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ABSTRACT

The hydroelastic model of the cochlea is used to analyze the

transient response to a sound signal. Using the relatively high

frequencies in the hearing range the equations are first reduced

using viscous boundary layer theory. The reduced problem is

solved by first applying the Fourier transform and then using

the solution for a pure-tone signal. The response to a tone-pip

is then studied and comparisons are made, when possible, with

experiment. For example, the rringing4 observed in the

displacement of the basilar membrane is seen in the model and

' the theory agrees reasonably well with the neural latency

3 measurements..
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LAS I NTRODUC' t UN

In the study of the transmission and resolution of the sound

signal in the cochlea the behavior associated with the longtime

response to a pure tone has received, by far, the most attention.

This is understandable as the work on this aspect of the hearing %

process has been invaluable in the elucidation of the basic %

mechanisms underlying frequency discrimination. However, to be

able to address questions connected with speech discrimination and

noise induced hearing loss it is necessary to consider the

transient behavior. Unfortunately, the effort that has been

invested in this aspect of the hearing process has been limited.

In terms of direct experimental observation of the transient

response of the basilar membrane, Robles, et al (1976) is one of

the only studies presently available. In fact, most of the

experimental works on the transient problem give only indirect

indications of the motion of the basilar membrane. This includes

psychoacoustical tests, such as Stapells, et al (1982), and neural

measurements, such as Anderson, et al (1970) and Pfeiffer and Kim
"-5 -.

(1972). The modeling efforts are also limited and the few that -'

have appeared in the literature have concentrated almost

exclusively on the low frequency response. In fact, there has

never been a complete analysis of the fully three dimensional

transient motion in the cochlea.

It is for these reasons that the objective of the present

study is to develop a description of the transient behavior in the

cochlea that covers the entire hearing range. The model that is

used for the cochlea is the same as the one that has been used to
°°p-
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describe the response to a pure tone (Holmes and Cole, 1983,1984;

Holmes, 1986). The formulation of the model is relatively simple

and it assumes the fluid filling the chambers is viscous and

4
4 incompressible and the basilar membrane is modeled as a fibrous

elastic plate. Except for the fluid's density and viscosity, and

the transverse elastic modulus and mass density for the basilar

membrane, all of the parameters in the model are geometric. The

values for these four parameters are known from independent tests

so the model of the mammalian cochlea used here is characterized

entirely by the geometric structure of the ear. Because of this

the model can be applied easily to a wide variety of mammalian

cochlae (Holmes, 1986).

In the next section the equations governing the motion in the

cochlea are presented and nondimensionalized. The reason for

scaling the problem is to simplify the analysis used to solve it.

This is done by first using viscous boundary layer theory to

reduce the problem. Once this is done a slender body

approximation, which is based on the long narrow geometry of the

cochlea, is used to obtain the solution of the problem. This is

the same procedure that was used to study the response to a pure

tone although the details of the derivation are somewhat different

due to the time dependence of the problem. In any case, once the

solution is derived it is then a simple matter to analyze to

response of the basilar membrane to various signals.

The reason that viscous boundary layer theory can be used is

because of the relative thinness of the layer as compared to the

cross-sectional dimension of the fluid chamber. This should not be

-i



interpreted to mean that the fluid viscosity is unimportant. In

the model considered here the fluid viscosity is the only

dissipative mechanism, and with it the theory gives a very

accurate description of the frequency map, the moderate intensity

* amplitude and phase tuning curves, and the static stiffness

measurements (Holmes, 1986). This includes human as well as other

mammals (e.g., the cat, guinea pig, and chinchilla). At the same

time, with the exceptions noted earlier, the parameters that

define the model are all geometric and, as shown in Holmes (1985),

* they are determined solely from the measured values for each of

these animals. This raises the question as to the importance of

other possible dissipation mechanisms, such as membrane damping.

