Productivity Engineering in the UNIX! Environment

Distributed Name Servers: Naming and Caching in La.ge %—?
Distributed Computing Environments =g

,
y ‘s v

Technical Report

= r A
. .'ff;i}‘ '
2

AD-A169 225

s " T
.
.

S. L. Graham
Principal Investigator

Fay 0%

T, T,
KL
[IR

(415) 642-2059 =

Py
'-l'
R
.
'

‘v L ‘Y »
.

-,

il
L |
¢
. *H

13
¥

“The views and conclusions containec in this document are those of the authors and ':
should not be interpreted as representing the official policies, either expressed or implied, o]

of the Defense Advanced Research Projects Agency or the U.S. Government.”

.
.
"y

.
0= d

u‘- » 1]

. ' "y

Contract No. N00039-84-C-0089)

.
ol > Ve
4 [} B o
-

Lote /G55 B L 0 . S

Arpa Order No. 4871 Wy JUL 1l G1E8e s, ;

OTIC FILE COPY

. . A= 1 . ..— -.—‘ R e T ZOVQd
IUNIX is a trademark of AT&T Bell Laboravories Thin doovn R Luiﬂaﬁ,p?ts

fey poiis 7 Lori ¢ and sale W

C Sl N

B 1

o A P Ry P P o R T P L Tt ST B e s
Y e e e e B N A S Y

F"i-“ﬂ_‘.'_‘l‘b[“‘","_?‘ s W T N o o T I T T N e T S N N e e T N S s T T R T Y P Ny W VY NW WU VLW LN W T WUW Y S

Distributed Name Servers:
E Naming and Caching in Large
] Distributed Computing Environments

by

Douglas Brian Terry

Apstract

Name services facilitate sharing in distributed environments by allowing objects
to be named unambiguously and maintaining a set of application-defined attributes
ot for each named object. Existing distributed name services, which manage names
based on their syntactic structure, may lack the flexibility needed by large, diverse,
and evolving computing communities. A new approach, structure-free pame man-
agement, separates three activities: choosing names, selecting the storage sites for
object attributes, and resolving an object’s name to its attributes. Administrative
» entities apportion the responsibility for managing variovs names, while the name
service’s information needed to locate an object’s attributes can be independently
reconfigured to improve performance or meet changing demands.

An analytical performance model for distributed name services provides assess-
ments of the effect of various design and configuration choices on the cost of name ser-
\d vice operations. Measurements of Xerox's Grapevine registration service are used as
inputs to the model to demonstrate the benefits of replicating an object’s attributes
to coincide with sizeable localities of interest. Additional performance benefits result
from clients’ acquiring local caches of name service data treated as hints. A cache
L. management strategy that maintains a minimum level of cache accuracy is shown

to be more effective than the usual technique of maximi-ing he hit ratio; cache
managers can guarantee reduced overall response times, even though clients must
occasionally recover from outdated cache data.

.......... .
--------- A - . - -
lllllll) . * - - e B O O]

R P T P R N S e A T A R L ey

P AN o R N e LR Lt 2 At o AN A MR Al AN B B Rl B Bl Sl Pl B b R Bl Bl el ol Sl o T PR R RO L AR A A AR R A et R w}gﬁq—j

i

L g o gn

. Distributed Name Servers:
Naming and Caching in Large
Distribu‘ed Computing Environments

Copyright © 1985

by
Douglas Brian Terry

!
3
!'
.I
-i;
\
b}l
i
;

.
=% n'.

® o, LM e g

| Sl Aalh Tul bl Vol A A b Al R ST A N N R L SRR R S G N T e e o e e e P L AU S s e e e o

Contents

1 Introduction 1
1.1 The Electronic Baobabs e 1
1.2 Name Services i e e e e e e e e e e e 2

1.2.1 Role o o e e e e e e e e 2
1.222 Names 0 e e e e e e e e e e e e 2
1.22.1 Properties e 2

1.2.22 Structure e e e e e e e 3

1.223 Contexts e e e e e e e e 4

1.2.3 Object attributes 4
124 Operations e e e 5

1.3 The Thesis o it e e e e e e e 6

2 Name Service Designs: A Survey 8

2.1 Existing Name Sesvices L . 8
21,1 NICName Server. i ittt e i e i e e e e . 8B
2.1.2 DARPA Domain Name System 9
21.3 BIND Server i i it i i e e e e e e e e 9
2.1.4 [PPUP Name Lookup Server. i it ii .. 9
21,5 Crapevine e e e e e 9
216 Clearnghouse e 10
2.1.7 CGSNET Name Server i i it i it it e e e e e et e e e e 10
2.1.8 Cambridge Name Server 10
2.19 COSIE Name Server i i it i e e e e e e e e 10
2.1.10 R* Catalog Manmagert iununirnonenn. 11

2.2 Structural Components e e 11
2.2.1 Servers e e e e e e e e e e e e e e e 11
222 Agents. e e e e 11

2.3 Functional Components e e 12
2.3.1 Communication e e e 12
2.3.2 Database management L. 15
2.3.3 Namemanagementt e e e 16

2.4 Performancelssues 17
24.1 Models e e e 20
24.2 Measurements e e e e 20
243 Caching e e e e 20

2.5 Evaluation of Frevious Work 20

3 Name Distribution 23

3.1 Foundations e e e e e e e e e e 23
3.1.1 A Layered Architecture 23
3.1.2 Communication Support 23
3.1.3 Database Support 24

c et --. .._ - F-l r u. . .’. - “ 0. u- % N 4
A} > "o’ st Al " Tt at et ot e -
AU AP A Cara e o AP N e A T I -

L4 he T u

oy ey
P
e a8

[

o . ., TR R
UL e e a4 e s e s Pt LT,
AL AR L PP R R R]

. -L- DL L) l"l‘l":l.l"'.l

y . ",

O
.

P
p e

.J.

L e e i s il i s - i . oo - el A5 SN 5 2 AR O SR, " L S\ SO T i e U

3
. ol
..:
"
"
* 3.1.3.1 Local database management 25 -
3.1.3.2 Replicated datao et 2 >,
3.2 Structure-free Name Distribution L o 0oL 27 g
3.2.1 Assigning authority e e 27 on
3.2.2 Authority Attributes L 28 -
3.3 Distributed Operations e 29 :
331 Basicstepso e e 29 g
332 Locating name Serversot it e e 29 %
3.3.3 Name serviceinterface o e e 30 '.:
34 SUMMALY it e e e e e e e 32 o !
4 Name Resolution 33 'b
4.1 Name Resolution Model o o o 33 X
4.1.1 Distributing configuration data 33 =
4.1.2 Contextobjects e 33 .
4.1.3 Clustering conditions for ccufiguration tuples 34 .i
4.1.4 Context bindings and name resolution chains 35 .
4.1.5 Applying the name resolutionmodel 0oL 36 -
4.1.5.1 Syntactic <lustering o L., 36
4.1.5.2 Variable syntacticelustering 37
4.1.5.3 Non-syntacticclustering 39
4154 Mixed clustering for growing systems, 41
4.1.6 Extensions for other naming styies 42
4.1.6.1 Namingnetworks 42
4.1.6.2 Beyond namingnetworks 44
4.1.7 Advantages of structure-free name resolution 44
4.2 Name Resolution Mechanism, 45
4.2.1 Configuration databasequeries, 45
4.2.2 Locating contextobjects L. o e 46
423 Stylesof nameresolution 47
423.1 Recursive 47
4.2.3.2 Iterative e e 48
423.3 Transitive e e e 51
4234 Comparisons e e e e 51
4.3 Dynamics of Name Management &
43.1 Updates e 83
4.3.2 Name registrationttt e e e 53
4.3.3 Name service reconfiguration 0 e, 54
44 SUmMMATY o e e e e e e e (1)
§ :rformance Analysis 56
5.1 Name Service Performance. e e 56
5.2 A Model for Name Seiver Interaction. 7
52.1 Nameserversandclients., §7
522 Themetwork i i e e e e e e §7
523 Thedatabase 57
5.2.4 Referencepatterns e 58
525 Operationcosts e e 58
§26 Summary e e e .. 58
5.3 Performance of Individual Servers. L L 8
54 Name Server Placement o L. . 59
$.5 Assigning Authority 62
55.1 Basics e e 62
55.2 Flatnamespace e e 62

B R T T W T W W &, W W W W N N R R N T W N T T T T T T TN Y TP N XY N TR TS S Ty ey AL e e e e R 1.0
BAG,
“

T4
’.t 3
ae s
N

E
T |

I) 5.5.3 Physically partitioned name space 63
5.5.4 Organizationally partitioned namespace 63
5.6 Benefitsof Replication 64
5.7 Name Server Failures e
5.8 Exploiting Client Behavior. 67
5.8.1 Locality of reference 67
58.2 Lookup/updateratio
5.9 SUmMMAIY 0 v it ot e e e e e 69

8
s

-"wr-"'m -
IS,

A A ey

P

-

AR
7

Measurements of Grapevine
8.1 Basics of the Experiment,

>
-3
S o
AL

L)
]

6.1.1 Goals e 70 '}‘;
6.1.2 Why Grapevine? e e 70 s
I 6.1.3 Grapevine'slogs e 72 S
| 6.1.4 Retrieving, parsing. and analyzing log data 72 :-C":-:
6.2 Locality of Reference L o 73 ke
] 6.2.1 Methodology i e e 73 !
6.22 Results e 75 Y
6.3 Lookup/Update Ratio 77 e
6.3.1 Methodology e 7 T
632 Results 77 e
6.4 Applying the Name Server Model to Grapevine 78 i
® 6.4.1 Grapevine's configuration Lo 78 -
6.4.2 The benefits of Grapevine's locality 80 At
6.4.3 The benefits of remote authorities 81 ’
6.4.4 Comparisons along twodimensions 81 o
€5 Summary e e e e e 83 bt
® 7 Caching Name Server Data 85
7.1 CacheManagement i i it i e e e e e 85 o
7.1.1 Caching for performance enhancements 85 S
7.1.2 Hints vs. Strong cONSIStENCY « . v v v v v e e e e e 86 -
7.1.3 CacheaccuraCy v v i v vttt e e e e e e e e e e e e 86 : ‘._1
7.1.4 A new approach to cache management 87 o
E. 7.2 Basicsof Caching Hints, 88 #E
721 Thecachemanager.y 88 i
722 Acacheinterface L 90
7.2.3 Obtaining cacheddata 90 o
7.2.4 Using cached data "5 0 00 008000000000 00000000 0000 91
7.2.5 Policies for managing cacheddata 92
i 7.3 Refresh/Revalidation Techniques 94 o
® 7.3.1 Requerystrategies 94
732 Timestamps c v v i et e e e e e e e e e e e e e 94
7.2.3 User-supplied revalidation procedures 95
7.4 Estimates of Cache Accuracy e 96
7.4.1 Probabilistic algorithmso oL 96
7.4.2 Estimates from imperfect knowiedge, 99
L 7.4.3 Accuracy with revalidation 100
7.5 Other Issues in Cache Maintenance 101
7.5.1 Conflicting Cache Requirements 101
752 Sizeconstraints L. 102
7.6 Name Server Support for Caching L L. 103
76.1 Metadata e e 103
[] 7.6.2 Modified interfaces 105
[]
SO LR S B AR KT RO 8 S e P, PR e e e e A e e T e e

