

,. r c

7..

Replicated Distributed Programs

Eric Charles Cooper

April 1985 ".

.f2

This report reproduces a dissertation submitted in partial satis faction of the require- 0

ments for the degree of Doctor of Philosophy in Computer Science in the Graduate Division
of the University of California, Berkeley.

This work was partially sponsored by a National Science Foundation Graduate Fellow-
ship and by the Defense Advanced Research Projects Agency (DoD), ARPA Order No.
4031, monitored by the Naval Electronics Systems Command under contract No. N00039-
0-0235. The views and conclusions contained in this document are those of the author and
should not be interpreted as representing official policies, either expressed or implied, of
the Defense Research Projects Agency or of the U.S. Government.

o*.

. * .-.

. t.

.'

Replicated Distributed Prorams

Copyright (g 1985

Erc byEric Charles Cooper

All rights reserved -

- . . -.

* *.*...' . .

411

To my family. 'i

my parents, Herbert and Joan Cooper; "
mny brother, Paul Cooper;

-,.

To my amily

my prens, Hrbet an Jon Coper

i i.

.

S. . o

Contents

J.

I Introduction 1
1.1 Statement of Problem I

1.2 M otivation 2
1.3 Plan of Dissertation 3

2 Background and Related Work 5
2.1 Reliability .. 5
2.2 Communication ... 8
2.3 Synchronization ... 9

3 A Model of Replicated Distributed Programs 12
3.1 M odules 12
3.2 Threads 13
3.3 Semantics of Modules and Threads 13
3.4 Implementing Distributed Modules and Threads 17
3.5 Adding Replication 18

A Replicated Procedure Calls 21
4.1 Semantics of Replicated Procedure Calls 21
4.2 Paired Message Protocok 22
4.3 Implementing Replicated Procedure Calls 26
4.4 Performance Analysis 33

5 Replicated Transactions 41
5.1 The Synchronization Problem for Troupes 41
5.2 Replicated Lightweight Transactions 42
5.3 A Troupe Commit Protocol 42
5.4 A Starvation-Free Algorithm 44
5.5 Discussion 46

6 Binding and Reconfiguration 47
6.1 Binding Agents for Distributed Programs 47
6.2 Binding Agents for Replicated Programs 48
6.3 The Ringmuter Binding Agent 50
6.4 Reconfiguration and Recovery from Partial Failures 51

7 Programming Language Issues 54
7.1 Stub Compilers 54
7.2 Observations and Lessons 61
7.3 Stubs with Explicit Binding 62
7.4 Stubs with Explicit Replication 64
7.5 Programming-in-the-Large 71

7.

|i

* P,

CONTENTS

a Conclusion 74
8.1 SuMM .Y 74

8.2 Directions for Future Research 75

References 77

-.1

"' ii

VL L JV- .7

List of Figures

4.1 Replicated procedure call. 22
4.2 Segment format 23
4.3 A one-to-many call. 28
4.4 A many-to-one call.. 29
4.5 The UDP test client and server 34
4.6 The TCP test client and server 34
4.7 The RPC test client and server 35
4.8 Performance of Circus replicated procedure calls. 37

5.1 The ordered broadcast protocol 45

6.1 The interface to the binding agent 49
6.2 Adding another member to a troupe 50
6.3 Birth-death model of troupe reliability. 53

7.1 Externalization and internalization. 55
7.2 Courier specification of a remote interface 56
7.3 Representation of a Courier specification in Interlisp-D 57
7.4 Interlisp-D functions for Courier remote procedure calls 58
7.5 Use of explicit binding. 63
7.6 A client's use of explicit replication. 66
7.7 A server's use of explicit replication. 67
7.8 Unanimous collator. 68
7.9 First-come collator. 68
7.10 Majority collator. 69
7.11 Generator of messages from a troupe 70
7.12 Configuration language for troupes. 72

iv

II,
I

I

List of Tables

4.1 Performance of UDP, TCP, and Circus 35
4.2 CPU time for Berkeley 4.2BSD system calls used in Cr 38
4.3 Execution profile for Circus replicated procedure calls. 38

7.1 Stub compilers 55
7.2 Summary of interface and stub languages 55

I.M

.o

U
Y''

Uo

Acknowledgments

I would like to thank all of the people who have helped me in one way or another while
I was writing this dissertation. I can only acknowledge a few of them here:

my advisor, Robert Fabry, for providing excellent support, encouragement,
and advice over the past five years, and for creating CSRG, the most exciting
research group at Berkeley;

Domenico Ferrari, for somehow finding time to give me useful comments and
advice while running the Computer Science Division and the PROGRES
group;

Susan Graham and Leo Harrington, the other members of my thesis com-
mittee;

Andrew Birrell, my sponsor at DEC Systems Research Center;

* my friends Earl Cohen and Daniel Halbert, for setting good examples;

and above all, my wife, Naomi Siegel, for her love and support.

This work was supported by the Defense Advanced Research Projects Agency, a Na-
* tional Science Foundation Graduate Fellowship, Xerox Corporation, and Digital Equipment

Corporation.

Chapter 1

Introduction

1.1 Statement of Problem

As society relies more and more on services provided by computer systems, the penalties
associated with even temporary loss of those services become increasingly severe. Today,
the immediate effects of computer system failures on humans can range from temporary
frustration to financial loss to injury or death.

This dissertation addresses the problem of constructing highly available software sys-
temns. (The adjectives highly available, fault-tolerant, and nonstop will be used synony-
mously to describe a system that continues to operate despite failures of some of its com-
ponents.) The goal is to construct programs that automatically tolerate crashes of the
underlying hardware. The problems posed by incorrect software or by hardware failures
other than crashes are only addressed briefly.

The key to tolerating component failures is replication; this approach was proposed by
von Neumann thirty years ago [106]. The idea is to replicate each component to such a
degree that the probability of all replicas failing becomes acceptably small. The advent
of inexpensive distributed computing systems (consisting of computers connected together
by a network) makces replication an attractive and practical means of tolerating hardware
crashes.

Computers and local-area networks have become economical, but distributed software
remains expensive. The problem is that programmers must already cope with the com-
plexity of their application areas; distributed hardware, if made visible at the application
level, presents further complications. Mechanisms for constructing distributed programs
must therefore provide transparency: the fact that seve:-il machines are involved must be
hidden from the programmer. Transparency is an important theme in this dissertation.

A good implementation of remote procedure call provides transparency when all ma-
chines are working correctly, but cannot hide failures from the programmer. Some of the
machines executing a distributed program may crash while others continue to function;
this is called a partial failure. In contrast, a conventional single-machine program has an
all-or-nothing failure mode. Partial failures violate transparency and must be masked if
programmers are to be freed from worrying about the details of crash recovery algorithms
for their applications. The key to masking partial failures is replication.

The replication used to mask partial failures must itself be hidden from the programmer,
or else replication will add more complexity than it hides. The mechanisms presented in this
dissertation provide replication transparency because they are invisible at the programming-
in-the-small level.

Current programming methodology stresses the importance of modularity as a means
* of coping with complexity. It is important to realize that different modules require different

guarantees of availability: some modules are reliability bottlenecks just as some modules
are performance bottlenecks.

The performance of a program can be tuned by first determining which modules are

. 7T.% w. -

2 CHAPTER 1. INTRODUCTION

performance bottlenecks, and then optimizing those modules. By analogy, one can envi-
sion a new methodology for constructing highly available program in which replication in
also controlled on a module-by-module basis. Tuning the overall availability of a program
becomes a programming-in-the-large problem that a programmer need address only after
the individual modules have been written and verified. This dissertation provides the tools
to support such a methodology.

The ability to vary replication on a per-module basis is desirable because it allows soft-
warn systems to adapt gracefully to changing characteristics of the underlying hardware.
Even if perfectly reliable hardware were possible, there would still be periods during which

* hardware would be unavailable: scheduled down-time for preventive maintenance or re-
configuration, for example. The mechanisms described in this dissertation permit software
systems to be reconfigured, while they are executing, so that their services remain available
during such periods.

The reliability of the underlying hardware of a system may degrade or improve. A
* computer might crash more frequently than it used to; another computer might be replaced

by a more reliable model. In these cases, it should be possible to adjust the amount of fault
tolerance provided in software accordingly. This can be accomplished with the mechanisms
developed in this dissertation.

* Incorporating replication on a per-module basis is more flexible than previous ap-
proaches, such as providing fault tolerance in hardware or writing it into the application -

software. The first method is too expensive because it uses reliable hardware everywhere,
not just for critical modules. The second approach burdens the programmer with the
complexity of a non-transparent mechanism.

* The fundamental mechanisms presented in this dissertation are:

e troupes, or replicated modules, and

*replicated proceduire call, a generalization of remote procedure call for many-to-many
communication between troupes.

The following important property is what distinguishes troupes and replicated procedure
call from previous software architectures for fault tolerance: individual members of a troupe
do not communicate among themselves, and are unaware of one another's existence. This
property is also what gives these mechanisms their flexibility and power: since each troupe
member behaves as if it had no replicas, the degree of replication of a troupe can be varied
dynamically, with no recompilation or relinking.

* 1.2 Motivation

Remote procedure call shows the power of transparency: distributed programs become
* no more diffcult to write than conventional single-machine programs. This research began
* with the idea of coupling remote procedure call to software replication, in the hope of
* making fault-tolerant distributed programs similarly easy to construct.

The wealth of computing power available in the research internet at Berkeley, combined
with the fragility of early distributed program, emphasized the need for a set of operating
system and programming language tools for constructing reliable distributed applications.

Previous papers presented the author's initial ideas about replicated procedure calls [181
and a description of the Circus system [19].

1.3. PLAN OF DISSERTATION 3

1.3 Plan of Dissertation

The approach taken in this research is to combine remote procedure call with replication
on a per-module basis. This basic idea manifests itself in three intertwined aspects of dis-

* tributed programs: reliability, communication, and synchronization. Troupes, or replicated
*modules, are the basis for reliability, replicated procedure calls provide communication, andr

replicated atomic transactions are used for synchronization.
Chapter 2 reviews the necessary background and related work in the fields of reliability,

communication, and synchronization.
Chapter 3 presents a model of program construction and execution and describes how

its abstractions can be implemented transparently in a distributed system. Troupes are
introduced as the building blocks of replicated distributed programs, and replication trans-
parency is discussed.

Chapter 4 generalizes the notion of remote procedure call to the case of transfer of
control between troupes, resulting in replicated procedure calls. The semantics of replic~ated
procedure calls are defined, and algorithms are presented that implement these semantics.

This dissertation uses replicated procedure call primarily as a means of adding repli-
cation to programs transparently, while preserving conventional single-machine semantics.
But replicated procedure call is also important in its own right: it is sufficiently general
to express many distributed algorithms elegantly, and can be implemented efficiently on
local-area networks.

The protocols and algorithms used in the Circus implementation are described. Mea-
surements of the performance of Circus replicated procedure calls are discussed, and a
theoretical analysis of a more efficient implementation is presented.

The problem of synchronizing concurrent access to shared data arises in unreplicated
programs; additional mechanisms are required in the replicated case. Chapter 5 presents
the necessary extensions to atomic transactions for use in replicated distributed programs.

Chapter 6 examines the problem of binding together programs constructed from troupes,
and presents algorithms for dynamically reconfiguring such programs. The cache invalida-
tion problem arises when clients amortize the cost of interactions with a binding agent
by retaining old results. In the case of binding for replicated distributed programs, the
cache invalidation problem is shown to be more complicated and more critical than for
unreplicated programs.

Mechanisms are described that allow crashed components of replicated distributed pro-
grams to be replaced; this is a special case of reconfiguration. In addition, a probabilistic
model of troupe availability is used to analyze whken defunct troupe members should be
replaced. The availability of a troupe is derived from the lifetime and replacement time of
individual troupe members and the degree of replication.

Chapter 7 discusses the issues that arise when integrating these replicated mechanisms
into programnming languages. The approach here is based on stub compilers; four remote
and replicated procedure call implementations are surveyed, and a section is devoted to
the lessons about programming languages and stub compilers that were learned from these
implementations.

In some applications, it is desirable to sacrifice replication transparency and make ex-
* . plicit use of the underlying replication. A scheme based on generators or streams is proposed

for this purpose.

4 CHAPTER 1. INTRODUCTION

The design of a configuration language and manager to handle the programming-in-the-
large aspects of constructing progrms from troupes is presented.

Chapter 8 summarizes the main points of the dissertation and suggests some areas for
future resarh.

6

.1|

o4

'2i

..,*---

5

Chapter 2

Background and Related Work

This chapter presents an overview of the areas of reliability, communication, and syn-
chronization, and summnarizes the related work in each.

2.1 Reliability

Reliability can mean either robustness or fault tolerance. Robust systems preserve the
consistency of permanent information in the presence of failures, but may beome unavail-
able for some period. Robustness requires a crash recovery algorithm to restore a consistent
system state after a crash. Fault-tolerant systems, also called nonstop or higidy available
systems, continue to operate correctly in the presence of failures. Fault tolerance requires
replication to mask the failures of individual components.

2.1.1 Model of Failures

The hardware components of a distributed computer system consist of processors, stor-
age devices, and networks that connect them. They may fail in various ways. Certain
failure modes (classes of misbehavior, perbaps with associated probability distributions)
can be identified and incorporated into the specification for the component. Other failures

mut be relegated to the class of disasters.
Processor failures consist of cras hes, during which a machine simply ceases to func-

tion, and malfunctions, during which it functions incorrectly. The problem of byzantine
agreement (781 must be solved in any distributed system whose processors are liable to
malfunction.

The byzantine agreement problem is as follows. A sending processor wishes to commu-
nicate some value to each of n receiving processors. The sender may malfunction, sending
different values to different recipients, or not sending anything to some recipients. Never-
theless, the following two conditions must hold:

1. All correctly functioning recipients agree on the same value.

2. If the sender is functioning correctly, then all correctly functioning recipients agree
on the value sent.

This problem was first identified and solved by the researchers who tried to prove the
correctnes of the SIFT system 178,110,1111. Algorithms for reaching byzantine agreement
under various assumptions have since been proposed, and lower bounds on various aspects
of the problem have been obtained [51,78,98].

Schneider introduced the notion of a fail-atop processor, an idealized machine that may
crash but will never malfunction [88,90]. If it is possible to detect malfunctions, then an or-
dinary processor can be transformed into a fail-stop processor by causing it to halt whenever

6 CHAPTER 2. BACKGROUND AND RELATED WORK

a malfunction occurs. Schneider has shown how to construct arbitrarily good approxima-
tions to fail-stop processors by using byzantine agreement and ordinary processors 190]. For
example, an approximation that will tolerate up to n faulty processors can be constructed
from ns + 1 processors and perfect stable storage. This composite processr will always
appear to crash instead of malfunction as long as one of its component processors is still
operating correctly. If processors can be chosen so that their probabilities of malfunctioning
are independent, then by increasing n, the probability that the constructed processor will
behave like an ideal fa-stop processor can be made arbitrarily close to certainty.

2.1.2 Crash Recovery

Modern work on crash recovery was first performed in the context of file systems and
database systems, where the need to preserve data consistency across crashes is acute.
When a processor crashes, all of its volatile information is lost; this usually includes the '

entire contents of main memory. All crash recovery schemes, therefore, rely on some form
of non-volatile storage.

Typical examples of non-volatile, random-access storage devices are magnetic or optical
disks. A disk consists of a sequence of pages that can be read and written. (Pages on optical
disks may only be written once.) The information, once written, is non-volatile. For the
purposes of crash recovery, however, this is not enough; if the disk or the processor doing
the write operation fails while a page is being written, the validity of the page, and hence
the consistency of entire data structures, is in doubt.

The operation of writing a disk page must be atomic: even if a crash occurs, the page
must appear to have been either correctly written or not written at all. Writing a page can
be made atomic with high probability by implementing stable storage [53,5T]. This involves
writing each logical page of data onto more than one disk and modifying the read and
crash recovery operations to take advantage of the redundancy. By increasing the degree
of replication, the probability that the copies of a disk page can become corrupted in such
a way that no consistent read operation is possible can be made arbitrarily small. Stable
storage, and indeed any form of non-volatile storage, is thus a probabilistic approximation
to the unattainable perfect stable storage.

Crash recovery mechanisms use stable storage in two ways: for checkpoints and logs. A
checkpoint is a snapshot of a consistent state that can be restored after a crash. A log is
a record of the events or operations that affect the state of the system; it is replayed after
a crash. Checkpoints provide faster crash recovery, while logs are less expensive during
normal operation. If a combination of these two schemes is used, the log need only be
replayed from the most recent checkpoint, and the time between checkpoints can be used
to balance thecsof the normal andrecovery modesof operation.

2.1.3 Fault Tolerance

The idea of achieving fault tolerance by using replication to mask the failures of individ-
ual components dates back to von Neumann [106]. The two architectures for fault-tolerant
software are primary/standby systems and modular redundancy. In a primary/standby
scheme, only a single component functions normally; the remaining replicas are on standby
in case the primary fails. With modular redundancy, each component performs the same
function; there is some form if voting on the outputs to mask failures.

2. 1. RELIABILITY 7

A classic primary/standby architecture is the method of process pairs in Tandem's
Guardian operating system [3,1021. The processes in a process pair execute on different

processors. One process is designated as the primary, the other as the standby. Before each
request is processed, the primary sends information about its internal state to the standby,
in the form of a checkpoint. The checkpoint enables the standby to complete the request
if the primary fails.

The Auragen architecture combines a primary/standby scheme with automatic logging
of messages [12]. If a primary crashes, the log is used to replay the appropriate messages
to a standby.

The Isis project at Cornell uses a primary/standby architecture for replicated ob-
jects [5,6,7,81. In each interaction with a replicated object in Isis, one replica plays the
role of coordinator, and only it performs the operation. The coordinator then uses a two-
phase commit protocol to update the other replicas.

The mechanisms used in primary/standby schemes to allow a standby to take over
after the primary crashes are isomorphic to the crash recovery mechanisms described in
Section 2.1.2. Under this isomorphism, a standby corresponds to stable storage while the
primary continues to function, but assumes the role of the recovering machine when the
primary fails.

Another replicated structure for highly available distributed computing is the w~orm [93].
A worm starts by acquiring a set of processors willing to act as segments and initializes
them with a program to execute. Each segment remains in contact with the others, so that
if one becomes unreachable due to a processor or network failure, the worm can regenerate
itself by finding a replacement for the unreachable segment.

Each client of a worm-based service must be prepared to direct its requests to a dif-
ferent machine if the segment it is using crashes. A worm is therefore a primary/standby
architecture, but with no application-level crash recovery algorithm for state restoration.
The service as a whole is highly available, but the probability that an individual request
will be completed is determined by the reliability of the particular segment to which it is
sent. If this is unacceptable, as is the case in applications where each operation must be
highly reliable, then other methods must be used.

Triple-modular and N-modular redundancy have long been familiar to designers of fault-
tolerant computer systems [2,86]. Early applications of modular redundancy to software
fault tolerance include the SIFT system [110,111] and the PRIME system [26]. Triple
modular redundancy with majority voting was initially used in the SIFT system. In this
scheme, every computation is carried out by each of three processors. The results are then
compared, and if at least two agree, that value is used. The intention was that the voting
would detect and correct any single processor malfunction, but the SIFT implementors
later realized that byzantine agreement is required in order to guarantee that the replicated
components all receive the same information. If malfunctions are assumed not to occur,
then voting is unnecessary; only crash detection is required.

Replication is also the basis of methods proposed by Lamport [491 and Schneider [88,901
for constructing distributed systemsa that meet given reliability requirements.

Gifford's weighted voting scheme uses quorums and version numbers to provide repli-
cation transparency for files [30). Herlihy applied Gifford's quorums to replicated abstract
data types [371 by taking advantage of the particular semantics of the data types.

Gunningberg's design of a fault-tolerant message protocol based on triple-modular re-

8 CHIAPTER 2. BACKGROUND AND RELATED WORK

dundancy [331 is similar to, but less general thaun, the replicated mechanims presented in

this dissertation.
A methodology known as N-version programming uses multiple implementations of the

same module specification to mask software faualts [131. This technique can be used in
conjunction with the replicated modules proposed in the present work by using indepen-
dently implemented modules instead of exact replicas, thereby increasing software as well
as hardware fault tolerance. The problems posed by incorrect software are not otherwise

* addressed in this research.

2.2 Comzmunicat ion

A network enables processors to communicate by sending packetv. messages with some
fixed maximum length. Packets are unreliably delivered; they may be lost, delayed, dupli-
cated, or garbled. Sufficient use of redundancy, in the form of a checksum, can transform
garbled packets into lost packets with arbitrarily high probability. It is therefore assumed

* that packets, when they arrive at al, arrive intact.
- The implementations of most current local-area networks permit packets to be addressd

to multiple recipients [11,22,67]. This is called broazdcasting or muiticastinj. It is possible
to improve the performance of some algorithms if broadcasting is available, but this is not
essential to their correctnes. No additional asumptions are made about broadcast packets;
in particular, the reliability of delivery may vary from recipient to recipient.

2.2.1 Remote Procedure Call

Remote procedure call (RPC) enables programmers to write distributed program in
the same style as conventional programs for centralized computers [10,731. To call a remote
procedure, the name of the procedure and its parameters are sent in a message to the
remote processor, which executes the specified procedure and returns its results in another
message. Details of communication are hidden, and the syntax of a remote call is identical
to that of a local call. The programmer does not need to know the mapping of modules
to machines; indeed, this mapping may be controlled by the system and perhaps changed
while the program is running. Therefore, an important requirement for any implementation
of remote procedure call is that the semantics of remote calls be as similar as possible to
the semantics of the local case. A complete remote procedure call facility must address the

* following issues.

*Parameter, result, and exception passing semantics.

*External representation of data types.