* Whatever contribution they make it is in addition to fluid

viscosity. However, one of the difficulties with attempting to

* account for other damping mechanisms is that there are no direct

. experimental measurements on which to base the modeling

assumptions. For example, there has never been a study of mode

separation and transient amplitude decay for the basilar membrane. - -

This makes the modeling effort almost guesswork, although one way

around this is to assume that the damping mechanism is similar to

.- that found in other fibrnus biological membranes, such as the

tympanic membrane (Rabbitt and Holmes, 1985). Except for Allen

° "(1980) this has never been done and the usual assumption is that

the damping is simply a dashpot mechanism. Such an assumption is

difficult to justify as it has little basis in the ultrastructure

of the basilar membrane or the organ of Corti.

3
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EQUATIONS OF MOTION

The assumptions on the geometrical and structural components

of the cochlea are similar to those made in Holmes and Cole

(1984). Consequently, the presentation to follow is relatively

brief but a more complete discussion of the assumptions made here

can be found in the earlier paper. The cochlea is taken to be a

tapered tube containing two fluid filled chambers (Fig. 1). The

partition separating these chambers consists of a rigid section

(the bony shelf), a flexible portion (the basilar membrane) and an

aperture at the apical end (the helicotrema). The cochlear wall

is rigid except at the basal end where there are two openings (the -

oval and round windows) that are covered by membranes. The

footplate of the stapes is attached to the cochlea at the oval

window. The variation of the geometry is fairly arbitrary except

that it is assumed that the partition and basal end are planar

surfaces and the cochlear wall is symmetric through the partition.

The fluid filling the two chambers is similar in terms of its

mechanical behavior to water at body temperature. Accordingly, it

is assumed to be an incompressible Newtonian fluid, and so, the

equations of motion are

- v V - Vp* , (la)

and

V" v* = 0 , (1b)

where y z*, t*) is the velocity, p*(x*, y*, z , t*)

is the pressure, Y is the kinematic viscosity and i is the mass

density. The asterisk appearing in (1) is used to distinguish the

variables from their nondimensional analogs introduced below.

4 %
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Also, the notation used here is the same as in Holmes and Cole

(1984) except for the displacement of the stapes which is given in

(4) below. ,

The basilar membrane (BM) is modeled as an inhomogeneous,

strongly orthotropic, elastic plate. In this case the equation of

motion is (Lekhnitskii, 1968)

D* + ! * = - p*(x*,y*,Ot*) c

*(x, y, t*) is the displacement in the z*-direction, D*

is the transverse bending rigidity, and p* is the mass per unit

area of the basilar membrane. The longitudinal bending and

twisting terms have not been included in (1c) as they have been

found to be negligible in the basilar membrane (Voldrich, 1978; "

Holmes and Cole, 1984). The right-hand side of (ic) represents p

the fluid loading on the BM and is given as

p*(x*,y*,0+,t*) - p*(x*,y*,O-,t*) (2)

By assuming the BM is inhomogeneous it is meant in (1c) that its

material coefficients depend on the longitudinal variable x

Also note that the displacement of the basilar membrane is U
positive if it is in the positive z*-direction.

To complete the description of the problem the boundary and

initial conditions need to be specified. Because the fluid
7m

velocity must be continuous at the boundary we have that

-°.

0 on rigid wall

on*B= (3) E
6(0,0,at*) on BM

6m
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bm

Similarly, at the oval and round windows

3 -~ n* 0, 0) ,(4) %.

where qt(t*) represents the displacement of the stapes footplate.

In (4), q* is positive if it is in the positive x*-direction. For

the boundary conditions for the plate it is assumed that it is

-. simply supported. It should be pointed out, however, that the

o  methods used to solve the above problem do not depend on the

particular boundary conditions for the basilar membrane and one

*. could just as well assume it is clamped or clamped/simply

supported (Holmes, 1986). As for initial conditions, it is

assumed that the system starts from rest from its equilibrium

position.

