
Productivity Engineering in the UNIX1 Er vironment

CO
CNJ
<M

cn

<
I

Q
<

An Ada2 Package for Dimensional Analysis

Technical Report

S. L. Graham
Principal Investigator

(415) 642-2059

"The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government."

Contract No. N00039-84-C-0089

August 7, 1984 - August 6, 1987

Arpa Order No. 4871

DT1C
'\ -"CTt"

'UNIX is a trademark of AT&T Bell Laboratories
2Ada is a trademark of the U.S. Government (Ada Joint Program Office).

Thh doc-amort has been approved
for public release end sale; its
distiibution i.; unlimited.

8 6 4 :•) oo
■f*JV« <". -r* <* -r. -\ -, ■". *"■■% «r. -'. -'". <« ■'"- -■« "■- \\ '"* -■- •*.'■'. •■. -■. -'.'-'. -■'. -\ w ttj -' ■\' , W - V» "T .. < . ^ * - ■ - ' V»\ KJ.

Accession For

NT1S GRA&I
TIC TAB

An Ada™ Package for Dimensional Analysis*

Paui N. Hilßnger

A', il '":•■ lit-" Codes

f/fljVersity of Caiiforoia, Computer Science DiVision
Berkeley, CaUfomia 94720

Abstract

Oii;!

^

ipeclal

This paper illustrates the use of Ada's abstraction facilities—notably operator overloading
and type parameterization—to define an oft-requested feature: a way to attribute units of
measure to variables and values. The definition given allows the programmer to specify
units of measure for variables, constants, and parameters; checks uses of these entities for
dimensional consistency; allows arithmetic between them, where legal; and provides scale
conversions between commensurate units. It is not constrained to a particular system of
measurement (such as the metric or English systems.) While the definition is in standard
Ada and requires nothing special of the compiler, certain reasonable design choices in the
compiler, discussed here at sorr^e length, can make its implementation particularly efficient.

1. Introduction

Dimensional analysis is a consistency check common in scientific and engineering compu-
tations. It consists of verifying that uses of numerical quantities conform to their declared
units of measure—for example, that measures of length are not added to measures of time
and that quotients of distance and time are treated as velocities. In many ways, dimen-
sional analysis resembles strong typing, as found in Ada and other modern programming
languages. Like strong typing, it usually can be performed statically—on the program text
before program execution. Also as with strong typing, the information needed to perform
the checks consists of a property to be attributed to each named quantity (variable, named
constant, or parameter.)

In Ada, one could use strong typing together with operator overloading to get the
desired checks. For example, consider the prospective package Interface shown in Fig. 1.
I've defined functions (mostly within the ellipses) for each of the legal operations between
various kinds of quantities. There are no operations allowing one to add, for example,
TIMEs to LENGTHs, and therefore any attempt to do so will cause a type error (or pos-
sibly an "undefined operator^ error, depending on the compiler.) This, of course, is just
what we want. On the other hand, certain of the functions generated by the derived type
declarations are dimensionally invalid. For example, the declaration of LENGTH gener-
ates an implicit declaration of a function that multiplies LENGTHs to give a LENGTH.

* The work reported here was sponsored by Defense Advance Research Projects Agency
(DoD) Arpa Order No. 4871 Monitored by Naval Electronic Systems Command under
Contract No. N00039-84-C-0089. Ada is a registered trademark of the United States
Government.

. -. - V." v.-.vv- .> ."• .> ."• ■•'-

package STRAW .UNIT-PACKAGE is
type LENGTH is new FLOAT;
type TIME is new FLOAT;
type MASS is new FLOAT;
type VELOCITY is new FLOAT;
type AREA is new FLOAT;

— Cross-product operators
fnnction •,*,,(L,R : LENGTH) return AREA;
function ••*"(L : FLOAT; R : LENGTH) return LENGTH;
function "/"(L.R : LENGTH) return FLOAT;
function "/"(L : AREA; R : LENGTH) return LENGTH;

— Illegal functions: always raise CONSTRAINT-ERROR exception.
function "*"(L,R : LENGTH) return LENGTH;
function "/"(L,R : LENGTH) return LENGTH;

end STRAW.UNIT-PACKAGE;

Figure 1. Sketch of a possible units-of-measure package.