*Reliable communication of call and return messages of variable length.

e Procedure invocation semantics.

*Binding semantics.

The protocols implemented in the course of this research began as an attempt to transfer
the Courier remote procedure call protocol [115] and the Xerox PARC RPC ideas [10,74,73]

K

2.3. SYNCHRONIZATION 9

to an environment based on the UNIX 1 operating system [431 and DARPA Internet proto-
col& [80,81,82].

Sun Microsystems has proposed a remote procedure call protocol that includes a fa-
cility for broadcast RPC [100], and Cheriton and Zwaenepoel have studied one-to-many
communication in the context of the V system [14]. These types of communication are
equivalent to a special case of replicated procedure calls: the one-to-many calls discussed
in Section 4.3.

2.3 Synchronization

A process is a context for a sequential computation; it may be viewed as an abstraction of
a processor executing only that computation. Several processes may execute concurrently
(on a multiprocessor), or they may be arbitrarily interleaved (to provide the illusion of
concurrency on a single processor). In order to avoid chaos when multiple processes access
the same data, some form of synchronization is required. The monitor is an important
synchronization construct that provides mutual exclusion as well as packaging together the
shared data and the operations on it in a modular fashion [39,54].

2.3.1 Transactions in Database Systems

The use of transactions in database systems is another means of structuring concur-
rent computations [25,31,104]. Transactions have two essential properties: atomicity and
serializability.

Atomicity guarantees that a transaction is an all-or-nothing operation; no intermediate
effects of a transaction are ever visible to other transactions. Until a transaction terminates,
its updates are tentative. A transaction terminates successfully by committing, or unsuc-
cessfully by aborting. If a transaction commits, its tentative updates become permanent
and visible to other transactions. If a transaction aborts, its tentative updates are undone,
leaving no trace of ever having been performed. The fact that tentative updates are not
visible to other transactions means that aborts never cascade: when a transaction aborts,
no other transaction, either still running or already committed, could have relied on the
updates performed by the aborted transaction. Providing atornicity when more than one
machine is involved requires some form of distributed commit protocol [17], the best known
of which is two-phase commit [31,53,57].

Serializability means that the concurrent execution of any number of transactions is
equivalent to their serial execution in some order. If each transaction transforms a consistent
state into another consistent state, then this property ensures that overall consistency is
preserved when transactions execute concurrently.

Achieving serializability is the responsibility of a concurrency control algorithm. As
Bernstein and Goodman [4] demonstrate, most concurrency algorithms use two-phase lock-
ing [25], time stamps [84], or commit-time validation [48].

The simplest version of two-phase locking associates a lock with each shared object.
One transaction at a time can acquire a lock, hold it for some period, and finally release
it. A transaction must hold an object's lock before it can perform any operation on that
object. If a transaction attempts to acquire a lock already held by another transaction, the

'UNIX is a trademark of Bell Laboratories.

K i

- rx V. - _ -

10 CHAPTER 2. BACKGROUND AND RELATED WORK

requesting transaction must wait until the lock in released. Serializability is guaranteed by
a locking protocol that requires each transaction to hold all locks it has acquired until it

either commits or aborts. More sophisticated versions of two-phase locking use different
types of locks for the different operations that can be performed on objects. A lock for a
particular operation on an object can be acquired as long as no other transaction holds a
lock for a conflicting operation on the same object, thus allowing operations that do not
conflict with one another to proceed concurrently.

Define the relation T waits for V to be true when transaction T waits for a lock held
by transaction T'. A cycle in the waits for relation is called a deadlock, the transactions
involved will wait forever. Several algorithms have been developed to detect deadlock in
distributed systems [31,75]. To break a deadlock once it has been detected, any transaction
in the cycle may be aborted and restarted.

Time stamps are another method of synchronizing transactions. Each transaction is
given a unique time stamp, and each object records the time stamp of the last transac-
tion that operated on it. Suppose a transaction with time stamp r attempts to perform
an operation on an object with time stamp r'. If r > r, the transaction is allowed to
proceed; otherwise, it is aborted. The resulting serialization order is thus identical to the
chronological order of the transactions.

Commit-time validation, also called optimistic concurrency control, does not synchro-
nize operations at all, under the optimistic assumption that conflict is unlikely to occur.

Instead, the history of operations performed by a transaction is checked at commit time.
If serializability would be violated by committing the transaction, it is aborted instead.

Transactions have also been used in file servers and object storage systems 140,99,1011,
operating systems [961, and programming languages [63,64].

2.3.2 Transactions In Programming Languages

Monitors alone are insufficient as a basis for atomic transactions in programming lan-
guages. The mutual exclusion provided by monitors is not enough to ensure serializability,
because unless a monitor locks the resources of any monitors it calls, it may be indirectly

affected by the actions of other processes that also call those monitors. In order to handle
aborts, it must be possible to undo the partial effects of a procedure within a monitor and
release its locks. The implementation of monitors in Mesa [541, for example, requires the

programmer to do this explicitly by using the exception handling mechanism.

*The mutual exclusion provided by monitors also limits concurrency. The work on atomic
abstract data types by Allchin [1], Schwarz and Spector [91] and Weihl [107,108,109] takes

advantage of the particular semantics of data types, in order to increase concurrency and
* improve performance.

The use of nested transactions at the programming language level was introduced by
-"Lomet [64] and more fully developed by the Argus project at MIT [61,62,63]. Nested
- transactions generalize single-level atomic transactions in a way that allows them to mesh

properly with the constructs for composition and abstraction supported by programming
languages.

A nested transaction consists of a tree of subtransactions, with a single top-level trans-
action at the root. The tentative updates of a transaction that has not yet committed are
visible only to its descendants in the tree. The effects of a committed subtransaction are

I%-

. • . . -. 5 '

.::,;;;; :,i,:;" '?.,i ::;:, .:;: ;; ','.',-:: ":"':..';;.:;':" "",.."" -- "- '" ,.""",, " " '"- :", "., ". '" '"".', " " " ":" -':"' ' -;:";

'V.-T. '. - -7S .V 17; "1. N7 % 7 *

2.3. SYNCHRONIZATION 11 ,.

visible only to ancestors and siblings in the tree. If a transaction aborts, then any uncom-
mitted subtransactions must be aborted, and the effects of any committed subtransactions
must be undone.

Reed proposed the first algorithm for nested transactions, using multiple time-stamped U.
versions of objects [84,85]. Moss developed another algorithm based on two-phase lock-
ing [70,71].

. . .

12
S.

Chapter 3

A Model of Replicated Distributed Programs

This chapter introduces a program model consisting of modules and threads of control.
Modules are used to express the static structure of a program when it is written. Threads
of control are manifestations of the dynamic structure of a program when it is executed.

A formal model is used first to treat the pattern of control flow within threads, and then
to explore state transitions within modules. The model is then used to unify these dual
aspects of program semantics (execution histories and state transitions) in the important
case of deterministic programs.

This chapter also shows how to implement distributed but unreplicated versions of
modules and threads in terms of primitives provided by current systems.

Troupes are introduced as a means of masking partial failures, and conditions that
guarantee replication transparency for programs constructed from troupes are presented.

3.1 Modules

A module is a programming language construct that facilitates the construction of large
programs. It packages together the procedures and state information needed to implement
a particular abstraction, and separates the interface to that abstraction from its implemen-
tation.

The interface to a module should specify its semantics completely, so that a programmer
need only understand the interface in order to make use of an implementation. The interface
enforces information hiding [77] by encouraging programmers to write code that depends
only on the interface, not on details of a particular implementation.

Ideally, an interface should specify the semantics of a module formally enough so that a
particular implementation could be checked by machine for conformance to its specification.
A complete test is impossible, since conformance to a specification is a generalization of the
halting problem and hence undecidable, so a simpler, decidable test must be used. In current
programming languages, such as Mesa [68], Ada [105], and Modula-2 [113], an interface
consists of declarations of procedures (and related constants, types, and exceptions), and
implementations of the interface are checked for type compatibility with these declarations.

The state information required to implement an abstraction is represented by variables
that are visible only inside the implementation, not in the interface. This causes no loss of
expressive power, since it is a simple matter to define procedures for reading and writing
the contents of private variables. It has the desirable consequence that the only flow of
information into and out of a module is through a purely procedural interface; changes in
the state of a module occur only as side effects of the execution of its procedures.

For simplicity, the state information of a module will be referred to as a single state
variable. This results in no loss of generality, since the single state variable may be a
structure with multiple components.

A module is said to ezport the procedures defined in its interface. A module that calls

t21
.-*

3.2. THREADS 13

procedures in another interface is referred to an a client of that interface and is said to
import that interface.

3.1.1 Comparison of Modules with Abstract Data Types

Modules are similar to abstract data type.. Both notions package the concrete repre-
sentation of an abstraction together with the implementation of the operations defined on
it, and present clients with a procedural interface that is separate from the implementation.
The difference is that there is only one logical instance of a module (with a single state
variable), while there are typically many instances of an abstract data type (each with its
own state variable).

This dissertation discusse troupes and replicated procedure call in the context of mod-
ule., but these concepts apply equally well to instances of abstract data types.

3.2 Threads

A thread of control is an abstraction intended to capture the notion of an active agent in
a computation. A program begins execution as a single thread of control; additional threads
may be created and destroyed either explicitly by means of fork, Join, and halt primi-
tive. [16,54], or implicitly during the execution of a cobegin ... coend statement [23].

Each thread is associated with a unique identifier, called a thread ID, that distinguishes
it from all other threads.

A particular thread runs in exactly one module at a given time, but any number of
threads may be running in the same module concurrently. Threads move among modules
by making calls to, and returning from, procedures in different modules. The control flow
of a thread obeys a last-in first-out (or stack) discipline.

3.2.1 Comparison with Earlier Work

The fork, join, and halt primitives for lightweight processes (single-machine threads
of control) were first described by Conway (16].

The ability for a process to cross address spaces when calling a procedure was supported
in hardware by the Burroughs B6500 stack architecture [15].

The module and thread abstractions presented here are most similar to the domains
and threads of the Trix kernel [91 In Trix, threads move among domains by means of
remote" procedure calls, but the domains must be address spaces on a single machine.

3.3 Semantics of Modules and Threads

The behavior of a thread is expressed in terms of its history of procedure calls and
returns. The model introduced in the following definitions capture. the last-in first-out

pattern of control flow in threads.

3.3.1 Flow of Control in Threads

The set of procedures exported by a module M is denoted by Procs(M). If P is a
procedure, module(P) denotes the unique module M such that P E Procs(M).

14 CHAPTER 3. A MODEL OF REPLICATED DISTRIBUTED PROGRAMS

An event is a call to or a return from a procedure, and is represented as a quadruple
of the form (op,proc,val, 1d), where op is the operation (either call or return), proc is
the procedure, val is the list of values being passed to or returned from the procedure, and
Id uniquely identifies this event. The expressions op(e), proc(e), val(e), and Id(e) will be
used to denote the components of an event e. The expression module(e) will be used as
an abbreviation for module proc(e)).

An event sequence E is an ordered set of distinct events (e,e,...,ei,...). Event
sequences will be used to represent computations; since some computations never terminate,
event sequences may be infinite. The ordering on E is denoted by f0 < el < < e <e*.
The succeuor fnctions succ(e) is defined on all events e E E (except the final event in
the case that E is finite). The predeeuor function pred(e) is defined on all events • E E
except the initial event.

A eubeequence of E is any subset of E together with the inherited ordering. If P(e) is a
predicate on events, the expression (e E E I 9(e)) denotes the subsequence of E consisting
of those events e for which jo(e) is true. Note that a subsequence need not be a contiguous
portion of E.

Given two events el and e2 in E, the event interval (el,..., e2) is the subsequence

(e E l el :_ e5 C)

The events el and e2 are called the left and right endpoints of the interval.
Let e be an event in E. The portion of E up to e, denoted E<,, is the subsequence

defined by
E<.= (e' E E Ie' < e

An event e with module(e) = M is called an M-event. The restriction of an event
sequence E to a module M, denoted EM, is the subsequence of M-events in E:

EM = (e E E I module(e) = M)

Since (Em)<., the notation Em is unambiguous.
The concatenation of two disjoint sequences E, and E2 is the sequence (denoted E 1)

defined by the union of El and E2 together with the ordering in which El 'comes before"
E2. Concatenation is an associative operation, so the expression E ... E, is unambiguous.
Definition 3.1. An interval B = (c,...,r) of length 2! 2 is balanced if c is a call, r is a

return, proc(c) = proc(r), and for some n > 0,

B = (c)BI... B.(r)

where each Bi is balanced. (It follows that B1,..., B, are uniquely determined.)

A call c E E is said to eturn at r if the interval (,...,r) C E is balanced. The
ezecution of a call c, denoted Exec(.;), is the event sequence defined by

Exec(c) = J (c,..., r) if c returns at r
t (e E E e > c) if c never returns

The following are equivalent:

7QW

3.3. SEMANTICS OF MODULES AND THREADS 15

1. (c,...,r) is a balanced interval

2. c returns at r

3. Exec(c) =(c,... ,r)

Definition 3.2. A thread ezecution history H is an event sequence that satisfies the
following conditions:

1. Every return r C- H determines a unique call c E H that returns at r.

2. If H is finite, then H is balanced.

It follows from this definition that for any thread execution history H with initial event eo,

1. eo is a call,

2. H =Exec(eo), and

3. H is finite if and only if every call returns.

Definition 3.3. The call stack after a call c, denoted Callstack(c), is the event sequence
consisting of all calls c' < c that do not return before c. Since a call c' < c does not return
before c if and only if the execution of c' contains c,

Callstack(c) =(4 c E Exec(c))

Alternatively, Callstack(c) can be obtained from H<, by removing all balanced intervals.
Clearly, the events that remain are precisely the calls in H<, that do not return before c.
The depth of a call c E H, denoted depth(c), is defined to be the length of Calistack(c).

The following theorem is a useful characterization of the structure of thread execution
histories.

Theorem 3.4. H<, can be written uniquely in the form

(co,..., c)Bj ... B,,(e)

where co is the initial call in H, c is a call such that co < c < e, and B,..., B, are balanced

intervals for some n > 0.

Proof: If e is a return, then by the first part of Definition 3.2, there is a unique call c E H
that returns at e. Since (c, . . . ,e) is balanced, the existence and uniqueness of B 1,..., B"
follow from Definition 3.1. If e is a call, define c by

c0 if e = cO
* = the predecessor of e in Callstack(e) if e 6 co

By Definition 3.3, the events between c and e in I<, that are elided in Callstack(e) form
the balanced intervals B, ... , Bn,. 0

..-

iI

16 CHAPTER 3. A MODEL OF REPLICATED DISTRIBUTED PROGRAMS

4 ha.

Both calls and returns appear explicitly in event sequences so that the structure of
balanced intervals is uniquely determined. An equivalent approach is to represent a thread
execution history as a procedure invocation tree, in which nodes represent procedure execu-
tions and edges (appropriately ordered) represent calls. In this model, the root of the tree
is the initial call, and each path from the root to an interior node is the call stack for that
node.

The tree model, while intuitively appealing, is difficult to manipulate formally and a
nightmare to typeset. In fact, the author's attempts at a sufficiently formal linear notation
for trees ended up isomorphic to the event sequence model presented here.

3.3.2 State Transitions and Deterministic Modules

A program state or is a mapping that assigns a value am to the state variable of each
module M. The set of all possible program states is denoted by E.

Definition 3.5. A state sequence for a thread execution history H is a function

state: H --+ Z

with the property that for each module M, only M-events affect the state of M. This
means that if e' = succ(e) and either

1. e is not an Mf-event and e is a call to a procedure in M, or

2. e is a return from a procedure in M and e' is not an f-event, or

3. neither e nor e' is an f-event,

then state'(e) = stated(eI). The expression state(e) represents the program state at the
time of e, after the events in H<. have occurred. The initial state is denoted by state(O).
The notation stateH(e) will be used when necessary to avoid confusion.

Definition 3.6. A module M is deterministic if for any call c to a procedure in M and
any interval I of the form

where n 2 0 and each A- is balanced, I and stateM(c) uniquely determine the event that
follows I and the state of M when that event occurs. Note that if proc(c) = P, then
I is any prefix of Exec(c) that stops just before a call made by P or the return from P
corresponding to c.

Determinism is a property local to a single module: it constrains only the events under
the control of the procedures in that module. It is tempting to demand that the entire
execution of a call in a deterministic module be uniquely determined, rather than just the
events one level deeper than the call, but this would require that all other modules called
during the execution also be deterministic. Definition 3.6 allows a deterministic module to
call nondeterministic modules, so that a program can be composed of both kinds.

In a sense, a nondeterministic module "contaminates" any module that imports it,
and makes the program as a whole nondeterministic. The notion of global determinism is
therefore useful. A program is globally deterministic if it consists entirely of deterministic
modules. Global determinism is an extremely strong property, as is shown in the next
theorem.

-- . . -- . -. -

3.4. IMPLEMENTING DISTRIBUTED MODULES AND THREADS 17

Theorem 3.7. Let H be an execution history for a thread in a globally deterministic
program and let stateH be a state sequence for H. Then the initial call co in H and the
initial program state stateil(O) suffice to determine H and stateH uniquely.

Proof: Let H and K be two thread execution histories

H (eo,el,.... and K= (co,e 1 ,....

where eo = 4 -co, and let stateH and stateK be state sequences for H and K with the
same initial state. It will be shown by induction that e, = e. and stateH(e) = state/c(e,)
for all n > 0.

The case n = 0 is obvious from the hypotheses. So suppose the theorem is true for n. Then

H= (e0, el,...,e,e.+1,...) and K-(e0,ej,...,ent e ...)

By Theorem 3.4 with e,+1 F H and e+1 = K, there is a call c with c0 c < e,, such that

H=(co,...,)B"" Bk(e,,+) and K=(co,..,c)B ... B,(ec+ 1)

Write B1 as (ct,..., ri). Then since module(c) is deterministic, Definition 3.6 implies that
succH(rk) = SUCCK(rk), so en+1 =

Finally, it follows from the induction hypothesis and Definitions 3.5 and 3.6 that
stateH(en+i) = stateK(e+1). .

Theorem 3.7 can be viewed as a formal statement and proof of the equivalence of the
two crash recovery mechanisms described in Section 2.1.2: restoring a consistent state from
a checkpoint, or replaying events from a log.

3.4 Implementing Distributed Modules and Threads

The model presented so far in this chapter defines two abstractions: modules and
threads; no mention is made of machine boundaries as part of their semantics. A dis-
tributed implementation of these abstractions must therefore provide location transparency:
the execution history of a distributed program must be indistinguishable from that of a
single-machine program. A programmer need not know the eventual configuration of a
program when it is being written; the fact that a program is distributed is invisible at the
programming-in-the-small level.

A module in a distributed program can be implemented by a server whose address space
contains the module's procedures and data. A distributed thread can be implemented by
using remote procedure calls to transfer control from server to server, and viewing such a
sequence of remote procedure calls as a single thread of control. Recall that the thread
abstraction includes a unique ID for each thread. The thread ID propagation algorithm
that follows shows how this aspect of distributed threads can be implemented.

3.4.1 The Thread ID Propagation Algorithm

The call stack of a distributed thread at a given instant can be divided into segments at
every inter-module call. Each segment consists of a series of calls within the same module.

F : . - • . . .- o .-, " + . ~ . . + • . - o • .+ ". .° ' ,

18 CHAPTER 3. A MODEL OF REPLICATED DISTRIBUTED PROGRAMS

Call this module the locus of the segment. Since a module is never split across machine
boundaries, a segment can be represented by the stack of a conventional process running
on the same machine as the locus of the segment.

A single conventional process, called a base process, is required to represent the segment
containing the base of the call stack. The lifetime of the base process is identical to that
of the entire distributed thread, so its local process ID together with a machine MD can be
used as a unique thread ID.

* The remote procedure call mechanism is responsible for creating a server process for
* each incoming call to a server, and destroying that process once execution of the procedure

is complete. (The expense of process creation may be reduced by maintaining a pool of idle
server processes, but the effect in either case is to create and destroy the segment of the call
stack required for the execution of the procedure.) These server processes can therefore be
used to represent the remaining segments of the call stack of the distributed thread.

Finally, the remote procedure call mechanism must be extended to propagate thread
Mes from client processes to server processes. Each call message bears the thread ID of the
caller, and each server process assumes this thread ID while it is performing the procedure
requested by the call message. This scheme effectively makes the current thread ID an
extra parameter of every remote procedure.

It follows that at any instant,

* 1. all the processes representing segments of the call stack of a distributed thread bear
the same thread ID, and

2. the thread ID uniquely identifies the distributed thread.

This algorithm therefore correctly associates a unique ID with each thread as it moves

through the distributed system by means of remote procedure calls.

3.5 Adding Replication

* The distributed modules and threads of Section 3.4 provide location transparency in the
absence of failures. As long as the underlying hardware works correctly, the programmer
need not be aware of machine boundaries.

Processor and network failures, however, give rise to new classes of Partial failures of the
distributed program as a whole. Partial failures violate transparency, since they can never
occur in a single-machine program. These failures must therefore be masked if transparency
is to be preserved.

The key to masking failures is replication, but it introduces another transparency re-
quirement: replication trans~parency.

3.5.1 T1roupes

The approach taken in this research is to introduce replication into distributed programs
at the module level. A replicated module is called a troupe, and the replicas are called troupe
member.

Troupe members are assumed to execute on fail-stop processors [88,901. If the processors
were not fail-stop, troupe members would have to reach byzantine agreement about the
contents of incoming messages, because a malfunctioning processor might send different

77 . ..

3. 5. ADDING REPLICATION 1

messages to different troupe members. Byzantine agreement, described in Section 2.1.1,
could be added to the algorithms Presented in this dissertation, but would result in a
significant loss of performance. There is no evidence that failures other than crashes occur
often enough to warrant this increased expense.