The transient problem for the cochlea is now complete and it

a involves solving the fluid equations (Ia,b) coupled with the

elastic boundary (1c). Given the three dimensional geometry and

the relatively short waves that propagate along the basilar

membrane even a numerical solution of this problem would be

difficult as well as impractical at this time. However, the

. cochlea has a long slender geometry and the audible frequency

range is relatively high. Both of these can be used to reduce the

.- problem but to do so it is necessary to scale it. As in Holmes

- and Cole (1984) the spatial coordinates are nondimensionalized as

6follows

x* Lx, y* By, and z* =Bz,

where B,L are the width and length of the basilar membrane,

respectively. Also, setting t* tct,

L7
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p* (P ~u s °  
,.= 2-, p • 1' -

Btc ~ 1 9 V 2 , VDJv:*;tc L

and

S* = [. pLi |- ~ s (5>

where 158 is the amplitude of the stapes and mc is a

characteristic value for uM (e.g., it's value at x=1/2). The

characteristic time scale tc used here is

2 B 1c (6)
tc =(6

D2c

where D2 c is a characteristic value of D*. Thus, tc is a measure

of the fundamental frequency of an elastic beam in a transverse

cross-section of the basilar membrane. For example, for the human

ear tc " 1.3 msec. In Holmes and Cole (1984) the characteristic

time scale was the driving frequency of the stapes. Although this

differs from (6) the results of the analysis to follow actually

contains this earlier work.

In dimensionless coordinates the problem describing the

motion in the cochlea is:

i) fluid

t - - , -(7a)

( 2 XVI + ayV2 + OZV3 0 (7b)

ii) basilar membrane 5'

260 + Ma = p(x 9 YOt)J 8

t6

*'5** * ~ * - * * * .. . *. -. . .* -...- * S.
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" iii) boundary conditions

on rigid wall (9a)

T = (OO,:it) on BM (9b)

0 "sOO) on stapes footplate (9c).Si.

The initial conditions to be used are that the motion starts

rest at t=O. In (7a), V In (8),

D2 = D*/D 2c and x = i*/ac Also,

2c B and =-
S c

The last parameter is simply the ratio of the mass of the fluid

above the basilar membrane to the characteristic mass of the

plate. As for (, it is the ratio of the width to length of the BM

and it is relatively small (e.g., for humans C 10-). This is

used later to derive a slender body approximation to the solution

of the problem. The parameter £ is the inverse of the Reynolds

number, where the latter is based on the cross-sectional width of

the chamber. This too is relatively small and, accordingly,

viscous boundary layer theory will be used to reduce the above

problem.

The reduction of the transient problem consists of two

steps. First, viscous boundary layer theory is used to reduce the

fluid problem. From this, rather than solving (7), we only need

to solve Laplace's equation for the pressure, where the viscosity

contributes through a modified boundary condition. This reduced

. problem is then solved using a slender body approximation based on
... A

the fact that

9
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BOUNDARY LAYER APPROXIMATION

The frequencies in the hearing range are fairly high, for

example, they range from about 20 to 20,000 Hz for the human ear.

This serves as the basis for the first reduction of the equations

* of motion and involves the application of viscous boundary layer

theory. In the approximations to follow it is assumed that

S<« 1. Also, in the discussion the other parameters in the

problem are assumed fixed. The analysis splits naturally into -9

* three parts, the first two involve deriving the approximations for

the inviscid and boundary layer regions and the third step deals

with their matching. The details are somewhat involved but they

result in a considerable reduction of the fluid equations. For

those who may wish to skip the derivation, the conclusions of the

analysis are given in the last paragraph of this section.

i) Inviscid Region: In the inviscid core the appropriate

expansions of the fluid velocity and pressure are

-4 44
v vO(x,y,z,t) + Bv 1 + ... , (1Oa) -

and

p " p 0 (x,y,z,t) + 6pi + ... . (lOb)

Substituting these into (7) and equating like powers of 6

leads to the following problem for the nth term in the expansion

0(6n) VPn = 0
4

Otvn = -VPn (11)

As expected it is, in general, not possible to satisfy all of the

boundary conditions with this approximation (in particular, the no

. slip condition in (9) can not be satisfied). This necessitates

10" "

* *. *!o .. ..* *. . . . I



the introduction of a boundary layer.