For these functions, therefore, there are overriding declarations of functions whose bodies
simply raise an exception.

The problems with this solution are obvious. The number of functions that must be
declared is large and necessarily incomplete, since there are infinitely many possible units
that one can compound from arithmetic combinations of LENGTHs, TIMEs, and MASSes.
The package is not easy to expand. Finally, although perhaps the point is only of interest
to academics, this solution is rather inelegant, One wonders whether there might be a
better solution—one that makes better use of Ada's abstraction facilities.

The answer is a qualified yes. As I'll show in the next section, one can write an Ada
package that solves the problem (almost) in general, allowing its user to define a basis
set of units (such as LENGTH, MASS, and TIME), to get automatically all computed
units (such as area or velocity), and to have the desired consistency checking performed
automatically. The catch is that for most efficient operation, the package makes some
demands upon the compiler. In section 3, we shall see how reasonable these demands are.
Even given a non-optimizing compiler, however, the package will function correctly.

2. The Ada package

The basic idea for the package in this section is, as far as I know, due originally to John
Nestor, who was the chief designer of the RED language for Intermetrics, Inc. In 1979,
he informally gave a definition of a dimensional analysis package in RED, which I later
modified for Ada [2]. Here, I'll present an improved version of the latter package. The
definition has benefited greatly from examining another Ada dimensional analysis package

f. -■.",•.>.•/"-■ ".•.■•-■ v v ■.■. v. .- '.\w •.\V-,-V"J-;,-".-:".-;.-vj-.-. v,'?-^v;v~".'v'".-%.-"'.-\-'",-"\-'v"->-.-'-,1 \>\^.-' '■''■ A'-'. •■■,>".'-■;.■-> V-

written by Narain Gehani [1]. Readers that haven't encountered the programming issues
before may find Karr and Loveman's discussion [3] helpful.

In the rest of this section, I'll define a package called UNITS, which we'll consider in
three parts. We'll start from the user's perspective (i.e., from that of the programmer who
writes "with UNITS") and consider what he must write to get the desired effect. Next,
we'll look at the necessary package specification, and then at the corresponding body.

2.1. The User's View

The user has several functional requirements of the prospective UNITS package.

1. It must be possible to declare each variable, constant, and parameter to have a par-
ticular unit of measure.

2. It must be possible to perform the ordinary arithmetic operations between quantities
having declared units of measure.

3. There must be dimensionless (scalar) quantities, which can be multiplied and divided
by quantities having declared units of measure.

4. It must be possible to recover the numeric values of quantities with declared units (in
particular, for output.)

5. It must be possible to have literals with units (so that one can insert a constant such
as 2.54 cm. into a program, for example.)

6. Violations of dimensional consistency—such as assignments of quantities having the
wrong units for the receiving variable, and additions of quantities with incommensu-
rable units—must be detected, preferably at compilation time.

7. It should be possible to assign names to new units of measure, so that they may be
referenced symbolically,

8. There should be some provision for handling conversion of commensurable units.*

Consider, for example, the program in Fig. 2a-b. The user first defines various units
of measure, each represented as a value of the general value-with-units type, QUANT.
Next come subtype definitions for each of the distinct dimensionalities of the variables
he wishes to declare, with the discriminant constraints giving the dimensionalities. The
constants GRAVITY, FRICTION, etc, which are essentially parameters in this problem,
can now be expressed in the units just defined. The auxiliary routine GET.QUANT makes
it convenient to read in floating point quantities and ascribe to them the appropriate u lits
of measure.

The body of SLIDE illustrates a few interesting points. There are several complex
expressions in which quantities with various units of measure are combined. Each addition,
subtraction, and assignment checks that the two objects or values involved have the same

Units are commensurable if they have the same dimensionality. I'll use the term
dimensionality of a unit to refer to the vector of exponents of the elementary units that
constitute it. For example, if we choose distance to be an elementary unit, then area has
units of distance2, and hence the dimensionality of area has 2 as the distance component
and 0 for all other components. See also Karr and Loveman's paper [3] for a further
discussion of the representation of units by vectors of exponents.

