
D-R169 19? MULTILEVEL OBJECT SECURITY ODEL(U) SYTEK INC MOUNTAIN V2
VIEW CA E C SULLIVAN ET AL. MAN 96 SYTEK-TR-951

UNCLSSIFIEID RRCT-61 3629--91F/0 9/2 ML

777

Q11 . ~ 28%
*~~W

11112-2MA

IA. 11.6

1.25 _!.

MIC~n~or".

a.

RADC-TR- 86-10
Final Technical Report
March 1966

I--

00

MULTILEVEL OBJECT SECURITY MODEL

DTIC
SE1o1. ELECTE

SYTEK, Incorporated CNJUN 16 1986

Elisabeth C. Sullivan, Teresa F. Lunt and Norman Proctor

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

I-.

86)5m

This report has been reviewed by the R DO Public Affairs Office (PA) and

is releasable to the National Technical Information Service (NTIS). At NTIS it

will be releasable to the general public, including foreign nations.

RADC-TR-86-10 has been reviewed and is approved for publication.

APP ROVED: ~ 3

DAVID F. TRAD

Project Engineer

//
APPROVEAD: --- !.X ,~

GERALD D. LONG, Colonel, USAF

Chief, Comnand & Control Division

'FOR THE COM!ANDER:

RICHARD W. POULIOT
Plans & Programs Division

DESTRUCTION NOTICE - For classified documents, follow the procedures in
DOD 5200.22-MI, Industrial Security Manual, Section 11-19 or DOD 5200.1-R,
Information Security Program Regulation, Chapter IX. For unclassified,
limited documents, destroy by any method that will prevent disclosure of
contents or reconstruction cf the document.

[f your address has changed or if you wish to be removed from the RADC
mailini list, or if the addressee is no longer employed by your organization,
please notify RADC (COTD) Griffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not re. tur. copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

k-0

UNCLASSI FIED *

SECURITY CLASSIFICATION OF THIS PA7GE .-.

REPORT DOCUMENTATION PAGE-
Ia. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED NIA
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION, AVAILABILITY OF REPORT

N/AApproved for public release; distribution
2b DECLASSIFICATION DOWNGRADING SCHEDULE unlimited

/A %____________________

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

TR-85015SRD-~8-

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
SYTEI(Incororated(if applicable) RoeArDevelopment Center CCOTC) ..

6c ADDRESS (City, State. and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

1225 Charleston Road
Mountain View CA 94039-7225 Griffiss AFB NY 13441-5700

Ba NAME OF FUNDING;' SPONSORING 8b, OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION j(if applicable)

Rome Air Development Center C0TC F30602-85-C-0Ol1
Bc ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

Criffiss AFB NY 13441-5700 PROGRMEN PROJC TAS WRK UI

ELEM NT O N NOACCSSIO0N
NO

____________________________351670 1065 01 01 C*
* ~1 r TLF (include Security Classification) - -

MULTILEVEL OBJECT SECURITY MODEL
% %

* ~2 PERSONAL AUTHOR(S) ,N

Elisabeth C. oLllivan, Teresa F. Lunt, Norman Proctor
*1 3a TYPE OF REPORT 1 3b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Final 'ROM Jan 85 TO NOV A51 March 1986 116
*16 SUPPLEMENTARY NOTATION

* N/A

1T COSATI CODES I 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
~IEI D GROUP SUB GROUP Computer security,
09 02 multilevel security,

formal security modele ,e
*19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This report is a summary of the Multilevel Object Security Model (MOSM) project. The MOSM
effort Involved the development of an intermediate-level security model which satisfies the
requirements of Else Bell-Lapadula model and the NRL model, while incorporating the ease of
verification of the Bell-Lapadula model and the flexibility of the user interface of the
NRL model. The project consisted of three tasks: development of the model, an abstract.
Implementation of the model in terms of the NRL model, and an analysis of the Diamond

* Doument Handling system with respect to the model. Each of these tasks is described in .:--

* detail and a formal statement of the 1M1OSM appears in the appendix.

* 20 ISRJTOAAIAITYOF ABSTRACT 121 ABSTRACT SECU)RITY CLASSIFICATION

* FJUNCLASSIF.&DUNLIMITED [__ SAME AS RPT EJOTIC USERS I LNCLASSIFTED
,12a NAME 01 RESPONSIBLE INDIVIDULAL 22b TIE LE PHONE (include ArcaiCode) 22(OFi-LE SYMBOL

David F. Trad (315) 330-29'25 R ADC (COTC)

DO FORM 1473,84 MAR 83 APR edition may be used urtif exhausted SEC(,HITYCLASSIFICATIONOF -HIS PAGE '
All other edtiois ale obsolete___

IVNCI.ASST FT El

-A- R . 1

CONTEN TS

2. -TASK 1: Development ot the MLO Modeloff#*** 2
* 2.1 Background....................... 2

2.2 The MLO Mdl...* ********************. . 6
2. The MLO Model and the Requirements for Al Certifi-

* 3. TASK 2: An Abstract Implementation of the Model........ 20 '

3.1 Description of the Abstractytm......... 21)
3.2 Constructing the Message System Data Structures

From the Task 1iModel Data Structures......... 28
3.3 Building the Applications-Level Operations tron the

Task 1 Model Operations 29

*4. Task 3: A Security Mechanism for the The Diamond Sys-

4.1 Description ot the Diamond System............. 40
4.2 Constructing the Diamond Data Structures From the

Task I Model Data Structures.oo........ o... 52
4.3 Building the Applications-Level Operations from the

Task IModel Operations...o...o................ 59
4.4 A Candidate Architecture for Future Versions of

4.5 Task 3 Diagrams o....*....... .. o.o.. 73

*6. APPENDIX A.oo ooo... o......o............... Al

Accezion For

NTIS CRA&I
L'ii T,46[
u .n.')d [
J.i

or)

'%

. ,,%'*~.%,Ji :
The Multilevel Security Object Model project, performed for

RADC by SYTEK, under contract number F30602-85-C-0001, consists
of the development of an intermediate-level security model which
satisfies the requirements of the Bell-Lapadula model and the NRL
model, while incorporating the ease of verification of the Bell-
Lapadula model and the flexibility of the user interface descrip-
tion of the NRL model. This report is a summary of the project.
The three tasks of the project were the development of the model, ..-

an abstract implementation of the model in terms of the NRL
model, and an analysis of the Diamond Document Handling system
with respect to the model. Each task is described in detail in
the following report, and a formal statement of the model
developed appears in the appendix.

5"-.o-".

* . - *-..

14. T.- U- h- Y -. 1k0- - - . - -

THE MLO MODEL--TASK 1

THE DEVELOPMENT OF THE MODEL

Elisabeth C. Sullivan "'

2. e1 P fb J QA Q e

A formal security model describes security requirements for
a trusted computer system. Often it is formally verified that a
computer system obeys the rules of its security model. To be
useful for verification, a model must be designed so that appli-
cation of a verification technique is feasible. For many appli-
cations, currently existing models either present verification
difficulty or have certain deficiencies which restrict their use-
fulness. This paper describes a security model which facilitates
system verification and addresses some of these deficiencies.

Models can be described in terms of zubjgt (individuals or
processes) who perform 9PV01iJ;gD5 on 9bjeg (databases or vari-
ables). Most formal models of security requirements have con-
sidered each system object to have one security level which
represents the classification of the object as a whole and of
each of its parts. In some instances this view is quite ade- ."
quate. In other instances, security requirements must consider

1uj ye gbjvg , or objects having having parts with diftering
security levels. The Multilevel Object Security (MLO) Model ack-
nowledges the existence of multilevel objects, and hence allows
more flexibility in system development. It is designed to meet
security policy needs which are especially applicable for message
systems or document handling systems. The MLO model implements
multilevel objects using arn.object hierarchy and a novel con-
struct called a reference mechanism which provides an access path
through the hierarchy. The MLO model permits downgrading in spe-
cial instances and allows the use of application-specific secu-
rity constraints. This flexible model has been designed to meet
the DoD Trusted Computer System Evaluation Criteria for Al sys-
tems [1].

2.1 4k91QUID. ..

The primary focus of this task was to develop a multilevel
object security model which could be used for formal verification
of message or document systems. However, the model describes
other useful concepts, as seen in the list of goals for the model
below.

- The model design must be such that verification of systems
implementing the model is feasible.

-2-

-#

THE MLO MODEL--TASK 1

- The model must represent and process multilevel objects.

- The model must allow selective downgrading without violating
the *1' property.

- The model must allow for the addition of application-
specific security rules.

- The model must meet the criteria for models for Al certifi-
cation in [1].

The following background information provides insight into why
these five criteria became objectives for the MLO model develop-
ment.

*2.1.1 Eg9_fJY.Czhfjgn9

A security model is most useful when it is feasible to ver-
ify systems which implement it. One contributing factor to veri-
fiability is the architecture of the system. A security model
describes the security constraints for the interface to the secu-
rity mechanism. Hence, the use of a security model makes an
assumption about the architecture of the system for which the
model is used. For example, the widely used Bell-Lapadula model
describes security constraints on a trusted computing base which
controls read and write access to storage objects. The security
constraints must be sufficient to guarantee that the security
will be maintained regardless of the properties of the untrusted
software which makes use of the mechanism modeled by the Bell-
Lapadula model. The advantage of the Bell-Lapadula model is that
the mechanism described by the model is very primitive. Hence
verification is more feasible than if the entire system had to be
verified. There is, however, a penalty associated with modeling
such a primitive mechanism. The penalty is that for more primi-
tive mechanisms stricter security constraints are required to
guarantee that untrusted software using the mechanism can not
cause security violations.

The NRL model describes security constraints for a particu-
lar type of system, a military message system, at the user level.
Because the model describes the security constraints at the user
interface level, it can describe exactly the restrictions
required for security. As a result, it allows maximum user flex-
ibility consistent with security. The penalty associated with a
user level model such as the NRL model is increased verification
difficulty because all software up to the user interface must be
verified.

* 2.1.2

Computer security constraints are typically modeled after
the constraints used in the "people-paper" world, where user
rules are modeled after rules for human users of classified

-3- b* ',-.°

* *** . * ~ . .- *' *.. . . . w,.r.-.-& . .*

• • °°". 'o-. o.'° -° .° °L -'. o/' "°.- °°--'.". " " o ; "" ° ,' -'. " L -'.-'°-° '. % J -'- o -. - . -. -. : -' -' ,'.- . ' ''. '° ' •• - , ,.,' ".

-... . .

I

THE MLO MODEL--TASK 1 '

objects. An example of a classified object in the "people-paper"
world is a classified document. In addition to the security
level of the document as a whole, each paragraph within the docu- .-.-.
ment has its own security level. Typically the levels of some
paragraphs are lower than the level of the document as a whole.
Generally, paragraphs whose security level is lower than the
document level can be viewed by individuals having a clearance%
level which is at least as high as the security level of the
paragraph, but not necessarily as high as the security level of
the document as a whole. If a computer application of a document
handling system models a document as having a single security
level, it may deny an individual's access to paragraphs he is
really qualified to view. For this example, viewing a document
as having a single security level may be too restrictive.

The failure of most security models to account for objects
which can have one security level and parts which can have their
own individual levels has made these models overly restrictive
for many applications. The need for multilevel objects was a
topic of study for Group 2 of the 1982 Air Force Summer Study on
Multilevel Secure Databases. This group noted that multilevel
objects were an essential ingredient of any formal security model
to be used for such applications. The need for multilevel
objects was also noted in the work of Heitmeyer and Landwehr of
NRL [2]. Group 2 and the NRL model have both influenced the
development of multilevel objects in the MLO model.

2.1.3 DgWD ing

Two standard properties desired in a security model are the
simple security property and the '*' property. For many people,
these two properties are synonymous with the Bell-Lapadula model.
The simple security property forbids a subject to read informa-
tion at a security level which is higher than the subject clear-
ance. This requirement corresponds directly to a standard secu-
rity requirement in the "people-paper" world--an individual can-
not view information which is classified at a level higher than
his clearance. The '*' property expressly forbids a subject to
write information at a security level which is lower than the
subject clearance. This requirement is intended to place con-
straints on software code, as cleared people are trusted to write
classified data at an appropriate level. The '*' property effec-
tively describes constraints to prevent untrusted code from mak-
ing information of one security level available to untrusted code
at a lower level. Unfortunately, the property is often overly
restrictive, for it strictly forbids downgrading (lowering of
classification), and some real systems require the ability to
reduce the classification of information.

One way of writing systems which adhere to the 1*1 property
and allow some downgrading has been the use of "trusted
processes". A mechanism is designed which strictly adheres to
the Bell-Lapadula model. Trusted processes are created which

-4-

a--. .*[" [- . - . - - . [. -•+ - - .- " - -" - . * - " - *- . + [-. - ' ? : " - . . . - . - [+ .

O_ 5'. .-.

THE MLO tIODEL--TASK 1

allow downgrading and reside outside the mechanism implementing

the Bell-Lapadula model. The difficulty is that assurance of the
security of the system relies on assurance that the mechanism
follows the policy properly, and that the trusted processes per-
form their tasks properly, and are only invoked by properly
cleared users. Often the verification of trusted processes is
less rigorous than the verification of the mechanism, or is sim-
ply ignored.

The NRL model explicitly allows only properly qualified
users to downgrade data, and forbids information from being
copied to an object of a lower level than the information.
Because the NRL models the user interface, subjects are individu-
als who are trusted to write data at an appropriate security
level as in the "people-paper" world. There are no subjects
which are processes, so the concept of trusted or untrusted
processes does not arise, and therefore the '*' property is not
relevant to the NRL model.

2.1 .4

Systems often require permissions to perform particular
tasks, such as releasing messages or altering specific internal
tables. The Bell-Lapadula model has no mechanism for deciding if
a user is authorized to perform a certain task. The NRL model
controls such access using the concept of "roles". A role is the
job or task a user is performing. To act in a given role, the
user must be authorized for it. With each role comes authoriza-
tion to perform certain operations. Using this mechanism, it is
possible to have control over which users can perform what tasks.
Such a capability increases the usefulness and flexibility of a
model.

2.1.5 Al ~ ~

In 1983, the DoD published a collection of evaluation cri-
teria for trusted computer systems [1] The highest rating,
called Al, lists a formal security policy model as one of its
requirements. For many applications, it is desirable to achieve
this rating from the government. An Al rating for a system
requires many steps of verification and accountability. One step
is the existence of a formal security policy model which meets
the definition below, found in [1].

Formal Security Policy Model - A mathematically precise
statement of a security policy. To be adequately precise,
such a model must represent the initial state of the system
the way in which the system progresses from one state to
another, a definition of a "secure" state of the system. To .*.. ,:
be acceptable as a basis for a TCB, the model must be sup-
ported by a formal proof that if the initial state of the
system satisfies the definition of a "secure" state and if
all assumptions required by the model hold, then all future

..o.

%"

,;,.,. -....

THE MLO MODEL--TASK 1 k

states of the system will be secure.

' Meeting the above definition is a necessary but not sufficient
requirement for Al certification. However, developing a computer
system using a model which has already been established to meet
the above definition reduces the number of steps which must be
performed to earn Al certification. One model which meets the
definition above is the Bell-Lapadula model. However, this model
is not appropriate for systems addressing multilevel objects.
The NRL model is appropriate for multilevel object systems but
there is no formal proof that the NRL model meets its axioms.

The MLO model has been formally specified and a verification
that the model meets its axioms has been performed for RADC.
This work, which establishes that the MLO model meets the above
definition, can be seen in section 2.3.

2.2 Tbv LQMgdc1

The Multilevel Object Security Model meets the objective of
ease of verification by describing an intermediate level mechan-

*" ism which lies between the primitive level mechanism of the
Bell-Lapadula model and the user level mechanism of the NRL
model. The diagram below illustrates the three types of mechan-
i sm. -

+------------+ <--NRL -------------- -------------
I i I UNTRUSTED I I
I TRUSTED I I MULTILEVEL I I UNTRUSTED I
I MILITARY I I OBJECT I IAPPLICATIONI
I MESSAGE I I PROCESSING I I
I SYSTEM I I SYSTEM I ------------- + ..-
+------------+ 4--------------+ <--MLO

I I I I UNTRUSTED I
I TRUSTED I I TRUSTED I IOS FUNCTION.
1OPERATING I I MULTILEVEL I I
I SYSTEM I I OBJECT I ------------- + <--Bell-

------------ I HANDLER I I I Lapadula
-------------- I TRUSTED I

I COMPUTING I
I BASE I

+--------------

Figure 1. Interface Described by NRL, MLO and Bell-Lapadula
Models

This model incorporates the ease of verification afforded b the
Bell-Lapadula model, as it describes objects at a fairly pri, i-
tive level. Describing user level functions in terms of the
operations of the MLO model is a straightforward task. Thus the
MLO model provides flexibility in describing user security

. - . . C *, * . . * . .

-A.. W W W

THE MLO MODEL--TASK 1

constraints, without the large verification penalty of the NRLmodel.

The following paragraphs describe the design of the MLO .".'.

model.

A multilevel object is described within the MLO model by a
hierarchy of MLO CDkikig. Entities are the single-level primi-
tive units of the model, and can be atoms or containers. Atoms
contain data, while containers contain a description of the enti-
ties or parts which make up the container. A container may con-
tain atoms and other containers. Thus an object can be
represented by a single MLO atom or by a hierarchy of MLO enti- -
ties. The diagram below describes an example of a hierarchy
representing a multilevel object. The entities whose labels
begin with a "c" represent containers and those beginning with an"a" represent atoms.

c:11

---------------- -----------------I I I I"" ""

a21 c22 a23 c24

+- -+- -+ +- -+J-- -+ .. -
I I I I I. " " "

a31 a32 a33 c34 a35

a41 a42

Figure 2. A Multilevel Object Represented as a Hierarchy of MLO
Entities

Each entity has a unique entity identifier (symbolic name or
descriptor) associated with it, contains a single security level,
is clearly marked as an atom or a container, has a status field
and a text field. The status field could be interpreted to be a
"released" status, for example. The hierarchy of multilevel
objects for this model could be interpreted as a collection of
messages in a message processing system or documents in a docu-
ment handling system.

Although the MLO model is described in terms of entities and
operations on entities, it is designed assuming that the entities
will be organized into hierarchies representing multilevel
objects. To facilitate the manipulation of these object requires
a rule describing the correct relationship between the entities

"..........................-

'WR .,P..

THE MLO MODEL--TASK 1

of the hierarchy. This requires careful definition of security
levels and the relations between them.

Security levels are represented as members of a set which is ..
partially ordered with respect to a relation bigber-Qx-egua.
Now higher is a partial ordering, and hence is only defined for
certain pairs of security levels. Other pairs are not compar-
able, and the relation higher-or-equal is not defined for them.
In this paper, we shall say that security level A d9 Di secu-
rity level B if:

A and B are comparable and
A is higher-or-equal to B

To "raise" a security level means to change the security level to
one which dominates it, while the to "lower" a security level
means to change the security level to one which it dominates.
The precise definition of dominates depends on the construction
of the security level itself, and is application-specific.

Using the above definitions, we can define a security level
hierarchy rule as

The security level of a container must dominate
the security level of anything it contains.

In essence this rule requires that a total ordering of security

levels must exist within an entity hierarchy.

2.2.2 e nDet__g D B Di Y

Entities represent the information stored within the trusted
multilevel object handler described in figure 1. Reference to an
entity is caretully controlled by the mechanism implementing the
MLO model. Usually reference to the entity means directly
accessing it. However, requirements may dictate that a subject

* have access to certain containers of the entity in order to
access the entity itself. These requirements may be in addition
to the mandatory and discretionary access requirements for the
entity. In one example, access to a member of an entity hierar-
chy requires access to the entire hierarchy. This requirement is - -
independent of security levels. Another example is "container
clearance required (CCR)". One might be required to havc the
proper clearance to view an entire message before being permitted
to view the contents of a single unclassified field of the mes-
sage. The subject must be cleared to the level of a CCR con-
tainer of an entity before he can view the entity. For an exam-
ple of a CCR requirement, suppose the set of security levels is
the standard set {UNCLASSIFIED, CONFIDENTIAL, SECRET, TOP SECRET}
and suppose a document classified TOP SECRET contains paragraphs
marked at all different levels. If the document is marked CCR,
an individual whose clearance is CONFIDENTIAL would be denied
access to the UNCLASSIFIED and CONFIDENTIAL paragraphs as well as

.,.S. * * 5~ S. -'. .. S - ."-,. *;,**

THE MLO MODEL--TASK I-

the paragraphs at a higher level. If the document is not marked
CCR, then an individual whose clearance is CONFIDENTIAL could
have access to the CONFIDENTIAL and UNCLASSIFIED paragraphs.
Another use of CCR is a SECRET document in which all the para-
graphs are labeled UNCLASSIFIED, yet an individual must be
cleared to the level of SECRET to read any part of the document.