A deterministic troupe is a set of replicas of a deterministic module (as defined in
Section 3.3.2). Section 3.5.2 shows that the assumption that all troupes are deterministic
is sufficient to guarantee replication transparency.

In contrast to the work on replicated abstract data types by Herlihy [37] and on atomic
abstract data types by Allchin [1], Schwarz aind Spector [91], and Weihi [107,108,109],
troupes are a simple approach to achieving high availability: no knowledge of the semantics
of a module is required, other than the fact that it is deterministic.

Interactions between troupes occur by means of replicated procedure calls (discussed in-
Chapter 4) in which all troupe members play identical roles. Furthermore, troupe members
do not know of one another's existence; there is no communication among the members of
a troupe. It follows that each troupe member behaves exactly as if it had no replicas. In
this sense, troupes contrast sharply with the replicated objects in Isis [5,6,7,8], although
the goal of high availability is the same.

In replicated distributed programs, the crash recovery mechanisms of Section 2.1.2 are
required only for total failures, in which every troupe member crashes. The analysis in
Section 6.4.2 shows that the probability of total failures can be made arbitrarily small by
choosing an appropriate degree of replication. Replication can therefore be used as an
alternative to crash recovery mechanisms such as stable storage.

3.5.2 Replication Transparency and Troupe Consistency

A troupe is consist ent if all its members are in the same state. If a troupe is consistent,
then its clients need not know that it is replicated. Troupe consistency is therefore a
sufficient condition for replication transparency.

Troupe consistency is a strong requirement, but it cannot be weakened without knowl-
edge of the semantics of the objects being replicated. In the absence of application-specific
knowvledge, troupe consistency is both necessary and sufficient for replication transparency.
This is one area in which troupes differ from other replication schemes. Gifford's weighted
voting for replicated files, for example, uses quorums and version numbers to mask the fact
that not all replicas are up to date 130], and Herlihy has extended Gifford's approach to
abstract data types [37]. Troupe consistency is not necessary in these schemes, because
they take advantage of the semantics of the objects being replicated.

In a program constructed from troupes, an inter-module procedure call results in a
replicated procedure call from a client troupe to a server troupe, as described in Chapter 4.
One of the distinguishing characteristics of troupes is that their members do not commu-
nicate among themselves, and do not even know of one another's existence. Consequently,
when a client troupe makes a replicated call to a server troupe, each server troupe member
must perform the procedure, just as if the server had no replicas.

As mentioned in Section 3.3.1, the execution of a procedure can be viewed as a tree of
procedure invocations. The global determinism property of Section 3.3.2 implies that when

a1 server troupe is called upon to execute a procedure, the invocation trees rooted at each
troupe member are identical: the members of the server troupe make the same procedure

J

20 CHAPTER 3. A MODEL OF REPLICATED DISTRIBUTED PROGRAMS

calls and returns, with the same arguments and results, in the same order. It follows from
Theorem 3.7 that if there is only a single thread of control in a globally deterministic
replicated distributed program, and if all troupes are initially consistent, then all troupes
remain consistent.

Additional mechanisms are required if there is more than one thread of control, because
concurrent calls to the same server troupe may leave the members of the server troupe
in inconsistent states. The problem of maintaining troupe consistency in the presence of
concurrently executing threads is addressed in Chapter 5.

.d

. * * .'. * * . . --*.
. . * '2 ~ * ~ *.~ *, '. ~ - .o .

21

Chapter 4

Replicated Procedure Calls

A thread in a replicated distributed program transfers control from one troupe to an-
other by means of replicated procedure calls. This chapter defines the semantics of repli-
cated procedure calls and describes Circus, a replicated procedure call system that has been
implemented for Berkeley 4.2BSD.

Replicated procedure call. are implemented on top of a paired message layer that ex-
changes variable-length messages reliably. The paired message protocol used in Circus is
described and compared to a similar protocol developed at Xerox PARC.

Replication transparency requires exactly-once execution of each procedure at all repli-
cam. The general replicated procedure call algorithm factors naturally into two subalgo-
rithms, for one-to-many and many-to-one calls.

The performance of the Circus implementation is measured and analyzed, and a theo-
retical analysis is used to predict the performance of a more efficient implementation.

4.1 Semantics of Replicated Procedure Calls

The goal of remote procedure call [73] is to allow distributed programs to be written
in the same style as conventional programs for centralized computers. Details of communi-
cation are hidden, and the syntax of a remote call is similar or identical to a normal local
call.

When modules are replaced by troupes, the natural generalization of remote proce-
dure call is replicated procedure call. The troupe consistency requirement identified in
Section 3.5.2 determines the semantics of replicated procedure call: when a client troupe
makes a replicated procedure call to a server troupe, each member of the server troupe per-
forms the requested procedure exactly once, and each member of the client troupe receives
all the results. These semantics can be summarized as ezactly-once execution at all troupe
members. Figure 4.1 shows a replicated procedure call from a client troupe to a server
troupe. A replicated distributed program constructed in this way will continue to function
as long as at least one member of each troupe survives.

To guarantee replication transparency, troupe members are required to behave deter-
ministically: two replicas in the same state must execute the same procedure in the same
way. In particular, they must call the same remote procedures in the same order, produce
the same side effects, and return the same results. Section 7.4 shows how programmers can
replace 'same"~ by an application-specific equivalence relation. Note that determinism is
also required in the crash recovery schemes described in Section 2.1.2.

Just as replicated procedure call is a conceptual extension of remote procedure call, the
Circus implementation described here evolved as an extension of a remote procedure call
implementation for Berkeley 4.2BSD. When the degree of module replication is one, Circus
functions as a conventional remote procedure call system.

-~~~W -; u w-. -v' . r 7

22 CHAPTER 4. REPLICATED PROCEDURE CALLS

Client Server
Srl

4"

Figure 4.1: Replicated procedure call

4.2 Paired Message Protocols

A paired message protocol is a distillation of the communication requirements of con-
ventional remote procedure call protocols [10,73,115]. It provides

9 reliably delivered, variable-length, paired messages (e.g. cal and return), and

e call eequence numbers that uniquely identify each pair of messages among all those
exchanged by a given pair of processes.

The paired message protocol is responsible for segmenting messages that are larger than
a single datagram (in order to permit variable-length messages), and for retransmission
and acknowledgment of message segments to ensure reliable delivery. The Circus protocol
presented here is based on the RPC protocol of Birrel and Nelson [10]. Circus uses UDP,
the DARPA User Datagram Protocol [80]. The Circus protocol is connectionless and geared
towards the fast exchange of short messages. The main difference between it and the PARC
RPC protocol lies in the treatment of messages requiring multiple datagrame; the Circus
protocol provides better recovery from lost datagrams in this case, at the cost of increased
buffering. The two protocols are compared in more detail in Section 4.2.5.

The paired message abstraction can be provided on top of reliable stream protocols
like TCP [82] and SPP [114], but implementations of these protocols are typically tuned
for bulk data transfers. The Berkeley 4.2BSD implementation of TCP, for example, does
not even begin to transfer data until the connection has been established by a three-way
handshake, although this restriction is not inherent in the protocol specification. Since
call and return messages are usually short, a specially designed, datagram-based paired
message protocol like Circus can complete a message exchange using the same number of
packets that a stream protocol requires merely to establish a connection. Nelson makes this

same point, with performance measurements to support his claim, in his dissertation [73).

I..-.-.

6 4.2. PAIRED MESSAGE PROTOCOLS 23 I

IP header

- - - - - - - - - - - - - -

UDP header

message control segment total

type bits number segments

call number

segment data

Figure 4.2: Segment format

The paired message protocol does not specify how remote modules or procedures are
identified, how clients and servers are bound together, how parameters and results are
represented, or how exceptional conditions are handled. The contents of the messages are
uninterpreted. It is therefore possible for several remote (or replicated) procedure call
systems with different type representation and module binding requirements to use the
same paired message protocol as a basis for communication. For example, the Lisp remote
procedure call facility described in Section 7.1.3 uses the same paired message protocol as
the Circus system, but represents procedures and values symbolically in messages.

4.2.1 Messages

Messages are exchanged between conventional, single-machine processes. A process
address consists of a 32-bit host address together with a 16-bit port number. The host
address identifies the machine within the DARPA internet, and the port number identifies
the process within the machine. This is the same address format used by the underlying
UDP layer; the assignment of port numbers to processes is left to the UDP implementation.

A message is a sequence of bytes, together with a type (call or return). Messages
are transmitted as one or more segment# of fixed maximum length. A segment is a UDP
datagram of the form shown in Figure 4.2.

A data segment consists of a segment header together with some portion of the message
data. A control segment contains only a segment header; it is used to send or request
acknowledgment information. The message type is a byte containing either 0 for a call
mesage or 1 for a return message. The control bits field is a byte containing two Boolean

I%

. - - - "%V

24 CHAPTER 4. REPLICATED PROCEDURE CALLS

values used to control the acknowledgment and retransmission procedures. The least sig-
nificant bit is the please ack flag, and the next least significant bit is the ack flag. The
six most significant bits are unused.

The next two bytes are used to specify the logical position of the segment within the
whole message. The total segment* field is a byte containing the total number of segments
in the message, which must be in the range from 1 to 255, inclusive. The segment number
is a byte containing a number between 0 and the total number of segments, inclusive. The
meaning of this field depends on whether the segment contains data or acknowledgment

information.
The call number is a 32-bit unsigned integer, represented most significant byte first.

The call number is used to pair call messages with the corresponding return messages.

4.2.2 Sending and Receiving Messages

The protocol for sending a message is the same for both client and server; the only
difference is whether the message type is call or return. A sequence of bytes to be sent as
a mesage is first divided into segments. Each segment is assigned a number, starting at 1,
which is placed in the segment number field of its header. The message type, total number
of segments, and call number fields of the header are the same for each segment of the
message. The sender maintains a queue of the unacknowledged segments of the message,
initially containing all the segments.

The sender initially transmits all the segments to the receiver with no control bits set.
It then periodically retransmits the first unacknowledged segment on its queue, with the
please ack bit set. Simultaneously, the sender listens for acknowledgments and removes
acknowledged segments from its queue. When the queue is empty, all segments have been
acknowledged and transmission of the message is complete.

An acknowledgment is either explicit or implicit. An explicit acknowledgment is a
segment with the ack bit set and the same message type, call number, and total number of
segments as the current message. Acknowledgment segments contain no data; the segmentnumber field is used as an acknowledgment number, indicating that all segments with

numbers less than or equal to the acknowledgment number have been received.
An implicit acknowledgment is a data segment sent by the receiver back to the sender.

A segment from a return message implicitly acknowledges all the segments of the previous
call message if it carries the same call number, and a segment from a call message im-
plicitly acknowledges all the segments of the previous return message if it carries a later
call number. Implicit acknowledgments are possible because processes alternate between
sending and receiving.

The protocol for receiving a message is also the same for both client and server. The
receiver maintains a queue of incoming segments for the current message, and an acknowl-
edgment number, initially zero. The acknowledgment number is the highest consecutive
segment number received. When a segment arrives, it is placed in its proper position in
the queue. The segment may have filled a gap in the queue, enabling the acknowledgment
number to be advanced. If the please ack bit is set in the incoming segment, an explicit
acknowledgment segment is sent with the current value of the acknowledgment number in
the segment number field. Reception of the message is complete as soon as all the segments
have been received.

Pi

4.2. PAIRED MESSAGE PROTOCOLS 25

4.2.3 Crash Detection

Once a client has sent an entire call message and its receipt has been acknowledged,
the client may wait arbitrarily long before the remote procedure finishes and sends back
the return message. In order to detect crashes during this interval, the client periodically
probes the server with a special control segment.

The send and receive protocols guarantee that messages Will be communicated correctly
in the presence of lost or duplicated datagrams (assuming that any segment retransmitted
repeatedly will eventually be received). This assumption does not hold in the event of
a crash. In order to detect crashes, an upper bound (or timeout) must be placed on
the number of retransmisuions with no response before it is assumed that the receiver
has crashed. A bound that is too low increases the chance of incorrectly deciding that a
receiver has crashed. A bound that is too high introduces a long delay in the detection of
true crashes.

4.2.4 Implementation Details

Several optimizations are possible to reduce the number of acknowledgments and re-
transmissions. For instance, when an out-of-order segment arrives during receipt of a
multiple-segment message, the receiver knows that one or more segments have been lost.
It should therefore immediately send an explicit acknowledgment for the last consecutively
received segment, so that the sender will retransmit the first lost segment, rather than an
earlier segment.

When a segment that completes a canl message arrives at a server, acknowledgment of
the message can be postponed, even if the please ack bit was set, in the hope that the
return message will be forthcoming soon enough to serve as an implicit acknowledgment.
Subsequent please ack segments should be acknowledged promptly.

The retransmission strategy can be changed to retransmit all the remaining unacknowl-
edged segments rather than just the first, depending on the reliability characteristics of the
network.

The protocol is connectionleus in the sense that no initial handshake is needed to estab-
lish communication; a client merely sends a call message to a server. Clients and servers
must maintain state information about active message exchanges (segment queues and ac-
knowledgment numbers). After an exchange has completed, only its call number must be
kept, and this may be discarded once sufficient time has pawsed to guarantee that no de-
layed segments from the exchange can arrive. This prevents the "replay" of delayed call
messages.

The maximum length of a segment can be no larger than the maximum UDP datagraxn
size minus the 8 bytes of segment header. It may be desirable to use a smaller limit in order
to prevent fragmentation at the IP level [811. This requires knowledge of the maximum

S transmission unit (MTU) for the physical networks of interest (presumably the local area
networks expected to be usdmost often).

The Circus protocol is currently implemented entirely in user code under Berkeley
4.2BSD [43J.

Asynchronous events, specifically the arrival of datagrarns and the expiration of timers,
must be handled in parallel with the activity of the client or server. For instance, a probe
may arrive while a server is performing a procedure. If multiple processes sharing the same

26 CHAPTER 4. REPLICATED PROCEDURE CALLS

addres space were available under Berkeley 4.2BSD, a separate process could be devoted
to listening for incoming segments and handling timers. Since this is not possible, these
events are modeled as software interrupts using the signal mechanism, the interrupt-driven
I/O facility, and the interval timer [431. Protection of critical regions is achieved by using
system calls that mask and enable interrupts.

The protocol package uses timers to handle retransmission, probing, no-response time-
outs, and no-activity timeouts. A general timer package was built on top of the single

interval timer for this purpose. It allows a timer to be defined by a timeout interval and a
procedure to be invoked upon expiration; any number of timers may be active at the same
time.

A project is under way at Berkeley to produce a kernel implementation of a remote
procedure call protocol [112]. The initial specification was an unreplicated version of the
Circus protocol, but the desire to limit the required amount of kernel buffer space led to a
protocol similar to Birrell and Nelson's.

The unifying communication abstraction provided by the Berkeley 4.2BSD kernel is the
socket [43]. A socket is an endpoint for process-to-process communication. Each socket
has a protocol type that is used to dispatch generic operations like read and write to
the appropriate protocol implementation. The interface to the kernel RPC protocol is by
means of a new protocol type (RPC) with two subtypes: client and server. The imple-
mentation enforces write-read alternation for client sockets and read-write alternation for
server sockets.

4.2.5 Comparison with Related Work

The Circus implementation was strongly influenced by the work on remote procedure
call done by Birrell and Nelson at Xerox PARC [10,73]. The difference between their RPC
protocol and the Circus protocol lies in the treatment of multiple-segment call and return
messages.

The Xerox PARC protocol requires an explicit acknowledgment of every segment but
the last. This doubles the number of segments sent, but since there is never more than one
unacknowledged segment in transit, only one segment's worth of buffer space is required
per connection.

The Circus protocol allows multiple segments to be sent before one is acknowledged,
which reduces the number of segments sent to the minimum, but requires an unbounded
amount of buffering. An alternate implementation of the Circus protocol could easily bound
the amount of buffer space required for a connection by dropping all segments outside a
fixed allocation window, and simply requiring the sender to retransmit them. These re-
transmissions could be reduced by informing the sender of the size of the allocation window;
this is precisely what is done in the flow-control mechanisms of reliable stream protocols
such as TCP [821 and SPP [1141, but since single-segment messages are expected to occur
most often in remote procedure calls, these optimizations are probably not worthwhile.

4.3 Implementing Replicated Procedure Calls

Replicated procedure calls are made between troupes, which are sets of modules. Since
one server may export several modules, a module address is a refinement of the internet

_ I

4.3. IMPLEMENTING REPLICATED PROCEDURE CALLS 27

process address defined in Section 4.2. A module address consists of a process address
together with a 16-bit module number that identifies the module among those exported by
that process. In the Circus implementation, the module number is an index into a table of
exported interfaces managed by the export procedure.

A troupe is represented at this level as a sequence of module addresses. This represen-
tation is returned by the binding agent when a client imports a server troupe.

The contents of a call message can now be described. Remember that this data is
uninterpreted by the paired message layer. A call message consists of a header containing
the thread ID of the caller, the module number and procedure number of the procedure
to be called, and the parameters to be passed the procedure. The thread ID is used to
implement the thread ID propagation algorithm of Section 3.4.1. The procedure number
is assigned by the stub compiler and is the index of the procedure within the module
interface. The header also contains other information described below. The parameters are
represented in a standard external form by the routines produced by the stub compiler.

A return message consists of a 16-bit header (used to distinguish between normal and
error results) and the results of the procedure in the standard external representation.

Replicated procedure calls are implemented on top of the paired message layer. There
are two subalgorithms involved in a many-to-many call from a client troupe to a server
troupe: each client troupe member performs a one-to-many call to the entire server troupe,
and each server troupe member handles a many-to-one call from the entire client troupe.

The algorithms for these two cases are described in the following sections. In Circus,
these algorithms are implemented as part of the run-time system that is linked with each
user's programs. The run-time system is called by stub procedures that are produced
automatically from a module interface; the replicated procedure call algorithms themselves
are thus hidden from the programmer. When the algorithms below refer to various client
and server actions, the reader should bear in mind that those actions are performed by the
protocol routines in the corresponding run-time systems, rather than by the portions of the
program written by the user.

4.3.1 One-To-Many Calls

The client half of the replicated procedure call algorithm performs a one-to-many call
as shown in Figure 4.3. The purpose of the one-to-many call algorithm is to guarantee that
the procedure is executed at each server troupe member.

The same call message is sent to each server troupe member, with the same call number
at the paired message level. The client then awaits the arrival of the return messages from
the members of the server troupe. Since the return messages bear the same call number,
it is a simple matter for the client to collect the proper set of responses.

In the Circus replicated procedure call implementation, the client will normally wait
for all the return messages from the server troupe before proceeding. The client receives
notification if any server troupe member crashes, so it can proceed with the return messages
from those that are still available. The return from a replicated procedure call is thus a
synchronization point, after which each client troupe member knows that all server troupe
members have performed the procedure, and each server troupe member knows that all
client troupe members have received the result. Alternatives to this obviously correct but
potentially slow strategy are discussed in Section 4.3.4 below.

" 28 CHAPTER 4. REPLICATED PROCEDURE CALLS

Client Server

.5,,

Figure 4.3: A one-to-many call

A one-to-many call could be expressed as several concurrent processes, each performing
a conventional remote procedure call, but the present formulation has the advantage of
showing how to implement the algorithm using multicast operations 111,22).

4.3.2 Many-To-One Calls

Now consider what occurs at a single server when a client troupe makes a replicated
call to it. The server will receive call messages from each client troupe member, as shown
in Figure 4.4; this is called a many-to-one call. The semantics of replicated procedure call
require the server to execute the procedure only once and return the results to all the client
troupe members. The many-to-one call algorithm must therefore solve the following two

problems:

1. The server must be able to distinguish unrelated call messages from ones that are
part of the same replicated call.

2. When one call message of a replicated call arrives, the server must be able to
determine how many other call messages to expect as part of the same replicated
call.

The solution to the first problem follows from the assumption that troupes are deter-
minstic: two or more call messages arriving at a server bear the same thread ID and call

sequence number if and only if they are part of the same replicated call.

To see why, observe that if two call messages are part of the same replicated call,
then the client troupe members that sent them are acting on behalf of the same logical
thread of control, so the thread ID propagation algorithm (described in Section 3.4.1)

attaches the same thread ID to each call message. Since the troupe is deterministic, the

IN

; '', . #.J. ,'': _.,.' ' ' " ' .' ', ' " • -" " .'. d - . . -- ' . " " "'" "" . " "" "

4.3. IMPLEMENTING REPLICATED PROCEDURE CALLS 29

Client Server

Figure 4.4: A many-to-one call

same call sequence number is used by each client troupe member. Conversely, if two call
messages represent distinct procedure calls, then either different logical threads of control
are making the calls, in which case the call messages will bear different thread ID, or they
are different calls from the same logical thread of control, in which case the call messages
will bear different call sequence numbers.

The solution to the second problem requires a unique ID for each troupe (assigned by
the binding agent described in Chapter 6) and an additional field in the call message header
containing the client troupe I). When a server receives a call message, it maps the client
troupe ID into the set of module addresses of the members of the client troupe. This is
done by consulting a local cache or by contacting the binding agent. In this way, the server
learns how many call messages to expect as part of the many-to-one call.

The client troupe ID and thread ID allow the server to collect the entire set of call
messages that form a many-to-one call. The -ocedure is executed once, and a return
message containing the results is sent to each member of the client troupe. The server
adopts the thread ID in the call header as its own for the duration of the procedure
execution (as described in Section 3.4.1) so that the thread ID will be correctly propagated
if any further remote calls are made during the procedure.

In Circus, the server waits for cal messages from all available client troupe members
before proceeding. Alternatives to this strategy are discussed in Section 4.3.4 below.