. • .ys- >'.•>»>* fj'.- '.''.• v^j^/^v.v.v/AV-v'//.v/,.v/■^v.^^v.^\Vi/,///1^VJ^v//.v.v.,A.v.v.v]Wrf^?.

■ -•-i ..".-.■"'..•. •.* :■ -• *• •

with UNITS, SOMEJO, SOMEJVlATH;
use UNITS, SOMEJO, SOME_MATH;
procedure SLIDE is

— A simulation of a block sliding down a curved surface

CM : constant QUANT
FT : constant QUANT
SEC : constant QUANT
GM : constant QUANT

UNITO;
30.48*CM;
UNIT1;
UNIT2;

subtype DISTANCE is QUANT(1,0,0,0);
subtype TIME is QUANT(0,1,0,0);
subtype MASS is QUANT(0,0,1,0);
subtype VELOCITY is QUANT(1,-1,0,0);

GRAVITY
FRICTION
DELTAJC
DELTA .T
BLOCK-MASS

constant QUANT
constant QUANT
constant QUANT
constant QUANT
constant QUANT

= 980.7 * CM / SEC**2;
= 20.0 * GM / SEC;
= 0.01 * CM;
= 0.1 * SEC;
= 1000.0 * GM;

X.Y
V
MAX-TIME

DISTANCE := 0.0 * CM;
VELOCITY := 0.0 * (CM / SEC);
TIME;

function HEIGHT(X : DISTANCE) return DISTANCE is
— The height of the surface at horizontal coordinate X
— (body suppressed)

end HEIGHT;

function GET.QUANT(U : QUANT) return QUANT is
— The next input value, assumed to have units U.

Z : FLOAT;
begin

GET(Z); return Z*U;
end GET.QUANT;

Figure 2a. Example of a procedure using UNITS: Part 1.

* '.' '." V V V '-• ." '." ." '-' V." "." .' ■-"■".■ '.' ".' '.• ".- V '.- *.« 'JCJ1 "."".-'.'' ' "-".'■ " •'•-•"■. VV1' • " ■ "^"J«'* >"">'•>"" ."'■>',■ »"" ."v •'• '"* •'" .*" «"^ «,vl^■,•^,^^

.-.•_■.',*;.•-".. .«-i.:-,-*-!., ■-*.-*-•-* --•

begin
V := GET.QUANT(CM/SEC);
MAX-TIME := GET-QUANT(SEC);

for i in 1 .. INTEGER{+MAX.TIME/DELTA-T) loop declare
SLOPE
COS.ANGLE
NEWJC
NEW.Y
NEW.V

FLOAT
FLOAT
DISTANCE
FLOAT
VELOCITY

= +(F(X+DELTA-X)-Y)/DELTAJC;
= 1.0 / SQRT(1.0 + SLOPE**2);
= X + V * DELTA-T * COS.ANGLE;
= F(NEW-X);

V + DELTA-T * (GRAVITY * SLOPE * COS-ANGLE
- FRICTION * V / BLOCK-MASS);

begin
X := NEWJC: V := NEW.V; Y := NEW-Y;
PUTC'At T = " & FLOAT(i)*DELTA-T/SEC & " sec, X = " & X/FT

& •• ft, Y = " & Y/FT k " ft, and V = " k V/(FT/SEC)
k " ft/sec.");

NEWXINE;
end;

end loop;
end SLIDE;

Figure 2b. Example of a procedure using UNITS: Part 2.

constraints (this is not apparent here, but will be when we get to the UNITS package
itself.) Likewise, calls to HEIGHT make sure that the argument passed is indeed in units
of distance. The upper bound of the for loop and the definition of SLOPE illustrate the
use of unary '+' as a convenient coercion operator; as you will see, it is overloaded to yield
FLOAT values from an operand of type QUANT, provided that the operand is a scalar
(i.e., that its dimensional constraints are all 0.) The PUT statement illustrates another
very convenient overloading: binary */' is overloaded to produce results of type STRING,
again with a check that the result of division would be a'scalar. Hence, the expression
Y/FT can be read as "the numeric value of Y in feet." (Also, notice the use of string
catenation to effect multiple data arguments to PUT.)