To model requirements such as CCR, we have chosen to
describe a 0 Xf912D9 vw D99 which grants reference to
any entity by identifying a pathway through the hierarchy con-
taining the entity. Upon request by a subject, the system refer-
ence mechanism provides the proper path to an entity. The refer-
ence mechanism necessarily has knowledge about the structure of
the hierarchy, the security constraints of the data entities, and
specific information such as container clearance requirements.
When access to an entity is requested by a subject, the system
reference mechanism provides an gD jiy XgfgXgDgg to the entity,
which is the pathway described above. The pathway is an ordered .-
collection of entity descriptors, the last of which is the
descriptor of the entity requested for viewing, called the tio -

The returned pathway may refer to a single entity, or it may
describe a series of containers and supercontainers of the
desired entity. If there is no access restriction for entity,
then the pathway could consist of the single entity. If there is
an access restriction such as CCR, the pathway could describe
several containers of the entity. If no pathway is identified,
then the subject does not have the special access restrictions.
If a pathway is returned by the reference mechanism, then the
security levels of all the entities on the pathway can be identi-
fied. Using this information, it can be determined if the sub-
ject has the proper clearance. If he does, then he can obtain
the entity he requested, and no other entity on the pathway. In
this manner, the reference mechanism provides an auxiliary access
control check which can be used for access restrictions such as

* CCR.

To avoid overly restricting the implementation of the MLO
model, the reference mechanism is purposefully modeled
abstractly. There are many options for implementation. In the
event that there are no auxiliary requirements such as CCR, the

-. reference mechanism could be an identity function. Whatever
implementation is chosen, it must meet certain requirements.

* They are listed below.

- If a subject requests reference to an entity which does not
exist or there is no valid pathway by which a subject can .
reference an entity, the reference mechanism does not return ". .

a reference.

- If there is a valid pathway to an entity for a subject, the
reference returned to a subject is the reference he must use

- 9 - . .

~ *. * * • -°°

-77 7-- - - - N.N . b- - -

THE MLO MODEL--TASK I

at that point in time. I:

- The subject can only access the final entity of the returned
reference, which is the entity he requested, and the access
is controlled by the constraints of the operation he is
invoking. He can only determine the security level of other
entities in the reference.

- References cannot be created or altered by operations or by
subjects.

- A returned reference is a correct pathway through the entity
hierarchy.

That is to say each successive entity is contained
directly in the previous entity, and the final element of
the sequence is the descriptor of the desired entity.

Verification that the subject has container clearance to an
entity can be modeled by use of the reference mechanism in the
following way. When a subject requests access to an entity, the
reference provided includes the descriptors of CCR containers on
the pathway to the entity. To view this entity using the path
provided, the subject clearance must be greater than or equal to
the highest level of any entity in the reference.

2.2.3 Sibje._ _wngz ing

The objective of allowing downgrading is made possible by
controlling subjects within the model. Downgrading is permitted

- or denied by the constraints of operations within the model. The
use of security levels for subjects makes the evaluation of con-
straints possible.

One form of subject defined for the MLO model is a user, Or
individual who is properly authorized to use the system being

. modeled. How a user is allowed to access and manipulate data is
determined by his security clearance. In the MLO model, we wish

* 5 to implement the '*' property, avoid the need for trusted
processes and maintain the security level hierarchy rule. At
first glance, this seems impossible. For example, suppose a

* security level is one of the set {UNCLASSIFIED, CONFIDENTIAL,
SECRET, TOP SECRET} and a user who is functioning at the TOP
SECRET level wishes to alter information in an UNCLASSIFIED para-
graph of a SECRET document. If the user writes the altered para-
graph at the UNCLASSIFIED level, he is violating the '*' property
by writing information at a level which is lower than his clear-
ance level, but the security level hierarchy is maintained. If
he writes the paragraph at the TOP SECRET level, he follows the
'*' property but he violates the security level hierarchy rule by
writing a paragraph at a level which is greater than the level of
the document itself.

-10

%% . *-...- • - ", '. , , -,°-. . .-.. -. •. ,,. .- . . •.. .. - • ... •

L, ~THE HLO MODEL--TASK I -:•

By allowing qualified users to generate processes to perform
at the lower level, we trust the user to generate a modification _

of the entity which does not alter the security marking or.level,
and to have the update performed without violating either the '*'
property or the security level hierarchy rule. Such spawned
processes act solely on behalf of the sponsoring user. Any per-
missions required by the spawned process are controlled by the
sponsor and maintained by the mechanism implementing the model.
The sponsoring user assigns a container clearance and a data
clearance to the process it generates. The container clearance -
assigned is the level the user would need to access the final
entity of the reference provided to him. Using the example
above, if the users reference to the UNCLASSIFIED paragraph is
SECRET (i. e. there is a SECRET level CCR on the document), then _
the appropriate container clearance is SECRET. The user is
trusted to assign an appropriate container clearance to a pro-
cess. An appropriate container clearance is the highest level
reference the process can request. The sponsoring user is . -
trusted to assign an appropriate data clearance to the process it
generates. An appropriate data clearance is the level at which
the spawned process is actually to function and is equal to the
level of the entity to be manipulated. It is the highest level
of entity the process can view or write to. In the example, the
appropriate data clearance would be UNCLASSIFIED. Now the
untrusted process can reference the entity because it is author-
ized to do so by the user, but the process can only view or write
at the UNCLASSIFIED level, and can only perform the specific
manipulation assigned to the specified entity. Hence the data is
properly classified and neither the spawned process nor the user
violate the '*' property or the security level hierarchy rule.

Implementation details for processes include the creation of
user/process tables and a vehicle for users &n instruct
processes. For the operations performed by processes, it must be
shown that the subject is valid; that is the process container
clearance is less than on equal to the clearance of the sponsor-
ing user and the process data clearance is less than or equal to --

the process container clearance.

2 .2 .4 Tb __MQQpvia-iQD .

The operations of the MLO model are operations of subjects
upon entities. Using these intermediate level operations as -.
buildinq blocks, it is possible to construct the more sophisti-
cated user interface operations on multilevel objects, or hierar-
chies of entities. Since a table of descriptors of entities in
the database will be available outside the model-enforcing
mechanism, it is possible for a sequence of operations,
equivalent to a scan-database operation, to be invoked.

The MLO operations are presented in two groups. The first
group of operations are operations available to processes for
accessing and interacting with the database, and the create-

2 '. - '" ' i'i -. i? ' -. -4 ' , .-" *.- " " "-- ' -. '. . - - * .-.. ,' .. -..'-- -. .'" - .'i '- '] l

Wi - q --i

THE MLO MODEL--TASK I

process operation. This group represents the crux of the model.
The second group of operations represent operations on processes
themselves and operations on data items other than the entity
database. They are operations whose specification may facilitate
implementation of the model, but are not strictly a part of the
model.

MLO model operations all require the proper discretionary
access permissions. These permissions can be entity access,
proper role, operation access, or any combination of permissions
specified in the discretionary access table. Some of the manda-
tory access descriptions are included below. The database opera-
tions are as follows:

Read Entity (atom or container)

This operation allows a properly qualified process to
read an entity.

,_ ._- .

- Write Entity (atom or container)

This operation allows a properly qualified process to
alter the data contents of an entity to a value specified by
a sponsoring user. If the entity is a container, this
operation can add, delete or alter the descriptor list of
the container. If the entity is an atom, the data field can ti

be written. In either case, the security level of the '...,

entity is unchanged.

- Upgrade Entity (atom or container)

This operation allows a properly qualified process to
raise the security level of an entity to the level provided
by the process.

-Downgrade Entity (atom or container)

This operation allows properly qualified processes to
lower the security level of an entity to the level provided
by the process.

- Change Entity Status (atom or container)
.-...-. i

This operation allows properly qualified processes to
alter the status field of an entity to the value provided by
the process.

- Create Entity (atom or container)

This operation allows the creation of a new, empty
entity. The security level of the new entity is equal to
the data clearance of the invoking process and its status is
new".

--- -1"i

THE MLO MODEL--TASK 1

- Destroy Entity (atom or container)

This operation allows a properly qualified process to
destroy an entity.

- Create Process

This operation is available only to users, and it
creates or spawns a process and assigns the container and
data clearances to the process and initiates the process
table.

The second group of operations are

- Modify Discretionary Access Table

- Change Clearance

- Kill process

- Instruct Process

- Display to User

- Query

2.2.5 Tbe_ LQ_ Ser. _x ity • -+"-y

The MLO security policy is described in terms of the secu-
rity level hierarchy rule and access control. The MLO model --

meets the objective of allowing the addition of application-
specific security rules by using a discretionary access control
table. This table allows the addition of constraints on access
to operations, roles, objects, or subjects. Because operations,
are expressed in terms of entities, the security properties are
expressed in terms of entities. The policy is stated below and
its formalization can be seen in [31.

* The Security Level Hierarchy Rule

The security level of an entity must dominate the secu-
rity level of anything it contains.