,
a s

AR 1R

bt
as
-

-
. .l'h,

PRl
.
-
PR

'

L]

ey ahan

=i,
e o

a F_ WL W SW WO W _w w8 " T
Rl Sl Sl Rad Sall Sl B R i R s T e

iv

e m e e e
nt e . 5

- - B -
Jae® T S T N I

8 Final Remarks

8.1 Refleczions on the Architecture e 107
8.2 Thesis Comtributions i i e e e e e e e e e e e 108
8.3 Areasfor Future Work e e 109

Glossary

Bibliography

N T T AN, T Y N T T T T T T A L N RN W TR T AT W T T TR R w S TN Ry T

et U Rt Y, Y. b o
S CLst L ;LS S o
AR U R

o

I WA + . BN

.
o

LAt

| List of Figures

3

D on8 oo o 4o _.".“._'._'.l_“. “a
EACALS CRTRIR TR Bk CAT R R)

2.1
2.2
2.3
24

3.1
3.2
3.3
34
3.5

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
49

5.1
5.2

6.1
6.2
6.3

7.1
7.2
1.3
7.4
1.5

R R P W
E R S O B G N W

Individual name agents. e e e e e e 13
Shared name agents. o o v bt e e e e e e e e e e e 14
Domain name space with sample zones. 18
Hierarchical name space with dispersalcut. 19
Functional layers in aname server. 24
Datsbase intetface. L e 25
Replicated data interface. e 29
Name Service interface. L. e e e e 31
Name Agent interface. 32
Sample hierarchical name space. e 38
Syntactic clustering of a hierarchical namespace. 38
Configuration database for syntactic clustering. 39
Clustering varying numbers of labels. 40
Clustering a name space through hashing. 40
Configuration database for algorithmic clustering. 41
Clustering large Grapevine registries algorithmically. 42
Mutually encapsulated name spaces., 43
Styles of name resolution. L e e 52
Name service model parameters. o e 59
Asampleinternet. e e e e e 60
Topology of the Grapevine internet.c...... 71
Logging during mail delivery in Grapevine. 74
Lookup costs for different reference paiterns/authority assignments. 82
Cache managers and name agents.t 89
Cacheinterface. e 91
Distribution function F{t}). 97
Density function f(t). 98
Approximating F(t) by interpolation. 100

. ST I :'J.' - -‘-..

. . -
AT T) e e, o -
P SR SN LS T S . S T T P TR T 1)

al

i
»

A
]

I

.,,,..‘,
F &
o P Pl

‘rf’v Ny
vl

e

LR
e 'y
LR)

-

e

i -
o
1

A

7 %
5
L]

-
»

i

i L

[

Ca et

R |
1

i ind
Ve
e 2 Ce

>y
.tk
.
*atatatall

ryl
s
o)

3

™ ™ v

Y

.
EA
a4

. |
';l
.

’
.

2o
v ale »

LRI

T A
o fo Jo v e

r
&

LR

o«

gt -

%
]
1'.. &

d

: Il. RER
s PRI AN
. r_* s * .

.
- PLAFLC

;J
.

., . *,

]
. .
B

el

N

i—,ng-g IR T B IR BRI BFR I S A N | » “ e« = - % W R B T N S YU W » LA B T i S A T T e)

-

) [

L] |’

-

E: §

4

i vi ol

g b

L3

> L

: - 2

- .

!;. e
]
=
[y

e e VEEEEETE 5 8 0 Y YEELS P

List of Tables

RS e e Y

®
]
3 5.1 CommunicAtion COBES. v v v v v i e e e e e e 61
) 5.2 Effects of replication on lookup costs. L. 65
¥ 5.3 Effects of failures on lookup costsfor R=5.. 67 :
6.1 Locality of interests in Grapevine (normalized by sender). 75 .i
6.2 Locality of interests in Grapevine (normalised by recipients). 76 -
6.3 Locality of interests in Grapevine (adjusted for registry size). 76 ;
6.4 Individual updatesin Grapevine. e e 78
6.5 Group updatesin Grapevine. 78 N
6.6 Associations between clients, registries, and servers in Grapeviue. 79)
6.7 Authoritative servers for Grapevine registries. 7% e *
6.8 Costs of accessing individual Grapevine registries. 80 !
6.9 Expected lookup costs for Grapevine clients., 81 ;‘
6.10 Expected lookup costs without remote authorities. 83 i
7.1 Sample object lifetimes. e e 98 £
o
ol
3

T S
PRI I L A L U S
e m M t me R e Ao

r.j'_h‘_\r"_\!"_i'_p- AR T TS TR TR TN TN TR T Y T Y R T AT TN O E TR T T N L W W R W R W M W e o e o T W o e WG W LT Ty

o] 7%
.) halP,
o T, e o} A B W

b vii
|
I

oo
”

.

U
48 TN T Ty
@

;-.-
P

-
T
O AL |

aln
L]
-

Acknowledgements

-

e

‘I.\I

The journey in pursuit of a doctoral degree is long and perilous; no one can make it alone. I am “,
grateful to the many people that have aided me along the way. T
My two major advisors, Robert Fabry and Domenico Ferrari, gave me the freedom to expiore on ‘
[

® my own, while fixing an eye on my wanderings. I learned a tremendous amount from my explorations.
' Bob's insistence on excellence served to reinforce my own. His suggestions for improvements, right
until the end. substantially strengthened the thesis. Domenico, in spite of his many responsibilities
and unreasonable work load, would always find time to speak with me whenever I needed guidance.
With his red pen in hand, he thoroughly and punctually marked up every draft. My third reader,
Lucien LeCam, provided a much needed refresher course on probability and statistics.

Tete .
VS

. % "

P |

2.
RN

. .
L

o I appreciate the support of several colleagues that have contributed in various ways. Bob Hag-
mann was instrumental in arranging a consulting agreement with Xerax PARC so that I could study
the Grapevine system. Michael Schroeder and Andrew Birrell explained the internals of Grapevine
and how its logs were orgonized. Hal Murray was a constant source of information on the day-to-day
operation of the system. More imnportantly, Hal read the dissertation and discovered several embar-
rassing bugs in my name server prototype implementation. Howarc Sturgis bravely read an early
f‘ draft and helped me focus my ideas. Luis Felipe Cabrera, Juliet Sutherland, and Songnian Zhou

e 6
. .
L)
MR

..
My ty e
LRy

Do

P

furnished comments on several chapters. Juliet was particularly helpful at keeping me abreast of cur- ol
rent standardizaticn efforts in the area of name services. I have also benefited from many discussions .-::..]
with fellow researchers at U. C. Berkeley, IBM Research, Xerox PARC, and other institutions across S
the country too numerous to name. w::.

My interest in distributed computing and the motivation for my thesis germinated while I was an «“:'.-

o academic associate for IBM Research. This research was partially sponsored by the Defense Advance
Research Projects Agency (DoD) Arpa Order No. 4031 and monitored by the Naval Electronic
System Command under Contract No. N00039-C-0235. Much of the support during the preparation
of this dissertation was generously provided by the Xerox Palo Alto Research Center.

R
-"1....

Margaret Butler played many vital roles: technical editor, style critic, counselor, friend. She
patiently suffered through numerous rough drafts. No matter what predicament | got myself into.
L) she was always just a phone call away. Margaret invariably had a smile and goed word when [was
down. [am deeply indebted to her for all of her assistance. [only hope that I can serve her as well
when the roles are reversed.

E TR

As usual, my friends and family have kept me going through all these years. I am eternally
grateful for all the joyous moments I have had in Berkeley. Katie deserves special credit for helping
me adjust to the strangeness that is Berkeley and to the demands of graduate studies.

.
» .

Finally, I dedicate this dissertation, the culmination of many years of education, to my parents.
George and Geurgette Terry. They may not understand its technical merits, but their contributions
have been great.

“y . .

LI LN .
« %1 " s .

* o Sy s b

PR
b-"-.

. «

L3)

LN
L

. x

A

e 9
Tt e
WNENEN y .

« .
v

2olat et Ul S A R

Chapter 1

Introduction

I knew very well that in addition to the great planets — such as the Earth, Jupiter, Mars,
Venus - to which we have given names, there are also hundreds of others, some of which
are so small that one has a hard time seeing them through the telescope. When an
astronomer discovers one of these he does not give it a name, but only a number.

— Antoine de Saint Exupéry, The Little Prince.

1.1 The Electronic Baobabs

Like the little prince’s galaxy, with planets too numerous to be named, contemporary distributed
computing environments have evolved to the point that it is difficult ‘o name and catalogue the many
available resources. To facilitate the sha ing of information and resources, immense interconnections
of public and private data networks have been established, permitting users access to extraordinary
numbers of potentially shareable resources. The DARPA Internet hosts table, for instance, now
contains over 300 networks connecting most of the major U.S. universities, military organizations,
and computer corporations.

Physical connectivity, however, is not sufficient to allow resources to be effectively utilized by
the various members of these vast, interconnected computing communities. Uniform mechanisms are
needed for identifying and locating objects and resources that are made accessible to the community
by their creators or owners. That is, objects should be given names, names that can be freely passed
around the internet and shared amongst its users so that the objects themselves might be shered.
Once users have a way of referring to objects, services should be provided for locating particular
ohjects and discovering how to access those objects.

This dissertation addresses the issues of providing such a name service! for a widely distributed
computing environment. It progresses in three stages: First, general techniques for managing names
in a distributed manner are developed. Second, the performance of such techniques for large 1ame
services is analytically modeled. Third, a client’s level of performance is enhanced by introduc-
ing caches of naming data. The next section discusses the nature of name services, providing the
background for t..e remainder of the dissertation.