ii) Boundary Layer: To obtain the boundary layer approximation

only the layer above the partition is considered. The analysis

for the rest of the cochlear wall is similar and involves the

introduction of orthogonal coordinates orientated with respect to

the normal direction (Holmes and Cole, 1984). For the region

above the partition the boundary layer coordinate is

z (12)
r ~= /s (7

The Navier-Stokes equations (7) in this case take the form

[2 ft - v Vl f ~ j (13a)

t z 'IY) zJ

0,3+ S (C 2 aXVI + ayVa) =0 (13b)
z

where

-- +
Wy 2 x +ay-

The appropriate expansions in this layer are

o 0 (x,y,Z,t) + 601 + ... , (14a)

and

p PQ(x,Y,z,t) + BPi + ... . (14b)

Proceeding as before, by substituting these into (13) and equating

like powers of 8 the following problems are obtained:

0(1) a'Po =0
z

',. z = 0
z

- U - Spo (s Xy)..
* z

Solving these equations and using boundary condition (9b) one

finds that

11
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Po = PoCxyt) '

V3 0 =~ aOA
t'I

and t
= -0 erf2 - Pd , (s=Xy)

To obtain a uniformly valid two term approximation it is

* necessary to solve for at least some of the second terms in the

expansion.

0(6) P = - a 110"z t'l

OV31 =fJ erf [2 VV ,y Po d7

Using the Laplace transform one finds that the solutions of

the above problems are

P1  = -a; o + b(x,y,t)

• .and

V31 = 111 + f _ 2 _t-r' 1 -ierfc -2tJ]} VxyP 0 d ,"

0

where b is a constant of integration.

iii) Matching: It remains to match the expansions from the two

regions and to do so an intermediate variable is used, which is

defined as

z - = z 8 (15)

With this, using Taylor's theorem the inviscid approximation for

the pressure (lOb) can be written as

12
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P~z P.I=& j 2 1 3  + 6 (Pi + FI jEap 3  + ,(18)

and then boundary layer approximation (14b) is

p P2 + 8b V+ a -1 (17)

Matching (18) and (17) as well as matching the velocities one finds

.me and

Ozp0Iz=o -a=~

t

lz~iLf 2j~J ~ V P0 di

Combining these

t

ai 2 qO 6 1 az po(x,y,O,t) dr (18)

Based on the above analysis, a uniformly valid two term

approximation (in 6) of the fluid pressure is obtained by

solving

-V 2PO 0 (19)

where, for 0 < x < 1

t(

91 2 0O on rigid wall
'dnp -aJ T~~ npdJ (20a)

In (20a), n is the unit outward normal to the cochlear wall. A

similar condition applies at the basal end (x=O) and is given as

13



t

a P~r J~ I~ ats (20b)
0 m

Therefore, the original equations for the fluid (7) along with

boundary conditions (9) have been replaced with (19) and (20). In B'

other words, it remains to only solve one equation for the fluid

and the viscosity now only contributes in the boundary condition,

rather than in the equation of motion. It is also of interest to

note that this approximation reduces to the one derived earlier by

Holmes and Cole (1984) for the longtime periodic response to a

pure-tone forcing as t -4 m. Moreover, it reduces to the transient

low frequency approximation used in Holmes (1981, 1982) in the

case of a low frequency signal.

14
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SOLUTION OF REDUCED PROBLEM

It remains to solve the reduced fluid equations derived in

the last section in conjunction with the plate equation and

associated boundary conditions. There are a number of ways to do

this and the one to be used here involves the Fourier transform in

t. For a variable such as n(x,y,t) its transform, which is

*+'" represented with a capital N(x,y,u) as well as by the symbol l(q),

is defined as

1 iw

N = I(x,y,t)e - i ut dt
V-2

To be able to transform the equations of motion it is

necessary to assume that the Fourier transform of the stapes

displacement is well defined. With this the transformation of the

problem is fairly straightforward, except perhaps for the

convolution integral in boundary conditions (20). The latter can

be evaluated by interchanging the orders of integration as follows

t Cm t

fnw I pdJ 'anpe tddt

0S1 0 pe-iwrdrd-

0 2

-D

. _ .. . . . . . . . . . . . .