t Access Control

- Operation Invocation

Only a valid subject can invoke an operation. A
subject is a valid subject if

The subject is a user

- 13 -

-. THE MLO MODEL--TASK 1 -,- - --.- -

~~The subject is a process having a sponsor and the ':3
~~~sponsor clearance dominates the process .. ,..
• , container clearance, which in turn dom- .
~~inates the process data clearance. -

Discretionary Access Control

" ~~Discretionary access controls are extremely..'-..
• ~~application-specific. Making discretionary access con- .--.

" ~~~straints overly specific within the model restricts the j[-...
usefulness of the model to particular situations...... --

. Therefore, this model represents discretionary access
control measures in an abstract sense allowing general

or specific information to be added for each applica- ?...
tion of the model. Invocation of operations is con-.-..
trolled using privileges called "subject roles". The -'-.
job a subject is performing is called a role, and a '-'-'
subject is always associated with exactly one role at .- o
any instant. A user can assign a role to which he is LN
authorized to a process he is authorized to spawn. A"-.-.

.' -. o.

user can change his own role during a session to any
role he is authorized for. Some roles can be assumed
by only one subject at a time. With each role comes-
the ability to perform certain functions. Of particu-

" lar interest is the role of downgrader. A subject :
operating in this role can access a special function_-:S7"

." ~which lowers the security level level of an entity.. .Certainly the subject, its current role, the operation,

- ~~and the entity to be accessed will play a part in :-'-deciding discretionary access These items appear as
parameters to the boolean discretionary access table
within the MLO model. The model allows subjects with
the proper role, or privilege, to add or delete entries

efrom the discretionary access control tables

Mandatory Access Control t t n lw ge
For a subject to access the final entity of a

reference, the subject container clearance must dom-
binate the security level calculated for the reference

to the entity. Other mandatory access control eatures
of this model are standard in nature: properties simi-
lar to thange security property and * properties
of the Bell-Lapadula model are included. The mandatory

requirements to entities are:....

• - ~Container Reference.... .
byonlyonThe subject container clearance dominates the-

security level for the reference to the entity.

and tRead Access bacsewl pyapri

14 -

deciding"--""" diceinr acce.. Teeiesapera .~

wihnteMOmdl h oe lossbet with .•



I-.- .-. =

THE MLO MODEL--TASK 1

The subject must have container reference to I,-
the entity and the subject data clearance must
dominate the entity security level.

- Write Access

The subject must have container reference to
the entity and the entity security level must dom-
inate the subject data clearance.

2.3 40go2

In addition to providing a model which can be readily used
for formal verification, addresses multilevel objects, and
addresses some of the issues which have made other models overly
restrictive, the Multilevel Object Security Model is designed to
meet the model requirements for Al certification as described in
the Department of Defense Trusted Computer System Evaluation Cri-
teria [1]. These requirements are as follows:

" The model must be a precise mathematical statement of a

security policy

" The model must describe the initial state of the system

e The model must describe how the system progresses from one
state to another

* The model must define a secure state .-

* The model must be sufficient to support the security policy

* The model must be supported by a formal proof that the model
supports its axioms

The MLO model has been formally specified and a verification that
the model meets its axioms has been performed. The following.-..
paragraphs describe in detail the implementation of the above

* listed requirements.

* 2.3.1

The first four requirements are met by the formalization of
the MLO model. The formalization itself is a precise mathemati-
cal description of the MLO policy stated above. The nature of
the specification language facilitates the definition of an ini-
tial state, a description of state transition, and the definition
of a secure state.

The MLO model is written in SYSPECIAL, a dialect of the "
language SPECIAL of the Hierarchical Development Methodology,
HDM. A full version of the formal specification can be seen in
Appendix A of this document. SYSPECIAL uses the bulk of

'N:

• ~~~. .. .o. . ...... °.. . .. o...- ... °. °. ... ...-. ..- . . . . .°.. . .

. • ° % .
° 

. . ° *.°. '. . . . . .-°°" . .'-. . . .•. . -. '- o. ,- -"-. ° ° ". % .°• °, .o ." - -

• -" , " " ,' "" . -; " . '.. 2- -"". " -- ; ' "" -""' -t. .". .'".. . . . .",.• ".. . .". .".. .". .- -"' " "-".-. .- -



THE MLO MODEL--TASK 1

constructs available to SPECIAL. Constructs with ambiguous
semantics have been eliminated. The resulting subset of SPECIAL

-. was then augmented with a built-in constructor for describing
sequences and several operators on sequences. Details about
SYSPECIAL can be seen in [41 .

The system state is completely described by the values of
- the VFUNs declared in the specification. The value of a VFUN can

be altered by specification operations. The current values of
the VFUNs define the system state at any time.

The type of a VFUN and the possible values for that type are
specified. The initial value of a VFUN must be one of the possi-
ble values of the type. The language allows the initial value of
a VFUN to be further constrained or a particular initial value to
be specified. The language requires that any changes in the
value of a VFUN as the result of an operation stay within the
possible values of the VFUN's type.

Allowable state transitions are described by operations,
which are specified using a construct called an OFUN or an OVFUN.

- These operations describe preconditions and postconditions of
VFUNs. The postconditions of OFUNs can describe new values
assigned to VFUNs. The postconditions of OVFUNS can describe new
values assigned to VFUNs and values returned to the caller.
Because these operations describe altered values of VFUNs, they
describe how the system progresses from one state to another.
The sum of all the operations defines all the possible kinds of
state transitions of the system. The system can only progress

* from one state to another if an operation has been explicitly
specified that would accomplish that change in the values of the
VFUNs.

A secure state for the system is completely defined by the
- ASSERTIONS paragraph of the specification. The assertions in
Sthis paragraph describe conditions whose truth implies that the

system is in a secure state. The assertions paragraph of the
specification allows three types of statements. First are param-
eter assertions which state properties of what are called "param-
eters" of the specification but do not directly help to specify
the secure state. The other two kinds of assertions describe

- conditions involving VFUN values. The second kind consists of
invariant assertions -- a description of conditions which must be
true at any time. For example, the security level hierarchy rule
is stated as an invariant assertion. The third set of assertions -:

"' are called constraints and describe conditions which must be true -

" for each transition between states. The mandatory and discre-
tionary access properties are described as constraints. A secure '.'.'-

S, state is one for which all the invariant assertions are true and
which either is the initial state or was reached from another
secure state by a transition obeying all the constraint asser-
tions.

-.16 -

• . . .-. S



THE MLO MODEL--TASK I

That the model is sufficient to describe the security policy
can be seen by careful inspection of the invariant and constraint
assertions.

2.3.2 Tbe F91wl PZQQf thbt Th t IQ 002~1 i1 Dk9D411Y CQD= o

The final requirement is to show that the initial state of r
the model and each possible subsequent state meets the axioms of
the model. The formalization has been processed by the MUSE
verification system. Output from the proof process can be seen
in [3]. This system generates formulas for proving that any sys-
tem implementing the model maintains a secure state according to
the assertions, or axioms, of the model.

Two kinds of formulas are generated. The first is generated
for the initial state. It states that the invariant assertions
are all true for any initial state satisfying the conditions
specified for the initial values of the VFUNs. The second kind
of formula deals with an operation. One of these formulas is
generated for each operation. The formula states that every
invariant assertion is true after the operation if it was true
before the operation and that every constraint assertion is true
for any state transition that the operation could carry out.

An induction argument is used to illustrate that invariant
assertions are true for the MLO model. If the assertion is true
in the initial state and in every possible subsequent state as
described by the model operations, then the model adheres to the
assertion. Each invariant assertion must be shown to be a system
invariant: it must be shown to be true in the initial state of
the system and that it remains true after every event or opera-
tion in the system takes place.

Given the foregoing concepts, it is possible to apply a
basic paradigm of verification. To show that some formula P is a
system invariant, simply proceed as follows:

* Show that P is true in the initial system state.

* Let S be any state for which P is true. Show that if any
operation is invoked in state S, resulting in a new state
S', HEN P is also true in S'.

Upon completion of such a proof, P will have been established as
an invariant, that is, P will be true in every state. This
result follows by induction on the number of operation invoca-

tions (or state transitions).

The proof of the first kind of formula shows that each
invariant assertion is true for any possible initial state. The
proofs of the formulas of the second kind show that each invari-
ant assertion is true for the resulting state (S') assuming it

-. ° °. ° . ° . . . . .. .* .2, . . . .* . . * . .. 2 .. *:-.-° ° "-



%' b . % ' ,

• %' .' .. ' 2-.

lTHE MLO MODEL--TASK 1

was true for the starting state (S). Taken together, the proofs
of the formulas show that the invariant assertions are actually
system invariants as their name implies.

To prove that the model obeys a constraint, one must simply
show that every operation obeys the constraint. The proof of a
formula of the second kind shows that an operation obeys all the
constraint assertions. Taken together, the proofs of all those
formulas show that the model as a whole obeys the constraints.

In summary, since the specified operations describe all the
possible state transitions and the invariant and constraint
assertions are the axioms that define the secure state, proving
all the formulas is also a proof that the model is secure accord-
ing to its axioms.

The formulas were processed by the MUSE theorem prover in
order to discover proofs and check the proofs for validity.

Extensive use of automated tool support was used to verify
the MLO model. The SYSP tool, designed to perform syntax and
semantic checking on a SYSPECIAL specification, is similar to the -
SRI standard HDM tool, CMO. The SYFG tool is the MUSE formula
generator, and SYTP is the theorem prover which can be used to
attempt proof of the formulas generated by SYFG. V

Figure 7 shows the tools to be employed and the flow of

information between them.

+-------- 4 ------------ +symtab ---------- proved

model I I I I -> I -------- >
-------- >1 SYSP I ----- > SYFG Iformulas I SYTP I unproved

I I I I >--- ----->- I >
+------ +- -- -- ----- 4 ----------- 4

Figure 3. Tools for Model Verification.

SYTP yields validated proofs with any errors noted The steps
illustrated by the above diagram are as follows:

- The model in SYSPECIAL is input to SYSP

- SYSP yields parsed model in an internal form 1

- Parsed internal torn, of model is input to SYFG

- SYFG yields formulas as described above and a symbol table

- The symbol table and formulas are input to SYTP

- SYTP yields validated proofs with any errors noted

*- 18 -"-.-.-

-.

.-. :-" .'-" .' --"----'-i "- " . .. -'.. : -. -'....i --- . .- ? - .i-" .'--..' "-2;..'-'.;?: ."i --.- .. .-.- ". . .-.- % i -' -.- ': -::2% - .

.*.' ' " ,' ','-.. .. . . .
"

. .-.. . . . . . . . . . .-.- . . . . . . . . . . . . . . . . . . . . ..". .- ",' ' " ? , ' " & " ' "



IV E MLO MODEL--TAf K 1

Detailed information about the tools used can be seen in

r

-19



k".. ,

THE ML ODL-TS

AN ABSTRACT IMPLEMENTATION OF THE MLO MODEL -5

Teresa F. Lunt

Sytek, Incorporated .y.,,

3.

In order to demonstrate that the model developed in Task I
provides an adequate mechanism for implementing a military mes-
sage system of the type described by the NRL model (2], we will
develop an abstract implementation of the model developed in Task
1 to describe the NRL message system architecture. For this
abstract implementation, each of the objects of the NRL model
will be represented by some expression using objects of the Task
1 model, and the operations of the NRL model will be represented
by combinations of operations in the Task 1 model. We will
analyze the abstract implementation to determine whether addi-
tional restrictions need to be placed on the military message
system because of the use of the model described in Task 1. We
will also determine what, if any, trust needs to be placed in the
software implementing the NRL military message system in terms of
the Task I model.

In order to avoid having to model and verify the entire user
interface for the NRL military message system, the abstract
implementation will encompass only the security-critical portions
of the NRL message system.

Our approach is to provide the functionality of the NRL
model to the user in a much simpler manner than is provided for
by the NRL data structures and operations. The use of the Task 1
model allows us to greatly simplify the Landwehr data structures
and thus to provide the same functionality with far fewer opera-
tions. This simplicity makes for a conceptually cleaner model.
The abstract implementation will translate the Landwehr opera-

". tions on messages into the operations of the Task 1 model.

* ~3 .1 n be I u i

The system we will implement in terms of the Task 1 model is
a military message system that will include users acting in a

.* number of different roles (for example message dratter, security
administrator, etc.), with a variety of clearances, and with per-
mission to exercise a particular function for a particular mes- I,-'.

sage or other data item depending on a wide variety of discre-
tionary access policies. Below we discuss this system in detail
in terms of its data structures and operations, user roles, and
discretionary access policies.

-20 -

.................. ...



THE MLO MODEL--TASK 2 .1
4.

3.1.1 Q ata_5 Y.ul P3 ur

Here we discuss in general terms the organization of the
. data to be contained in the database.

The database will contain message fields and associate them
with the message to which they belong. To identify a message, we
will use a keyfield, or unique identifying number, we will call
the message ID. For each message ID record, the database will
contain a number of records, one for each message field associ-
ated with the message. Each such dependent record will contain a ,..
keyfield indicating the position in the message, the field con-
tents, and the classification.

Several message types, each with a corresponding set of
standard message fields, could be accommodated. In this case,
the message ID record would include an indicator identifying the
message type. -

A typical message might consist of the following message
fields:

- originator

- action addressee -

- information addressees

- date-time group

- subject

- paragraphs of text

- precedence

- annotations

The message classification must be at least as high as the
highest classification of the message fields. The message clas-
sification is not a message field, but appears in the message ID
record.

The message ID record will also contain an indicator for the
"message status." A message status might be "available only to
the drafter;" "coordination copies sent, awaiting coordination
action; " "message coordinated, awaiting release;" "message
released;" "formal message sent." Including such a status indi-
cator in the message ID record eliminates the need for the system
message files and the various user message files of the Landwehr
model. One advantage of a DBMS is the reduction of data

*:i:: . ! : .:. .C* ::. . : . .
• .. €.:<..-...,.... . , ..... ,~~~~ ~~~..... ..... .. ...... ....,. .... :. ,....... -.-- v. . ......-'. ."... .-::,-



-J V

THE MLO MODEL--TASK 2

redundancy. Our DBMS-based data structure avoids the data redun-
dancy of the Landwehr model by eliminating the need for cita-
tions, filters, citation files, filter files, system message
files, etc., and all the attendant operations on those object
types. With a much smaller, cleaner, set of operations, our r
approach provides the same functionality as the Landwehr model.

3.1.1.2 Lf gwc -e

Standard message templates will be included with the system.
Each will have a classification and an access control list (of
groups who can use it). In addition to these will be user-
created templates, with a classification, and available only to
the user who created them. Templates will be stored in the data-
base in the same manner as are messages, and will be referred to
by name (analogous to the message ID for a message). With the
template name will be stored an indicator as to whether the tem-
plate is a standard system template, and if not, which user the
template belongs to. This indicator will be used for enforcing
discreti(,nary access control to the templates. Using such an
indicator in the database allows a simplification of Landwehr's
I iles ot system-owned templates, files of user-owned templates, -

and all the attendant operations on these files.

Included in the database will be tables containing
security-related information available only to the security
administrator and system-related information available only to
the system administrator. These are:

A tahle a.:sociating user roles with the operations available
to users acting in those roles. This table can only be
accc.sd by the system administrator.

- A -ai, associating user names with user groups (user groups
:ir( thLt:_ designators used for message originators and
a: d r e :s(,e s). This table can only be accessed by the system

O(p; i rl 1 5t rJ t or. i :
- A tall(, associating user names with their clearances. This

tahle can only be accessed by the security administrator.

A table associating user names with the user roles permitted
foi that user. This table can only be accessed by the secu-
rity administrator.

These tables will b, collectively referred to as the system
dat abase.

". ..-... --.. [ . . , , - - . - - . . , . , "



THE MLO W40DEL--TASK 2

3.1.2

3.1 .2 U :Lg.'o-° °, .gn

A number of operations will be available to the user, with
appropriate discretionary access controls applied to restrict
certain operations to a certain type of user (user-role) or group
of users. These operations will not all consist of trusted
software, but will make use of the secure Task 1 model opera-
tions. In other words, the user-level operations will be con-
structed from Task 1 model operations.

The system is required to allow users to handle data of
several classifications, up to their clearance level, during a
single computer session. The applications-level operations will
operate in such a way as to allow a user to operate on a mul-

* tilevel object, such as editing a message, while the trusted
software will actually implement this as several single-level
transactions against the database.

A number of operations on messages will be availabie to the
* user, with appropriate discretionary access controls applied to
* restrict certain message operations to a certain type of user or

to a message originator or addressee. These operations are
briefly described below.

-Create Message (without using a message template; see the
"get template" function listed under "operations on message -

templates" to create a new message using a message template)

-Edit Message (modifies the as yet un-released message;
within this function the individual message fields will be
edited separately, one at a time)

- Copy and Edit Message (creates a new message by copying and
editing an existing message; within this function the indi-
vidual message fields will be edited separately, one at a
time)

- Archive Message(s); Un-Archive Message(s). Options might
include specifying a dtg window, classification, search key-
word for the subject field, or list of originators, or sort
instructions. Or a specific message(s) can be archived or-
unarchived by indicating a (list of) message ID(s).

- Display Message

- Reply (to create a message in reply to another message)

- Forward Message with annotations (for information only;
doesn't require release approval) -

--23 -

. . . .4, NO E -T 2 "'....

3..p ,YI P ; D .. '.

A ubeJfoprtin il e viabetoteusr.wt,-...



-.- . . .. . . - - . . a'

THE MLO MODEL--TASK 2 "''

- Readdress Message (new action addressee; requires release
approval)

- Coordinate Message (to send a copy of a proposed message for
comment)

- Chop Message, with annotations (return to originator, with
comment and/or chop action) .¢:

- Approve Message for Release

- Send Message (requires release approval)

- Downgrade Message (allows the security administrator to
change the classification of a message by changing the clas-
sifications of the relevant message fields)

3.1 .2.2 QQDDg __b"".

A "Scan Messages" operation will be available to users to
retrieve information about the message database. This operation
displays the message ID, originator, date-time-group (dtg), clas-
sification, and subject message fields for messages for which the
user is an addressee and is cleared. Options will include speci-
fying a dtg window, classification, search keyword for the sub-
ject field, or list of originators, or sort instructions.

The "scan messages" operation eliminates the need for the
data objects "message citations," files of message citations,
"filters," and files of filters, and all the attendant opera-
tions, of the Landwehr model. Allowing selective retrieval on
keywords in the subject field eliminates the need for operations
for assigning, retrieving, and de-assigning keywords, as in the
Landwehr model.

3 .1.2 .3 Q ~ ~ D Q 9 P

Standard message templates will be associated with a clas-
sification and an access control list (of groups who can use it).
In addition to these will be user-created templates, with a clas-
sification, and available only to the user who created them.
Templates will be stored in the database in the same manner as
are messages, and will be referred to by name (analogous to the
message ID for a message). Below we briefly describe the opera-

* tions on message templates available to the user.

- Get Template (to create a message using the named template)

01 - Show Template (to display the named template)

- Scan Templates (lists templates available to that user)

-24-

. . .o* *o .

.. ' ... "a. . . . . . . .*. . . . . . . ..,. - . .... .. . .



THE MLO MODEL--TASK 2

- Create Template

Remove Template (for user-created templates)

- Edit Template (modifies the named user-created template) Jb

- Copy and Edit Template (creates a new template by copying

and editing an existing template)

- Rename Template (renames a user-created template)

3.1.2.4

Operations will be provided to the system administrator and
the security administrator for the purpose of maintaining the
system database. The system administrator will be able to read,

* add, delete, and change records in the tables associating user
roles with available operations and associating user names with
user groups. The security administrator will be able to read,
add, delete, and change records in the tables associating user
names with clearances and associating user names with user roles.
The system administrator and security administrator will not be
permitted to directly invoke operations on the database, but will
be provided with a specific set of operations, such as "change

* user clearance", that will be translated into basic Task 1 model
*. operation. The abstract implementation will enumerate these

operations and their translations. The system databases will
also be referenced for user and device authentication.

3.1.3

In a military message system, there are various types of
users with differing responsibilities, functions, and privileges.
These user roles are part of the discretionary access control

* policy for the system. The concept of user roles in the discre-
tionary access control policy, as opposed to the concept of
privileges given to specific individuals, will be reflected in
the model as a restriction on the functions that will be avail-
able to an individual acting in a specific user role. These res-
trictions are in addition to any restrictions that may be imposed
on an individual's access to a particular data object. It is
important to note that a user may act in one role with respect to
a particular message and in another role with respect to another
message; for example, a given user may act as a coordinator for