4.3.3 Many-To-Many Calls

In general, a replicated procedure call is a many-to-many call from a client troupe to a
server troupe, as shown in Figure 4.1. A many-to-many call involves the following steps:

1. Each client troupe member sends a call message to each server troupe member.

' .. -.

L- - _5 V

30 CHAPTER 4. REPLICATED PROCEDURE CALLS

2. Each server troupe member receives a call message from each client troupe member.

3. Each server troupe member performs the requested procedure.

*4. Each server troupe member sends a return message to each client troupe member.

5. Each client troupe member receives a return message from each server troupe
member.

The key to the many-to-many case is the observation that steps I and 5 are the same
steps that an unreplicated client performs when making a one-to-many call to a server
troupe, and steps 2, 3, and 4 are the same steps that an unreplicated server performs
when handling a many-to-one call from a client troupe. The general case therefore factors
into the two special cases already described; no additional algorithms are required for the
general case. Each client troupe member executes the one-to-many algorithm (as if it were
an unreplicated client calling the server troupe), and each server troupe member executes
the many-to-one algorithm (as if it were an unreplicated server handling an incoming call
from the client troupe).

Observe also that there is never any communication between members of the same
troupe in the five steps listed above; communication occurs only between members of
different troupes. This means that nowhere in a troupe member is there any information
about other members of its own troupe, or whether it is replicated at all. Neither the
protocol routines in the run-time system nor the stub procedures produced by the stub
compiler use such information.

Finally, notice that messages are sent only in steps 1 and 4, and in both these steps,
the message is sent to an entire troupe. Thus, call messages are sent to the entire server
troupe, and return messages are sent to the entire client troupe. These steps obviously
correspond to multicast operations.

A multicast implementation makes a dramatic difference in the efficiency of the repli-
cated procedure call protocol. Suppose that there are m client troupe members and n
server troupe members. Point-to-point communication requires a total of mn messages to
be sent. In contrast, a multicast implementation requires only m + n messages to be sent.

4.3.4 Waiting for Messages to Arrive

A client making a one-to-many call requires a single result, but it receives a return
message from each server troupe member. Similarly, a server handling a many-to-one call
must perform the requested procedure once, but it receives a call message from each client
troupe member.

Since troupes are assumed to be deterministic, all the messages in these sets will be
identical. When should computation proceed: as soon as the first message arrives, or only
after the entire set has arrived?

Waiting for all messages to arrive and checking whether they are identical is analogous
to providing error detection as well as transparent error correction. Any inconsistency
among the messages is detected, but the execution time of the replicated program as a
whole is determined by the slowest member of each troupe. This unanimou' approach is
used by default in the Circus system.

4.3. IMPLEMENTING REPLICATED PROCEDURE CALLS 31

If one is willing to forfeit such error detection, then a first-come approach can be used,
in which computation is allowed to proceed as soon as the first message in each set arrives.
In this case, the execution time of the program as a whole is determined by the fastest
member of each troupe.

The first-come approach requires only a simple change to the one-to-many call protocol.
The client can use the call sequence number provided by the paired message protocol to
discard return messages from slow server troupe members.

The many-to-one call protocol becomes more complicated; in this respect, the first-come
approach destroys the symmetry between the client and server halves of the protocol. The
server must be allowed to start performing a procedure as soon as the first call message
from a client troupe member arrives. When a call message for the same procedure arrives
from another member of that client troupe, the server cannot execute the procedure again,
because that would violate the exactly-once execution property. The server must therefore
retain the return message until the corresponding call messages from all other members of
the client troupe have arrived. Whenever such a call message arrives, the return message
is retransmitted. Execution of the procedure thus appears instantaneous to the slow client
troupe members, since the return message is ready and waiting.

Note that once a client troupe member has received the results of its call, it is free to
go ahead and make more calls. Therefore, as the slower members of the client troupe fall
further and further behind the faster ones, the server must buffer more and more return
messages. When a call message arrives from one of the slower client troupe members, the
server must be able to find its earlier response from among the buffered return messages,
in order to retransmit it. The call sequence number associated with each message by the
paired message protocol suffices for this purpose, because of the assumption that troupes
are deterministic and the argument used in Section 4.3.2.

A better first-come scheme can be implemented by buffering messages at the client
rather than the server. In this case, the server broadcasts return messages to the entire
client troupe in response to the first call message. A client troupe member may receive a
return message for a call message that has not yet been sent; this return message must
be retained until the client troupe member is ready to send the corresponding call message.

This approach is preferable to buffering messages at the server, for the following reasons:

1. the burden of buffering return messages and pairing them with the corresponding
late call messages is placed on the client, rather than a shared and potentially
heavily-loaded server;

2. the server can use broadcast rather than point-to-point communication; and

3. no communication is required by a slow client once it is ready to send a call message,
since the corresponding return message has already arrived.

Majority voting schemes require similar buffering of return messages. Simulations and
queueing models have been used to analyze the buffering requirements in this context as a
function of the variation in execution rate [116].

~Error detection is desirable in practice, since programmers may not be sure that their

proceed early, a watchdog scheme can be used. This technique requires that the computation
be structured as one or more transactions (described in Chapter 5). Computation proceeds

32 CHAPTER 4. REPLICATED PROCEDURE CALLS

with the first message, but another thread of control (the watchdog) waits for the remaining
messages and compares them with the first. If an inconsistency is detected by the watchdog,
the main computation is aborted. Note that this scheme also requires buffering (in the form

of transaction workspaces) to compensate for the skew in execution rates of different troupe
members.Many other schemes are possible in addition to the approaches described here. Discov-
ering and evaluating such variations is an important area for future research.

4I.5 Crashes and Partitions

Whenever a troupe member is waiting for one or more messages in the one-to-many and
many-to-one call algorithms, the underlying message protocol uses probing and timeouts
(described in Section 4.2.3) to detect crashes. This mechanism relies on network connec-
tivity, and therefore cannot distinguish between crashes and network partitions.

Network partitions raise the possibility of different troupe members continuing to exe-
cute, each believing that the others have crashed. To prevent troupe members in different
partitions from diverging, one can require that each troupe member receive a majority of
the expected set of messages before computation is allowed to proceed there.

4.3.6 Collators

One way to relax the determinism requirement (at the cost of transparency) is to allow
programmers to specify their own procedures for reducing a set of messages to a single
message. Such procedures are called collators.

A collator is a function that maps a set of messages into a single result. To improve
performance, it is desirable for computation to proceed as soon s enough messages have
arrived for the collator to make a decision. (This is equivalent to using lazy evaluation [29,35]
when applying the collator.) A solution to the problem of how to incorporate collators at
the programming language level is presented in Section 7.4.

Three collators are supported at the replicated procedure call protocol level (viewing
the contents of call and return message. as uninterpreted bits): unanimos, which re-
quires all the messages to be identical and raises an exception otherwise; majority, which
performs majority voting on the messages; and first-come, which accepts the first message
that arrives. The framework of replicated calls and collators is sufficiently general to ex-
press weighted voting [30,79] and other replicated or broadcast-based algorithms [55,76].
Programmers can define their own application-specific collators using the mechanisms de-
scribed in Section 7.4.

4.3.7 Implementation Details

Nelson argues persuasively that, in the presence of concurrency, parallel invocation se-
mantics rather than serial are needed in order to match the semantics of the local case [731.

When incoming calls are serialized by arrival time, the possibility of deadlock is introduced.
This type of deadlock does not occur when incoming calls are handled by concurrent pro-
ceases.

The Circus implementation suffers from this deficiency because of the lack of multiple
lightweight processes within the same address space under Berkeley 4.2BSD. A partial

..~*. .. .* %... 4.... .*""".

4.4. PERFORMANCE ANALYSIS 33

solution has been provided in the form of a simple process mechanism for C that supports
several threads of control and provides synchronization primitives for signaling and awaiting
events.

The Berkeley 4.2BSD networking primitives used by Circus do not currently allow
access to the multicast capabilities of the Ethernet [22]. If this functionality were added,
the operation of sending the same message to an entire troupe could be implemented by
a multicast operation, and the binding agent (described in Chapter 6) could manipulate
Ethernet hardware group addresses.

4.4 Performance Analysis

4.4.1 Measurements

Experiments were conducted to measure the cost of replicated procedure calls as a
function of the degree of replication. The cost of a simple exchange of datagrams was also
measured in order to establish a lower bound.

The experiments were run on lightly loaded University computer center machines during
an inter-semester break. The distributed system consisted of six identically configured
VAXI-ll/750 systems, connected by a single 10 megabit per second Ethernet cable.

Any implementation of a paired message protocol on top of an unreliable datagrarn
layer must perform at least the following steps in the course of a message exchange:

1. Send a datagram.

2. Receive a datagram, specifying a timeout to detect lost datagrams.

The time required to perform these operations therefore represents a lower bound for any
implementation of a remote procedure call protocol using unreliable datagrams.

The client and server shown in Figure 4.5 perform the above operations using UDP data-
grams under Berkeley 4.2BSD. The sendmag and recvuasg functions are general primitives
for sending and receiving datagrams. The alara function uses the setitiaer primitive to
manipulate a software interval timer.

A reliable byte-stream protocol, such as TCP, is generally considered to be inferior to
datagrarms for the purposes of a remote procedure call implementation. The TCP-based
client and server shown in Figure 4.6 are included for the purpose of comparison. Unlike
the UDP client, the TCP client does not need the alarm function, because TCP provides
reliable delivery.

The client and server shown in Figure 4.7 were used to measure the performance of
Circus replicated procedure calls. Recall that the current Circus protocol is implemented
entirely in user mode.

The first set of experiments measured the time per procedure call as a function of the
degree of replication. The time for an exchange of UDP datagrams and the time for an
exchange of messages over a TCP byte-stream are included for comparison. The results are
summarized in Table 4.1. The time of day and the total user-mode and kernel-mode CPU
time used by the client process were recorded before and after each replicated procedure
call, using the Berkeley 4.2BSD gettieof day and getrusage system calls. The entries in

'VAX is a trademark of Digital Equipment Corporation.

o. +. + +'.+ +. ." . ..+ + + ! _ +I,. .+ -

34 CHAPTER 4. REPLICATED PROCEDURE CALLS

client:
procedure

loop
sendass()
alarm(timeout)
recyeas()
alars(O)

end loop
end procedure

server:
procedure

loop
recvmsg()
mendasg()

end loop
end procedure

Figure 4.5: The UDP test client and server

client:
procedure

connect to server
loop

write()
read()

end loop
end procedure

server:
procedure

accept connection from client
loop

read()
4+ write)

end loop
end procedure

Figure 4.6: The TCP test client and server

p. . ..".. *. .

4.4. PERFORMANCE ANALYSIS 35

,a

rpctest:
interface

buffer: type - array of bytes .4

echo: procedure (buffer) returns (buffer)
end interface

client:
module

imports rpctest

b: buffer
begin

* - loop
b :- rpctest.echo(b)

end loop
end

end module

server:
module

exports rpctest
echo:

procedure (argument: buffer) returns (result: buffer)

result :- argument

end procedure
end module

Figure 4.7: The RPC test client and server

degree of real time total cp9 ti*e user Cpu tire keynel cpu tihe
replcation (m /c) (msecs/rpc) rsecs/rpc) rseck/rpc)

(UDP) 26.5 13.3 0.8 12.4
(TCP) 23.2 8.3 0.5 7.8

1 48.0 24.1 5.9 18.2
2 58.0 45.2 10.0 35.2

3 69.4 66.8 13.0 53.8

4 90.2 87.2 16.8 70.4
5 109.5 107.2 21.0 86.1

Table 4.1: Performance of UDP, TCP, and Circus

.%1

. .. . * * * . .

e"-

- -,i' .IV -W -7. - - -.- - -.; Roil .

36 CHAPTER 4. REPLICATED PROCEDURE CALLS

Table 4.1 were calculated by averaging the differences between the before and after values
for each component of the execution time.

Note that the TCP echo test is faster than the UDP echo test. Several factors help
explain this somewhat surprising result. First, the cost of TCP connection establishment
is effectively ignored, since it is amortized over the read and write loop. Second, the
UDP-based test makes two alarm calls, and therefore two setitiner system calls, which
take approximately 1.2 milliseconds each (see Table 4.2); the corresponding TCP timers
are managed by the kernel. Finally, the read and write interface to TCP byte-strearns
is more streamlined than the senduag and recvasg interface to UDP datagrams, which
uses ecstter/gather I/0. The scatter/gather interface uses an array of address/length pairs
to specify the location in user space of the datagram to be received or sent. The array
is first copied from user to kernel space, and then the pieces of the datagram specified by
the array are transferred between user and kernel space. This additional copying does not
occur when the read and write system calls are used.

An unreplicated Circus remote procedure call requires almost twice the time of a simple
UDP exchange. This is largely due to the extra system calls required to handle various
aspects of the Circus protocol. The use of interrupt-driven I/O and timers, for example,
requires substantial trafficking with the software interrupt facilities in order to protect
critical regions. It is worth noting that these facilities are used by Circus to compensate
for the lack of multiple lightweight processes within the same address space under Berkeley
4.2BSD.

Another added expense is the presence of fairly elaborate code to handle multi-homed
machines (machines with more than one network address). In the research computer net-
work at Berkeley, some machines have as many as four network addresses. The senduag
system call does not allow a source address to be specified when the sender is multi-homed.
This means that a multi-homed server is unable to ensure that its reply to a client bears the

same network address that the client used in reaching the server. The only way around this
problem in the current Berkeley 4.2BSD system is for a multi-homed server to use an array
of sockets, one for each of its addresses, and to use the select system call to multiplex
among them. This situation is a design oversight in Berkeley 4.2BSD, not a fundamental
problem.

The incremental expense of a Circus replicated procedure call as the degree of repli-
cation increases is more reasonable. Table 4.1 shows that each additional server troupe
member adds between 10 and 20 milliseconds to the real time per call. The fact that this is
smaller than the time for a UDP datagram exchange shows that the replicated procedure
call protocol achieves some parallelism among the message exchanges with server troupe
members, but it is still the case that each component of the time per call increases linearly
with the size of the troupe. This linear increase is shown in Figure 4.8.

In the second set of tests, an execution profiling tool was used to analyze the Circus
implementation in finer detail. The profiles showed that six Berkeley 4.2BSD system calls
account for more than half of the total CPU time used to perform a replicated procedure
call. Table 4.2 shows the CPU time for each of these primitives. Table 4.3 shows the
percentage of the total CPU time for a replicated call that each of these system calls

* accounts for, as a function of the degree of replication.

These measurements show that most of the time required for a Circus replicated pro-
cedure call is spent in the simulation of multicasting by means of successive sendang oper-

.3

4.4. PERFORMANCE ANALYSIS 37

msecs/call

125

real time

total CPU time
100

kernel CPU time

75'

50:

q*:.25 user CPU tme "

0n

1 2 3 4 5

degree of replication

Figure 4.8: Performance of Circus replicated procedure calls

F.

. . .-- . .- . . . r r r C - r --_

38 CHAPTER 4. REPLICATED PROCEDURE CALLS

system call mseca/call description
sendasg 8.1 send datagram
recvasg 2.8 receive datagram
select 1.8 inquire if datagram has arrived
setitiaer 1.2 start interval timer for clock interrupt
gettineofday 0.7 Let time of day
sigblock 0.4 mask software interrupts to begin critical region

Table 4.2: CPU time for Berkeley 4.2BSD system calls used in Circus

degree of percentage of total CPU time spent in:
replication senduag select recvmsg setitimer gettimeofday sigblock total

1 27.2 11.2 9.2 4.4 2.2 1.7 55.9
2 28.8 12.7 10.6 3.5 2.7 1.2 59.5.
3 32.5 11.7 11.9 4.2 2.6 1.0 63.9.
4 32.9 10.3 10.7 5.4 2.9 0.8 63.0
5 33.0 9.9 11.1 5.0 3.1 0.9 63.0

Table 4.3: Execution profile for Circus replicated procedure calls

ations, and that sendmag is the most expensive of the Berkeley 4.2BSD primitives used by
the Circus implementation.

4.4.2 Theoretical Analysis

Communication dominates the time for a replicated procedure call in the Circus im-
plementation, but that may not be true for future implementations. Another factor to be
considered is the inherent delay introduced by waiting for all replicas of a procedure execu-
tion to complete. This delay might become noticeable in a more efficient, multicast-based
implementation of replicated procedure calls.

Consider the following probabilistic model. A single client makes a replicated procedure
call to a server troupe of size n by multicasting a single call message and receiving all n
return messages. Let Ti be the time at which the client receives the return message
from server troupe member i. The total time for the replicated call is the random variable

T = max(T,...,T). The goal of this analysis is to derive the expected value of T from
the expected values of T,...,T.

Some preliminary mathematical definitions and results are required for the remainder
of the analysis.

Definition 4.1. The harmonic numbers H. are defined by

Hoo I + +P o1 1 1 *' t 1

Theorem 4.2.

nz log j- dz= H,

....

4.4. PERFORMANCE ANALYSIS 39

Proof:

nx~ ~ ~~~k lo I-rfnn

n '

= k(n +k)
k=1

H.

Theorem 4.3. Let X,..., Xn be independent random variables, each exponentially dis-
tributed with mean E[X] = 1/, and let X = max(Xj,..., X,). Then E[X] = H,/A.

Proof: Let F(z) = P[X _ z] = 1 - e- " be the probability distribution function (PDF)
of each X,, and let f(z) = dF(z)/dz = pe - 08 be the corresponding probability density
function (pdf). Then the PDF of X is given by

P[X < zl = P[m&x(X,. .. ,X,) _ z]

= P[XI <ZA...AX, z]S"

- P[Xi < z]...P[X, < z]
= F'(x)"

: -- (1 -e -# z) n .-
-- (1

and the pdf of X is therefore

d
T F(X)" = nF(X)"-'f(X)

= n(1 - e-)-e

So the expected value of X is

E[X] = fo nx(l - e-)n-'pe- A dz

Substituting t = 1 - e-$, we obtain

E[X] = - nt" - 1 log tdt

= H,,Ip

by Theorem 4.2. 0

Returning now to the analysis of replicated procedure calls, suppose that each Tj is
exponentially distributed with mean r. Then by Theorem 4.3, E[T] = H,,r. It can be
shown that H = log n + 0(1) (see Knuth [461, for example). Therefore,

EIT] = rlogn+O(r)

b% . - °...

40 CHAPTER 4. REPLICATED PROCEDURE CALLS

This equation provides an estimate of the average time for a replicated procedure call, given
an efficient multicast implementation and exponentially distributed round-trip times. The
expected time per call increases only logarithmically with the size of the troupe.

Compare this with an implementation (like Circus) that simulates multicast operations
by repeated point-to-point transmissions. Table 4.2 shows that each sendang operation
takes 8 milliseconds. Since the sendang operation in two orders of magnitude slower than
either the time to transmit a packet over the network or the time to execute a simple
procedure on a remote machine, the time per call increases linearly with the size of the
troupe. This conclusion in borne out by the measurements shown in Figure 4.8.

"- The foregoing analysis emphasizes the importance of efficient multicast operations in
an implementation of replicated procedure call.

V - . -.

41

Chapter 5

Replicated Transactions

This chapter discusses the problem of synchronizing concurrent threads of control within
.' a replicated distributed program. Transactions are adopted because they provide both the "

necessary synchronization and a convenient way to undo partially completed computations.
A troupe commit protocol is presented. The protocol guarantees that all troupe mem-

bers commit transactions in the s eorder, but requires communication among troupe
members. The protocol in generic because any local concurrency control method can be
used by any individual troupe member, as long as it orrectly serializes the effcts of trans-i

actions. The protocol is optimistic because it assumes that concurrent transactions are
unlikely to conflict.

A probabilistic model is used to analyze the performance of the troupe commit protocol.
The analysis shows that it is subject to starvation when many concurrent transactions
conflict.

An alternative starvation-free scheme is presented for situations in which the troupe
commit protocol proves unacceptable. This method, based on an ordered broadcast pro-
tocol, does not introduce starvation, but restricts the local concurrency control algorithms
that can be used at each troupe. The local concurrency control algorithms must commit
transactions in an order that is a well-defined function of their arrival order.

5.1 The Synchronization Problem for Troupes

Multiple threads of control give rise to concurrent calls from different client troupes to
the sne server troupe. This is not the same as a many-to-one call, which is handled by the
algorithms described in Section 4.3. For a module to operate correctly in the presence of
concurrent calls from different clients, even without replication, it must appear to execute
those calls in some serial order. Serializability can be achieved by any of a number of
concurrency control algorithms [4,47,591.

When the server module is a troupe, not only must concurrent calls from different client
troupes be serialized by each server troupe member, but they must be serialized in the same
order. Le Lann [59] describes this synchronization requirement as follows:

Fully replicated computing refers to a situation where every action fired by
any operation must be processed by all consumers. In this context, the
purpose of a synchronization mechanism is to guarantee that the ordering
of actions processed by consumers is identical for all consumers.

Correct semantics require proper coordination between the replicated procedure call mech-
anism and a synchronization mechanism, such as nested atomic actions [70,71,84,85]. This
chapter presents the design of such a unified mechanism, which also allows the determinism
constraints on troupe members to be loosened.

42 CHAPTER 5. REPLICATED TRANSACTIONS

5.2 Replicated Lightweight Transactions

A transaction is expressed as a sequence of programming language statements brack-
eted by transaction and end transaction keywords. Transactions can be dynamically
nested, just like procedure activation records. A transaction commits when it reaches
end transaction or when it returns normally. A transaction aborts when an explicit
abort statement is reached or when an exception is raised.

The transaction mechanism for troupes must guarantee serializability and atomicity,
so that when a transaction aborts, its tentative updates and the committed updates of its
uubtransactions can be undone without affecting other concurrently executing transactions.

The nested transaction mechanisms for conventional programs described by Reed [84,85]
and Moss [70,71] not only provide these two properties, but they also guarantee the perma-
nence of committed updates. Stable storage is used for intention lists and commit records,
and the commit algorithm is coupled with a crash recovery algorithm.