4ft~~ I I a/ 
2 - '( a ( r + T) r7

%00

i = an P

With this the fluid equation (19) transforms as

.- 15
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SV P =0 (21)

and equation (8) for the BM is

(D 2 ;y - w4u)N = -2P(x,yOu) (22)

where, from (20a),

6 a = 0 on rigid wall
n.-au 2N on BM

and, from (20b),

axp X u 2 Ns on stapes footplate

This problem is essentially the same as the one studied in Holmes

and Cole (1984). Consequently, it is possible to simply write

down a first term approximation of the solution. This u

approximation, which is based on the assumption that E << 1, is

derived using a multiple scale argument. The result is that the

solution for the (transformed) BM displacement has the form

N (xAx,w)e-O(x)-(x ,-y) .(23)
a

The functions in this expression, such as A(xw), will be given -

later as they are not needed to complete the derivation of the

solution of the problem. Inverting (23) using the convolution

theorem leads to

1, J K0 (x yt-T)AS1(T)d- (24a)

0

where
. i O (xW )

K 0 (x,y,t) 0A(x,w)e A0(x,y) (24b)

Note that it has been assumed in (24) that A =0 for t 0 and p
the function A0 is independent of w.

16
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k.. It remains to invert the inverse Fourier transform in (24b).

However, because of the relatively complicated nature of the

functions there is no apparent closed form inversion.

Nevertheless, there are some simplifications that can be made.

For example, since A is an odd function of w and

- (x,-) = -O(x,w) + w then it is only necessary to integrate over

0 < w < w in (24b).

* 17 >
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SOLUTION OF TRANSIENT PROBLEM

In the last two sections the original equations of motion

, were reduced and a first term approximation to the transient

problem was derived. The result is that the displacement of the

basilar membrane is given as

.*(x,y,t) j K(x,y,t-r) n*(-)dr , (25a)

0

where

-* K(x,y,t) = 1 A(x,w) cos wt - e(x,w) dw i 0(x,y). (25b)

f

The amplitude A(x,w) and the phase elx,w) are given in (A18) and

(A19), respectively. The function q0, which is the displacement

of the wave in the transverse cross-section of the BM, is given in

(A9). The time history of the displacement of the BM, as given in

(25), is in the form of a convolution integral. Because of the N

complexity of the functions in (25b) it appears to be necessary to

evaluate (25) numerically. However, the kernel defined in (25b)

needs to be calculated only once. To do so for a given x and w

one must find the solution of a transcendental equation (AIO),

called the dispersion relation, for the local inviscid wave number

k0 . Once ko(x,w) is known then it is a relatively simple matter

to calculate A and 0 from the formulas given in the Appendix.

In the calculations to follow for the human ear the kernel is

evaluated at 100 equally spaced points along the x-axis, at 50

equally spaced frequencies between 0 and 500 Hz, and at 50

logarithmically spaced frequencies between 500 and 15,000 Hz. The

methods used to evaluate the kernel are the same as used in Holmes _

and Cole (1984) and Holmes (1986). The reason the frequency

18 1
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spacing is divided in this way is because of the effects of the

low frequency modes (Holmes, 1985). In particular, the amplitude

and phase functions are not monotonic for low frequencies so it is

necessary to increase the number of points in this region so

interpolated integration can be used in (25b). By doing this, it

takes about 85 sec of cpu time on an IBM 3081D to calculaLe the

amplitude and phase functions in (25b).+

U

i f-

+The FORTRAN programs, and documentation, used to calculate the

solution of the transient problem are available upon request from

the author.