one message (that is, asked to agree, disagree, or provide com-
ment) and may act as drafter for other messages.

.4 ",.d

The user roles drafter, coordinator, releaser, system .-%

administrator, and security administrator, and the message opera-
tions permitted to users acting in those roles, are described

"* below.

25

-. . . . . . . . . . . . .

. 4 . . .... . * *..4 4 . .4 4.. 4 * *4 . %4



~~X~b t~i . ° .' .

THE MLO MODEL--TASK 2

* ~3.1.3.1 r.r

The drafter of a message is the user who initially creates
and prepares a message for coordination and release signature.
The message operations available to the drafter are: :-,.

- create message

- edit message

- copy and edit message

- display message

- reply

- forward message

- coordinate message

3.1.3.2-

The message coordinator is one asked to provide comment, to
concur or not concur on a message sent to that user's agency for
coordination. The coordinator's action, or chop, is the decision
indicated in the message annotations. The message operations
available to the coordinator are:.

- display message

- forward message

- chop message

3.1.3.3 B1 cDoe z

The message releaser is a person authorized to approve the
sending of the message as an official communication from the ori-
ginating agency. The message operations available to the
releaser are, in addition to those available to the drafter:

- readdress message

- approve message for release

- send message

3.1 .3.4

The system administrator is assigned responsibility for the
administration of the system. The message operations that will
be available to the system administrator, in addition to those
available to the drafter, are:

26 -

•. ... . . * . . *. * .. . * * -. .. . . . . . ... .. . . .



THE MLO MODEL--TASK 2

- readdress message

- archive message

- unarchive message

r

The security administrator has the responsibility for asso-
ciating users with clearances and roles, and can in addition to
the message operations available to a drafter, use the "downgrade
message" function.

3.1 .4 _

Discretionary access controls will be applied in several
ways. For messages, message fields for a message will include
the originator, action addressee, and information addressee. The
users associated with these user groups will be contained in the
system database. For a delivered message, these constitute the
access control list for the message. For an as-yet undelivered
message, access will be limited to, as appropriate, the drafter,
coordinator(s), and releaser. Indicator(s) as to which user(s)
are in these roles relative to the message will be included in
the record for the message ID. The message status indicator 5,
indicates whether a message is delivered. For user roles, the
users permitted to assume the various user roles will be con-
tained in the system database, as well as the specific operations
allowed for each user role.

3 .1 .5 OlD I~t y-&QD.55 ICQJ.

The military message system will allow users to handle
information of several classifications simultaneously. The sys-
tem will allow a user access to a message classified up to the
user's clearance level. A message, however, is a multi-level
object, containing message fields of various classifications less
than or equal to the message classification. Trusted software
will compute the message classification from the classifications
of the message fields and will compare this to the user's clear-
ance level contained in the system database to allow or deny the
user access to the message. This prevents "reading up," or a
user's having read access to information classified higher than
the user's clearance level. This also prevents "writing down,"
since user operations on messages can result in only add, delete,
or replace (delete and add) operations for message field records.
That is, changes to message field records in the database will be
prohibited. A user's change to a message field will be imple-
mented by deleting the old message field record and adding, or
replacing it with, a new one, with the classification specified
by the user. These restrictions prevent writing down.

- .7

. . .'" "- '.° .--'° ° ." * *"-. " -- a- °* .'° " " .-- i° "".[ - " " -[
" ° ° " - ' ' ' ' o "

, °' " •. ° ' °' "' °''" °"', '° " °'' [

%'% .'. -' -.- "- .- , ,, -.. ' " -. '. . -. . ' ., ".' ." ." . ".-' .',- ..',' . .. , ..- - . a °- . . .- - ,', " .. - 4 ,



TM T T-C-T - -

THE MLO MODEL--TASK 2

3.2 CQgntXzjig tbe begage 5ystgW P~k Structure Fr~m t
T'ask 1 b1gde1 Dt Stuctures

% J4
The message system data structures will be constructed from F

the data structures of the Task 1 model. Below we describe how . , ,-
the message system data structures will be mapped to the Task I
data structures. -

3.2.1 Mage .5

A message will be represented in terms of the Task 1 model
data structures by a container, corresponding to the message ID
record. The message fields will be represented by atoms. The . -

container value will include the entity IDs of the atoms
representing the message fields, an indicator for the message
type, the message classification, and the message status. The
container entity ID will be uniquely mappable to the message ID.

Atoms representing message fields will belong to only one
message in the system. This is because military messages are
formal documents, and we can't allow a situation in which chang-
ing a paragraph of text in one message results in the same change
in an identical paragraph in another message. In general, users
will have different privileges with respect to different mes-
sages. Moreover, messages that have been approved for release or
have been delivered can no longer be changed.

3.2.2 _. ,

A message template will be represented in terms of the Task
1 model data structures by a container, in much the same manner
as a message. The template fields will be represented by atoms.
These fields will be either empty or fixed. The value of the
container will include the template classification. It will also A'
include an indicator that it is a template (rather than a mes-
sage). The container entity ID will be uniquely mappable to the
template name.

The system tables will associate the owner user with the
template name and will also indicate whether the template is sys-
tem owned or user owned. The system tables will also associate
an access control list with system-owned templates.

3.2.3 .5y ew- abI.

The system tables will be represented in terms of the Task 1
model data structures by means of the boolean discretionary
access control tables.

28. . .,. -

'..' . .. " .'. ... '. ..'.. .. . . . *-..*.. .-.- . . - -. . -, . .. .. ... -. . . " . - . ..



Vi
I  ,'. V .V P P ' ,P - d * 'F V'V i..W ' ~ .T

THE MLO MODEL--TASK 2

SV

User operations on messages, message templates, the message
database, and the system database will be built from the basic
operations of the Task 1 model. When a user invokes a user
operation requiring a query or transaction against the database,
this will be translated to one or a sequence of Task 1 model
operations on the database.

Below we describe how each user operation will be con-
structed from the Task 1 model operations.

Create Message: The "create message" operation can be con-
structed from the Task 1 model operations as follows: The
create-entity operation is invoked to create a new
messageID record. The upgrade (or downgrade) operation will
be used to adjust the security level of the new record to be -""
the message classification "seclevel" supplied by the user.
Then for each message field, the create-entity operation is
invoked to create a new record for the message field, and
the upgrade (or downgrade) operation will be used to set the
message field classification "seclevel" supplied individu-
ally for each message field by the user; then the write
operation is invoked for the new message field to put the
user-supplied value into the message field; and the write
operation is invoked insert the new message field into the
message ID record.

- Edit Message: The "edit message" operation can be con-
structed from the Task 1 model operations as follows: The
discretionary access control tables (system database) are
referenced to ensure that the user is the drafter for the
message. The read operation is invoked for the message
associated with the user-specified message ID, and for each
message field identified in the message ID record, thus
retrieving all message fields corresponding to the message.
As the user edits the individual message fields, the write
operation is invoked to modify the individual message
fields, the destroy operation is invoked for message fields
to be deleted, the create, write (to update) and write (to
insert) operations are invoked for message fields to be
added. If modifying a message field would result in the '.

message field having a new classification, then the model
will force this to be accomplished by destroying the old
message field and then creating a new one at the new secu-
rity level. -'---

- Copy and Edit Message: The "copy and edit message" opera-
tion can be constructed from the Task 1 model operations as
follows: The discretionary access control tables (system

d database) are referenced to ensure that the user has read
permission for the message being copied. The

29-

*.~t*.*-~**.--- . .. -,



-. ~~~~ ~~~~~~ -% - -*~ . - -rr Tfl % - --r. -~ -r -r --r- ' -- -* - -

THE MLO MODEL--TASK 2'""-"

create-container operation is invoked to create a new
messageID record at the same message classif ication . .
seclevel as the message being copied. The read operation--

is invoked to read the container record for the message '
being copied, and the read operation is invoked for each J;
message field to retrieve all message fields correspondingh-' -.
to that message. Then for each message field, the create,,_

operation is invoked to create a new record for the message -.
field for the new message, with the message field classifi-.. j
cation matching that for the corresponding message field in-. .,
the message being copied; then the write (to update) opera- .. ;;
tion is invoked for each message field to copy the value of-.'-"
the message field from the corresponding field of the mes-
sage being copied; and the write (to insert) operation is
invoked to associate each new message field with the message
ID record for the new message. At this point a new message"'
has been created, which is a duplicate of the message being -""'
copied. As the user edits the individual message fields of
the new message, the write (to update) operation is invoked ot [ [:.

tmodify the individual message fields, the destroy, opera- !

tion is invoked for message fields to be deleted, the ' ''

0.. . ,

create, write (to update) and write (to insert) operations ....
k'. are invoked for message fields to be added. If modifying a .. •.

message field would result in the message field having a new --. '
classification, then the model will force this to be accom- -- '_,
plished by destroying the old message field and then creat-
ing a new one at the new security level. -..

-Archive Message(s): The "archive message(s) " operation can ..-.-.
be constructed from the Task I model operations as follows: " -[-[[
The discretionary access control tables (system database)-,.li[[ !

are referenced to ensure that the user has permission t¢ cj
archive the indicated message(s). For each message to be
archived, the read operation is invoked for the message.-

associated with the user-specified message ID, and the read ,.,.
operation is invoked for each message field to retrieve all .,.
msaefields corresponding to the message. After the mes- -[.-

sage has been copied to archive; the destroy operation is '
invoked for each message field, and the destroy operation is.
invoked for the message ID.-.

Unarchive Message(s): The "usarchive message(s)" operationi[['.['""[

can be constructed from the Task 1 model operations as fol-
lows: The discretionary access control tables (system data- _
base) are referenced to ensure that the user has permission _-
to unarchive the indicated message(s). For each message .[.,.[.,
being unarchived, the create operation is invoked to create
anew messageID record. The upgrade (or downgrade) opera- -[[[[[[

tion is invoked to adjust the message classification to the '-.'
classification "seclevel" of the message being copied from,-",
archive. Then for each message field, the create operation
is invoked to create a new record for the message field for-""
the new message, and the upgrade (or downgrade) operation is.• ."

30....

-'. . "'_ "" "" .-". " . 2" .
°
" .," - J ' '" " - " "'. " .. -' .' -" " " "" '" "' " ' -. ' • , " , '. "' '. ". - ' " -" -" " --'- ."



THE MLO MODEL--TASK 2

used to adjust the message field classification to match
that for the corresponding message field in the message
being copied from archive; then the write(to update) opera-
tion is invoked for each message field to copy the value of
the message field from the corresponding field of the mes- '.-,o-
sage being copied from archive; and the write (to insert)
operation is invoked to associate each new message field -
with the message ID record for the new message,

- Display Message: The "display message" operation can be
constructed from the Task 1 model operations as follows: The
discretionary access control tables (system database) are
referenced to ensure that the user has read permission for .
the message. The read operation is invoked for the message
associated with the user-specified message ID, and the read
operation is invoked for each message field to retrieve all
message fields corresponding to the message.

Reply: The "reply" operation can be constructed from the
Task I model operations as follows: The read operation is
invoked to obtain the classification of the message for
which a reply is being generated, to ensure the user is
cleared to read it. The discretionary access control tables
(system database) are referenced to ensure that the user has
read permission for the message for which a reply is to be
created. Then the create operation is invoked to create a
new messageID record, and the upgrade (or downgrade) opera-
tion is invoked to adjust the classification to the classif-
ication "seclevel" supplied by the user. "Seclevel" must be
at least as high as the classification of the message being
replied to. The reply operation copies certain information
from the original message into the new message, for example,
information for the "originator", "action addressee", "sub-
ject" and "information addressees" message fields. For each
such message field, the create operation is invoked to
create a new record for the message field, and the upgrade
(or downgrade) operation is used to adjust the message field
classification to the classification "seclevel" obtained for
each such message field from the corresponding message field
of the original message. Then for each such message field,
the read operation is invoked to obtain the contents of the
corresponding message field. Then for each such message
field, the write (to update) operation is invoked to put the . -
contents of the corresponding message field into the new
message ficId. The write (to insert) operation is invoked
to associate the new message field with the message ID
record.

Then for each user-supplied message field, the create
operation is invoked to create a new record for the message
field, and upgrade (or downgrade) is called to adjust the
the message field to the classification "seclevel" supplied
individually for each message field by the user. Then the - "

- 31 "- - -

". 

. . . . . .
.

-. o. .

': "':'" ":":" :":"''"['' '"" "" "'>i ":"'"" . . .":
-

.. . . : ".".:. ." " ". '. . . . .. i .. ... ' '" :?



- THE MLO MODEL--TASK 2

write (to update) operation is invoked for the new message
field to put the user-supplied value into the message field;
and the write (to insert) operation is invoked to associate
the new message field with the message ID record.

- Forward Message with annotations: The "forward message"
operation can be constructed from the Task 1 model opera-
tions as follows: The read operation is invoked to obtain
the classification of the message being forwarded, to ensure
the user is cleared to read it. The discretionary access
control tables (system database) are referenced to ensure
that the user has read permission for the original message.
The create operation (and upgrade or downgrade) are invoked
to create a new message-ID record at the same message clas-
sification "seclevel" as the message being copied. The read
operation is invoked to read the container record for the
message being copied, and the read operation is invoked for
each message field to retrieve all message fields
corresponding to that message. Then for each message field,
the create operation (and upgrade or downgrade) are invoked
to create a new record for the message field for the new
message, with the message field classification matching that
for the corresponding message field in the message being
copied; then the write (to update) operation is invoked for
each message field to copy the value of the message field
from the corresponding field of the message being copied; 1;
and the write (to insert) operation is invoked to associate
each new message field with the message ID record for the
new message. At this point a new message has been created,
which is a duplicate of the message being copied. In order
to append annotations, the create, write (to update), and
write (to insert) operations are invoked. The annotations
are considered as additional message fields in the forwarded
message.

The original originator, action addressee, and informa-
tion addressees message fields are included as paragraphs of
text in the message to be forwarded, using the create, write
(to update), and write (to insert) operations, and the user
supplies new originator and information addressees message .-
fields (there is no new action addressee) by means of the
write (to update) operation. - -

- Readdress Message: The "readdress message" operation can be
constructed from the Task 1 model operations as follows: The
read operation is invoked to obtain the classification of
the message being readdressed, to ensure the user is cleared
to read it. The discretionary access control tables (system
database) are referenced to ensure that the user has read
permission for the original message. The create operation
(and upgrade or downgrade) are invoked to create a new
messageID record at the same message classification -. 1

"seclevel" as the message being copied. The read operation

32 - . v

" - "7 "- '"'2".'- -. 2" " -. /':' ". .- -:..- ".-.. - -- - ". -- ." "-."- ' -. - 2 " -

--.- :-: " -''. '" -"'- .:"-,' .'.''..''." ",:; ".>T ."",. '.,:.: .' ,-':-,> >_", " " ' .' , , ': -- ,' , ;::,,- - '," , " ,, '" ,.."'



THE MLO MODEL--TASK 2

is invoked to read the container record for the message
being copied, and the read operation is invoked for each
message field to retrieve all message fields corresponding
to that message. Then for each message field, the create
(and upgrade or downgrade) operations are invoked to create
a new record for the message field for the new message, with
the message field classification matching that for the
corresponding message field in the message being copied;
then the write (to update) operation is invoked for each
message field to copy the value of the message field from
the corresponding field of the message being copied; and the
write (to insert) operation is invoked to associate each new
message field with the message ID record for the new mes-
sage. At this point a new message has been created, which
is a duplicate of the message being copied.

The write (to update) operation is invoked to substi-
tute the new user-specified action addressee. The
change-status operation is invoked to set a flag in the mes-
sage ID record to require release approval.

- Coordinate Message: The "coordinate message" operation can
be constructed from the Task 1 model operations as follows:
The read operation is invoked to obtain the classification
of the message to be coordinated, to ensure the user is - - -

cleared to read it. The discretionary access control tables
(system database) are referenced to ensure that the user has
read permission for the original message. The create (and
upgrade or downgrade) operations are invoked to create a new
messageID record at the same message classification
"seclevel" as the message being copied. The read operation.,
is invoked to read the container record for the message
being copied, and the read operation is invoked for each
message field to retrieve all message fields corresponding
to that message. Then for each message field, the create
(and upgrade or downgrade) operations are invoked to create
a new record for the message field for the new message, with
the message field classification matching that for the
corresponding message field in the message being copied;
then the write (to update) operation is invoked for each
message tield to copy the value of the message field from
the corresponding field of the message being copied; and the
write (to insert) operation is invoked to associate each new
message field with the message ID record for the new mes-
sage. At this point a new message has been created, which
is a duplicate of the message being copied. The create,
write (to update), and write (to insert) operations are
invoked to append coordination instructions.

The original originator, action addressee, and informa-
tion addressees message fields are included as paragraphs of
text in the message to be forwarded, using the create, write
(to update), and write (to insert) operations, and the user

S. ,.. .-.



THE MLO MODEL--TASK 2

supplies new originator and addressee message fields by
means of the write (to update) operation.

- Chop Message: The "chop message" operation can be con-
structed from the Task 1 model operations as follows: The .:*--
read operation is invoked to obtain the classification of
the message being chopped, to ensure the user is cleared to [
read it. The discretionary access control tables (system
database) are referenced to ensure that the user has read --

permission and permission to chop for the message. The
create (upgrade or downgrade) operations are invoked to
create a new messageID record at the same message classifi-
cation "seclevel" as the message being copied. The read --
operation is invoked to read the container record for the
message being copied, and the read operation is invoked for
each message field to retrieve all message fields -
corresponding to that message. Then for each message field,
the create operation is invoked to create a new record for
the message field for the new message, with the message
field classification matching that for the corresponding
message field in the message being copied; then the write
(to update) operation is invoked for each message field to
copy the value of the message field from the corresponding
field of the message being copied; and the write (to insert) -* -
operation is invoked to associate each new message field
with the message ID record for the new message. At this
point a new message has been created, which is a duplicate -:
of the message being copied. The create, write (to update),
and write (to insert) operations are invoked to append com-
ments and/or chop action.

The original originator, action addressee, and informa-
tion addressees message fields are included as paragraphs of
text in the message to be forwarded, using the create, write
(to update), and write (to insert) operations, and the user
supplies new originator and addressee message fields by
means of the write (to update) operation.

- Approve Message for Release: The "approve message for
release" operation can be constructed from the Task 1 model
operations as follows: The read operation is invoked to read
the container record for the message and obtain the classif-
ication of the message, to ensure the user is cleared to
read it. The discretionary access control tables (system
database) are referenced to ensure that the user has read
permission and release authority for the message. The read
operation is invoked to read the container record for the
message, and the read operation is invoked for each message

* field to retrieve all message fields corresponding to that
message. If the user indicates release approval, the
write-status operation is invoked to change the message
status indicator in the message ID record.

-34-

. ?......._., .-... ....... -..-.............-.... ..... ,.. ..... ..... . ....°.° . :- - 71 i



THE MLO MODEL--TASK 2

- Send Message: The "send message" operation can be con-
structed from the Task 1 model operations as follows: The
read operation is invoked to read the container record for
the message and obtain the classification of the message to
be sent, to ensure the user is cleared to read it. The dis-
cretionary access control tables (system database) are
referenced to ensure that the user has read permission and -±--i

permission to send the message. The read operation is
invoked to read the message ID record to check the "approved
for release" flag. The write-status operation is invoked to
set a flag in the message ID record to indicate the message
has been sent. The read operation is invoked to read the
container record for the user-specified message ID, and the
read operation is invoked for each message field to retrieve
all message fields corresponding to the message.

- Downgrade Message: The "downgrade message" operation can be
constructed from the Task I model operations as follows: The
read operation is invoked to obtain the classification of
