exception that the CRASH..5ELF module is not

invoked for the time being. It responds to any LINKUP, LJNKSAFE and

SITEUP messages received as described below.

Next. the site i invokes the BROADCAST.INKUP module (described

below) in parallel on all ok-jync unilinks (iQ.) attached to it. These invoca-

tions, if successful, will produce broadcasts of LJNKSAFE messages for these

unilinks. (See the description of the BROADCAST.INKUP module below for

a description of LINKSAFE messages.)

When all the BROADCASTJ.JNKUP module invocations have returned, if

-- not even one of the okjF,'r unilinks has been marked UP in CRASH..5ELFi)

as a result of receipt of a LINKSAFE message, the site re-enters crashed

state. If at least one of the okFync unilinks has been marked up in

L_ CRASH..5ELF(i). the CRASH._SELF module is invoked. From this instant on,

.... -.,o

. . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .-. .
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IIthe CRASH..5ELF module is invoked whenever a received link state report

makes it appropriate to do so as described in Section 2.2.4.8. If when the

module returns, the site has not entered crashed state, the following pro-

cedure is executed.do

The site i broadcasts a timestamped SITEUP message. (The responses

- to this message as well as to the LINKUP and LINKSAFE messages should
,V.

carry the timestamps of the messages to allow them to be matched up.) The

appropriate responses to the SITEUP message for any site in the network

are:

W (i) if in crashed or sinc states, respond with a tirmestamped SITEUP.4CK.

(ii) if in pause state or in operationaW state, set the (STATE. TIME) fields in

CRASH_OTHERS(j) and also in CRASHj5ELF(j) for site i to

(UPcurrent local time). provided the timestamp on this message is greater

than the TIME fields. If in operationaL state, the ids of all sites that site j is

currently guarding should be added to the acknowledgement.

Site i periodically resends timestamped SITEUP messages till all sites

that have not responded are marked DOWN in CRASHPTHERS(i). In addi-

tion. if any site k is specified as being in pause state by one of its guards, the

site and its guards are sent SITEUP messages, till either the site responds

or its guards cease specifying site k as being in pause state ( by getting

marked DOWN themselves in CRASHJTHERS(i) or returning SITEUP ack-

nowledgements without specifying node k ). In the latter case, either the

'-A site k has entered UP state, in which case site i will have received a SITEUP

message from it. or all the guards have stopped being guards before site k

enters operationa state, in which case site k reenters crashed state.

.

. . . . . . . . . . . . . . . .. . . . .. . . . .
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The site i next sends a LEAVINGJPAUSE message to those guards to

which its unilinks have not left okj.ync state since the time they responded 4%

to site i's ENTERINGJAUSE message. It waits for a LEA WNGJPAUSEACK

or for the corresponding unilink to enter broken state. When either of these

events has occurred for each unilink over which a LEAVINGPAUSE message

was sent, it enters UP state if at least one LEAVNGFAUSE_4CK is received,

otherwise it reenters crashed state. Only after entering UP state is execu-

tion of higher-level software resumed.

The original SITEUP message is sent by flooding (but without the time

constraints imposed on the flooding mechanism by the link state reports );

all responses and subsequent SITEUP retransmissions can be sent by nor-

mally routed messages. Similar considerations hold for the LINKUP and

LINKSAFE messages discussed in the next section.

2.2.4.10.6. The BROADCASFJJNKUP module

The function of this module, when invoked on the unilink (ij) is to

ensure that the CRASH_OTHERS graphs in the network have been updated to

show the unilink (j.i) UP and then to have the unilink (i,) marked UP in

CRASH.5ELF graphs.

When a link (ij) is restored from broken to ok_sync state, this informa-

tion is broadcast by the link state reporting mechanism described in Section

2.2.4.7. and other sites appropriately update their CRASH_OTHERS graphs.

However, the updating of the link state in the CRASH...ELF graphs must be

postponed till it is certain that all other sites have updated their

CRAS.FJTHERS graphs, in order to leave no chance of rule C3 being

violated.

..... ~ .........
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Hence the BROADCAS7'JJNKUP module which is responsible for getting

unilinks marked UP in the CRASH.5ELF graphs. does this job in two phases.

Phase 1: The site i. which is executing the BROADCAST.JNKUP module for

unilink (ij) broadcasts a timestarnped LINKUP message carrying the LTR

value, sBY tL- for node j. The responses to this message from any node k

are:

(i) if in craswd or sync state, return a timestarnped LINKUP,4CK specifying

site k's current state.

(ii) if in pause state, the (STATE.TIME) fields for unilink (j.i) are set to

(UP.tL). in CRASHOTHERS(k). A timestamped LINKUP..CK is returned.

The identities of unilinks directed from site k which are marked DOWN in

CRASH-L5ELF(k) are specified in the LINKUP_.4CK along with their TIME

fields in the same graph.

(iii) If site k is in operational state, the unilink (j,i) is set to (UP,tL) in

CRASH_OTHERS~k). A timestamped LINKUP..4CK is returned. The identi-

ties of those unilinks directed from node k which are marked DOWN in

. CRASH-.5ELF(k) are sent along with their TIME fields from the same graph

in this acknowledgement. The ids of all guarded sites should also be

" - specified.

-- Timestamped LINKUP messages carrying a time t1. are resent till all

sites not marked DOWN respond. Responses from sites specified by their

guards are also sought. For every site, whether specified as guarded or not.

from whom an explicit response is not received, the following procedure is

applied.

-. -.-
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Let r be a site marked DOWN in CRASHOTHERS(i) from which a

response is not collected. Let t-A be the maximum of the TIME fields for

those neighbors of site r marked DOWN in CRASJOTHERS(i), Then a

LINKUP message timestarnped t must be sent to all the UP neighbors of

site r, if any and their responses collected. ( If any of these UP sites get

marked DOWN before responding, the procedure should be restarted with

these neighbors newly marked DOWN included in the set of neighbors for

whom the maximum TIME field is computed. ) If none of the UP neighbors

specify r as a guarded site in their response, site r if still marked DOWN

either has not appointed any guardians at time t or has reentered crashed

state as a result of all unilinks to its guardians leaving ok..sgnc state. Hence

site r is taken to have implicitly responded that it is in crashed or sync state

with a message timestamped t.

The responses are processed as follows:

(i) A response, implicit or explicit, from a site in crashed or sync state is

treated as specifying that all the unilinks directed from that node should be

"" marked DOWN in CRASH_ELF(i) at the time corresponding to the response

timestamp.

(ii) for each unilink specified as DOWN at a time t in responses from sites in

other states, the (STATE, TIME) fields for that unilink are set to (DOWN.t) in

CRASH_.ELFXi).

The site i then enters Phase II.

* -,, Phase ID: The site i broadcasts a LINKSAFE message for unilink (ij). carry-

ing the time tL,. This message carries in addition, a list of all the unilinks

marked DOWN in CRASH_,FELFqi) along with their TIME fields from this

-.7
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P graph. The responses to this message from a site k are:

(i) if site k is in crashed or sync state, return a timestamped

LINKSAFE.4 CK.

(ii) if k is in pause or operational state, set the (STATE, TIME) fields for unil-

ink (Q,) to (UPtL) in CRASH..ELF(k). For each unilink specified as DOWN

at a time t in the LINKSAFE message, set the (STATE. TIME) fields for that

unilink to DOWN at the time t in CRASH.5ELF(k). A timestamped

.. *LINKSAFE._4CK is returned. If in operational state, the ids of all guarded

sites should be specified in the acknowledgement.

The LINKSAFE message should be resent till all sites not marked DOWN

respond. Responses from guarded sites are collected as for 31TEUP mes-

sages. Then the module returns.

The module returns immediately if the unilink (ij) goes to broken state

in Phase I or Phase II.

2.2.4.11. Correctness Arguments (HI)

In this section, we develop analogs to Theorems 1 and 2 for our scheme

with recovery procedures incorporated.

In proving the analog of Theorem 1. we have to show that recoveries of

unilinks and sites do not prevent a site from crashing itself in time when

needed if it has been marked DOWN at some other site.

ST m 3: If site p has site q vp marked DOWN in CRASH._OTHERS(p) at local

time t. site q is not in operational state at time t.

Proof: Arrange the various events correspoilding to marking DOWN of sites in

-, increasing order of the local times at which they occur (if some occur at the

1!
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same time, arrange according to increasing id of the site at which the event

occurs).

Let t, be the logical time of the 'th such event.

INDUCTION HYPOTHESIS HI: If site p has site q Pp marked DOWN in

CRASH_OTHERS(p) at local time t <tj, site q is not in operaliorml state at

time t.

BASIS: Obviously true for j=l. since no site marks any other node DOWN

before t1.

Assume F I true for j x.

Consider the marking DOWN event at t,, which, say, is the marking DOWN at

site m of sites in component C. For each I in OT,, let T be TIME(l) in

CRASH_OTHERS(m) at the time the component C was found to be suitable

for marking DOWN and nj be the node in N(C) to which I is attached. Let

tm = max jTj for I in OT, so that t.ztm+l , I&

Consider a node a =r& in C which has a path kc V, I hops long to 4 =r ( the

" path being rt.Ttp,_ . "). We will show that at f,. site a has at least one

unilink on the path from a to Y4, marked as DOWN in CRASH_ELF~a).

• Define a series of local times . for nodes r0," ....k as follows:

• "(i) 00 is defined as T1.

(ii) If the report by site To at T7 of unilink (ror 1) being DOWN was due to phy-

' sical failure of the bilink between r' and rl, and if node r, is in pause or

operational state before 00 +,& for a sufficiently long Lime, its link monitor will

L. detect this failure and initiate a link state report. Let 3 be the latest time

... . .. .
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before 60+A when the monitor initiates a broadcast and marks the unilink

(T,rO) DOWN in CRASILSELF(r l), if this situation exists. On the other hand.

r, may not be in either of the above states during the period of the failure. It

is also possible that the report at T7 by r0 may be caused by a crash of rT.

which makes the unilink from ro to r, enter broken state. In these cases,

where the link monitor in r, does not initiate any broadcast of the failure

which caused the report at T1. we define 61 as the latest time before 60+,&

when r, enters crashed state.

(iii) For <!-k.0 is defined as follows:

(a) if ,-j is the time of marking DOWN in CRASH_OTHERS(r;_.) and

CRASH._5ELFgri 1 ) of some unilink on the path from ri I to rO. as a result

of a link state report initiated by one of the sites r 1." 2 .  rt-1 and if this

report reaches r, by di+A. 0i is defined as the time at which this unilink

is marked DOWN in CRASHSELF(r,) as a result of receiving this report.

" (b) However, this report may not reach rt by it,_+A because of the failure

of the bilink between r,-_ and rt. Alternatively. rt- may have entered

crashed state at 6,-. In these cases, we define 0, as the latest time

before 0,_+4 when the link monitor in r, detected the broken or

okunsync state of the unlink from rt to rt-_ and initiated a link state

:* - report causing this unilink to be marked DOWN in CRASH.ELFrt).

.* (c) Lastly, if site rt was not in oper'.iona. or pause state at a time before

dt-,+& to make any of the above situations occur, we define O, as the

latest time before ,_+A when site ri enters crashed state.

I NEi '£"INDUCION HYPOTHESIS H2:
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(ii) Site ri has some unilink on the path to r o in front of it marked

DOWN in CRASH.._5ELFr,) from d to i, at every instant it is maintain-

Pa. ing this graph.

BASIS: The first part of H2 is true for i=l because 0 1!T+A by

definition. The second part is true for the following reason. Since r0

'has reported the unilink (r0,rl) as DOWN at Ti. the unlink (rj.r) can-

not become ok,.yg before T. Hence the LINKUP broadcast cannot be

started before T1. But site m. which marks the nodes in C DOWN at t,,

cannot respond to this broadcast, whether in pause or operational

state, before is. Further, since site n has entered pause state before

T, site r, cannot avoid waiting till this response is received from site n

whichever state, pause or operational it is in. ( Remember that Hi is

assumed to be true for j=x, hence site r, cannot incorrectly consider

sites in operational state, including those that might be guarding m. to

be DOWN ). Therefore, the corresponding LJNKSAFE message can be

broadcast only after is by r 1 . Hence the unilink (r .ro) remains marked

DOWN in C4SH-$ELF(r1 ) from i6 to is at any instant that r, is main-

taining this graph in this period.

Assume H2 true for i <y.

Consider r, which either crashed at 0, or marked a unilink in front of it

on the path to re. DOWN at 0.. In the first case. after recovery, the

unilink from r. to r._ cannot become okjync before Or-,. Hence the

LINKUP broadcast for this unilink cannot be started before ,-,. In

the second case, the marking DOWN is the result of a link status report

'-1
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issued at Od by rj for some d y, reporting the unilink (r1.r?_1) to be

DOWN. In this case, the LINKUP broadcast for the unilink (rg. d-1)

cannot begin before -t-. In either case, it follows from our inductive

Lt assumption on H2 and the way the responses to the LINKUP broadcast

are processed, that if these responses are received before t,. the ensu-

ing LINKSAFE will indicate some unilink (r.,r,-,) on the path to r 0 in

front of the unilink whose safety is being broadcast, as to be marked

(DOWN,t) in the CRASH_-5ELF graph , where 16!tft9,, of every site

receiving the LINASAFE message.

Hence the marking UP in CRASH-..5ELFrm) of the unilink in front of r.

marked DOWN by it at 0W. or the marking UP of the link (rV~r _-) on

recovery if it crashed at i9 will be accompanied by the marking DOWN

of some unilink in front of the unilink being marked UP. if this marking

UP occurs before t. If, in turn, this unilink is marked UP before t8 ,

some other unilink in front of it on the path to r 0 will be marked DOWN.

[ Ultimately, the unilink (r,ra) may be marked DOWN and the LINK-

SAFE for this unilink cannot be issued, as already indicated, before t,.

J Hence site r, will have some unilink in the path to ro marked DOWN in

CRAS I..ELFIrw) from 0, to t.. Moreover, since Owe5 1 ._.+A by

definition and since 0j_. 1-;T+(y- I)A by our inductive assumption on

H2, it follows that 6,!cT+Y&.

Hence, H2 is true for i=y and hence for i=l, .... k.

Thus at t,, the site a has at least one unilink on every path from itself to nj

marked DOWN in CRASH_..5ELFqa) for all I in OT,.

Hence as in Theorem 1. no site in C will be in operatioa state at t,.
t

-n
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Thus at t, the CRASI._OTHERS graph of every site in operationa or pause

state is correct in that it shows no site as DOWN that is actually in opera-

tional at that time.

After t.. no sites are marked DOWN in any CRASHOTHERS graph till t.+

when the next marking DOWN of a site or sites occurs. Hence to show that

the graphs remain correct in this period, it suffices to show thAt no site

enters operational state before informing any site that has entered pause or

operational state and marked it DOWN that it is entering operational state,

through a SITEUP message.

To show this, we order the events corresponding to sites entering operational

state in the above interval in increasing order of times that they enter this

state. Consider the first such recovery, say of site tv. Site w's

CRASH_OTHERS graph was correct at t, and is correct at all instants to the

instant it enters operational state, since it is the first site to enter opera-

tional state after t,. Since a site can fail to have itself marked UP at sites

mthat have marked it DOWN, whether they have done so when they were in

pusse state or in the operational state, only by incorrectly considering sites

in operational state DOWN, it follows that site w does get itself marked UP at

all appropriate sites before it enters operational state. Hence all the

CRASHOTHERS graphs are correct at the time of the first entry into opera-

tional state after tf, and using the same arguments, at every subsequent

entry into operalional state thereafter till is+ 1.

Hence HI is true for j=x+1, and therefore for all proving the theorem.

" .,. 4 4 -- . 4 .4 4 , -
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Before stating the analog of Theorem 2 for the case where recovery of

links and sites does occur, we introduce some notation. A unilink (iQ) is

safe at time t. if it is marked UPin both graphs with TIME field values after

which it has not left ok..sync state till time t at all sites in pause or opera-

tional state. i.e. it is safe from the time a LJNKSAFE broadcast for it has

completed, till it suffers the first failure after the initiation of the

corresponding BROADCAST-JINKUP. A dynamnic component C(t) of

NG=j V,E is a time-varying graph IV, (t).E'(t)j, such that V (t) is a subset of

Vand K(t) is a subset of E,(t), the set of arcs in NG which connect nodes in

V(t). such that jV(t).E'(t)I is connected for all t. Thus nodes and unilinks

enter C(t). stay for periods of time called wembership periods and then

leave.

A dynamic component is safe during the period (t,.t 1 ). if

(i) each site in the component is operational at the beginning of each of its

membership periods in this interval and suffers no crashes due to hardware

or software failures in the membership period.

*I (ii) if each unilink in the component is safe at the beginning of each member-

ship period and suffers no physical failures during the membership period,

and

(iii) if IV vc(t )I>j 2 for all t in the given interval.

Ibm 4: If a dynamic component C(t) is safe during (t1 .t 2 ). no site is forced to

crash itself during any of its membership periods in this interval.

Proof: If possible, let one or more sites in C(t) crash themselves during their

membership periods in this interval. Let p be the site in C which is the earli-

est to crash itself in this interval during one of its membership periods, say

-:"-;" , - 2: 2. ;,:"--.. .:2 . ./. "-: .". . " "::.. .. . . . .. . . . . . . . . . . . . . . . . . . . . . . .".. . . . . . . . . . . . . . . .. : / : : , ,-
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at time t. Let C" be the component that satisfies the conditions of the self-

crash procedure which p finds in its CRASH_ ELF graph. Since I Vc1 <-

there must exist a node gqp in C(t) which is also in N(CO), and a path of

nodes and arcs in IV(t),.'(t)I to node q. Let r be the node in this path in

B(C*). Since p is the first site in C(t) to crash itself in the given interval

during one of its membership periods, sites 9 and r are still operationaW at t.

Hence the unilink (rq) which was safe at the beginning of its current

membership period, cannot have been marked DOWN in CRASI-H5ELF(p)

either because r crashed and therefore a LINKSAFE message was able to

specify the unilink as DOWN or because q crashed and site r reported the

unilnk DOWN subsequently. Further, the bilink corresponding to this unilink

suffers no physical failure in its current membership period. Hence there

exists no sequence of events that could have caused unilink (r,) to be DOWN

in CRASH..5ELF(p) at nime t, contradicting our assumption.

2.2.5. Overhead Considerations and Choice of Parameters

In the Arpanet, link state reports are broadcast from every site every I

minute or so for routing purposes and broadcast propagation times are less

than I second (typically 100ms ) [MCQ 80].

Assuming that the networks under consideration have similar size and

communication bandwidth, we can choose the period of broadcast, TL= 1

minute so that the communication overhead from the link state reports.

which in any case are needed along with other information for routing pur-

poses, is of the same order. When no link or site failures occur, the only

F'
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additional communication overhead from our scheme arises from messages

for clock synchronization and for link monitoring. For every unilink

recovery, the messages required are (i) the LINKUP and LJNKSAFE broad-

IP casts and (ii) an acknowledgement from each site to the broadcaster for

each of the two broadcasts. As mentioned before, the broadcasting is done

by flooding. In our algorithm, as presented, when a bilink recovers, the com-

munication costs will correspond to two unilink recoveries. When a site with

L attached bilinks recovers from a crash, the communication costs will

correspond to 2L unilink recoveries plus a SITEUP broadcast and its ack-

nowledgements. Optimizations in which the me,%ages are piggy-backed

should be straightforward but are not explored in this thesis. Even if the

LINKUP broadcasts for the 2L unilink recoveries are not piggybacked, they

can be performed in parallel. The same is true for the LJNKSAFE broad-

casts. Hence, the time required from the instant a site recovers physically

to the instant it enters operational state is the time required for 3 sequential

broadcasts ( LINKUP, LINKSAFE and SITEUP ) and their acknowledge-

ments. A is chosen so that sending a timestamped message every A interval

to each neighbor is not a burden. Even this burden is absent if other times-

tamped messages concerned with normal processing are being exchanged.

Further, the choice should give the site sufficient flexibility in its schedule

for flooding link state broadcast messages. A- 10 seconds is a reasonable

choice. r, the real clock timer can be set to 1'2 seconds without consuming

an appreciable amount of site resources in updating the local clock. X, the

interval between stable storage writes can be chosen as -30 seconds without

using up much disk bandwidth.

r4.
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2.3. An Algorithm for Multiple Copy Updating

2.3.1. Introduction

In this section, we construct an algorithm to update a replicated file in a

point-to-point network, using the status maintenance scheme described in

the previous section. The algorithm can be briefly characterized as follows:

(i) File copies that are used in executing commands from transactions can

be in either of two states, called the HOT and WARM states.

(ii) When an update command is executed, the HOT copies are (atomically)

updated immediately. Periodically, the HOT sites bring the WARM sites up-

to-date by sending them a list of updates, accumulated since the last time

the WARM sites were brought up-to-date. Thus the HOT copies represent the

latest version of the file at all times.

(iii) A read command is directed to a HOT site if the current version of the

file is required. If it is not essential to obtain the current version, the com-

" mand may be directed to a WARM site.

(iii) If the set of HOT sites is depleted due to site crashes, one or more WARM

sites joins the set as necessary. In order to detect such a depletion when it

occurs, the status maintenance scheme described in the previous section is

used.

2.3.2. Previous Work in Updating Replicated FUes

A file is replicated

(i) in order that its availability may be preserved in the face of failures.

(ii) in order to reduce the response time for read access. If a file copy exists

.. . . . . . . . , / . , . . . , - . . . , . , . ...-
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so

at the site of access or near it. the response time is less. The factors which

constrain the degree of replication are storage costs, update execution costs

and the response time for updates.

.R The costs involved in processing an update result from startup (parsing

the command, authorization checking, setting up the necessary processes

and communication ports), concurrency control (obtaining the required

locks), retrieval of appropriate data from storage. computing the new values

and writing them back to storage, and commit processing.

The response time for an update increases with the number of sites that

must be accessed before a 'done' can be returned to the originator of the

transaction. For example. in the 'perforrmance' algorithms of distributed
..--

INGRES [STO 79). only one specially designated copy, called the pKwurna , is

updated before the 'done' is signaled. If most of the update transactions ori-

ginate at the primary, then the response time for most update transactions

will be similar to that obtained if the file existed only at the site of origin of

the transaction. However, if the primary fails before relaying the update to

the remaining copies, the update is 'lost' which can result in a catastrophe.

Therefore, in the 'reliability' algorithms of distributed INGRES, all copies of

.- the file are updated atomically and then a 'done' is signaled. This results in

higher communication costs, a higher load on the resources of the sites hold-

ing copies, as will as a higher response time.

Other schemes [THO 76, GIF 79) have been proposed in which there is no

designated HOT set of copies, representing the latest version of the file, at a

given time. Rather the HOT set may 'float' from update to update even when

there are no site or link failures. In these schemes, a majority of sites hold-

ing copies ( or a set of sites holding a majority of votes between them in

."•



Gifford's weighted voting scheme [GIF 79) must be accessed before any

update can complete, hence the costs per update and response time

increase with the number of copies.

In our solution, the response Lime and immediate costs per update do

not increase if the number of WARM copies is increased. Moreover, the

updating of the WARM copies can be scheduled when there is surplus capacity

in the sites involved and in the communication system. Further, there is no

comnmit processing in updating WARM copies and the storage accessing

sequence for installing a batch of updates can be more efficient than if they

are installed separately. Hence the costs for the deferred updating of a

WARM copy are less than for the immediate updating of a HOT copy.

The disadvantage resulting from the deferred update is that reading a

WARM copy may not give the latest version of the file. However, in many

cases, the latest version may not be required for a read access. For exam-

ple, in a banking application, if a customer has just made a withdrawal of

funds and makes a subsequent query about his/her balance, the withdrawal

n should be reflected in the value returned in answer to the query. Hence a

HOT copy should be used to answer the query. But a transaction computing

the sum-total of balances of all customers of the bank will not require the

latest value of each balance, and can make use of a WARM copy of this infor-

mation. In other situations, if an old version is obtained, it will be detected

as not current and a fresh read initiated. File catalogs which store the

whereabouts of files in the network are an example of such a case.