This third property (permanence) is not required in programs constructed from troupes,
because troupes automatically mask partial failures. Consequently, an implementation
of transactions for replicated distributed programs can dispense with the crash recovery
facilities based on stable storage and operate entirely in volatile memory. The result is a
more efficient form of transactions called lightweight transactions.

5.2.1 Correctness Condition

The correctness condition for conventional transactions is serializability. With troupes,
however, independent serialization of transactions at each troupe member is not enough:
troupe consistency must also be preserved.

A sufficient condition for preserving troupe consistency is to ensure that all troupe
members serialize transactions in the same order. Existing concurrency control algorithms
for replicated databases guarantee identical serialization orders at all replicas, but many
of these algorithms require communication among replicas [4,59]. The desire for troupe
members to remain unaware of one another's existence rules out the use of such algorithms.

One well-known multiple-copy concurrency control algorithm requires no inter-replica
communication: two-phase locking with unanimous update [4]. This algorithm requires
each replica to use two-phase locking for local concurrency control. The protocol presented
in the next section removes this restriction.

5.3 A Troupe Commit Protocol

The protocol described in this section is optimistic, because it assumes that concurrent
transactions are unlikely to conflict, and it is generic, because it assumes nothing about the
local concurrency control algorithms used by the individual troupe members. The protocol
detects any attempt by troupe members to serialize transactions differently, and transforms
such an attempt into a deadlock. Deadlock detection is then used to abort and retry one
or more of the offending transactions [31,75].

When a server troupe member is ready to commit or abort a transaction, it calls the
following ready-toconait procedure.

ready-tocosit: procedure (boolean) returns (boolean)

5.3. A TROUPE COMMIT PROTOCOL 43

A true argument means that the server troupe member is ready to commit the transaction;
a false argument means that the server troupe member wishes to abort the transaction.
If the readytocomait procedure returns true, the server troupe member goes ahead
and commits the transaction; otherwise, the transaction is aborted. The server's call is
translated into a remote call to the client troupe. The roles of client and server are thus
temporarily reversed; this is known as a call-back protocol.

Each member of the client troupe implements the ready-tocomit procedure as fol-
lows. If each server troupe member calls ready-to.coamit (true), then the client returns
true to the entire server troupe, and the transaction is committed at each server troupe
member. If any server troupe member calls readyto. omait (false), then the client re-
turns false to the entire server troupe, and the transaction is aborted at each server troupe
member. Each member of the client troupe thus plays the role of the coordinator in the
conventional two-phase commit protocol [31,53,571.

The troupe commit protocol has the following essential property.

Theorem 5.1. Two troupe members succeed in committing two transactions if and only
if both troupe members attempt to commit the transactions in the same order.

Proof. Let S1 and S2 be two members of a server troupe S, and let C and C' be two client
troupes. Suppose C performs transaction T at S, and C' performs transaction T at S.

If both S 1 and S2 commit T and T' in the same order, say T followed by T, then both
call ready-to-coaait first at C and then at C'. Client C tells both troupe members to go
ahead, C' does the same, and both S 1 and S2 succeed in committing the transactions.

Now suppose that S1 tries to commit T first, but S 2 tries to commit T first. Then Si
calls ready-tocomait at C and S2 calls readytocoamit at C'. The result is deadlock,
because the ready.to.coaait procedure at each client waits for all members of the server
troupe to become ready before responding to any of them. Therefore, neither S nor S2
succeeds in committing either transaction. 0

The troupe commit protocol therefore ensures that all troupe members commit transactions
in the same order.

Note that it is only necessary to transform different serialization orders into deadlocks
when the different serialization orders would cause inconsistent states at troupe members.
If the transactions being serialized do not conflict with one another, then inconsistency
cannot occur, yet the protocol above may still cause deadlock. To remedy this, the local
concurrency control algorithm should commit non-conflicting transactions in parallel. For
example, using the notation from the proof of Theorem 5.1, suppose that transactions

T and T do not conflict. Then Si and S2 commit T and T in parallel, so S and S2
call both readytocoamit at C and ready.tocoamit at C' in parallel. The deadlock
described above does not occur, because the ready-to.comit procedure at each client
receives calls from both S and S2 .

5.3.1 Performance Analysis

Suppose a server troupe haA n members, and suppose that the number of conflicting
transactions at some moment is k > 1. (Transactions that do not conflict are assumed to
be committed in parallel, as discussed above.) Each member of the server troupe serializes

p44 CHAPTER 5. REPLICATED TRANSACTIONS

these k transactions in some order. To be conservative, assume that each of the kt possibleIorderings is equally likely at each troupe member, and that the troupe members perform
their serializations independently. The troupe commxit protocol of Section 5.3 in free of%

* deadlock when all members of the server troupe serialize all transactions in the same order.
The probability that the n troupe members independently choose the same serialization
order is (ilk!)-', so the probability of deadlock introduced by the troupe commit protocol
is

P[deadlock] 1-()(5)

The above analysis shows that the probability of deadlock rapidly approaches certainty
when the optimistic assumption of few conflicting transactions fails to hold. The troupe
commit protocol is therefore subject to starvation. One way to alleviate the problem is to
use binary exponential back-off 1671 when retrying transactions aborted after a deadlock.
In this scheme, an aborted transaction is delayed for a randomly chosen interval before
being retried. If successive retries are required, the mean delay is doubled each time.

5.4 A Starvation-Free Algorithm -

* The algorithm described in this section insetarvation-free, because it does not introduce
any additional chance of deadlock (unlike the troupe commit protocol). It uses an ordered
broadcast protocol and requires a deterministic local concurrency control algorithm at each
troupe member.

* The ordered broadcast protocol guarantees that concurrent broadcasts are never inter-
* leaved: all recipients of broadcast messages accept them for application-level processing in

the same order. The protocol assumes synchronized clocks [50]. It is a modification of an
atomic broadcast algorithm due to Skeen [95], which also handles failures of the sender and
recipients. The ordered broadcast protocol is simpler because the replicated structure of
troupes obviates the need for this type of crash recovery.

The ordered broadcast protocol is shown in Figure 5.1. The protocol is expressed in
terms of replicated procedure calls, using the explicit replication approach of Section 7.4.
The P (x at troupe construct indicates a replicated call to the specified troupe.

The protocol involves two phases, based on the procedures get-.proposed-.tiae and
accept-.time. A client wishing to perform an ordered broadcast begins by calling
get-.proposed-.time with its message. Each server troupe member responds to the
get-.proposed-.tiae procedure by inserting the message in its queue and proposing a time
at which it will accept the message fo: processing. The client then calls accept-.time
with the maximum of these proposed times. Each server troupe member performs theU
accept-.time procedure by changing the status of the message to accepted and changing
the position of the message in the queue to reflect the accepted time for it. A server only
accepts a message for processing if its status is accepted, its acceptance time has actually
arrived, and there are no messages with earlier proposed times that have not yet been
accepted. The members of the server troupe therefore accept these broadcast messages in W
the same order.

The starvation-free concurrency control scheme requires that replicated transactions be
initiated by means of the ordered broadcast algorithm, so that each transaction has the

5.4. A STARVATION-FREE ALGORITHM 45 a

-- Client side
atomic-broadcast:

procedure (message, troupe)

proposals := get-proposed.time(message) at troupe
max :- 0

for time in proposals() do
if time > max then max :- time

end for
accept.time(message. max) at troupe

end procedure

-- Server side

status: type - {proposed. accepted)
message-queue: queue of (message, time. status) -- ordered by time

get.__proposed.time:

procedure (message) returns (time)
time :- nowO -- current time from synchronized clock
insert (message, time. proposed) into message-queue

return time
end procedure

accept-time:

procedure (message. accepted-time)
remove (message, -. proposed) from message-queue
insert (message, accepted-time. accepted) into message-queue
loop

(message. time, status) :- head of message-queue
if status = proposed or time > now() then

exit
end if
-- accept message for application-level processing

end loop
end procedure

Figure 5.1: The ordered broadcast protocol

46 CHAPTER 5. REPLICATED TRANSACTIONS

sam time stamp (its acceptance time) at each troupe member. Furthermore, it requires
the same deterministic concurrency control algorithm at each troupe member.

A concurrency control algorithm is deterministic if it guarantees that the serialization
order of a set of concurrent transactions is a well-defined (deterministic) function of the
order in which they arrived. When combined with ordered broadcast, the deterministic
concurrency control algorithm ensures that all troupe members serialize transactions in the
same order.

A trivial example of a deterministic concurrency control algorithm is serial execution in
chronological order, but the lack of concurrency makes it unacceptable. Another possibility
is the combination of time stamps and two-phase locking described by Rosenkrantz et al. [86]

5.5 Discussion

Both of the approaches to synchronization presented in this chapter have disadvantages.
The troupe commit protocol of Section 5.3 is subject to starvation under conditions of heavy
load. The starvation-free scheme of Section 5.4 limits the potential concurrency that can
be achieved.

An alternative is to take a programming-in-the-large approach to synchronization, in
which the choice of concurrency control scheme is made on a module-by-module basis.
Most modules in a replicated distributed program could use the optimistic commit protocol,
while those modules subject to high degrees of concurrency could use the ordered broadcast
protocol.

Attempting to provide general-purpose concurrency control with no knowledge of the
semantics of the application may be too ambitious. Application-specific synchronization
will occasionally be required. The semantics of the Grapevine system, for example, make
eventual convergence an acceptable alternative to instantaneous consistency.

oh.

- * . .

47

Chapter 6

Binding and Reconfiguration

This chapter reviews the binding problem for unreplicated distributed programs, and
then addresses the additional problems of binding and reconfiguring programs constructed
from troupes. Ringmaster, the binding agent for the Circus system, is described. The me-
chanics of adding a new troupe member to an existing troupe are discussed. A probabilistic
analysis of crash and replacement of troupe members is used to express the availability of
a troupe as a whole in terms of the lifetime, replacement time, and degree of replication of
its members. The question of how long to wait before replacing defunct troupe members
is also answered.

6.1 Binding Agents for Distributed Programs

A binding agent is a mechanism that enables programs to import and export modules
by interface name. In the case of distributed programs constructed with remote procedure
calls, the interface name must be associated with the address of the server that exports
it, and must be looked up by the client that imports it. These functions (registration,
lookup, and perhaps deletion) can be provided by a general-purpose name server. For
example, Grapevine [9] is used as the binding agent in the Xerox PARC RPC system [10],
and Clearinghouse [76] plays the same role for Courier [115].

A natural means of reducing the coat of name server lookups is to have clients cache the
results of such lookups. Thus, a client contacts the binding agent only when it imports an
interface, and it uses the same information for all subsequent remote calls to that module.
This raises the classic cache invalidation problem: what happens when a client's binding
information becomes stale because the information at the name server has8 changed?

Suppose a client makes a remote call to a server using its cached information. In the
case of programs constructed from conventional remote procedure calls, there are three
reasons why the cached information might be stale:

1. There is no longer a server at the specified address.

2. There is a server at that address, but it no longer exports the specified interface.

3. There is a server at that address and it exports that interface, but the actual instance
of the module in question is no longer the same as the one originally imported by
the client.

If all three of these cases can be detected at or below the remote procedure call protocol
level, the run-time system can raise an exception in the client to indicate that rebinding
is required. Therefore, the problem of masking stale binding information reduces to the
problem of detecting the above three cases.

The first can be detected at the paired message protocol level, since there will be no
response to repeated retransmissions. The second can be detected at the remote procedure

48 CHAPTER 6. BINDING AND RECONFIGURATION

* call protocol level, because the server's run-time system will reject the call. The third case
requires some help from the binding agent, in the form of incarnation numbers for exported

* interfaces, as in the system described by Birreil and Nelson 1101. This scheme time-stamps
the record created when a server registers itself with the binding agent. The client's run-
time system receives the time stamp along with the server addres when it imports an
interface and includes it in all subsequent calls to that module. It is thus a simple matter
for the server's run-time system to detect and reject mismatches.

* A related problem is garbage collection, which is required when some of the binding
agent's own registration information becomes obsolete. This can happen if a server crashes
or otherwise ceases to export an interface without informing the binding agent. The prob-
1cmn of garbage collection reduces to the cache invalidation problem, since the information
maintained by the binding agent is itself just a cached version of the truth. Of the above
three ways in which binding information can be out of date, only the first two apply to the

* binding agent. The third case is detected by the binding agent itself as part of the process
* of assigning incarnation numbers: when a server re-exports an interface, the binding agent

will notice that there is already an entry for that name and address. In the first two cases,
however, it is the client that ends up detecting the invalid binding; this fact must somehow
reach the binding agent.

One solution is to include a special rebind procedure in the interface to the binding
agent. Each client, upon detecting an invalid binding, calls rebind with the invalid binding
as an argument. The binding agent looks up and returns the current binding for the given
name, and deletes the old binding if it is still present. (The old binding passed to the
rebind procedure is only a hint; it need not be deleted immediately, nor should it be

* blindly accepted as invalid in an insecure environment.)
Another solution is to use a garbage collector: a process which periodically enumerates

all the registered modules, probes them with a special null procedure call (an "are you
* there?* request), and explicitly deletes the bindings for modules that do not respond. The

garbage collector need not be part of the binding agent if the binding interface includes
* enumeration and deletion.

6.2 Binding Agents for Replicated Programs

Replicated distributed programs import and export troupes rather than single modules,
and therefore require additional support from the binding mechanism. First of all, the

* binding agent must manipulate sets of module addresses rather than ingle addresses, and
* it must manage the troupe Me. required by the replicated procedure call algorithms of

Section 4.3. The binding agent must allow a third party (such as the configuration manager
of Section 7.5.3) to register an entire troupe. Finally, it must be possible to add or delete
individual troupe members, in order to handle troupe reconfiguration.

- Since binding is such a pivotal mechanism, it is essential that the binding agent be
highly available. An obvious choice is to make the binding agent a troupe and express the
interactions with it in terms of replicated procedure calls. The interface to such a binding
agent is shown in Figure 6.1.

The initial registration of a troupe also requires the ability to add a member to an
* existing troupe. A troupe cannot register itself en masse with a single replicated pro-

cedure call, because it does not have a troupe ID until it is registered. To avoid this

.5

6.2. BINDING AGENTS FOR REPLICATED PROGRAMS 49
,5

binding:
interface

troupe-name: type = string
troupe-member: type - module-address
troupe: type = set of troupe-member
troupeid: type = unique-id

register-troupe:
procedure (troupe-naae. troupe) returns (troupe.id)

addtroupeneaber:
procedure (troupe-name. troupe-member) returns (troupe.id)

lookup-troupe-by-name:
procedure (troupenaae) returns (troupe)

lookup-troupe.by-id:
procedure (troupe-id) returns (troupe)

end interface

Figure 6.1: The interface to the binding agent

circularity, each troupe member must add itself individually to an initially empty troupe,
using add.troupesnember. The synchronization requirements of the add-troupe.-member
operation are discussed below.

The cache invalidation problem becomes more complicated when replication is intro-
duced. Let T be the set of members of a troupe, and let C be the cached set of members that
a client believes constitutes the troupe. Then C is stale if and only if C $ T. The possibil-
ities for stale information correspond to the possible intersections of these two nonempty
sets:

1. TnC=.

2. TcC

3. TDC

4. TnC$OATtCAT6C

The semantics of troupes and replicated procedure calls require every member of a
server troupe to execute a procedure if any member does. This will be the case if T = C,
TnC = 0, or T C C. The first two possibilities for stale information are therefore harmless;
the client will detect that some or all of the members of C are invalid, and perform the
necessary rebinding. In the last two cases, however, the client calls some but not all of the
troupe members; these calls cannot be allowed to succeed.

The solution is to use troupe IDs as a form of incarnation number. Each call message
carries the troupe ID of its destination as well as its source, and each server troupe member
rejects any call message whose destination troupe ID is incorrect. If it can be guaranteed
that a troupe always changes both its membership and its troupe ID in an atomic operation,
then the problem is solved: a server troupe member accepts a call from a client only if it

..

* . - ..

50 CHAPTER 6. BINDING AND RECONFIGURATION

add-troupemember:
procedure (troupe-nao. troupeanenber) returns (troupe-id)

transaction
troupe - lookup-troupe.by-naae (troup_name)
troupe :- union(troupe. {troupe-nenber))

troupe.id := new.troupeid()
set.troupeid(troupe-id) at troupe
return troupeid

end transaction
end procedure

Figure 6.2: Adding another member to a troupe

bears the correct server troupe ID, which is the case only if the client knows the correct
membership of that server troupe.

The add-troupeaember procedure must therefore be an atomic transaction that also
changes the troupe ID. This requires informing the existing members of the troupe that their
troupe ID has changed, which can be accomplished by running a special set-troupe-id
procedure at each member. The aettroupeid procedure for each troupe can be gener-
ated automatically, in the same way that stub procedures are produced (see Section 7.1).
If aet-troupeid is executed as a subtransaction of add.troupe-neber, the change in
troupe ID and troupe membership will happen atomically and will be correctly serialized
with any other calls to the server troupe.

Code for the add-troupsnenber procedure is shown in Figure 6.2. Note that both
the addition of the new member and the change in troupe ID occur within an atomic
transaction. The set.troupe-id(troupe-id) at troupe construct indicates a replicated
call to the aet-troupe.id procedure, because all members of troupe must be informed of
the new troupe ID.

6.3 The Ringmaster Binding Agent

The Ringmaster is the binding agent for troupes in the Circus system. It is a specialized
name server that enables programs to import and export troupes by name. It plays the
same role that Grapevine does in the Xerox PARC RPC system [9,101. The main differences
are that the Ringmaster

* manipulates troupes (sets of module addresses),

* is a dedicated binding agent, and

* is itself a troupe whose procedures are invoked via replicated procedure calls.

The Ringmaster and its clients make use of the following types of objects:

module names
A module name is what a program uses to import or export P module, and is

6.4. RECONFIGURATION AND RECOVERY FROM PARTIAL FAILURES 51

determined by the programming environment. Module names are represented as
character strings.

module addreees
A module address (defined in Section 4.3) uniquely identifies an instance of a module
in the internet.

troupes
A troupe is represented by the set of module addresses of its members.

troupe ID'
A troupe ID corresponds to a unique troupe in the internet. Since troupes may be
long-lived, a permanently unique ID is used.

The interface to the Ringmaster is essentially identical to the binding interface shown in
Figure 6.1.

A client imports a module by calling lookup-troupeby-nae. This procedure returns
the set of module addresses associated with that name.

A server exports a module by calling addtroupe-aeaber. If there is already a troupe
associated with the specified name, the exported module is added to it as a member;
otherwise, a new troupe is created with the exported module as its only member. The
troupe ID is returned.

The UNIX process ID of the server process is also recorded in the entry for the module,
so that the Ringmaster can periodically perform garbage collection of troupe members
whose processes have terminated.

A server handling a many-to-one call uses lookup.troupe-byid to map the client
troupe ID into the set of module addresses of the members of the client troupe (as described
in Section 4.3).

Access to the binding procedures is by means of stubs produced by the stub compiler
from the Ringmaster interface. These stubs are part of the Circus run-time system.

Since the Ringmaster cannot be used to import itself, a special degenerate binding
mechanism is used for the Ringmaster module: the Ringmaster troupe is partially specified
by means of a well-known port on each machine, and the set of machines running instances
of the Ringmaster is determined at run-time. Currently, a configuration file is used for this
purpose; a better solution would be a broadcast protocol.

6.4 Reconfiguration and Recovery from Partial Failures

A troupe is resilient to partial failure., in which at least one of its members continues
to function. Machine crashes are detected (using a timeout as described in Section 4.2.3)
by the paired message protocol, which raises an exception that can be used by higher level
software. At some point it becomes desirable to replace troupe members that have crashed,
because a diminished troupe is more vulnerable to future crashes.

6.4.1 Adding a New Troupe Member

Adding a new troupe member to an existing troupe requires the following two steps:

-A- -

• "- ' - ' "-. -" " ."." .. -- .. ,-' ,' . . -. -' / - .".- -.- "- " ..- _ ,. , .. -. - ". . . , . ' .

52 CHAPTER 6. BINDING AND RECONFIGURATION

1. the new member must be brought into a state consistent with that of the other
members, and

2. the new member must be registered with the binding agent.

This section describes how to perform the first step; the add.troupe.neaber procedure
(described in Section 6.2) is used to accomplish the second step.

The solution is to use a mechanism similar to checkpointing. In this scheme, the state
information of an existing troupe member is externalized (converted to a standard external
representation), then transmitted to the newly created troupe member, where it is inter-
nalized. The transmission method for abstract data types proposed by Herlihy and Liskov
is similar [36].

A special get-state procedure can be produced automatically by a stub compiler (dis-
cussed in Section 7.1) for this purpose. The get-state procedure copies the module state
from the callee to the caller and handles the details of externalization and internalization.
This procedure executes as a read-only atomic transaction, so that the state cannot be
affected while a new troupe member is being initialized. A new server process wishing to
join a troupe initializes its state by making a replicated call to the get-state procedure at
the existing members of the troupe, and then calls the binding agent's add-troupe.meaber
procedure to register itself. Since the states of the existing troupe members are consistent,
and since get-state is free of side effects at the callee, the replicated call to get-state
is not strictly necessary; an unreplicated call to any of the existing troupe members would
suffice.

Finally, the call to add-troupe -member and the call to get-state must be bracketed
together in a single atomic transaction, to guarantee that the new member joins the troupe
and acquires the correct state as an indivisible operation.