! Throughout this dissertation, terms appear in italics when they are first introduced: their definitions are reproduced
in the glossary for later reference.

oL d

>
o

o
M " ey
)

A
Ly

W

g

v
'.’1

L]
*e
tw

"
w"
l'l.

e

y

; J'
|

S

W

Pt
¥
A

r

£8 3 ‘vlr_l.' LI
| RO

]

Ay

P
Wit e e s
NP

Y

r
]

Ty

,....-
‘.."’-‘f""'i" .." “

.
1

"

- . -
P
)

e b Yy *

4,-,.‘,
]

)
g "_ .

L}

"
k

[
Pl

. . I.
2 "y M Myt

-
.3

. .

o e
IR
£ L d

ettt
Ll

kb

. -
]

- . LT A TATE TR T TR T A TE TR TR TR R T e T T e T T W T TE s R] ' L T - P > -

..W,;.m,m
e

~
®

”

.

L

1.2 Name Services

E.

.
i
i

1.2.1 Role e

A name service enables its clients to name resources or objects and provides facilities for accessing
information about these objects. The term object will be used Lereafter to refer to anything that
deserves a name. Both physical and logical entities may be nbjects. For instunce, computers, file
servers, printers, disk drives and files can all be objects. Processes, services, distribution lists, and
computer messages can also be objects, as may computer programmers, .,perators, and technicians. e
Some objects exist within the bounds of the distributed computer system, while others have a iife
of their own. Note also that some objects are active, such as a process executing a program, while
athers play a passive role, and hence must be acted upon and managed by active objects.

The client/server model of distributed computing has become popular in describing relntionships
between active objects. Servers offer services to clients that may make use of those services. (ften,
an active object is both a provider of soine services and a client of others. Since servers and clients
may eist at various locations in a distributed computing environment, means must be provided for
establishing liaisons betwee:s them.

The name service is a “master” service, which acts as a rendezvous point for other servers aud
clients of the services provided by those servers. Services can be made available to the genera!]
community by registering them with the name service. The information presented on the “registration ® i
form™ includes the name of the service and information needed to make use of the service. A client
of a service may ohtain this information by contacting the name service and presenting the name of
the desired service. From that point on, the client and server may establish a direct connection to h
conduct their businesa. g

The name service thus enables other services to be identified and accessed in a uniform way -
[Abraham and Dalal 80]. Members of a large distributed computing community need only know how @ l
to access the name service in order to gain access to a multitude of services indirectly through the
“well-known" name service. For passive objects, the name service maintains information that allows
them to be manipulated and shared by specialized services.

A name service, described here as a general name management facility, provides more than the .
usual name-to-address bindings. It subsumes services such as directory systems for electronic mail, i
file name managers, and database catalog managers. These services can be viewed as name services \
specialized for a pacticular application domain; for example, the catalog manager for 2 distributed]
database management system maintains information about named database objects, such as their 1
locations, access controls, and statistics used for query optimization [Martella and Schreiber 80]. :I

Muck. of the curreat confusion and difficulty in interconnecting existing distributed environments
s.~ms from the fact that various incompatible name services are being employed for widely-used ®
applications, like mail. Much can be gained from adopting uniform name services. However, the
question of whether a single general name service should be used for all object: whether specialized
name services should continue to exist with a global name service used to locate the more specific
services is difficult to answer. The choice is not a critical one to the .iscussions that follow, as the
issues remain the same.

1.2.2 Names)
1.2.2.1 Properties

Simplistically, a name is a character string that identifies an object. However, there is a general
lack of consensus abont what properties distinguish names from other types of identifiers. John &
Shoch made the following incisive. albeit vague. distinction between three types of identifiers used in
computer networks [Shoch 78:

. o o -~ . P G I

o S t e T A - RN , &L o
- . e e e T T e T T T e e e T e T T . AT AL AT AN

rs _--.‘.-.. IR L ., L A L L) LI O S R I R N A N I IR . . D ST o
LRSI A T, AP R AT WA IR, T o D,) G A % S SR EITE H SN DR S PR DR OISR O DN B 5 W S ALV P8

Edat ot o b0 ko kR AR LU S te ts ftahate 0t 00 Bl 20 B TNL AR ol ALl Bl Bl ol R St Gl Gt ol A G d-Forl s i ol PR e SR oFR SRR WS LT abs ahhuRe L el ol e 0 =

B

e
P

f

“The name of a .source indicates what we seek,
an address indicates where it ‘s, and
a route tells us how to get there.”

Pt)
54

i,

Jerome Saltger, on the other hand, suggests a broader use of the werd “name” and portrays the

&

relationship between names and addresses as bindings; that is, he defines an object’s “address” to he :.\
! a “name of the object it is bound to” [Saltzer 8I!. t::'
! This dissertation draws a simple distinction between names and addresses: names are chosen ‘-::'_-w
[by users, whereas addresses are assigned by the system or system adminis‘rators. This distinc- E:‘:-;

b tion complies with Shoch's basic terminolegy and resembles Richard Watson's distinction between
human-oriented names and machine-oriented identifiers [Watson 81|. Historically, the use of nanes
in commnnication n2tworks emerged as a convenience to humans, who find it difficult to remember
numbers denoting the addresses of network entities. Names, as characterized herein. may be:

4

G |

»

-
>

2 readable by humans and of wnemonic value,

® e independent of network locations.

The first property arises naturally since humans tend to choose names that desc.ibe their referents
[Carroll 78]. The second property allows an object to migrate to a new location in the distributed
environment without changing its name, and hence without rejuiring changes in others’ references
to the narn:~d object?.

The interpreta .n of names pressnts additional properties: A name is unambiguous if and <nly if
it refer. to at most one object. That is, the same name canno: be used by different clients of the name
service to refer to different objects. A name is unique if it represents the only name for its referent.
Several non-unigque names may identify the same object. Often, in such cases, one i.ame is recognized
as the preferred name and the others are called aliases or nicknames. Note thai some people use the
terms “unique” and “unambiguous”’ interchangeably. As defined here, ambiguity corresponds to a %
one-to-many relationship berween names and objects, whereas non-un’.1ueness suggests 3 many-to-one i
Eﬁ binding.

A name is said to be -/»bal or absolute if it is interpreted in a consistent manner by all clients
and services, regardless o. ‘eir location in the environmeut or other factors. Absclute names may
be freely passed around frcw, Jbjecc to object without affecting their interpretation. On the other
hand, relative naines are interpreted according to some state information.

v

.
.

ek
r s 'a
LA
<

f. The name services of interest in this dissertation manage unambiguous names so that dialogues for
resolving embiguities are not required. In addition, they can guarantee the uniqueness or absoluieness
of names, but the general mechanisms do not assume that these properties are always desired by
applications making use of a name service.

j. 1.2.2.3 Structure

The couvention adopted for naming objects dictates the syntactic representation of names, as
well as their semantic interpretation. The set of names complying with a given naming conr ation
is called the name space.

Names are commonly structured as a series of alphanumeric labels interleaved with various sep-
l® aration ‘haracters. Although many separation characters are in common use in exisiing naming
convent ‘ns, including ‘@, ‘%’, *:’, *’, */’, and ‘!, the ‘.’ will be used for simplicity hereinafter,
except .1 cases where a specific naming convention is being discussed. Thus, the name “A.B.C”
consis’ f three labels, “*A”, “B”, and “C".

2Addresses may be location-independent as well; these are occasionally referred to ar logical addresses Rosen 81 .
Some recent proposals purporting new approaches to namne management are really suggestions for managing logical .
10 addresses in the communication transport layer Cheng and Liu 82! Cheng 84 ‘Chesley and Rom 83.. !

¢ = o
SN

RORSASAR CLCRICRA D b A 55 A, 4G S Ve et GV N S S

AT T RN R TR T TR L A T T R T T R A R A T R T TR TR TG G T TLE TR TR S T T AN AN PR S W NI R TR R TR

A component of a name is a substring of that name composed of one or more labels and the
embedded separation characters. The name “A.B.C” contains the following components: “A”, “B”,
“C”, “A.B", “B.C”, and “A.B.C".

Abbreviations are short forms for names that may be used in certain circumstances as a substitute
for the complete name. An abbreviation differs from an alias in that it is a component of a name,
that is, syntactically derived from the name, and is not treated as a fully qualified name. As such,
abbreviations are not generally recognized by the name service. Usually, abbreviations are provided
by an application as a convenience to human users, who <~ not like to type long names, and converted
in an application-specific way to a fully qualified na- : ‘ore being presented to the name service.
As an example, consider a mail system that names .. .1 recipients according to the convention
“user.host”; the system may choose to accept a name of the form “user” as an abbreviatio-. for
“user.this-host”.

1.2.2.2 Contexts

Names alwnys exist within some context. A contezrt can be loosely defined as the environment in
which a name is valid. In many programming languages, the notion of a context is instantiated as
the scope of a variable. In distributed systems, contexts represent a partitioning of the name space,
often along natural geographical or organizational boundaries. A name may naturally occur in more
than one context, and contexts may be nested. For instance, the login name “terry” exists within
the contexts of both “Berkeley” and “Xerox”. fn turn, “Berkeley” exists within the context of the
“University of California”, which exists within the cout2xt of ail universities.

A component of a pame may denote & context in which other parts of the name exist. Such a
context is called an ezplicit contezt since it is explicitly represented in the structure of the name.
For example, given the name “A.B.C”, “B.C” might be viewed as a name existing explicitly in the
coniext of “A”.

On the other hand, a context that is not an explicit part of the name is called an implicst contexzt.
Relative r aming conventions involve interpreting a name according to some implicit context. Only if
impiicit ¢ yntexts are universal can absolute naming conventions be attained. The name service itself
may be 0 1e example of a global implicit context.

The “dot” notation used for delineating the labels of a name does not contain enough information
to indicate the contextual interpretation of the name. For cne thing, some naming conventions may
choose to nest contexts left-to-right while others use right-to-left associativity. Moreover, not all of
the labels of a name necessarily represent contexts. In this dissertation, a name will be presented in
the form “context{subname)” when the contextual structure of the name is important. For example,
the name “A.B.C™ could be expressed as “A(B.C)", indicating that the subname “B.C” should be
interpreted in the context of “A”. Alternatively, “C” could exist in the context of “A.B", or “A.B”
could exist in the context of “C”; these would be written as “A.B(C)” and “C(A.B)", respectively.
If the three labels were nested contexts, the name might be “A(B(C))".

