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" ABSTRACT

>The hydroelastic model of the cochlea is used to analyze the
transient respomnse to a sound signal. Using the relatively high
frequencies in the hearing range the equations are first reduced
using viscous boundary layer theory. The reduced problem is
solved by first applying the Fourier transform and then using
the solution for a pure-tone signal. The response to a tome-pip
is then studied and comparisons are made, when possible, with
experiment. For example, the @ringingQ observed in the
displacement of the basilar membrane is seen in the model and
the theory agrees reasonably well with the neural latency

measurements.

e’s .
(R

(.:.'-‘-

Yy

N __ !

:. ‘.‘.‘b‘.. 5

-

R

S |
1 ) i3 .
MR I N AP
, ¢,

)

- ' e

N
«"

KN
.)




TABLE OF CONTENTS

INTRODUCTION

EQUATIONS OF MOTION

BOUNDARY LAYER APPROXIMATION
SOLUTION OF REDUCED PROBLEM
SOLUTION OF TRANSIENT PROBLEM
APPLICATION TO THE HUMAN COCHLEA
DISCUSSION

REFERENCES

APPENDIX: EVALUATION OF THE KERNEL FUNCTION

'''''''''

10
15
18
20
29
31
33




.‘..’?- K 2ttt charabiar e et aai i e A et St i S S ACR TR S T Ml M 4 e M v Sl e Jue i BANC S an S /e i S e i -aie, 2 Achinnie 2% 2o DAe Ml S0 Sheia i
~

= INTRODUCT 1ON

B In the study of the transmission and resolution of the sound

N signal in the cochlea the behavior associated with the longtime

‘o response to a pure tone has received, by far, the most attention.

i: This is understandable as the work on this aspect of the hearing

g: process has been invaluable in the elucidation of the basic
mechanisms underlying frequency discrimination. However, to be

; able to address gquestions connected with speech discrimination and

noise induced hearing loss it is necessary to consider the
transient behavior. Unfortunately, the effort that has been

- invested in this aspect of the hearing process has been limited.
In terms of direct experimental observation of the transient

response of the basilar membrane, Robles, et al (1976) is one of

the only studies presently available. In fact, most of the
experimental works on the transient problem give only indirect

s indications of the motion of the basilar membrane. This includes

psychoacoustical tests, such as Stapells, et al (1982), and neural

measurements, such as Anderson, et al (1970) and Pfeiffer and Kim

(1972). The modeling efforts are also limited and the few that

e have appeared in the literature have concentrated almost
exclusively on the low frequency response. In fact, there has
never been a complete analysis of the fully three dimensional

transient motion in the cochlea.

. .
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It is for these reasons that the objective of the present
study 1s to develaop a description of the transient behavior in the

cochlea that covers the entire hearing range. The model that is

L K4

used for the cochlea is the same as the one that has been used to
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describe the response to a pure tone (Holmes and Cole, 1983,1984;
Holmes, 1986). The formulation of the model is relatively simple
and it assumes the fluid filling the chambers is viscous and
incompressible and the basilar membrane is modeled as a fibrous
elastic plate. Except for the fluid’'s density and viscosity, and
the transverse elastic modulus and mass density for the basilar
membrane, all of the parameters in the model are geometric. The
values for these four parameters are known from independent tests
so the model of the mammalian cochlea used here is characterized
entirely by the geometric structure of the ear. Because of this
the model can be applied easily to a wide variety of mammalian
cochlae (Holmes, 19864).

In the next section the equations governing the motion in the
cochlea are presented and nondimensionalized. The reason for
scaling the problem is to simplify the analysis used to solve it.
This is done by first using viscous boundary layer theory to
reduce the problem. Once this is done a slender body
approximation, which is based on the long narrow geometry of the
cochlea, is used to obtain the solution of the problem. This is
the same procedure that was used to study the response to a pure
tone although the details of the derivation are somewhat different
due to the time dependence of the problem. In any case, once the
solution is derived it is then a simple matter to analyze to
response of the basilar membrane to various signals.