6.4.2 Analysis of the Reliability of Troupes

. The availability A of a troupe is defined to be the equilibrium probability that the
troupe is functioning. The goal of this analysis is to relate A to the average lifetime of

*: individual troupe members and the average time to replace a failed troupe member.
Suppose a troupe has n members. Call a crash of a troupe member a failure, and

call its replacement a repair. For each functioning troupe member, the lifetime, or time
until failure, is assumed to be exponentially distributed with mean 1/A, and for each failed
troupe member, the repair time is assumed to be exponentially distributed with mean I/p.
Equivalently, each troupe member has an average failure rate of A and an average repair rate
of p. Troupe members are assumed to fail and be repaired independently of one another.

With these assumptions, a troupe can be modeled as a special kind of discrete-state,
continuous-time Markov process, called a birth-death process, in which transitions occur
only between adjacent states. The birth-death model of a troupe is shown in Figure 6.3.
The n + 1 possible states of the system represent the number of troupe members that have
failed, from 0 to n. A transition from state k to state k + I represents a failure; a transition
from state k to state k - 1 represents a repair. The equilibrium probability that the system
is in state k is denoted p%. Since the troupe continues to function as long as not all n
members have failed, the availability A of the troupe is the probability that the system is
not in state n, so A =I -pn.

- . *

6.4. RECONFIGURATION AND RECOVERY FROM PARTIAL FAILURES 53

nA (n -1).k2

0 1 2 n-2* 1

2p (n - *A)

Figure 6.3: Birth-death model of troupe reliability

This birth-death process is isomorphic to a queueing system with a finite population of
n customers and a server for every customer: the M/M/n/n/n queue analyzed by Klein-
rock [45]. Under this isomorphism, an arriving customer corresponds to the failure of a
troupe member, and a departing customer corresponds to the repair of a troupe member.
Since the customer population is finite and every customer has a server, there is never more
than one customer at a server. This corresponds to the fact that once a troupe member
fails, it cannot fail again until after it has been repaired.

Kleinrock's analysis of the M/M/n/n/n queueing system [45] shows that pk, the prob-
ability of k failed troupe members, is as follows.

(p is" k=0,..., n(= (+

Therefore,

(A +\L
A - = -(A) (6.1)

and solving for the average replacement time 1/p,

1_ 1 (1- A) / .

M A -(1-)1 / ~(6.2)j, I 1- A)I/n

Equation 6.1 shows that, as expected, the reliability of a troupe increases dramatically
when the number of troupe members increases or when the failure rate for troupe members
decreases relative to the repair rate. Furthermore, given a desired degree of availability and
an average lifetime 1/A for troupe members, Equation 6.2 can be used to determine the
necessary replacement time.

Suppose, for example, that a troupe consisting of three members must be available
99.9 percent of the time. Then A = 0.999, 1 - A = 0.001, and (1 - A)1/3 - 0.1, so by
Equation 6.2, the replacement time can be at most 1/9 of the lifetime. If each troupe
member has an average lifetime of one hour, say, then the average replacement time must
be no longer than 6 minutes and 40 seconds in order to achieve 99.9 percent availability.

A given level of reliability can be achieved with a longer average replacement time if
the degree of replication is increased. If the troupe in the above example consisted of five
members, the replacement time could be 20 minutes (1/3 of the average lifetime) and the
troupe would still achieve 99.9 percent availability.

.

.. .. ,. ;. ..;.°.i ... : ? ..% °. ..-.--: .--,.-.,-. .-:-- ,,. i?.-: -,7 : i. , i:--. ... I.

7 -,7- 'wr r

54

Chapter 7

Programming Language Issues

This chapter discusses some of the issues that arise when mechanisms for replicated
distributed programs are integrated into programming environments. The stub compiler

* approach is used. After an overview of the stub compilation process, four examples are
presented.

* The first is the stub compiler used in the Circus system [19]. It translates interfaces
specified in the Courier language [1151 into client and server stub routines in C [441. The
stub routines take responsibility for sending parameters and results between client and
server troupe members via a replicated procedure call run-time system. Two examples
of adding remote procedure call to Lisp [28,103] are presented, and a stub compiler for
Modula-2 [113] is described. Some observations on the relationship between programming
languages and remote procedure call are presented.

Stub compilers normally hide details of the underlying system from the programmer,
but there are cases in which the programmer desires explicit access to these aspects of the
system. Two such case are examined: explicit binding and explicit replication.

Finally, a configuration language and configuration manager are presented. These
tools help cope with the programming-in-the-large aspects of constructing programs from
troupes.

7.1 Stub Compilers

* The purpose of a stub compiler is to translate a module interface into stub procedures
for the client and server halves of a remote interface. The stub procedures are responsible
for:

" communicating with the binding agent

* ezternalizing and internalizing objects of various data types

* passing parameters, results, and exceptions between machines

*Externalization is the process of translating an object from its internal form to an
external representation as a sequence of bytes, and internalization is the inverse process of
translating the sequence of bytes back into the internal representation of the object; see
Figure 7.1. Nelson calls these two translation processes marshaling and unmarakaling [73].

The stub procedures typically require a run-time system that provides access to the
transport protocol and binding agent. The run-time system is also responsible for providing
correct procedure invocation semantics, by creating and destroying server processes as
appropriate. In Circus, for example, the run-time system implements the paired message
and replicated procedure call protocols, the topl.evel server loop that accepts incoming
calls, and the import and export procedures for contacting the Ringmaster binding agent.

Table 7.1 lists four stub compilers constructed during the course of this research, and
Table 7.2 characterizes the programming languages used in these stub compilers.

55

p P.

ezternalize

form form "

internalize

Figure 7.1: Externalization and internalization

interface language stub language
Courier C (compiled)
Courier Lisp (interpreted)

Lisp Lisp (interpreted)
Modula-2 Modula-2 (compiled)

Table 7.1: Stub compilers

progr ning type compile-time run-time
language declarations clecking checking

C yes some no
Lisp no no yes

Courier yes
Modula-2 yes yes yes_.-

Table 7.2: Summary of interface and stub languages

~"

56 CHAPTER 7. PROGRAMMING LANGUAGE ISSUES

NameServer: PROGRAM 26 VERSION 1
BEGIN

-- Types.
lae: TYPE - STRING;
Property: TYPE - RECORD [naai: Name. value: SEQUENCE OF UNSPECIFIED];
Properties: TYPE - SEQUENCE OF Property;
-- Errors.
AlreadyExists: ERROR 0;
NotFound: ERROR R 1;
-- Procedures.
Register: PROCEDURE [name: Nane. properties: Properties]

REPORTS [AlreadyExiste] a 0;
Lookup: PROCEDURE (nane: Name]

RETURNS [properties: Properties]

REPORTS [NotFound] - 1;
Delete: PROCEDURE [name: Name]

REPORTS [NotFound] -2;

END.

Figure 7.2: Courier specification of a remote interface

7.1.1 Courier to C

An interface specification in Courier consists of declarations of types, constants, and

procedures. Some Courier features are not present in many programming languages: error
types (exceptions) that procedures may report in lieu of returning a result, constants of
arbitrary constructed types, and procedures that return multiple results. In particular,
because of the lack of these features in C, they are not supported in this implementation.

The predefined types include Booleans, 16-bit and 32-bit signed and unsigned integers,
and character strings. The constructed types are enumerations, arrays, records, variable-
length sequences, and discriminated unions. An example of a Courier program is shown in
Figure 7.2.

The predefined types and the enumeration, array, and record types have obvious C
counterparts. The variable-length sequences and discriminated unions pose some problems
when they are mapped into C, because an object of one of these types must contain run-

time information (the length of the sequence or which member of the union is present)
that is implicit in the Courier type, but must be made explicit in C. Furthermore, the C
programmer must bear the responsibility of keeping this information consistent when these
objects are manipulated by functions other than those produced automatically by the stub
compiler.

The Courier protocol specifies how objects of each type are represented when transmit-
* ted in call and return messages. Most of the work of the stub routines consists of translat-

ing parameters and results between their external and internal representations. This may
" involve byte-swapping of integers, realignment of record fields, and storage allocation for
". objects of variable-length types.

***.-*.r: . ?.e .. I

Im
7.1. STUB COMPILERS 57

(PROGRAM NaeServer (26 1)
TTPES (..

(Name STRING) i

(Property (RtECORD (nme Name) (value (SEQUENCE UNSPECIFIED))))
)(Properties (SEQUENCE Property)) .

(AlreadyExists 0)
(NotFound 1)

PROCEDURES (

(Register ARGS (Name Properties) RESULTS) ERRORS (AlreadyExists) 0)
(Lookup ARGS (Name) RESULTS (Properties) ERRORS (NotFound) 1)
(Delete ARGS (Name) RESULTS) ERRORS (NotFound) 2)

)

Figure 7.3: Representation of a Courier specification in Interlisp-D

The stub compiler also produces binding stubs to import and export the interfaces
that it processes. These routines make replicated procedure calls to the Ringmaster as
described in Section 6.3. The representations of troupes that are returned by these binding
procedures are used by Ghe client and server stub routines. In this way, once a program has
been compiled, no editing or recompilation is required to change the number or location of
troupe members.

7.1.2 Courier to Lisp .

Xerox Interlisp-D workstations use the Courier remote procedure call protocol to make
use of services such as name lookup, printing, and filing. These services are specified in the
Courier language, but are called directly from Lisp.

Remote procedure calls were added to Interlisp-D by representing each Courier spec-
ification in list structure, and using this specification to translate between the Lisp and
Courier representations of data at run-time. Figure 7.3 shows the Lisp representation of
the Courier program of Figure 7.2.

The Courier protocol uses the Sequenced Packet Protocol (SPP) as its underlying mes-
sage transport mechanism [114,115]. SPP is integrated into Interlisp-D as a subclass of
I/O streams. The functions in Figure 7.4 are the basis for Courier support in Interlisp-D.
The CourierOpen function opens an SPP stream, performs the initial exchange of version
numbers required by the protocol, and returns a stream that can be used for subsequent
Courier calls to that machine. The CourierCall function performs a remote procedure
call. It calls CourierWrite and CourierRead to externalize and internalize Lisp values,
using the representations specified by the Courier protocol as the external form. These two
functions take as arguments the type of the object being converted and the name of the
Courier program in which that type is declared.

58 CHAPTER 7. PROGRAMMING LANGUAGE ISSUES

(CourierOpen machine-name) *> stream
(CourierCall stream program-nae procedure-name argi ... argNI) -> results
(CourierWrite stream program-name type value)
(CourierRead stream program-name type) a> value

Figure 7.4: Interlisp-D functions for Courier remote procedure calls

7.1.3 Lisp to Lisp

Stub procedures are effectively unnecessary in pure Lisp, because the language itself
defines a standard external form: the usual parenthesized representation of list structure.
Externalization and internalization are trivial, thanks to the standard Lisp functions print
and read. The essential property of these functions is that the result of reading a printed
form is equal (in Lisp) to the original form.

Remote procedure calls were added to Lisp [28] using variants of the standard print and
read functions: vector-print and vector-read. The vector-print function converts a
Lisp form to a vector of bytes that can be transmitted in a message, and the vector-read
function converts the vector of bytes back into the original Lisp form.

No attempt was made to handle objects not present in pure Lisp, such as circular or
shared list structure.

7.1.4 Modula-2 to Modula-2

During the course of this research, a stub compiler was constructed at the DEC Systems
Research Center for an extended version of Modula-2 [87,113]. Modula-2 is a strongly
typed programming language that supports separate definition modules and implementation
modules. The extended language uses a descendant of Powell's Modula-2 compiler [83]. This
compiler does not compile definition modules into symbol tables for later use; instead, the
hnport statement is implemented by textual inclusion. Because of this, there are only two
reasonable alternatives for constructing a remote procedure call stub compiler:

1. Modify the normal compiler to produce symbol tables for definition modules, and
then use these symbol tables as the input to the stub compiler.

2. Use the front end of the normal compiler, but replace the code generation phase by
stub generation.

The second alternative was chosen. Once some hooks were added to the front end, the
differences between the normal compiler and the stub compiler were the following:

" The initial production of the YACC [41] grammar for the language was changed
from a compilation unit to a definition module.

" The code generation phase was entirely replaced by stub generation, using a different
implementation of the same interface.

This approach makes it simple to keep the stub compiler in step with the normal compiler
when changes are made to the language.

7.-S

7.1. STUB COMPILERS 59

The input to the stub generation phase is a parse tree whose nodes represent the dec- I
larations in the definition module. This is another advantage of sharing the front end with
the normal compiler: the internal form of the parse tree and the routines for manipulating
it are already available.

The compiler assumes that a file named Test. dot contains a definition module named
Teat. The stub compiler normally produces the following four files from the input file
Teat.def.

TestRPC. def
The definition module for an auxiliary interface, TestRPC, that declares the RPC
import and export procedures that clients and servers must call.

TeatServer. mod
The server implementation of the TestRPC interface. It contains the export proce-
dure, a dummy import procedure, and the server stubs.

TestRPC. mod
The client implementation of the To stRPC interface. It contains the import procedure
and a dummy export procedure.

TestClient. mod
The client implementation of the Test interface. It contains the client stubs.

The extensions made to Modula-2 by the researchers at DEC Systems Research Center
fall into three categories: exception handling, storage allocation and deallocation, and
concurrency. Each of these extensions affects the stub generation process, so they are
summarized here.

The first group of extensions allows the programmer to declare, raise, and catch excep-
tions, using the following forms.

exception name (argument);

raise(name. argument);

try ... except ... end

The extensions having to do with storage allocation are based on a new type constructor,
ref T, that replaces the existing pointer to T constructor. In addition, automatic storage
deallocation, or garbage collection, is provided. The user does not explicitly deallocate
objects; instead, a garbage collector deallocates objects automatically when they become
unreachable from the user's program.

Standard Modula-2 has a limited form of variable-length array type, called an open
array, that can only appear as the type of a formal parameter. Extended Modula-2 allows
types of the form ref array of T to appear anywhere, as in the following example.

var a: ref array of T;

With this declaration, an array of any size can be created at run-time by calling new(a .n);
its elements are accessible as a- [0],... ,a' [n-i].

- . . - - -- . . .

.........

60 CHAPTER 7. PROGRAMMING LANGUAGE ISSUES

Concurrency is available in extended Modula-2 in the form of multiple threads of control.
Synchronization is provided by means of locks, condition variables, and wait and signal
operations.

Exceptions and dynamic arrays must be represented in messages, so them extensions
affect the externalization strategy used by the stub procedures. The presence of concurrency
affects the binding procedures: the desire for concurrent threads to be able to import
different instances of the same interface emphasizes the need for an explicit binding option.

The stub compiler for Modula-2 does not define a single external representation for
types; instead, the external form is negotiated when a client binds to a server. The negoti-
ation process assumes that each Modula-2 type has the same size on all machines, and that
there are only two possible ways of representing integers: most significant byte first or least
significant byte first. Two machines are compatible if they use the same representation for
integers. The stub compiler can produce stubs that decide whether or not to byte-swap at
run-time, based on the result of the negotiation, or it can produce more efficient stubs that
never byte-swap. The results of the possible negotiations between an incompatible client
and server are as follows:

1. If neither client nor server is able to byte-swap, the binding attempt fails.

2. If only one of the client/server pair is able to byte-swap, the appropriate ane is told
to byte-swap and the binding attempt succeeds.

3. If both client and server are able to byte-swap, the client is told to byte-swap and
the binding attempt succeeds.

Normally, the stub compiler produces server stubs that cannot byte-swap and client
stubs that can, with the expectation that the client can better afford the time required to
byte-swap than the server. Stub compiler options allow any of the four possible combina-
tions to be produced, however. For instance, generating server stubs with the ability to
byte-swap allows the server to handle "dumb clients". An example of a dumb client might
be a workstation whose bootstrap code uses client stubs to call upon network services. If
the bootstrap code must fit in a limited amount of read-only memory, it might be desirable
to shift the burden of byte-swapping to the server.

Parameters are passed either by value or by reference in Modula-2. A better scheme,
at least for the purposes of remote procedure call, allows parameters to be declared as In,
out, or in out. This allows the stub compiler to copy parameters in only one direction
when possible.

A stub compiler must choose between in-line code or procedures to externalize data
types. Using only in-line code can require enormous amounts of code space for large inter-
faces with complicated data types. Using only procedures can be too slow for simple data
types. The Modula-2 stub compiler uses both methods, depending on the complexity of
the type.

The stub compiler examines all data types that are reachable from the definition module
it is processing. Reachable types are those that appear as parameters, results, and exception
arguments. A marking algorithm is used to detect recursive types, which are not handled
automatically. A type that is fixed-size and requires no byte-swapping is called cop iable,
because its bits can be transferred directly to and from the packet. If a type is copyable,
the stub compiler externalizes it in-line.

-, ¢ , ..,.* .,..,-.. •

7.2. OBSERVATIONS AND LESSONS 61

Externalization procedures are then generated for the types that are not copyable. It
in also a simple matter to declare that certain types are to be externalized by user-supplied
procedures. For example, the run-time system includes such a procedure to externalize a
commonly used imutbl string type that cannot be handled automatically.

Pointers are normally dereferenced automatically when externalized and re-referenced
when internalized. Note that sharing among pointer-containing objects is not preserved. If
the programmer knows that a pointer will never be dereferenced in a remote address space,
the pointer type can be declared a handle; in this case, only the bit pattern of the pointer
is copied.

Once externalization procedures have been generated, stubs are produced for each pro-
cedure in the interface. The stub compiler first re-orders the parameter and result list
so that the copyable parameters are first, and declars call and return packet overlay
records for them. The call packet overlay record contains In parameters and the return
packet overlay record contains out parameters. The In out parameters are present in both
packets; to minimize copying in the server stub, these appear in the same position in both
packets (at the beginning).

The non-copyable types are externalized by calling the appropriate procedure. The
parameters to the externalization procedure include the object, a pointer to the current
packet, and the current byte offset within the packet.

7.2 Observations and Lessons

Experience with the four stub compilers described above leads to a number of obser-
vations about the relationship between programming languages and remote or replicated
procedure call systems.

The most important lesson is the following: the success of a stub compiler depends on
how well the interface language matches the stub language. If there is a natural correspon-
dence between constructs in the two languages, the resulting system is easy for programmers
to use. If the correspondence is awkward or impossible, because either the interface lan-
guage or the stub language lacks a particular construct, then the programmer is presented
with restrictions or idioms that must be obeyed when writing client or server code. The
best match, of course, occurs when the interface and stub languages are the same.

If there is a natural correspondence between an interface language and a stub language,
then they are isomorphic in an informal sense. It follows that the stub languages that can be
used well with a particular interface language are isomorphic both to the interface language
and to each other. This observation leads the author to the conclusion that language-
independent interface specification languages, like Courier [115] and Matchmaker [42], are
destined to enjoy only limited success.

It was noted in Section 7.1.4 that copy-in and copy-out parameter-passing semantics
are preferable to by-value and by-reference parameter-passing semantics. This leson can
be generalized: language constructs that have only a single use are preferable to thoae that
can dieguue a multiplicity of intentions on the part of the programmer.

The "Swiss army knife" philosophy of language design, which advocates the use of a
single language construct for multiple purposes whenever possible, should be rejected in
favor of "one construct, one use". If there is only a single reason to use a particular language
construct, then the occurrence of that construct in a program uniquely determines the

...........

62 CHAPTER 7. PROGRAMMING LANGUAGE ISSUES

reason foir its use. This makes it easier for both humans and stub compilers to understand
the programmer's intention.

Here are some examples of the *one construct, one use' principle:

9 Pascal and Modula-2 var parameters are used both for results and to pass large ob-
jects efficiently; copy-in/copy-out semantics are preferable, leaving the optimization
to the compiler.

* Providing an explicit finalization control structure (such as unwind-protect in
Lisp) in better than making the exception-handling mechanism do double duty.

* Providing both poipters and variable-length arrays in a type system is preferable to
lumping them together as in C.

A final lesson concerns the limits of automation in stub compilers. There will always

be data structures for which the programmer can do a better job of externalizing than the
stub compiler. The designer of a stub compiler should therefore provide a convenient way
for programmers to specify their own externalization procedures for particular types.

7.3 Stubs with Explicit Binding

The primary function of a stub compiler is to incorporate remote procedure calls into a
programming language as transparently as possible, but sometimes it is desirable to violate
this transparency. Binding is a case in point.

In a single-machine program, there is typically only one implementation module for
each interface, and it is bound into the program before execution begins (if static linking
is used) or when the module in referenced (if dynamic linking is used). The form of remote
binding that most closely mirrors these local semantics is implicit binding, in which the
stub compiler produces a procedure that the client calls to import a remote module. Since
only one implementation of an interface can be imported at a time, the import procedure
is free to keep private state information about the identity of the imported module.

Suppose a client wishes to use several servers that export the same interface: several
file servers, for example. The import procedure cannot maintain global state information
if the client uses the different servers concurrently. Even if the client used the different
servers sequentially, the import procedure would have to be called repeatedly to change the
binding.

The solution adopted in the Courier-to-C stub compiler (Section 7.1.1) and the Modula-
to-Modula stub compiler (Section 7.1.4) is to surrender transparency and use ezplicit bind-
ing. When explicit binding is used, the stub compiler produces an import procedure that

returns a binding handle to the client. This binding handle points to the state information
that would otherwise have been maintained privately by the import procedure. Instead of
producing stubs for the original interface, the stub compiler creates a variant interface in
which each procedure is re-declared as taking an additional parameter: the binding handle.
Figure 7.5 shows how explicit binding could be used by a client to perform a third-party
file transfer, albeit inefficiently [69].