W:th explicit contexts, a sufficient condition for achieving unambiguous names can be recur-
sively given as follows: the name “context(subpame)” is globally unambiguous if the subname is
unambiguous within the context, and the context has a globally unambiguous name.

1.2.3 Object attributes

The information maintained about a named object by the name service consists of a set of at-
tridutes for the object. Object attributes have both a type and a value, where the type indicates the
format and meaning of the value field. The name service does not attempt to interpret an attribute
value. Thus, applications making use of the name service niust agree on the structure and semantics
associated with object attributes. Agreeing on the format of attribute values is particularly imiportant
in a heterogeneous environment where machines have different word sizes, number representations,

IR
T

F:T- A e Al i S AR VIO S T AT IR T A Tl S A AR AN B et peth DA SNl DA ol o Gn L oM b i6n ok W N o W VWU W W W W W W W WIS W W
SN
-

T
(]

bit orientations, and so on.

Names that have a list of names as an attribute, generically called group names, are used for such
things as mail distribution lists and access control lists. One way of representing these membership
lists is with a single attribute of type “MembersAre” that takes a lis: of names, perhaps separated
by commas, as a value. Alternatively, each member could be listed as a separate attribute of type
“HasMember”. The first representatiorn makes it easy to enumerate the mem?® >rship set, while the
secow:d is move convenient for adding and removing individual members. This iustrates the amount

of freedom available in chonsing various attributes and their representations. \'@
) Clenerally, the types of attributes for an object vary with the type >f the object. For instance, phnd)
information about a user, including anything from his office phone number to his address for receiving ’
electronic mail [Feinler 77|, differs radically from information about files [Mogul 84| [Leach et al. 82 :."
or database objects, such as the data’s location, structure, availability, and usage [Allen et al. 82| Vi
[Martella and Schreiber 80 [Lindsay 80]. The name service may choose to restrict the types of at- o
tributes or require certain attributes for given classes of objects [Cooper 82]. \: :

'ﬁ
i

P In a layered system, such as the Open Systems Interconnection reference model adopted by ISO
(ISO 81], an attribute for an object often represents an identifier to be presented to the next lower

«f]
W4

layer. The binding of names to network addresses, which motivated the conception of name services, :_.
represents a good example of this. For communicating with a object, one might need an attribute SR
for the object of type “InternetAddress”, whose value is a communication socket particular to the e
communication protocol being employed. Using the DARPA Internet Protocol [Postel et al. 81], I\:::!
the “InternetAddress” attribute for a host would have a 32-bit value; Xerox Network Systems, on)
r the other hand, use 48-bit internet host addresses [Dalal and Prirtis 81]. In some cases, an ob- i
ject mey have several attributes of type “InternetAddress”; for instance, mapping host names to L"
several addresses is useful for packet radio, muiti-homed hosis, and partitioned networks [Cerf 79) o

[Sunshinc and Postel 80} [Sunshine 82]. Additionally, for internetworks that support several diverse
families of communication protocols, an attribute “SpeaksProtocols”, whose value is a list of protocol
types understandable by the named object, may be needed.

o 2 s
I

s«
» 0 r

)
« a2
.

As an example of atiributes at a higher layer, consider clectronic mail systems that
wish to name mail originators and recipients independent of the locatious of their mailboxes
(Garcia-Luna and Kuo 81] [Kerr 81] [Schicker 82] (IFIP 83| [Sirbu and Sutherland 84] These sys-
tems might use the name service to bind a user name to the narue of the host computer on which his
mailbox resides. In particular, the value associated with a “MailboxResidesAt” attribute would be a
k host name, which could then he piesented to the name service to obtain the hort’s “InternetAddress”

attribute. By modifying the value of their “MailboxResidesAt” attributes, users can change where
they receive their mail without having to inform their correspondents.

1.2.4 Operations

L. The basic operation of a name service, then, is to map an object's name to attributes for that
object. A simple operation to do this, Lookup, takes the name of an object and the desired attribute
type and returns any attributcs of the giver type that are associated with the named object. Also,
mechanisms must be provided to dynamically update the set of attributes for an object. For example. d l
an Update operation might take a name and zttribute as parameters along with an indication of -
whether th~ attribute should be added, removed. or modified in the name service database.]

b Addivionally. name services may have special routines for manipulating group names, such as
adding ot deleting members; enumerating the individual members of a group can be an expensive
operation if relegated to application programs. especially if groups contain other groups as members.
The name service might wish to have operations that distinguish between aliases and preferred object
names. Also, in order to guard against different objects being inadvertently assigned the same name,
the object name should be registered with the name service independent of the object’s attributes.
H‘ In general, various operations on different types of objects and attributes may exist to facilitate

M8 SO IR LU S _'-)". [-
& LR RN IS LI 5
Je TS S AN SECURTTEI W S S,

Q I .
‘e “®e

A .
=" .. °© 54 Q .
- . e

Y . - - - !‘
Pl TP S S RS I B . - Sete .
SRR Sl Sl WU VAT SN R U S S S St A T AT I I A A

-

Pl B iie 2 b i b St Sl bl bl Al S fa nl b it i A) i SRR IR S A S e e A A T e e e Sl S

S

type checking, access controls, consistency, and concurrency. The set of operations allowec by a
name service can be as rich or baroque as those of any data storage facility. Furthermore, closely N
related services, such as authentication facilities [Needham and S:hroeder 78|, may be included in

name services [Birrell et al. 82]. The clearinghouse client interface, providing dosens of operations 9
[Oppen and Dalal 83}, is a good example of the range of operations that may be desired. “

1.5 The Thesis ' -

Name services to support large distributed environments must themselves be structured as dis- v
tributed systems. The advantages of distribution are well known: modular growth so that the name
service can meet the needs of a continually expanding community, avaslability through using muitiple
processors so that the critical name services remain available to clients, reliability through redundancy
so that valuable name service information is not corrupted, autonomy so that various organizations
may cooperate in the high-level management of objects without compromising their internal security, ®
and performance enhancements achieved through placing the name service information geographically
close to where the interest in that data lies.

]
This dissertation deveiops a frariework for building distributed name services to aid the manage-
ment of objects in environments characterized as being large and diverse. The projected computing
environment contains large numbers of networks of various technologies interconnecting a sizeable
computing community. Vast numbers of diverse objects msy he named and shared by members of Qo
the widely-distributed community; these objects come under the administrative control of & diversity
i of organizations pa-ticipating in the environmeant. The facilities for storing and manipulating objects
range from large mainframe computers to small personal workstations. Generally, end-to-end com-
muaication costs dominate the cost of interactions between distant sites. Environments of this sort :
are emerging with technological advances in coniputing and communications. The size and diversity .
of such computing communities place strenuous demands on name services, 9
|

The major thesis advanced and addressed by the research described herein car be simplistically :
stated as follows:

Physically distributed, but logically centralized, name services can be provided in a general
and cost effective way, even for very large, geographically dispersed computing communi-

ties. o
A name service that supports this claim must solve the following principal problems:

¢ Nare resolution: an object and its attributes may be stored at various, possibly several, loca- -
tions in the internet; the name service must be able to determine these locations when presented d
with the object’s name;

o Administrative control: administrative entities should govern the placement and protection of
their objects; autonomous organizations cooperatively participating in the distributed commu-
nity wish to retain control over the selection of trustworthy locations to store the attributes and
names of their objects; particularly sensitive information should only be accessible by certain ‘
name service clients; .

o Overhead coets: neither the size of the components of the name service at individual sites nor ®
the number of interactions between components should be directly proportional to the size
of the environment; although a name service may manage large numbers of objects and their '
attribu‘es, small workstations with limited resources must be able to participate in and make i
use of the service; .

e Adaptation: internet computing environments are continually evolving and anding in size,
either by the participating organizations acquiring new computing equipm - . or by their in- o
terconnecting to othe: computing environments; the management of the name space must be N

flexible enough to gracefully adapt to changing demands:

e e T T T R T T T T T R T AT Y T N R N T N NI LWL LY Y Y TR YV

3

» Performance: reasonable response times for accessing name services must be achieved; difficul-
ties in obtaining reasonable response times arise due to the physical distribution of the envi-
ronment and the cost of communication between distant sites; good performance is exiremely
important for the name service since it plays such a vital role in the overall system.

The next chapter describes existing name services and reflects o2 how they fail to solve some or all
of ihese problems for large and diverse environments.

The remainder of this dissertation embarks on & path to substantiate the maior thesis. Chap-
ter 3 develops a basic architecture for distributed name services, providing a common framework in
which later chapters address the principal problems. It bioaches an important distinction between
attribute data, information about named objects whose piacement is controlled by administrative
organizations, and configuration data, information manage:l entirely by the name service to locate
attribute data. Chapter 4's examination of clustering to rednce the information needed in each name
server for resolving names produces a general and powerful rnodel of name resolution: structure-free
name resolution. Prototype implementations of inechanisms for supporting this model are presented.
Chapter 5 proposes a performance model of distributed name services that identifiex factors con-
tributing to the cost of name service operations. The model is applied to a sample environment to
derive quantiiative projections of the effect of name server placements, replicated data. and various
assignments of authority un name service response times. Chapte= 6 reports actual measurements ob-
tained from the Grapevine registration service and uses them as input parameters to the performance
model. Chapter 7 explores techniques for caching name service data at client sites to further enhance
their performance. Treating caches as hints alleviates the cache consistency problem, while main-
taining minimum accuracy levels guarantees performance benefits. Lastly, Chapter 8 rzcapitulates
the principal problems outlined above along with their solutions.

CRAR SRS AR A ML L AR RS A A i s A AL A A

DR

e
B
J'!')|

.----.

Y "0 %0 v T»
NN AN "g"-
N e ta ity !

ke

XN
R

» T
v

P T '.x
N el

.

a
L

o

v
s
s’
]

. s e e .
s et Tl
Lo .
- ot
L .t

' '.'11

s ¢ 0 e
2 APy

e w e .
P T S R B e g
Al

'y

)
I
Pl
St

A
-

'l
PR]
PP o

4 ; -
ﬁ fz
: : 5
K

; of
2 7,
) G
Chapter 2 b
of

Name Service Designs: A Survey ;

o)

Distributed name services have recently emerged in which a set of name servers col-
lectively manage a global name space. The distribution of responsibility for parts of the
name space, as well as the mechanisms for locating names, depends heavily on the name
structure.