The reason that viscous boundary layer theory can be used is

because of the relative thinness of the layer as compared to the

cross—-sectional dimension of the fluid chamber. This should not be

i
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;Q interpreted to mean that the fluid viscosity is unimportant. In SE'
- the model considered here the fluid viscosity is the only Ei:
- dissipative mechanism, and with it the theory gives a very e
- accurate description of the frequency map, the moderate intensity ?&
:: amplitude and phase tuning curves, and the static stiffness ?f
;f measurements (Holmes, 1984). This includes human as well as other 3&
. mammals (e.g., the cat, guinea pig, and chinchilla). At the same §iv
>

i; time, with the exceptions noted earlier, the parameters that ;ﬁ
define the model are all geometric and, as shown in Holmes (19895), e

they are determined solely from the measured values for each of
these animals. This raises the question as to the importance of
other possible dissipation mechanisms, such as membrane damping. N
Whatever contribution they make it is in addition to fluid :
viscosity. However, one of the difficulties with attempting to 8‘
account for other damping mechanisms is that there are no direct ~
experimental measurements on which to base the modeling
assumptions. For example, there bhas never been a study of mode Ny

separation and transient amplitude decay for the basilar membrane. o

This makes the modeling effort almost guesswork, although one way ;?
around this is to assume that the damping mechanism is similar to Qi
that found in other fibrous biological membranes, such as the ,f?
tympanic membrane (Rabbitt and Holmes, 1985). Except for Allen
. (1980) this has never been done and the usual assumption is that ii

the damping is simply a dashpot mechanism. Such an assumption 1s onp
f: difficult to justify as it has little basis in the ultrastructure

of the basilar membrane or the organ of Corti. :-

.
»
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EQUATIONS OF MOTION

The assumptions on the geometrical and structural components
of the cochlea are similar to those made in Holmes and Cole
(1984). Consequently, the presentation to follow is relatively
brief but a more complete discussion of the assumptions made here
can be found in the earlier paper. The cochlea 1s taken to be a
tapered tube containing two fluid filled chambers (Fig. 1). The
partition separating these chambers consists of a rigid section
(the bony shelf), a flexible portion (the basilar membrane) and an
aperture at the apical end (the helicotrema). The cochlear wall
is rigid except at the basal end where there are two openings (the
oval and round windows) that are covered by membranes. The
footplate of the stapes is attached to the cochlea at the oval
window. The variation of the geometry i1s fairly arbitrary except
that i1t is assumed that the partition and basal end are planar
surfaces and the cochlear wall is symmetric through the partition.

The fluid filling the two chambers is similar in terms of i1ts
mechanical behavior to water at body temperature. Accordingly, it
15 assumed to be an incompressible Newtonian fluid, and so, the
equations of motion are

[at* - vv2]3* = - :7 vp* , (1a)
and
V- vtr=0 (1b)
where 3*(x*, v¥, z%, t*) is the velocity, p*(x™*, y*, z*, 6 t*)
1s the pressure, r is the kinematic viscosity and p is the mass
density. The asterisk appearing 1n (1) 1s used to distinguish the

variables from their nondimensional analogs i1ntroduced below.
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Also, the notation used here is the same as in Holmes and Cole

(1984) except for the displacement of the stapes which is given in
(4) below.

The basilar membrane (BM) is modeled as an inhomogeneous, -5f
strongly orthotropic, elastic plate. In this case the equation of

motion is (Lekhnitskii, 1268)
Y
D:E;*n* + u*az*n* = - [[ p¥(x* y* 0,t™ ]] R (ic) <

where n*(x¥, y*, t*) is the displacement in the z¥*-direction, D%

is the transverse bending rigidity, and u¥* is the mass per unit

area of the basilar membrane. The longitudinal bending and

twisting terms have not been included in (1c) as they have been
found to be negligible in the basilar membrane (Voldrich, 1978;
Holmes and Cole, 1984). The right—-hand side of (l1c) represents

the fluid loading on the BM and is given as
[[p*]] = p*(x*,y*, 0%, t%) — pEix*, y* 0", t%) . (2)

By assuming the BM is inhomogeneous it is meant in (ic) that 1its
material coefficients depend on the longitudinal variable x¥.

Also note that the displacement of the basilar membrane is

positive if 1t is in the positive z¥-direction.

To complete the description of the problem the boundary and

initial conditions need to be specified. Because the fluid

velocity must be continuous at the boundary we have that R
Y

o] on rigid wall SN

9 = (3 N

(0,0,Bt*n*) on BM .
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Similarly, at the oval and round windows

It = (at*ng, o, 0 , (4)
where n%(t¥*) represents the displacement of the stapes footplate.
In (4), ng is positive if it is in the positive x*-direction. For
the boundary conditions for the plate it is assumed that it is
simply supported. 1t should be pointed out, however, that the
methads used to salve the above problem do not depend on the
particular boundary conditions for the basilar membrane and one
could just as well assume it is clamped or clamped/simply
supported (Holmes, 198&6). As for initial conditions, it is
assumed that the system starts from rest from its equilibrium
position.