19
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* APPLICATION TO THE HUMAN COCHLEA
i*

The transient response of the basilar membrane is now

illustrated by evaluating (25) for the human ear. To do so

the values used for the fluid kinematic viscosity and density

are V=0.008 cm 2 /sec and pa1.0 gm/cm 3 . For the basilar

membrane L=3.5 cm, the transverse bending rigidity is

. E 2 (h*)3
D 2  12(1-r 2)•

the mass density is

I* = uoph*

and the thickness is

h* h*(1-hsx)

where E 2 =101 dyn/cm
2 , h*=0.74x1O- 3 cm, hs=0.38 , a= 1/2, and

U i0=17. The longitudinal boundaries of the BM are y*=±BG(x),

where B=0.05 cm and

12Fi(x) = j- (5x + 1) for 0 K- x K 1 . i

Also, the transverse cross-section of the cochlea chamber is

rectangular with a constant area of 0.01 cm 2 and the area of

the stapes footplate is 0.03 cm 2 . These values are the same

as used when studying the response to a pure tone (Holmes,

1986) and are representative of the measured values for the

human ear.

The forcing function to be considered is a tone-pip in

which the displacement of the stapes has the form

*s = llsas(t*), for

[1- COS(W*t*)] if 0 t * - t*

qS = (26)
if t* t*

20 - 7



C2

0-

=0.0 0.2 0.4 0.6 0.8 1.0

C)

c=~
LI.

0.0O 0.2 0.4 0.6 0.8 1.0

C=

-

0O.0 0.2 0.4 X-XS0.6 0.8 1.0

Fi. . hd islcmn ftebs rmmrn nrsos

toatn-i(ihfeuny10 za iea) 0.57
b) 1.07~,,c .9 n )25mec h ipaeeti

deemie ro 2) n oraizdb teapltd o h

stapes.

cr~ _ _ _ _ _ _ _ _ __21



"i i,

where t = 2nw/w* and n is an integer. Inserting this into

(25) and integrating one finds thatm SI

q *(x,O,t) a-U- A(xa)cos ut-O(xW)- It 0 sin [ t dw
-0 2 2 2'~ 2

0 -
0 (27)

where t o = t*/tc and 0 = ta w * The numerical evaluation of

this integral in the case of when f=1400 Hz and n=2 is shown

in Fig. 2 at four successive times. It is seen in this

figure that the initial response of the BM is in the form of

a traveling wave that propagates towards the apical end. The

wave takes approximately 9 msec to transverse the BM. Also

note that it is the low frequency components of the

disturbance that reach the apical end and they travel faster,

and farther, than the higher frequency waves. This is not

unexpected given the dependence of the phase velocity on

frequency (Holmes, 1986). .

The time histories of the displacement of the BM at

three spatial locations are shown in Fig. 3 using the same

signal as in Fig. 2. In each case there is a time delay

before the BM begins to move. To measure this, the latency

is defined as the time until the displacement reaches its

first significant positive peak. This choice is made because

it approximates the value measured neurally, although the

latter also includes other sources of delay. In any case, as

seen in Fig. 3 the time it takes the wave to reach x=0.25

(approximately 0.85 msec) is less than it takes it to

propagate from x=0.5 to x=0.75 (which takes about 2.9 msec).

This is due to the monotonic decrease of the phase velocity

22

. . . . .
. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .



C/)

V v

CM0.0 10.0 20.0 30.0 40.0 50.0

LI-uP

=0010.0 20.0 30.0 40.0 50.0

X=0.25
wk

Cr.
LO

0.0 10.0 20.0 30.0 40.0 50.0

t/T S.

Fig. 3. Transient response of the basilar membrane at three
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time axis is normalized by the period T of the forcing .-

function.
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with longitudinal position (Holmes, 1986). Something else

that is seen in this figure is that the BM oscillates much

more at the point x=0.5 than at the other two locations. The

reason for this is because the characteristic frequency for

x0.5 is 1400 Hz. If the driving frequency is 4570 Hz, which

is the characteristic frequency for x=0.25 then, as seen in

Fig. 4, the oscillations occur at x=0.25 rather than at

x=0.5.

A contour plot for the displacement of the basilar

membrane is shown in Fig.5 for the same signal that was used

for Figs. 2 and 3. Only positive displacements are shown in

this figure because of their importance in the depolarization

of the hair cell (Bell and Holmes, 1986). In any case, the

wave-like nature of the response is clearly seen along with

the ringing that occurs due to the effects of the

characteristic frequency. The "chain of islands," which run

from the lower left to upper right, correspond to individual

wave packets propagating down the basilar membrane. Except

. for the lower two, these chains are parallel. Also, each

succeeding chain is smaller than the previous one but x=0.5

remains at, or near, the center of each. The contributions

of the low frequencies appear primarily in the two lower

packets and even then they are confined principally to the

first. This is due to the start up of the signal which

contains frequencies throughout the spectrum.