An important component of any scheme for managing replication is the

method of recovery. In our algorithm, a recovering site first obtains a WARM

copy and then obtains 'he additional updates (if any )to make it HOT if and

'e. . . . . . . . 7W-• ' ° . ... o' . .' ...... .........- . .. .. .... ." ,.'.-.. ....." . . .....-.. . ....•.. % . .. - . % ' " ., %,% N .' ',
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when the time comes for it to join the set of sites with HOT copies. If a HOT

copy were used right away, the file would be locked out to update access for

the entire period the recovering site is accessing the HOT copy. The algo-

rithms of [STO 79] and [BER 80] make use of a reliable queuing mechanism to

buffer updates for crashed sites. This queuing mechanism achieves reliabil-

ity by storing the queued messages at multiple sites in the network. As can

be seen from [HAM 80). the design of such a mechanism can be quite corn-

plex. Besides, if a site is down for a long time, the number of queued mes-

sages for it may be so large that storing them in the above manner may be

infeasible. In [GIF 79] on the other hand, a recovering site places a read lock

on the file to obtain a HOT copy, thus preventing update access for the dura-

tion this process is occurring, which may be appreciably long in a long-haul

network. In our algorithm, the recovering site obtains a WARM copy from a

Ssite which has a WARM copy if possible and thus avoids locking out updkte

access on the HOT copies. Only when a site with a WARM copy is entering the

set of sites with HOT copies is a read lock placed on a HOT copy. Update

access to the file is prevented while the lock is held. However, if the refresh-

ing interval for the sites with WARM copies is properly chosen, the time for

obtaining the additional updates that have occurred since the last refresh

will be small compared to the time required to transfer the entire file, hence

the locking out period will also be comparatively small.

2.3.3. States and State Transitions

The complete state diagram for a site holding a copy of the file is shown

in Fig. 2.7. In the sequel, we will refer to sites in state S as S sites where S

may be DEAD, COLDWARM,HOT or PRIMARY.

o.
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FIG. 2.7. STATE DIAGRAM FOR A SITE CARRYING A FILE COPY.
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A site is in DEAD state if it is down or if it has recovered but not yet ini-

tiated the execution of software for file recovery. It is in COLD state from the

moment of initiation till it has obtained a WARM copy of the file. It enters

WARM state on obtaining a WARM copy. While in the WARM state, the site ser-

vices read requests that do not necessarily require the latest version of the

file. If it does not crash, eventually it enters the head of the queue of WARM

sites waiting to join the set of HOT sites. When the next failure of a HOT site

occurs, it makes itself completely up-to-date and enters HOT state. While in

the HOT state, the file copy at the site is updated atomically with other HOT

copies when an update request is received. In addition, the site also services

read requests, which thereby obtain the latest version of the file. The

number of HOT copies is maintained at P. If the set of sites holding HOT

copies falls below P in strength, update requests are not accepted till the set

regains its full strength. This is done to maintain the probability of 'losing'

the latest version of the file below a given level determined by the value of P.

One of the sites holding a HOT copy is designated as the PRIMARY. The PRI-

MARY performs two tasks in addition to those done by a member of the set of

HOT sites. First, it is responsible for broadcasting lists of accumulated

updates periodically to the WARM sites. Second. when the strength of the set

of HOT copies falls below P. it is responsible for helping the WARM sites, which

join the HOT set as a result, to make their copies HOT. A site in HOT state

enters the PRIMARY state, when all the sites that were in the HOT or PRIMARY

states when it entered the set have crashed. In order to have at most one

PRIMARY and at most P-I HOT sites at a given time, the sites holding copies

of the file form themselves in a queue which determines their priority for

entering the HOT state or becoming PRIMAXY ( Fig. 2.8 ). This queue is

ordered in increasing order of the times on the global clock that the sites

F -
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not in DEAD state entered the COLD state. The DEAD sites are at the rear of

the queue in arbitrary order. The queue is maintained at each site not in

DEAD state. The global clock allows these queues to be maintained in a con-

sistent yet autonomous manner, i.e. the queues are not updated atomically.

but still they permit the sites to regulate their entry into the HOT or PRI-

MARY states on the basis of the local queue while maintaining the constraint

on the number of sites in the HOT state and the requirement of a single PRI-

MARY. Previous algorithms for selecting primaries e.g. those" in [STO

79,GAR 82) rely on some form of atomic updating of status information.

Therefore, they suffer from complications which arise if sites crash or

recover during the atomic update.

2.3.4. The ADA Multitasking Facility and Remote Procedure Calls

In the appendix of this chapter. we specify our algorithm in ADA. The

program displayed in the appendix does not represent an existing implemen-

tation of the algorithm, but is intended to be a more formal specification

than the informal description given in Section 2.3.6. In this section. we out-

line the multitasking facility of ADA and a remote procedure call mechanism

adequate for the problem at hand.

Consider the example task READER.WRJTER taken from the ADA Refer-

ence Manual [HON 79] (Fig. 2.9). The procedure READ and the entry WRITE in

the task declaration at the top can be called by other tasks. The entries

START and STOP declared in the task body can only be called within the task

body itself. The procedure READ can be executed on behalf of several tasks

simultaneously. But the procedure entry WRITE is executed by the task

READERJR]TER in mutual exclusion and only when it reaches an accept

U-: statement for the entry. The select statement allows the task to choose any

.;..,-.
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task READER-..WRITER Is~ .

procedure READ (V emout ELEM);
entry WRITE(E : I ELEM);

and;

Ink body READER-WRITER hm
RESOURCE : ELEM;
READERS :INTEGER -0;

entry START:
entry STOP;

poocedurn READM ean ELEM) Is
- READ is a procedure, not on entry, hence concurrent calls of READ are Possible
- READ synchronizes such calls with the entry calls START and STOP

begin
START; V -RESOURCE; STOP;

end.

accept WRITE(E In~ ELEM) do
RESOURCE

end;

bop
select

accept START;
READERS := READERS + 1;

or
accept STOP;
READERS := READERS -1;

or when READERS m 0 =>
* ascept WRITE(E Ink ELEM) do

RESOURCE E;
end WRITE;

end seect;
end hoop:

end READER-..WRITER;

FIG. 2.9. EXAMPLE TO ILLUSTRATE THE ADA HULTITASKING FACILITY

(HON 79]

LP



one of several alternatives. In the example, the accept statements for the

entries START, STOP and WRITE are the alternatives in the select statement.

A condition may be associated with an alternative and acts asa guard' which ,-.

controls when a called entry may be executed. For example, the condition

READERS=O controls the execution of the entry WRITE. A delay statement

(not used in the given example) can be used as an alternative to allow the

task to take some action in case none of the other alternatives are execut-

able over a given period of time, either because there are no calls or because

the guards do not permit execution.

Tasks are started through an initiate statement. If an entry or pro-

cedure is called when the task containing the procedure or entry is inactive

( either because the task has not been initiated or because it has ter-

minated ) the exception TASKING.Y OR is raised in the task issuing the call.

N Although communication between tasks through shared variables is pos-

sible in ADA. our program makes use only of procedure and entry calls for

communication. Therefore a remote call facility has to be available to permit

communication between tasks at different sites.

Apart from performance considerations, the most critical issue concern-

ing the design of the remote call facility is that of call semantics. As a result

of duplication of messages in the communication system or as a result of

retrying a call (when the return does not come in time or because of crashes

in the caller or callee ) multiple executions of a procedure may occur as a

result of a single call. Nelson [NEL 81] considers the alternative ways of deal-

ing with this possibility. In at -least -once semantics, the results obtained

by the caller may be the ones obtained from any one of multiple executions ". -

of the procedure caused by the call. In last -of -wmny semantics, the

.oN.
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results obtained correspond to the last of the multiple executions. Achieving

the latter is complicated by the occurrence of crashes, since a crashed site

can leave calls that continue to execute on other machines. Lampson

[LAM 51) calls executions, whose return messages do not reach the calling

task, orphans. In order to get last-of-many semantics, a crashed mite on

recovery must exterminate its orphans before retrying the call or else adopt

them i.e. use their results in completing the call rather than retrying

[NEL B1. LAM BI). Neither option is inexpensive to implement.

Here we do not develop a generalized remote procedure call (RPC)

mechanism but restrict ourselves to outlining a simple design that is ade-

quate for our file update algorithm. Some simplifications arise in the case of

our algorithm. First, all remote calls are to entries rather than procedures.

Hence nothing has to be done to serialize the multiple executions that may

3 be caused by a given call. Lampson's solution for last-of-many semantics

given in [LAM 81] makes use of an extra unique id, which is assigned to every

call and is included in all retries of the given call, to effect this serialization.

Second, our algorithm does not assume extermination of orphans before the

recovery of a crashed site is begun, hence one or more orphans may still be

executing or awaiting execution in an entry queue when it starts its recovery.

The algorithm does not require any task to retry its calls after a crash. But

it is required that orphaned executions of an entry terminate before a new

call to the same entry by the recovered site is started. Our requirements for

the RPC are satisfied by the following design.

Each remote call is converted to a message by the RPC mechanism,

timestamped and sent to the destination site. A timer is set and the mes-

sage resent with a new timestarnp at timer runout unless one of the following

• .- - - - ... . - - .. -. .- - . - -.. . . ... .. . . . . . ..-.-. , .. i : -i: L:: :- •:-. ::::
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events occurs before the runout:

(i) A return message, bearing the timestamp of the message and carrying the

results of the entry execution caused by the message, is received.

(ii) The destination site is marked DOWN at the calling site. (If the site was

already marked DOWN at the time the call was received from the calling task.

the message is not sent at all.)

(iii) A message, bearing the timestamp of the message sent. is received, sig-

nifying that the task containing the entry is not active.

In the first case, the calling task resumes execution with the results of

the return message. In the latter two cases, the exception TASKING_JRROR

is raised in the calling task. The message is resent as many times as neces-

sary until one of the above events occurs within the timeout period.

* .When the RPC mechanism at site i is initiated after recovering from a

crash, it reads the global clock and stores the obtained value, TSTART. It

ignores all received call messages bearing timestamps less than TSTART. It

maintains a variable, MAX(j) for each site j which sends a remote call mes-

* sage to site i with a timestamp greater than TSTART. MAX(J) always carries

the largest timestarnp received in a call message from sitej. A call message

from site j is ignored unless its timestamp exceeds MAX(j).

When a call message is received by site i which is not to be ignored for

either of the reasons cited above, MAX(j) is set to the timestamp of the mes-

sage and

(i) if the task containing the entry is active, the call is added to the queue for

the entry called. When a call completes, the results are sent in a message to

the calling site with the timestamp of the call'message.

(ii) if the task is not active, a message is sent to the calling site, carrying the

p * --.- . .
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timestamp of the call message and signifying that the task is not active.

Our design ensures last-of-many semantics for the no-crasb case. If the

caller crashes, it does not. on recovery, retry any call it may have been exe-

cuting at the time of the failure. Rather the task is simply restarted. Thus

we do not obtain last-of-many semantics here. However, in this design all the

orphaned executions of a given entry are guaranteed to terminate before the

entry is executed as a result of a call made by the recovered site.

Z.3.5. Interface to the Status Maintenance Mechanism

Two primitives are provided by the site maintenance scheme based on

the global clock facility described in Section 2.2.

First, the function READCLOCK returns the current value of the global

clock. Second, the non-blocking primitive WATCHDOWN can be invoked on

any site n other than the local site. The site status maintenance software

invokes a designated entry in the task invoking the watch, immediately if the

site is already DOWN, otherwise when the site is next marked DOWN in the

CRASHOTHERS graph. The id of the site on which the watch was invoked

and the current reading of the global clock are supplied as parameters when

the designated entry is invoked. If WATCHDOWN is invoked by a task on a site

when it already has a watch on that site which has not yet returned, the invo-

cation has no effect.

2.3.6. Description of the Algorithm

We now give the description of the algorithm and the motivation behind

the steps involved. It is assumed that the granularity of locking is the entire

file. There is a version-number associated with the file which is incremented

on each update. The N copies of the file are assumed to be at sites I through

l%.. .
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N. The following is a description of the actions taken by each of the sites

'. *, bearing a file copy in each of the states shown in Fig. 2.7.

The following actions are undertaken by site i ( Ici <N ) in state COLD:

(i) read the local clock to determine the time of entry into COLD state and

store it in the variable TREC(i).

(ii) broadcast the triad (local id, local state, TREC(i) ) to all other sites which

have a copy of the file.

(iii) invoke WATCHDOWN on all sites which have a file copy.

*" (iv) send requests to all sites which have file copies to send their current

state values together with the times at which they entered COLD state most

Srecently.

(v) Wait till, for each of these sites, the required information has been

Sobtained or the watch on it has returned.

The status information obtained is assembled into a queue (in step (vi)

-' below) that is ordered in increasing order of the TREC values for sites which

have reported their status, while the DEAD sites, from which no report was

received, follow in any order after them. Consider any site j ( P i ) holding a

file copy. If the watch on j has returned, then clearly, site j can re-ente.

COLD state when it recovers only with TREC(j) > TREC(i). Therefore, when it

recovers and forms its queue, it will find that site i has a smaller TREC value

and will put itself behind site i in its queue. Also sites which have reported

larger TREC values will do the same. Thus these sites which site i will put

behind it in its queue in step (vi) will put themselves behind it in theirs and

thus their queues will be consistent in this sense. Similarly sites which have

lower TREC values than i and which therefore are ahead of it by site i will put

(it after themselves in their queues.

i4'
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5 The wait in step (v) will always terminate since for every site j , i either

(a) site j will respond to the request in step (iv) or

(b) the WATCHDOWN placed on it at step (iii) at site i will return or

(c) if site j recovers from a crash before the WATCHDOWN on it is placed (so

that the WATCHDOWN does not return ) but the status request from site i in

step (iv) arrives while the site has not initiated its file update software ( so

that the request does not get a response ), then site j will send the neces-

sary information when it itself executes step (ii).

(vi)For each site with a ftle copy, form the triad (site id, site state, time of

entry TREC into COLD state ). For sites that have had WATCHDOWN on them

return, the site state is set to DEAD and the time of entry into COLD state,

TRECQ is set to the time supplied by the site maintenance mechanism when it

returns the watch. For the others these variables are set to values obtained

S from their status reports. The triads are then ordered in a queue called

STATUSQ according to increasing values of TREC for the non-DEAD sites, with

the triads for the DEAD sites following in arbitrary order. Moreover from now

on till the site i crashes, the status of these sites is updated as status

reports are received from them concerning their state transitions and as the

site status maintenance mechanism reports crashes among them ( a WATCH-

DOWN is always maintained on all mle-copy-bearing sites other than i itself,

which are recorded as not DEAD in the STATUS_.Q. ) After each update, the

queue is rearranged if necessary to reflect the ordering rules mentioned

above.

(vii) Initiate tasks to receive and buffer update lists broadcast by the PRI-

MARY.

(viii) Start a task to maintain a list of received updates so that if and when

111%2"i- ,.'V
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AQ Lie site becomes PRIMARY it is able to carry out its responsibility of bringing

WARM sites up-to-date at regular intervals.

(ix) Wait till the first update list broadcast by the current PRIMARY arrives.

(x) Obtain the lowest version number V corresponding to an update in the

first update list received.

(xi) Obtain a copy of the file warmer than V. For this purpose, a site marked

WARM in the STATUS.Q is used in preference to the sites marked HOT or PRI-

MARY in order to avoid locking out the file to update access. The latter sites

are used if no site marked WARM is in STATUS.Q.

With reference to step (viii) some explanation is required. A site i must.

from the time it begins receiving update lists, maintain a list L of updates

that it cannot be sure have reached all the appropriate sites. i.e. the sites

that have initiated tasks to receive update lists in step (vii) above. Let X be

the version number of the latest update it knows to have reached all the

appropriate sites. (When it receives its first update list. X is set to one less

than the lowest version number of an update in the list. This is because the

PRIMARY always finishes sending one list of successive updates to the

appropriate sites before starting the next batch. ) When the next update list

arrives, site i sets X to max (X.Y) where Y is the number one less than the

lowest version number in the new list and only preserves in L those updates it

has received that have version numbers greater than X. In this way it contin-

ues till it enters HOT state.

In the HOT state, site i itself takes part directly in every update and -

updates are added to L as soon as they are committed. When an update list

arrives from the current PRIMARY, then, if Y has the same significance as

above, all updates prior to Y are deleted, as they can be inferred to have

ol 0
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palready received by the appropriate sites.

In the PRMARY state, updates continue to be directly added to L as they

are committed. Periodically all the updates in L are broadcast to the

appropriate sites and when the broadcast is complete, the updates that have

been broadcast are deleted from L

It is possible that no update list is ever received, or even if it is, that

step (xi) above cannot be completed. This can happen if there is a sequence

of failures such that only WARM or COLD sites, if any, are left in front of site i

in STATE.Q. In the latter case, the reason for not being able to complete

step (i) will be that these sites had not been sent the update corresponding

to version number V ( the lowest version number in the first update list

received ) when the last HOT site failed, leaving them stranded. This means

not only that site i cannot enter WARM state, but that the site at the front of

STATE._Q cannot enter HOT state. This is a catastrophic failure since updates

C-:. can no longer be performed on the file and hence requires manual interven-

tion to reinitialize the system. The signal for manual intervention is made by

the WARM or COLD site that finds itself at the head of its STATEQ.

After step (xi) above has been performed, the site i has entered WARM

state. In this state its actions are:

(i) Broadcast the news of the state transition to the other sites having file

copies. C:
(ii)lnitiate tasks to do the following tasks:

(a) Respond to sites wishing to acquire WARM copies of the file

so that they can enter WARM state.

(b) Consolidate the buffered update lists with the local copy of

Lthe fle, as these lists become available.

.'J
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(iii) Wait till it is time to enter HOT state.

This wait terminates when site i perceives itself to be in one of positions

1 through P in its STATEQ. Typically this will happen when site i moves from

the (P+ 1)th position to the Pth position as a result of a failure of one of the

sites in the first P positions. But sometimes site i when entering WARM state

may already find itself in one of the first P positions because of a large

number of failures. When the wait terminates the following steps are exe-

cuted prior to entering HOT state.

(iv) Obtain the id of the PRIMARY from the local STATEQ.

(v) Request the PRIMARY to supply the current version number of the file.

The PRIMARY locks out update access on the file for a period of time. expect-

ing site i to complete its transition to HOT state in this time.

(vi) After getting the current version number, wait till the version number of

its local copy reaches this version number as a result of the merging of

received update lists.

(vii) Inform all other sites with file copies by means of a status report that it

is entering HOT state.

(viii) Perform a handshake with the the site from which the version number

was obtained in step (v). If the handshake is successful, this means that no

updates have occurred since. Further, every site that can become PRIMARY

from now on till site i itself becomes PRIMARY or crashes, has site i marked

as HOT in its STATEQ. This ensures that site i always participates in every

future atomic update of HOT copies till it crashes. This guarantee holds since

the update transaction co-ordinator, before committing an update, checks
..- 1

with the current PRIMARY to make sure that all HOT sites have signified their

ijagreement to commit the update ( see below ). Hence site i can enter HOT

,.N. .-*
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state. On the other hand, the handshake may not complete successfully. ft.

This may happen for one of two reasons. The site which supplied the version %

number in step (v) may have crashed. It may have removed the readlock it

had placed on its local file copy because site i did not perform the

handshake in the allotted period, in whfch case it will refuse to participate in

the handshake. In either case, the guarantee mentioned above cannot be

provided and hence site i must go back to step (iv).

It may happen that all the sites in front of site i crash before it can

complete the handshake. This is again a catastrophic failure since no site can

become HOT now without outside intervention. The same signaling nechan-

ism mentioned above comes into play, i.e. site i in WARM state finds itself at

the head of STATE_.Q and therefore invokes manual intervention.

In HOT state, site i performs the following actions:

(i) Initiate a task to participate in performing atomic updates in co-operation

with the other HOT sites, the PRIMARY and the transaction co-ordinator.

(ii) Wait till it is time to become PRIMARY.

The wait terminates when site i becomes the first in its STATE.Q. It then

enters PRIMARY state, in which it performs the following actions:

(i) participate in performing atomic updates in co-operation with the HOT

sites and the transaction co-ordinator.

(i) periodically broadcast all the accumulated updates, completing one

broadcast before starting the next.

(ii) initiate a task to respond to requests from WARM sites for help in enter-

ing HOT state. This task does the following .When a request for the current

version number is received from a WARM site, it sets a readlock on its local
L.

-. . . . . . . . . . . .



78

file copy. It then obtains the local version number and returns it to the

requesting site. at the same time initiating a broadcast of an update list car-

rying updates upto to the current version number. so that the requesting

site can quickly make itself current. It waits for a given period of time for

the requesting site to perform a handshake signifying that it has accom-

plished this and informed all all the sites with file copies that it is entering

* HOT state. If the handshake occurs within the given period, site i releases

the readlock after the handshake. Otherwise the readlock is released at the

end of the allotted period and site i refuses to do a handshake with the

requesting site, obliging it to start all over again by asking for the current

version number.

. Lastly, we describe how the Pfomic update occurs. The co-ordinator of

the update transaction sends the updates to the sites it believes to be HOT

b and to the site it thinks is the PRIMARY. (The site where the co-ordinator

resides can. when needed obtain this information either from one of the sites

* with file copies, or these latter can themselves broadcast their transition

into HOT and PRIVL'. " states to the entire network.) On receiving the update,

a HOT site obtains a writelock on its local copy and responds 'ready'. The PR]-

MARY obtains a writelock. and then gets the set of HOT sites from its

. . STATEQ. If the number of HOT sites is not P-1. the PRIMARY releases the wri-

telock and rejects the update, otherwise it responds 'ready' and sends the

list of HOT sites along with its response.

. .The co-ordinator commits the transaction if and only if:

(i) exactly one site sends a list of HOT sites. i.e. only one site responds in PRI-

MARY state, along with its response.

(ii) all the sites indicated in the list and the PRIMARY respond 'ready'.

.
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Otherwise the transaction is aborted. On receiving the commit or abort

signal, the HOT sites and the PRIMARY perform or ignore the update accord-

ingly and release the writelock.

In addition, the co-ordinator must make use of a reliable commit facility

that ensures that even if the co-ordinator crashes at any time during the

transaction, the sites being updated all receive an abort or all receive a com-

mit signal. This can be done using commit backups [HAM 50]. This is to

ensure that sites being updated are not left holding the writelock. not know-

ing whether to commit or abort the transaction.

The algorithm for the co-ordinator and its backups is given in [HAM 80)

and hence is not displayed in the appendix to this chapter.

23.7. Choice of Parameters

The parameters of the algorithm are TBROD, the refresh interval; N. the

total number of copies; and P, the number of HOT copies.

"* The choice of TBROD should be made on the basis of how up-to-date the

information in the WARM copies is required to be. and the constraints on the

" - buffer space in which updates being accumulated for broadcast are stored.

The value of N-P will depend on the number of sites where the frequency

of read commands, which do not require the most up-to-date information, is

high. It can be quite large since increasing N does not cause a penalty to be

paid in the response time and immediate processing required for updates.

The value of P depends on the number of sites where the frequency of

read commands which do require the latest information is high, and on the

amount of protection desired against the possibility of the catastrophic

failure in which no HOT copies are left with UP sites. This failure requires

-'.5
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manual intervention to determine which sites have the most current version

and re-initialize the system.

We show below a rough computation to determine how much protection

a given value of P gives against catastrophic failure.

Given the value of TBROD and the frequency and average size of updates.

we can compute the amount of data that must flow from the PRIMARY to a

WARM site to make its copy HOT. and thence the amount of time required.

Assume that this time period is exponentially distributed with time constant

T, We assume that N is large enough that there are always a sufficiently

large number of sites which have been up long enough to become WARM.

Thus when the set of HOT copies suffers a loss of one or more copies, the

introduction of new HOT copies is not delayed by the non-availability of WARM

copies.

Assume that the period for which a site is UP is exponentially distri-

buted with a time constant T, =

We wish to find the expected time that elapses starting from a state in

which P HOT copies exist to a state where none exist.

Fig 2.10 shows the state diagram with the state transitions. The updates

broadcast for the purpose of a making a WARM copy HOT reach the other

WARM sites in parallel, and there is always a large number of WARM sites

assumed present. Therefore when a WARM site in the process of making its

copy HOT fails, its place is just taken by the next WARM site in the queue and

the process of making its copy HOT continues where it was left off for the
#"~

crashed site. Therefore we need not concern ourselves with failures of WARM

sites. Note that because of our assumption of exponential distributions, the

.. ..... ....... - . ,.--.,',.... -.
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Srandom variable NP(t), the number of HOT copies at time t is memory-less.

s-, From probability theory, it can be shown that for states

NP=r,r=1.2.....P-1, the time spent in the state, given the next state, has

the same distribution.

-.

'_.':':for r =1,2,....P-1, and
I

-. ??

A
where T(.) is the mean of the time spent in a state.