The transient problem for the cochlea is now complete and it
involves solving the fluid equations (la,b) coupled with the
elastic boundary (i1c). Given the three dimensional geometry and
the relatively short waves that propagate along the basilar
membrane even a numerical solution of this problem would be
difficult as well as impractical at this time. However, the
cachlea has a long slender geometry and the audible frequency
range is relatively high. Both of these can be used to reduce the
prablem but to do so it is necessary to scale it. As in Holmes
and Cole (1984) the spatial coordinates are nondimensionalized as

follows

*

]

X Lx, y* = By, and z%* = Bz,

where B,L are the width and length of the basilar membrane,

respectively. Also, setting t* = t_.t,
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where fag, is the amplitude of the stapes and uc is a
characteristic value for u* (e.g., it’'s value at x=1/2). The

characteristic time scale tc used here is

B%u =
2 c
t = (&) ’.
c D,c e
o~
g where D,c is a characteristic value of D¥. Thus, tc is a measure ﬁ
of the fundamental frequency of an elastic beam in a transverse .;‘ —
e ¥
[ craoss—-section of the basilar membrane. For example, for the human o
' ear tc ~ 1.3 msec. In Holmes and Cole (1984) the characteristic .:
time scale was the driving frequency of the stapes. Although this ™ i
differs from (4) the results of the analysis to follow actually " f?
contains this earlier work. 532;
In dimensionless coordinates the problem describing the

motion in the cochlea is: fi
{{
i) €luid e

[at - s’Vf]v = -vp , (7a) -
RO
fzaxvl + ayV2 + an; = 0 » (7)) o .:.\
ii) basilar membrane O
" .
Dydqyn + udgn = [[p(x,y,o,t)]] , (8) =

N
RN

o -'-'..‘ PN S I Sy



iii) boundary conditions

3 on rigid wall (Fa)
v = (0,0,a3 ) on BM (9b)
(atns,0,0) on stapes footplate . (9c)

The initial conditions to be used are that the motion starts

rest at t=0. In (7a), V¢ =¢€78% + 3, + 3z . In (8),

D, = D¥/D,c and u = u*/u.. Also,

rt rH
BE v £ = B ’ and ¢ = — .

82 =
L Ue

The last parameter is simply the ratio of the mass of the fluid
above the basilar membrane to the characteristic mass of the
plate. As for €, it is the ratio of the width to length of the BM
and it is relatively small (e.g., for humans € ™ 1072), This is
used later to derive a slender body approximation to the solution
of the problem. The parameter § is the inverse ot the Reynolds
number, where the latter is based on the cross-sectional width of
the chamber. This toao is relatively small and, accordingly,
viscous boundary layer theory will be used to reduce the above
problem.

The reduction of the transient praoblem consists of two
steps. First, viscous boundary layer theory i1s used to reduce the
fluid problem. From this, rather than solving (7), we only need
to solve Laplace’'s equation for the pressure, where the viscosity
contributes through a modified boundary condition. This reduced

problem i1is then solved using a slender body approximation based on

the fact that

€ © < 1.
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BOUNDARY LAYER APPROXIMATION

The frequencies in the hearing range are fairly high, for
example, they range from about 20 to 20,000 Hz for the buman ear.
This serves as the basis for the first reduction of the equations
of motion and involves the application of viscous boundary layer
theory. In the approximations to follow it is assumed that
§ << 1. Also, in the discussion the other parameters in the
problem are assumed fixed. The analysis splits naturally into
three parts, the first two involve deriving the approximations for
the inviscid and boundary layer regions and the third step deals

with their matching. The details are somewhat involved but they

: result in a considerable reduction of the fluid equations. For

? those who may wish to skip the derivation, the conclusions of the
-

g analysis are given in the last paragraph of this section.

b i) Inviscid Region: In the inviscid core the appropriate

; expansions of the fluid velocity and pressure are
ﬁ VN Vo (XsyaZot) + Bug + ... (10a)

g and

% P ™ Polx,¥yZ,,t) + Bpy + ... . (10b)

-

Substituting these into (7) and equating like powers of §

leads to the following prablem for the nth term in the expansion

. TR AE

o™ v'p,= o0

Atvn -Vpn . (11)

As expected it 1s, in general, not possible to satisfy all of the

boundary conditions with this approximation (in particular, the no

slip condition in (9) can not be satisfied). This necessitates




the introduction of a boundary layer.

ii) Boundary Layer: To obtain the boundary layer approximation
only the layer above the partition is considered. The analysis
for the rest of the cochlear wall is similar and involves the
introduction of orthogonal coordinates orientated with respect to
the normal direction (Holmes and Cole, 1984). For the region
above the partition the boundary layer coordinate is

z = %/8 . (12)

The Navier—-Stokes equations (7) in this case take the form

2 2.2 - 1
[at - % -5 V?x,y]v = —[ax,ay,; a;]p , (13a)
a;v; + s(tzaxV1 + ayv,) = 0 (13b)
where
Ui,y = €235 + 3y .