Using an extra parameter and a separate interface for the variant declarations has the
advantage of not requiring any extensions to the language; it can be implemented solely by
the stub compiler. In a language designed for distributed programming, however, an explicit

1W
-. -.A

*7.3. STUBS WITH EXPLICIT BINDING 63

-original interface to file system
I ilesystem:

interface
read: procedure (file) returns (page)
write: procedure (file. page)
end-.of-.file: procedure (file) returns (boolean)

end interface

-client interface produced with explicit binding option
remote. filesystem:

interface
binding: type - opaque
import: procedure (location-name) returns (binding)
read: procedure (binding. file) returns (page)
write: procedure (binding, file. page)
end-.of-.file: procedure (binding, file) returns (boolean)

end interface

-client of two instances of the file system interface
client:

module
imports remote-.filesystem
begin

bindingi := import(serverl)
binding2 :a import(server2)
while not and-.of-.file(bindingl. file) do

write(binding2. file. read(bindingl, file))
end while

end
end module

Figure 7.5: Use of explicit binding

of thATE i.m: OG: AM:GLANGUAGE ISSUESue ontctn

notation mgtbprfrbeSoeothex plsin ti israinueacntuto

a mdul. I anobject-based language, this approach could be used to implement remote

7.4 tubswithExplicit Replication

Thee ae ocasonswhen it is desirable to sacrifice replication transparency in order to
take adatg fapplication-specific knowledge. Consider a read-only query of a replicated
database [301, for example, or a broadcast protocol for resource location [11,761. In these
cases, the client only needs responses from a subset of the server troupe, and should use
a collator (such as first-come) that terminates as soon as enough results are received. An-

* other class of examples arise when a client must resolve inconsistencies among server troupe
members in an application-specific manner. For instance, algorithms to maintain synchro-
nized clocks [34,52,651, or more generally, to reach approximate byzantine agreement [24],
involve averaging a set of values received from other machines. To express these algorithms

* in terms of replicated procedure calls, the client should use an application-specific collator
to define the appropriate averaging function.

The need to define application-specific collators raises the problem of how to make
replication visible at the programming language level in a consistent, expressive, and type-
safe way. The solution proposed here uses an iteration construct called a genecrator (or an

* iterstor in CLU) to achieve these goals [32,60,92].
A generator is a procedure that produces a sequence of results, rather than just one. In

a language with generators, the conventional for loop

for I : 1 to 10 do

end for

can be replaced by

for i in interval(1.10) do

end for

* where interval is a generator defined as follows.

interval:
generator (low. highi: Integer) yields (1: integer)

i :- low
while I <n highi do

yield i
I :

end while
end generator

7.4. STUBS WITH EXPLICIT REPLICATION 65

An activation record, or context, is created for a generator when it is first invoked at
the beginning of a for loop. When a yield statement in the generator is reached, control
returns to the caller along with the specified value, but unlike a conventional subroutine,
the generator's context is not destroyed. When the generator is called again at the next
iteration of the for loop, execution resumes in the same generator context, immediately
following the yield statement. Thus, the generator and its caller obey a stylized coroutine
discipline.

When the generator terminates normally (by executing its last statement), the caller's
for loop terminates. If the generator terminates because of an exception, the caller's for
loop terminates and the exception is raised in the enclosing context. Conversely, if control
leaves the body of the for loop by means of a return, loop exit, or exception, the generator
is terminated.

Some languages include constructs that specify finalization code to be executed when-
ever control leaves a particular context, typically to restore an invariant. Examples include
the unwind-protect form in Lisp [97] and the finally clause in extended Modula-2 [87].
In such languages, any finalization code in an active generator that surrounds the most
recently performed yield statement must be executed whenever the caller's for loop ter-
inates.

An interesting degenerate case arises when the yield statement is used only to transfer
control, without yielding any values. A generator of this type is analogous to a procedure
that returns no value; it can be used solely for control flow, or it may communicate values by
means of shared variables. Although this type of generator is not supported by Alphard [92],
CLU [601, or Icon [32], it appears to fill a useful niche, and turns up naturally in the
constructions described below. Support for it will therefore be assumed.

Generators provide an elegant means of giving the programmer control over the collating
process. A stub compiler option can be used to specify that replication is to be made visible
in the client or the server or both. With this explicit replication option, the stub compiler
translates a procedure of the form

procedure (x returns (y)

into generator-passing procedures of the following forms. On the client side:

procedure Wx returns (results: generator ()yields (y))

On the server side:

procedure (arguments: generator 0) yields (x) returns (y)

Although it would be simpler to use

generator (x yields (y)

on the client side, the generator-returning procedure better exhibits the symmetry with the
server, and simplifies the interface to the underlying replicated procedure call protocol (see
Figure 7.11 below).

The degenerate form of generator (which yields no values) arises on the client side as
the translation of a procedure with no results, and on the server side as the translation of
a procedure with no arguments.

!p

l'66 CHAPTER 7. PROGRAMMING LANGUAGE ISSUES

original interface to read-only file system
*. filesystem:

interface
read: procedure (file) returns (page)

end interface

-- client interface produced with explicit replication option
replicated-filesystem:

interface
read: procedure (file) returns (results: generator () yields (page))

end interface

-- client of file system
client:

module
imports replicated.filesystem
begin

pages :n read(file)

-- pages() generates the set of responses
for page in pages() do

-- exit loop when an acceptable page is received
if acceptable(page) then exit

end for
end

end module

Figure 7.6: A client's use of explicit replication

The violation of replication transparency entailed by the explicit replication option
is reflected in the structure of the stub compiler's output. Since the types of the stub
procedures do not match the types of the procedures in the original interface, variant client
and server interfaces must be produced which re-declare the procedures in the above two
forms. This situation is analogous to producing stubs with explicit binding handles. There
are no pitfalls here for the programmer because the new type is a well-defined function of
the original type and is easily used. The following two examples show this.

Figure 7.6 shows how a client can use explicit replication to short-circuit the normal
process of waiting for all of the answers to a replicated call. The value returned by the
client's call is a result generator, which when invoked yields each server troupe member's
response. The client can stop iterating through these responses as soon as an acceptable
one is found.

Figure 7.7 shows hew a server can use explicit replication to collate the incoming argu-
ments of a many-to-one call. Here the parameter to the eet-temperature procedure is an
argument generator: when invoked, it yields each client troupe member's argument. The
set-tesperature procedure computes the average of the different temperatures supplied

J.

7.4. STUBS WITH EXPLICIT REPLICATION 67

S.

a.

-- original interface to temperature controller
controller:

interface
set-temperature: procedure (temperature)

end interface

-- server interface produced with explicit replication option
replicatedcontroller:

interface
set-temperature: procedure (arguments: generator () yields (temperature))

end interface

-- server for temperature controller

server:
nodule

exports replicated-controller
set-temperature:

procedure (arguments: generator) yields (temperature))
-- compute average value of arguments
for temperature in arguments() do

sun :- sun + temperature
a :n+ 1

end for
average :- sum/n
-- set temperature to average

end procedure
end module

Figure 7.7: A server's use of explicit replication

68 CHAPTER 7. PROGRAMMING LANGUAGE ISSUES

unanimous:
procedure (g: generator 0) yields Wx) returns Wx

seen :- false
for x in gO do

it not seen then
representative :a x
seen :a true

else if X <> representative then
error: disagreement

end if
end for
return representative

end procedure

Figure 7.8: Unanimous collator

* firstcome:
* procedure (g: generator C)yields Wx) returns Wx

for x in go do
-- return. terminating generator early
return x

end for
end procedure

Figure 7.9: First-come collator

* by its callers (the client troupe members) and uses this average value in its subsequent
actions.

Figures 7.8, 7.9, and 7.10 demonstrate how generators can be used to program three
* kinds of collators. Note that the calculation of the median in Figure 7.10 can be performed
* in linear time [38).

It remains to be shown how the appropriate generator objects can be constructed from
the underlying replicated procedure call protocol. Figure 7.11 defines a generator that yields
the sequence of messages arriving from a troupe. The generator connections (troupe) is

* used to iterate over the connection records for each member of the given troupe. Each
troupe is associated with a condition variable troupe . status.change that is signaled by
the protocol implementation whenever a message arrives from any member of the troupe.
The connection. status field indicates whether a message on that connection is still ex-

* pected, has just arrived, or has already been seen. When the status of a connection is
arrived, the connection. message field holds the message.

................-- ----. 2-

.- - . * - - - - -, : . U .5, ~ F2.P 7P i . F7F2 ; y:.7 2 .t r . J'WW

7.4. STUBS WITH EXPLICIT REPLICATION 69

maj ority:
procedure (g: generator 0 yields (x)) returns (x)

values: array of x
n :8 0

for x in gO do

n : +n 1
values~n] :a x

end for

-- if there is a majority value it must equal the median

a :a median(values)

-- check whether there is a majority value by counting

count :a 0
for i :a 1 to n do

if values[i] - a then
count :- count + 1

end if

end for

if count) n/2 then

return a

else

error: no majority

end if

end procedure

Figure 7.10: Majority collator

..-" p

1

.-.-.--. . .

-r~~~7 VW t. %.' Lrr v,
TV V7r -'', -'.

70 CHAPTER 7. PROGRAMMING LANGUAGE ISSUES
6t

messages:
generator (troupe) yields (message)

loop
in-progress :a false
new.arrival : false
for conn in connections(troupe) do

case conn.status of
expected:

in-progress : true
exit

arrived:
newarrival : true
conection :a con'
exit

seen:
-- continue Iterating

end case
end for
if hew-arrival then

yield connection. message
else if in-progress then

await troupe .status_change

else
-- all messages have been seen
exit

end if
end loop

end generator

Figure 7.11: Generator of messages from a troupe

p

Ib

9.' 9,

7.5. PROGRAMMING-IN-THE- LARGE 71

7.5 Programming-in-the-Large

A configuration is a mapping from troupes to sets of machines. A configuration lan-
guage allows the programmer to specify the set of acceptable configurations of a replicated
distributed program. A configuration manager uses this specification to perform the neces-
sary creation and binding of troupe members when the program is started or dynamically
reconfigured.

A configuration language is an important programming-in-the-large tool. Without such
a tool, programmers would be forced to resort to ad hoc methods of instantiating and
reconfiguring distributed programs.

7.5.1 Configuration Languages

The idea of a module interconnection language was introduced by DeRemer and
Kron [21] after the initial work on the subject by Parnas [77]. Practical examples of such
languages include the Mesa configuration language C/Mesa [68] and the Cedar system
modeling language SML [58,89].

In a distributed environment, a distributed configuration language is required [73]. In
addition to providing the functions of a module interconnection language, a distributed
configuration language allows the programmer to control the mapping of modules to ma-
chines. Replicated distributed programs require still more functionality, namely the ability
to specify replication on a module-by-module basis. It should be possible to specify the
degree of replication of individual modules without having to modify them. In order to
handle dynamic reconfiguration, this service must be available to the program while it is
executing.

7.5.2 A Troupe Configuration Language

The troupe configuration language introduced in this section allows a programmer to
specify the configuration of a troupe (the degree of replication of the troupe and on which
machines the troupe members should execute) without modifying the source code for the
module being replicated.

Mappings between troupes and sets of machines are specified in terms of the required
attributes of the machines. A similar approach was taken in the design of the Resource
Manager for the Cambridge Ring [20,72]. This approach allows the programmer to specify
those machine attributes that are important for each troupe member, while leaving unspec-
ified those that are irrelevant. If more than one machine has the required attributes, so
much the better: there will be more latitude in instantiating and reconfiguring the troupe,
and more opportunity for optimization.

The troupe configuration language is an extension of propositional logic with variables
that range over the machines in the distributad system. Each machine possesses an exten-
sible list of attributes, which are simply pairs of names and values. Values may be strings,
numbers, or truth values. For example, a machine m might have the attributes

((name, "UCB-Monet"), (memory, 10), (has-floating-point, true))

to indicate that its name is "UCB-Monet", it has 10 megabytes of memory, and it has
floating point hardware. Note that the name of a machine is just another attribute.

. *

.

72 CHAPTER 7. PROGRAMMING LANGUAGE ISSUES

(formula) ((formula))

I (formula) and (formula)
I (formula) or (formula)
I not (formula)
I (variable) . (property)
I (term) (relation) (term)

(term) (variable). (attribute)

I (constant)
(relation) = II< I -<I > I>

(constant) : (string) I (number)

Figure 7.12: Configuration language for troupes

The following is an example of a formula (p(z) in the troupe configuration language.

z.name = "UCB-Monet" and z.memory = 10 and x.has-floating-point

The machine m of the previous example is said to satisfy the formula P(z) because 9(m)
Sis true. A Boolean-valued attribute such as 'has-floating-point" is called a property; dis-

tinguishing properties from other attributes makes the Boolean constants true and false
unnecessary. The BNF grammar for this language is shown in Figure 7.12.

A formula i(zi,... ,Zn) in the language of Figure 7.12 is used to specify a troupe as
follows:

* troupe(xj,..., z.) where x(z,...,z,)

The troupe members are required to be distinct; the language contains no provision for com-
paring two machines for equality, only for comparing attribute values. Since any troupe
that satisfies the specification W(z1,...,zn) must have n members, it is impossible to spec-
ify a troupe of variable size. It remains to be seen whether this restriction will prove

" inconvenient in practice.

i 7.5.3 A Troupe Configuration Manager

The troupe configuration manager described here uses a set of troupe specifications
to instantiate a troupe and to reconfigure it. Reconfiguration can occur either after a
partial failure, as discussed in Section 6.4, or because a troupe specification has been
changed. Both instantiating a troupe and reconfiguring a troupe are instances of the

. following troupe extension problem: given a troupe specification P(zi, ... ,z), a universe U
* of machines and their attributes, and a particular set of machines M C_ U, find a new set
•.Ad = (inj,...,m) C U that satisfies p and is as close to M as possible. The latter

condition can be formalized as follows. Let S e T denote the symmetric set difference
(S - T) U (T - S) and let ISl denote the cardinality of set S. Then AV satisfies o and is
as close to M as possible if

S P(Ar) ^vs [so(s) * IS e MI 2! IM' e mi]

7.5. PROGRAMMING-IN-THE-LARGE 73

Note that the instantiation problem is just the case where M = 0.
A configuration manager for troupes can therefore be based on a single procedure

extend.troupe:
procedure (specification. oldtroups) returns (newtroupe)

that searches a database of machine attributes for acceptable troupe extensions. A ver-
sion of this procedure that handles only instantiation was implemented in Lisp [28], using
backtracking to perform an exhaustive search. The exponential-time complexity of this
procedure is acceptable given the small number of variables (troupe members) in most
troupe specifications.

A full configuration manager requires server processes at each machine to handle the
details of module instantiation. Under Berkeley 4.2BSD [431, for example, the system
utilities for remote file transfer and remote command execution can be used for this purpose.

J.

S o " -.

74

Chapter 8

Conclusion

This chapter summarizes the contributions of this dissertation and suggests some areas
* for further research.

8.1 Summary

A new software architecture for fault-tolerant distributed programs is presented. The
mechanisms described in this dissertation allow a programmer to add replication trans-
parently and flexibly to existing programs. The resulting replicated distributed programs
automatically tolerate partial failures of the underlying fail-stop hardware.

* The architecture combines remote procedure calls with replication of program modules
* for fault tolerance. The replicated modules, called troupe., are the basis for constructing

replicated distributed programs.
Previous fault-tolerant architectures were either too expensive or too inflexible. Simple

* replication of hardware components, for example, requires all software to be executed re-
dundantly, rather than just critical modules, and permits only a single degree of replication.
In contrast, the present approach introduces replication at the program module level, and
allows the degree of replication of each module to vary independently and dynamically.

The replication mechanisms introduced in this dissertation can be used transparently,
* so that the details of replication are invisible to the programmer. Transparent distributed
* and replicated mechanisms are an important means of coping with the complexity of fault-

tolerant distributed programs. A formal model of program semantics is used to characterize
deterministic programs, a class of programs that can be transparently replicated.

The model is based on program modules and threads of control. In a distributed system,
threads must be able to cross machine boundaries to move between modules on different
machines. An algorithm to simulate such distributed threads in terms of conventional
processes and remote procedure calls is presented.

Transfer of control between troupes requires generalizing remote procedure calls to
replicated procedure calls. The semantics of replicated procedure calls can be summarized
as exactly-once execution at all replicas.

The Circus replicated procedure call implemnentation is described. Message transport
is provided by a datagram-based paired message layer. The general replicated procedure
call protocol, requiring many-to-many communication, is expressed in terms of two sub-
protocols, for the one-to-many and many-to-one cases.

* In the Circus system, each troupe member waits for all incoming messages before pro-
ceeding. Troupe members are thus synchronized at each replicated procedure call and
return. Alternative schemes that allow computation to proceed before all messages have
arrived are discussed.

Experiments were conducted to measure the performance of the Circus replicated proce-
dure call implementation. The results of the measurements show that six Berkeley 4.2BSD

-Z -U- .1k Wl -W I- L - 7.-7 7.- :. - - S

8.2. DIRECTIONS FOR FUTURE RESEARCH 75

system calls account for more than half of the CPU time of a Circus replicated procedure
call. The two most expensive of these system calls use a particularly inefficient interface to
copy data between user and kernel address spaces. The other four system calls are used to
compensate for the lack of lightweight processes in Berkeley 4.2BSD.

The use of transactions for synchronizing concurrent threads of control within replicated
distributed programs is discussed. Serializability, the property guaranteed by concurrency
control algorithms for conventional transactions, is shown to be insufficient for the purposes
of replicated transactions, because it does not guarantee that transactions commit in the
same order at all troupe members.

A troupe commit protocol that guarantees a consistent commit order for replicated
transactions is presented, and a probabilistic model is used to analyze its performance.
The analysis shows that the protocol might not make any progress if there are many con-
flicting transactions. An alternative approach, based on an ordered broadcast protocol, is
presented.

Mechanisms for binding and reconfiguring replicated distributed programs are de-
scribed. The problem of detecting obsolete binding information is identified; this prob-
lem is both more complicated and more critical than the corresponding problem in the
unreplicated case. A solution using troupe ID as incarnation numbers is presented.

A probabilistic model of troupe reliability is used to analyze when to reconfigure a
troupe after a partial failure. The results of the analysis relate the lifetime, replacement
time, and degree of replication of troupe members to the overall availability of the troupe.

Issues relating to programming languages and environments for reliable applications
are discussed. At the programming-in-the-small level, stub compilers are used to integrate
remote and replicated procedure calls into programming languages. Four stub compilers
are described, and a number af lessons and observations are presented.

The replication mechanisms introduced in this dissertation can be used explicitly, so
that the details of replication are accessible to the programmer. The stub compiler approach
is used to give the programmer explicit access to replication in a powerful and type-safe
way.

It is important for programmers to be able to specify and control the configuration
of replicated distributed programs at the programming-in-the-large level. Two tools were
designed for this purpose: a troupe configuration language, for specifying acceptable map--
pings of troupe members to machines; and a troupe configuration manager, for instantiating
and reconfiguring troupes.

8.2 Directions for Future Research

Replicated procedure calls are useful for more than just fully replicated distributed pro-
grams. The two-phase commit and ordered broadcast protocols in Chapter 5 are examples
of how the use of replicated procedure calls leads to an elegant formulation of algorithms
traditionally described in terms of asynchronous messages.

An important area for further research is to express more algorithms of this type in terms
of replicated procedure calls. For example, the algorithms used in distributed database
systems for concurrency control, replicated data, atomic commit and recovery, and deadlock
detection would lend themselves to such treatment.

Further research is needed to evaluate the alternative replicated procedure call protocols

S.* a-
5

s.S

76 CHAPTER 8. CONCLUSION

described in Section 4.3.4, and to discover new ones. An approach that allowed the choice
between such schemes to be made on a per-module basis, as a programming-in-the-large
activity, would be attractive. P

The replicated transaction algorithms presented in Sections 5.3 and 5.4 must be imple-
mented and their performance evaluated. Allowing application-specific concurrency control
within the context of troupes is another area for further work.

A fully functional configuration language and manager should be implemented, along
the lines discussed in Section 7.5.3. A graphical user interface would provide a powerful
means of manipulating module interconnections.

Recall that generators were adopted in Section 7.4 to permit explicit use of replication
at the programming language level. Programming languages should support generators as
first-class objects, which includes allowing generators to appear in interfaces. Generators
should also be callable remotely to preserve transparency.

*- Nelson describes a general mechanism for remote transfer of control between contexts
" that suffices to implement coroutines and other control structures [73]. Remote transfers

can be implemented directly at the protocol level using reliable messages, or they can be
translated by the stub compiler into remote procedure calls.

Since generators embody a restricted form of coroutine discipline, remote generator
invocations do not require the full generality of the remote transfer operation. It may be
possible for a transport level protocol to use this restriction to advantage, much as the paired
message protocol uses the call/return semantics of procedure calls to reduce the number
of acknowledgments. Designing a single protocol that handles procedures, generators, and
exceptions efficiently is a challenge for future researchers.

I, " ." ' ' '" . . - . . . ' . , .- . . " - ' - . " . . , . ' " . . " - ' . ' . " . , • . , ' . - ; . - . - , - ", - ". - , - / ; ' ' '

77 P

References

[11 J. E. Aflchn and M. S. McKendry. [91 Andrew D. Birrel, Roy L ~vln, Roger M.
Synchronisation and recovery of actions. Needham, and Michael D. Schroeder.
Proceedings of the Ond Annual ACM Sympo- Grapevine: An exerciee In distributed com-

sium on Principles of Distributed Comput- puting.
ing, August 1983, pages 31-44. Communications of the ACM 25(4), April

Operating Systems Reniew 19(1), January 1982, pages 260-274.
1985, pages 32-45.

1101 Andrew D. Birrll and Bruce Jay Nelson.
(21 T. Anderson and P. A. Lee. Implementing remote procedure calls.

Fault Tolerance: Principles and Practice. ACM 21ansactions on Computer Systems
Prentice-Hall, 1981. 2(1), February 1984, pages 39-59.

[31 Joel F. Bartlett. [11] David Reeves Boas.
A NonStop kernel. Internet Broadcasting.
Proceeding& of the 8ta Symposium on Opert- Ph.D. dissertation, Department of Electrical

ing Systems Principles. Engineering, Stanford University, October
Operating Systems Review 16(5), December 1983.