The subtypes chosen reflect only dimensionality, not scaling. For example, we have a
subtype for distance, but not one for, say, centimeters. This avoids annoying conversions
that would otherwise be necessary for parameter passing or assignment. For example, had
we included scaling information in the subtype, it would be difficult to write a function
that operated on distances without regard to scaling factor, unless we required that the
programmer supply explicit coercions to whatever scale unit that function took, or unless
we required that the unconstrained type UNIT be the formal parameter's type.

The definitions of DISTANCE, TIME, CM, etc., are clearly independent of the rest
of SLIDE. For stylistic reasons, therefore, one might want to put these definitions in a
separate package. I have chosen not to do so here, since my main concern is with the most
general abstraction—unit of measure—apart from aiy particular choice of a measurement

f

'•"»-■' - '

system.
I think most will agree that a UNITS package supporting this example, especially if it

could be implemented efficiently, would go a long way toward providing Ada programmers
with true dimensional analysis. Let's consider first the implementation of the functionality
displayed above, and then turn to efficiency.

2.2. The UNITS Package

Figure 3 gives a specification for a UNITS package that will support the SLIDE program
of the preceding section. Figure 4 gives an implementation for UNITS. Ellipses replace
obvious portions.

3. Implementation Considerations

A "naive compiler's" implementation of UNITS would have three obvious problems.
1. Each value of type QUANT would require space for a value of type FLOAT and four

values of type INTEGER.
2. The indicated run time checks slow down execution. There is nothing in the Ada

Standard, in other words, to guarantee that the UNITS package will perform as we
wish.

3. Since the dimensional consistency violations are not illegal in the Ada-technical sense
of that word, but rather raise exceptions upon execution, we appear to lose compile
time checking.

I will argue that it is perfectly reasonable to expect compilers routinely to give us the
desired performance. The key requirements placed on the compiler are first that it pick
the proper representation for records with discriminants, and second that it implement
constant folding.

3.1. A Space-Efficient Representation of Records wjth Discriminants

For the UNITS example, the space requirements need not be outrageous. One could
assume that large exponents will be rare, and change the UNITS package specification so
that QUANT's discriminants take on values in the range -128 to 127. A compiler that
packs record fields will then require only four 8-bit bytes for the discriminants. However,
even this probably doubles the storage requirements for an individual object, relative to
a simple FLOAT value. This becomes most noticeable when dealing with arrays. Let's
consider another approach, therefore.

The discriminants of a constrainted record object are fixed, and are identical for record
objects having the same declared subtype. This suggests that the compiler can implement
the type QUANT, for example, as two types—one containing the discriminant fields, and
the other containing the single field V. For purposes of exposition, let me use italics to
indicate compiler-generated names, and call these two types QUANT.discrimJype and
QUANT.vo/ucJypc:

type QUANT-tfiscrimJypc is
record D0,Dl,D2,D3 : INTEGER; end record;

type QUAJiT.value-type is
record V : FLOAT; end record;

i
■

package UNITS is

type QUANT(D0,D1,D2)D3 : INTEGER) is
record V : FLOAT; end record;

— Convenient abbreviations.
gnbtype SCALAR is QUANT(0)0,0)0);
UNITO : constant QUANT
UNIT1 : constant QUANT
UNIT2 : constant QUANT
UNIT3 : constant QUANT

= (1,0,0,0,1-0);
= (0,1,0,0,1.0);
= (0,0,1,0,1.0);
= (0,0,0,1,1.0);

— Standard arithmetic
function f,+,,(L,R : QUANT) return QUANT;
function "-"(L.R : QUANT) return QUANT;
function "-"(L : QUANT) return QUANT;
function "*"(L : FLOAT; R : QUANT) return QUANT;
function "*"{L,R : QUANT) return QUANT;
function "/"(L : FLOAT; R : QUANT) return QUANT;
function "/"(L : QUANT; R : FLOAT) return QUANT;
function "/"(L,R : QUANT) return QUANT;
function "**"{L : QUANT; R : INTEGER) return QUANT;