The appropriate expansions in this layer are

Vv Uobt,yeZat) + BY, + ... (14a)
and

P ™~ Polx,y,z2,t) + 6P, + ... . (14b)
Proceeding as before, by substituting these into (13) and equating

like powers of § the following problems are obtained:

0(1) P, =0
r4
Q;V,o = 0
2
[at - a;]vso = - 3gPy (s =x,y) .

Solving these equations and using boundary condition (9b) one

finds that

11

et -
et
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=
3 n
~
2 i
, Po = Polx,y,t) , O !
: Vip = "atﬂo ’ ! .
[} b ™
X o
oy and t ~ .. r
> V) = —I erf|—2—]o_P,d7 (s=x,y) ‘; :
so 0 o/t s o ’ * )
) To obtain a uniformly valid two term approximation it is z:;
N necessary to solve for at least some of the second terms in the N
- expansion. g;-.
- 2 ]
0(s) 3;P1 = - uatno o
t ~ -
Wy, = erf|————1 V3., Po d7 -
Va1 [2 r;:;ﬂ] X, To . 5
0 |
f} Using the Laplace transform one finds that the soclutions of e
- Ta
N the above problems are
x P, = —a%'a:n., + b(x,y,t) -. 1
; and v h
X v ~
t Y
. Vv = ad + z - 2V t— 1 —-ierf —;—-—— V2 Podr 2 :
2 1 " Ve e XayT oY o o
o - E
- E »
where b is a constant of integration. w
_: iii) Matching: It remains to match the expansions from the two :
¥ regions and to do so an intermediate variable is used, which is
. defined as - -
ey z NV ars
zZ = = =2zVv§ . (13) N
. v § -
N With this, using Taylor’'s theorem the inviscid approximation for i N

the pressure (10b) can be written as

BT AN




LI

+ E(py + % F232p,) gmg torre v (16)

+ «’F“Iazpol

P~ p°|z=o z=o
and the boundary layer approximation (14b) is
p~ Po-u;Js'D:no-+8b + e . (17)

Matching (16) and (17) as well as matching the velocities one finds

and

2
= —catno v

t
Y O R N =

Po dr -

Combining these

2 Polx,y,0,t) dr . (18)

~ _ 2
azpzlz=o .M

t
__8 1
v x v t-7
[
Based on the above analysis, a uniformly valid two term

approximation (in 8) of the fluid pressure is obtained by

solving

V:p=0 ’ (19)

where, for 0 < x < 1,

t
I 1 o on rigid wall
0

2
——— dppdT = (20a)
voter -a:n on BM .

In (20a), n is the unit outward normal to the cochlear wall. A

similar condition applies at the basal end (x=0) and is given as
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t
€5 1

SR V=

3ipdr = -a:__ns . (20b) o

Q

Therefore, the original equations for the fluid (7) along with

“ ¢
o
»

boundary conditions (9) have been replaced with (19) and (20). In

o

other words, it remains to only solve one equation for the fluid
and the viscosity now only contributes in the boundary condition,
rather than in the equation of motion. It is also of interest to
note that this approximation reduces to the one derived earlier by
Holmes and Cole (1984) for the longtime periodic response to a
pure—-tone forcing as t * . Moreover, it reduces to the transient
low frequency approximation used in Holmes (1981, 1982) in the

case of a low frequency signal.
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SOLUTION OF REDUCED PROBLEM

1t remains to solve the reduced fluid equations derived in
the last section in conjunction with the plate equation and
associated boundary conditions. There are a number of ways to do
this and the one to be used here involves the Fourier transform in
t. For a variable such as ani({x,y,t) its transform, which is
represented with a capital N(x,y,w) as well as by the symbol F(n), R

is defined as

[ -]
1 —iwt
Ni{x,y,w) =¢,§;1 I n(x,y,t)e dt .
— o

To be able to transform the equations of motion it is

necessary to assume that the Fourier transform of the stapes

displacement is well defined. With this the transformation of the

except perhaps for the

problem is fairly straightforward,

convolution integral in boundary conditions (20). The latter can “:

be evaluated by interchanging the orders of integration as follows

t @ ¢ o

&F J L alpdr| = =1L J- J' 1 alpe 1“tysat o
o« t-7 v 2x 0 od t-7 &;

® [ ) ':

A= [ [ A vieettatar
1] T

- 1 1 a;pe*xw(r+7)drdT

v 2x vr

/ X 2

this the fluid equation (19) transforms as
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viep =0 |, (21)
and equation (8) for the BM is
(D,3y - WWIN = =2P(x,y,0,w) , (22)

where, from (20a),

P - .8 B;P - [ 0 on rigid wall
viw ~aw?2N on BM
and, from (20b),
AP + —;i— 3:P = w2Ng on stapes footplate .
iw