Further. the transition probabilities are

for

and

P(rTrI) .',

Xr +ju

forr=.2 ,3.... P- 1.

* -Let Xr be the mean time taken for the first transition from state NPr

to state NP=D. Then we get

r (

rA~+A rA+/L rA+jA
for r=2,3...P- and

• . '

I
XpXP i P~ P- 3) '
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A closed form solution for X from the above equations could not be

found, hence a lower bound was computed as follows. %

From equation (1), we get

X12

Substituting in equation (2) with r=2. we get.

X2  A'

Proceeding in this manner we get from the substitution in equation (2)

with r=P-1,

1 -(P-i)!F C

Substituting in equation (1) we get

Assuming, for instance, that a site fails once a day and that refreshing

takes 5 minutes. we get, for P=2 and P=3, expected times to catastrophic

*failure greater than 5 months and 40 years respectively.

2.4. Conclusion

In this chapter, we proposed a status maintenance scheme for a point-

- . to-point network. This scheme has two important features:

(a) It is based on a global clock facility. If any site i has another sitej

marked as DOWN at time t on this clock, then site j is really DOWN at time

t. Therefore, site i can have the assurance that site j will perform no

actions ( visible above the status maintenance layer ) from t to the time it

informs site i that it is back UP.

(b) The marking of a site as DOWN is based on data gathered from its neigh-

0............ ..
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bors, rather than its response ( or lack thereof) to a probe message from an

arbitrary point in the network. This prevents sites from being mistakenly

marked as DOWN, when there is a routing failure, or the sites are heavily

loaded and slow to respond, etc.

The overhead caused by the scheme is of the same order as the new

Arpanet routing method. In fact some of the processing is common and can

be merged.

Based on this status maintenance scheme, we developed a method for

updating a replicated file. The use of the status maintenance scheme allows

the sites to perform reconfiguration actions (e.g. to take over the functions

of a crashed site) independently rather than making the reconfiguration

decisions collectively, with all the file-copy-bearing sites taking part. The

method allows read access to be performed inexpensively when it is not

necessary to obtain the latest information, through the use of WARM copies.

The addition of WARM copies does not cause the performance of update tran-

sactions to deteriorate.

.-
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The total number of sites carrying a copy of the file is N. Further

assume the total number of HOT sites plus the PRIMARY is sought to be main-

IPtahned at P. Below we specify the package COMMON and a set of task families

each having N members, one for each site bearing a file copy. The program

for each such site consists of the package COMMON and one member of each

task family.

package COMMON is

type SITEJSTATE is (DEAD.COLDWARM.HOTPRIMARY);
type SITE.JD is INTEGER range 1. .N;
type COPY-SET is array(1..N) of BOOLEAN;
type VERSION-JUMBER is O..SYSTEM*MAXJNT;
type TRIAD is record

NO: SITE_ID;
STATE: SITE_.,TATE;

5 TR: TIME;
end record;--this record type is used to tranrsmirt

--and store site status.
type UPDATE-PACKAGE is record

LVN: VERS I ON..UMBER;
HVN: VERS IONNUMBER;
UPDATES: array (LVN..HVN) of UPDATE;

end record;--used in broadcasting update-lists
--to WARM sites.

function GET_..YID return TASKJD;--returns the id of
--the calling task.

end COMMON;

First we give the task family declarations.

task FILE_.RECOVER(INTEGER range 1..N);

-this task initiates the other local tasks and co-ordinates
-the entire recovery process.

task STATUSJEPORT_ENDER(IN TEGER range I..N) is

--this task sends the site status in response to requests.
entry STATUSy EQUEST(NOD: SJTEjD);

r
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p end STATUS.YEPORT_ENDER;

task STATUS ;EPORTJZECEIVER( INTEGER range 1.. N) is

--this task receives status reports fran other sites and
--calls another task to update the
--locally stored status infornmtion accordingly.
entry STATJS..J7EPRT(T:TR]AD):

end STATUSFEPORTJMECEI VER;

task SITE_CRASI-LPETECTOR(INTECER range 1. .N) is

--this task places WATCFDOWNS on the sites bearing file copies
--which are up and calls another task to update the locally
- -stored status infornution when a watch returns.
entry SITEUTP(NOD:SITE-ID);
entry WATcI-i...pOJN7ERJ&JPT(NOD: SITEJD; T: TIME);

end SITECRASHJJETECTOR;

task UPDATE_.ECEIVER(INTEGER range 1. .N) is

--this task receives update-lists frcn whichever site is
--currently PRIMARY till the site in which the task resides
--itself enters PRIMARY state.
entry UPDATE.J IST(UP: UPDATEYACKAGE);
entry EN7ERI NGJiOT;
entry QUIT;

end 1JPDATE..YECEIVER;

task COPY..TATUSJCEEPER(INTEGER range 1. .N) is

--this task mintains the status of each site bearing a file
- -copy in a queue hereafter referred to as STATUS_.Q.

entry GET..YRIMARYJD(NOD:out S)TE_]D);
entry WAlTTOECOMERIMARY;
entry WA I TTOJNERJIOT;
entry WA]TJTILLJNIT;
entry CETJiOTLIST(S:out COPY-=.$E);
entry GET....TATUS(NOD:SITEJ D;STATE:out SITE_$TATE;T:out TIME);
entry UPDATE(T:TRIAD);

end COPY__$TATUS_.YEEPER;

task UPDATE_COLLECTOR(INTECER range I. .N) is

--this task performis the buffering for update_lists received



p --from the PRIMARY till they are integrated into the local
--copy of the file.
entry ADD_TOJLST(LP:UPDATE.PACKAGE);
entry GETfJRST_VERSONMMER(VN: out VERSION-NMER);
entry GETJRO.JLIST(UPA:out access UPDATEFACKAGE);
entry QUIT;

end PDATECOLLECTOR;

task READERWRITER( INTEGER range 1. N) is

--this task performs read and update operations on the local file
--copy and provides the synchronization through locks.
entry INITIALIZE; --creates an empty file with version number 0.
entry GET...?ADLOCX(TID:TASK_ID);
--callable for a read request frmna transaction only
--after the site has entered WAF4 state.

entry GETWRTtLOCK(TID:TASKJD);
--as above for a write transaction but in addition the task
--FILE_.JECOVER calls this entry in procedure TRANSFERJILE
--to write a a WARW version into the initialized file when the
--site holding this task is in COLD state.

entry RELEASEJADLOCK(TID:TASKJD);
entry RELEASE_WRITELOCK(TID:TASKJD);
entry READ(...).
entry WRI TE(U:UPDATE; V:VERSON...UMBER;FV: out VERSI ONJJUMER);

--if the current version number is 0. the update is performed
--and the value of V is returned in FV.If the current version
--number is not 0 and if V is not equal to one more than the
--current version nutber, the procedure simply returns with
--the current version number in FV. Else, the update is
--performed and the version number incremented by one, and
.--the procedure returns the new version number in FV.

entry GETVERSION_MER(V:out VERSIONgNER);

end READERWRI TER;

task LATEST_VERSIONO_QJ-IANDLER(INTEER range 1..N) is

--this task executes when the local copy is in PRIMARY state
--and provides the latest version nurmber of the file to any
--site trying to enter HOT state.
entry HOT_VERS]ONNOR.EQ(NO:SITE_JD;V:out VERSIONNMER);
entry HANDSHAKE(NOD:SITE_]D;V:VERSION,.UMBER;

ST:out (SUC-ESS.FAILURE)) ;

end LATEST_VERS]ON_NOJEQ_ANLER; .'-'

task UPDATES_CONSOLIDATOR(INTECER range 1..N) is



--this task does the merging of buffered update_lists
-- into the local Aile copy when in WARM state.

entry VAKEUP ;
entry QUIT;

~end UPDATES _ONSOL IDATOR;

task UPDATE..A 7DLER( INTEGER range 1,..N) i s,,

. .t --this task along with peer tasks in the PRIMARY and.'.
~~--HOT sites and the transaction coordinator atomically -'

--updates the HOT and PRIMARY copies.
"" ~e nt ry LPDATE (U: UPDATE) •ent ry BECOM]NG.PRI MARY;--

end 1JPDATE.J-WALER, ;

/'.° t_.

task UPDATE_.LIST..j3ROADCASTER(INTEGER range I..N) is
--this task does the broadcasting of update-lists

--in PRIMARY state.
entry PACKLPACKAGE(UP:UPDATEPACKAGE);

end LPDATE_,L ST ROADCASTER;
task BROADCAST_TIMER(INTEG-R range I..N) ;

--broadcasts.

i ~~--this task alongnawisthe tasks inr the priARY andt-lt -

-' task UPDATES..TO_J E_, ROADCAST_.RA]N7A NER( ]N'1,GE range I.. N) i s

--from the time that the site holding this task starts receiving--update-lists this task maintains a list of updates that it is
"-' --not certain have been received by all appropriate sites; it '

--provides the update-lists to be broadcast in PRIMARY state
entry REPLACE(UP:UPDATEpACKAGE);
entry ENTERI NGJ..OT;
entry DELETERUPTO(VN:VERSIONNMR);
-ntry PREPAREpACKAGE;
entry ADDUPD(U:UPDATE; V:DVERSION.NUMBER);

' '- • n t ry BROADCAS T_ON. AI I NG (V: VERS lON_.NUMBE ).;''
end UPDATES_TO_.j...ROADCAST_ANTAlN7ER;

Next we specify the task bodies.-list

tak.PAE,-O ..RA.A-.,ITINR1TEE ane1 .)i

--frn th tit tht te sie hldin tbi tak strtsrecevin
--paelss hsts tnaisals fudtsta ti
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P task body FILE..RECOVER is

LN]: constant :=FILE.JRECOVER'InDFX;
TREC: constant TIME;
LOCAk..$TATE: SI TEJTATE;

procedure BROADCAST.3TATE(S:SITE_.$TATE) is
--used to broadcast state transitions;

begin
for I in SITEJD loop

if IN] 0 1 then
begin

STATUSJUEPORTJBCE I VER(I) . STATUSJEPORT ((LNI * S. TREC));
except ion

when TASKINGJMROR_->;--ignore exception if call
- -does not emnplete

end;
end if;

end loop;
end BROADCASTSTATE;

procedure FILE_TRANSFER (V:VERSIONIU)BER) is
--This procedure obtains a copy of the file 'warntr' than Y.
--It uses a WARM site in preference to a HOT or the
-PRIMARY site to avoid interference in updating thern.
--It will not return if all the sites which receivedN --the update corresponding to version nuntber V and ahead
--of the caller in STATE..Q fail before the transfer caffpletes.
--In this case. sam site not in HOT or PRIMARY state will Aind
--itself at the head of STATE..Q and invokernanual intervention.

end FILEJRANSFER;

begin

initiate COPYS.TATUS..KEPER(LNI);
initiate STATUJEPORTECEIVER(LNI);
initiate REAflER_!RITER(LNI);

LOCAL..STATE OLI);
TREC:=READCLOCK;

COPY...5IATUSJCEEPER( LNI ).UPDATE( (LN .LOCAL..$TATE .EC)
-- initialize the queue elarent for the site
--in which the task resides, in STATUS..Q.

initiate STATUS~jMEPORT..$ENDER(LNJ);
--after the above- initialization.status
--requests can be replied to.

BROADCAST..$TATE(COLD); --informn all file-copy-bearing sites or

--local status.

_%7 .7
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initiate SITE_CRASHP.ETECTOR(LNI);--tbis task initially places
--WATCfl3OWNs on all other

for OD i SIEJD oop--file-copy-bearing sites.

if NOD 0 LNI then
STATUSJUEPORT..$ENER(NOD) .STATUJWEQJEST(LN I);

end if; --to all other file-copy-bearing sites
end loop; --send status requests.
COPY-..TATIJJEEPER(LNI ).WAIT3TILLJNIT;

-- at this point the state of all sites is initialized in
--STATE_Q; either WATCHDOWN on theun has returned or they
--have returned status reports.

declare--in this block a WARW copy is obtained.
I NV: VERSI ONWUMBER;

begin
initiate UPDATE_COLLECTOR(LNI);
initiate UPDATES_TO._jE_1ROADCASTJ(AINTAINER(LNI);
initiate UPDATE.YECEIVER(LNH);
UPDATE_CLLECTOR( LN ) .GETJ'I RST..ERSI ON-tNUER( INV);
FILETRANSFER( INV);

end;

LOCAL_$TATE : WARM;
BROADCAST..$TATE(WAIR);--informn all other sites of

--the state transition;
COPY...TATUSJ.YEPER(LN] ) UPDATE( (LNI ,LOCAL_.$TATE ,TREC));

-update STATEJ..;
initiate UPDATES_CONSOLIDATOR(LN]);
COPY-5TATLTS-KEEPER( LN 1) .WA I TTO_.N7TJ~iOT;

- -wait termninates when the
--site holding the task enters one of the
--first P positions in STATE-.Q.

declare --in this block the site makes its file copy
-correspond with the latest version.

P: SI TE. D;
BDON'E: BOOLEA-N:=FALSE;

DONE.RES1 ,RES2: (SUCCESS.FAILJRE) :=FAILURE:
IIOT_VN : VERS1ION..NUMBER;

begin
while RESl=FAILURE loop

-loop till successful handshake occurs.
while RES2=FAIL1JRE loop --loop till latest version

-- numbter is obtained.
begin

COPY-STATUSJ(EEPER( LNI) . CETJRI MARYJD (P);
LATESTVERS I ON-NO-YEQJIADLER (P).

HiOT_VERS IONNOREQ(LN I ,HOT..YN);
RE52- SUCCESS;

exception
When TASKINC.XRROR >;--continue inner loop.

end;



P end Iloop;
UPDATESCONSOL IDATOR( LN I) .WAKEJT (HOT..N):

--wait terminates when the version nunber reaches
--HOTVN.

if not EDOINE then BROADCAST-.$TATE(HOT); BDONE:TRE; end if;

p --entering HOT state if this has not been done in
- -previous iterations of the loop.

begin
LATESTVERS ION-N2Qj1NDLER( P).

IHANDSHA]E(LNI,HOT_VN.DON'E);
if DONE-SUCCESS then

RES1:=SUCCESS; --handshake terminates successfully.
else RESI:=FAILURE;--handshake fails.

r end if;
except ion
when TASKINCJMMOR =>

--the prinary bas failed since
--it supplied the latest version nuxrber.

diRES 1: =FA ILURE;
end;

enA loop;
UPDATESCOLLECTOR(LNI).QUIT;
UPDATESCONSOLIDATOR(LNI ).QUJIT;
UPDATEJZECE1 VER(L IN ) . ENTER) NC1OT;
UPDATESJTO.-E-ROADCAST4A I NA I NER( LN I) .ENTER INGJiOT;

end;

LOCALSTATE: =HOT;
COPY...TATUS...KEPER(LNI).

UPDATE( (LN . LOCAL.5rTATE. TREC)); --update STATE..Q.
initiate UPDATE_]iA.NDLER(LN I)

* COPY-$TATUSJCEEPER( LNI ).WA ITTOECO4EYRI MARY;

UPDATEJ..ECE IVER (LN I QI T;
UPDATEJIN\DLER( LN ) . HECOMI NG-PR I MARY.
initiate LATEST_VERSI ON..NOJEQJIAND~LR(LNl);

- -respond to requests for the latest version nuner
--frcn sites wanting to enterIHOT state.

initiate UPDATEJLI ST-.PROADCASTER( LNI); -

-conmnce periodic broadcasts of update lists
initiate BROADCAST.J'JMER(LNI);
LOCAL-STATE: =PRIMARY;
COPY...TATUSJEEPER(LNI).

UPDATE( (LNI .LOCAL....TATE. TREC)); --update STATE..Q.
BROADCAST.TATE(PRIMARY);--inform all other file-copy bearing

--sites of state transition.
end FILE...ECOVER; '

task body STATUSJtEPORT$FNDER is
LNI :constant SITE-jD:=STATUS REPORT_.$ENDER*INDE; S
S:SITE..$TATE;.
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T: T I ME;

begin
Io GOP

accept STATUS..YEQUEST(NOD:SITEJD);
COPY..$TATUS-KEEPER(LN I).GET- TATUS (LNI ,S. T);
begin

STATUSJEPORT..CE IVER(NOD) STATUSJEPORT ((LN I.*S. T));
except ion

when TASKINJPMR=>
end;

end loop;

end STATUSJ?ORTSV'DER;

task body STAThSJUEPORTJIECEIVER is

begin
loop
accept STATUSJ1EPORT(T:TRIAl) do

it (T.STATE-COLD) then
SITE_CRASEJDETECTOR(LNI).SITEUP(T.NO);.

- -T.NO is back up, so a WATCH-DOWN should
--be placed on it.

end if;
COPY_STAThSJ(EEPER(L2N ). UPDATE (T); -- update STATE-Q.

end STATUSJU:PORT;
end loop;

end STATUS..jZEPORT...MCE IVER;

s task body SITECRASIU)ETECTOR is

LN:constant SITEID SITE_CRJS,-ETECTOR'INDDX;
begin

for NOD in SITE_ID loop --place WATO-UJOWN% on file copy

if (NOD v LNI ) then -baigsts

WATCHDOWN(NOD);
end if;

end loop;
loop

select
accept WATCH..JMN_INTERRIPT(NOD: SITEID.T: TIME);
--this entry is invoked by the status
-- rmintenance scherm when a watch returns.

COPY..$TATUS.JEEPER( LN I ). UPDATE( (LNI. .DEAD, T))
or

a ccept SJTEUP(NOD:S]TEJD);WATHDOWN (NOD);
end select;

rd
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end Iloop;

end SITECRASH..PETECTOR;

task body UPDATEJMECEIVER is

HOT: BOOLMkN: =FALSE;
LNI:constant SITEJD UPDATESJE.CEIVER'INDEX;

begin
loop

selec t
when not HOT=>
accept UPDATEJA ST(UP: UPDATE-YACKACE).

UPDATSJO~~ROADASMA INTA INER L'I) .REPLACE (UP);
-- receipt of this list rrmy rwdify the updates that
--are known to have been broadcast.

UPDATE_-COLLECTOR(LNI ).ADDTYOJIST(UP);
--add this list to buffered update-lists.

oraccept ENTER I NYOT;

or
when lFOT=>
accept UPDATEJ2ST(UP:UJPDATEPACKAGE);
U PD ATESTQ..BE-JRO ADCAST{A I NTA I ER( LN I3 DELFEE.JPTO(UP.LVN-l);

-- updates upto version number UP.LVN-1 muist have
-- already been broadcast.

or
accept QU'IT; -- PRIMARY state is being entered. frcan now on

--the site holding this task will do the
--broadcasting of update-lists.

exit;
end select;

end loop;

end UPDATESCEIVER;

- task body UPDATE_COLLECTOR is

LNI :constant SITEJ D:UPDATE..OLLECTOR' INDEX;
type LIST3JLEM is record

LUP: UPDATEJPACXAGE:
SlJCC:access LISTJEM;

end record;--buffer for update-list.
l-Y.TP:access LJSTJELEM;
MIN_VN.MAX_VN:VERSIONJFUMBER;

--MIN_VN is the first update received after
--entry into COLD- state;MAXVN is the latest
- -update received.

WAJNC:BOOLEALN:=ALSE;--signifles when TRUJE that the task
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--UPDATESCONSOLIDATOR is waiting for
-- the next update list.

begi
accept ADDJOJ.AST(LJP:UPDATE2ACKACE);

r: ~hT:TP:=new LIST-JLEM(LUP=>UPSUC-nul I);
MINVN:UP.LVN;MAX_VN:=UP.HVN;
loop

* select
accept CETJ1IRSTVERS IONJJUMBER(VN: out VERSI ONJ.NUMBER) do

end GETJ'1 RSTJERSI ONiNUMHER;
or

accept ADDTOJJIST(UP:UPDATEJ'ACKAGE);
if (UP.HVN>MAX_VN) then--it tbe new list contains updates

- -not already received.
if (TP:=null) then--if all received updates have already

- -been picked up by UPDATESCONSOLIDATOR.
HP:=TP: -new LI STJLEM( LUP->UP. SUCC.->nu 11);

else
TP. SUCC: =new LI STJLEM(LUP->UP. SUCC=->nul I);

iA_ TP:=TP.SUCC;
end if;
MAXVN:ULP.hV\;
if WAITING then

UPDATESCONSOLIDATOR(L.N]).WAKEU'P;
WAITING:=TRUE; -- one WAKEU7P for each tirrE GETJYROMJAST

end if;--returns zero updates.

end if

or
*accept CETJ.ROMJJLST(UPA:out access UPDATEJ'ACKAGE) do

if (19-'null) then--if no updates on hand
UPA:=new UPDATEPACKAGE( lvn=>O,hvn=>O);

3 --return a null list.
WA I T INU: T7E; --r ernbe r t ha t UPDATES_CONSOL IDATOR w ill

-- be waiting to be inford when srn
--updates are available.

else
UPA: = new UPDATE-YACKAGE(iP. all);
HP =h'P. a I I

end if;
end CETjROM__I ST;

or
accept QUIT;exit;--tbe site holding this task is entering

end select; -HTsae

end loop;

end UPDATECOLLECTOR;

task body UPDATESCONSOLIDATOR is

L
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TID: constant TASXJD :=COMMON.GETWYJD;
WAITING:=BOOLEAN.=FALSE, --when TRLE, this variable signifnes that

--this task is waiting for rrre updates to arrive.
P: access UPDATE_PACKAGE;
CVN:VERSION_.j.WER:--current version number of the local copy.
TRAP_VN: VERS ] ON .. IBER;
TRAPET: BOOLFAN: =FALSE;
LNI: constant S]TEJD:=UPDATES_CONSOLIDATOR' lNEX;

entry SETTRAP(V:VERSION..UMBER);-
entry REAC-ED;

procedure WAKE_AT(V:VERSIONNU.MBER) is
--is used by F]LEJCOVER to be informed when the local copy
--reaches the latest version number, so that it can enter
--HOT state.

begin
SETjRAP(V);
REACHED;--the latest version n.mber has been reached.

end;
begin
READERWRI TER(LN ]). GETVERS] ONJ'IMBER(CVN);' <<OTTrER>>

loop
while not WAITING loop--loop till all update lists received

--have been mer ed into the local copy.
UPDATE__COLLECTOR( LNI ). GET_FROM..,L I ST P)
if (P.hIN=O) then--if a null list has been obtained
WA]TING:=TRLT,;--then wait till som updates arrive.

else
READERWR] TER(LN]).GETWRITELOCK(TID);
for J in P.LVN. .P.HVN loop--rnerge updates.

if J=CVN+I then
READER._WR]TER(LNI).WR]TE(P.UPDATES(J) ,J,CVN);

end if;
end loop;
READER_WR]TER(LNJ).RELEASEWR]TELOCK(TID);

end if;
end loop;
<<IN'NER>>
loop
select

accept SETJRAP(V:VERSIONJMBER);
TRAP_ V:=V;
TRAP..ET: =TRL'E;

or
when (TRAP_SET and then CVN L TRAPN)=>

--version number has reached the latest version ninber;
accept REAChED;

or
accept WAKEUP;WA]TING:=FALSE;exit IN .R;
--go to process the newly arrived updates.

j or
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accept QUIT; exit OUTER.
--site is entering H-OT state.

end select;
* end loop;

end loop;

end UPDATES_CONSOLIDATOR;

task body COPYSTATSEEER is
type S]TEJ1EC is

record
T: TR IAD;
PRED.SUCC:access SITEJREC;

end record;
HOTLIST:COPY.ST=1 .-*>FALSE);
S]ITES-iNOTJ N IT IAL IZED: 1. . N>TRLE);
INIT: BOOLEAN:=FALSE;
ENT7ERF.OT: BOOLEAN - FALSE;
BECOMEPRI MARY: BOOLEAN: =FALSE;
PR I MaRYjMNWN:- BOOLEAN: =FALSE;
EP,TP:access S]TEJREC:=null;--head and tail pointers to STATE-.Q.
LOCAL..YOS: INTEGER range I. .N;--position of site in which taskI --resides in STATE.Q.
LN : constant SITE_ID:.COY...TATU'SJ(EEPER INDEX;

procedure RETRIEVE (N:SITEJ D;S:out SITESTATE;T:out TIME) is
--This procedure searches the queue to find the element for
--the site corresponding to N and returns the values of
--T.STATE and T.TR.

end RETRIEVE;

procedure MODIFY(T:TRJAD) is
--This procedure changes the queue-elrnnt for the site
-- specified in T to the values specified in T provided T.TR is
- -greater than or equal to the corresponding cczrjonent of
-- the queue element; it then moves the eleme~nt if necessary
--so that STATEJ.Q is still sorted in increasing order of
--the value of this ccrponent for non-DEAD sites with the DEAD
--sites following in any order.

end MODIFY-REC;

procedure GE.j.OCAIJ'POS(POS: out INTEGER) is
--This procedure gets the position of the queue-element
--corresponding to site LNI, mreasured frcm the head of the

L --queue.i.e.if site LNI were at the head, the procedure will
--return with POSl1.