— Coercions
function "/"(^R : QUANT) return STRING;
function ,,+"(L : SCALAR) return FLOAT;
function "-"(L : SCALAR) return FLOAT;

— Relational
function "^'(L^ : QUANT) return BOOLEAN;

— Exceptions
— Relationais, binary "+" and "-", and '7" yielding STRING raise
— CONSTRAINT-ERROR if L and R have differing subtypes.

pragma INLINE(l,+M,1,-,,,"/",,,*,,,M**")"<")...);
end UNITS;

Figure 3. Specification for the UNITS Package.

i * iC x■■^■/:^•:^^•/^'^f•.•^/v^^^^^.:^->v'■•^■./«:•\-v^>^•■■^.:<^'.y^■■

with TEXT JO;
package body UNITS is

package UNITS.FLOAT is new TEXTJO.FLOATJO(FLOAT);

function "-[-••(L.R : QUANT) return QUANT is
begin

if L.DO /= R.DO or L.Dl /= R.Dl or
L.D2 /= R.D2 or L.D3 /= R.D3

then raise CONSTRAINT-ERROR;
end if;
return (L.D0,L.D1,L.D2,L.D3)L.V+R.V);

end;

function ••*"(L)R : QUANT) return QUANT is
begin

return (L.D0-|-R.D0)L.DH-R.D1,L.D2+R.D2,L.D3+R.D3,
L.V*R.V);

end;

function "*"(L r FLOAT; R : QUANT) return QUANT is
begin

return (R.D0,R.D1,R.D2)R.D3,L*R.V);
end;

function "**"(L : FLOAT; R : INTEGER) return QUANT is
begin

return (L.D0*R, L.Dl*R, L.D2*R) L.D3*R, L.V**R);
end;

function "/"(L.R : QUANT) return STRING;
use UNITS-FLOAT;
FLOAT-WIDTH : constant FIELD :=

DEFAULT-FORE-f DEFAULT .AFT+DEFAULT-EXP+2;
Z : constant SCALAR := L/R;
STRING-VALUE : STRING(1 .. FLOAT-WIDTH);

begin
PUT(TO => STRING-VALUE, ITEM => Z.V);
return STRING-VALUE;

end;

end UNITS;

Figure 4. Body of the UNITS package.

The compiler represents each subtype indication of QUANT with a descriptor—a value of
a type denoted QUANT-dwcrim.typc. It represents each object of type QUANT with an
object of type QUANT.value.type.

When several objects of type QUANT use the same subtype indication, only one
descriptor of type QVANT-discrim.type is needed. For example, consider the following
declarations.

anbtype DISTANCE is QUANT(1,0,0,0);
type DISTANCE-VECT is array (INTEGER range <>) of DISTANCE;
B : DISTANCE.VECT(1 .. N);

The compiler allocates space as follows.

DISTANCE.suMype : constant QUANT.djscrtmJype := (1,0,0,0);
type DISTANCE-VECT is array (INTEGER range <>) of QUANT.va/ucJype;
B : DISTANCE-VECT(1 .. N);

The reason this works—why one does not need to store the discriminants with each
element—is that the compiler always knows where to go to find the subtype of an element
of B In those places where it needs this subtype information, such as in doing constraint
checking, it looks at DISTANCE_su6fj/pe. If P is passed as an argument to a subprogram,
the type DISTANCE-VECT must necessarily be known to the subprogram, and hence
DISTANCE.subtype will still be available.

When a formal parameter of a subprogram has a constrained subtype of QUANT (as
in the HEIGHT function in Fig. 2a) only the QUANT-ro/ucJypc portion of the actual
parameter need be passed. When the subtype of the formal is unconstrained, both the
QUANT-d»scnm-<j/pe and QUANT-vo/ueJypc portions must be passed.