This problem is essentially the same as the one studied in Holmes
and Cole (1984). Consequently, it is possible to simply write
down a first term approximation of the solution. This
approximation, which is based on the assumption that € << 1, is
derived using a multiple scale argument. The result is that the

salution for the (transformed) BM displacement has the form

-10(x,w)

N ™ % Alx,w)e Ng{x,y) . (23)

The functions in this expression, such as A(x,w), will be given
later as they are not needed to complete the derivation of the
solution of the praoblem. Inverting (23) using the convolution

theorem leads to

o
n mvr§l1 J Ko(x,¥yyt-T)ag(r)dr , (24a)
4
o
where

No(x,y) . (24b)

Ko (x,y,t) = Ji—‘[é A(x,u)e_le(x’U)]

Note that it has been assumed in (24) that n = O for t £ O and

the function %, is independent of w.
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It remains to invert the inverse Fourier transform in (24b),

. However, because of the relatively complicated nature of the
functions there is no apparent closed form inversion.

-~ Nevertheless, there are some simplifications that can be made.
For example, since A is an odd function of w and

g 8i(x,—w) = —8({x,w) + x then it is only necessary to integrate over

‘- 0 < w < o in (24b).
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SOLUTION OF TRANBIENT PROBLEM

In the last two sections the original equations of motion
were reduced and a first term approximation to the transient
problem was derived. The result is that the displacement of the

basilar membrane is given as

n*(x,y,t) ~ j K(x,yt=7) n¥(rrdr , (25a)
0

where ®

Kix,y,t) = % J Alx ,w) cos[ut - e(x,u))du © Mg (Xay). (25b)
[}

The amplitude A(x,w) and the phase 6(x,w) are given in (A18) and
(A19), respectively. The function n,, which is the displacement
of the wave in the transverse craoss-section of the BM, is given in
(A?). The time history of the displacement of the BM, as given 1in
(25), is in the form of a convolution integral. Because of the
complexity of the functions in (25b) it appears to be necessary to
evaluate (25) numerically. However, the kernel defined in (25b)
needs to be calculated only once. To do so for a given x and @
one must find the solution of a transcendental equation (A10),
called the dispersion relation, for the local inviscid wave number
kg. Once ky(x,w) is known then it is a relatively simple matter
to calculate A and & from the formulas given in the Appendix.

In the calculations to follow for the human ear the kernel 1s
evaluated at 100 equally spaced points along the x-axis, at S0
equally spaced frequencies between 0 and 500 Hz, and at 50
logarithmically spaced frequencies between S00 and 15,000 Hz. The
methods used to evaluate the kernel are the same as used in Holmes

and Cole (1984) and Holmes (1986). The reason the frequency

18
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ﬁ: spacing is divided in this way is because of the effects of the

low frequency modes (Holmes, 1983). In particular, the amplitude

! and phase functions are not monotonic for low frequencies so it is

2 necessary to increase the number of points in this region sa

'3 interpolated integration can be used in (25b). By doing this, it

rr takes about B85 sec of cpu time on an IBM 3081D to calculate the
amplitude and phase functions in (25b).*

*The FORTRAN programs, and documentation, used to calculate the
solution of the transient problem are available upon request from

- the author.
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APPLICATION TO THE HUMAN COCHLEA

The transient response of the basilar membrane is now
illustrated by evaluating (25) for the human ear. To do so
the values used for the fluid kinematic viscosity and density
are r=0.008 cm?/sec and p=1.0 gm/cm?. For the basilar

membrane L=3.5 cm, the transverse bending rigidity 1is

o* - E,(h*)3
2 7 12(1-02)

the mass density 1is
u* = ugeh*
and the thickness 1is
h* = hj(l-hgx) ,
where E,=10* dyn/cm?, h¥=0.74x10"? cm, hg=0.38, o= 1/2, and

uo=17. The longitudinal boundaries of the BM are y*=%BG(x),

where B=0.0S cm and

G(x) = (Sx + 1) for O < x < 1 .

L
12

Alsa, the transverse cross-section of the cochlea chamber is
rectangular with a constant area of 0.0l cm? and the area of
the stapes footplate is 0.03 cm?. These values are the same
as used when studying the response to a pure tone (Holmes,
1986) and are representative of the measured values for the
human ear.