In the case of a pure tone signal it is possible to

determine the length of time it takes for the longtime

_ periodic solution to appear. With a forcing such as given in

25
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(26) this is the time it takes the transients associated with

the start-up of the signal to propagate down the basilar

membrane and decay. Based on the discussion in the earlier

paragraphs this is approximately 5 msec for the higher

frequency components and about 10 msec for the lower

frequencies. The solution as calculated from (27) and the

envelope of the longtime solution are shown in Fig. 6 at four

successive times in the case of when f=1400 Hz and n=50. As

expected, at the earliest time there are still appreciable

transient effects, the higher frequency transients have

disappeared at the three later times and the lower

frequencies have effectively decayed at the last two.

Before leaving this example the method used to calculate

the solution should be explained. With the earlier

evaluation of the amplitude and phase functions in (25b) the

integral in (25a) is evaluated using Simpson's rule with 400

equally spaced points between 0 and 15,000 Hz. This is done

using the values for the amplitude and phase functions

calculated earlier, which were evaluated at a smaller number

of frequency points, by using linear interpolation. In doing

this it takes approximately 10 sec of cpu time to calculate

all of the curves shown in Fig. 3.
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DISCUSSION

The method that has been used here to solve the transient

problem is based on the spectral decomposition of the sound

signal using the Fourier transform. By doing this the

transformed problem is essentially the same as the one for

.7 the longtime response to a pure-tone, so, the solution is

relatively easy to obtain. The factor that complicated the

analysis was the viscous boundary layer as it was necessary

to derive an approximation that described the development of

the layer in time. Once this has been done the solution to

- the transient problem is in the form of a convolution

integral in which the kernel is determined completely from

- the response for a pure-tone.

Although the analysis used to obtain the solution is

straightforward it is necessary to evaluate the integral

• .numerically. By comparison, for the low frequency theory the

solution is simple enough that it is relatively easy to
1

derive the characteristics of the response of the basilar

membrane (Holmes, 1981). Nevertheless, the calculations used

Sto evaluate (25) are not particularly difficult and lead to

some interesting conclusions. For example, for the human

cochlea the time scale associated with the development of a

pure tone is about 10 msec. The decay of the displacement of

the basilar membrane is also strongly dependent on the

spectrum of the signal. Even in the case of a pure tone-pip

lasting two cycles the basilar membrane at the characteristic

place vibrates through 10 or 15 cycles. Although there are

"* no direct experimental measurements to compare with,
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responses similar to the ringing seen in the model have been

observed both in the displacement of the BM as well as 'n the

neural response (Robles, et al, 1976; Pfeiffer and Kim, .

1972). Robles, et al also observed that the latency, or time

delay, of the response to reach x=0.1 in the squirrel monkey

is about 0.35 msec. The model predicts that at the same

point for the human the delay is only about 0.06 msec. It is

not clear why there is so much difference between the two.

The theory also predicts that the total time it takes the

response to reach the apical end is about 7.75 msec. From

neural measurements the travel time appears to be between 7

and 8 msec for the squirrel monkey (Anderson, et al, 1971),

for the chinchilla (Siegel, et al, 1982), and for the cat

(Kim and Molnar, 1979). So, for this the model is in

reasonable agreement with experiment. It remains though to

either extend the model to account for the hair-cell system,

or for direct experimental observations of the transient

motion of the BM, before a more complete comparison between -

theory and experiment can be made.
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APPENDIX. EVALUATION OF THE KERNEL FUNCTION