97

Send GETJLOCAL_'OS;

begin
for NOD in S]TEJD loop -form STATEJQ.

if (TP-null) then
08 hP:=TP:=

new SITE EC(triad=>(NOD.DEAD.O).PRED=>nulI.SUCCX->nulI);
else

TP. SUMC
new SITE_.YEC(triad=>(NOD.DED.O).PRED=>TP.SUCC->null);

TP:=TP.SUCC;
end loop;
LOCALPOS:=LNJ;
loop

select
when PRIARYJNJWN\ =>

accept GETYRIMARYjD(NOD: out SITEJD) do
NOD:HPY.T.NO;--PRlMARY is at the head of STATEJ.Q.

9W end GETYRIMARY1D;
when BECOME..JR IMARY=>

accept WAIT_TOECOMEYRIMAR';
when ENTER..YOT=>

accept WAIT_TO3\7TJOT;
when ]NIT=>

accept WAITJTILL_jN]T;

owhen ]NIT>
accept CET..YOTLIST(S:out COFY- ET) do
S:=H-OTLIST;

end GETIiOTLIST;
or

accept GET- TATUS(NOD:STEJD;STATE:out SITE_,TATE;
T:out TIME) do

RETRI EVE (NOD .STATE ,T);

end GET_$TATUS;
or

accept UPDATE(T:ThIAD);
MOD IFY(T);
if (T.STATE--HOT) or (T.STATE-PRIMARY) then
1HOTLIST(T.NO) :=TJTJ;

end if;
if not ]NIT then
SITESJNOT-JN]TIALIZED(T.NO) :=FALSE;
if SITESJIIOTIN]TIALIZED=(1. .N=>FALSE) then

INIT:.=TRUE;
end if;-

end if;
GET-JOCAL-POS(LOCAL-'OS);
if (LOCALPOS !c P) then ETER-JOT:=TR2E;end if;
if (LOCALJ'OS1l) then

BECOME-PRI MARY:=TRLUE;
if (1P.T.STATE-PRIMARY) then
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PRI MARYJNOWN : -TRUE;
else

PRI MARY.,NO,: =FALSE;
end i f;
if INIT and (LOCALJOS=1) and ((HP.T.STATE V HOT)

or (HP.T.STATE s PRIMARY)) then
.signal and wait for rnual intervention to reinitialize
the file copy bearing sites :

end if;--the site at the head of STATEJQ is unable to enter
--HOT state, therefore no further update
--transactions can be processed.

end select;
end loop;

end COPY. TATUSJcEEPER;

task body UPDATE..YANDLER is
LI:constant SITE_]D:=UPDATE-ANDLER'INDEX;
HOT:BOOLEAN:=TRUE--ftag to distinguish whether the state

--is HOT or PRIMARY.
CVN:VERSIONNUMBER;--current version niruzer.
TID: constant TASK-JD:=COMMON. GET.YJD;
TRID: TRANSACTIONID;
COUNT: INTEGER range 1..N;
READY: BOOLEAN;
UP: UPDATE;

begin
READER_.WRI TER(LNI). ET_VERS] ONJMER(CVN); .
',AMAIN>>
loop
select

Saccept UPDATE (UJ D: TRANSACT I ON_I D; U: UPDATE;
A LPRIMARY: out BOOLEAN;RES: out (ACCEPT.REJECT);
lIL:out COPYSET) do

--protection and integrity checks are asstird
.--to have been done.
TRJ D: -U.J D;
UP:fU;

-. READERWRITER(LNI).GETWRI TELOCK(TID);
if HOT then --in HOT state

AMJPRJ MARY:=FALSE;
RES: =ACCEPT;
READY :=TRUE;

else --in PRIMARY state
AMPRIMARY: =TRUE;
COPY-.$TATUSJ(EEPER( LNI). GETJOTLI ST(HL);

. for I in SITEID loop
' if HL(I)=TR1E then

COUNT: =COUNT+ 1;
end if;

end loop;
if COUNT 0 P then --accept update only if P HOT copies
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--(including the PRIMARY) exist.
IREADY: =FALSE ;,",,

RES: =REJECT;
READER-WRI TER(LN] ). RELEASE WRI TELOCK(T ID);

else
READY: =TRUE;
RES : =ACCEPT;

end if;
end if;

end UPDATE;
<<COMW I TOR_ABORT>> .
if READY then

loop
accept DECISION (UJD:TRANSACTIONJD;COMWIT:BOOLEA.N) do

if TRID=UJD then
if COMMIT then
READER_WIR]TER(II) .WR]TE(UP.CVN+I.CVN);
UPDATESTO..E EIOADCASTMA I NTAI NER( LN I).

ADDJPD(UP.CVN);"
end if;
READER WR]TER(MLN ). RELEASEWRI TELOCK(T ID);
exit COMVfT_R_jMRT;

--exit this loop only if the fate of the
--transaction has been decided.

end if;
end DECISION;

end loop;
end if;

or
accept BECOMING_.RIMARY; e
HOT:=FALSE;

end select;
end loop;

end UPDATEJiANDLER;

task body LATEST_VERSION_.]OEQJ{iANDLER is

LN]:constant SITEJD:=LATEST_VERSIONJ;QJiA LER']NDEX;
NOD: SITEJD;
ST: (SUCCESS, FAILURE);
VN: VERSION__UMBER;.
T I D: TASKJ D: =GETMYJ D:
T: constant TIME:=.. ;--should be met to a value sufficient for

--the site requesting the latest version J

--nurber to get all updates up to this
--version ntber, inform all sites of its
--entry into HOT state and then perform a
--a handshake with this task.

begin
loop

loop

i, .,'. "..2 -2 ,2, ",... .< > .. ,.2, ",-.,',L . , ¢ ,, .-. ,. .< ,, ., ,. .-:' . .,.-.. , ,.... .'. ,.... ..... ,, .. .,..-..,,
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,•- ~selIec t -accept HOT._VERS]ON_,NO_ Q(NO:SlTEJD;V: out VERSIONNUMBER)
do .,-

NOD: =NO;
READER_.WRITER(LNI ) GET..jADLOCK(TID); %
--block updates while the process of getting the
--caller site into HOT state is going on.

READERWRI TER( LNI). GETVERS I ONJJUMBER(VN);,-
V:=VN;

end HOT_VERS I ONJO. Q;-.
UPDATESTO..+E_BROADCAST.JA ICNTA I NER( LN I).

BROADCAST_ON.,EACH] NG (VN);
--initiate a quick update list broadcast so that
--the caller site does not have to wait till the
--next of the periodic broadcasts.

exit; --go to wait for handshake;
or

accept HANDSHAKE (NO:S]TEJD;V:VERSION..NUMBER;ST:out
(SUCCESS.FAILURE)) do

ST:=FAILURE;--a HANDSHAKE entry accepted here indicates
--that the call did not cume in time.

end HFANDSHAKE;
end select;

end loop;

loop
selert

accept HANDSHAXE(NO:SITEJD;V:VERSON.NUMBER;ST:out
(SUCCESSFAILURE)) do

if (NONOD) and (V=VN) then
ST:=SUCCESS; --succesful broadcast
READER_WRITER(LNI ). RELEASEWRITELOCK(T ID);
exit; --go to wait for the next request for the latest

--version ntrer.
else

ST:=FAILURE; --this call did not cam within the set
--period or is a duplicate of a call that
--either did not come in time or which
--resulted in a successful handshake.

end if;
end HANDSHAKE;

or
delay T; --time period for the site that requested the

--latest version number to call HANDSHAKE.
READER_WRITER(LNJ ). RELEASEWR] TELOCK(TI D);
exit;
--expected handshake did not occur, so go back to wait
--for the next request for the latest version nmrber.

end select;
end loop;

end loop;

B end UPDATEJiANDLER;

%', .. p.
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task body PDATEJISTROADCASTER is

LNI:constant SITEID:PDATEJ ]S.RADASE NDbegin :
aoop t P1 CXUIPYACKAGE (UP: UPDATE.YACXAGE); .
for all NOD in SITE_ID loop
if LNI # NOD then

* begin
UPDATEJ I STJECEI VER(NOD) .UPDATEJJST(IJP)

exception
when TASK INCJRRDR-->;

end;
end if;

end loop;

end UPDATEJA IST~jROADCASTER;

task body BROADCASTJIMER is

LLNI :constant SITEID:BRADCASTJIMER*INDEX;
TBROD:constant TIME:=.....; --period of update lists broadcasts.

begin loop
delay THROD;
UPDATESTO-EROADCAST-JA I NTA NER( LN 1) .PREPAREJ'ACKAGE; :®

end loop;

end BROADCASTJ IMER;

task body UPDATESJTO-1EROADCASTJAI NTAINER i s
* LNI :constant SITE_ID: =UPDATESTOjROADCASTMdAINTAINER' INDEX;

LUPV.V:VERSION_~MMER; --LUPV is the version nuier up to which
--updates have already been broadcast.

P.Q:access IPDATEJPACKAGE;
*LO. HI : VERS IONJUMBER;

HOT: BOOLEAN: =FALSE;
TRAPjET:BOOLEAN:=FALSE; -- used to initiate special broadcasts

--when a site entering HOT state.
TRAPVNO : VERS IONNUMBER;
NO.JTPD_0N~JiAN: BOOLEAN: =TRUE.
begin

UPDATECOLLECTOR(LNI) .GETJIRSTVERSI ON-.NUMBER(V);
LUPV:=V- 1;
loop
select

-when not HOT=>
accept REPLACE(UP:UPDATE...ACKAGE);
if NO_UPD_ONJiAND then --if no updates are in this

--site's possession wbich have
- -not been broadcast V

if (UP.HVN>LUPV) then -- if this list contains any

1 *P~
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--updates not known to have
--been broadcast

NOUPDONJHAN: =FALSE;
P: --new UPDATE_ACKAGE ( LVN=>LUPV+ 1. HVN=>UP. HVN) ;
for VN in P.LVN..P.HVN loop --store the list.

P.UPDATES(VN) :=UP.UPDATES(VN);
end loop;

end if;
else --this site has same updates that it cannot be sure

--have been broadcast
if (UP.HVN>P.HVN) then --if this list contains same

--new updates
Q:-new UPDATE...PACKAGE(P.al 1);
if (P.LVN>UP.LVN) then
LO:=P.LVN;

else
LO :=UP. LVN;

end if; --updates with version nurber less than
--LO are known to have been broadcast.

HI : =UP. HVN;
LUPV:=LO-1;
P: --new UPDATEpACKAGE(LVN=>LO .HVN>>H] ),
for V in LO. .HIl loop

if V in Q.LVN..Q.HVN then
P.UPDATES(V) :=Q.UPDATES(V);

elsen P.PUPDATES(V) :=UP.UPDATES(V);
end if;

end loop; --rnerge the newly arrived list with the
--updates on hand. ."9

end if;
end if;

or
* when not HOT=>

accept ENTERING_-IOT;
HOT:=TRUE; --fram now on updates are directly added to

--the set on band as they are carmaitted,
--instead of being received in periodic
--broadcasts.

or
when HOT and not TRAP_$ET=>

accept BROADCAST_ONEACHING(V:VERSON_NUMBER);
if (NO_UPD_ON]JAND and LUPV < V) or

((not NOJJPDONJ{AND) and P.HVN < V) then
--do not set trap if the update corresponding to V

--has already been broadcast or if not is in the
--the set of updates on hand.

TRAP_SET: =TRIJE;
TRAP_VNJYO: =V;

else --if the update has not been broadcast but is at
--hand then initiate a broadcast.

if ((not NOUPD)ONJ-IAND) and
P. LVN V and P.HVN V ) then

• .

. . . ; 4 .
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UPDATEJJ STROAlCASTER( LNI).P1 CKUPYACKAGE(P. a I );
NO_UJPD_ONJ)AND:=TRUE;
LUPV:=P.HVN;

end if;
end if;

or
* when HOT=>

accept AfD1JPD(U:UPDATE;V:VERSIONNU4BER);
if (NOJPD..ONJ-IAND and V=LUPV+1) then

P:=new UPDATEYACXAGE(LVN>V.FVN->V.,UPDATES(V)=>U);
NOJJPD.ONJiAND: =FALSE;

else if ((not NO_UJPD_ON-YiAN) and V=P.HVN+i) then
Q:=new IJPDATE..ACKAGE(P.all);
P: -new UPDATE..YACKAGE(CLVN->P. LVN, HVN->V):
for VN in P.LVN. .P.HVN loop

P.UPDATES(VN) :=Q.UPDATES(VN);
end loop;
P.UPDATES(V) :U;

end if;
if (TRAP...ET and then P.HVN a! TRAP_VNlO) then

--if tbe trap is set and the new update sets it off
UPDATEJJ I ST-,BRADCASTER( LNI ). PJ CXJPYACKAGE (P. all);

--initiate a broadcast.
NOUPD_ONJiAND:=TJlJE;
LUPV :=P . V;
TRAP_ ET:=FALSE;

end it;
or

when HOT=>
accept PREPARE-PACKAGE; - -periodic broadcast
if (not NO_ PD..ON-AND) then
UPDATE.LJST...3ROADCASTER(LN ) .PICXUJP.YACKAGE(P.al 1);
NOUJPDONJiAND: =TRIJE,

oLUPV:=P.HVN; end if;
when HOT=>

accept DELETE-UPTO(V:VERSONaUMwBER);
if (not NO_UPDJ0NJ9AND) then
if (P.HVN tg V) then

LUP:V;
NO_UPD_ONJiAND:=TRUE;

elseif (P.LVN ic V) then
Q:-new UPDATE..YACKAGE (P.at 1);
P:=new UPDATE..YACKAGE (LVN=>V+1 .HVN=>Q.HVN);
for VN in P.LVN. .P.HVN loop

P.LJPDATES(VN) :=Q.UPDATES(VN);
end loop;

end if;
end if;

end select;
end loop;

end 1PDATESTOE..3ROADCAST_4A INrA 1NER;

IP
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CHAPTER 3

ENSURING THE CORRECTNESS OF GLL)BAL INFORMA71ON

3.1. Introduction

In this chapter, we address the problem of maintaining the availability of

global information in a computer network, in the presence of malfunctioning

sites in the network.

Our model of the network is that it consists of a set of sites attached to

a communication subsystem. We assume that this subsystem provides per-

fect ste -to -ste communication so that all messages are delivered intact in

a known period. Note that in this model, the communication subsystem does

not provide a reliable broadcast mechanism and in fact the difficulty of per-

fornfing a reliable broadcast will be a major issue in the following discussion.

Further it is assumed that no site A can masquerade as another site B and

mend messages as originating from B. The ideas presented below can be

extended to the case where the communication is imperfect; the assumption

of perfection is made to simplify the presentation.

In Chapter 1. we distinguished between two kinds of failure models for

network sites. In the model in which crashes are the only mode of failure, a

site exhibits faVL-sfop behavior [SCH 53] and performs a recovery pro-

cedure as its first act after each crash. In the other model. mraalfunctionsa

are the mode of failure. A malfunctioning site may go through arbitrary

state transformations and emit arbitrary mrssages. In the extreme case, a

malfunctioning site may exhibit malicious intelligence attempting to disrupt

IL €
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detect site crashes and maintain a view of network status for the former
I.."'

model. The essence of malfunction as a model of failure, however, is that the

existence of a malfunctioning site may go undetected for an indefinite period

of time. Hence, it is necessary to develop techniques that preserve the avai-

lability of global information in the presence of arbitrary, undetected

failures, and this is the aim of this chapter.

In Section 3.2.. we discuss why and under what conditions replication

should be used to deal with malfunctions. Section 3.3. explains the

phenomenon of error propagation which can occur when malfunctioning sites

are present, and which can progressively render all the global information

stored in the network incorrect. Section 3.4. outlines our approach to

preserving correctness. Section 3.5. deals with relevant past work in this

area and the reasons why it cannot be directly used to solve the problem

being considered. Section 3.6. describes the extensions to, and modifications

of this work necessary to carry out our approach. Section 3.7. further

I develops our approach by describing protocols that prevent error propaga-

tion when a particular form of bound on the number of malfunctioning sites

holds, and which have some nice properties.

3.2. Redundancy Techniques for Storing Information

In order to protect the availability of information against crashes and

malfunctions, some form of redundancy is required. One form of redundancy

is replication, in which multiple copies of the information are made and

stored with each copy at a different site. Another form of redundancy that

could be used is error-deteclin9 and correctfin codes. Consider a n-bit piece

of information. It could be encoded in N=n +k bits, where k=ogN using a

distance-3 Hamming code and stored in N sites, one bit in each site. Then

IF
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- the piece of information would remain available, as long as no more than one

site crashes or malfunctions. However this solution will incur a large amount

of communication overhead, since a large number of sites may have to be

OPm consulted to retrieve the information. Also since the information is parti-

tioned among many sites, it is not possible to process it locally at any of

these sites. Rather, the information must be first assembled at some point.

before processing, further increasing the communication overhead. Since

communication bandwidth is, and is expected to remain [OUS 0]. a

bottleneck in most distributed systems, we do not consider this approach

further. Thus although error-deterting and correcting codes can be used

locally at each site e.g. in the memory and ALC, to lessen the likelihood of its

crashing or malfunctioning, and also in the communication subsystem, the

appropriate redundancy technique for stored information at the system level

I where the unit of failure is a site, is to replicate the information at multiple

sites.

In order to preserve the availability of an item of information in the

U presence of m rnalfunctioning sites, it is necessary to replicate the informa-

tion at 2 v+1 sites. Then by consulting each of the 2m+1 replicas and taking

a majority vote, the correct value is obtained, as long as there are at most m

malfunctioning sites. The larger the number of replicas, the greater the pro-

tection against the information getting lost due to malfunctioning of sites.

But this is true only if the probability p of a site malfunctioning is less than

0.5. If p > 0.5, replication only reduces the probability of obtaining the

correct value. Assume the number of replicas is increased from 2r-1 to

2r+1. There are two possible situations in which this addition of two extra

replicas makes a difference in determining whether a majority vote yields

the correct value or not:

o.
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(a) There are r-1 malfunctioning sites among the original 2r-3 sites, but

both the additional sites are malfunctioning. Here a majority vote with the

original 2r-1 replicas will yield the correct value, but a majority vote after

W the addition of the two replicas, will not. The probability of this occurring is

p1- )P

(b) There are r malfunctioning sites among the 2r-1 original replicating

sites, but both the additional replicas are failure-free. Here, while the origi-

nal set of replicas might not yield the correct value in a majority vote, the

augmented set will. The probability of this occurring is

p2 = ('-P)2.-

= 2ru1]pr(i...?r.

U Therefore, the improvement in the probability of obtaining the correct value

is

p 2 -P I= _

U which is greater than 0 iffp<O.5. Hence replication is desirable only ifp<0.5.

In the rest of this chapter we assume that this condition holds.

3.3. Effect of Malfunctions on Correctness

Let t:y*-f (z) be a transaction entered into the network which seeks to

update y to a new value which is a function of the current value of z. 'We call

z the r'ead-variable and y the urte-variable. Assume we have one copy of x

at site X and three copies of V at YI. YZ and Y3 ( Fg. 3.1 ). Assume that site

X is malfunctioning. Then the values of z or f(z) (depending on where f(z) is

computed) sent to Y1, Y2 and Y3 may be incorrect and may be different. If

no precautions are taken, the copies of y will take on incorrect and divergent
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TRANSACTION Y -- F(X)

0 MALFUNCTIONING SITEOFAILURE-FREE SITE

FIG. 3.1. X TRANSMITS THE VALUE OF xTO Yl, Y2 AND Y3.
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values. For YI. Y2 and Y3 to reach agreement is non-trivial, since there

may be malfunctioning sites among them too. If other portions of the global

information are thereafter updated directly or indirectly as a function of y,

* the incorrectness of the latter gets propagated. This kind of error propaga-

tion, if unchecked, will increasingly disrupt the functioning of the network.

To check it. in some cases it will be sufficient if Y1, Y2 and Y3 take on some

common value for y/ but in others additional restrictions on this common

value will have to be enforced.

As an example to illustrate the importance of maintaining the correct-

ness of global information, consider a dynamic packet radio network in which

a group of sites wishes to perform some task, composed of a set of subtasks.

Assume that the group has first to determine how many sites are present in

the group and how they are connected and then, based on this topology infor-

mation, to assign subtasks to sites. Assume that for reliability these steps

are to be done in a distributed manner and that the following method is

chosen. Each site communicates with the rest of the group and determines

* the topology, Then each of the sites applies a common algorithm to compute

the assignment of subtasks to sites. Then we require that a) the correctly

operating sites arrive at a common view of the topology so that assignment

of subtasks, though done in a distributed manner, is consistent and b) this

common view at least "closely" represent the true topology, otherwise the

assignment may prove ineffective. (Consider what may happen if a large

number of non-existent "ghost" sites are imported into the view by malfunc-

tioning sites. Then critical subtasks may be assigned to ghost sites.)

. ,. ..
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3.4. Outline of Proposed Approach for Maintaining Correctness

As explained in Section 3.2. we can replicate global information and

store the copies at different sites in order to guard its correctness against

malfunctioning sites.

Suppose a piece of information is replicated at (2Mn+1 )sites, M.=

0,1.2... As long as no more than m of these sites malfunction, any site can,

by consulting all 2m+ I sites and taking the majority value obtain the correct

value.

In stating that the correct value can be obtained by the above pro-

cedure, we are assuming that the following conditions bold: (a) the failure-

free sites have the same stored value and (b) this value is correct. However.

even if a majority of the 2m+ 1 sites are failure-free, conditions (a) or (b) or

b.".

both could be violated if precautions are not taken when updating the infor-

nation. This is because of the phenomenon of error propagation explained in-

Section 3.3.

The problem of preventing error propagation can be stated as follows.

Assume that the update Y--f (z) has been submitted to the system. There

are 2t+1 copies of z each at a different site. This set ot sites is called the

tran~smitfeT set ITI. Similarly there are 2r+1 copies of y stored in the

receiver set JR[. ( The sites holding copies of a write-variable in a transac-

tion are called receivers, and the sites holding copies of a read-variable of

the transaction are called transmitters. Note that the same site may be a.

transmitter in one transaction and a receiver in another. We will assume in

this chapter that ITn+ I nil, i.e. the sets are disjoint.

In order to prevent error propagation as a result of processing the

update. two steps must be taken:

-.. .,. .
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(i) the failure-free sites in JRJ must reach agreement on the value of z. We

call this the uniairnity-re aching step.

(ii) the value of z agreed on must be Verified to be correct. The extent to

which this can be done depends on the knowledge that the sites in JRJ have

regarding what values of z are reasonable. This knowledge is stored in the

form of assertions. We call this step of verifying that x satisfies these asser-

tions the acceptability-checking step. The limitation here is that in some

cases, it may be difficult to develop assertions that can, to a useful extent,

restrict wrong values from passing. In cases where such assertions cannot

be generated but it is crucial to protect the updated information, the only

solution appears to be to increase the degree of replication of the read-

variable and thus diminish the probability of obtaining a wrong value.

We use the the example given above of the group of sites that wish to

determine their topology and assign subtasks to different sites in the group.

Here the receivers JRJ are the sites in the group. V is the topology informa-

tion. z is the position of any given site and T is the set of sites reporting

* the position.

In the unanimity-reaching step, the sites in JR reach agreement on the

position of a site. The acceptability-checking step can be used to try to

screen out "ghost" sites. For instance, the assertion we may require to be

satisfied may be that all the sites in some appropriately defined "vicinity" of

an alleged site confirm the existence of that site. How effective the assertion

* is depends on the presence of failure-free sites in the vicinity.

In general, the unanimity-reaching and acceptability-checking steps

may be intertwined or follow one another in either order depending on the

problem at hand. For example, if the size of z's representation is large, and

. .
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if the value received is found to fail the acceptability-checking step a special

symbol denoting an unacceptable value may be used in the unanimity-

reaching step.

The nature of the acceptability-checking step is very much dependent

on the problem at hand. Hence we will not discuss it further. We will discuss

the unanimity-reaching step in detail, but first we give a brief description of

the results available from the literature that are relevant.