.
w 5

.
L N P

2.1 Existing Name Services

The desire to refer to objects by name and exchange information about these objects | is resulted

in the development of network name services for several existing distributed environments. The major .
identifiable name services that have been implemented and documented are briefly summarized in 'i
the following subsections. Later sections of this chapter present in more detail the various aspects of I

these systems along with other proposals and designs for naming mechanisms.

2.1.1 NIC Name Server

The ARPANET [Roberts and Wessler 70|, one of the first geographically-dispersed computer net- e ,.
works, has experienced a slow progression of name services. In the early days, the ARPANET Network :
Information Center (NIC) was established to maintain information about the network, including the :::

B

master database of host names and their respective addresses. Every host stored a complete copy of
I‘: this database, and the administrator of each host was responsible for updating its local copy when _"
the master changed. This host table allowed members of the ARPANET community to name hosts, =
F rather than refer to them by address, when transferring files between hosts or logging into a remote ® !
2 host. :

With the growth in sizte of the ARPANET and its expansion into the DARPA Internet
(Hinden et al. 83] [Cerf and Cain 83|, maintaining up-to-date host name to network address map-
pings became increasingly difficult on individual hosts. The development of an experimental NIC)
Name Server slightly alleviated the situation by allowing the host table information to be retrieved ®
incrementally via network protocols [Pickens et al. 79b]. This service eventually became the NIC In-
ternet Hostnames Server [Harrenstien ¢t al. 82]. The ARPANET host table stored by the server has
been extended to include addresses for networks and gateways, as well as additional host information
such as what protocols u particular host speaks, an indication of the services available, and what
operating system it runs [Feinler et al. 82].

i

The NIC also provides services for obtaining personal information about ARPANET users. The L,]
NICNAME/WEHOIS server supplies such information, including anything from a person’s office phone :
number to his address for receiving electronic mail [Harrenstien and White 82].

EEY
P i

RS R o AR P Y T R i o -
I A I IS U P I T S P A_{;_f&‘;ﬁ_c‘:a_\"_'fx; T W

w: B WM E TN YN N AY YWY W o S e -~ i s ad T e e T
rh\:‘"i'.\.f‘n'ﬂ CR NI SN S S AR e I N i i i e e e e R e S S O N A e R v
|

2.1.2 DARPA Domain Name System

t e
Fﬂlu-'t)

,‘
«
’

¢

H
.

-'

s

To ttis day, although the inadequacies of central edministration are widely recognized by the
DARPA Internet community, the master host table is still centrally maintained by the Network In-
formation Center. Fortunately, plans are underway to switch over in the near future to a decentralized
scheme for maaaging the host information [Postel 84]. The new Domain Name system will permit in-
formatiun on network entities to be distributed and replicated; the responsibility for its management
i will reside with the various administrative organizations comprising the DARPA Internet [Postel 84]

[Mockap-tris 83a] [Mockapetris 83b).

P Included in the transition to decentralized name management is the adoption of the Domain

Naming Convention [Mills 81] {Su and Poatel 82| for naming electronic mail recipients as weil as
; hosts. The Domain Naming Convention calls for a tree-structured name space in which each node of

the trre has a label. The domain name of an object is simply the concatenation of the labels starting
at the root and following a path through the tree; labels are listed from left to right and separated
by dots. The Domain Name System stores information associated with each node of the tree as a
P set of “resource records” containing type, class, and data fields. It manages mailboxes, aliases, and
group names in addition to the information currently maintained in the DARPA Internet host table.

W

2.1.3 BIND Server

The Berkeley Internet Name Domain (BIND) Server [Terry et al. 84] is an implementation of
P the DARPA Domain Name System for Berkeley UNIX. As such, it adheres to the Domain Naming
| Convention for identifying objects and to the basic set of operations designed fcr retrieving object

attributes. However, unlike the Domain Name System which maintains a read-only database, it allows
updates to the name service database to be applied dynamically using a primary update scheme with
secondary snapshots for replicated data.

2.1.4 PUP Name Lookup Server -

A decentralized name-lookup service was provided early in the dev.lopment of the Xerox Pup
Internet [Boggs et al. 80]. Servers on each network manage an identical database. Updates performed
at any server are advertised to all other name servers using broadcast (Boggs 83]. This service still
i@ fills the zeeds of the PUP Internet, while Xerox’ Network Systems [Dalal 82] have moved to a more
decentralized clearinghouse service.

.1--'0.-' L
LR ST N
2 2l e

Y
i

S
« .
‘) e 'r_

2.1.5 Grapevine

2 s’ .
v 4 h

v,

The Grapevine system [Birrell et al. 82] developed at the Xerox Palo Alto Research Center can
® be viewed as two systems in one, a mail system and a registration service. The latter provides name
services designed primarily to support the mail system, includin resource location, authentication,
and access control. Names in the Grapevine environment identify mail recipients and are of the form,
“F.R”, where “R" is a registry name and “F” is unique within registry “R”. Registries are intended
to reflect organizational divisions.

Rt |

L
Pt a

-
LIRS

L. A registration database that maps names to information about the names, including distribution a
lists and access ccntrol lists, is distributed and replicated among the many Grapevine computers.
At this point in time, the Grapevine registration service might be considered the only regularly-used -::
distributed name service. o
<
N1
o

o PPV 2o 2528 % o B o _9. 0 .o , o o o o . 6500 0gd o o .
L e L AP L i S - DI T ST UL A -~ - .. LTt AT S
W e T e e e LS T - e s S et PR el et At R P I S
t'_ e N AR e Y 4 B A R S G G S L S e T R ok, T T T e,
e Y 3 P b BV aiss [Ny

A T a7 R TR R R OE A TATE T o T s e R e L W N N T P TaT e TR T A T ETETR L N T LTV

10

2.1.8 Clearinghouse

The clearinghouse [Oppen and Dalal 83| is a decentralized service for locating named objects in
a distributed environment. Like Grapevine, it was developed by Xerax, and the two systems have
many things in common. In fact, tlearinghouse’s design was modeied after the Grapevine system
except that clearinghouse names have three parts, “L:D:0” where “L” represents the local name,
“D" the domain, and “O” the organization. The clearinghouse designers stress that domains and
organisations, like registries in Grapevine, are logical rather than physical divisions.

Xerax's clearinghouse strives to servc as a general purpose binding agent. It maps an object’s
equivalence class, consisting of a distinguished name and associated aliases, into an arbitrary set of
properties, where each property is an ordered tuple (PropertyName, Property Type, Property Value).
Clearinghouse’s “properties” correspond to “attributes” as defined in Chapter i. Property names,
corresponding to attribute types, are standardized s¢ that similar services can be easily identified.
The only property types distinguished are “individual”, an uninterpreted block of data, and “group”,
a set of names. The client interface supports many distinct operations for manipulating entities such
as names, aliases, individuals, groups, and group members. Different operations on different types
exist to facilitate type checking, access controls, consistency, and soncurrency.

2.1.7 CSNET Name Server

One component of an effort to connect computer science research institutions with a long-
haul computer network called CSNET wa. the development of the CSNET Name Server
[Landweber et al. 83| [Solomon et al. 82]. Its primary function is to support mail applications, that
is, aid in locating mail recipients. The CSNET Name Server maintains a centralized database con-
taining keywords supplied by users to describe themselves. A mail recipient can be unambiguousiy
identified in a location-independent way by supplying a suitable set of keywords, which are mapped
by the server to a mailbox address “user@site”. However, most mail users bypass the name service
and simply use mail addresses directly. The major utility of the name service is in discovering the
proper mail address of & particular person given descriptive information about him.

T AT T T N T T T T N N e, T R R e L e a R e T T T T R VY TR

2.1.8 Cambridge Name Server

The Cambridge Distributed Computing System [Needham and Herbert 82| relies on a name server
for translating unstructured names of services and machines into ring addresses. Roger Needham and
Andrew Herbert describe the name server as “the most fundamental of all of the services provided
by the distributed system” [Needham and Herbert 82]. In their environment, for instance, the name
service operation is crucial for booting other services dnd for allowing a machine to discover its own
address. When responding to service lookups, the name server indicates the protocol associated with
the service, as well as the machine on which the service runs; however, the name server does not
guarantee that the service is currently available. To achieve high reliability, the name server program,
along with an initial name tabie, is stored in the read-only memory of a dedicated machine.

2.1.9 COSIE Name Server

The COSIE Nanie Server, designed and developed for use in a distributed office system [Terry 82,
maintains a database of named attributes for an object. In order to support many different clients.
the name server provides a very simple set of operations and places no restrictions on the syntax or
semantics of the names it stores. It manages group names as well as individual names; group names
have been used for lists of teleconferencing participants, mail distribution lists, generic services, and
even to keep track of the users of a shared object (an alternative to reference counts).

e AP B A i L L L il aniT e R i UL G L LERE A it e il L L AT R A L

o

o S N N AT F TR M IANF LR LTI TR ON

fintain Mt -‘..,.“_ R T T T T L Y N T T T T T T T TR T T e T T T

i

Y
N
f 2.1.10 R* Catalog Manager RS
] . '_d"_.
U
i The catalog manager for R*, a distributed database management system developed at the IBM LAY
P San Jose Research Lab, maintains information used in distributed query processing. In addition ro—
to mapping names to the locations of database objects, it provides information about the objects R
such as the available access paths, their data schemas, the authorized users, and usage statistics. ~_:.r'_:
An object’s system wide name has four components, “user@user-site.object-name@object-site”. The A
“user@user-site” component permits different users to select object names that do not conflict, while ;-:':
the “object-site” component partitions the authority over objects. Name completion rules allow parts (.“{‘:i

B

of the name to be left unspecified by database applications.

2.2 Structural Components

A general model has evolved for building name services in which a set of active entities called =
name servers share the responsitility for providing the service, while clients access the service through =,
name agents. TP

2.2.1 Servers : :fii

Each name server manages part of the name space and runs on a single computer; interactions Cm e
with other servers and clients transpire via the communication network. 'n the case of a centralized
service, a single name server manages the complete name service database. Although several existing i
name services are provided in a centralized fashion [Harrenstien and White 82| [Harrenstien et al. 82 SRS
[Solomon et al. 82| [Terry 82|, there is little argument. that name services to support large and diverse oL
computing environments should themselves be organized as distributed systems [Clark 82]. RS

- PR

0 » '.
0 R
It)

a o Yo et R e

b In a distributed name service, several name servers collectively manage the name space and ‘
support the basic set of operations. Generally, the name servers act as peers in that they all play -

an identical role in the systemn. That is, the function of the service is not partitioned among servers:

the control and data are simply decentralized. All name servers present a common interface and G

accept operation requests from any client, though the contacted name server may not contain enough o

information to process the operation locally. Grapevine. the clearinghouse, and the Domain Name L

® System are all organized in this manner. GeR

Differing attitudes exist as to whether the name service should use dedicated machines or run on
hosts along with other services and clients. For instance, the CSNET Name Server is a dedicated
host, and the Grapevine system runs on a collection of dedicated machines. On the other hand,

the R* distributed data management system, including its catalog management component, executes
on all hosts. The V-System, developed at Stanford University, adopted a policy where each server =]
® for a class of objects provides the name service for those objects; thus several object-specific name

servers might reside on a workstation [Cheriton and Mann 84|. The Cronus Distributed Operating ~
System also requires a name server on every machine, but for availability reasons; the designers argue =l
that “it should be possible to access an object wher. the site that stores the object is accessible”
1 [Hoffman et al. 83|.