the message being downgraded, to ensure the user is cleared
to read it. The discretionary access control tables (system
database) are referenced to ensure that the user has read . -

permission for the message and is acting as security
administrator. The read operation is invoked for the mes-
sage associated with the user-specified message ID, and the
read operation is invoked for each message field to retrieve
all message fields corresponding to the message. The user
can indicate a change of classification for individual mes-
sage fields by destroying the old message field and then
creating a new one at the new security level. The read
operation is invoked to retrieve the contents of the message
field. The create operation is invoked to create the new
message field at the new security level. The write (to
update) operation is invoked to copy the contents of the old
message tield to the new message field. The destroy opera-
tion is invoked to remove the old message field. The write
(to insert) operation is invoked to include the new message
field in the message.

- Scan Messages: The "scan messages" operation can be con-
structed from the Task I model operations as follows: The
user can generate a table of contents for the database out-
side the security enforcing mechanism. He can program a
filter to retrict data he sees to a certain date or other
constraint. lie issues reads on eac', entity in the table of
contents, and those to which the has proper access will be
returned to him. He can then process this data with his
filtering program. If he attempts access of data entities
to which he does not have access, or which contain empty .,
entities, no information will be returned to him. In this , ,'.'
way he can only access the parts of the database to which he
has the proper accesses. He can restrict the information
further.

.:.. . .



THE MLO MODEL--TASK 2

- Get Template: The "get template" operation can be con-
structed from the Task 1 model operations as follows: The
read operation is invoked to obtain the classification of
the template, to ensure the user is cleared to read it. The
discretionary access control tables are referenced to ensure
that the user has read permission for the template. The
read operation is invoked to retrieve the record for the
indicated named template. The read operation is invoked for
each template message field to retrieve all fixed and blank -

message fields. The create operation is invoked to create a
new messageID record, including the message classification
"seclevel" supplied by the user. Then for each message
field indicated in the template, the create operation is
invoked to create a new record for the message field,
including the message field classification "seclevel" sup-
plied individually for each message field by the user; then
the write (to update) operation is invoked for the new mes-
sage field to put the user-supplied value into the message
field; and the write (to insert) operation is invoked to
associate the new message field with the message ID record.
If the template indicates fixed values for certain message
fields, the write (to update) operation is invoked to copy
those values from the template description into the
appropriate message fields.

- Show Template: The "show temrplate" operation can be con-
structed from the Task 1 model operations as follows: The
read operation is invoked to obtain the classification of
the template to ensure the user is cleared to read it. The
discretionary access control tables are referenced to ensure
that the user has read permission for the template. The
read operation is invoked to retrieve the record for the
indicated named template. The read operation is invoked for
each template message field to retrieve all fixed and blank
message fields.

- Scan Templates: The "scan templates" operation can be con-
structed from the Task 1 model operations as follows: The
discretionary access tables are referenced to obtain the
names of the templates available to that user. The read
operation is invoked for each template available to that ...

user to retrieve the template record. Template names and
descriptive information from the template records are used
to display to the user the templates available to him or
her.

- Create Template: The "create template" operation can be
constructed from the Task 1 model operations as follows: The
discretionary access control tables are referenced to ensure
that the user has permission to use the "create template"
operation. The create operation is invoked to create a
record for the new template. The create operation is
invoked to create each template message field. The write

36 -



b. .. "4.

WHE MLO MODEL--TASK 2

(to update) operation is invoked for the user to specify
information for the fixed message fields; all others remain
blank. The write (to insert) operation is called for each
template message field to include them as fields of the tern-
plate.

Remove Template: The "remove template" operation can be %
constructed from the Task 1 model operations as follows: The
discretionary access control tables are referenced to ensure
that the user has permission to remove the template. The
destroy operation is invoked for each template message
field, and the destroy operation is invoked for the tem-
plate.

Edit Template: The "edit template" operation can be con-
structed from the Task 1 model operations as follows: The
read operation is invoked to obtain the classification of .-.-
the template, to ensure the user is cleared to read it. The
discretionary access control tables are referenced to ensure
that the user has read permission for the template. The
read operation is invoked to retrieve the record for the
indicated named template, and the read operation is invoked
to retrieve each template message field. As the user edits
the individual template message fields, the write (to
update) operation is invoked to modify the individual
fields, the destroy operation is invoked for fields to be
deleted, and the create, write (to update), and write (to
insert) operations are invoked for fields to be added. If
modifying a field would result in the field having a new
classification, then the model will force this to be accom-
plished by destroying the old field and then creating a new
one at the new security level.

- Copy and Edit Template: The "copy and edit template" opera-
tion can be constructed from the Task 1 model operations as
follows: The read operation is invoked to obtain the clas-
sification of the template, to ensure the user is cleared to
read it. The discretionary access control tables are refer-
enced to ensure that the user has read permission and per-
mission to edit the template. The read operation is invoked
to retrieve the record for the indicated named template, and
the read operation is invoked to retrieve each template mes-
sage field. The create operation is invoked to create a
record for the new message template at the same classifica-
tion "seclevel" as the template being copied. Then for each
template message field, the create operation is invoked to
create a new field for the new template, with the classifi-
cation matching that for the corresponding field in the tem-
plate being copied; then the write (to update) operation is
invoked for each field to copy the contents of the field .-. ;
from the corresponding field of the template being copied;
and the write (to insert) operation is invoked to associate
each new field with the new template. At this point a new

37 .* °*..



THE MLO MODEL--TASK 2

template has been created, which is a duplicate of the tem-
plate being copied. As the user edits the individual fields
of the new template, the write (to update) operation is
invoked to modify the individual fields, the destroy opera-
tion is invoked for fields to be deleted, the create, write
(to update), and write (to insert) operations are invoked
for fields to be added. If moditying a field would result
in its having a new classification, then the model will
force this to be accomplished by destroying the old field
and then creating a new one at the new security level.

- Rename Template: The "rename template" operation can be
constructed from the Task 1 model operations as follows: The
discretionary access control tables are referenced to ensure
that the user has permission to rename the template.

Since the template name is actually the entity refer-
ence for the container, in terms of the Task 1 model, a new
container with a new name, or entity reference, has be
created, the atoms belonging to the original template have
to be associated with the new template and disassociated
with the original template, and then the old template has to --

be destroyed.

The read operation is invoked to retrieve the record
for the template to be renamed. The create operation is
invoked to create a record for the new message template
identical to and at the same classification "seclevel" as
the original template, but with the new name as reference.
Then the write (to insert) operation is invoked for each
field of the original template to associate the fields of
the original template with the new container record for the
template. Then for each template field, the write (to
remove) operation is invoked to disassociate the template
fields from the original template container record. Then
the destroy operation is invoked to delete the container
record for the original template.

- Operations on the system database: The
delete-discretionary- access and add-discretionary-access
operations are used to maintain the system tables by author-
!zed users. ."-

38 -

-~~~~~~~~~~..... ....- _..-..... ..... V.".... ..... -... '... ...- 2-:- .-.. '.. '---, ."...-

. ." ." . """" . . . ". ."""-. .".. . . .".. . .-.. . . . . . .". . ' - " -" -_ " -' - " " " - " " t- '- " ," ? " , ':



THE MLO MODEL--TASK 3

AN ANALYSIS OF THE DIAMOND DOCUMENT HANDLING SYSTEM k-.%

Teresa F. Lunt

Elisabeth C. Sullivan

4.

The first two tasks of this program are directed toward the
development of a general model for systems of multilevel objects,
and its application to a military message system model. This
last task applies this work to the Diamond distributed multimedia
document system. For this task, we will develop an abstract
implementation of the model developed in Task 1 to describe the
the Diamond distributed multimedia document system and will pro- '-
pose a security mechanism to be implemented within the Diamond
architecture.

The Diamond system is a prototype system being develo)ed by
Bolt Beranek and Newman, Inc., for the Defense Advanced Research
Projects Agency and Rome Air Development Center. The Diamond
distributed architecture, and use of personal computers for
advanced user interfaces. In addition, multilevel security is a
goal. In order to provide demonstrable security and provide the
complex functionality required, it is necessary to analyze the
Diamond architecture with respect to security so that the secu-
rity mechanism can be isolated from the rest of the system. This ..
task will use the model developed in the earlier tasks to analyze
the Diamond system.

The first step in analyzing multilevel E-ccurity in the Dia-
mond system will be the definition of the user level requirements
for security in Diamond. To do this, we will develop an abstract
implementation of the Task 1 model describing the functional
requirements and constraints to be satisfied by a security
mechanism for Diamond. For this abstract implementation, each of
the objects of the Diamond system will be represented by some
expression using objects of the Task 1 model, and the Diamond
operations will be represented by combinations of operations in

* the Task 1 model.

As part of this task we will also analyze the Diamond archi-
tecture to determine how a security mechanism for Diamond can be',.
developed so as to make it as simple as possible and isolated
from other Diamond software. Our architectural analysis will
include investigation of the use of special purpose devices such
as security markers and filters to allow the separation of the

. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . .. . .



171

THE MLO MODEL--TASK 3

,. "

security mechanism from other Diamond software. This is particu-
larly important in the case of Diamond because of the complexity
of the software necessary to meet the state-of-the-art goals of
the Diamond program. The result of this task will be a candidate
architecture for security enforcement in future versions of the
Diamond system, based on an implementation of the Task 1 model in
terms of the Diamond functionality and constraints.

4.1

The Diamond system is basically a document handling system
with support for sending documents as messages. It is designed
to operate in a distributed environment, called a cluster, with
internet communications capability so that users of the cluster
can send and receive messages from non-cluster users. The
objects handled by Diamond will be multimedia, consisting of
text, graphics, voice, and image data.

Diamond is partitioned logically into three parts: the Dia-
mond core, the user interfaces, and a collection of additional
capabilities for enhanced document and message services. The

" user interfaces will reside on personal computers and on host
• computers, and will include tools to compose and edit multimedia

messages. We will concern ourselves primarily with the Diamond
core, since the other parts are largely individual tailorings and
enhancements that make use of core services.

The Diamond core is composed of a document store, a registry
(of users and groups, local and remote), an authentication ser- -

vice, a device control service (e.g. for printers), and an inter-
net message processing module (MPM)'

The document store contains the Diamond documents. The
registry contains information about users and is referenced for
purposes of authentication and access control. The message pro-
cessing module (MPM) supports message communication with users
external to the cluster. Below we discuss this system in detail
in terms of its data structures and operations.

4 .1 .1

The Diamond system has five types of data objects: docu-
ments, folders, the registry, user descriptions, and group
descriptions. All objects belong to either a folder or the --

Registry. A citation is not an object but a reference to an
object, and doesn't have a UID.

Each of the five object types can be annotated. For docu-
ments, an annotation is associated with a point within the docu-
ment. For other object types, an annotation is associated with
the object as a whole. Since difterent users can comment on the

• same object, the annotations are stored as an ordered list asso-
ciated with the object. The annotations may contain text,

-40-

,.. ... . . .- ._ . .. .- : . . . •.. , . .: ........ ..... .... ..........-........ . .-.. - .. .. * -.- ._.:

" - ',q -.- "" -" - , "" - . ," "- -4. - " ".- -" "-." " " . " ' " " ",". . '." " "- . - -", ",", --.



W_ WW V~.. . ...... . ..... N... _1 .... .7-..7......,

THE MLO MODEL--TASK 3

graphics, image, and voice data.

The document store holds one copy of every document. When a --

document is sent to a list of users, they each receive a citation -.- ft

to that single copy, not a separate copy of the document. Once
an object has been entered into the document store, it cannot be
modified, with the exception of folders. Editing an object
results in a new object. r.-.

Objects in the Diamond system are represented by the follow-
ing standard set of information:

(UID, Value, UIDRefList, AnnotationList, AccessControlInfo, RefCount)

where

UID is the unique object identifier (includes the object
type)

Value is the contents of the object. It is necessary to
know the object type to interpret its value.

UIDRefList is a list of the UIDs of objects (if any) refer-
enced within the value of the object (e.g. folders refer to
documents and folders)

AnnotationList is a list of annotations to the value of the
object. Annotations are considered additions rather than
changes to the object and are, in fact, separate objects
themselves. An annotation is a list of the form:

(ReferencePoint, AnnotationUID)

where ReferencePoint specifies a point within the object
being annotated and AnnotationUID is the identifier of the -.l
object that annotates this object.

AccessControlInfo includes an access control list (ACL) and '
other security information

RefCount is the count of outstanding references to the
object. References to objects can appear in citations,
UIDRefLists and AnnotationLists. The RefCount is updated
whenever a reference is created or destroyed. When the
RefCount is zero, the document is deleted from the document
store.

Access control lists (ACLs) are used for access control,
listing users and groups. Access to all objects is controlled by
ACLs. An ACL is an ordered pair of the form (authority, access
rights). An authority is a principal (user or diamond component)
or group. Access rights are modes of access permitted to the

- 41 -

°, ., °,o . -- .1
"- --. ,.. . . . . . . ..-. .:. .-- " .--- '-".- . . -. . . . . --.. . ... . ... -... °..-..-'.. , . . . .-.-.-



W1 E MLO MODEL--TASK 3

object for the given authority. A separate ACL is associated
with each object. A security check is made to ensure that the
authority attempting to perform an operation on an object appears
on the ACL for the object and that the rights associated with the
authority include the right required to perform the requested
operation.

A group is a list of principals (users) and/or other groups,
and has a symbolic name. Groups can be used in ACLs and distri-
bution lists. A group can include the internet mailbox names
(symbolic names) of non-cluster users; these are ignored when the
group is used in an ACL. The symbolic names of non-cluster users
all map to a single "special" user description for non-cluster
user (for access control and authentication). The symbolic
names, however, are meaningful to the message processing module
(MPM) (for addressing).

Some objects, such as the Registry and user inboxes, and
others designated as "critical" by a user, will be duplicated by
one or more identical "backup" copies.

The object types are described below.

4 4.1.1.1 .

A document is an data structure for a multimedia document,
describing the objects making up the document and the relation-
ship between those objects. A form is a special kind of docu-
ment. The objects making up a document may be atomic data
objects or other documents. Documents have header and body. The

. summary component of a document citation is computed from the
document header (see the discussion of citations, below).

There are four atomic object types, one for each of the
media types text, voice, graphics and image. Atomic objects have

*" empty UIDRefLists.

Information, for example the media, about the individual
parts of the document is preserved in the document.

4 .1 .1 .2 i

A folder is a data structure that holds citations to
objects. Documents, for example, are accessed by citations which
are stored in folders.

A citation is a reference to an object that includes an
abstract or summary of the object. A citation may reference 2
types of objects: a document, or a folder of citations to
objects.

Predefined folders for a user include folders called office
(root folder), inbox, and desk. Users may define additional

Y . . . .. i - . . .- ,



W. , , -v:,

THE MLO MODEL--TASK 3

folders, including folders within folders.

Documents in a folder have ordinal positions (1,2,3,etc.).
Operations on documents can reference them using a range (20:24),
field contents (subject:weather), or by (a list of) symbolic
names, including "", and can use combinations of logical opera-
tions (and, or, not) and time selectors (before, after). U_

A citation has three parts: a reference (the UID of the
object referenced); a summary (contents depend on the type of
object referenced. For documents, the summary is the list of
header fields. The user interface decides, based on a profile
for the user, which may be null, how to present the summary.);
and a symbolic name (optional for citations to documents;
required for citations to folders).

No two citations in the same folder may have the same sym-
bolic name.

Document citations in a folder have ordinal positions
(l,2,3,etc.) •",

4.1 .1.3 T~~~y~~'

The registry contains information used for authentication,
access control, and addressing (associating user names with inbox
locations).

For each user there is a user description record, and for
each group there is a group description record.

.

Each principal and group has a UID identifying it, in addi-
tion to a symbolic name. These UIDs are stored in the user and
group description records in the Registry. The multiple symbolic
names (mailboxes) for non-cluster users all have the same UID in
their user description records. The UIDs are used in the ACLs
and are bound to processes acting for users in an access control
database.

Each process also has a UID identifying it. Processes are
bound to users by entries in an access control database matching
user UIDs and process UIDs. Records in the access control data-
base contain:

- process UID

- user UID

- GroupsOf (user)

The principal UID and the set of group UIDs is called an
access group set (AGS). The AGS is used in access control.
Server processes can access the access control database using the

- 43 "



THE MLO MODEL--TASK 3

BindingOf operation, which returns the principal UID and the AGS
that are bound to a particular process. Mechanisms are provided
to permit bindings for processes in the access control database
to be modified; for example, a process can cause groups to be
removed from its AGS in order to reduce its capabilities.

4.1i.1i.4 Uggz LO -,

A user description is a record in the registry. A user -.

description includes a formal name (full name); login name; pass-
word (stored non-invertibly transformed); group membership (a
list); office (root) folder location (the name, typically the
same as the login name); inbox folder(s) locations (position in
the document store, with multiples for backup); internet mail box
name (username, domain); and user profiles (containing user
preferences).

4.1 .1 .5 gUpU'.,jQD"

A group description is a record in the registry. a group
description includes a list of principals and groups that are
direct members of the group, a list of groups that this group is
directly a member of, and the "root" folder location for the
group (position in the document store).

4.1.2 ,.D _X : .Q,.C-

Objects in the Diamond system are associated with an access
control list (ACL) identifying which users and groups have which
types of access rights to the object. Various types of access
rights are defined for the various types of Diamond objects.
These types of access rights are enumerated below for each Dia-
mond object type.

® Document

- Read (required for operations such as Show, Print,
Edit, Reply, Send, Export, and Archive)

- Annotate

- Forward (required to forward or redistribute)

- ACLModify (required for Set Access)

- Reclassify

* Folder

- Read (required to read citations in a folder)

- Add (required to File and Import citations into a
folder and to name and rename citations)

- 44 -

* .. , * . -. . . . * .: . ., - ., . -- . . . ..- - - ,, .. .*. , .. .. , .-: .- .

'- : -: . -. --: - , ,* -. * . . . .. . , . *.. .... * .*..* .*._ . . . . - . . . . . .. , . . . . .,
. . . .. . ... ..- - . ,. .. . . • .. . . . - --. . . . .. . . *-. ., . ... • .. .-...'.... ~ ' . . . • ., . , - , .., . , .- , . ,



r . 4,

THIE MLO MODEL--TASK 3

- Annotate (required to Annotate a folder)

- Remove (required to Delete and Expunge citations and
folders)

- ACLModify (required for Set Access)

- Reclassify (required to reclassify a folder)

* User or Group Description
N.

- Read (required to Show a description)

- Modify (required to Edit a description)

- Annotate (required to annotate a description)

- Remove (required to Delete or Expunge a description) .

- ACLModify (required to modify the ACL of a description)

6 Registry

- Read (required to Show the names of descriptions)

- Add (required to File a new description and alter a
description)

- Annotate (required to Annotate the registry)

- Remove (required to Delete or Expunge a description)

- ACLModify (required to Set Access to descriptions in
the Registry)

Folders and the Registry contain predetermined initial ACLs
for newly-created objects that they will hold. A folder contains
an initial ACL for new folders and an initial ACL each for new
objects of each of the other object types. Additionally, a
folder's initial ACLs are inherited from the folder in which it
is contained. The contents of ACLs and initial ACLs in a folder
can be modified by users who have ACLModify rights to the folder.
Also, the creator of a new object can explicitly specify an ini-
tial ACL for that object.

When a process attempts an operation, its access group set
(AGS) from the access control database is compared with the
object's ACL to determine whether the process has authorization
to perform the operation. In particular, one of the IDs in the
AGS must match an ID in the ACL whose corresponding access right
is the right required to perform the requested operation.

- 45S-

.::::..:.
..-.... v : , .: .. .... . - .. ..." -.' " " . .. • .. . ..- .- .. . ."... . ..



. ., ?-- . . . -. - ~ . . -- 1 --- -. . .,..

r.: ~..

THE MLO MODEL--TASK 3

In addition to the access rights enumerated above, which

depend on object type, there are several "generic" rights:

- Read

- Annotate

- Modify (only folders can be modified)