&.5. The Byzantine Generals Agreement Problem

A number of papers have appeared on the so-called Byzantine Generals

Agreement (BGA) problem [PEA 80, 1AM80. DOL81, DOL82a, DOL82b,

DOL 82c].

Consider a site T which wishes to transmit a value Vto a set of receiving

sites JR . Then the Byzantine Generals Agreement is reached among the

sites in JR1 if the following conditions are fulfilled:

1. If the transmitter is failure-free, all failure-free receivers agree on Vas the

common value.

2.All failure-free receivers arrive at the same value, whether the transmitter

is malfunctioning or failure-free.

To show the nature of this agreement, we show an example of a network

of four sites in Fig. 3.2. Assume that the transmitting site (marked T 1n the

figure) is required to transmit the value 5 to the receiving sites (marked R in

the figure). We show two possible situations, in the left and right parts of the

figure respectively, the first involving a malfunction in one of the receivers

and the second in the transmitter itself. We show how an algorithm given in

[AM 80] is applied to this network to reach the BGA. assuming, as is true for
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CASE 1: CASE?2t

ONE RECEIVER TRANSMITTER

MALFUNCTIONING MALFUNCTIONING

T T

PHASE 1

51 5(TRANSMIT) 1 12 3

PHASE 2

(EXCHANGE)
75:15 5 52 2 3

5 7 3OMALFUNCTIONING SITE

O FAILURE-FREE SITE

FIG. 3.2. REACHING GBGA IN THE PRESENCE OF ONE MALFUNCTIONING SITE
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the two situations described above, that there is at most one malfunctioning

site in the network. The algorithm requires two phases of communication in

our example, under the assumption made above. In the first phase, the

transmitter sends its value i.e. 5 to all the receivers. Note that in the first

situation the transmitter is malfunctioning and does this incorrectly. In the

second phase, each receiver sends th~e value received in the first phase to all

receivers including itself. Note that in the second situation, one of the

receivers is malfunctioning and executes this phase incorrectly. After this

phase, each receiver computes the mnedia of the values received in the

second phase. A quick look at Fig. 3.2 wil verify that all correctly operating

receivers arrive at the same value, 5 in the first situation, 2 in the second. In

the first situation, the transmitter is failure-free and each failure-free

receiver has received a majority of values corresponding to the transmitter

value. The median computed is thus the transmitter value. In the second

situation, the transmitter is malfunctioning. Although the receivers compute

a median value which is different from the correct value (5). they all com-

pute the same median value (2). Thus the conditions of BGA are fulfilled in

.. both situations.

The BGA problem has two variants corresponding to whether an authen-

tication facility is available or not (The example shown above did not use

authentication.) Authentication permits a site to seal its messages so that

another site receiving them can assure itself that their contents have not

been altered even though the messages were handled on the way by other V

sites before reaching it. Thus although a malfunctioning site can abstain

from relaying a message which. had it been failure-free it would have relayed,

it cannot tamper with its contents and then relay the message without being

V' detected. The authentication facility can be implemented using public-key

,"-
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encryption [DIF 76,RIV 78].

Consider a network of N sites with at most M malfunctioning sites. It has

been shown [PEA 80] that if authentication is not available, it is necessary

that N > 3M and whether or not authentication is available, at least M+ 1

phases of communication are required [DOL 82c].

Table 3.1 shows some of the features of the published algorithms to solve

the BGA problem. It can be seen that algorithms of polynomial complexity

are available for both variants of the BGA problem.

The required number of messages mentioned in the table reflects the

worst case. Considering the algorithms which do not employ authentication,

the algorithm indicated in the last row has polynomial worst-case communi-

cation cost whereas those in the second row (the algorithms indicated in this

row are variants of the same basic approach) have exponential worst-case

communication costs. But the former algorithm requires more than twice

the number of phases and is vastly more complex. Further, the algorithms

in the second row can be modified so that while they can stiU handle upto M

malfunctioning sites, they require only about N2 messages when there are

actually no malfunctions [LAM 81a]. which will usually be the case. For these

reasons they may be preferred to the algorithm indicated in the last row.

We have assumed so far that there is a direct, failure-free link between

every pair of sites. In IDOL 61]. it is shown how these algorithms can be

extended to a point-to-point network, where the connectivity is not complete

t and the links are not failure-free. Instead of having a bound on the number

of malfunctioning sites, a bound is imposed on the number of malfunctioning

sites plus failed links. Each message from one site to another is sent along a

sufficient number of disjoint routes. so that effectively perfect virtual con-

... .... '" '"'""" - ;,i;.i :" ::-.,.,;".-...".'-.."."..'......,".".,".-,".-..".,,......-.......,..."...-,,.,'
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source authentication # of messages 1of phases
PEA 80.LAM BO yes O(N"')+ M+1
PEA 80, LAM~ 80, no O(NN + M+1
DOL 81, DOL 82a______ _____ ___ ____

DOL 82c yes 0W NA1M1
DOL 82c yes O(NM) M___2_
DOL 02c yes 0(NM) M+1
DOL B2b no O(NM +AI~ogAI) 2M+3

__________________________for a 1-bit message______

N =total number of sites

M =bound on total number of malfunctioning sites.

Table 3. 1. Algorithms for Byzantine Generals Agreement.
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nections are provided between every pair of sites. In presenting our results

below, we will continue to assume perfect connectivity, but the techniques of

[DOL B1] can be used to relax this assumption.

In [LAM Bla] a scheme for using BOA solutions to implement distributed

systems that are able to tolerate malfunctioning sites is described. The

basic version of this scheme involves replication of all functions and informa-

tion at every site in the system. Transactions entering at any point in the

system are timestamped and broadcast using BOA techniques so that mal-

functioning sites are unable to prevent agreement among failure-free sites

as to the transactions received. Control messages exchanged among the

sites e.g. for commit processing, also use this reliable broadcast mechanism.

Thus all failure-free sites see the same input stream of messages and exe-

cute the same sequence of actions. As long as the number of malfunctioning

W sites satisfies the bounds assumed by the BGA algorithm being used, the sys-

tem as a w',ole performs correctly. If the bounds are exceeded, the informa-

tion stored in the failure-free sites may diverge and from that point on. the

system may perform incorrectly until appropriate repair actions are ini-

tiated from outside.

In many, if not most, networks, such complete replication would be

infeasible since it would require too much storage at each site. It is sug-

gested in [LAM 81a] that in such cases, only critical functions be completely

replicated and managed according to the above scheme, constituting a syn-

chronizing kernel for the system. Other functions and information would be

managed by a separate mechanism. The example of a distributed file system

is given as an illustration. Here the directory information and the apenJILe

and close file operations would be in the synchronizing kernel but not the

.. 7]
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files themselves or the read fle and wrmie fliLe operations; these would be

handled by a separate mechanism.

This separate mechanism would be used to access information at a

is remote site when it is unavailable locally. Here the danger of error-

propagation discussed in Section 3.3 arises, since the remote site may be

malfunctioning. Our solution to this problem. as discussed in Section 3.4

consists of a unanimity-reaching step and an acceptability-checking step.

For the unanimity-reaching step, the BGA problem is relevant. However, we

may have a multiplicity of transmitters ( since the information is replicated,

though partially ) whereas the BGA has been stated for the case of one

transmitter. Also it may be too expensive to use BGA techniques on each

remote access to global information. We discuss these issues in Section 3.6.

B.6. Details of Proposed ApproachrnI
3.6.1. The Generalized Byzantine Generals Agreement Problem

The requirements of the unanimity-reaching step of Section 3.4 may be

I stated as follows.

Given a set of transmitters TJ each of which has a copy of a given piece

of information ( the read-variable ), and a set of receivers |R1 (which hold

copies of the write-variable ) which wish to access this information, the Gen-

eralized Byzantine Generals Agreement (GBGA) is reached by the receivers if

a) All failure-free receivers agree on the same value.

b) If a majority of transmitters are failure-free, and each of the transmitters

in this majority has the same value V for the information, then the receivers

agree on V as the common value.

Il
°. .
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Clause a) is the same as for the BOA. The changes for clause b) are sir-

ple to understand. If a majority of transmitters are not failure-free, i.e. if a

majority of malfunctioning sites exists, the latter by acting in collusion can

make it impossible to deduce that the remaining minority of transmitters

are the ones from which the correct value is to be obtained. The reason for

requiring that the failure-free site majority of transmitters should have the

same value is that there is a possibility that they may have divergent values

because of prior error propagation, in which case, clause a) already specifies

the best the receivers can hope to do.

3.6.2. Malfunction-Tolerance Specification

If we wish to use GBGA to process an update transaction /-f(z) then we

must specify the bounds on the number of malfunctioning sites called the

rnalfunctiof-tolerance specifcation,(MTS). The protocols used in processing .

the update will then be such that as long as the actual number of malfunc-

tioning sites is within the MTS, GBGA will be reached by the receivers.

Assume that there are (21 +1) sites, forming the set of transmitters IT1.

which hold copies of z and (2r+1) sites forming the set of receivers JRJ hold-

ing copies of V. F(S) denotes the number of malfunctioning sites in the set

S. Examples of possible MTSs are:
(a)F(J r3)=o !

(b)F(J TJ,1

,: (d)F(e ])s r I

(e)F(JRJLJTJ) r , etc.

These MTSs specify different degrees of malfunction-tolerance and the

protocols that achieve GBGA given these MTSs have different communication

V .- .. ,
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and computation costs associated with them. For example, for MTS (a). any

single transmitter can be accessed to get the value of , for MTS (b), three

transmitters can be accessed ( assuming I TI[3 ) and the majority value

taken, and so on. Thus a tradeoff exists between these costs and the degree

of malfunction-tolerance obtained.

86.3. Scheme Specification

The global information consists of a set of data items. Suppose we are

given the update interactions between them in the form of a set of ordered

pairs (;.zj) where the existence of a pair (zz.z,) implies the existence of an

update interaction zi-f 1 (zj). [We assume update interactions of this form

for simplicity.] Suppose we are also given the degree of replication for each

item -.

The scheme specfification (SS) specifies a protocol for each update

interaction pair. For example, SS could specify that for a given pair (z,,z,)

the protocol for this interaction should achieve GBGA with the MTS F(IR J) r.

(Here the degree of replication of z, is 2r+1.)

Given the data items, the update interactions, the degrees of replication

and the scheme specification, the behavior of the system information as to

its correctness characteristics in the presence of malfunctioning sites

(including the error propagation effects) can be deduced. Hence in order to

obtain the desired behavior, the degrees of replication and the scheme

specification should be chosen appropriately. Below we give two examples of

possible scheme specifications.

7.".
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3.6.0.#. Scheme Specification A

In Section 3.4. we commented that the correct value of a piece of infor-

mation y could be obtained as long as a majority of the sites holding copies

of it were failure-free, provided they were not contaminated by error propa-

gation. 7his contamination occurs when the information is being used as a

write-variable, i.e. when the sites holding copies of it are acting as receivers

in a transaction ,-f (z). If the failure-free sites among the sites holding

copies of i are a minority, the correct value of y would not be available and

there would be no point in trying to ensure that these failure-free sites arrive

at the same value of the read-variable z (or f (z) if the transmitters do the

computation of f (z)). Hence it is reasonable to use the following scheme

specification:

5 SSA GBGA must be reached in 1R1 whenever F(R )-r.

SS A achieves the extreme of absolutely no error propagation in the following

sense. Consider a chain of update interaction pairs: ( ... Zi-zt*-Zj-xt.....)

[i.e. ;i is updated with z, as read-variable, ; is updated with z as read-

variable in turn, etc.]. Suppose the malfunctioning sites among those sites

which hold copies of z1 constitute a majority. As a result of the particular

scheme specification used here. z will not get contaminated by the update

interaction z1 -zj. Hence, as long as the sites holding copies of any item Zt

have a failure-free majority, z1 will be correct, since it cannot be contam-

inated by error-propagation.

SS A can be implemented by the following algorithm:

Alg"

(1) Each member of )R1 samples each member of 17'1 and computes the

-
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majority of the I T values received.

(2) Each member of JRJ broadcasts the value obtained in step (1) to all the

sites in IRI using a BGA algorithm with a bound r on the number of malfunc-

* tioning sites in 1R1.

(3) Each member of JR computes the median of the I RI values received in

step (2).

Note that the median of a set of values coincides with the majority value, if

one exists, and is unique for a given set of values. Thus if each receiver

receives the same set of values (which may not have a majority value), or if

all receivers receive sets of values having a common majority value, then

computing the median as the final value ensures unanimity.

As mentioned in Section 3.5 BGA has two variants. When authentication

is not available, step (2) can be executed only if IRI is at least 3r+1. Only

2r+1 copies of a piece of information are required to preserve its availability

in the presence of upto r malfunctioning sites. Hence there must be r extra

sites among the receivers, which need not have physical copies of the infor-

1 rnation, but which take part in the algorithm described above (in Fig. 3.3(a),

they are shown as having "phantom" copies). At the end, the sites with physi-

cal copies update them to the median value computed in step 3. "JRI" in the

scheme specification must be taken to mean these 3r+1 sites out of which

only 2r + 1 actually have copies of the information and take part in transmit-

Ling it when it is used as read-variable in some update transaction. As shown

in Fig. 3.3(b), no phantom copies are required when authentication is avail-

able.

For both variants, r+2 phases of comrnunication are required. Hence

this scheme specification would be prohibitively expensive in the amount of

". ., .-. .. .- .. ... . .. . . . .... . .
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1 2 ... 2r+l 2r+2... .. 3r+l 1 2 .. *,,*2r-l

phantom copies

WITHOUT AUTHENTICATION WITH AUTHENTICATION

(a) (b)

FIG. 3.3. EFFECT OF USE OF AUTHENTICATION FACILITY ON RECEIVER

SET CONFIGURATION IN SCHEME SPECIFICATION A.
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communication required and the time taken to process an update. Thus, it is

feasible to use it only if updates are very rare and the need to protect the

information is critical. -

V. Below we present another scheme to remedy the drawbacks of SS A

&G6.3.2. Scheme Specification B

SS H. as in SS A except that when ITI IRt. majority voting on the

values sent out by the transmitters is used by every member of JRJ to get

the value of the read-variable.

Conceptually, the global information can be divided into domains

depending on the degree of replication, e.g. a 1-copy domain, a 3-copy

domain, a 5-copy domainetc (Fig. 3.4). SS B has the property that contami-

nation can spread within a given domain and into lower-order domains but

not into higher-order domains. By properly allocating the global information

to the domains, the number of updates which require GBGA protocols can be

reduced and thus the number of updates incurring the high communication

costs and processing time typical of SS A. A critical piece of information

should be placed in a higher-order domain so that it is less likely to become

unavailable as a result of a majority of the sites that hold copies of it mal-

functioning. By the same argument, a less critical piece of information

should be placed in a lower-order domain. Thus it is more likely to become

unavailable. However, it is prevented from contaminating the more critical

information by the protocol which governs such interactions.

For example, in a banking application, all information relating to

accounts larger than or equal to a dollars could be placed in the 3-copy

domain, and information relating to accounts smaller than a dollars could be

placed in the I-copy domain. Most transactions would be limited to a single
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domain. A funds transfer from an account in the 1-copy domain to another

in the 3-copy domain would cause the GBGA protocol to be invoked in updat- .%N..

ing the latter.

.7. Intermediate Cost Protocols

3.7.1. Motivation

Consider the following MTS:

M 1: F(J T )!t with all failure-free transmitters having the same value.

Reaching GBGA under M I can be done simply and inexpensively by hay-

ing each receiver take the median of the values of all the transmitters. But

consider the update chain ...z.%-zj -zj,-zk -z. If for any of the variables.

the number of malfunctioning replicas is a majority, error can propagate

backwards along the chain. This MTS is used in SIFT [WEN 78].

Consider next the following MTS:
:" eM: F(JRJ)i . :.

This is the MTS used in SS A. Although reaching GBGA under M2 is

expensive as mentioned in Section 3.6.3.1, there is no error propagation.

Now consider the MTS:

M3: F(J TJ U|RJ) r, with all failure-free transmitters having the same value.

It will be shown below that to reach GBGA for this MTS. it requires an algo-

rithm whose costs are a function of the difference in the degree of replica-

tion of the read and write-variables decreasing as the difference decreases.

This is an appealing property, for as we noted in Section 3.2, the degree of

replication is a measure of the probability of the information becoming una-

vailable because a majority of the sites holding copies of it are malfunction-

ing. One would like to be more careful (at the expense of higher incurred

: " % . , '. %. . ,."..." .............. ,."-,.,. .- ,., .. . . .•. ... .. •,' , . .... .,..., .. ,................. ... •.... ,......... ,. .... ... , . . .
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costs) in interacting with information that is more likely to be incorrect.

This '..TS facilitates this. However, it permits error-propagation because of

the following reason. Considering any update in the chain mentioned above. i
if the bounds specified on the number of malfunctioning transmitters and

receivers is exceeded. CBCA may not be reached among the copies of the

variable updated. Then, considering the preceding update in the chain, the

condition in the WTS specifying that all failure-free transmitters should have

the same value is not satisfied. Hence CBGA may not be reached for this

update, even though the bound on the number of malfuiictioning

transmitters and receivers for this update is satisfied. In this way error can

propagate backwards along the chain. Therefore, at appropriate points on

the chain, an M~TS which prevents error propagation e.g. M2. should be used,

and between these points MTSs such as M I and M3 could be used.

S In Section 3.7.2. the minimum total number of sites required to reach

GBGA without authentication under M~TS M3 is determined. In Sections 3.7.3

and Sections 3.7.4. algorithms for reaching GBGA without and with authenti-

* cation under this lMTS are developed.

S. 7.2. Mi ni m um Number of Sites for GBGA under HTS M3

Consider the following situation. A network has N sites of which a set

- ITI. I T I =2t + I N has a value to transmit to the rest of the sites in the net-

work which are the receivers. It is assumed that all failure-free transmitters

have the same value. The number of malfunctioning sites in the network i£m.

The problem is to find the minimum value of N. N.. such that GBGA can be

(% reached among the receivers. If tim or there is only one receiver, then a

simple majority vote solves the problem. Hence, from now on we only con-

cern ourselves with the case where <m and there is more than one

ifth oud seifedo tenubr f afucioig rasites n
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receiver.

It is clear that Ng,!g 3m+1, for if N > 3m +1, each transmitter can

send its value to all the sites in the network using a BGA algorithm

parameterized for a bound of n malfunctioning sites. Then each receiver

can take the median of the 2t 1 values received to be the value of the

transmitters and GBGA will be reached. [ Note however that the costs of

reaching GBGA with this procedure are not a function of the difference in the

* . number of transmitters and the number of receivers. Algorithms which do

have this property will be presented in Sections 3.7.3. and 3.7.4.]

We show that the above bound is tight. i.e. Nd. = 3m +1. For this pur-

pose, we use the concept of scenarios introduced in [PEA 50]. Our proof is a

non-trivial extension of the proof given in [PEA 80] to establish that at least

- 3m +1 sites are required to reach BGA in a network with at most n malfunc-

tioning sites, if authentication is not used.

Let |Pj be the set of sites in the network, and define a scenario S as a

mapping from the set of non-empty strings W ovei- |PJ and ending with a

transmitter, to V. the set of values. For a given r in |R1, define the r-

scenario S, corresponding to a scenario S as a restriction of the mapping S

to strings in W beginning with r.

Let |XJ be a set of sites in the network which are failure-free. A scenario

S is consistent with |XJ, if for each Ve|X ,p1Pj., wutW. S(pu)=S(gU). Le.

each site in JXI always relays values it receives correctly.

For each r in JR1 = |Pj-T1. let F, be a mapping that takes a r-

scenario S, and returns a value in V. which is the value of the transmitters

arrived at by r finally. In order for |FIf vi to provide GBGA for each

scenario S consistent with some set of sites X1, IX N-m, we must have

F' -•
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(Al) if a majority of transmitters are failure-free and have a value vs~.

Fr(S,)=vi for all relRjfliXj

(A2) for p.q rJR I l)XJ, F,(S,)=F(Sq).

Suppose N!93v and if possible let 1F,.IriJRJ provide GBGA. Divide JR

into three sets A.B. C each having at most m sites. with A having a majority

of transmitters. B having the remaining transnmitters, and both B and C hav-

ing at least one receiver( Fig. 3.5 ). This division is possible since t <M and

there are at least .two receivers. Let v~ and v' be two distinct values in V.

Define the scenarios SI.S2.S3 consistent with AUB.AUC.BUC as shown -

below. In the following specifications. at and bs represent any transmitter in

A and B respectively. a.b.c represent any sites in A.B.C respectively and w

represents any string in W.

Si1:

=Sl(abs) =Si(bbj) Sl(cbj) v i.

Sl(aaw) = Sl(zw) Sl(a~bw) = Sl~bw)

Si~baw) = Si(aw) Sl(bbw) = SI(bw)

Si(caw) =Sl(crw) S1(cbw) =Sl(bw)

S1(ecW) =S1(cz)

S1(aLcw) =S1(cuw)

SI(bcw) =S3(cw)

S2:

S2(aan) = S2(bck) = S2(cag) = Vt

S2(a~bs) = S2(bbl) = S2(cbs) = v

I.v
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S2(a~w) =S2(aw) SZ(abw) =S2(bu)

S2(bmw) =S2(aw) S2(bbw) =S2(bw)

S2(caw) =S2(aw) S2(cbw) =S3(bw)

S2(aciw) = S2(cw)

52(bcw) =S2(cw)

S2(ccis) =S2(cw)

S3:

S3(aat) =S3(baj) v S3(ca) =*

S3(abs) =S3(bbj) =S3(cbj) v.

S3(aaw) =S3(aw) S3(bws) =S3(bw)

S3(baw) =Sl(aw) S3(bbw) =S3(biv)

S3(caw) =S2(aw) S3(cbw) =S3(bw)

S3(acw) =S3(cw)

* S3(bcw) =S3(cua)

S3(ccw) =S3(cw)

Next we show that

E:(i) S3(buw) S1(bw)

(ii) S3(ew) = S2(cw)

E is true when w is of length 1. This follows directly from the fact that

Ws is then either as or bi and from the scenario specifications.

Assume E true for ILu 1!9. Let Ut be a string in W of length 1.

(a)Frorn the scenario specifications, we have

S3(bawg) = SI(mL'4) and

tlbu)=S~w)
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Therefore

S3(bawl) =Sl(nzwj).

(b)rom the scenario specifications, we have

S3(bbwj) = S3(bw1 ) and

Sl(bbw4 ) = Sl(but).

By our inductive assumption,

S3(bwj) =Sl(bwj).

Therefore

S3(bbwl) =Sl(bbwj).

(c)From the scenario specifications. we have

S3(bcws) =S3(cut) and

SI(bcw1 ) =S3(cu%).

Therefore

S3(bcw1 ) =Sl(bcwj).

From the above it follows that S 3(bw) S 1 (bw) for 1w 1!91 1. Similarly

S3(cw) = S 2(cw) for w 1!91 + 1.

Thus E is true for w 1!9L+ 1, and therefore for all jw

Let 6, and Cr be receivers in R and C respectively. Then S3, Si.,

and S3,, SZ.,.

By Al.

Fk(S3.,,) =Fb,(S16,) =v and

FI =k =,(2, V/.

By A2.

Fk(S36,) Fr(3,=

implying tv v. This contradicts our earlier assumption. Hence Ng,=3m + 1.

IL ?
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3.7.3. Implementing GBGA under MTS M3 without Authentication

The previous section shows that if GBGA is to be reached without using

authentication under the MTS

M3:F(j TJ LIRJ) r with all transmitters having the same value.

then. if t <r (where I T I=2t+1 ). a minimum of 3r + 1 sites is required. The

updated variable is replicated at 2r + 1 sites. Hence a number of "phantom" . -

receivers equal to rnz(O,(r+1)+(2t+1)-(3r+1)) = max(0,2t+1-'r) will be --

required. JRN is then the set of receivers &j which replicate thLq updated

variable plus the set of phantom receivers JR. However, the procedure

given in the previous section for reaching GBGA using this configuration

requires r+l phases ( and hence, as mentioned there, its costs are not a

function of r-t ).

As mentioned in Section 3.7.1. it is possible to construct GBCA algo-

,.rithms for MTS M3 using fewer phases. This is done by using BGA algorithms

in a different manner from that in the previous section. For the reasons

mentioned in Section 3.5, we choose the BGA algcrithm BG1 described in

[PEA BO.LAM BO,DOL 81.DOL 82a) as the kernel of the GBGA algorithm

described below.