This latter fact has actually misled some compiler implementors into declaring the
implementation proposed here a "pessimization." The grounds for their contention appear
to be that the compiler must pass two addresses instead of one for an unconstrained formal
(assuming pass-by-reference.) However, the cost of passing a single constant address is
quite small—easily swamped by the general call overhead and the cost of executing the
subprogram body itself. For example, using the C compiler on a VAX/750,1 have compared
two simple programs, one of which calls a null function with two address parameters
and one of which calls a null function with one address parameter. There was a 10%
difference in execution time. Even assuming that 10% of all execution time in an Ada
program is the call-return overhead for (non-inlined) subprogram calls with unconstrained
record parameters (a very generous estimate), this translates to a 1% penalty in execution
time. This estimate is a rather conservative upper bound, since in practice the bodies of
subprograms contain something. Furthermore, in the case of inline subprograms, of course,
there needn't be any increase in cost occasioned by separating the discriminants.

There are various complications that arise when we consider record fields of type
QUANT that are constrained by discriminants, allocators for type QUANT, or uncon-
strained objects (which is not actually an issue for QUANT, but is in the general case
for this representation.) However, these do not change the basic model fundamentally.
In the case of a record field of type QUANT that is constrained by a discriminant, the
subtype becomes part of the descriptor of the enclosing record. Allocated objects and
unconstrained objects are both represented by records containing both a descriptor and a

9

v'^v^'v.>v/.".'>"•-'■.>•-■■.•-.'■>■-.^%"%.\V"1"CI.%"^,LV-^^'«.-">-\-"vvv-'» -"ov^v-r--■■._•■.-'-• • •"."■V-V^.:-""■:

value part. The report by Zorn [5] contains a more detailed description of a representa-
tion like this. Finally, to be absolutely complete, one would probably want to introduce
implementation-dependent attributes, such as QUANT'DESCRIPTOR.SIZE and X'DES-
CRIPTOR-ADDRESS for implementing such things as basic I/O routines for arbitrary
types of objects.

Considering the space-efficiency of the implementation described here, it appears an
entirely reasonable one for compilers to use. When they do so, constant folding will
eliminate almost all run time checks.

3.2. Constant Folding

The term constant folding means replacement of expressions whose values are known at
compile time by their values. This includes such things as replacing INTEGER'LAST-1
by 2147483646 and replacing UNIT0.D1 by 0. It also includes expressions with "control
flow" values, as in the replacement of

if DEBUGGING then ASSERT(X > Y); end if;

by the null statement when DEBUGGING is defined to be the static constant FALSE.
The application of constant folding to uses of the UNITS package should be fairly clear.

First, we are usually dealing with objects that have static subtypes (such as DISTANCE
or MASS.) For example, consider the implicit constraint checking that occurs upon the
assignment

X := NEW-X;

from Fig. 2b. After looking up the subtypes of X and NEW_X, the compiler might expand
this assignment to

if DISTANCE-flu6<ype = DISTANCE.sutf ypc
then X := NEWJC;

else raise CONSTRAINT-ERROR;
end if;

After constant folding this collapses to just

X := NEW_X;

Furthermore, the INLINE pragma asks the compiler to expand the operators on QUANTs
in line. Hence, an assignment such as

X := X -f- DELTA JC;

ultimately might expand into the code shown in Fig. 5. For authenticity, I've made this
a general form of inline expansion. The compiler introduces the quantities with names
beginning X0, Y0, and RETURN. We are assuming the representation introduced in the
last section, so that X and DELTA_X are represented by values of type QUANT-vo/ucJj/pe.

Using constant folding, the whole thing collapses to something close to what the
programmer wanted to have happen.

RETURN.ro/ue := (V => XO.V-fYO.V);
X := RETURN.va/ue;

(This circumlocution is an artifact of the general expansion I chose and has nothing to do
with the handling of discriminants. It will collapse to a single assignment if the compiler

10

.•-'.■'■>.■-'"-V••-■'. L^yV"A>A.V".,V vNv'AVvV^^W^v'^

.■.■.•.'-■.•.".'.■, . .-.-.-»-w-. •-*.-*..-.