The forcing function to be considered is a tone-pip
which the displacement of the stapes has the form

* *
Mg = fNgefg(t™), for

[1 - cos(u*t*)]
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Fig. 2. The displacement of the basilar membrane in response

to a tone—-pip with frequency 1400 Hz at time a) 0.357,

N

b) 1.07, c) 1.79, and d) 2.5 msec. The displacement is
determined from (27) and normalized by the amplitude of the

e stapes.
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where t§ = 2nx/w® and n is an integer. Inserting this into .
(25) and integrating one finds that n
@ D
a*ix,0,t) ~ MmO Y0 weos [ut-8(x,w - Tut,]sin(3 wt,y)du .
L g ] - m(@:‘ﬁ)!) ’ ’ 2 [+ 2 0 ;}‘:

o (27)
—
where t, = t¥/tc and wy, = tcw*. The numerical evaluation of "

this integral in the case of when f=1400 Hz and n=2 is shown

b

in Fig. 2 at four successive times. It is seen in this
figure that the initial response of the BM is in the form of
a traveling wave that propagates towards the apical end. The
wave takes approximately 9 msec to transverse the BM. Also
note that it is the low frequency components of the
disturbance that reach the apical end and they travel faster,

and farther, than the higher frequency waves. This is not

A

unexpected given the dependence of the phase velocity on

frequency (Holmes, 1986).

€ s

The time histories of the displacement of the BM at

Y |

three spatial locations are shown in Fig. 3 using the same

signal as in Fig. 2. In each case there is a time delay

[
.
r Wt S PR R

before the BM begins to move. To measure this, the latency -

is defined as the time until the displacement reaches its

s T
[N

first significant positive peak. This choice is made because

it approximates the value measured neurally, although the

ge

latter also includes other sources of delay. In any case, as
seen in Fig. 3 the time it takes the wave to reach x=0.25 o
(approximately 0.85 msec) is less than it takes it to 4
propagate from x=0.5 to %x=0.75 (which takes about 2.9 msec).

This is due to the monotonic decrease of the phase velocity ;i':

22
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with longitudinal position (Holmes, 1986). Something else

that is seen in this figure is that the BM oscillates much
more at the point x=0.35 than at the other two locations. The
reason for this is because the characteristic frequency for
x=0.5 is 1400 Hz. If the driving frequency is 4570 Hz, which
is the characteristic frequency for x=0.25 then, as seen in
Fig. 4, the oscillations occur at x=0.25 rather than at
x=0.3.

A contour plot for the displacement of the basilar
membrane is shown in Fig.5 for the same signal that was used
for Figs. 2 and 3. Only positive displacements are shown in
this figure because of their importance in the depolarization
of the hair cell (Bell and Holmes, 1986). In any case, the
wave-like nature of the response is clearly seen along with
the ringing that occurs due to the effects of the
characteristic frequency. The "chain of islands,” which run
from the lower left to upper right, correspond to individual
wave packets propagating down the basilar membrane. Except
for the lower two, these chains are parallel. Also, each
succeeding chain is smaller than the previous one but x=0.5
remains at, or near, the center of each. The contributions
of the low frequencies appear primarily in the two lower
packets and even then they are confined principally to the
first. This is due to the start up of the signal which
contains frequencies throughout the spectrum.

In the case of a pure tone signal it is possible to

determine the length of time it takes for the longtime

periodic solution to appear. With a forcing such as given in

o . -
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-

e

v

PN o

.
.
.

g

’ }a ,l

22

~ >
* ‘_"

,..,.
WA ey

s
'y by Yy

S

L) .'I."l

’,



AT R R R T T T T R T Y Y N Y Y N Y Y W N UW N T Y TR L W W T S LW LWL N Ty W

R T T O T TR
.'-‘i- {. < P v

TIME (MSEC)

12-0 Yy + ¢+ ¢+ §¢v 1T ¢ T ‘{¢v T v 7T r—7 v 7T 7T 1T v v

Fig. 5. The level contours for the positive displacement of
the basilar membrane, normalized by the amplitude of the
stapes, in response to a tone-pip with frequency 1400 Hz. The
curves represent constant normalized displacements of 10, 20,
40, and 80.

PR R N

L1

.....