Consider a network consisting of a transmitter T and a set of receivers

IRi with IR I 3m. It is required to have the receivers reach BGA on the

value of T as long as the total number of malfunctioning sites in the network

-mn. The algorithm BGI is as follows:

Algorithm BGI( JR1, m

(1) The transmitter T sends its value to every receiver in R1."

(2) If n>0 then

(a) for every refR?, let v4. be the value receiver r has obtained in step I.

-
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Receiver r acts as the transmitter in the algorithm BGI( IRI-r. m-1 ) to

send the value v, to every other receiver in IRI'-r.

(b) for every r'tIRI and each r,07' in IRj. let v4(r) be the value receiver r'

receives from receiver r in step 2a. If no value is received, set ,(r) to 0.

Let va(r') be the value receiver r' has received from transmitter T in step

1. Receiver r' determines the value cf the transmitter as

vnedianj ,,(z)lztjRBj.

Now, we show how to use algorithm BG1 to implement GBGA under MTS M3

with fewer phases than r+1.

Consider a network with T TI=2t + 1 transmitters, with all failure-free

transmitters having the same value, and with at most r (r>t) malfunctioning

site3 in the network. Let the remaining sites in the network |R1 be of

number IRZ!3r-t.

S Algorithm GBG1:

(1) Each transmitter in |T7 sends its value to a designated subset of

receivers R,1. , I =2r + 1! RI

(2) Each receiver r, in |J~R computes the median of the (2t+1) values

received in step 1 to obtain v, .

(3) Each receiver r, in ER,. broadcasts its value v,, to every other receiver

using BG1(1R[-,r-t-1).

(4) Let JXr be the set of 2r values received in step 3 and the single value

computed in step 2 by the receiver r in |R1. It computes the value of the

transmitters as adian IX, I.

[hm 3.1: Algorithm GBG1 provides CBGA under MTS M3 in r-t +1 phases.

Proof: Steps I and 2 together involve one phase of communication. Steps 3

m m
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and 4 involve (r-t-1)+1 or (r-t) phases. Hence GBC1 involves r-t+1

phases in all.

Case 1: A majority of failure-tree transmitters does rnot exist. Then GBGA i.
requires each failure-free receiver to arrive at the same final value. Since

there are at least t + 1 malfunctioning transmitters. there are at most r-t -1

malfunctioning receivers. From the correctness of BG1, it follows that every

failure-free receiver r has the same set of values Xr] in step 4 and hence

unanimity is reached.

Case 2: A majority of failure-free transmitters exists and v is their common

value. Then CBGA requires each failure-free receiver to arrive at the final

value of v. Let ICRI be the set of failure-free receivers in JR|. 1 CR, ;r+1

since Rr]=2r+I and there are at most r malfunctioning sites in the net-

work.

Each site cr, in CCR 7, computes the value v in step 2. We claim that v-

will be the value received from cri by every failure-free receiver in step 3.

Then the final value computed in step 4 will be v.

The proof of our claim is based on a lemma given in [DOL Ba] for the

BGA algorithm BE. This lemma states that, in a network with a single

transmitter 7, a set of receivers JR'1 with at most m malfunctioning sites,

BG1( JR'J. z ) provides BGA if the transmitter is failure-free and IR't2mn+z.

In step 3 of GB1, as executed by er7 , we have or, as a failure-free

transmitter, executing BG with z =r -t -1. The set of receivers it is transmit-

ting to, has cardinality 3r -t -1=2r +(r -t -1). Hence our claim is proved.

For completeness, we give below the proof of the above-mentioned

lemma. Consider a network consisting of a failure-free transmitter " with a

value v. and a set of receivers )R'J. j R' 2m +z with at most n malfunction-
-_

." ,r
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ing sites. To prove that BGI( 'l, z ) produces BGA, we use induction on the

value of x. If z=0, the final value arrived at by each failure-free receiver is

the value received in step I of BCI from the transmitter, namely v'. Hence

Ps BGA is reached for z =0.

Assume the lemma holds for z =k ( O). Consider z- k + 1. In step 1, each

failure-free receiver." receives the value i'. In step 2a, it applies the algo-

rithm BGi( IR'-r', k ) to send the value v' to all the receivers in the set

Rj-r' which contains at least 2m+k sites, and hence the induction

hypothesis implies that every other failure-free receiver obtains from r' the

value v'. The set JR'j contains at least 2m +k+I sites. Since k;O. and there

are at most m malfunctioning sites in JR*J. every failure-free receiver com-

putes a final value v in step 2b. This proves the lemma.

Using the algorithm GBG1, we can implement GBGA with MTS M3 in T-t +I

phases and with (3r-f)-(2r +1) = r-t-1 phantom receivers. Thus, this algo-

* rithm reduces the communication overhead and number of phases to a func-

tion of the difference in the degrees of (physical) replication of the read-

and write-variables. As mentioned in Section 3.7.1.. this is a desirable pro-

perty.

3.7.4. Implementing GBGA under kM M3 using authenUcaton

A similar reduction in the number of phases can be realized in con-

structing an algorithm for reaching GBGA under MTS M3 using authentica-

tion. The use of authentication sharply reduces the number of messages ","

needed. Our algorithm uses as its kernel a BGA algorithm BG2 suggested in .

[DOL 82c] that uses authentication.

. .. . ., ... . . . - -.-. -.- -
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Consider a network consisting of a transmitter T and a set of receivers

JR1 which has at most m malfunctioning sites.

Algorithm BG2:

(1) The transmitter T signs and sends its value to all receivers.

(2) Each receiver waits for the receipt of messages. If during phase k, a

receiver receives a message containing value v and signed by k distinct sites

( beginning with the transmitter ), then the receiver inserts V in its list of

received values if not already in it and if the list does not already contain two

values. If the value v gets inserted, and k<mi+l then the receiver signs the

message and sends it to all receivers, whose signatures are not in the mes-

sage, in phase k+1.

(3) After phase mL+1. if a receiver has exactly one member in its list of

received values, then that is chosen as the final value, otherwise it agrees on

a default value. %

This algorithm requires 0(N 2 ) messages, where N is the total number of

receivers.

We use BG2 to construct an algorithm GBG2 providing GBGA under MTS

M3. Consider a network consisting of a set of transmitters IT1. I TI =2 +I

and a set of receivers JR1. IRI=2r+l. t<r, F(jTJUR?) r. and all the

failure-free transmitters have the same value.

Algorithm GBG2:

(1) Each transmitter sends its value to all receivers.

(2) Each receiver computes the median of the 2t + I values received.

(3) Each receiver acts as transmitter of the value computed in step 2 to all

other receivers using algorithm BG2 parameterized for a maximum of r-f-I

L * 2
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malfunctioning receivers.

(4) Each receiver computes the median of the 2r values arrived at in step 3i.9.
and the value computed in step 2. This median is the final value agreed on.

Thin. 3.2: Algorithm GBG2 provides GBGA under MTS M3 in r-t +1 phases.

Proof: Steps 1 and 2 contribute one phase and steps 3 and 4 contribute r-t

phases. Hence a total of r-t + 1 phases is required.

Case 1: A majority of malfunctioning transmitters exists. Therefore there

are at most r-t- malfunctioning receivers. Hence, by the correctness of

BG2, each failure-free receiver has the same set of 2r+l values whose
median it computes in step 4. Therefore, all failure-free receivers unani-

mously agree on some value.

Case 2: A majority of failure-free transmitters exists and they have the com-

mon value v. In step 2, each failure-free receiver r computes the value v.

and in the first phase of step 3. sends this value, signed, to all other

receivers. Moreover, since this is the only value it signs as transmitter in

step 3, each failure-free receiver will agree on v as the value transmitted by

r in step 3. Since a majority of receivers is failure-free, each receiver will

compute v as the final value in step 4.

For this algorithm again, the communication overhead and the number

of phases is a function of the difference in the degrees of replication of the

read- and write- variables.

) *'.' . - , .-. "."" -. .".. . .... .- . .. . . • . •. • -
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S. Conclusion

In this chapter. we introduced the correctness aspect of the availability

attribute of global information. Correctness becomes important when toler-

ance to malfunctioning sites is required. We advanced some theoretical con-

siderations for dealing with this mode of failure. It is clear from the above

discussion that the GBGA can be used in a flexible manner to obtain the . -

required degree of tolerance of malfunctions. GBGA protocols can also be

mixed with cheaper protocols which provide a lower degree of tolerance in

such a way that meaningful guarantees can be given as to the correctness of

the global information.

It is evident that malfunctions are expensive to cope with. But the mal-

function as a model of failure is appealing since it represents the worst kind

of faulty behavior a site can exhibit. It would require very complex reasoning

M to show the probability of hardware or software failures which could result in

a site malfunction to be small enough to ignore. Further even if such reason-

ing could be provided, a site could be taken over by a malicious agent. For

these reasons, we believe that techniques must be developed to deal with

malfunctions. One possible approach around the difficulty of the high costs

of such techniques is to attempt to use them sparingly and selectively and we

have explored this approach in this chapter.

In our approach, the information is selectively replicated to different

degrees, depending on its criticality. If. in spite of this replication, the

correct value of some of this information becomes unavailable due to the

malfunctioning of a number of sites, we try to prevent updates from pro-

* pagating error to information whose correct value is still available. A combi-

nation of an acceptability-checking step in which assertions are used to weed

lI
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out wrong values of the read-variable, and a unanimity-reaching step (whose

requirements are formalized in the CBGA ) which provides consensus on the

value of the read-variable, is used for this purpose. We presented a variety of

protocols which achieve GBGA for different kinds of bounds on the number of

malfunctioning sites. These protocols differ in the amount of malfunction-

tolerance they provide and in their associated costs, and thus allow the

designer to make appropriate tradeoffs.

--
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+',, DEADLOCK DETECTION IN DISTRIBUTED DATABASE SYSTEMS

4.1. Introduction

In this chapter. we present centralized and distributed algorithms for

deadlock detection in distributed database systems. These algorithms use a

clock facility to ensure that deadlocks indicated really exist and that no

existing deadlocks go undetected.

In Section 4.2, the various approaches available for deadlock handling

are discussed. In Section 4.3, race conditions that complicate deadlock

detection in distributed systems are discussed. Section 4.4 introduces ter- ""

minology and lists some assumptions. In Sections 4.5 and 4.8. centralized

and distributed schemes for deadlock detection are presented, along with

past work in the area.

4.2. Approaches to Deadlock Handling

Deadlock may be described as a situation of mutual wait among a set of

blocked processes, each of which is waiting to acquire one or more resources

held by other processes in the set. The easiest approach to deal with

deadlock is to use timeouts to abort any process that has been waiting too

long ( or to abort the process that has been causing another to wait too

long). Though this approach is feasible for lightly loaded systems in which

contention is rare, it runs into difficulties in congested situations. At such

times. timers will run out often causing mahy processes to be aborted, and

prolonging the congestion [CRA 78]. Other deficiencies of this approach are

141
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c clic restart or livelock [ISL 80], and wastage of resources arising from

aborted computations.

Three approaches have been developed to deal with the deadlock prob-

lern: prevention, mtoidance and detection.

In deadlock prevention techniques, the requests for resources are con-

strained to occur in particular ways so that deadlocks never occur. Such

techniques include requesting all resources needed by the process at once,

imposing a total ordering on the resources and requesting needed resources

in this order, the WOUND-WAIT and WAIT-DIE algorithms of [ROS 77]. These

techniques restrict the amount of concurrency as a result of the constraints

they impose. Further, the first two approaches are not appropriate for data- ".

base systems, since it is not always possible to predict ahead of time which

resources will be needed by a process.

Deadlock avoidance techniques permit the granting of a requested

resource only if to do so would still allow all processes at least one way to

complete execution. Habermann's algorithm [HAB 66) is the best-known

1 deadlock avoidance scheme. Since a worst case scenario for future requests

is assumed in determining if a resource grant is safe, concurrency is still

restricted. The deficiency of having to know ahead of time which resources

are going to be required is also present in avoidance schemes. Further, in a

distributed system, the computation of whether a resource grant is safe or

not, requires knowledge of the states of the various processes at the various

. sites in the system. Hence It is difficult to do resource allocation in an

efficient yet decentralized manner.

Deadlock detection techniques allow a maximum of concurrency by

granting resources whenever they are available. At appropriate times, the

. .. F ,- . U
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status of resources and processes in the system is examined to see if a

deadlock exists. In order to do so, this status is maintained in the form of a

graph in which the nodes represent processes and resources, the process-

to-resource arcs represent outstanding requests and the resource-to-process

arcs represent possession of resources by processes. The necessary and

sufficient conditions for deadlock in systems containing reusable resources.

e.g.. files, memory. etc. and/or consunable resources, e.g.. messages, have

been developed in [HOL 72]. In the case of distributed databases, under the

assumption that all resources are one-of-a-kind and that a process must wait

till all resources it has requested have been granted before it can proceed.

the necessary and sufficient condition is the existence of a cycle in the

process-resource graph.

Deadlock detection in a distributed system may be done in a central-

ized, hierarchical or distributed manner. In centralized detection, a single

site is designated as the deadlock detector. It collects the status of

processes and resources in the system and checks for deadlocks in the

assembled graph. ( Detection of deadlocks confined to one site may be done

locally. ) The disadvantage of this method is its vulnerability to failure of the

deadlock-detecting site. Also, if the network is large, the load imposed on

the deadlock-detecting site may be too large.

Both of the above problems are ameliorated in the hierarchical method.

Here, the sites are partitioned into a hierarchy of clusters, with each cluster

having a deadlock detector site. A deadlock confined to sites within a cluster '

is detected by the local deadlock detector; a deadlock spanning multiple

clusters is detected by the deadlock detector in the lowest cluster which is a

parent of all the clusters involved. Here, as in the centralized case, detec-

, f A
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tion of a deadlock may be delayed by the failure of sites other than the

deadlocked sites. There is also the problem of choosing the clusters

"S appropriately in order that most of the deadlock computation may be done

at the local cluster level instead of having to refer to higher levels in the

hierarchy.

In the distributed scheme, the deadlock detecting facility is distributed

equally among all the sites in the network. In general, distributed schemes

involve more communication overhead than the centralized schemes. This

happens because in distributed schemes graph traversals initiated at

7 different points in the process-resource graph in order to check for

deadlocks, go over the same portions of the graph. This repetition is to some

extent unavoidable in a distributed algorithm. The advantages of distribution

are that the detection of a deadlock involves only the sites involved in the

deadlock. Hence. the vulnerability to failures of the designated deadlock

detecting sites which characterizes the centralized and hierarchical schemes

is not present here.

Sn 4.3. Race Conditions in Deadlock Detection

In a single computer system, the deadlock detector can stop all activity

in the computer, while it examines the necessary tables, queues, etc., to con-

struct the process-resource graph. In the case of a distributed system, it is

not feasible to stop the entire system in order to take a similar snapshot of

the processes and resources in the system and the messages that may be in

transit. Therefore the status of the processes and resources at each site

must be recorded asynchronously and the global status computed in a con-

sstent manner from these recordings. A Complicating factor here is that

messages may take arbitrary periods of time to reach their destinations.

p-)
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As an illustration of the problems involved, consider two sites SI and S2

of a network in which a third site DD acts as a centralized deadlock detector.

Suppose process P1 and resource RI reside at site Si and process P2 and

resource R2 reside at site S2 ( Fig. 4.1 ). Initially P1 and P2 request and

acquire resources RI and R2 respectively. Next P2 sends a message to Si

requesting resource RI, and gets blocked. At this point the resource con-

troller at site SI reports to DD indicating P1 to be in possession of R1. and

P2 to be in wait for it.

Next. P1 releases RI and requests R2. The corresponding request mes-

sage, arriving at S2. causes P2 to get blocked. The resource controller at

S2 now reports to DD indicating P2 to be in possession of R2 and P1 to be

waiting for it. On putting these two reports together. DD detects a cyclic

wait P2-.R1-Pi-.R2-,P2 and may detect a deadlock unless its algorithm

takes other steps to verify that a cycle really exists. In this case the cycle

does not exist, since PI is no longer in possession of Ri.

Another danger is that a deadlock detection algorithm may fail to detect

a deadlock that really exists. Typically this happens when an algorithm fails

to take into account that messages may arrive after indefinite delays. As a

result, all the deadlock computations that arise as a result of a sequence of

events causing a deadlock. may operate on incomplete information, and thus

the deadlock goes undetected.

4.4. Terminology and Amumptions

The database is accessed and updated through trwisactions. A transac-

tion consists of one or more processes, called agents. An agent may request

to acquire either of two kinds of resources: reusable resources (which will be

referred to simply as resources from now on ) and consumable restu.Lrces (
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which will be referred to as messages from now on). Messages are used by

agents of a transaction to co-ordinate their work. In the case of resources, it

40 is assumed that any agents currently in possession of a resource must all

relinquish it before any of the agents currently waiting for the resource can

gain possession of it. This assumption is necessary to make existence of a

cycle a sufficient condition for deadlock.

A transaction agent may be in one of two states: active or waiting. Ini-

tially it is in active state. It may enter uxxiting state if:

(i) it wishes to receive messages from each of a set of agents belonging to the

same transaction. For example, the agent co-ordinatirg the commit pro-

cessing for the transaction may enter wtaiting state and remain there till it

has received prepared-to -comrrmit messages from all other agents of the

transaction.

(ii) it wishes to acquire each of a set of resources (in specific modes (e.g.

shared .ezclusive)).
p

When ao/ the messages or resources have been received. the agent re-

enters active state.

4.5. Centralized Algorithns

Early work in centralized deadlock detection [GRA 78, COL 77] does not

correctly solve the problem of race conditions. The algorithm of [GRA 7B]

works under the assumption of two-phase usage of resources ( explained

below ). However. if this assumption is made, an algorithm which is much

more efficient can be constructed as shown later. Similarly, a timing prob- %

lem in the centralized algorithm of [GOL 77] was shown in [SUN 78].

In [HO 79] two algorithms were proposed to address the problem of race

conditions. The first is a two-phase algorithm in which first one set of reports

r
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is collected from all sites and then another set is collected. Only the infor-

mation common to the two sets of reports is assembled to check for global

deadlocks and it is shown that spurious indications are thereby avoided. In

the second algorithm, each inter-site arc is replicated at both the sites

-. involved and a deadlock is detected after only one set of reports is received.

However, these algorithms require that all sites in the network which

' access the resources as well as the sites controlling the resources should

report to the deadlock detector. Typically. the number of sites controlling

the resources will be much smaller than the number of sites accessing the

resources. For example, in a network running distributed INGRES [STO 79],

the control is done only from the primary sites in the network. In the next

two sections, we show under what conditions we can construct algorithms

which utilize reports from only the resource-controlling sites.

4.5.1. Detection under Conditions of 2-Phase Resource Ussge

By 2-phase usage [ESW 76] of resources, we mean that the execution of a
1

transaction can be divided into two distinct phases: a rorving phase and a

shrinking phase, the latter following the former. In the growing phase.

resources are acquired but not released. In the shri-nking phase, resources

are released but not acquired. The implication is that, under this discipline.

a transaction does not release any resources until after it has acquired all

the resources it needs.

Suppose that only the resource controllers send reports to the deadlock

detector, giving for each resource the list of transactions in possession, and

the list of transactions in wait. The identity of the specific agent of the tran-

saction which is in possession or waiting is not given. Periodically, the

deadlock detector takes the latest report from each controller and
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assembles the reports.

Thin 4.1: Suppose a cycle is found in the transaction-resource graph created

by the above procedure. Then the transactions in the cycle are deadlocked.

Proof: Let the cycle take the form shown in Fig. 4.2.

For each resource node in the graph, the incoming arcs represent tran-

saction agents waiting to acquire the resource and the arcs running out of

the node transactions in possession of the resource. By our earlier assump-

tion that all requested resources must be acquired before the agent making

the request can proceed, none of the arcs representing a wait for the

resource can vanish before all the arcs representing possession of the

resource vanish.

For each transaction node, the incoming arcs represent resources in

possession and the outgoing arcs represent resources the transaction is wait-

ing for. Since each transaction uses resources in a 2-phase manner, no

., incoming arc at a transaction node can vanish before all its outgoing arcs

vanish.

Let z <i indicate that arc V can vanish only after arc z vanishes. Apply-

-. ing the arguments given above to the incoming and outgoing arcs at the

nodes R1. T2,R, 2 ...... TN.RN we get l"<a3<s< .... <aZNe2a<N_<a2N ie.

'aj<aaj. But applying them to the incoming and outgoing arcs at node TI. it

follows that a2N<al. This contradiction implies that no arc in the cycle can

vanish ( unless one of the transactions in the cycle is aborted ). Hence the

cycle represents a genuine deadlock.

&'
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cycle must eventually appear in the deadlock detector's assembled graph.

Thus. we have shown that when resource usage is 2-phase. status reports

need be collected only from the resource-controllers. All algorithms for cen-

tralized detection published hitherto have involved gathering reports from

all sites in the network. Two-phase usage of resources is used in many sys-

temns to satisfy the requirement of serialzbility~ of transaction execution

histories [ESW 76). Therefore the detection procedure described above can

be utilized in these systems e.g. distributed INGRES.

4.5.2. Detection under Condtions of non-2-phase Resurwce Usage

In some database systems, resource usage is not constrained to be

b necessarily 2-phase. For example, System R [AST 76) allows three different

degrees of data consistency from which the user may specify one for his

transaction. The highest degree of consistency is the one corresponding to

2-phase resource usage. The advantage of using lower degrees of consistency

is less lock contention.

When the resource usage is not necessarily 2-phase, the possibility of

false indication of deadlock in situations such as the one illustratad in Fig.

4.1. arises. For the most general case, where the agents of a transaction

may execute in parallel, an algorithm such as those described in [HO 79,

GRA 76), in which all mites in the network have to mend status reports to the

deadlock detector, is necessary. However, there is one transaction model in

which intra-transaction concurrency is not present. This is the "migrating"

transaction model [ROS 7?, GRA 81]. used in System R% the distributed ver-

aion of System R Here, a transaction starts at one site and moves from site

rq
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to site as necessary to access remote resources. At every site visited by the

transaction, there is a single agent that does the work at that site on behalf

of that transaction. The agent of the transaction at the site that the transac-

tion is currently visiting is called the front of the transaction. A List of

unreleased resources is carried along by the transaction front and messages

are sent releasing them when the transaction terminates. ( Acquired

resources may be released prior to transaction termination for example if

the highest degree of data consistency is not desired for the transaction. ) It

is assumed that the transaction front does not migrate from a site before it

has acquired the resources it has requested while at that site.

A global clock facility fulfilling Lampson's clock rules [LAM 78a). men-

tioned in Section 2.2.2 of Chapter 2. is assumed to exist. Timestamps are

assigned to resource requests using this facility. Uniqueness of timestamps

is assured by taking the clock reading to include the site id as its less

significant part. These rules imply that

(i) given two requests issued by a transaction front while at a given site. the

timestamp assigned to the later request is greater than that assigned to the

earlier request, and

(ii) if the transaction front migrates from site a to site b. then timestamps

-associated with requests issued at b are greater than those associated with

requests issued by the front when at a.

Each request for a resource sent to a resource controller by a transac-
tion front is accompanied by the timestamp assigned to the request. This

timestarnp is retained by the controller till it is informed about the release

of the resource by the transaction. The resource may be released by the

r front at a site other than the one where it was requested and acquired.

n:
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Further, as mentioned before, the transaction front maintains a list of

resources which it has acquired but not released and the corresponding

request timestamnps. V
6L

From time to time, a site may receive a confir7 wrship message

from the deadlock detector. This message specifies a transaction T. a

reso,-rce R and a tirnestamp t. The site returns a positive acknowledgement

if

(i) the front of the transaction T is currently at the site and

(ii) in the list of unreleased resources maintained by the transaction front,

* the resource R is present with associated timestamp t.

The site returns a negative acknowledgement otherwise.

"-" Periodically, every resource controller sends a report to the deadlock

detector, giving for each resource under its control -

(i) the set of transactions in possession, along with the timestamps of the

corresponding requests and

(ii) the set of transactions waiting, along with the timestarnps of the

Ucorresponding requests.

The deadlock detector executes the following algorithm.

(i) Periodically, it selects the latest report from each resource controller and

assembles the reports.

(h) If one or more cycles is detected in the assembled graph, the following

procedure is executed for each cycle C:

Let C be the sequence of arcs

TO-RO-..1 -R. T -. T(N-1)-R(N-1) TO.

Let t,(i), =....N-1, be the timestamp associated with the arc 7h-.R.