- SetACL (make additions or deletions)

- Send (required to send an object as part of a message) (a
user can get around not having send permission for an object
if he has read access, by copying the object to a new one,
giving himself send permission, and sending the new object.
However, it may be possible to detect this, if desired.)

The ACLMerge operation is used when a user places a citation
for an object into a folder. The user might do this in order to L
share access to the object for which he or she has access, by
placing it in a "shared" folder. The ACLMerge operation passes
this user's rights on to those who are on the appropriate default
initial ACL for new objects in the folder. The merged ACL for
the object is obtained from the initial ACL for new objects of
that type in the folder and from the user's access rights to the
object (obtained from the ACL for the object). Alternatively,
the user can specify an initial ACL to be used instead of his or
her access rights to the object.

When the citation for the object is added to the folder, for -*
each UID on the initial ACL in the folder the intersection
between the access rights and the user's access rights is com-
puted. These are unioned with the ACL entry for the UID for the
object. If the object references other objects, this is done for
every object on its UIDRefList.

A user could be permitted to retrieve a folder but not a
document cited in it. A user could be permitted to retrieve a
document but not permitted to retrieve an object referred to by
the document (in it's UIDRefList). When a process requests
retrieval of a document, only the document structure and not any
of the objects it refers to is returned. When access to other
objects referred to by the document is needed, the process makes
additional retrieval requests to obtain them (and permission is
validated individually for each request). The document store
validates permission by checking the access control database to
see whether the process has permission to access the object.

4.1.3 Qpz4QH;. 4.'

Four activities are supported by Diamond. These are:

46 -

.. E..-....... .....- .'-.



N7~~~~~A k.--.777 7. -
i,..

THE MLO MODEL--TASK 3 -.

- Folder Presentation and Management

- Document Presentation and Composition

- Registry Presentation and Management

- Principal/Group Presentation Manipulation and Management

A number of operations will be available to the user to sup-
port these activities. These operations will not all consist of
trusted software, but will make use of the secure Task 1 model --
operations. In other words, the user-level operations will be
constructed from Task 1 model operations.

The system is required to allow users to handle data of
several classifications, up to their clearance level, during a
single computer session. The applications-level operations will
operate in such a way as to allow a user to operate on a mul-
tilevel object, such as editing a document, while the trusted
software will actually implement this as several single-level
transactions against the database. .

There are generic commands that can be used on multiple
types of objects. See Table 3 and Table 4 (although they appear
to conflict somewhat).***

4 .1.3.1". -

A number of operations on documents will be available to the
user. These operations are briefly described below.

- Show

- Print

- Move, Copy (move or copy the document citation to the indi-
cated folder)

- Name, Rename (name or rename the citation with a symbolic
name)

- Create (to create a new document)

A user interacting with a document editor can create a col-
lection of new atomic objects and a document structure
referencing them. For each of these new objects a new
object is created in the document store and a citation for
it is placed in a folder. The editor sends the request

(Create, ObjectType, ObjectValue, FolderUID) .' -'..,

to the document store, where ObjectType is AtomicText, Atom-
icVoice, AtomicGraphics, etc., ObjectValue is the value, and

47 -

* . .""T'.-i"
i. . . . . . . . . . . . .



I - - ,. . .% ..* ..-

THE MLO MODEL--TASK 3

FolderUID is the UID of the folder to hold the new object.
The document store allocates and returns a new UID. The
editor adds the new UID to the UIDRefList and inserts it to
the proper place in the document data structure. When this
has been done for all referenced objects, the editor sends a
create request for the document structure to the document
store. The RefCount fields of objects referred to by the
new document are incremented. The document store returns
the new UID. The citations to the new atomic objects refer-
enced by the document could be removed from the folder,
since they are now referred to by the document (the cita-
tions were only created in the first place to avoid having
unreferenced objects).

- Edit (to create a derived document or edit an existing docu-
ment)

A user could create a new document that references parts of
existing documents. This case is similar to creating a new
document, except that instead of creating a new object (in
the case of a reference to an existing object), the UID of
the existing object is added to the RefList of the new docu-
ment and the UID of the referenced object is inserted into
the proper place in the document data structure. The --

RefCount field of the referenced object is incremented. The V
new document structure will not be created in the document
store unless the user has access to all of the objects
ref erenced.

Editing an existing document results in a new document
with references to existing parts of the original document
for parts that are unchanged, and the parts that are changed
refer to newly created objects.

- Reply, Forward -

- Annotate

- Send

When a document is sent as a message, a new object is
created differing from the original in that it contains the
message header. Some of these fields are user-supplied, and
some are supplied by the message system.

Messages are delivered to addressees within the Diamond "-**."**
cluster by placing citations for it into their Inbox fold-
ers. For addressees external to the cluster, the message is
translated into the proper format and passed to MPM.

Message transmission is initiated by a request of the
f orm

- 48 -

. . . --. . ." - • . . . .- . . . . . . • - -- . " -.' 2 " . - .-.:



. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TE MLO MODEL--TASK 3

(SendMessage, UID, OKorNotOKToSend)

The OKorNotOKToSend parameter indicates whether the reci-
pient will have further send permission for the message.

Before a user is permitted to send a message, a check
is made to see whether the user has send permission for the r
object and all the objects referenced by it. A citation for
the message is placed in a MailBox folder in the document
store. When the message transport server finds the message
in the MailBox, it uses the Registry to find out how to
deliver it to the various addressees. For individual
addressees within the cluster, a citation for the message is
placed in an Inbox for that addressee, with the ACLMerge
operation used to update the ACL of each object referenced

* by the message as follows: The default initial ACL used is
the one that is part of the recipient's inbox folder. The -'.

sender's access rights to the object (determined from the
object's ACL) are unioned with (read, send) or (read),
depending on the value of OKorNotOKToSend. Otherwise, the
ACLMerge operation proceeds as described previously.

For messages being sent to users at other clusters, the
document is addressed to an Internet mailbox. An Internet
mailbox consists of a user name and a domain. The message
processing module (MPM) at the remote host accepts the mes-
sage. For messages to users at the same cluster as the ori-
ginator, the user name is used as the address. The user
description in the Registry is used to find where a user's
mailbox is located. User descriptions for users not at the
local cluster can also be included in the Registry so that
they can be addressed by a simple user name.

The "send" operation gets message destinations from the
"to", "cc", and "bcc" fields and puts citations to the docu-
ment in the inboxes for local users or forwards the document
itself to MPM for non-local users. It a group-name appears
as an addressee, then a citation is distributed to each
member of the group.

- Redistribute

- Import, Export (import or export the contents of a document
from or to a file outside the view of Diamond)

- Delete (mark a citation as deleted) *'-"-"

- Expunge (remove a deleted citation from a folder. If this
results in no outstanding citations to the cited document,
remove the document from storage.)

- Archive

49 -

_* , .. -. . .

. ,* . *.* . . .



.~~~~ .. . . . . ..7

THE MLO MODEL--TASK 3 "

- Set Access (set the ACL for a document)

- Reclassify

ft4.1.3.2 QpvzJJq.Q1~f~eXs

A number of operations on folders will be available to the
user. These operations are briefly described below.

- Show (display a list of the citations in the folder)

- Print (hard copy version of "show")

- Move, Copy (move or copy the folder citation to the indi-
cated folder. If the indicated folder does not exist, then .,
create a new empty folder with the indicated symbolic name.)

- Rename (change the symbolic name of a citation to a folder)

- Annotate

- Delete (mark a folder citation as deleted. A folder may not
be deleted until all the document in it have been deleted
and expunged.)

- Expunge (remove a citation to a deleted folder from the con- -.
taining folder)

- Archive (archive a folder and all of its documents)
f-.. -.:.

- Set Access (set the ACL for a folder)

- Set Initial Access (set the initial ACL for objects in a .
folder)

- Reclassify

4.1.3.3

A number of operations on user descriptions will be avail-
able. These operations are briefly described below.

- Show, Print

- Create, Edit (uses a form to be filled in)*ft. ''' ' '
ft*

- Annotate

- Delete (mark as deleted)

- Expunge (remove a deleted user description from storage)

o50 -

ft f t t f t fpft,. ft t•'f



-------- --- rvr\WN% &Fff, UT.N VJW.W ~.7 V. W WV W w d w - w7 -K - X" - Rn. VL'VF

THE MLO MODEL--TASK 3

4.1.3 .4

A number of operations on group descriptions will be avail-
able. These operations are briefly described below.

- Show, Print

- Create, Edit (uses a form to be filled in)

- Annotate

* - Delete (mark as deleted)

- Expunge (remove a deleted group description from storage)

4.1.3.5°Qp-.

A number of operations on the registry will be available.
These operations are briefly described below.

- Show, Print (show or print a specified selection of the
Registry contents) -

- Annotate .

There is also a MembersOf operation that returns either a
list of the direct members of a group or a list of all (direct

" and indirect) members of a group. Direct members of a group are
listed as principals on the Group Description Record in the
Registry. Indirect members of a group are members of a group
that is a member of the group. ","-'

There is a GroupsOf operation that, for a specified princi- .- ' ..-
pal, returns either a list of the groups of which the principal
is a direct member or a list of the groups of which the principal
is either a direct or an indirect member.

The registry is referenced by the authentication service for
purposes of user authentication, as follows. The user supplies a
login name and password. The authentication server searches the -

registry for a user description record for the user. If it finds
one, it transforms the password and compares it with the one ,..
stored in the user description record. If the passwords match,
the authentication server creates a new record for the access
control database to bind the user name to processes acting on the -
behalf of that user. The authentication server returns an ack- ,.
nowledgement to the user.

4.1.4

A goal of the Diamond system is to allow users to handle
information of several classifications simultaneously. There
will be a separate document store for each security level (U, C, -

- 51 -

............. .......... ....... ...... .. '..
p. , .* "- ,* -....- ... ' ',--. -' ' " -' .:.' " . " -. . ' .-.. *, ... ... ..° ... .'..-.. . .'. -" , . - - .- -"'



o... 
..

THE MLO MODEL--TASK 3

S, TS), so that each Diamond host can operate at a single level.

-User workstations, however, will be multilevel. Diamond objects
are multilevel. .0

The "container clearance required" restriction is appropri-
ate for documents and messages. The absence of the wcontainer
clearance required" restriction is appropriate for folders of
documents and messages. However, the creator of a folder can
specify that the container clearance is required, if so desired.

There is a reclassify access control right that can appear
on ACLs, required for reclassification of documents in the docu-
ment store. When a document is in draft, the drafter typically
will hold reclassify rights to it. When a document is released,
the drafter's reclassify rights are revoked and users acting as
security officers have reclassify rights to it.

The document editor will keep track of the classification of
* parts of existing documents that are inserted into the document
* being edited, to prevent the user from improperly classifying the

new document. Information removed from an atomic object inherits
the classification of that object.

User clearances will be stored in the Registry in the user's
Principal record. -

Processes will be assigned a working security level; process
levels will depend on the clearance of the user they represent
and on the maximum clearance level of the device on which they ---

are running. Before the access check described above, the user- i
clearance/object- classification check will be made; for this
check the working level of the process will be used for the user
clearance level.

*4.2 g9Dzug~Dg Jb VigtL9DL Dat 59zugturg ElQUm tbv 2k 1
fa Datai-.

The Diamond data structures will be constructed from the
data structures of the Task 1 model. Below we describe how a
Diamond object is interpreted in terms of the entities of the
Task 1 MLO model. Subsequent sections describe mappings for each
of documents, folders, the registry, user descriptions and group
description objects.

4 .2 .1

Although a Diamond object is considered to be an atomic data
object or a non atomic data object, all such objects are actually
composed of several different fields. Recall from section 4.1.1
that objects in the Diamond system each have the following stan-
dard information:

52 "

- .* - , . -- - - .

' ""-'""-""""- 4,':" V "" ":':';- " '.. " '" "" "" " " . "' - ' ." .""" " '



THE MLO MODEL--TASK 3

- UID/object type

- Value

- UIDRefList .

- AccessControlInfo

- AnnotationList

- RefCount

Only one of Value and UIDRefList appear in a Diamond object.
Atomic data objects have empty UIDRefLists and non-empty values.
Non-atomic data objects have empty values but non-empty UIDRe- W7

fLists. They refer to other data objects. The Value or UIDRe-
fList field is considered the "body" of the object. The other
fields of the Diamond object are called "header" fields.

Every Diamond object can be described using a hierarchy of
MLO entities. Recall that an MLO entity has four fields;

- Flag

Identifies the entity as a MLO container or an MLO atom

- SecurityLevel

- Status

- Data

If the entity is an atom, the data is "atomic data"
(text, voice, etc). If the entity is a container, then the
data is a set ot parts descriptors.

At the top of the MLO hierarchy representing a Diamond object is
a MLO container called a W Z CD . The master entity is
marked as a container, and has the security level and status of
the Diamond object it represents. The parts descriptors of the
container are a set of pointers to an MLO entities representing
fields of the Diamond object. These MLO entities are called
i i . D e t . There is one MLO field entity for each of the

standard Diamond object fields listed above. Each field entity
inherits the security level and status of its associated master
entity. The field entities for UID, Value, ReferenceCount, and
AccessControlInformation are marked as MLO atoms. The MLO data
area contains the UID, value,count, access information specific
to the associated master entity. The field entities associated
with the UIDRefList and the AnnotationList are marked as con-
tainers. The parts descriptors for these entities are UIDs. If
a field is not used in a specific Diamond object, the MLO entity
for that field is marked UNUSED, the security level and status

-53 - ". "

_ .. %._



THE MLO MODEL--TASK 3

fields are undefined and the data area is empty of data. '

A Diamond object is referenced by its UID, and contains
references to other specific Diamond objects. Ideally, we would %
like the implementation of the Diamond object to be referenced by
its UID, and to contain references to the implementations of the
other specific Diamond objects using the UID of the other Diamond
objects. For example, Suppose DO is a Diamond object which has
references to other Diamond objects DI, D2, ..., Dn. Then the
MLO entity hierarchy implementing a Diamond object DO will be
referenced by the UID of DO and will have references to the MLO
implementations of Dl, D2, ..., Dn. An MLO entity is referenced
by a descriptor. We simply require that the descriptor of a Dia-
mond object's master entity be equal to the UID of the Diamond
object. This, together with the following constraints on the
reference mechanism, are sufficient to have reference to the mas-
ter entity of a MLO implementation of a Diamond object provide
the full information set of the Diamond object. Although follow-
ing constraints are generally not security-significant, they
should be considered in order to make the mapping useful.

- Reference to a master entity of a MLO hierarchy implementing
a Diamond object should guarantee access to all the associ-
ated MLO field entities.

Violation of this property is a form of denial of ser-

vice.

- MLO field entities cannot be referenced directly.

That is to say, one must locate a field entity via the
associated master entity. Violation of this property is not
security critical as each MLO entity contains identical
security markings as the associated master record and Dia-
mond object.

• Diagram 1 depicts the implementation of a Diamond object in terms
of MLO entities.

Needed within the Diamond system is the capability to build
complex objects out of more simple or atomic objects. For exam-
ple, a message might contain some text and a reference to another
message. Folders contain citations, which are references to
documents. A document may be a hierarchy of sub documents. A
document built of other documents might look like the picture in
diagram 2. In this figure, objects will be illustrated as not
having annotation lists. It will be assumed that any annotations
needed within the document have been incorporated into it. This
is to allow the construction of a simpler diagram.

The various Diamond objects of the above hierarchy can have
differing security levels, so long as the levels obey the secu-
rity level hierarchy rule stated in task 1. The reference

54- --. °.

,'J ". '- .'"' - -'' [." '-'"'".-"".""" i .i[:i i . -; , -.--- ]: : .:-" ---- "/ ,"-" -. -ii- i - -' "



THE MLO MODEL--TASK 3 .

j-

mechanism can be used, as described in task 1, to control con- t
tainer clearance requirements.

Going one step further, we can visualize the above Diamond
object structure, replacing the objects by their MLO implementa-
tion. What results is a multilevel hierarchy of singlelevel
sub-hierarchies. See diagram 3.

4.2.2 QQUID -:

A document can be a Diamond non-atomic-data document or a
Diamond atomic-data document. Annotations are a form of docu-
ment. They have the same structure and can be atomic or not.

As described above for Diamond objects in general, a Diamond
document is implemented by an MLO master entity and a set of MLO
atoms and containers which define the document header and body
fields. The following list describes the implementation of the.
Diamond document fields in terms of MLO entities.

- UID/ObjectType

This document field is implemented by an MLO atom.

- Value .. *

The value field is implemented by an MLO atom. For
atomic-data documents it contains the atomic data. The
value field is not needed for a Diamond non-atomic-data .
document, and the MLO entity is marked UNUSED, with the data
area of the MLO atom empty.

- UlDreflist

This field is implemented by an MLO container. The
parts of this container are the UIDs of documents refer-
enced. In the case of atomic-data documents, the MLO entity
is marked UNUSED and the parts descriptor list is empty.

- AnnotationList

This document field is implemented by an MLO container. . - -
If there are no annotations for a document, the parts
descriptor set is empty. The parts of this container are
the UIDs of annotation documents which refer to the Diamond
document. The first element of the parts list is a pointer
to an MLO atom which contains a pairing of the UIDs and .,.
ReferencePoints within the document.

• **.

AccessControl

This document field record is implemented by an MLO
atom.""":...-.

- 55 -" ":

S'S'.'o

N



THE MLO MODEL--TASK 3 -
,.. unj ... nJ. cuJ.#

RefCtr

This document field record is implemented by an MLO .,,,
atom. V.

* The master entity for a Diamond document is identical to the -
description of master entities above. The following two diagrams
depict an implementation of a Diamond document which is non-
atomic and one which is atomic. Diagrams 4 and 5 describe atomic
and non-atomic documents in terms of MLO entities.

4.2.3

A folder is a Diamond data structure which holds citations
* to documents or other folders. Citations are not considered Dia-

mond objects, and have three parts; a UID reference, a summary,
and a symbolic name. Summaries for citations referring to docu-
ments can be derived from the document "header" fields. Sum-
maries are null for citations referring to folders. Because the
summary is readily available in any case, we do not implement
them directly here.

A Diamond folder is implemented by an MLO container as a
master entity and and a set of MLO atoms and containers which
define the folder header and body fields. The master entity is
marked as a container, and the classification and status fields
are given by the creator. The field entities referred to in the
parts list inherit the classification and status of the master
entity. The following list describes the implementation of the
folder field entities;

UID/ObjectType

This folder field is implemented by an MLO atom.

- Value

The value field is implemented by an MLO entity, but it
is not needed for Diamond folders. The MLO entity is marked
UNUSED, with the data area of the MLO atom empty.

- UIDreflist

This folder field is implemented by an MLO container.
The parts list contains one pointer and a list of UIDs. The
UIDs in the list of parts are the citation UIDs. The -. *. ,
pointer is to an MLO atom which contains a table matching
UIDs and symbolic names. Any change to the citation UID
list necessitates a change to this MLO atom.

- AnnotationList

- 56 -

............ ..........-. -.........-.....-...-... .... ,.,.,.,.



THE MLO MODEL--TASK 3
*.-- . " ,

The folder field is implemented by an MLO container.
The parts list contains a list of UIDs of annotations to the -

folder.

- AccessControl

This folder field is implemented by an MLO atom.

- RefCtr

This folder field is implemented by an MLO atom.

Diagram 6 depicts a folder implementation.

.4.2.4 . .

The registry will be represented in terms of the Task 1
model data structures by a collection of user description records
and group description records. All registry records are
addressed by a UID and a symbolic name. The User and Group
records are discussed below.

4.2.5 U _DI;LQD"

A Diamond user description record is implemented by an MLO
container as a master entity and and a set of MLO atoms and con-
tainers which define the header and body fields. The master
entity is marked as a container, and the classification and
status fields are given by the creator. The field entities
referred to in the parts list inherit the classification and

* status of the master entity. The following list describes the
implementation of the folder field entities;

- UID/ObjectType
"" ~~'-''.:
This field is implemented by an MLO atom.

- Value

The value field is implemented by an MLO container,
whose parts list refer to MLO atoms and containers for the
following:

" formal name (MLO atom)

* Login name (MLO atom)

* Password (MLO atom) -'".

0 List of groups the individual is a member of (MLO con- - ' -

tainer of atoms for membership identities)

57 -

.. -..-

. ... . . ..



THE MLO MODEL--TASK 3

* office (MLO atom)

6 folder location (root) (MLO atom)

* internet mailbox name (MLO container of atoms for mail- lop
box names)

6 user profile list (MLO container of atoms for profiles)

- UIDreflist

This field is implemented by an MLO container and
represents the user inbox. The parts list contains a list
of UIDs indicating folders in the user's inbox.

- AnnotationList

The field is implemented by an MLO container. The
parts list contains a list of UIDs of the user record anno-
ta ti ons.

- AccessControl

This field is implemented by an MLO atom.

- RefCtr

This field is implemented by an MLO atom.

Diagram 7 depicts a user record implementation.

4.2.6 gp giP,-

A Diamond group description record is implemented by an MLO
container as a master entity and and a set of MLO atoms and con-
tainers which define the header and body fields. The master

entity is marked as a container, and the classification and