Once the transient problem is reduced using viscousi boundary

layer theory, and then Fourier transformed, it is essentially the

same one found for the pure-tone response. For the latter, to

obtain the displacement of the basilar membrane it is necessary to

solve a nonlinear eigenvalue problem for the local inviscid

wavenumber ko (Holmes and Cole, 1984; Holmes, 1966). This problem

is given by the following partial differential equation for the

(nondimensionalized) displacement of the basilar membrane in the

transverse cross-section

Lo(D 2  ( W2u) o =-2W
2p0 (X,y,O) ,(Al)

where D 2 h3(X) and uah(x). The function po(x,y,z) comes from

the fluid pressure and is given as

po(XIYVZ) = pm cashAm(H-z)cosvmy ,(A2)

m=O

where 5

pm = minxH 1o(x,s)cosvmsds, (A3)

2 2 2 mm
AM 7m + k l 7 m H

and1
if m=O0

CM
I ~if m 0O

Inserting (A2) into (Al) the problem that remains to be solved is

26
(D)2a (a 0110 Zamcos7my f o(x,s)cos7ms ds , (A4)

m0O

where
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' . 2a ca cm .
'" am =.am ) mtanh XmH

To solve (A4) we expand v0 in beam modes as follows

=Y bn(x)un(xyn0 (x,y) = n()n' - (A5) .

n=1

The functions un(x) are the natural modes of the simply supported

elastic beam in the transverse cross-section and are given as

Un(x,Y) = cos (rny) (A6a)

where

rn (2n-1) (A6b)

Substituting (A5) into (A4), and using the orthogonality of the

modes, the following system of equations is obtained

(D2 r- W2 0b, = , . ambnKmnKm, £= 1,2, (A7)

n m

where
G -

Kmn(x) f un(x,y)cos(7my)dy .

(AB)

S2(_1) n+i rncos~mG
=if rn 0 7m

- if r n = 7 m

In addition to the bZ's the above system of equations also

determines the local inviscid wavenumber. In fact, the dispersion

relation is the characteristic polynomial for (A7).

Up to this point all of the beam modes have been included in

the representation of the solution. However, because of the
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symmetry of the problem (in y) the first beam mode is all that is--.

necessary to obtain an accurate approximation to the solution. In

this case, we have from (A5) that

Wy
Io 26 (x)] ag

lo (x,y) os(A9)

Also, the system of equations (A7) reduces to finding the solution

to the following dispersion relation for the local inviscid

wavenumber k -

22 - = amKml (A10)
- -- 0

m=0

where

2

wr =(--A

Once k0 is determined from (AIO) the amplitude Ar(x,w) and the phase

er(x,w) of the right-traveling wave are given by

x
P Ja f k lds

Ar= e , (All)

ko Jpdy dz

and
x

Or= + - f(ka + Pok 1 )ds (A12)

where

p:(x,y,z)dy dz = H . Lmm (A13)
m
=

0

and

A0 = 4(0) k(O ) f f p2(O,y,z)dy dz . (A14)

1'1
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The function klx) in (All), MA12) represents the viscous

contribution to the wave number and is given as

H m(l+cosh2AmH) --- 1-1) m -/ nI -=O -=O -

1 m o = o n o"
kl(x) = ko[x) 

n

H = P- Lmm

m=

where

sinh(n+) m)H sinh (n-An)H

Lmn =
sinh2AnH

H + if m=n

(A16)

The parameters are

B 6 pB"--
. L "0 =a = (A17)

and H(x)=H*/B is the nondimensional "radius" of the cochlear fluid

chamber (see Fig. 1). The constant Aw in A14) is the

nondimensional area of the stapes footplate and it is related to the

actual area A as follows

A* B 2 Aw

* Finally, in (A13) the function Pm, which is defined in (A3), is

" -acmKm.

Pm = AmsinhAmH -

The amplitude A(x,w) in (25) includes Ar as well as the

contributions of the waves reflected at x=l. To account for these

let At(x,w) and OI(x,w) be such that
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i = 1- e2i(k - kL)
+ e -oik,

where
x

k = o + 0(1 -i)k] s ,
f

and
- k *

With this

A(x,() = Ar(x,() At(x, ) , (AIB)

and

)- O((x,() (A19)
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