[y




-l

(d)

FPES 1eng

i
T

B

s

0.6 0.8 1.0

0,180
(=
e
N
£

.y"-l

d

(c)

SVGHES g,

+

0.2 0.4 0.6 08 1.0

.0.-180
o

180

B (b)

-
jBH/§@ﬁPES

2
Sl

Y e S
v

0.2 0.4 0.6 0.8 1.0

+

g
0.-180
)

= (a)

'48&OBN/§gﬁPES 180

— ' " b
v e ¥ a

- 4 0.6 0.8 Af
- 0 X-AXIS 0

.
s
e
Q
o
N

E’ Fig. 6. Transient respanse of the basilar membrane for a
pure—-tone signal with frequency 1400 Hz, at time a) 0.5, b)
2.0, c) 8.0, and d) 16 msec. Also shown is the envelope of
) the corresponding longtime solution.

r. 27

T O TN L e et e e .- et e e NN
\" LY S A LA SR N A AT N e T el e Tt e T e e At T e s e et s L AP AP DU TPO S AR
.-"an"i'. LU R A PN AP SO e SO B A AN AR SR AP A P AP I S X ST A SO SN TS SR R




»

.
v
-
3
.
”
t
x

.l'.l' 1

) (26) this is the time it takes the transients associated with ;:i
2 the start-up of the signal to propagate down the basilar - N
3 membrane and decay. Based on the discussion in the earlier 55:
é paragraphs this is approximately 5 msec for the higher tt:
; frequency components and about 10 msec for the lower M
. frequencies. The solution as calculated from (27) and the ?E:
; envelope of the longtime solution are shown in Fig. 6 at four E
" successive times in the case of when £=1400 Hz and n=50. As ;;:
expected, at the earliest time there are still appreciable
transient effects, the higher frequency transients have
disappeared at the three later times and the lower -.‘
e frequencies have effectively decayed at the last two. ) ;
Before leaving this example the method used to calculate ¥-:
the solution should be explained. With the earlier . 3
evaluation of the amplitude and phase functions in (25b) the
integral in (25a) is evaluated using Simpson’'s rule with 400
equally spaced points between 0 and 15,000 Hz. This is done -
) using the values for the amplitude and phase functions e
- calculated earlier, which were evaluated at a smaller number - ;
of frequency points, by using linear interpolation. In doing g ;
this it takes approximately 10 sec of cpu time to calculate
all of the curves shown in Fig. 3. E
; .
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b DISCUSSION

The method that has been used here to solve the transient
problem is based on the spectral decomposition of the sound

signal using the Fourier transform. By doing this the

~
-

. transformed problem is essentially the same as the one for
r: the longtime response to a pure-tone, so, the solution is

\ relatively easy to obtain. The factor that complicated the
:: analysis was the viscous boundary layer as it was necessary

to derive an approximation that described the development of
the layer in time. Once this has been done the solution to ;ﬁ
. the transient problem is in the form of a convaolution
integral in which the kernel is determined completely from
:ﬁ the response for a pure—tone.
Although the analysis used to obtain the solution is
straightforward it is necessary to evaluate the integral
numerically. By comparison, for the low frequency theory the

solution is simple enough that it is relatively easy to

! derive the characteristics of the response of the basilar

. membrane (Holmes, 1981). Nevertheless, the calculations used
;: to evaluate (25) are not particularly difficult and lead to

. some interesting conclusions. For example, for the human

- cochlea the time scale assaociated with the development of a
2‘ pure tone is about 10 msec. The decay of the displacement of

the basilar membrane is also strongly dependent on the
spectrum of the signal. Even in the case of a pure tone-pip
lasting two cycles the basilar membrane at the characteristic
place vibrates through 10 or 15 cycles. Although there are

oy no direct experimental measurements to compare with,
'
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responses similar to the ringing seen in the model have been - o
observed both in the displacement of the BM as well as :n the - %
neural response (Raobles, et al, 197&6; Pfeiffer and Kim, H«
1972). Robles, et al also aobserved that the latency, or time _\:?
P
delay, of the response to reach x=0.1 in the squirrel monkey ﬂ‘ﬁ
is about 0.35 msec. The model predicts that at the same TT "
paoint for the human the delay is only about 0.06 msec. It 1s :
not clear why there is so much difference between the two. ;_’
The theaory also predicts that the total time it takes the N
response to reach the apical end is about 7.75 msec. From ;‘;g
neural measurements the travel time appears to be between 7 . i
and B8 msec for the squirrel monkey (Anderson, et al, 1971), < :_
for the chinchilla (Siegel, et al, 1982), and for the cat i:;i
(Kim and Molnar, 197%2). So, for this the model is in _ E;
reasonable agreement with experiment. It remains though to ;i 1'
either extend the model to account for the hair—cell system, .
or for direct experimental observations of the transient .
motion of the BM, before a more complete comparison between - g
theory and experiment can be made. :;
-
&
N
- .
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APPENDIX. EVALUATION OF THE KERNEL FUNCTION