status fields are given by the creator. The field entities
referred to in the parts list inherit the classification and
status of the master entity. The following list describes the
implementation of the folder field entities;

- UID/Obj ectType

This field is implemented by an MLO atom.

- Value

The value field is implemented by an MLO container,
whose parts list refer to MLO atoms and containers for the
following:

58 -

i o . o • . , , , . . . . - . . . . • . ... . *. -. . . . ° . .

,.... ;,,, ...,-. v ,.2 -, .. ... . . . . . . .. . . . . ...... ... ... ... ... ... .. ....... .-...-.-..... . .:.,..



THE MLO WODEL--TASK 3

* formal name (MLO atom)

* direct membership list -- a list of groups and indivi-
duals belonging to this group (MLO container of atoms
tor membership identities)

* direct member of list -- a list ot groups this group
belongs to. (MLO container of atoms for membership
identities)

* folder location (root) (MLO atom)

- UIDretlist

This field is implemented by an MLO container, but is -.

not used.

- AnnotationList

The field is implemented by an MLO container. The
parts list contains a list of UIDs of the group record anno-
tations.

- AccessControl

This field is implemented by an MLO atom.

- RefCtr

This field is implemented by an MLO atom.

Diagram 8 depicts a group record implementation.

4.3 0U]0Dg Z 5PPIJ;IDS-L3 Y1 QPRLtiQD§ £ t T 1

User operations on documents, folders, the registry, user
descriptions, and from the basic operations of the Task 1 model.
When a user invokes a user operation requiring a query or tran-
saction against the database, this will be translated to one or a
sequence of Task 1 model operations on the database.

Numerous operations on the Diamond objects have been defined
above. For many of these operations, the steps required to
describe implementation in terms of MLO operations are similar.
Many of the Diamond operations define releasing Diamond data to "
some external medium, for example. Defining in detail the MLO
operations to execute each ot these Diamond operations would be
repetitive. For this reason, we have chosen to identify similar
operations by defining classes ot Diamond operations and describ-
ing a mapping for representatives of the class, rather than
defining a mapping for each such operation. Significant dirfer-
ences in the MLO mappings for difterent members of a class will

59 -

.-...........

• * . • . - ' . . " . " . . " ' " ° , 3 , f - * - - ". " ,.. ° .. - °. . .." .. % ~ ° . ° ' , - . • • . ,, ° ' N '



%.% %-

THE MLO MODEL--TASK 3 - '-*

benoted.

The classes ot Diamond operations defined are as tollows:

- Operations releasing Diamond information to external media

- Operations requiring the alteration ot tield values of Dia-

mond objects

- Operations requiring the creation of new objects

- Miscellaneous operations

In the following sections, the operations for each such class are
identified and followed by a mapping ot one or more representa-
tives of the class.

4.3.1 QP LIDD9_IIZD_ 5QD.D L9D D aL.BDJ_ I

The Diamond operations of this class are:

* Show (Display a document)

* Print(Hard copy version of "show" for documents)

* Show (display a list ot the citations in a folder)

* Print (hard copy version of "showu for a folder)

* Import, Export (import or export the contents ot a document
from or to a file outside the view ot Diamond)

* Archive (archive a single document)

* Archive (archive a folder and all of its documents)

* Show, Print (user or group description records)

• Show, Print (show or print a specified selection of the
Registry contents)

* Reply, Forward (documents sent as messages)

* Send (documents sent as messages)

* Redistribute (documents sent as messages)

The representatives for this class are show and print. For each
KLO entity representing a requested field of the requested UID,
the MLO read operation is invoked to retrieve the field data and
the display operation is then invoked to display the field infor-
mation to the requestor.

- 60 -

15. 5 , " • " "" " ' "* . . . " U - .. .... ."



- . 11 k - - .-

*1%

THE MLO W4DEL--TASK 3

4.3.2 QV9rXJi2o BegUIXIDg UtUSZ1XJD 9t f191d YBIV95 DXOt DD

The operations or this class are:

. Move, Copy (move or copy the document citation to the indi-
cated folder)

* Name, Rename (name or rename a document citation with a sym-
bolic name)

* Delete (mark a citation as deleted)

0 Set Access (set the ACL for a document) "

* Reclassify (a document)

* • Move, Copy (move or copy the folder citation to the indi-
cated folder. It the indicated folder does not exist, then
create a new empty folder with the indicated symbolic name.)

# Rename (change the symbolic name of a citation to a folder)

* Delete (mark a folder citation as deleted. A folder may not
be deleted until all the document citations in it have been
deleted and expunged.)

6 Set Access (set the ACL for a folder) '.";

* Set Initial Access (set the initial ACL for objects in afolder)

* Reclassify (a folder)

* Delete (mark as deleted)

The representative operations ot this class are the Move or Copy
operation and the Delete operation. The style of the data map-
pings to MLO entities creates the citation list of a folder as a
data field, in the same sense that the access information, or the
UID or the name are represented by fields. Thus the Move or Copy
operation is representative ot any Diamond operation which
requests alteration to the contents or a field of a Diamond
object. In both the Copy/Move operation and the Delete opera-
tions, detailed mappings are given for the case where the opera-
tion copies (or deletes) a document citation in the folder.
These operations are identical in the case or copying or deleting
citations to folders in folders.

- Move, Copy (move or copy the document citation to the indi-
cated folder)

-61-

. . . . . . . . . . .. . . . . . . . .- *... .

a• . * Ar,



..4.
THE 14LO W)DEL--TASK 3* A..

The MLO read operation is invoked to read the UIDRe-

flist field of the appropriate folder. This allows identif-
ication of the UID-summary cross reference table atom tor
the citations in this folder. Next, the MLO create opera-
tion is invoked to create an atom to hold the intormation of
the new citation. The write operation is invoked to write .
the UID of the new citation to the MLO atom created. The r
MLO write operation is invoked to write the symbolic name,
summary and UID cross reference intormation into the MLO
cross reference atom. The MLO write operation is invoked to
write the descriptor ot the new citation into the UIDRefList
ot the appropriate folder.

- Delete (mark a document citation in a folder as deleted)

The MLO read operation is invoked to read the UIDRe-
flist field of the appropriate folder. This allows identit-
ication of the UID-summary cross reference table atom for
the citations in this folder and the UID record for the
citation to be deleted. Then the MLO write-status operation
is invoked to alter the status of the UID record to DELETED.
The MLO write operation is invoked to remove the entry for
the deleted UID from the UID-summary-symbolic name cross
reference atom. The MLO write operation is invoked to
remove the descriptor of the UID atom from the UIERefList
container.

4.3.3 .

The operations of this class are:

Create (to create a new document)

6 Edit (to create a derived document or edit an existing docu-
ment)

* Annotate(a document or a tolder)

* Create, Edit (uses a form to be filled in)(user description)

" Annotate (a user or group description record)

The representative operation for this class is the create
operation. A mapping for the create document operation is given
below. The mapping for the Edit command is similar, but does not
invoke the MLO create operation, but rather the MLO read opera-
tion. Create Folder is similar to the create document operation.
Create user or group description is also similar, but an
appropriate structure is created, then a "template" is copied
into the structure which is then edited. Notice that annotating
a record is the creation of a special document, so the Diamond
annotation operations are simplitications of this mapping.

-62-

,.- ---,'. 6t - -.-. -' .



7HE MLO MODEL--TASK 3

The Diamond Create Document operation creates a document by
developing a hierarchy ot diamond objects, each of which is
described as a hierarchy of MLO entities within the mapping
below. The Diamond Create Document operation also requires the -
creation and addition of a citation to a folder, or the deletion :..
of citations from a folder at the time a completed document is
added to the document store. MLO mappings for these parts of the
Create operation are described in detail above, and these parts
of the mappings will not be repeated here. The Diamond request
(Create, ObjectType, ObjectValue, FolderUID) generates the crea-
tion ot objects for the various parts of the document. For each
watomica unit of information ot the document, a hierarchy of MLO
objects is developed as follows. A specific MLO entity contains
the value of the next available UID. The MLO read operation is
invoked to retrieve the UID for the Diamond atomic object. The
MLO create operation is invoked to create a master entity for the
Diamond object. The descriptor of the master entity is equal to
the UID of the Diamond object. For each field of the Diamond
object, the MLO create operation is invoked, creating the
appropriate MLO atom or container for the field. The MLO create
operation assigns the security level assigned by the sponsor,
assigns the appropriate atom or container indicator, assigns
default status indicators and leaves the data area empty for each
entity created. The descriptor ot each such MLO entity is a
function ot the UID ot the master entity (the Diamond object) and
the identity of the field itself. MLO atoms are created for UID,
Value, Access Control and RefCount, using the MLO create opera-
tion. MLO containers are created for UIDRefList and AnnoteList.
When all the appropriate MLO entities are created for the master
entity, A citation is created for the object, and the move opera-
tion, described above by an MLO mapping, is invoked to write the
citation into the folder identified by the FolderUID defined
above. Now the MLO write operation is invoked, to write the con-
tents into the appropriate MLO entity for each field of the Dia-
mond object record. The annotationlist is left blank, the
RefCount is 0, the UID field is the UID assigned above, and the
atomic data is written into the MLO entity for the atomic data.

This process is repeated for each Diamond atomic data object
of the desired document. When all such information is properly
written into hierarchies of MLO entities, a the procedure is
repeated, creating a MLO hierarchy to hold the information per-
tinent to the entire document. A UID for the document is
obtained as described above, using the MLO Read function. A mas-
ter entity and the appropriate field entities are created as
above, using the MLO create operation. The MLO create operation
is also invoked to create one MLO atom for each Diamond atomic
data unit which is a part of this document, represented by an MLO
hierarchy. The citation to the document is added to the
appropriate folder as above. The MLO field entities are written
to using the MLO write operation, as above, with the following
exceptions.

-6S

..-. -o %



*. A

THE MLO MODEL--TASK 3 '

- The MLO atom tor Value is left blank. ..

- The MLO entity for the UIDRefList contains the descriptors k
of each of the MLO atoms created for the Diamond atomic data

units, described above.

- The MLO atoms for the Diamond atomic data units have the :,-b
UIDs of the Diamond objects (the descriptors of the MLO
hierarchies representing them) written as the contents o.
their data fields.

For each entry in the MLO container for the UIDRefList, the
RetCount for the atomic data pointed to must be incremented.
This is done as follows. The MLO read operation is invoked to
read the UIDRetlist ot the MLO hierarchy representing the docu-
ment. For each entry in this list, the MLO read operation is
invoked to read the value ot the entity (it is the MLO descriptor
of a Diamond atomic data representation), then the MLO write
operation is invoked to alter the contents of the MLO entity for
the RefCount field ot the identified UID.

Finally, the citations to the atomic Diamond data objects
are deleted from the respective folder, as described above, and a
citation to the document is copied into the folder, as described
above.

4.3.4 I9LQXDJ9D

The operations in this class are the expunge operations.
Mappings for all these operations are similar. When a MLO entity
is determined to be marked deleted when it is requested to be . '
expunged (determined by reading the entity using the MLO read
operation) then the MLO delete operation is invoked to physically
remove the entity from the database.

4.4

Our recommended architecture for a secure Diamond Document
Handling System includes a number of elements addressing dif-
ferent aspects of enforcement ot the security policy. To minim- -.

ize the modifications required to the current Diamond design --
while providing an easily verifiable, conceptually simple secu-
rity architecture, the problem can be separated into a collection
of smaller problems that can be solved using single-purpose, phy-
sically isolated devices.....

These devices include a Network Interface (NI) unit to
enforce mandatory security tor traffic between entities on the
local network, a User Interface (UI) unit to establish a secure
communications path between a Diamond object manager or authenti-
cation server and a user accessing Diamond through an untrusted
Access Point, and a secure user workstation. The collective
solutions can be combined to provide multilevel security for the

-64-

* . .. " . ... ,*
;: "-,"-•/ --' "., -/ -. -. -'---S. -" .- " --. - '."-" ."* ,','.[-- .'. -" .",." '.",-,- -

S ,-9. .. . "'' .- ' -. '', '",-. . ..- '



THE MLO MODEL--TASK 3

distributed Diamond system. e a s lc te

Because we believe it is impractical to expect multilevel '-'. .
hosts to support the Diamond object handlers, we suggest there be
several document handlers, each at a single security level. Mul-
tilevel documents are composed of a hierarchy of documents, with
the documents at the bottom of the hierarchy at a single security
leveln A trusted object manager would reassemble the multilevel
documents from their components in such a way as to enforce the
multilevel object model for Diamond. This trusted object manager
would be a small, microprocessor-based, physically separate,
special-purpose device. Because it serves a limited, well-
defined function, the amount ot code implementing it could be
made small enough so that is is practical to verify. There could
be multiple trusted object managers on the network.

Likewise, the Diamond authentication manager, containing the
Registry and the access control database, could reside on a OtW17N
small, microprocessor- based, physically separate, special--.
purpose host. Its functions would be limited, so that the amount
of code implementing it could be made small enough to verify.
Thoughtful design could result in shared code between the trusted
object manager and the authentication manager, reducing the
verification effort even further.

The single-level document managers could store documents
sealed with cryptographic authenticators. Because documents once
entered in the Diamond document store are never changed, sealing
them with authenticators is feasible.

Our design is tlexible, allowing the gradual addition ot
security devices to the distributed system to achieve broader
functionality while preserving or increasing the overall security
of the network. The NI provides a simple means ot encompassing
within the network a number of devices at different security lev-
els. The UI can be added at the Diamond Access Points to provide
a means ot entorcing discretionary access control for users
desiring access to objects on the object managers. The secure
workstation can be added to provide the possibility for users
with difterent clearances to share the same workstation and for
workstation users to create objects at a classification lower
than their clearance level.

Below we discuss the benefits of the suggested design
"' approach for a secure Diamond system to the verification effort.

Following that, we present discussions of some of the security
mechanisms and show how they address the various security issues.
A more detailed analysis is not possible within the scope of this
study.

65-

* *-*-*. *",,. . * *°. *o-

,,: -. .. .,.- - +-. , . -. . ... ... . . . . ... . . . . . . , . .. .. : . ... .. . - . . -. . . . . . . . ,. . . . .. . . . - . . . .

*. - . - . - . , . . .: ' ' " ' " " " " ' ' ' ' " " ' ' ' ' ' ' ' ' " . . ' . . . . + . . . .. ' ". ". -' ." .-" ." .. : -" , . ' ". - . " " - . ' . . " - . ' " • , ' ' . '. ,



THE MLO MODEL--TASK 3 -.

4.4.1 DI. LY D t9 t

The Diamond functions are distributed throughout a number ot
difterent types of machines. We believe the most practical and
easily demonstrable security mechanisms for such a system are
physically isolated security devices that can be added on to the
system with minimal disturbance to the current design.

Our basic design approach is to decompose the overall secu-
rity problem into a number of separable problems, and to propose
solutions to these problems that can be entorced by isolatable
security mechanisms. The sum of these security mechanisms
results in a conceptually simple and easily veritiable design
that provides a cohesive and tlexible solution to system secu-

- rity.

An advantage to this approach is the ability to physically
isolate the security mechanisms from the rest of the system.
Physical isolation ot the security mechanisms not only allows for
them to be incorporated in tamperproot enclosures but simplifies
the veritication effort by minimizing the amount of software to
be tormally specified and verified.

The Diamond model presented in a previous section is a
o• system-wide model of security tor Diamond. Submodels for the

requirements that must be enforced by trusted components ot the
system should be developed and mapped to the system wide model.
These maps should be shown to be correct.

Because the entorcement of security will be distributed
among separate trusted components, it is necessary to decompose
the system security model into models for the individual trusted

* components. The next step is to show that the collection of sub-
models implies the system model. This will be done by a proof
that if each trusted component is in a secure state, the system
will be in a secure state.

The ability to decompose the system model into submodels is
an advantage for verifying distributed systems, because the sub-
models apply to trusted components that are simpler than the sys-

• ' tem as a whole. Because the system model will have been decom-
posed into submodels, an FTLS can be developed separately for
each trusted component corresponding to a submodel.

4.4.2 ,aDda."ly .-.g9g:.

Mandatory security refers to the separation of information
* at different levels of classification and to the policy of access "

restrictions imposed by the system of user clearances. Within
the Diamond context, mandatory security means enforcing a secu-
rity policy describing the allowable accesses between subjects
and objects at various security levels.

- 66 -

% 2



THE MLO WODEL--TASK 3

Our suggested mechanism for enforcing mandatory security
within Diamond is an NI unit placed between each entity connected
to the local network, and the network itself. The NI would reli-
ably mark all traffic entering the network with the correct clas-
sification and would allow only those transactions marked with
authorized classifications to pass through it from the network
into the entity it protects.

Each entity on the network is regarded as either trusted or
untrusted. An untrusted device is authorized to contain informa-
tion at a single security level. All intormation leaving an
untrusted device is considered to be at that security level,
whereas trusted devices may be authorized to contain intormation
at a fixed range of classifications and are considered to reli-
ably mark information leaving them with the actual classifica-
tion. For purposes of our discussion here, a device is regarded
as trusted if the security mechanisms it implements have been
tormally verified to operate correctly.

The NI appends the device name and the correct security
level to messages entering the network and then computes an
authenticator. In the case of an untrusted, single level device
the security level used is the level of the device. In the case
of a trusted multilevel device the security level used is the
level supplied by the trusted device. The authenticator is a
function of the message, the device name, and the security level.
The authenticator must also depend on some secret information not
available to untrusted entities; otherwise untrusted software
could change the security level or content of the message and
compute an authenticator for the new message. An authenticator
that depends on the message content, device name, security level,
and a secret key can reliably detect any modification ot the con-
tent, device name or security level.

A proven method of generating authenticators is to use the
Federal Data Encryption Standard (DES) in Cipher Block Chaining
mode. In this mode a the first 64 bit blocK of the message is
added modulo two to a 64 bit initial value. The result is
encrypted using DES with a 64 bit key. The result is added
modulo two to the next 64 bit block ot the message and the sum
encrypted. This process continues until the entire message, dev-
ice name, and security level have been used. The last block ot
cipher text computed is used as the authenticator.

At the point at which the message leaves the network for
presentation to another device, another NI recomputes the authen-
ticator, allowing the transaction to proceed only if the recom-
puted authenticator matches the original one and it the receiving
device is authorized to receive information classified at the
level of the message. A matching authenticator means that the
message, the device name, and the classification have not been
altered in any way.

- 6-



L

THE HLO HODEL--TASK 3

These controls allow single level untrusted devices at a
variety of security levels to coexist and communicate on the same
network as trusted devices, maintaining separation of intormation
at different levels of classification while permitting communica-
tion among devices in accord with the mandatory security policy.

The Nis would be built as physically separate, self- ,
contained microprocessor based units. Because they are physi-
cally separate and self-contained, they can be constructed as
tamperproof units. The NIs would use at least three domains of
execution. The network interface and the device intertace will
execute in domains which are separate from the trusted domain
which marks, tilters, and computes authenticators. The trusted
software domain may be further decomposed into separate domains.

Some possible mechanisms for creating separate execution
domains are processor-per-domain and a hybrid architecture. The
processor-per-domain architecture uses a separate processor for
each domain. Communication between domains is accomplished by
shared memory. The advantage of this design is simplicity ot
demonstrating domain separation. The hybrid architecture uses
memory mapping separate from the microprocessor to create multi-
ple domains.

Once a message has been entered into the network with an-

authenticator, it can be stored for later use. That is,
untrusted document managers attached to the network can store the

~*data for future access along with its authenticator. If the
authenticator matches when the data leaves the network, we know

-" that the data was not contaminated or modified.

* 4 .4 .3 L~~Q~Q~

Discretionary access control refers to the restriction ot
. users from objects they have not specitically been authorized

access to by name. Within a multilevel secure system, discre-
tionary access controls act to further restrict users from
objects tor which they may in fact hold the appropriate security
clearance. Such controls require a user to have a "need-to-know"
for the information they request. Within Diamond, objects have
associated access controls lists containing names of users and
groups along with the access rights to the object specifically
accorded to those users and groups.

As a function, discretionary access control can be broken
down into two component functions: user authentication; that is,
determining unequivocably the identity ot any user; and mediation
of user access to system objects. In the Diamond system, respon- ..
sibility for user authentication and access control lies with the
Diamond authentication server, which contains the Diamond Regis-
try and the access control database.

- 68 -

* • ..- - ...
V •*', .,,



-, L

THE MLO MODEL--TASK 3

The identity of users-accessing Diamond through an untrusted
access point can not be reliably determined. Thus for the pur-
pose of making access decisions, reliable information about user 7
identity may not always be available.

The design for a secure Diamond should be able to handle
botn trusted and untrusted components. An untrusted component '

can not be relied upon to maintain separation among users or
resources on that component. Thus while subjects can be con-
sidered to have an associated security level and access point and