..
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Let t,(i). i=l,...N-1. be the tirnestarnp associated with the arc *1

R(i-l)-7Y and let t,(O) be the tirestaxnp associated with the arc

R(N-i)-. TO.

If for every transaction 7Y. i 0. 1,..N -1. in cycle C. t, (i)-Zti (i) then

(a) to every site ORI(t,(i)).i1.... N-1. send a confrm_9upwwrship

message (7iRi1.~i)[ORIG(t) represents the site at which

tirnestamp t is issued. and can be computed from t itself. ] and to

ORJG(tw,(O)) send a confirm ownership message (TO.R(N-1).tW(0)).

hi (b) if all acknowledgements are positive, declare cycle C to

represent a deadlock.

* Thai 4.2 Every cycle C declared to represent a deadlock represents a true

deadlock.

Proof:The argument is the similar to that for Thin 4.1. namely that for each

node in the cycle, the incoming arc can vanish only after the outgoing arc.

This holds for resource nodes for the same reason as before. It holds for a

transaction node 7Y because

(i) since t.(i)gf.(i). the resource request for the acquired resource

occurred at the same time or before the resource requested by 7Y and

(ii) at a time later than tw(t). the acquired resource has not been released.

since a positive acknowledgement from ORlG(tw(l)) is received.

Therefore C represents a genuine deadlock.

771m 4.1- Every genuine deadlock is detected.

Proof: Let the deadlock be represented by the cycle
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C:TO-.RO-.T1....-.T(N-1)-R(N-1)-.TO with t.(i), tt(i).'=0,1...N-1 being

defined as before. Since the deadlock is genuine, none of its arcs will vanish

until the deadlock is broken. Hence the cycle will be detected by the

deadlock detector. Further, since the resource acquired by 7, i=0...N-1, in

the cycle C must have been requested at the same time or before it requests

R. t.(i)stw(i). Therefore, the deadlock detector will send out

confirm-oumnrship messages to ORJG{(.(i)), i:0....N-1. Since the

deadlock is genuine, the front of transaction 71 will be trapped at the site it

requested R. i.e. ORmG(4w(i)). Hence positive acknowledgements will be

received for all the confirm..pu'nership messages sent out and a deadlock

will be declared.

mSince a cycle is likely to occur only rarely in the assembled graph at the

deadlock detector, the confirm.onmersh* messages will occur only rarely.

Hence, the participation of non-resource-controlling sites will be only rarely

g required for deadlock detection. The lower communication overhead that

this algorithm causes is obtained at the expense of a larger time to detect a

deadlock compared to the one-phase algorithm in [HO 79). The

confirm -owf'teship messages and acknowledgements constitute an extra

phase which increases the detection time by one round-trip delay.

Fig. 4.3.a shows a case where the extra phase is not initiated since

t.(i)>f4(1). Fig. 4.3.b shows a case which does invoke the extra phase.

4.6. Distributed Detection

t. ... -.



156 -

Rl.

63 so

Pi P

65 8

R3 R

I.-7

piP

(b)

FIG. 4i.3. EXAMPLES OF CYCLES WHICH DO NOT, AND DO INITIATE .

CONFIRM-OWNERSHIP MESSAGES RESPECTIVELY

I -



t~ TR

157

4.8.1. Past Work

The first distributed detection algorithms are in [CHA 74. MAH 76]. In ,

both, issued requests for resources are divided into those that are incapable

of causing a global deadlock and those that are capable of doing so. In the

latter case, resource tables from all sites in the network are assembled to

check if a global deadlock exists. Besides causing excessive communication

overhead, both algorithms have been shown in [GOL 77] to fail in detecting

certain kinds of deadlocks. In the "on-line" algorithm of [ISL 78], a .complete

global view of resource status is maintained at each site. This algorithm also
suffers from excessive communication overhead.

[GOL 77] presents a distributed algorithm which is similar to many

subsequently-appearing algorithms [MEN 79, CHA 82, OBE 82, BAD 83]. The

common element in these algorithms is forward traversal of the global

status graph ( i.e. traversal in the direction of the graph arcs ). which may

cause the deadlock computation to migrate from site to site as intersite arcs

are encountered. In [BAD 83]. a request from a transaction is accompanied

by its previous lock history; this hastens detection of ntersite deadlock

cycles of length two. In [OBE 82], an intersite arc is traversed only if the tail

node id is greater han the head node id; this optimization reduces the

number of deadlock detection messages caused by a cycle of arcs by half. In

(MEN 79]. the results of graph traversals are also recorded in the graph in

the form of arcs representing indirect independencies (i.e. a chain of arcs

al-,a2-....-,aN may cause the addition of an arc al-,aN). However, there is

no provision in the algorithm for updating this "condensed" information, and

hence false deadlocks may be detected. It was shown in [CU 80] that the

algorithm also fails to detect some deadlocks. One of the authors of

F% . .
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[MEN 79] proposed a solution, presented in [GLI 0). purporting to remedy

this last deficiency. But in [TSA 82] it was shown that this solution, too. does

not detect all deadlocks.

47-' [TSA 82] proposes a solution which differs from previous solutions in that

it traverses the graph in reverse, Le. it proceeds from one transaction to

another waiting for the first to release some resource. With forward traver-

sal of a chain of arcs, the transactions in the chain yet to be traversed must

release one or more resources before the transactions in the chain already

traversed can leave their wwiting state. But with reverse traversal, this is

not true. Therefore. if a node already encountered is re-encountered in the

backward traversal, the algorithm must verify that the forward path to that

node still exists before declaring a deadlock. In fact, [TSA 82] indicates

deadlock in some cases where they do not exist.

In Fig. 4.4.a, a chain of arcs

R20-.T21-.R21-.T22-.R22.... -. TM i-4R-.T2(i+1) is shown. Suppose the

request of T2i for R2i occurs at to. In the algorithm of [TSA 52]. the wait of

T2i for R2i will be propagated backwards in the form of a "reaching edge".

This, when it reaches the site where T21 resides, creates the "resource

reaching edge" T21-.R2i.

In Fig. 4.4.b, transaction T2(i+1) has released R2i which is now free.

In Fig. 4.4.c, transaction 7k acquires R2i. Let this be at time ti. Then

it requests resource RIO which is the first node in the chain

Rt10- T11-e 11- T12l-...-R l(j -1)- T1l.

Next, in Fig. 4.4.d, TIj requests the resource RZ0 and is blocked. Let

this occur at tg>t 1. The indirect wait of TZI for R2i ( which is, unknown to

the site where T21 resides, not valid any more) is propagated backwards till

,,. ., . . .
....................... ...........
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the resource reaching edge Tr-.R&i is created, forming a cycle. Moreover,

the timestamp that accompanies the reaching edge is t . which will indicate

that some transaction reachable by following arcs forward from Tz

requested R2i after Tr acquired it. Hence, the algorithm declares deadlock.

Thus, although the timestamp mechanism was introduced to prevent spuri-

ous indications of deadlock, a false deadlock is detected here.

It does not appear difficult to correct this error. One solution appears

to be to associate a timestamp of to with every resource reaching edge whose

creation originated with a resource request occurring at to. However, there

is another reason why the algorithms of [TSA 82, OBE 82. CHA 82. BAD 83] are

deficient in comparison with centralized algorithms. In a centralized algo-

rithm, a deadlock can be detected by the detector site one message delay

after the last arc of the deadlock cycle comes into existence. But with the

distributed algorithms just mentioned a delay equal to the time to go around

the cycle is usually required. If all arcs of the cycle come into existence

more or less simultaneously this delay cannot be avoided. But if the last arc

comes into existence an appreciable time after all or most of the other arcs

come into existence, it should be possible to reduce the detection time by

the use of "condensed" information. In the algorithm proposed below, both

forward and backward traversal are used to achieve this goal. Further, a

timestamp mechanism is used to prevent false deadlock indications. In this

algorithm, timestamps have no ordering role to play, but act as unique

identifiers.

4.6.2. A Distributed Detection Algorithm-

%-

rm

6 . . . -
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4.8.2.1. Terminology

In the algorithm proposed below, the information necessary to detect

deadlocks is represented in the form of a transaction-Agent-resource-

message (TRM) graph at each site. In the graph, there are agent, resource

and ressage nodes. The former two types of nodes represent transaction

agents and resources respectively. T.z represents the agent of transaction

T at node z. For each pair of communicating agents T.a and T.b of a tran-

saction T at sites a and b respectively, there can exist two nodes M(T.a,b)

and M(T.b.a), the former representing messages sent by T~a to T.b and the

latter representing messages sent by T.b to Ta. Let TRM(s) be the TRM

graph at site s. Then the nodes in TRM(s) representing (a) transaction

agents residing at site s (b) resources whose lock controllers are at site s

and (c) messages sent to a transaction agent local to site s are said to be

local nodes. Other nodes are non -local.

Fig. 4.5 shows an example involving four sites a,b,c. and d. Local to site

a are the agent nodes T1.a.T2.a; the resource node RI and the message

nodes M(Tl,b,a) and M(T1,c.a). Local to site b are the agent nodes

Tl.b, T6.b, the resource node R2 and the message node M(Tia,b). Local

to site c are the agent nodes T1.c, T3.c, the resource node R3 and the mes-

sage node M(TI,ac). Local to site d are the agent nodes T4.d. T5.d, the

resource nodes R4, R5, R6.

The transaction T1 is a distributed transaction. T1.a does the commit.

co-ordination of the transaction; it also updates R I. As can be seen from the

figure, R1 has been locked by Tl.a. It is not waiting for M(Tl,b,a) since

T .b has already sent the prepwred -to-commit message to TI.a. Ti.b is

supposed to update R2 on which it has obtained a lock. But TI.c. which is

• . .-.

. ".,
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supposed to update R3, has not yet got a lock on it and hence it has not yet

returned a prepared-to-commit message to Tl.a, which is therefore wait-

ing for M(Tl,c.a). T1.a has sent one message each to Tl.b and T1.c ( con-

veying the work they are to do ), hence the arcs from M(T1,a.b) and ..

M(Tl,a,c) to T1.a are marked 2b and 2c respectively , signifying that the

* second message from T1.a to T1.b and the second message from T1.a to

T1.c are in T.a's possession. i.e. have not yet been sent by it. The second

part of the marking refers to the site to which the message is being sent.

Since T1.b has sent one message to T1.a. the arc from M(T1.b.a) to T1.b is

marked 2a. The transaction T2.a is waiting to lock RI.

At site c, T 1.c has not yet sent its prepared -to -commit message to

T1.a, hence the marking la on the arc from M(Tl,c.a) to T1.c. TI.c is

waiting to lock R3, which has been locked by T3.c. T3.c is waiting to lock

R4 whose lock controller is at site d. The number 737 on the corresponding

arc is a timestamp showing the time at which the lock request was made.

At site d. T4.d has locked R4 and is waiting for a lock on R5 which has

been locked by T5.d. T5.d in turn is waiting to lock R6 which has been

locked by the T6.6. The marking 600 on the arc from R6 to T6.b is the time

at which the lock was granted.

__ Note that arcs between nodes local to two different sites are reproduced

at both sites, and that they have a marking corresponding to a message

number concatenated with a site id. or a timestamp. This marking is done so

that the graphs at different sites can be put together consistently for graph

traversals. Arcs between nodes local to the same site are not marked and

are called iaernol arcs.
°4.,,
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At any site, arcs running from non-local nodes to local nodes are

referred to as direct incoming rzrcs(DIAs) and the corresponding local

nodes are referred to as in--nodes. Arcs running from local nodes to non-

local nodes are referred as direct outgoing orcs(DOAs) and the correspond-

ing local nodes are referred to as out --nodes. At site a in Fig. 4.5. T1.a is an

in-node and M(7'1,b,rz) and M(Ti~c~a) are out-nodes. The arcs

M(T1.g,b)-*T1.a. and M(Tilcz,c)-T.n are DIAs and the arcs

M(Tl.c.z)-4T1.c and M(Ti.b,uz)-T1.b are DOAs. Note that a DIA at one site

is a DOA at another. and vice versa.

The outgoing arcs defined so far represent direct relationships between

out-nodes at one site and in-nodes at another. In order to speed up deadlock

detection, condensed information in the form of

indirect outgoing arcs(IOAs) are maintained. WOAs represent indirect rela-

tionships between out-nodes at one site and in-nodes at a different or the

same site.

Fig. 4.6 shows Fig.4.5 augmented with WOAs shown in dotted arcs. For

example, the out-node M(Tlsz,b) at site b and the in-node T6.b at the same

site have a sequence of arcs connecting them:

M(T1.a.b)-abT1.ti. T1.a-M(T1.c.cz), M(T1.c.a)- 1 6 T1.c. T1.c -R3,

R3-T3.c. T3c-, 7 R4. R4-.T4.d. T4.d-R5. R5-T5.d, T5.d-R6.

R6-ODT6.b. This connecting sequence of arcs is represented concisely by

the IOA M(T1.rz~b)-.rOT6.b at site b. Each WOA is associated with a DOA.

namely the DOA which is first in the connecting sequence. Thus the IOA

M(T1,a,b)--,00 T6.b is associated with the DOA M(T1.a~b)-,bT1.a.. If T6.b6 -

tries to lock R2 in a mode incompatible with the mode in which Tl.b has

locked it, the arc TB.b -.R2 will be created causing a deadlock to be detected



Rl~~ T24

local node

non-local node o

Tl.b (T4 c I

TI. .



.

166

at site b due to the cycle T1.b-M(Tl,ab)-*eOOT6.b-R2-T1.b. Thus the

deadlock is detected at once instead of having to wait for several message

delays till information from all four nodes is gathered as in. e.g., [OBE B2. 4

If an arc a runs from node x to node y, we refer to z as the head and to

y as the tail of a, respectively. DIAs and DOAs have message numbers con-

catenated with site ids or timestamps associated with them, which are called

the marks of these arcs. The arc --identif ier of a DIA or DOA. d. is the pair of

values (head(d).mark(d)). The lOAs associated with a DOA are stored as arc-

identifiers in the ioas field of the DOA.

The algorithm utilizes timeout periods in such a manner that under

lightly loaded conditions, i.e., when requested locks and messages become

available to the requestor within the specified timeout periods, and acquired

locks are released within specified timeout periods, no checks for the

existence of deadlock cycles or attempts to construct IOAs in order to hasten

" the detection of deadlocks occur. For this reason, with each arc there is an

associated field timed-out taking the values TRUE or FALSE according as

the timeout period for the arc has completed or not. [In some cases, as will

be seen, there will be no need to even start the timeou. so the timed out

field takes the value TRUE as soon as the arc is created.)

, Not only a wait by an agent for a resource or message, but also the

granting of a resource to a message may cause a deadlock [ISL 00). If, how-

ever, the grant causes the transaction agent to enter active state, no

deadlock can occur as a result of such a resouret grant and the algorithm

, can be optimized accordingly.

In the next section, we present the algorithm for deadlock detection as

executed at a site s. In order to distinguish units of communication

• o
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exchanged between between transaction agents and those between resource

controllers for the purpose of resource allocation and deallocation as well as

deadlock detection, we refer to the latter as signals, the former being

referred to, as before, as messages.

There are 5 kinds of signals:

(i) resource request (RR): This signal is sent when a lock on a non-local

resource is requested by a local transaction agent. The signal carries infor-

mation identifying the requesting agent, the name of the resource and the

mode of lock desired, and is accompanied by a timestamp TSR generated at

the requesting site.

(ii)resource grant (RG): This signal is sent in response to a RR signal, to the

m requesting site. In addition to information identifying the RR signal to which

it is a response, it carries a timestamp TSC generated at the site that is

sending the RG signal.

, (iii) resource free (RF): This signal is sent to the resource controller at

another site when a local transaction agent no longer requires a lock on a

remote resource under the control of that resource controller. It carries

information that enables the resource controller to delete the appropriate

DOA and associated lOAs.

(iv) agent create (AC): When a local agent T.s wishes to create an agent at

another site r, this signal is sent to the site r. A full duplex channel is esta-

blished between the two agents.

(v) backward propagafion(BP): This signal is used to establish IOAs to speed

( up deadlock detection. It has two fields: IASET and OASET. The former is U

" i " . .. . , ," . . .. n. u " ' " ." - ' " ' .. . . . . .." '"- " " "
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a set of D]As. with the tail of each DIA being local to the same site r, the site

to which the BP signal is sent. OA._ET is a set of arc-identifiers, correspond-

S ing to a subset of the DOAs at site s and associated lOAs. On receipt of a BP

signal. further BP signals may be sent. The BP signals flow backwards along

the TRM graphs.

(vi) forward propagation (FP): This signal is sent in order to detect possible

multisite deadlocks. Each FP signal may spark off further FP signals at the

recipient site, and these signals are said to belong to the same

g~g deadLock computation. Basically, the FP signals of a deadlock computation

traverse the TRM graphs in the forward direction. A FP signal has five fields:

(a) ORIGIN: This is the id of the site that began the deadlock computa-

tion to which the FP signal belongs.

(b) VICTIM: This is the transaction that is to be aborted if the deadlock

computation finds one or more deadlock cycles.

(c) CHECK_. ET This is a set of DIAs at the ORIGIN site. If the deadlock

computation reaches one or more DOAs or lOAs at some site

corresponding to one or more members of the CHECK_5ET, then the

transaction VICTIM is deadlocked and must be aborted.

(d) TRAVERSED._ET: This is a set of arc-identifiers corresponding to

DIAs along which the deadlock computation has already traveled.

hence no new traversals along these DIAs should be initiated in this

deadlock computation.

(e) OA_5ET: This is a set of arc-identifiers corresponding to DLAs at the

site to which the VP signal is being sent. These DIAs are the arcs along

, which the graph traversal is continued at the recipient site.

F .o.-
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The resource controller algorithm is event-driven. The relevant events

are

(i) timeouts and arrivals of signals

(ii) locally originating requests for (a) obtaining locks on resources and

releasing them. (b) creating agents at other sites and (c) sending to. and

waiting to receive messages from, agents of the same transaction at other

sites.

It is assumed in the following description that when a transaction completes.

the nodes representing its agents and arcs incident at them are deleted. C-

represents the current value of the local clock.

4.6.2.2. Description of A!gorithm.

Below we describe the actions taken by the resource controller on the

occurrence of each event:

Requesting. Granting and Freeing Resources

(1) Agent T.s requests resources Ri. R2. R3.....RN (in specified modes)

(a) If not all requested resources are local, or if not all requested local

resources are available in the required modes, set the status of T.s to

uniting.

(b) For each resource available in the required mode, create the

appropriate internal arc ( indicating resource possession ). with

j timed-out set to TRUE. (COMMENT: A timeout need not be started

for this arc, since if its creation results in a deadlock cycle, it will be

detected when the timeouts for the arcs created in (c), (d) below,

complete.)

--. (c) For each local resource unavailable in the required mode. create

W ".
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the appropriate internal arc ( indicating resource wait ), with

timejdout set to FALSE. Start a timeout of period TI.

(d) For each non-local resource, create the appropriate DOA (indicat-

ing resource wait), with timeaout set to FALSE, mark set to Cb, and

" - ioas set to null. Start a timeout of period T2 and send a RR signal to

the site that controls the resource, with TSR, set to the same value as

the mark field.

(2) A RR signal arrives from T.s', s''is for resource Ri with a timestamp TSR.

(a) If the resource is available in the required mode.

(i) create the appropriate DOA ( indicating resource possession

), with timed out set to FALSE, mark set to CL and ioas set to

null, and start a timeout of period T4.

(ii) send a RG signal to the requesting site, with TSG set to the

same value as the mark field.

... (b) If the resource is unavailable in the required mode, create the

appropriate DIA (indicating resource wait), with timed..out set to

FALSE, mark set to T S"R and start a timeout of period Ti.

3. A RG signal in response to a request from a local agent T.s for a non local

resource R arrives, with timestamp TS'G.

(a) Delete the DOA that represents Ts waiting for R and abort the

associated timeout if timed.out is FALSE.

(b) Create the appropriate DIA ( indicating resource possession ) set-

ting the mark field to TSc. If no outgoing arcs remain at the node

T.s. set its status to active and set timed out on the DIA to TRUE.

Otherwise set the field to FALSE and start a timeout of period T3.

IF. .
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(4). Agent T.s releases resources R1.R2,R3...RM.

(a) For each Ri that is local.

(i) delete the appropriate internal arc ( indicating resource

possession ), aborting the associated timeout if timed_put is

FALSE.

(ii) choose, if possible, a set of transaction agents waiting to

access Ri that can now be given access to it.

(iii) for these agents, delete the appropriate internal arcs or

DIAs (indicating resource wait). aborting associated timeouts

W when the timed out fields are FALSE.

(iv) for each non-local agent, follow the steps given in 2(a)(i)

and 2(a)(ii).

(v) for each local agent granted access to Ri in (ii) above,

create the appropriate internal arc ( indicating resource pos-

session ). If no outgoing arcs remain from the agent node, set

its status to ready and set the timedDid field on the internal

arc to TRUE. Otherwise, set the field to FALSE and start a

timeout of period T3.

(b) For each non-local resource, delete the appropriate DIA, aborting

the associated timeout if timedout is FALSE. Send a RF signal to

the site controlling the resource.

(5) A RF signal, indicating that T.s' has released a resource Ri local to s,

arrives.

(a) Delete the DOA from Ri to T.s', aborting the associated timeout if

L timed_out is FALSE.
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(b) Perform steps 4(a)(ii)-(v).

Agent Creation. Sending and Receiving Messages

(6) T.s requests creation of an agent at site r s.

(a) Create a DIA ( indicating message-possession ) from M(T.s.r) to

-. Ts with mark set to Ir and timed mot set to TRUE.

(b) Create a DOA ( indicating message possession ) from M(T.r.s) to

T.r with mark set to Is and timedput set to TRUE. COMMENT: Note

* - that creation of DIAs and DOAs that indicate message possession do

not create a cycle and hence no timeout need be startedL It is wait-

ing to receive a message that can complete a cycle.

(c) Send a AC signal to site r.

b (7) A AC signal is received is received from site ris for creation of an agent

of transaction 74.

Carry out steps 6(a) and 6(b) with T replacing T.

(8) T.s sends a message to T.rlT.r2.T.r3...T.rK.

For each rj,

(a) increment the message number in the rnark field on the DIA from

M(T.s.rj) to T.s by 1.

(b) send the message to site rj.

-"-"(9)T.s waits for a message from T.rI.T.r2 .... T.rL.

(a) If at least one message is queued for T~s from each of

Tr 1, T.r2... T.rL. then remove the message at the head of each queue

* . . ."... ,
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and supply the messages to Ts.

(b) If at least one of the queues is empty

(i)set the status of T.s to unitirg.

(ii) For each ri such that there are no messages queued from

T.vi to T.s. create an internal arc ( indicating message wait)

from T.s to M(T.ris) with timved put set FALSE and start a

timeout of period T5.

(iii) For each ri such that the queue of messages from T.ri to

Ts is non-empty, remove the message at the head of the queue

and supply it to T.s.

(10) A message from 7.r for r.s is received.

(a) Increment the message number in the mark field on the DOA from

M(7rr,s) to T'.r by 1. Set the ioas field to null.

(b) If there is an arc from 7'.& to M(7T,.rs), delete the arc, abort the

associated timeout if tirmed put is FALSE, and supply the message to

7 .s; otherwise queue the message. If there are no remaining outgoing

arcs from 7f.s set its status to active.

Timeouts. Forward and Backward Propagation -'-

(II) Timeout on an internal arc a completes.

(a) Set the timedout field on the arc to TRUE.

(b) Check for a cycle of internal arcs involving the arc a. If one or

more such cycles exist, abort the transaction involved in the arc and

stop. (Aborting the transaction involves releasing the resources held
,.I

by the agents of the transaction, deletion of the nodes representing

r e.
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the agents, deletion of the arcs incident at these nodes and abortion

of associated timeouts, as necessary).

(c) Traverse the graph forwards from the head of a. along internal

arcs with their timed mot fields TRUE, to find all the DOAs and associ-

ated IOAs that can be reached. Let

ROA(a,.) = U[ROA(av1).ROA(a.v2) .... ROA(a.,p)], be the set of arc-

identifiers corresponding to these DOAs and associated IOAs. where

ROA(a,vi) is the set of arc-identifiers corresponding to DOAs and asso-

ciated JOAs reachable by the above procedure from a whose head

nodes are local to site vi. Let ROA'(a.') be computed in a similar way

to ROA(a.*) with the added restriction that only DOAs with time d ,p-

fields set to TRUE and their associated IOAs are considered.