Once the transient problem is reduced using viscous boundary
layer theory, and then Fourier transformed, it is essentially the
same one found for the pure-tone response. For the latter, to
obtain the displacement of the basilar membrane it is necessary to
solve a nonlinear eigenvalue problem for the local inviscid
wavenumber k, (Holmes and Cole, 1984; Holmes, 19846). This problem
is given by the following partial differential equation for the
(nondimensionalized) displacement of the basilar membrane in the

transverse cross—section

(Dpdy ~ w2udn, = = 2w2pgix,y,0) , (A1)

where D,=h3(x) and u=h(x). The function pg(x,y,z) comes from

the fluid pressure and is given as

Po(X,y,2) = } ' pm coshAp(H-z)cosymy , (A2)
m=0
where G
Pp = —— (x,8) d (A3)
Pm = AmsinhagH N, (X,s8)cosrysds, 3
-G
2 2 2 mx
Am = Tm * kg , T™m =T
and 1
_ 5H ifm=20
€m = 1 .
] ifm #£ O .

Inserting (A2) into (A1) the problem that remains to be solved is

G

@

(D,a; - w?uln, = 2 aAmCoOsSTqmY I fg(x,8)cosyys ds , (A4)
-6

m=0

where
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To solve (A4) we expand n, in beam modes as follows
@
fgix,y) = S br(xdun(x,y) . (AS)
n=1

The functions up(x) are the natural modes of the simply supported

elastic beam in the transverse cross-section and are given as

un{x,y) = %;§%§%¥L (ALa)
where
(2n—-1)x
™ = 5500 - (A&b)

Substituting (AS) into (A4), and using the orthogonality of the

modes, the following system of equations is obtained

. 2 ‘N .
(Dzrz - W u)bt = Z 2 ambnkmnkmzs P o= 1,2, ... (A7)
n m
where
G
Kmn(x) = j un(x,y)cos (ypy)dy
-6
(AB)

2(—1)"+1rncoszm§
= VB rh - 7

v G it rqp =70 -

if ro # "m

In addition to the by’ 's the above system of equations also
determines the local inviscid wavenumber. In fact, the dispersion
relation is the characteristic polynomial far (A7).

Up to this point all of the beam modes have been included in

the representation of the solutiaon. However, because of the
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symmetry of the problem (in y) the first beam mode is all that is
necessary to obtain an accurate approximation to the solution. In
this case, we have from (AS) that

_xy
C°5[ 2G(x)]
Nol(x,y) = . (AD)

v G(x)

Also, the system of equations (A7) reduces to finding the soclution
to the following dispersion relation for the local inviscid

wavenumber k,

@
D,wr — w2p = E :amK;, , (A10)
m=o

where
2
= [—X
“r = [ 28] .
Once ky, is determined from (A10) the amplitude A (x,w) and the phase

Op(x,w) of the right—-traveling wave are given by

X

_ A, o
Ar = — - e . (A11)
2
V/;; I I p,dy dz
k4
and
1 X
N
o = X+ ¢ fo(k, + Boky)ds (A12)
where
@
f f Piix,y,z)dy dz = % o) o Lam (A13)
4 m=o0
and

o

xko (0)A, .
Ay = ‘"35757‘v//;o(0) I;I Po(O,y,2)dy dz . (A14)
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:. The function k,(x) in (Al11), (Al12) represents the viscous tg
L' Vol
i cantribution to the wave number and is given as
n
" :':‘
" ] ® 2 2 et 2 m+n 2 ] i
N H S Am Pmtl+caosh2apH) -~ S E (-1) PP ”ml
m ¥m m mFn/’m-mn _-_;
. k.(x) = 1 m=0 m=0 n=0 :_
N 1 kg (x) @ '
n H 2 p; Lmm -
- | m=o : L
: where -
sinh(ap+A, ) H sinh(Ap—As)H
. n_"m + nn if m#n
: ln + lm ln - Xm I
. L = :. -]
- mn sinh2a,H > K
H + —_EI;——_ if m=n . o
(A16) g’-
The parameters are
e =B B g ik (A17) s b
= — = e—— a = ~—
) c oo ° T Zer uc " N
:j and H(x)=H*/B is the nondimensional "radius" of the cochlear fluid R
f chamber (see Fig. 1). The constant A, in (Al14) is the -
nondimensional area of the stapes footplate and it is related to the ;?-
. actual area A¥ as follows

Ak = B%a, .

Finally, in (A13) the function pp, which is defined in (A3), is

— _ —GCmet S

Pm = N psinhAgH © =

The amplitude A(x,w) in (25) includes A, as well as the
contributions of the waves reflected at x=1. To account for these

let Ap(x,w) and 0p(x,w) be such that . '
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where
®

= j'o [ko + Boc1 —idk,]) as

and

E=]
1 X=1

With this

Alx W) = Ap(x,w) Apx,w) v (A18)

.

L

and

¥,

0(x,w) = Op(x,w) — Op(x,w) . (A19)
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