[' 2.2.2 Agents
Clients of the name s~rvice prefer to be unaware of its distributed nature, and hence interact e
with name agents that assume responsibility for communicating with remote name servers. Namie o
agents thus act as intermediaries between name servers and their clients, allowing client programs to
be written as if the name service were locally available. 2 ol
e
The notion of a name agent has been provided in several systems under various names. =
=
®

R T . .
LA et ta et S %ale

SR A A A R AR AP R A R A A R O e s e B e Bt A e I A LA

i e T i A OO B2 S e o Tl o R R e i Oy gt Pl U B
k. [

LA
oA
v S

Zi .

12

A

LR
g L4 !

The Grapevine system has similar components called “GrapevineUser” [Birrell 83]. the COSIE

Name Server calls them “user interfaces” [Terry 82|, the DARPA Internet Domain Name system

has “resolvers” [Mockapetris 83a, the CSNET Name Server uses “name server agent programs’

[Solomon et al. 82], one proposal calls for “application interface processes” [Su 82|, and the clraring- ®
house requires “stub clearinghouses” to be resident in every client [Oppen and Dalal 83].

P

In cases where a name server and its clients reside on the same machine, as would arise with policies
that require a server on every host, the clients’ name agents might be unnecessary. However, besides
speaking the proper communication protocols, name agents may perform additional functions such
as maintaining a detailed kaowledge of the name space and of existing name servers. One proposal ®
suggests using name agents to negotiate for resource availability and compatibility once a resource
manager is located through the name service [Su 82|. Chapter 7 addresses the issues of caching the
results of recent name service queries within name agents.

o

gy
& %

L g

Had 1k e e

The interface provided by a name agent to its clients may mimic the interface provided by the
name servers, or may be tailored to a particular application. “Value-added” services provided by

the name agent, such as caching or resource negoiiation. undoubtedly require interfaces to new ®
operations.

’: Each name service client most likely utilizes a single name agent. However, each name agent

Eg:-’ may either serve a single client or be shared by different clients in the same locale. These two

= organizational choices are depicted in Figures 2.1 and 2.2.

If the name agent is structured as a set of subroutines that are simply linked into the client ®
program, then each client has a private name agent. On the other hand, a name agent that is shared
among clients may be incorporated into the operating system kernel, with system calls used to invoke
name service operations, or may exist as a separate process and be accessed via an interprocess com-
muvication (IPC) mechanism. For example, the initial BIND name agent, a domain name resolver,
was implemented as a set of C language ibrary routines [Terry et al. 84); current efforts are under-
way to migrate the resolver to a separate UNIX process so that a shared cache can be maintained by ®
the name agent.

2.3 Functional Components

A name service can be functionally decomposed into three components: communication, database)
management, and name management. A name service must be able to store data reliably and com-
municate among servers aud between servers and agents. Name management builds upon database
and communication technology to allow the distributed name service database to be queried and
modified.

2.3.1 Communication

Name servers and name agents reside on various machines distributed throughout the environ-
ment and hence must rely on a communication protocol for their interaction. The usual three styles
of communication exist for the server/agent and ser-er/server protocol: using self-contained data-
grams for exchanging data, establishing virtual circuits to transmit byte-streams, or employing remote PY
procedure calls to invoke remote operations in a similar manner to local ones. Selecting the proper
protocol involves weighing the cost of the protocols against the benefits they provide. For instance.
datagrams are generally unreliable, though less expensive than virtual circuits, which provide re-
liable data transmission. Remote procedure calls are conceptually simple to use because of their
resemblance to local procedure calls; nevertheless, the request-response paradigm enforced by remote
precedure calls may not always be desirable. ®

In practice, different protocols may be desired for different modes of communication taking place
between name servers and agents. For example, reliable communication may be unnecessary for

T T T R T T AT R T A T T AT W T YL AT N R A T L I U R VB UL TR U ST RO YU T TELA WL RV R L AT WY WO WY WS 8 e w e ma wecme R e -

‘.,....., m.-‘mn.- o
»e
w

client client client client

BRI | oAty | S ARARN

v

o name name name name
agent agent agent agent

: 1N

-"‘

g~y " =
F I e

e A

(7]
Q
<
)
=

server server

R e

.

Figure 2.1: Individual name agents.

~— =

Lines represent loosely coupled interfaces while common edges represent tightly coupled interfaces.

AR

r e
PR

. x
Pt

R]
2 s

-

Je e v’v.,

®
'.:'.n_‘v

2 T TI . .]
2 S Ty e T S

. . gn GRS e Al e s . “l 4 el a e wmte e .
' - O T e g s T T A I O O T T - W e, n e .
a P S E I T 3 3 P A TR R Ty EC TS - - » -t - . N
'\.-‘4\-'..~\._. -,w..‘-_-'-s-,%-‘._ w -qu LR L L L L A L R PO AT . ._-f..\v‘- -
PRAGNE R PR DR DG RSN P IRT D t, SR T R, "I) N S s T T R e P U TR M Ve) N L, S PR T NI S A I

g
Y
%i
:
)
i

i aan L amne g i di e AP S el Ty

T TV T T W e T

Lt

C s L

DRSS I N o

TSR AT AT TN T A RS T AT LT ERATRAT SRR
14
client client
name agent

client client

name agent

server

server

Figure 2.2: Shared name agents.

Lines represent loosely coupled interfaces while common edges represent tightly coupled interfaces.

-

ey L.,

"

Iy

F“'
N
L}
oy
o

: s

A e T S I ¢
v s B !'

2

®
m*

a

BTN

| ik Rl et Bt b S Bl Rl b L S8 A S A Bt B Sl el Bt b Jhat R S Sl l"‘."‘i"l"h'I'KYH“"LIF,I'I‘.IM‘F,I'!&"J‘I“‘I'HH.\!'.'.I“'F"?
»

LJ L L L

invéking name service operations since they can be easily made idempotent, allowing the operations
to simply be retried in case of communication failure. However, critical communication, such as the
exchange of authoritative data between servers, should be reliable.

Grapevine [Birrell 83] and R* [Lindsay ¢t al. 84] use byte stream protocols for communication so
that the cost of authenticating communicants can be completely incurred at connection establishm .
The DARPA Internet, on the other hand, has traditionally used datagrams for invoking name service
operations [Harrenstien 77| [Postel 79]. The Domain Name System, however, specifies that a virtual
circuit should be established if the name service response is too large to fit in a single datagram
[Mockapetris 83b]. It also uses virtual circuits for reliably propagating updates to replicated data.
To accommodate a diversity of clients, the CSNET Name Server accepts queries in a variety of forms,
including electronic messages [Solomon et al. 82].

2.3.2 Database management

Oune of the major responsibilities of a name service deals with managing the name service database
of objects' attributes. A lot of work has been done by the database community in developing tech-
niques for query processing, concurrency control, and transaction managemen: [Gray 78|. However.
surprisingly enough, the COSIE Name Server [Terry 82] is the only one of the services discussed in
this caapter that uses a general purpose database management system to store its information (aside
from data dictionariez); perhaps because database management systems have reputations for being
big and slow, perhaps because complex query languages are not needed to support the simple name
service operations, perhaps because name services have very simple data schemas.

Althovh database transactions [Lampson 81] are useful for implementing atomic name service
operations, reliable data storage may not always be necessary. For example, the COSIE Name Server
[Terry 82] makes a distinction between temporary and permanent objects. Updates to attributes of
permanent objects use the underlying database management system, while temporary object infor-
mation is placed in the in-core buffer pool, but never committed to the resident database. Registering
temporary objects is thus faster than registering permanent objects since a database transaction is
not required. Registering objects as temporary is useful for processes that rendezvous through the
name server or for distributed programs t-at are being debugged. In both cases, the permanence
of the information is neither required, nor desired. For example, programs that are being debugged
often fail in ways that prevent them from unregistering themselves with the name service; if registered
as temporary, the information associated with these programs is automitically purged from the name
service database when its buffer storage is reused.

Severed beumiques for maraging seplested dats in & Jistelbuted sompating environdienl howe
been proposed and thoroughly discussed in the literature. Bruce Lindsay et al. [Lindsay ct al. 79|
and Elmar Holler [Holler 81] provide good overviews of these techniques. These general algcrithms
for maintaining consistent copies of replicated data can be adopted for the distributed rnanage-
ment of name service information. However, they assume no knowledge about the semantics of the
data being managed. Researchers at Carnegie Mellon University developed a special algorithm for
replicated directories based on Gifford’s weighted voting [Gifford 79| that takes advantage of the
properties of name directories to achieve high availability and performance [Daniels and Spector 83|
(Bloch et al. 84]. Basically, they achieve higher concurrency by dynamically partitioning the set of
names stored in a directory and maintaining a version number for each partirion.

Also, general replica‘ed data algorithms, such as weighted voting, almcst cXciusively “coisider
strong consistency to be important. The designers of the Grapevine system argue that name service
clients can cope with temporary inconsistencies. Much of the work in the design of the Grapevine
registration service was in designing an algorithm for replicated data that exploits the semantics of
registration data [Birrell et al. 82] |Schroeder et al. 84]. The Grapevine system has a weak notion
of consistency among the various replicatcd copies of a registry. Availability is enhanced by allowing
updates to a registry to be performed at any site and then propagated to all other storage sites. The

15

P
v e Ny

oA s
L

T s

»

te Yo e e
LA I e |
r

v,
5t "% "y

LI P

7
L]

L]

'l

« T

. e
P
IO Bt 4

.

.

. 2

.
”
. .