(d) Traverse the graph backwards from the tail of a, along internal

arcs with their timed out fields TRUE, to find all the DIAs with their

timedout fields also TRUE that can be thus reached. Let

RIA(a.)=U[RIA(a. 1),RIA(a.'w 2) .... RIA(a..q)]. be the set of these

DIAs, where RIA(auj) is the set of DIAs at site s, whose timec out

fields are TRUE, whose tail nodes are local to site wj and from the .-.-.

heads of each of which, a path of internal arcs with tirnwdout fields

set to TRUE, leads to the tail of a.

(e) If one of the members of [tij. say v., is the site s itself, and

ROA(a,v.) contains a member that corresponds to a DIA in RIA(a.),(

then a deadlock exists, hence abort the transaction involved in a and

stop.
"'

If RIA(a,) is non-empty then

L(i) Backward Propagation: if ROA'(a,) is non-empty, then for

*..
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each site wj send a BP signal with ]lAET set to RIA(a,wj) and

OA.ET set to ROA'(a,*);"

(ii) Forward Propagation: if ROA(a,*) is non-empty, then for

* each site vi, send a FP signal with ORIGIN set to s, VICTIM set to %

the transaction associated with the arc a, CHECK_3ET set to

RIA(a,*). TRAVERSED.ET set to ROA(a,0) and Ok.ET set to

ROA(cz,vj).

COMMENT:Suppose a chain of arcs consisting of a DIA d, zero or more

internal arcs and a DOA d., is formed at the site s. This will result in

the sending of a BP signal to the site to which the tail of d, is local. In

order to prevent possible multiple identical BP signals from being sent

when the timeouts on the arcs on this chain complete, the algorithm

is designed so that the last of the arcs on the chain to have its

timedw.put field set TRUE is the only one whose timeout completion

results in a BP signal being sent.

i A similar situation exists in the case of the FP signals. However, the

completion of the timeout on a DOA does not initiate a FP signal (it

would be redundant, since there is a DIA corresponding to the DOA. at

another site, whose timeout completion would trigger FP signals if

necessary ). Hence, here the algorithm calls for an F'P signal to be

sent when the last arc on the chain ezcluding d,. has its timed cut

field set TRUE.

(12) Timeout completes on DIA, o.

(a) Set timed out field of d to TRUE.

(b) Let RIA(.,*)=RA(d.,w) =14 where w is the site to which the tail
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of d, is local. Compute ROA(d,.') and ROA'(d,*) analogously to step

11(c) above, starting the graph traversal from the head of d,.

(c) Perform backward and forward propagation in the same manner as

instep 11(e).

(13) Timeout completes on DOA. d..

(a) Set timed-out on d. to TRUE.

(b) Let ROA'(d,,) (arc-identifier of d) L) (ioas field of d,). Com-

pute RIA(d, .) analogously to step 11(d), starting the backward

o traversal from the tail of d,.

(c) If RIA(d4.0) is non-empty, perform backward propagation in the

manner described in step 11(e)(i).

(14) An PP signal f is received.

(a) From OA_5ET(f). check which members tally with the arc-identifier

of a DIA whose timed out field is set TRUE. Let X= dj be the set of

such DIAs.

(b) For each d, in X determine ROA(d,,) as in step 11(c). If the head

of any member of ROA(dc,') is local to the site ORIGIN(f). and the

member tallies with a member of CHECK..ET(f), a deadlock exists,

hence abort transaction VICTIM(f) and stop. Delete those arc-

identifiers from ROA(d,.*) that tally with a member in

TRAVERSED_5ET(f). Let the remaining set of arc-identifiers be desig-

r. nated XROA(d.*). Let S = 1OA(v1).OA(V 2 ).....OA(vj) be the union of

XROA(d ,O) for all d1 in X. partitioned according to the sites jVjj to

t IL which the heads of the outgoing arcs are local.

(c) For each vj. send an FP signal to site v3 with ORIGIN set to

S...
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ORIGIN(f), CHECKYET set to CHECK..ET(f), TRAVERSED_5ET set to

TRAVERSED_.ET(f) US and OA.ET set to OA(v').

(15) A BP signal b is received.

For each member d of LAFET(b), if a DOA d, exists that tallies with d,

(i) add the members of OA_SET(b) to the ioas field of the DOA,

ignoring those whose head is the same as the tail of the DOA. (This

situation can arise when a cycle exists.)

(ii) if the timed_out field of d. is TRUE. compute RIA(d.,') analo-

gously to step 11(d). performing the backwards graph traversal

from the tail of d. Then. if RIA(d.,*) is non-empty, send BP signals

as in 11(e)(i),with the OA_5ET set to the set of new members in the

ioas field of d..

The timeout periods of T1.T2,T3.T4,T5 are started when an agent is

waiting to acquire a lock on a local resource, an agent is waiting to acquire a

lock on a remote resource, a resource is waiting to be released by a local

agent, a resource is waiting to be released by a remote agent and when an

agent is waiting to receive a message. They should therefore have values

appropriately in excess of the average times required for these respective

events to occur. It is clear that T2-T1 and T4-T3 should be of the order of

a message delay.

4.6.2.3. An Example of Deadlock Processimg

In this section. we give an example to show 'how the algorithm works.

The same conventions are used in Flig. 4.7.a-g as in Figs. 4.5 and 4.6. except

that the value of the tived_ ut field on each arc is also shown (T and F stand
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N. for TRUE and FALSE respectively). Further the flow of BP and FP signals is

also shown. There are 3 sites A, B, C in this example.

Fig. 4.7.a: The transaction agents T1.A, T1.B and T1.C request locks on local

resources RI. R2. R3 respectively and acquire them. Since no outstanding

arcs from the agents remain, no timeouts are started and the timed out

fields are set to TRUE as soon as the arcs are created.

Fig. 4.7.b: The following events have occurred since the situation depicted in

Fig 4.7.a existed.

(i) T2.B and T3.C requested locks on remote resources R3 and RI respec-

tively at times 60,61 respectively. This leads to these agents' status being

set to waitmg and to the creation of DOAs at sites B and C respectively. The

trned ojd field on each of these arcs is set to FALSE and timeouts are

started on both of them. RR signals are sent to C and A respectively.

(ii) The RR signals are received. Since the requested resources are unavail-

able, DIAs are created at sites C and A with their timed out fields set to

p FALSE and timeouts are started on the DIAs.

(iii) TI.A requests creation of an agent TI.B at site B. This leads to the

creation of appropriate message nodes and incident arcs at site A. An AC sig-

nal is sent to site B to create an agent TI.B4.

(iv) On receiving the AC signal, appropriate message nodes and incident arcs

are created at site B.

Fig. 4.7.c: (i) TI.B has requested a lock on R2. Since R2 is unavailable, the

status of TI.B is set to wziting. the timed_out field on the arc from T1.B to

R2 is set to FALSE and a timeout started.

(ii) At site A. T1.A completes its local processing and now waits to receive a

- ... .. . . . . . -. . . . . . .. . . . . . . . .
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message from T1.B. It enters wuaiting status, an are from T1.A to

M(T1,BA) is created, its timed-out field set to FALSE and a timeout is

started.

FRg. 4.7.d:(i) The timeouts on the DIAs T3.C-SIR at site A and T2-B-*@DR3 at

site C complete, and therefore the timedout fields are set to TRUE. Condi-

tions are now satisfied for site C to send an FP signal to site A with its

CHECK_5ET containing the DIA T2.B-*.oR3 and its OA.ET containing the

arc-identifier (R1,61).

(ii) On receipt of this FP signal, site A finds a DIA with its tird eaout field set

to TRUE and its arc-identifier tallying with the arc-identifier in the OA. ET.

However, there is no DOA reachable from this DIA through a path of internal

arcs with their timedi~ut fields TRUE. Hence, this deadlock computation

stops here.

Fig. 4.7.(e) (i) The timeouts on the DOAs T2.B-. 0 R3 at site B and T3.C-61 RI

at site C complete and therefore the timed__jut fields are set to TRUE. A BP

signal is sent by site C with IA_5ET containing the DIA T2.B-OeoR3 and OA_$ET

the arc-identifier (R 1,61).

(ii) On receiving this BP signal, site B finds that the IA_3ET member matches

a DOA and hence the arc-identifier (R1,61) is added to the ioas field of this

DOA. Backward propagation from site B is inhibited since the arc from T1.B

to R2 has not completed its timeout.

Fig 4.7.f (i): The timeout period on the arc from TI.B to R2 completes and

the tined_out field is set to TRUE. The following signals get sent:

-an FP signal fl to site C with ORIGIN set to B, VICTIM set to TI,

.. TRAVERSED_$ET set to j(R3,60),(R1,61)j, OA.SET set to {(R3,60)j and i

......... . L' ; _ =. -.-..-........ '........,.-...-..-.......-...".."..•.......- -i-; ,'- " -
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CHECK_5ET set to JM(T1.B.A)-. A T1.Bj.

-an FP signal f2 to site A the same as above, except that OA..ET is set

to I(R1.61)1.

-a BP signal bl to site A with IA_5ET set to M(TIB,A)- 14 TI.B and

OA.rET set to I(R3.60).(R1,61).

(ii) The FP signal fl reaches site C. The OASET member matches the sole

DIA at C. However, although its sole DOA is reachable by a path of internal

arcs with their timed_umt fields set TRUE from this DIA. its arc-identifier is

included in the TRAVERSED.ET field of f 1. hence no F? signal is generated.

I. (iii) The FP signal f2 reaches site A. Although the O,=ET member matches a

DIA. no DOA is reachable from this DIA through a path of internal arcs with

their timrred out fields set TRUE, and again no IP signal is generated.

If the BP signal bl reaches site A and is processed before the timeout period

on the arc TI.A-oM(TI,BA) completes, then the deadlock will be detected

locally when the latter event occurs. In our example, the BP signal does not

reach site A in time for this to occur.

Fig. 4.7.g: (i) The timeout period on the arc from TI.A to M(TI,B.A) com-

pletes and the timedW..t field is set to TRUE. This leads to two signals being

sent:

- an FP signal 13 to site B with VICTIM set to TI. ORIGIN set to A.

OA 5ET and TRAVERSED..JET set to I(T1.B.1A) and CH ECK.3ET set to
." | ~T 3 C - e IR l 1.

- a BP signal b2 to site C with OAET set to |(T1.BIA)I and IAUET

set to I T3. C-. 1R 1J.

(ii) On receipt of f3. site B finds that the OA..ET member matches its DIA .-

M(TI,B.A)_$AT1.B. From this DIA the DOA T2.B-@0oR3 and its associated

lF':ii
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IOA with arc-identifier (R1.61) can be reached through a path of internal arcs

on which the tind_.ouLt fields are set to TRUE. But the arc-identifier .J.

(R1,81) tallies with the CHECK.3ET member of the FP signal. Hence a

deadlock is declared and transaction T1 aborted.

4.6.2.4. Proofs of Correctness

In this section we show that the algorithm detects all genuine deadlocks

and does not give any indications of deadlock when none exists.

Thim 4.4: Every genuine multisite deadlock is detected by the above algo-

rithm.

Proof: Suppose there is a global deadlock cycle: e(1)-*e(2)-e(3)....-.e(v)

where e(.) is a transaction agent, a resource or message node, with each

node being distinct.

Each dependency is represented as an internal arc or DIA at some site. The

cycle takes the form of a chain of arcs C:

S d(sR).i(s2, 1).i(sR2) ....i( .4 tj....Id,(s.).i (s. ),i (s. A... (s

The arcs enclosed within a pair of curly braces represent a contiguous por-

tion of the cycle contained at one site, with neighboring portions of the cycle

being at a different site. Each such contiguous portion consists of a DIA and

zero or more internal arcs. The head of the last arc is the tail of a DOA that

coincides with the DIA for the next portion of the cycle.

Every transaction agent in C is blocked. Inspection of the algorithm

shows that when an agent in C enters wuailing state; and the arc in C that is

directed away from the agent is created a timeout period is started for the

arc. Hence at least one timeout period is started in connection with the
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creation of an arc in C. Since C represents a deadlock. a timeout started will

not be aborted and will complete

Let a be the arc in C whose timeout is last to complete among all the

timeouts that are started in connection with the creation of arcs in C and let

t be the time this last timeout completes. We claim that all arcs in C will

have their timidalodu fields set TRUE by t. By definition of t, all arcs in C

that have timeouts started on their creation, will have their timeouts cor-

plete and their timedout fields set TRUE by t. But each arc in C that does

not have a timeout started on its creation, occurring at t. and therefore has

its timecdout field set TRUE immediately at t. must, by inspection of the

algorithm, be an internal arc indicating resource possession or a DIA indicat-

ing message possession. The transaction agent at the bead of this arc must %

at a time equal to or greater than t, enter waiting state as a result of

requesting the resource or message to which there is an arc in C from the

agent. A timeout will be started for this arc ( by inspection of the algorithm

) which completes at t2 < t. Since t1 - t2, t < L

Let the arc a be in site s, (without loss of generality). At t. an FP signal

fl will be sent to s 2 with the arc-identifier of d,(sp) in its OA..ET and d1(s 1 ) in

its CHECKJSET (unless the arc-identifier of c 1(s 1 ) is present as an IOA reach-

able from a, in which case the deadlock is detected locally). If on receiving

this signal, sg does not send an FP signal f2 to s 3 with the arc-identifier of

dj(ss) in its OA_§ET and dt(s 1) in its CHECK.3ET. it will be either because

(i) the TRAVERSED.$Tr of fI already contains this arc-identifier, which means

that s, simultaneously with sending fl to se sent an FP signal f ' to s3 with

the arc-identifier of dt(sg) in its OA._ET, or because

(ii) the deadlock cycle is detected at sg. as a result of the presence, as an IOA

5I. _ _ _ __ .
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reachable from d1(s 2 ), of the arc-identifier of d,(s).

In any case, unless the deadlock is detected at s, or s2, site s 3 will receive an

FP signal with the arc-identifier of d(s) in its OA-.SET and dcsj) in its

CHECK_5ET. Proceeding in this manner, we can show that unless the --

deadlock is detected at one of the sites s .... s-I. an FP signal will be

received by sm with dc(sm) in its OA_ET and d,(sI) in its CHECK=3ET. But the

existence of the cycle C means that there is a DOA at sm reachable through a

path of internal arcs with their timewd_ut fields set TRUE and corresponding

to d,(s 1 ). Hence the deadlock will be detected.

'im 4.5r No false indications of multisite deadlock are given by the given

s algorithm.

Proof: Suppose a multisite deadlock is detected at the origin of a deadlock

t. computation, as a result of the presence of an IOA reachable from a DIA.

*which corresponds to the IOA itself. The presence of such an IOA means that

the DIA cannot vanish until after it vanishes, i.e. it will not vanish (except by

transaction aborts). Hence the deadlock is genuine.

Suppose that a deadlock be detected as the result of the following

sequence of FP signals fD ..... f(l-1), originating at sites s. ....... s_-

and sent to sites sj. s2. s 3 ..... si respectively. Receipt of fj (j=O,l2....1-2)

triggers sending of fo+ 1). Let the sending of fj (j=O.I ...... 1-1) occur at time tj.

Consider the set of DIAs in the CHECKET of fO. At tO. so has not sent the

signals that will accompany the deletion of any of these DIAs. Further, it can

do this only after all the arcs corresponding to the arc-identifiers in the

OA.5ET of fO have been deleted at so.
°"' d.°
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At ti. when fO is received at site sn. it is found that one or more entries in

OA..$ET(fO) coincide with DIAs in s,. Unless and until these DIAs are deleted
at s, and the corresponding signals sent to so, it is not possible to delete all

the DOAs in OA.ET(fO). But all these DIAs cannot be deleted before all the

arcs corresponding to the arc-identifiers in OA.ET(fl) are deleted. Thus it is

not possible to delete any of the DIAs in CHECK..W(fO) before all the arcs

corresponding to the arc-identifiers in OA.$ET(fl) are deleted.

Proceeding in this manner, we conclude that none of the DIAs in

CHECKBET(fO) can be deleted before all the arcs corresponding to the arc-

identifiers in OA_5ET(f(l-1)) are deleted.

Since the deadlock is detected at site sm on receipt of f(l-1)) it follows that:

(i) at the time of declaration of deadlock, there are DIAs in s that

coincide with members of OA..$T(f(J-1)).

(ii) from these coincident DIAs. it is possible to reach, at the time of

declaration of deadlock, DOAs or IOAs that are coincident with

members of CHECK.$ET(fO).

Hence, using the same reasoning as above, it follows that these coincident

members of CHECK...ET(fO) cannot be deleted until after they are deleted,

which implies that they cannot be deleted at all ( unless by transaction

aborts). Hence the deadlock indication is correct.

"o... . "
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4.6.2.5. Performance

The proposed algorithm detects multisite deadlocks faster than other

algorithms that have been proposed in the literature. This is because both

forward and backward propagation are used on this algorithm-

In the worst case. when all the wait dependencies in an intersite cycle

form at approximately the same time, the time required to detect the

deadlock is approximately half the time it would require to go round the

cycle. All distributed schemes proposed so far require a detection time

equal to. if not greater than. the time to go round the cycle.

If the last wait dependency occurs after a substantially long time from

the rest of the wait dependencies in the cycle, the deadlock will be detected

locally without having to go round the cycle. For cases in between the two

extreme cases cited above, the detection time will be intermediate.

The penalty paid for the improvement in response time is higher mes-

sage traffic. For a deadlock involving n sites, our algorithm requires a max-

imum of approximately ft' FP signals. ( Each site may send one signal to

each of the other n-i sites, serially if no IOAs are present ( the signals

flowing around the loop ) or in a combination of sequential flow and parallel

flow if OAs are present ). Algorithms proposed till now use only serial flow

-' and in such algorithms it is possible to reduce the amount of communication

by half by requiring a serial flow of messages originating from a given tran-

saction to stop when it encounters a transaction of higher id than the ori-
ginating transaction. This optimization is difficult to incorporate in our algo-

rithm, in which FP signals can "skip over" one or more sites, and thus over

the nodes in the cycle in those sites.

S''
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Secondly, there is the overhead of backwards propagation which is also

approximately of the order of nt signals for a cycle encompassing n sites.

In practice, chains of dependencies spreading over a large number of

sites are unlikely to occur except under conditions of severe contention. It

appears reasonable to pay the cost of higher communication traffic at such "

times in order to quickly detect any deadlock that may exist and which if not

detected for a longer time, would exacerbate the contention.

4.7. Concluion

In this chapter, we have discussed centralized and distributed detection

of deadlocks in a distributed system. For the case of centralized detection,

we showed that reports only from resource-controlling sites are sufficient, if

usage of resources is 2-phase, to detect deadlocks correctly. For the case

where detection is centralized but resource usage is not 2-phase, we con-

structed an algorithm for the "migrating" transaction model, in which non-

resource-controlling sites are only rarely required to participate in deadlock

detection. Since resource-controlling sites wiU be generally few compared to

-- the number of sites accessing the resources, the communication costs for

deadlock detection are sharply reduced by this algorithm. Lastly, we con-

structed a distributed detection algorithm which uses both forward and

backward traversal of the transaction.agent-resource-message graph to

speed up deadlock detection.

The algorithms utilize clock facilities to address the problem of race

conditions. In the centralized algorithm, timestamps derived from the clock

facility are assigned to every request for a resource. When the deadlock

detector site assembles reports from the resource controllers in the system,
i.~~it uses these timestamps to ascertain if an observed cyclic wait represents a

:p-)
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genuine deadlock. In the distributed scheme, timestarnps (or message

numbers concatenated with site id) are affixed to every intersite arc. This

allows use of "condensed" information to hasten the detection of deadlocks.

Without the timestarnps. it would be difficult to ascertain if the condensed

information is up-to-date. It is difficult, as pointed out in [CU 80] to update -*

this condensed information soon enough to prevent spurious indications of

deadlock. By affixcin marks as mentioned above to the condensed informna-

tion. the urgency of updating it is removed.

rp.



CHAPTER 5

CONCLUSION

In this report. we addressed the problems of maintaining the availability

and consistency of global information in computer networks. Below, we sum-

marize our results, describe some experiences during the research and sug-

gest future directions.

In Chapter 2, we described a network status maintenance scheme based -"

on a global clock mechanism. Our scheme differs from that of [HAM 80] in

that it relies upon the nearest neighbors of a site to determine its status and

propagate it, whereas in the latter scheme, probe messages are sent by any

site to determine the status of another site. An important lesson we learned

was how to put together reports from the neighbors of a site to determine its

- status. The problem here is that all the links to a site may appear dead at

*1 different times to its neighbors, but the site itself may never have crashed or

noticed that it was partitioned from the rest of the network. But these

status reports may be put together at another site which may then conclude

that the site has crashed. Rule C3 would then be violated. The natural

approach to solving this problem seemed to be to require that the report

timestamps should lie within a small time window. However, difficulties were

encountered in ensuring that a partitioned site observed its links to the rest

of the network to be down in a similar time window and crashed itself in time

to comply with rule C3. The solution adopted in the end involved putting

together the laiesf reports from all neighbors of a site to determine if the

L site should be marked DOWN. The problem mentioned above was solved by
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having a site mark a recovered link to a neighbor as UP in its CRASHELF

graph only after all other sites have marked it UP in their CRASH_PTHERS

graphs. -

A promising extension of our approach is in the direction of dynamic

networks. Such networks will typically consist of non-overlapping clusters of

sites, each cluster functioning more or less independently of other clusters.

Sites may migrate from one cluster to another. In order to maintain the

consistency of information concerning membership of sites in clusters, the

following modification of rule C3 seems appropriate:

C3': If site z in cluster C does not have site y included in its list of sites in C

at time t. then site y does not consider itself to be a member of C at time t.

Our approach to realizing rule C3 in static networks, described in

Chapter 2. suggests how C3" may be realized in a dynamic network. Site z

would remove y from its list of sites in C only when it finds that sites in C are

unable to communicate with yi. Site y finding that it has lost contact with

sites in C would consider its membership in C to have lapsed. It would cease

to carry out the actions it was carrying out as a member of C. and institute

appropriate recovery actions, e.g., reapplying for membership in C. becom-

ing a member of another cluster, etc.

In searching for a control problem to test out our network status

maintenance scheme, we found that many problems become simple to solve

using the scheme. An example is the election protocol of [GAR 82]. The

problem here is to choose a unique co-ordinator for a group of sites, when

the current co-ordinator crashes. At all times it is desired to have the site

with highest id which is UP as co-ordinator. The solution given is to make

the election of a co-ordinator atovnic by using a 2-phase protocol to broad-

,..- ..-.
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Si cast the id of the new co-ordinator, similar to the 2-phase protocol in distri-

buted database systems [GRA 78). The proof that the protocol works
.correctly is not simple. But using our network status maintenance scheme. "rN

the solution is quite straightforward: a site simply considers the site with -.

highest id marked UP in its CRASH-OTHERS graph as the current co-

ordinator. Rule C3 then ensures that no two sites consider themseives co-

ordinator at the same time.

We developed a solution to the replicated file update problem in Chapter

2. Without the use of the clock facility, it would be difficult to ensure that

two ( or more ) different WARM sites do not join the set of HOT sites when a

HOT site crashes. If two different WARM sites do join, it would be necessary

either to force one and exactly one of them to quit the set subsequently, or

else to incur the overhead of updating an extra site before a 'done' signal is

returned to the originator of an update transaction.

In Chapter 3, we addressed the problem of preventing error propagation

in global information due to malfunctioning sites. We found that a more gen-

eral form of the Byzantine Generals Agreement was required and formulated

it. The notion of different kinds of rnalf unction -tolerance -specification

was introduced as a way to trade off tolerance to malfunctions against the

costs involved. There are still many areas where knowledge of ways to pro-

vide robustness against malfunctions is inadequate. These include synchron-

ization, security, efficient transfer of bulk data, update interactions involving

more than one updated variable, etc. A prototype for testing out BGA algo-

rithms is currently under construction at the San Jose IBM Research Labora-

tory [STR 82] and experience in this project should contribute in this direc-

tion.

tJ I
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In Chapter 4. we addressed deadlock detection in distributed databases.

Algorithms for centralized and distributed detection were proposed. For

centralized detection it was shown that 2-phase usage of resources simplifies

pthe problem of dealing with race conditions. An efficient centralized algo-

rithm was proposed for the 'migrating' transaction model. A distributed

algorithm using both backward and forward propagation to hasten detection

was described. In both algorithms, a clock facility was the means whereby

the consistency of 'snapshots' of system status was ensured.
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