QUANT-<fwcnm-/j/pc renames CMsubtype]
QVANT.value.type renames X;
QUANT-rfiacn'm-^j/pe renames CM.subtype]
QUANT.va/ue./ype renames DELTAJC;
QUANT.rftscnmJype;
QUANT.va/ucJype;

declare
XO.discrim
XO.value
YO.discrim
YO.value
RETURN.discrim
RETURN-t;o/ue

begin
if XO-rftacnm /= YO.discrim

then raise CONSTRAINT-ERROR;
end if;
RETURN-diacnm :=

(XO.diacn'm.DO, X0-rfi3crim.Dl,X0-dtacnm.D2, X0-diacnm.D3);
RETURN.va/ue := (V => XO.va/ue.V+YO.va/uc.V);
if X.discrim = RETURN.diacnm

then X := RETURN.va/uc;
else raise CONSTRAINT.ERROR;
end if;

end;

Fignre 6. Possible compiler-expanded version of X := X + DELTA-X.

applies a little value propagation, peephole optimization, or a better expansion of the inline
function.)

Constant folding, as it is used here, doesn't require any fancy global flow analysis.
However, it does differ from common forms of constant folding in that it involves composite
objects rather than just scalar values. Folding of scalar expressions is, in fact, required
by the Ada language itself, because of the rules governing static expressions. For the
optimizations discussed in this section, extending constant folding to composite objects
requires little more machinery. The only additional objects that need to be handled are
those with types such as QUANT-dtacrimJypc—i.e., record objects without discriminants,
all of whose fields have discrete types and static values.

If a compiler writer is willing to fold more ambitiously, it is possible to get some of the
improvements mentioned here without using the separated discriminant representation of
the preceding section. This requires tracking static values of individual fields in a record
object. Using such techniques, and taking advantage of the observation that the values of
constrained discriminants can't change, the addition

X := X + DELTA.X;

may be reduced eventually to the equivalent of

X.V := X.V + DELTAJC.V;

Of course, one still incurs a space penalty, as well as an execution-time penalty for ini-
tializing all discriminant fields of variables. However, as you can see, the execution time
required for many operations will still be about the same as for the predefined operations
on FLOAT.

11

■ ■'■ ■'■ -.■'■. •-'.- .-'>'v"v';.-v^>.-'-.-'-.-",.-"-.»"-.->yv -.-'•.-■-.- ■.-■*-"ryv"'.-'v"".-'v"'".-'-.-'"."V"v'\-"".-'-.-"■.•■.•■".•"■/'".■ v'--"•.■':VNJ-'''J-~'.->J-'"> ■.-"■-■"'

S.S. Reporting Errors

I still have not answered one question: although we seem to handle the absence of errors at
compilation time, what happens if there are errors—how will they be reported? Constant
folding will reduce a dimensionally inconsistent statement, such as

X := 3.0 * CM / SEC;

to a simple raise CONSTRAINT-ERROR, fechnically, however, the resulting pjogram is
completely legal ar •• bt e:;e-uti J without any problem (assuming that it is written to
remain unfazed upon encountering CONSTRAINT-ERROR.)

Here again we must consider what it is reasonable for a compiler to do. The design
of Ada has a heavy bias towards considering the raising of an exception to be a kind of
error indication. Hence, it is reasonable to assume that statements and declarations that
can be determined to raise exceptions ought to be brought to the programmer's attention
as soon as possible. More precisely, if there are control paths through a subprogram that
do not raise exceptions, but all of these paths are eliminated by constant folding, then the
compiler should produce a warning to this effect.

Of course, even if compilers fail to provide such warnings, the result is still that
exceptions will occur during execution. The error will be discovered, although not at the
most convenient time.

4. Various Improvements and Weaknesses

For the sake of cleanliness, I made the UNITS package fairly spare. There are a number
of enhancements that might be useful.

The package now uses the pre-defined type FLOAT for all aiithmetic. For generality,
it might be advisable to make UNITS generic in the floating point type to be used. It
would be very difficult, unfortunately (or fortunately, depending on your political bias)
to extend the package to general fixed point types. The problem is that in fixed point
arithmetic, multiplication and division operators get introduced automatically, something
mat is not possible to duplicate in a user-defined package.

As it stands, UNITS handles only integral dimensionalities. To extend to arbitrary
rational dimensions would require doubling the number of discriminants. For best results,
it would also require a constant-folding scheme that could handle a g.c.d. computation,
which is probably too much to ask. Programmers who need units of square root of distance,
for example, can get the effect by defining

subtype DISTANCE is QUANT(2,0,0,0);

If fractional dimensions are common, it might be desirable to introduce a SQRT function
into the package (which would accept only even dimensionalities.)