A
A
It F 4

L{’. Y

o
LA N

L. N Tl S L I et N Bl Yt el e ahl e Sl S Bk Yotk T T M N A A T Tl Wil TR T L TR L LT Y R LY YAy T L YR GEFL YR VS

F

]
Y

16

only guarantee is that all of the copies will eventually converge to a consistent state. Active and
deleted sublists of entries, as well as timestamps, must be maintained in order to merge copies that
have been simultaneously up.'ated. However, conflicting simultaneous updates are not guaranteed
to be resolvable. Greg Thiel developed similar algorithms for merging replicated database catalogs

Gy AAAAA

G that have beer independently updated during a network partition [Thiel 83]. Again, the goal was to
{:": improve update availability by reducing the consistency requirements.

> Lastly, many algorithms for replicated data assume that all data storage sites are always able
:: to communicate with each other. However, for dialup networks with very loose topologies, such as

UUCP |Nowitz 78] c: CSNET's PhonelNet (Comer 83, servers may caly be able to exchange updates
at limited times. For this reason, the BIND Server uses > primary update scheme in which the
responsibility for requesting updates lies with the secondary servers [Terry et al. 84]. For simplicity,
all updates are directed to a primary server, whic®. transfers incremertal updates to secondary servers
upon request. The restriction that updates get directed to a single server eliminates the need for
metge algorithms, but reduces update availability and concurrency.

a
v e e

NS Bt ik
P

e

a4 A SRR ET L TR I N QLM I L Lt S M N L AL WL~ SN M M e e

2.3.3 Name management

sty

Ve

Several schemes for naming objects have been proposed, though few of the propoeals have ad-
dressed the issues of distributed name management. The major aspects of name managemeit include
name distrsdution, the assignment of authority for parts of the name space to various name servers,
and name resolution, the mechanivm for locating the attributes of a specific object given its name.
Generally, the structure of name= influences the way in which they are resolved and distributed.

T
e &

S e
L™ PRI

Sl
4w Lt

<R
LI IS LA
v SeEmeyr

Many naming mechanisrus trivialize’ name management by utilizing centralized nane services.
Others, such as the Pup name service [Boggs 83] or the Mininet system [Livesey 79), fully replicate
the name service information in all servers; name resolution is thus unnecessary since 22y name server
is able to respond to any lookup request.

A T A W . - e]

Some proposals allow the name service database to be partitioned and distributed, but rely on
broadcast or searches of name servers to find information. Such a protocol for locating resources in
the DARPA Internet has been recently proposed [Accetta 83]. Often, the name service database is
distributed such that each name server manages local objects. References to local objects can then
be resolved by consulting the local name server; resolution of names for nonlocal objects resorts to
using broadcast [Janson et al. 83] (Lyngbaek and McLeod 82] (Gelernter 34]. Bremer and Drobnik
2 carry this a step further and suggest a scheme in which the environment is divided into regions
1 where regional directories maintain name-to-address mappings for all objects residing in their region
[Bremer and Drobaik 79]. Name resolution proceeds ir three steps: the local name server, which
.. may contain incomplete informaticn, is consulted; if the desired name is not found, then a regional
3 server is contacted; if that is unsuccessful, then a request is broadcast to all other regions. '

T L Ty Y PN

To avoid broadcast but permit distributed data, many systems incorporate an object’s net- ol
work location into its name and adopt the policy that a local name server manages local objects
(Lyngbaek and McLeod 82| [Chou et al. 83] [Cheng 84] [Curtis and Wittie 84b]. These location-
dependent names, of the form “local-name@machine”, carry with them the information necessary .
for name resolution. Mail systems, including those used in the DARPA Internet and CSNET, have "
traditionally accepted such names for identifying mail recipients. RSEXEC, perhaps the first attempt .
ie creaie a network-wide name space for objects other than mailboxes, used this approach to refer .I
to filess on TENEX machines scattered around the ARPANET [Thomas 73)|.

The R* system requires =ach catalog manager to maintain information about all locally stored
objects and all objects that were created locally [Lindsay 80]. Names are of the form, “object-
nameQobject-site”, where the “object-site” represents the birthsite of the object, not its storage R
site. These might be called authority-dependent names since an object is allowed to migrate to other .
sites, but its birthsite remains the authority for the object. The birthsite must track the object’s .!
movements so that its name can be resolved. Debra Deutsch also proposed using birthplaces as a g

RN LTIV e I P e T S B s T S g VL SN ST |
-~ R T A A A A LR . e e T AT T A T N e
M S S A Y AR S N A A A A A R R N T I AT P I RN SIS S IR D Vo S o

F"‘.ﬂ'\\'\\“\\."v_‘.'\ LS Bl Tal ink Tl Sl Saf il Sl A et il ol U p¥l oF e it ptin oSl oFl - o & 5k S it bl Ao dhie Sitarala St el ht S b s Sl Fal b oL o of Bl Bl St Nt ort 08 B N 5= ~ 4

: ;

'l’" 'u

-

0

Ly

means for distributing and locating information about mail recipients [Deutsch 79|. 1

The V-system also uses authority-dependent names, but manages them in a slightly different man- b'::i

ner: each server for a class of objects mauages the names for those ohjects [Cheriton and Mann 84]. t_':

e In order to allow a uniform way for interpreting object names, all names are prefixed by the server ey
identifier. Names of the form “server.object-name” are resolved by first contacting a local “context

prciix server” that indicates where to forward the resolution request; different servers can resolve the At

“object-name” in different ways, though many use hierarchical name spaces with nested contexts. -f:

Systems, such as Grapevine or the Domain Naming System, use location-inlependent names,

R

» sonetimes called domain names or organizationally-partitioned names. In these systems, an object’s
name is only indirectly associated with the sesver or servers that manage information about the

object. =

S

In the Grapevine system [Birrell et al. 82|, registries represent the granularity for partitioning

and replication of the registration data; that is, a registry is treated as an indivisible unit when it +

[

comes to storage site selection. Registries can be replicated in several servers, and a given server may
L manage more than one registry. A special registry, which is replicated in every registration server,
enables any Grapevine sexver to determine which servers contain the database entries for a particular
registry. Since object names explicitly contain the registry in which the object resides, all name
lookups require two steps: first the authorities for the name's registry are discovered, then one of
them is contacted. Clearinghouse’s distributed lookup algorithm is basically the same as Grapevine's
except tlat name resolution takes place in three steps since clearinghouse names have three parts
™ instead of two [Oppen and Dalal 83].

v e e e,
o T T T T
B S S e

T
¥

The Domain Naming System [Mockapetris 83a] [Mockapetris 83b| partitions the name space into
“zones”. A zone can be specified by the domrain name of its root and the names of its endpoints. If
an endpoint of a zone is not a leaf node, ther. that node serves as the root of another zone. Zones
represent the administrative divisions within the name space. For example, Figure 2.3 indicates a
couple of zones that might exist on the Berkeley campus. As with Grapevine registries, zones are
) indivisible units c{ storage, and a many-to-many mapping may exist between zones and name servers.
Thus, the boundaries between zones indicate possible delegations of authority. The Domain Naming
System resolves names a label at a time starting at the root and traversing down the branches of the
tree. The resolution of a name migrates from server to server in accordance with the delegations of
authority until all labels of the name have been ecamined. As an optimization, if a server receives a

name lookup request for a name that is in one of its zones or a zone that it has delegated authority
L to, the resolution of the name need not start at the root of the tree, but rather can start at the root
of a zone in which the domain name of the root is a prefix of the name being resolved.

The Cronus [Hoffman et al. 83] and LOCUS [Popek et al. 81] [Walker et al. 83| distributed op-
erating systems also support tree-structured symbolic object names. LOCUS has the notion of “file

-

PR R S}

...; e

P

groups” that correspond to zoncs; it maintains a network-wide “mount” table for resolving names.
The Cronus designers adopted a policy in which a “dispersal cut” is made through the name space]
» such that the “root portion” is fully replicated at all sites, and ~ntire subtrees below the cut are .

stored within a single site. In other words, the entire name space above the cut is a single zone, and
subtrees below the cut represent individual zones, as depicted in Figure 2.4. This enables names to
be resolved by contacting at most two name servers.

2.4 Performance Issucs .
The existin, work on pame services stresses functionality, while performance considerations have :‘_
remained of secondary importance in most work to date. .
.

§

.

Y

T G T P A T AL N SRR
,'\:. A? . *j’} :.J'\:-"} n"}-l"}:?‘-“ﬂ“ }q’ PVt ¥ fa ; S

. O e A e S A A S
o - Bt et daMatea%talets et tatalala

g
B

[

KA iy

AAR AN

Y

LN

.
"

-
o
-
ey
~
L.
.

Fah-dat A

GSESE RN TS A TS N RETE T T T L AR AU UL R I R AU @ W I I M TR T TR UF S TR RN AR

18

CPEERETE W B B B g BRI e e e e SR W A

(root)

tdu Gov e Com

Berkeley zone // /\ \

kA F/J

N ——e—
computer center zone [)

Figure 2.3: Domain name space with sample sones.

L P 5 o
L T T G V. TR, e
P S AT S oy N A e S T TR N S

B R T T na L Rl M |

A ™

O B

.r '- 3
\.‘hl_‘u_'-:.l .'JL;-:.

LAY

b e T T A T AT T

N S T N NN N L /AW e/ wiw, wrw

-

— root zone
/ Com

Edu Gou .

/
/
QlT CMU ...

P N
/

Berkeley \ . SD LA)

/l\

monet degas .

\\
N I /

™~

uc

dispersal cut
."\m"‘w

leaf zones

Figure 2.4: Hierarchical name space with dispersal cut.

.- ‘..'-. ~
P » . -y
_(,1. LR | LSRN

LA AR

]

.....

=

®

A.il_l&“.x&.\‘u o

AR e A i e

19

. . e« .
080t LA M L
[| Y S Y

.

W W WV MR TR TRRE T T T, L

T R U YW T W W L e &

L i AR

20

2.4.1 Models

Performance models of name services have been noticeably lacking. Typically, the name service
designers or administrators distribute the name space among servers according to their intuition or
experienced observations of tke environment rather than modeling various alternatives. The few
recent attempts to analyze distributed name management schemes have been concerned with very
simple strategies.

Yen-Yi Wu studied file directory systems for locating files in networks with either loop or star
configurations {Wu 83|. The directory schemes conside ‘ed include centralized directory data, fully
replicated directory data, and some hybrid schemes bas:d on localized authority and searches. Wu's
model allor ed expected query response tirses for the virious directory schemes and network config-
urations to be computed.