1981, pages 22-29. Report CSL-83-3, Xerox PARC.

[41 Philip A. Bernstein and Nathan Goodman. [12] Anita Borg, Jim Baumbach, and Sam Glazer.
Concurrency control In distributed database A message system supporting fault tolerance.

systems. Proceedings of the 9th ACM Symposium on
Computing Surveps 13(2), June 1981, pages Operating System# Principles.

18-221. Operating Systems Review 1r7(), October
1983, pages 90-99.

[5] Kenneth P. Birman, Thomas A. Joseph, andThomas Riuchle. [131 Liming Chan and Algirdas Avizieni.
Tomnurrnc nl iN-version programming: A fault-tolerance

Concurrency Control in Resilient Objects.approach to relabiity of software opera-
Report TR 84-622, Department of Computer tion.

Science, Cornell University, July 1984. Diget of Papers, FTC$-8: 8th Annual In- .

ternational Conference on Fault-Tolerant
[6] Kenneth P. Blrman, Amr El Abbadl, Wally Computing, June 1978, pages 3-9.

Dietrich, Thomas A. Joseph, and Thomas
Riuchlo.AnOveew o[14] David R. Cheriton and Willy Zwaenepoel.

An Overview of the ISIS Project. One-to-Many Interprocess Communication
Report TR 84-642, Department of Computer in the V-System.

Science, Cornell University, October 1984. Report STAN-CS-84-1011, Department of

Computer Science, Stanford University,
171 Kenneth P. Birman and Thomas A. Joseph. August 1984.

Low Cost Management of Replicated Data in
Fault-Tolerant Distributed Systems. (15] J. G. Cleary.

Report TR 84-444, Department of Computer Process handling on Burroughs B6500.
Science, Cornell University, October 1984. Proceedings of the 4th Australian Computer

Conference, Adelaide, South Australia,
[8] Kenneth P. Birman, Thomas A. Joseph, 1969, pages 231-239.

Thomas Riuchle, and Amr El Abbadi.
Implementing fault-tolerant distributed ob- [16] Melvin E. Conway.

jects. A multiprocessor system design.
o Proceedings of the 4th Symposium on Relia- Proceedings of the AFIPS 1963 Fall Joint

blity in Distributed Software and Database Computer Conference, volume 24, pages
Systems, October 1984, pages 124-133. 139-146.

ba

~ ~ -

78 REFERENCES

*[171 Erkc C. Cooper. [261 R. S. Fabry.
Analysis of distributed commit protocols. Dynamic verification of operating system de-
Proceedings of the 19NS ACM SIGMOD In- cisions.

ternalionel Conference on Management of Commuwnications of the ACM1G(11), Novem-
Data, June 1982, pages 175-183. ber 1973, pages 659-668.

[IS] Eric C. Cooper.
Replicated procedure call. [271 R. S. Fabry. '

Proceedings of the 3rd Annual ACM Sympo- Capability-based addressing.
sium on Principles of Distributed Comput- Communications of the ACM 17(7), July
ing, August 1984, pages 220-232. 1974, pages 403-412.

* [191 Erkc C. Cooper.
Circus: A replicated procedure call facility. [281 John K. Foderaro, Keith L. Skiower, and
Proceedings of the 4th Symposium, on Reise- Kevin Layer.

bilty in Distributed Software and Database TeFa.Ls aul
System#, October 1984, pages 11-24. Computer Science Division, University of

California, Berkeley, June 1983.
[201 Daniel H. Craft.

Resource management In a decentralized eye- [21D .FidaanD.SWse

temn. CONS should not evaluate its arguments.
Proceedings of the 9th ACM Symposium on In Automata, Languages, end Programming,

Operating Systems Principles, edited by S. NMlchaeison and R. Minor.
Operating System#. Review 17(5), OctoberEdbugUivrtyPes196pas

1983, pages 11-19. Ednbrh7nvestyPo"847,pae

[211 Frank DeRemer and Hans Kron.
Propramming-la-the-large versus (301 David K. Giford.

progr..mming-ln-the-small. Weighted voting for replicated data.
* Proceedings of t 1975 International Con- Proceedings of the 7Mh Symnposium on Operat-

ference on Reliable Software, April 1975, ing Systems Principles.
pages 114-121. Operating Systems. Review 1S(5), December

[221 Digital Equipment Corporation, Intel Corpo- 17,pgs1012
ration, and Xerox Corporation.

The Ethernet: A Local Area Network. (311 J. N. Gray.
September 1980. Notes on data bae operating systems.

In Operating Systems: An Advanced Course,
[231 E. W. D~kstra. edited by R. Bayer, R. M. Graham, and G.

Cooperating sequential processes. Seegmfiller. Lecture Notes In Computer
In Programming Languages, edited by F. Science, volume W0, Springer-Verlag, 1978,

Genuys. Academic Press, 1968, pages 43- pages 393-481.
112.

f 24] Danny Dolev, Nancy A. Lynch, Shiomit S. 132) Ralph E. Griswold, David R. Hanson, and
Plater, Eugene W. Stark, and William E. John T. Korb.
Weihi. Generators In Icon.

Reaching approximate agreement in the pree ACM Ttansactions on Programming Lan-
once of faults. guiages end Systems 3(2), April 1981, pages

Proceedings of the 3rd Symposium on Relia- 144-161.
bility in Distributed Software and Database
Systems, October 1983, pages 145-154.

[331 Per Gunningberg.
[25] K. P. Eswaran, J. N. Gray, Rt. A. Loris, and Voting and redundancy management impI..

L L. Traiger. mented by protocols In distributed sye-
The notions of consistency and predicate toms.

locks in a database system. Digest of Papers, FTCS-13: 13th Interne-
Commnications of the ACM 19(11), Novem- ionel Symposium on Fault-Tolerant Com-

ber 1976, pages 624-M3. puting, June 1983, pages 182-18S.

REFERENCES 79

(34] Joseph Y. Halpern, Barbara Simons, and [431 William Joy, Eric Cooper, Robert Fabry,
P, Ray Strong. Samuel Lefer, Kirk McKusck, and David

Fault-tolerant clock synchronization. Mosher.
Proceedings of the Srd Annual ACM Sympo- 4.2BSD System Manual.

sium on Principles of Distributed Comput- Computer Systems Research Group, Corn-
ing, August 1984, pages 89-102. puter Science Division, University of Cal-

forna, Berkeley, July 198N,
(35] P. Henderson and J. H. Morris, Jr.

A lazy evaluator. [44] Brian W. Kernlghan and Dennis M. Ritchie.
Conference Record of the 8rd ACM Sympo- The C Programming Language.

sium on Principles of Programming Len- Prentle.-Hall, 1978.
guages, January 1976, pages 95-103.

[45] Leonard Kluinrock.
131 M. Herlihy and B. Lskov. Queueing Systems, Volume 1: Theory.

A value transmission method for abstract John Wiley and Sons, 1975.
data types.

ACM Tansactions on Programming Lan- [461 Donald E. Knuth.
guages and Systems 4(4), October 1982, The Art of Computer Programming, Volume
pages 527-551. 1: Fundamental Algorithm.

[37] Murice Peter Herlihy. 2nd edition, Addison-Wesley, 1973.

Replication Methods for Abstract Data Types. [47] Walter H. Kohler.
Ph.D. dissertation, Department of Electrical A survey of techniques for synchronisation

Engineering and Computer Science, MIT, ad recovery in decentralised computer
May 1984. systems.

Report MIT/Lcs/TR.-319. Computing Sure cs 13(2), June 1981, pages

[38] C. A. R. Hoare. 149-183.
Algorithms 63-65: Partition, Quicksort, and 1481 H. T. Kaig and John T. Robinson.

Find. On optimistic methods for concurrency con-
Communications of the ACM4(7), July 1961, trol.

pages 321-322. A CM 21ransactions on Database System 6(2),

[39] C. A. R. Howre. June 1981, pages 213-226.
Monitors: An operating system structuring [491 L Lanport.

concept.
Communications of the ACM IT(10), Otto- The implementation of reliable distributed

ber 1974, pages 549-557. multiprocees systems.
Computer Networks 2(2), May 1978, pages

[40] Warren H. Jessop, Jerre D. Noe, David 1. 95-114.
Jacobson, Jean-Loup Baer, and Calton
Pu. 1501 Leslie Lamport.

The Eden transaction-based file system. Time, clocks, and the ordering of events in a
Proceedings of the And Symposium on Relia- distributed system.

bility in Distributed Software and Database Communications of the ACM 21(7), July
System, July 1982, pages 163-169. 1978, pages 558-565.

[41] Stephen C. Johnson. 1511 Leslie Lamport, Robert Shoetak, and Mar-
Yacc: Yet Another Compiler-Compiler. shall Pease.
Computing Science Technical Report 32, Bell The byzantine generals problem.

Laboratories, July 1975. ACM Transactions on Programming Lan-
guages and Systems 4(3), July 1982, pages

[42] Michael B. Jones, Richard F. Rashid, and 382-401.
Mary R. Thompson.

Matchmaker: An interface specification lan- [52] Leslie Lamport and P. M. Melliar-Smith.
guage for distributed procesing. Byzantine clock synchronisation.

Conference Record of the 12th Annual ACM Proceedings of the 3rd Annual ACM Sympo-
Symposium on Principles of Programming sium on Principles of Distributed Comput.
Languages, January 1985, pages 225-235. inj, August 1984, pages 68-74.

1W

s8o REFERENCES

[531 Butler W. Lampeon and Howard E. Sturgis. [63] Barbara Llskov.
Crash Recovery In a Distributed Data Stor- Overview of the Argue Language and Sys-

age System. temn.
''Unpublished paper, Computer Science Lab- Programming Methodology Group Memo 40,

oratory, Xerox PARC. IT Laboratory for Computer Science,

[541 Butler W. Lampoon and David D. Febrary 984
Experience with processes and monitors in [64 D. B. Lomet.

Mmss. Process structuring, synchronization, and re-
Communiecations of the ACM 23(2), Febru- covery using atomic actions.

ary 1980, pages 105--117. Proeeings ofthue ACM Conference on Lan-
[551 Butler W. Lampoon.SGPA fo

Replicated Commit. SGLNNotices 12(3), Marc 1977, pages
-. Unpublished paper, Computer Science Lab- 128-137.

oratory, Xerox PARC, January 1981.
1651 Jennifer Lundelius and Nancy Lynch.

[56J B. W. Lampoon, M.L Paul, and H. .J. Slegert, A new fault-tolerant algorithm for clock syn-
editors. chronisation.

Distributed Sysleme-Architecture and Imple- Proceedings of the 3rd Annual ACM Sympo-
meat ation: An Advanced Course. sium on Principles of Distributed Comput-

Lecture Notes In Computer Science, volume ing, August 1984, pages 75-88.
105, Springer-Verlag, 1981.

[57 BulerW. .azpeo. 68) R. E. Lyons sad W. Vanderkulk.
1571Butlr W.Lampon.The use of triple-modular redundancy to im-

Atomic trns~actionls. prove computer reliability.
In Distributed Systems [561, pages 246-266. IBM Journal of Research and Development

(581 Butler W. Lampoon and Eric E. Schmidt. 6(2), April 1962, pages 200-209.
Practical use of a polymorphic applicative [7]RbtM.McafanDviR.ow

language. 71RbrM.MtafanDaiR.Bgs
Confrenc Reord f ls 10h AnualACMEthernet: Distributed packet switching for

Symposium on Principles of Programming local computer networks.
Langages Jauary~ ~ 237-55.Communications of the ACM 19(7), July

1976, pages 395-403.

[59] Gerard Le Lann.
Synchronisation. [681 James G. Mtchell, William Maybury, and
In Distributed Systems [561, pages 266-283. Richard Sweet.

Mesa Language Manual, Version 5.0.
*[601 Barbara Liskov, Alan Snyder, Russll Atkin- Report CSL-79-3, Xerox PARC, April 1979.

son, and Craig Schaffert.
Abstraction mechanisms In CLU. [69] Jeffrey Mogul.
Communicatione of theA ACM 20(8), August Private communication, February 1983.

1977, pages 564-576.

* ~~[611 Barbara Liskov and Robert Scheller. [0 .EitB os
Guardians and actions: Linguistic support Nested Transactions: An Approach to Reliable

for obut, istibutd pogrms.Distributed Computing.
ACM rots tis e onprogrammsg. n Ph.D. dissertation, Department of Electrical

gCUge landSytemse o(3) July1983,paes Engineering and Computer Science, NET,
381-404. April 1981.

Report MIT/LCS/TR-260.
[621 Barbara Liskov, Maurice Herlihy, Paul John-

son, Gary Leavens, Robert Schealler, and (711 J. Eliot B. Moes.
William Weihi. Nested transactions and reliable distributed

Preliminary Argue Reference Manual. computing.
Programming Methodology Group Memo 39, Proceedings of the 2nd Symposium on Relia-

M](T Laboratory for Computer Science, bility in Distributed Software and Database
October 1983. Systems, July 1982, pages 33-39.

VIV W77r7-0A."Ir c OW -V! VV C_ UM V. i' V
LL,

REFERENCES 81 %

[721 R. IM. Needham and A. J. Herbert. 181] Jon Postel.
c The Cambridge Distributed Computing Sys- Internet Protocol.

tam. RFC 791, Information Sciences Institute,
Addison-Wesley, 1982, pages 114-123. University of Southern California, Septem-

ber 1981.

[731 Bruce Jay Nelson. ,
Remote Procedure Call. (821 Jon Postal.
Ph.D. dissertation, Computer Science De- T18n2m1J ion Control Protocol.

partment, Carnegie-Mellon University, May RFC 793, Information Sciences Institute,

1University of Southern California, Septem-[" CMU report CMU-CS-81-119 and Xerox bet 1981.
PARC report CSI-81-9...

[741 Bruce Nelson and Andrew Birrell. 183) Micael L. Powell.'"

Lupine User's Guide: An Introduction to Re- A portable optimizing compiler for Modula-
mote Procedure Calls in Cedar. 2.

The Cedar Manual, Computer Science Lab- Proceedings of the SIGPLAN '84 Sympouaum

oratory, Xerox PARC, July 1982. on Compiler Construction.
$IGPLAN Notices 19(6), June 1984, pages

[751 Ron Obermarck. 310-318. "

Distributed deadlock detection algorithm.

A CM 2!anactions on Database Systems 7(2), [84] David P. Reed.
June 1982, pages 187-208. Naming and Synchronization in a Decentral-

ited Computer System.

(761 Derek C. Oppen and Yogen K. Dalal. Ph.D. dissertation, Department of Electrical

The Clearinghouse: A Decentralised Agent Engineering and Computer Science, MIT,
for Locating Named Objects in a Dis- September 1978.
tributed Environment. Report MIT/LCS/TR-20.

Report OPD-T8103, Xerox Office Products
Division, October 1981. [85] David P. Reed.

Implementing atomic actions on decentral-
1771 D. L. Parnas. Ised data.

A technique for software module specifica- ACM Transaction, on Computer Syatems
tion with examples. 1(1), February 1983, pages 3-23.

Communications of the ACM 15(5), May
1972, pag es 330-336. •"861 D. J. Roeenkrants, R. E. Stearns, and P. M.

Lewis.
178] M. Peas, R. Shostak, and L. Lamport. System level concurrency control for die-

Reaching agreement in the presence of faults. tributed database systems.
Journal of the ACM 27(2), April 1980, pages ACM Transactions on Database Systems 3(2),

228-234. June 1978, pages 178-198.

1791 W. H. Pierce.
Adaptive vote.takers improve the use of re- [87] Paul Rovuer, Roy Lavin, and John Wick.

dundancy. On Extending Modula-2 for Building Large,

In Redundancy Techniques for Computing Integrated Systems.

Systems, edited by Richard H. Wilcox and DEC Systems Research Center Report 3,
William C. Mann. Spartan Books, Wash- January 1985.
ington, D.C., 1962, pages 229-250.

188] Richard D. Schlichting and Fred B. Schnei-
1801 Jon Postel. der.

User Datagram Protocol. Fall-stop processors: An approach to design-
RFC 768, Information Sciences Institute, Ing fault-tolerLnt computing systems.

University of Southern California, August ACM Transactions on Computer Systems
1980. 1(3), August 1983, pages 222-238.

., ;.:,t , ,...a .+f ,,,€ ,".++..'.'.,..+.,.,..',.", .s',..,.' ',.. " '...'.....'.. , "... ,

82 REFERENCES

('.

I'

[89] Eric Emerson Schmidt. (98] H. R. Strong and D. Dolev.
Controlling Large Software Development in a Byzantine agreement.

Distributed Environment. Digest of Papers, Spring COMPCON 83: g6th
Ph.D. dissertation, Computer Science Dlvi. IEEE Computer Society International Con-

$Ion, University of California, Berkeley, fevence, February 1983, pages 77-81. J.

December 1982.
Report CSL-82-7, Xerox PARC. [991 H. Sturgis, J. Mitchell, and J. Israel.

[901 Fred B. Schneider. Issues In the design and use of a distributed
file system.

Byzantine generals In action: Implementing (pemting Systems Review 14(3), July 1960,
fail-stop processors.

ACM ransactions on Computer Systemp
2(2), May 1984, pages 145-154.

[100] Sun Microsystems.

191] Peter M. Schwan and Alfred Z. Spector. Remote Procedure Call Reference Manual.

Synchronizing shared abstract data types. Mountain View, California, October 1984.

ACM Transactions on Computer Systems
2(3), August 1984, pages 223-250. (1011 Llba Svobodova.

A reliable object-oriented data repository for
[92] Mary Shaw, William A. Wulf, and Ralph L. a distributed computer system.

London. Proceedings Of the 8th Symposium on Opertt.
Abstraction and verification in Alphard: ing Systems Principles.

Defining and specifying iteration and gen- OpSratin Systems Review 15(5), December
sators. 1981, pages 47-58.

Communications of the ACM 20(8), August
1977, pages 553-564. [102] Tandem Computers.

GUARDIAN Operating System Program-
[93] John F. Shoch and Jon A. Hupp. ming Manual.

The 'Worm* programs: Early experience Cupertino, California, 1982.
with a distributed computation.

Communications of the ACM 25(3), March [103] Warren Teitelman.
1982, pages 172-180.[13 WarnTiem .

Interliep Reference Manual.

Xerox PARC, 1974.
[94] Jonathan Sieber.

TRIX: A Communications Oriented Operat-
ing System. 1104] Irving L. Traiger, Jim Gray, Cesare A.

M.S. thesis, Department of Electrical En- Galtieri, and Bruce G. Lindsay.
gineering and Computer Science, MIT, Transactions and consistency in distributed
1983. database systems.

ACM Transactions on Database Systems 7(3),
[951 Dale Skeen. September 1982, pages 323-342.

Atomic broadcasts.
In preparation. Birman and Joseph (7] [105] United States Department of Defense.

briefly describe one of Skeen's algorithms Reference Manual for the Ada Programming
in an appendix. Language.

ANSI/MIL,-STD-1815A-1983, U.S. Govern-
(961 Alfred Z. Spector and Peter M. Schwarz. ment Printing Office, February 1983.

Transactions: A construct for reliable die-
tributed computing. 11061 j. von Neumann.

Operting stems Revie 17(2), April 8-3, Probabilistic logics and the synthesis of re-
pages 18-35. liable organisms from unreliable compo-

nents.
[971 Guy L. Steele, Jr. In Automata Studies, edited by C. E. Shan-

Common Lisp: The Language. non and J. McCarthy. Princeton Univer-
Digital Press, 1984. sity Press, 1956, pages 43-98.

I I

REFERENCES 83

1107] William Weirh and Barbara Liskov. [1151 Xerox Corporation.
Specifcation and implementation of resilient, Courier: The Remote Procedure Call Proto-

atomic data types. col.
Proceedings of the SIGPLAN '83 Symposium Xerox System Integratlon Standard 038112,

9 on Programming Language Issuei in Soft- December 1981.
ware St eSs.tm.

SIGPLAN Notice& 18(6), June 1983, pages 1116] Gary York, Daniel Siewiorek, and Zary
53-644 Segall.

Asynchronous software voting in NMR com-

[108] William E. Weihi. puer structures.
Data-dependent concurrency control and re- Proceedings of the 3rd Symposium on Relia-

covery. btltly in Distributed Software and Database

Proceedings of the Znd Annual ACM Svmpo- Systems, October 1983, pages 28-37.
sium on Principles of Distributed Comput-
in,, August 1983, pages 73-74.

Operating System. Reiew 19(1), January
1985, pages 19-31.

11091 William E. Weihi.
Specification and Implementation of Atomic

Data Types.
Ph.D. dissertation, Department of Electrical

Engineering and Computer Science, MIT,
March 1984.

Report MIT/LCS/TR-314.

[110] John H. Wensley.
SIFT-Software Implemented fault toler-

ance.
Proceedings of the AFIPS 1972 Pall Joint

Computer Conference, volume 41, part I,
December 1972, pages 243-253.

(111] John H. Wensley, Lsle Laimport, Jack Gold-
berg, Milton W. Green, Karl N. Levitt, P.
M. Melliar-Smith, Robert E. Shostak, and
Charles B. Weinstock.

SIFT: Design and analysis of a fault-tolerant
computer for aircraft control

Proceedings of the IEEE 66(10), October
1978, pages 1240-1255.

[1121 Karen White.
Implementation of Remote Procedure Call in

the Berkeley UNIX Kernel.
M.S. report, Computer Science Division,

University of California, Berkeley. In
preparation.

[1131 Niklaus Wirth.
Programming in Module-2.

r2nd edition, Springer-Verlag, 1983.

1114] Xerox Corporation.
- ~Interet Tlranseport Protocols. -

Xerox System Integration Standard 028112,
........ .December 191..