The definition of subtypes as explicit combinations of discriminants is a bit awkward.
Unfortunately, I haven't found a good alternative. The best seems to be to introduce an
embedded generic package in UNITS, as follows.

12

■"-"'-" -."'«""•."'"■."'''v"''-^•'"■•"•-'' ^""^""v"{o~^'^-"-""--VrV-r-^-'.^V^'^-',"^", ■ ""•_•''-^"".."rt^.V-.%',".'". ■.,. -.".-. .\WM I-J ■■ v'■'■ i ,'j^V_ ,\ .- i

generic
T : in QUANT;

package A.UNIT is
subtype UNIT is QUANT(T.D0,T.Dl,T.D2)T.D3);

end;

This allows the user to write subtypes such as DISTANCE or VELOCITY more symboli-
cally, relating them to each other and to UNITO, UNITl, etc.

package DIST is new A.UNIT(CM);
subtype DISTANCE is DIST.UNIT;
package VELO is new A.UNIT(CM/SEC);
subtype VELOCITY is VELO.UNIT;

Unfortunately, this is rather wordy, and does not improve the clarity of the program to
bpeak of.

6. Conclusions

I have known about this example for a number of years. What finally prompted me to
publish it here was an article by R. A. O'Keefe [4] in which he remarks parenthetically,

I am astounded that this longstanding idea [physical dimensions as types] did
not make it into ADA [sic], so much else of less potential benefit having been
included.

In view of the package presented here, the quotation above is one more illustration of how
easy it is to underestimate the power of abstraction mechanisms. Dimensions as types have
no place in Ada because they are definable in Ada without any extra language features.

The particular abstraction mechanisms of Ada that made this definition possible are
operator definition, overloading, and type parameterization (the Ada term being "discrim-
inant constraints.") Operator definition and overloading made possible the use of familiar
arithmetic notation and allowed concise notation for type coercions. Type parameteri-
zation made it possible to supply extra information about the value domain of a given
variable at declaration time and provided automatic consistency checks in the form of
constraint testing upon assignment and parameter passing.

A good deal hinges on the behavior of our compilers. The definition will work in any
case, but we are unlikely to be completely satisfied unless it works as well as we know is
possible. The required representation is probably a good idea quite apart from this use of it.
Its space requirements are better than the "naive" representation, and its execution time
requirements are probably indistinguishable in practice. I have argued that the features
expected of the compiler are perfectly reasonable. Some mechanism for constant folding
is essentially mandated by the Ada Standard for other purposes, and its extension to
descriptors is not difficult. Compilation-time warnings about inevitable exceptions are
also things we might expect of good compilers, given the Ada goal of detecting as many
errors as possible statically.

Of course, however reasonable these features may be, they won't be universal. I hope,
though, that the prospect of cost-free dimensional analysis will prompt users to agitate for
compilers that have them.

13

..■^■•y-^v-y-;.; •. '■: > •>:!> v:v>;v;^z.v%^.:<<.:^;<vW^

Acknowledgements

I would like to thank Ron Brender of Digital Equipment Corporal./a, John Goode-
nough of SofTech, Inc., and Ben Zorn of the University of California for their comments
on drafts of this paper.

References

[1] Narain Gehani, "Ada's Derived Types and Units of Measure." Soßware—Practice &
Experience, 15, 6 (June 1985), pp. 555-569.

[2] Paul N. Hilfinger, Abstraction Mechanisms and Language Design. The MIT Press,
1983.

[3] Michael Karr and David B. Loveman III, "Incorporation of Units into Programming
Languages." Comm. ACM 21,5 {May, 1978), pp. 385-391,

[4] R. A. O'Keefe, "Alternatives to Keyword Parameters." SIGPLAN Notices, SO, 6
(June 1985), pp. 26-32.

[5] Benjamin G. Zorn, Experience with Ada Code Generation, Technical Report UCB/CSD|
85/249J Computer Science Division, University of California, Berkeley, June, 1985.

14

rJ->?>i\TV/.'C>j.^V?j,?V>^v"V?..^j'JV/.^^^