The only known paper that discusses the performance of name services in an internet environ-
ment proposes having regional name servers manage a two-part name space in a hierarchical fashion
[Chou et al. 83]. All regional servers store complete information about objects in their local network:
updates are propagated by broadcasts. Chou et al. introduced a network communication model,
which was used in simulations to analyze the cost of this proposed distributed update scheme for
high transmission error rates.

2.4.2 Measurements

Measurements of distributed computer systems invariably provide needed insights into their op-
eration and suggest ways of improving their performance. Of the name services discussed in this
chapter, only the Grapevine system manages a partitioned and replicated name space with a large
user community. Other emerging name scrvices, such as the DARPA Domain Name system, should
benefit from experiences with Grapevine. As the Grapevine designers put it, “There is no alterna-
tive to a substantial user community when investigating how the design performs under heavy load
and incremental expaasion™ [Birrell et al. 82]. Some measurements and experiences with Grapevine
have been recounted concerning the administration and reliability of the system [Birrell et al. 82]
[Schroeder et al. 84|; ro work has been identified in which measurements were obtained to aid in
configuring name services.

2.4.3 Caching

A couple of present-day name services, Grapevine and the R* catalog manager, employ caches
to improve the performance of name service lookups. Grapevine message servers cache hints about
individuals’ ; referred inbox sites; out-of-date cache entries are easily detected when servers attempt
to deliver a message to a moved or deleted mailbax [Birrell et al. 82]. R* database sites use locally
cached catalog entries in distributed query planning; when the formulated plan is distributed to the
sites involved, version numbers for the catalog entries on which the plan is based can be compared
against the current catalog entries to determine the validity of the plan [Lindsay 80]. Other systems
have suggested the use of caches, but concrete designs have yet to emerge.

2.5 Evaluation of Previous Work

Significant work has been done in the area of communication protocols for accessing name services
and in the area of database management systemx for storing object attributes. The currently unre-
solved problems in designing name services concern how to manage large distributed name spaces.

Contemporary name services are emerging in which the attribute information is both distributed
and partitioned. These planned or existing systems make substantial contributions to the general

T TN T i N R R e e M B A S T e T D e ot e b e e N X A R T e Lo v T I I, =

-

) LTS DR et 7

®
S T

L P

E
o

L

techniques needed to build distributed name sezvices. Nevertheless, all of the existing designs fail to
adequately address some of the problems outlined in Section 1.3 for very large and diverse cornputing
environments:

o Name resolution: All name services are able to resolve unambiguous object names in one way

or another. In existing name services that do not rely on broadcast, the process of resolving
names is driven by a name’s syntactic structure and dependent on how names are distributed
among name servers. Name resolution always proceeds by successively resolving individual
labels of a name. Unfortunately, existing name services’ reliance on syntactic structure in order
to locate an object or its attributes place constraints on the management of the name space;
these constraints prevent solutions for some of the other principal problems from being realized.
As an extremue example, location-dependent names restrict the mobility of an object once a
name has been assigned. Changing the name of an object is an expensive operation since all of
the references to the named object become invalid; hence, object names are generally considered
permanent. Location-dependent names force objects to change their names in order to relocate.

Administrative control: Even authority-dependent and existing location-independent naming
schemes provide less than perfect administrative contrnl over the placement of an object’s
attributes. All current name services distribute the authority for names to various servers
based on the structure and contents of the name; syntactically similar names, for some similarity
criteria, have the same authorities. For example, in the Grapevine system, all of the names
belonging to a particular registry have the same set of authoritative name servers; in the Domain
Naming System, a name’s zone determines its authorities. Because of the syntactic distribution
of names in existing systems, the assignment of a name to a new object is partially governed by
an organization’s concerns for the name servers that store the object’s attributes. Changing an
objeci’r name servers requires changing its name or assigning new name servers for all objects
in the same syntactic partition of the name space.

Ovethead costs: Name management schemes in which the entire database is maintained by
a single name server place an unreasonable load on the server, when it is used in large envi-
ronments, due to the storage requirements and the frequency of updates. A few exisiing name
services are able to successfully manage large numbers of objects by partitioning the name space
among many servers. A potential difficulty arises, however, for naming conventions with a fixed
number of levels. Grapevine, for example, with its two-part name space, requires all servers to
know about all registries; truly enormous computing communities would require a significant
number of registries. The clearinghouse and R* catalog manager face similar problems.

A lack of scalability also represents a major failing of systems that rely on broadcasting name
resolutio:l requests to all name servers. Although David Boggs claims that any network should
provide broadcast mechanisms [Boggs 83|, the cost of such mechanisms for large internetwork
environments renders full broadcasts infeasible.

Adaptation: The inability to adapt to growing communities with changing requirements is the
main deficiency of traditional name management techniques. Existing name services, whose
basic mechanisms have such a strong reliance on the syntactic structure cf the name space, may
lack the flexibility to scale up to very large environments. At best, the system administrators
that configure the name service initially must carefully partition the name space according to
the projected growth of the environment so that no partition becomes unmanageably large.
Name services should be able to be reconfigured if the present servers become overwcrked or
overburdened with data. With current services, reconfiguration occasionally requires objects to
change their names because the name space is distributed among servers according to syntactic
partitions. As an example of a lack of flexibility, as a Grapevine registry grows over time,
no provisions can be made for dividing its data between different name servers. At least cne
Grapevine registry has already been split, causing some of its members to be renamed.

Performance: As indicated earlier, very few studies have attempted to measure or predict the
performance of name service operations. Within the framework of most name services, decisions
must be made concerning how to distribute and replicate parts of the rame space; these decisions

21

b

~
RS

LN

If'l"l y "

.'- " p',

A

e e Y e
ARy

L

LSl Al Sl S S S el tal Sl Tl Ak il Al Al G S G A i Sl Gl T il S i S Sl i P BN R e SN N P R A PR S AN AP S i A B A Tl N

aiad
)

N
£ .

o
" 22 !
A
N - : : . ;
D drastically affect the response times for name service lookups or updates. The Grapevine %
g designers have provided some suggestions based on their experiences, but measurement and .
1 modeling tools are really needed to aid in configuring large name services. The utility of .:
-~ techniques such as caching and data replication can only be determined once the operation of !
Saa a narue service is fully understond, including clients’ referencing behavior. \
v , w
- The DARPA Internet’'s Domain Naming System seems to come the closest to handling very large and :
\ diverse computing environments, though it has yet to become fully operational. This dissertation i
adopts many of the architectural properties of such a service, but develops a more flexible approach t
to name management: structure-free name management breaks the strong ties between the structure o|
\ of names and their management. f
E ¥
o
o
o
)
d
|
ol
0|

®

o

o

L e e

F' D T A B e N A M i adatt R et i b sl S ast AV A A B A S0 0 A Rl B Bt Rl i i S B s o i Rl Ty

B —

L

-

o= - R I T
Ex__-.)-,. RTASTSLSES

AN

Chapter 3

Name Distribution

A basic architecture for distributed name services provides the framework in which
to explore the problems of managing large name spaces. Facilities for internetwork com-
munication and for maintaining replicated and distributed copies of data serve as the
foundation for building distributed name management mechanisms. Structure-free name
distribution, achieved by introducing a special attribute that indicates each object’s re-
sponsible name servers, permits more flexible assignments of authority than those based
on the name structure.

3.1 Foundations

3.1.1 A Layered Architecture

This dissertation develops an architecture for building distributed name services, including inech-
anizmna for distributing, resolving, and caching names. As in current name service designs, several
name servers collectively manage the name space and support the basic set of operations. The facil-
ities required of each name server can be organized in layers as depicted in Figure 3.1. Subsequent
sections describe each of these layers in more detail as well as the interactions between layers.

Segments of programs to implement the name management mechanisms are provided in places in
order to make the architecture concrete and present guidelines for future implementors of distributed
name services. The programs are written to be easily understandable, not to be efficient or complete
implementations. The casual reader concerned with simply understanding the concepts presented
should bte able to skip the program segments; though they often help to clarify the discussion.

All of the program examples are presented in the Mesa programming language [Mitchell et al. 79].
The intent is that the reader need not be familiar with Mesa in particular; familiarity with constructs
common in block-structured languages should suffice for understanding the examples. Explanations
of unconventional or esoteric language facilities are given in the footnotes.

3.1.2 Communication Support

The examples presented throughout this dissertation utilize a hypothetical remote procedure call
mechanism that allows procedures to be executed reliably on remote machines. Its use requires
adding a new NETADDRESS data type to the programming language, which is the internet address of
the host on which the called procedure i3 to be executed. and a new primitive, AT , which binds the
call to a particular address. For instance,

= o - - - Y - - - . -
N N E - R 4 . . .
A IACE AL YRR A7 T R NI S TSR i |

23

r o .

e .7 -
.l.‘.‘

N

A

A |

sTo T
l‘l

»
.

LU

P

s

v .

r‘: “.‘ -'.‘ ":":“'; 5

..-.
A

LY

e a1

ot

"l.":.

i
T
»

»

v .
gz

ey g e Y et
?u':'fu‘r' " r"l(.‘.'."-'i'.'-'.f,

1.

-

b s "r_'.

"'.I
23

“e L3
£ I‘l LI

»,

2y

L

‘I

s A W A R e R R T N N A R T T L T e A S T o o I TR TR Sl bl R TR A T

24

name service operations

name resolution

replicated data

communication database

NSNS s e F LY TR S

Figure 3.1: Functional layers in a name server.

address: NETADDRESS;

result — Module.Procedure{args| AT address;

invokes the given procedure of the giver: module at the specified host address and waits for the result
to be returned. This assumes an internetwork environment with a global address space from which
values of type NETADDRESS can be drawn.

The use of the AT operator is introduced to explicitly indicate the interactions bet~een programs
running on separate machines. Such a facility does not actuaily exist in the Mesa programming
language. Nor would a real remote procedure call mechanism be incorporated into the language
in this manner since remote procedure calls are generally intended to look identical to local proce-
dure calls with the bindings between servers and clients being performed by the runtime package
(Birrell and Neison 84].

Remote procedure calls were selected so that the semantics of the communication can be presented
in an easily understandable way without being concerned with the details of a particular commuani-
cation protocol or package. Furthermore, the details of packing operations, their parameters, and
their results into messages can be ignored.

h
i
.
o
3
.

|

3.1.3 Database Support

The name service database, containing attributes for the universe of named objects, is distributed
and replicated among the name servers. A given attribute may be managed by one or more name
servers. However, for simplicity, all of the attributes belonging to a given object should be main-
tained together. Th