user identifiers, the design will also have to consider the
privileges available to a subject when only the security level
and access point can be reliably determined. This would be the
case, for example, it untrusted terminal access controllers are
used as Diamond access points, or in the case of a user gaining
access through an untrusted internet gateway.

One important factor to consider in developing a design for
a secure Diamond system is that untrusted machines can not be -...
relied upon to provide correct information about users or
resources they control. Of course, we may believe that these
untrusted machines behave properly, but by definition we lack the
degree of assurance provided by formal verification. It makes no
sense to formally verify that Diamond makes a correct decision..:.-"
based on a user's identity it that user identity has been sup-
plied by an untrusted machine.

Information Diamond can use in making access control deci-
sions include security level, the user's access point, and user
name. Although using the NIs. Diamond can reliably obtain the
device name and security level, and Diamond can reliably obtain
user names from a trusted device, user names obtained from..- -
untrusted devices can not be trusted to be correct.

Users obtaining access through an untrusted access point or
gateway can be given certain generic access rights corresponding
to the security level ot the untrusted access point or gateway,
even though the user name will not have been obtained with a high
degree of assurance as to its correctness. Users at different
access points or gateways could have different sets of pre-
defined generic access rights, one set corresponding to each
untrusted access point or gateway in the Diamond network.

To apply discretionary access controls in the Diamond system
it is desirable to be able to obtain reliable values for user
names for users accessing Diamond through untrusted access
points. However, it is impractical to require trusted access
points for the Diamond system. Retaining the ability to handle
untrusted access points allows for the flexibility to include a
mix of trusted and untrusted user workstations and untrusted
access points in the Diamond system. In order to allow users at
untrusted devices to access Diamond objects in cases in which the
discretionary access policy requires a reliable user

-69-

* . . *' * * .. *-* *:*9:---.:---:-:'. *.,



!..

THE ML MODEL--TASK 3

identification, a trusted communications channel is needed
between the user and the trusted object manager. We may consider H
the communication channel from the user through the untrusted
access point and then through the network to the trusted object

. manager to be a line subject to active and passive wiretapping.
There is a significant body of literature on using cryptograhic
methods to establish secure channels in the face of these
threats. The appropriate protocols can be implemented on the r
trusted object manager at one end of this line. At the user end

- a trusted User Interface (UI) unit is required. Encryption-based
protocols could be used for establishing secure channels from

"" remote users to trusted object managers.

In cases in which a terminal concentrator is used as an
access point, the UIs would be located at a user terminal. In
cases in which an untrusted user workstation is an access point,

* the UI would be located at the user workstation. The UI could be
"" a freestanding device similar to SYTEK's PFX user authentication

device, or it could be a device placed inline between the user
* and the access point. In any case, the UI would, using

encryption-based protocols, reliably obtain the user identity and
establish a trusted path for purposes ot user identification

" between the user and the trusted object manager or trusted
authentication manager.

4 .4 .4 Y U Q ~

Multilevel user workstations can be added to the Diamond
system to provide the flexibility for users with different clear-
ances to share the same workstation and for workstation users to
create objects at a classification lower than their clearance
level.

The multilevel workstation would be a multilevel device
capable of supporting users, one at a time, with different clear-
ances and discretionary access permissions. Because it incor-
porates verified multilevel security, the multilevel workstation
would be trusted to mark all outgoing transactions with the
correct security level and seal them with an authenticator, and
it would recompute the authenticator for incoming transactions.
Moreover, the multilevel workstation would be able to reliably

" authenticate its users. The multilevel workstation would be
- designed with a small Trusted Computer Base (TCB) to regulate all

disk, memory, display, printer, and network usage.

The design of the multilevel workstation should meet the
following security requirements:

- Login

Since a number ot users might share a workstation, the
workstation must be able to identify them and associate that
user name with a clearance level and specific set ot access

L.: , .i , - .,**-... ,*.. . *. . ... **- ..- *. * - . . . . . . . . . ..



-' -. ..-. :-, .-. ,.

1 HE MLO MODEL--TASK 3

rights (tor objects and resources local to the workstation).

* Communication with the Network

When a user wishes to communicate with another device
on the network, the secure workstation will also perform the
functions that would otherwise be performed by the NI; that \ N..
is, it will mark all outgoing transactions with the correct
security level and seal them with an authenticator, and it
will recompute the authenticator for incoming transactions
and check that the security level is permissible for the
workstation and user.

* Discretionary Access Control for Local Objects 4.

The workstation must be able to enforce a policy of
discretionary access control for local objects.

* Mandatory Security Controls

The workstation must maintain separation of information
at ditterent levels ot classification and must ensure that a
user is not permitted access to information for which he or
she has no clearance.

* Display

The video display must be marked with the highest clas-
sitication ot information displayed on it.

* Re-use of Memory

The workstation must purge buffers, RP., and other re-
usable memory when there is a change of security level.

4.4.5

A secure Diamond architecture could include several document
managers, each at a single security level, so that these file
systems do not have to be trusted. However, since multilevel

" documents are composed of a hierarchy of documents, there would
be a need tor a trusted object manager to reassemble the mul-

" tilevel documents from their component documents in such a way as
to entorce the multilevel object model for Diamond. This trusted
object manager would be a small, microprocessor-based, physically
separate, special-purpose device. Because it serves a limited,
well-defined function, the amount ot code implementing it could
be made small enough so that is practical to verify.

One possible design for the trusted object manager would be
based on SYTEK's Trusted Domain Machine (TDM). The Trusted
Domain Machine is a generic security device designed to enforce

* an application-specific security policy defined when the TDM is

-71 - > -

'4.,-% 'poD
--. ._ - .. ,., .,. '_., .% ,-,." , ----. ,.-. .. , -.- .... ,,, ., -.. .. . -. -. -. , ,-. . , . ..

. .. . .. .. ... .. • , n , ," "L.L .' -',". " " , " ' ' : -. ''.*. . "* ."." .,- ' ,*,.....



". .

THE MLW MODEL--TASK 3P

configured. The security-relevant software in the TDM is physi-
"1 cally Isolated in its own processing domain and includes a veri-

fed "core" security enforcement mechanism that can be used by an
application to entorce its specific security policy. The trusted
object manager could be implemented as an application on the TDM.

4.4.6 2
Like the trusted object manager, the Diamond authentication

manager, containing the Registry and the access control database,
" could reside on a small, microprocessor- based, physically

separate, special-purpose host such as the TDM. Its functions
would be limited, so that the amount ot code implementing it
could be made small enough to verify. Thoughttul design could
result in shared code between the trusted object manager and the
authentication manager, reducing the verification effort even
turther.

7.

-- 7-2- -

. . .. , .

S.. . -

- -F J*~***-- * * * * - .. . -. - - ..



THE MLO MODEL--TASK 3

4.5 Tf~Dazw

> 5>C c I II
1I 0 1 0 4 + Il4 JW

+ i+ OIO 4. I. +--+l- > II--I--i CL.j U)I 1 $91 E ZI )*?I

laiwb I *l l-- m ,

0E I U a * 4-- 1 - +

* I l
I Z I >-LO 4

* - t w -W
*

+ I _j It -i Cl I +- -

*0 I 1 .I 0 4 4

+ + +4 I + J i

Irs- 4a -J iD'iUJ'

*z <i.-.QEnivO i.I j i4-

* 4 I

* *+ +, . .
$z -C-~

4 4n a.i~J'

aI it I 1.I $

-~ wi6. .
*$* IqiZ~i4UI'uiI1i7,

I al ui ,it ~lflfI%



THE KLO MODEL--TASK 3 . *

dl

v v
d2l d 22 d23

------- ------- ------------------ +-----------* . '

31d:32 d33 d34

Figure 2- An Example of a complex Diamond Object (Diagyan 2)

.74

.4%

NIL.



N. .- ..

THE M4LO MODEL--TASK 3

------------------

p1 p2 p3 p4 p5 p6!

d 2 1d22,d23 qj. .yI

d?1 d22 2

- - - - - - - - - - - - - - - - - - - - - - - - -

.. , p:p P5 p&6: tpi p2 p3 p4 p5 p6: p1 p4 p 5

-------------- - -4 -. -- - -+- *-- - - - - ---

d32 d.2

-------------------------------- - - - -4- --- -- --------- - - - - -

I rioi Ir-u C. Pc6 plt p 3 p4 p5 p6 :PI p2 p
3 P4 

0
5 

P:' P1 P2 p 4
p'

- -- -4-...--- - - - - 4 -+---------------------- --- ------ -

Fzgure 3 An E,,arnpl of th'e MLO implementation of a complex Dia-
rr,c,r,.1 Object (d3.

'b '___'Iab~ co..

75 es 8.a



THE MLO MODEL--TASK 3

+ +-+

0 > m '
I j I 1 si m- 5- I

+ UD 
1 - -- *0 19 CIz .>14'J

I I W I I1-12 I

it liA 1 ) Ci

*>, +--+ +l >I .- m

10 i-.'~101

O* 46-i 'J'

* I 'sI LL-e-'+

I iiWUZ *

*. 4--t -+ .
* ~ U I Itw-

+ o>',4'
* t---+ -~~~~ + il-LsL-L ~'

L Ci I-lti/i+

I *1 191-I +-+l-

1 i c - *j lrv u c
* + -- C P ) 4 . C L I > +

W01 S -
* +~ - u~L

* I 0 84601 * +--
I Ls-itW~l0~- I +

* +---+ 4' 1>1 >4 --IV

Irb ~ ~ ~ ~ ~ ~ ~ 1-i-IN I 18 0 ab "e ,. 7



° . -- n

THE MLO m4DDEL--TASK 3

c.'..

+ +

I I iW -

I' > +- 0

iIf,-L
in i. ..o i .i . .U) 0.1

+ in~ !a -- t I >,JMri

1 0 r-, I - .~ ,iarWZ ~ ,

toi ~ismi * *-- -4

* +-* .----.,- + •

+ . .- + * ,

* I 4'! 1 i

I l, ,+ ..i .

a I ° I jI It I 0..*
*... ............ 11 .. .. . +54'C"i . o'

+--*- -- - -

I I

- o •

+. >. l l m Io .

"** l l ;<J l1---+- - -+

S4,•i " ',, * -'-i.".-'---

A W Li LL 4J

I .4'o MI **.i-i "'!
*. . .. . . . . i ..z-.> r> -.I

ii it .. +.. ... i.... . % i

*** itl~t~c(n m ~- -~ w

I aiul n t k O O

*in cn ai *

CI LA i ti-i i,"51"4, .

esi Atll * i Oi-44copy.

...i.'- i -iL " " t -l<>fl7>. .

. a I * 0 I * . . . . . . - o -l "

I . . . ,-' - -,

at i_ . a. .. 0.4

ai..-i ICl

*...I 0I ' -.' -,' ' -
.. ....IL. .-..: O.* 4----. -+~~i _ "'S i-i..'...

*,, bl o y.I'"'" -

".- -". .''- '> '. -' --'',- ' '- .- '. -W '-"> '.-' '- .' '-: '- '. ,' '. '- -' ;- -; '- -' ;. -: '- ,' '- ,: '. -' .' .. .' '- -" .': -: '- .' :. .-] '< ;. -- '. " - 9 :- '> ': .9 '> '> '>
l' " "- -.' ' -, ' ' ' '. - -' ' " 7 ' '. , - " , " " "- , -' ' ,, ' I - '- , . ,' ' ' " ' " ' , ', , . ," " " . - ." ." ' " "- - " " " ' - .' " " "- v ," . .*. . - ." - " , " --.

,. , . . . . = - _ ,i - i
i

, - . - , , ,, .,, . o ,, .- .. .- - - . .- .- .- - - , . .. . ,,,- - .- - - .- - ,. .



I W 'I

+ I a,10

+~Dl (. 1 C u CP

*~~ ~ 4-- mI I5IIlqp

I P *) (JI-a..

t o > U 4J *+ +4

* ~ ~ 4--.
I z o I I*

+ - + +

P -P ~~ 4 -'

I z IPrj

i- .

1 Oct w D Jn ; p p * p'-
+. 0 4 C 41 + -+ P ' 4 ~ . *'ZP- >1 5 ' r -C 101 u o

* P 0i 3 jP 0 . Pjpsj I- oI a

f,*11 ll I P+ + e

9 ~ ~ ~ ~ ~ -L1'-4'.tUCT

+ lu jI P+ -EP >

* ~ ~ ~ -1. 0> e, P2 C.J4
4-+ 5P L4 LI P I euL o c/-

*5*~~~~ +q~ ~ n ep. 1 S u

I- P >S I + -- +

-'rr s LJiL

Cl-P > n7

78 6~&~lItD e->0 - t ai1a61=;



THE 1NLO m4DEL--TASK 3

4 --- 4Q j n

I I LO 1

I LL tI n r
4 + F

I I.'fI 1.4 qJ i
* 4----+z - * t- .-

+ ~ ~ * 12 0>4->) n0
lid 0D _*T + +

iJ4 4-*-J-1V

a- al- 0 4 +- i or >' C
I t1 L u) *71 o4-- '4 -

+ W-' [ -fin411 *I t r
'i-4;i> 0A > -C <u -e

* l-6.lZ4-~~ * l-6.4*SII

*> I.) I K J U + - - -

i.-.4 JU)0 a I >4-1.-

*1 *12 >1~ o 1 0,-f

I L ( ( a i + ia q * .-

* 1%OC i -

Zi :c, .S- -:&+ ~4w1 4*O >0012

S : --- + - * +-4 q

* +-

II L r-I- - --
101- >1 I0+'
1441+ 4. *j *r +- -4

*~~~ r-64' + IZ +14a 2l-- O

*~~ EI I 1 f -2 l Z > -- * . .i -- ..-

4 ~ ~ ~ r A Z.-'- I oo.l

I 1 1 4-I In I-I..~l

*, ++ +I +' +I* I . 4 I O . .

I- Wf~-4L 464 - W6.L

-.- ;4UW~l It Cl

I o 0 44I *1 -I 4
* A 10 4-u4I~I * I T*~

S4 14.4.4ID 79O-
*e~ Iaial copy.-* ~ LIJiI2I * 104)11

I - -l +-++Iuf)
e Ie1 l.I ** .. 4 C 4



THE HLO HODEL--TASK 3 " .

I-I

-" + I I + +

Th - >.% Au .I

4. -C 1 .1 z 4 4 _ (n I I..

•0 .'.4- .*--.-u:-w-i o%°z

so -- 1, ........ " .

I-10 I *L t-- lw4.I1

I >- Il +o + Il Uq.

I I W - I . I * i - - .

+ I lI > w cl *

t 4---- '-+*

+ *+

t - + + + .

* * + It I+ W

1- 14Jlv I- Ell I r I LL n l--I-

I._ i ,- + . . ... .. . ..
1, -4' 1- C• - ' , I

" il * I I ,4-- I -- I*

, I , +- - 0" , , - .

I zILIfCI i I D

•* +-4 ci "o td * It ,;t ... :-C C II

4 . I--+ -t u 4 , +
,~~ ', v, I>A ,. , I , 'S . . . m.. I u I I I

* +----t 4 4 I II

*. . .. 'o ' I I

... .. .. .. .. 'li I -- IDI P

. + I , 1

- f 4, °I -J '* 1> - 14 IL... ... ....CjI
.. . .. . .. • tI- --

Lu -W°

+ +I, -+ - -

* .. I ... . ..ca o ~'s. ...-... '
4 --... 4-' 4 >0 I .'.,:,.,Jr.,,.

1. C . 0 1 S .--'--. -

.- ai . .... I E 1 1 L- , I

-- -'>,,-_- - 1.-- ---- .. .. .I *- -- -- -. -. - - --- I 1 -->-4 - -a.I- . -- 1 - .- .. . •.- - .- -.. . - - --

~~'fll~ 1 4*411,a~0
l~~s-I~ >0slI011 S

- ,L- i),. , .- , . - , +'* - - .. , . J- . . . * . . - 4

, - % I.- S ' . " " " " . " . . " -" ' - "8 " "I-I" ',I" , " " " - "'*" • " " .",I

-= ,, : i -;,,-. ,'','..','q -,e. 'v I I'; :s St. -.. '..,''.' * I.-,''.. -'' -mu'',-.-.''-'' .'.'-0.'-' -'..Y v '..'...,.'.... ',.



AL-k-~ ~~~ --W--;7- IF;-

THE MLO MODEL--TASK 3

5. UYZ-ZMjSg F

11 "Department ot Defense Trusted Computer System Evaluation .
CriteriaO, 15 August 1983.

[2] Landwehr, C.E., and Heitmeyer, C.L., "Secure Military Mes-
sage bystems: Requirements and Security ModelO, NRL Techni-
cal Memorandum, Code 7590, April, 19132.

(31 Proctor, N. and Owre, S., "The Formal Verification of the
M4LO Modelo, Sytek Technical Report TR-85xxx, November,
198b. ,..

141 Owre, S. 0MUSE: The Sytek Proof Processing System", SYTEK,
Inc., Mt. View, Ca, July, 1985.

151 Forsdick, H.C. and Thomas, R.H., OThe Design of Diamond - A .
Distributed Multimedia Document SystemO, BBN Technical
Report 5204, Bolt Beranek and Newman Inc., Cambridge,
Mass., October 1982.

- 0-1 -

,-:.-...

*.*.~~~~~~.C. ~ ~ ~ . . . . . . . . . . . . . . . . .. . . . . . .-.



79E MLW MODEL--APPENDIX i.',

* APPENDIX A

TOE FORMALIZATION OF MULTILEVEL OBJECT SECURITY MODEL

-A-1



THE MLO MODEL--APPENDIX 'e

THE FORMALIZATION OF MULTILEVEL OBJECT SECURITY MODEL

Norman Proctor

Elisabeth C. Sullivan

SYTEK, Incorporated

MODULE MULTILEVEL_ OBJECT._MODEL

TYPES

UserID: PENDING; /* ID of a person or other
external subject */

ProcessID: PENDING; /* ID of an internal subject
acting on behalf of its
sponsoring user */

Role: PENDING; /* a limitation of the discretion-
ary rights of its sponsoring
user placed on a process */

* Descriptor: PENDING; /* ID of an entity in the
database */

ReferenceTable: PENDING; /* all information in the database
used by the reference mechanism
to determine required container
clearances */ k

DiscretionaryAccessTable: PENDING; /* all the information about .
access rights according to the
discretionary policy */

DA, SegmentID: PENDING; /* ID of a unit of the discretion-
ary access table; the table is
modified one unit at a time */

DA Segment-Update: PENDING; /* information used to modify a
unit of the discretionary .'*.

access table *"
Security-Level: PENDING; /* for example, a DoD classification

with a category set *.
DA_Indicators: PENDING; /* the part of an entity's

security label that controls
its discretionary access */

AtomData: PENDING; /* the information an atom has
besides its security labels */

Database-_Information: PENDING; /* all information derived from "-'-
the database that a process has
available from previous reads;
possibly also some information
from the sponsor *.

Edit: PENDING; /* information from the sponsor
that a process can use when
writing an entity's data *-

Query: PENDING; /* information from the sponsor
that a process can use when
displaying to the sponsor */

-A-2-

, . ,*.*"|

. o . .o.. . . . . . . . . . . . . . ......



THE MhLO MODEL--APPENDIX

Display: PENDING; 1* the only information that a
Other..Insructin: PEDING;sponsor gets from a process 1. J

Othe-Insrucionz PEDING /*instructions used only f or
communication between a process
and its sponsor *

Group-.Of_.Users: SET_.OF User_.ID; 1* a fixed set of users with
special privileges *

* Place-Holder: (NOTHING);

Subject-Class: {SCHEDULER, USER, PROCESS);

* Entity-.Tag: {CONTAINER, ATOM); *p

* Descriptors: SEQUENCE-.OF Descriptor; /* the ID's of the entities a
container contains ~

Entity_.Data: ONE-.OF(Descriptors, Atom..Data);
/* Descriptors for CONTAINER

Atom-Data f or ATOM *

Entity: STRUCT_.OF(Security-.Level level;
DA...Indicators DA..indicators;
EntityTag tag;
Entity..Data data);

Flagged,.Entity..Data: ONE .OF(Entity, Place..Holder);

* Flagged-..Entity: STRUCT..OF(BOOLEAN flag;
Flagged-.Enti tyDa ta data);

Access-.Tag: (CREATE, WRITE, UPGRADE, DOWNGRADE, DA..JNDICATORS, READ,
DESTROY, CLEARANCE, DATABLE, KILL, OTHIERTAG);

* Level-.Change: STRUCT-.OF(Security-.Level oldjlevel;
Security-..Level rew.level);

* Access-Data: ONE....F(Place_.Holder, Level .Change, DAIndicators);
/* Level-Change for DOWNGRADE

DAlIndicators for DAINDICATORS
Place-..Holder for CREATE, WRITE, UPGRADE, READ or DESTROY
other tag values do not occur ~

* Access: STRUCT-.OF(Access-.Tag tag;
Access-Data data);

Create-Data: STRJCT_.OP (Descriptor descriptor;
Entity-.Tag new- tag;
Security,.Level new-level);

* Write-.Data: STFRJCT_.OF (Descriptor descriptor;
Edit edit);

* Entity..Level-Data: STRUCT_.OF(Descriptor descriptor;
Security-Level new..level);

-A-3-



TIHE MLO MODEL--APPENDIX

DA.Indicators_.Data: STRUCT.OF(Descriptor descriptor;
DA-.Indicators new.indicators);

Simple-.Entity-.Access..Data: STRUCT.OF (Descriptor descriptor);

U ser- Level..-Data: STRUCT-OF (User_..ID user;
Security..Level new..level);

DA_.Tabl e..Change-.Data: STRTJCT.OF (DA..Seginent..ID segment..ID;
DA_,Segment_.Update segment~jipdate);

* Instruction-.Data: ONE-.OF(CreateData, write_.Data, Entity,.LevelData,
DA..Indicators-.Data, Simple-.EntityAccess..Data, -

User_.Level..Data, DA..Tablehange_.Data,
ProcessID, Qther_.Instruction);

/* Create-,Data f or CREATE
Write-..Data for WRITE
Entity-.Level-Data for UPGRADE or DOWNGRADE
DA_.Indicators_.Data for DA_.INDICATORS ,~~

Simple-.EntityAccess-.Data for READ and DESTROY
tUser..Level-,Data for CLEARANCE
DA-rable-.Change-.Data for DA-TABLE
Process-ID for KILL
Other- .Instruction for OTHER-.TAG ~

* Instruction: STRUCT.OF(Access-.Tag tag;
Instruction-Data data);

* Instructions: SEQUENCE-.OF Instruction;

Process: STRUCT.0F(User_.ID sponsor;
Role role;
Security-..Level container-.clearance;
Security-.Level data..clearance;
Instructions instructions;
Database-..Information DB..info);

Flagged.Process-.Data: ONE-OF(Process, Place-.Holder);

* Flagged-.Process: STRUCT-.OF(BOOLEAN flag;

Flagged-.Process_.Data data);

-A-4-



THE MLO MO0DEL--APPENDIX

PARAMETERS

I w.-
* Instructions
* CHANGEINSTRUCTIONS(Instructions ii;

Instructions i2;;

B OOLE AN
CLEARANCE_.CHANGE_.OK (User_ .ID ul;

Role r;
User..ID u2;
Level_.Charige c;
Discretionary-.AccessTable t);

BOOLEAN
* CONTAINS(Descriptor dl;

Descriptor d2;
Ref erence-.Table t);

Database.jnf orination
* DATA- TO-.READ (Entity e;

Database-.Information d);

Atom-Data
DATA TO-,.WRITE (Instructions i;

EntityData e;
Database-..Information d);

* BOOLEAN
DB-ACCESS-OK(UserID u;

Role r;
Descriptor d;
DA_.Indicators i;
Access a;
Discretionary-AccessTuIable t);

Atom-.Data
DEFAULT-.DATAO;

DA-Indicators .-

DEFAULT-.DA..INDICATORS (User_ ID u;
Role r);

Display .-

DISPLAY(Query q;
Process p);

BOOLE AN *.

DOMINATES (Security-Level si;
Security-..Level s2);

DA..Indicators
DUMY.DAINDICAIRSo;

-A-5 -



IR~E M'LO MODEL--APPENDIX 1

BOOLEAN
ENTITY-EXISTS (Descriptor d;

Ref erence..Table t);

Secukity-.Level
ENTITY-.LEVEL(Descriptor d;

Ref erence-.Table t);

BOOLEAN
IN ITIAL- .ACCESS.RIGHT (UserID u;

Role r;
DA.SegmentlID s);

Security-.Level
INITIAL-.CLEARANCE(UserID u);

Security-.Level
NO .CLEARANCEO;

Databa se..Inf orma tion
NO_ INFORMATION (

BOOLEAN
* PROCESS_ KILL_.OK (User_ ID ul;

Role ri;
UserID u2;
Role r2; .

Discretionary_.Access..Table t);

Security-Level
REFERENCE..LEVEL(Descriptor d; ~

User_.ID u;
Ref erence-Table t);

* BOOLEAN
* ~SECURITY...ADMINISTRATR(User_.ID u);

BOOLEAN
TABLE-.CHANGEOK (UserID u;

Role r;
DASegmentID s;
Discretionary-.Accessrable t);

Ref erence-Table
UPDATE_. REFERENCES (Descriptor d;

Flagged-.Entity e;
Ref erence-.Table t);

Discretionary-.Access-Table
UPDATESEGMENT (DA_.SegrentID s;

DA_.Seguent..Update u;
Discretionary-Access_.Table t);

SA-6



THE MLO MODEL--APPENDIX

DEFINITIONS

Flagged-..Process
no..process() IS STRUCT(flag: FALSE,

data-. NOTHING)

Flagged-.Entity
no..entity() IS STRUCT(flag: FALSE,

data: NOTHING);-.

Access
access(Access-.Tag tag) E

Is STRrJCT(tag: tag,
data: NOTHING)

Access
downgrade-.access(Security-Level old..lvl neweel

IS STRUCT(tag: DWNGRADE,
data: STRUCT(oldNevel: oldlevel,

new-level: new..level));

Access
* indicators-change-.access(DA~indicators new-indicators)

IS STRUCT(tag: DA..INDICA'IORS,
data: new- indicators);

BOOLEAN
contains(FlaggedEntity entity;-

Descriptor descriptor)
IS entity.flag 4A

AND entity.data.tag =TCONTAINER
AND in..sequence(descriptor, entity.data.data);

* BOOLEAN
* insequence(Descriptor descriptor;

Descriptors sequence)
IS IF sequence = NULL THEN FALSE

ELSE IF FIRST(sequence) = descriptor THEN TRUE
ELSE in-sequence(descriptor, NOFIRST(sequence));

BOOLEAN
directlyorindirectly-Llcontains (Descriptor container, content;

ReferenceTable table)
IS CONTAINS(container, content, table)

OR (EXISTS Descriptor d:
CONTAINS(container, d, table)
AND directlyorindirectlycontains(d, content, table));

BOOLEAN
access-for-current-step(Access-.Tag access;

Flagged-_Process process)eniy
IS process.flag

AND process.data.instructions -aaNULL

O A-7,"

-nsqec Dsrpo ecitr .- .- :-
Decitossqune "''-...



47 174 74 .. i 1"7 I

THE MLO MODEL--APPENDIX

AND FIRST(process.data.iistructions) .tag =access;

Flagged-.Process
remove-.instruction(Flagged-.Process process)

IS IF process.flag
AND process.data.instructions -=NULL

* THEN STRUCT
(flag: TRUE,
data: STRUCT

S (instructions:
NONFIRST(process.data.instructions),

OTHER: process.data)) ,~ .
4

j

ELSE process;

BOOLEAN
valid-.process(Process process;

Security-.Level sponsor-..clearance)
IS DOMINATES (sponsor..ciearance,

process. container..clearance)
AND DOMINATES (process. container-.clearance,

process.data-.clearance);

BOOLEAN
correct..hierarchy(Flagged-.Entity container, content;

-> Descriptor content-.ID)
Icontains (container, content-ID)

=>(content. flag
AND DOMINATES(container.data.level,

content. data. level))

BOOLEAN

* mnandatory-.policy(Flagged-.Process process;
Flagged-.Entity old-.entity, new-.entity;
Reference-.Table table)

IS (FIRST(process.data.instructions) .tag =CREATE
OR DOMINATES

(process.data .container-clearance,
REF EREN CE.L EV EL

(FIRST(process.data. instructions) .data. descriptor,
process.data. sponsor,
table)))

AND
(IF FIRST(process.data.instructions) .tag DESTROY

THEN TRUE
ELSE IF FIRST(process.data.instructions).tag =READ

THEN DOMINATES(process.data.data-clearance,
old-.entity. data. level)

ELSE IF FIRST(process.data.instructions) .tag
S INSET (CREATE, UPGRADE) P

THEN DOMINATES(new.entity.data.level,
process.data.data.clearance)

ELSE DOMINATES(old-.entity.data.level,
process.data.data-.clearance));

-A-8



THE MLO MODEL--APPENDIX N

BOQOLE AN a-

discretionary-.policy(Flagged-.Process process; -

Flagged-.Entity old'-.entity, new..entity;
Discretionary-.Access..Table table)

IS DB_.ACCESSOK (process.data.sponsor,V
process. data. role,

* FIRST(process.data.instructions) .data.descriptor,
IF FIRST(process.data.instructiolS).tag = CREATE

TH11EN DUMMY-DA- INDICATORSO(
ELSE old-.entity.data.DAa.indicators,
IF FIRST(process.data.instructiofls).tag - DOWNGRADE-

THEN downgrade.access(old.ertity.data.level,
new-.enti ty. data. level)

ELSE IF FIRST(process.data.instructiofs) .tag
=DAINDICATORS

THEN indicators-.change..access -..

a (new-.entity.data.DAindicators)
ELSE access(FIRST(process.data.instructiols) .tag) ,
table);

A-9 '



THE MLO MODEL--APPENDIX
', % .,

ASSERTIONS .'

SECTION: PARAMETER ASSERTIONS
FORALL Security-Level sl; Security.Level s2; Security.Level s3:

DOMINATES (sl, si)
AND ((DOMINATES(sl, s2) AND DOMINATES(s2, sl)) => (sl = s2))
AND ((DOMINATES(sl, s2) AND DOMINATES(s2, s3)) => DOMINATES(sl, s3));

FORALL Security.Level s:
(DOMINATES(NO_CLEARANCEo, s) OR DOMINATES(s, NO_CLEARANCE())
=> s = NOCLEARANCEO;

FORALL Descriptor dl; Descriptor d2; Flagged-Entity e; Reference-Table t:
ENTITYEXISTS(d2, UPDATEREFERENCES(dl, e, t)) =

(IF dl = d2 THEN e.flag ELSE ENTITYEXISTS(d2, t));

FORALL Descriptor dl; Descriptor d2; Flagged.Entity e; ReferenceTable t: -
ENTITYLEVEL(d2, UPDATEREFERENCES(dl, e, t)) =

(IF dl = d2 AND e.flag THEN e.data.level ELSE ENTITYLEVEL(d2, t));

FORALL Descriptor dl; Descriptor d2; Descriptor d3; Flagged-Entity e; -

Reference-Table t:
CONTAINS(d2, d3, UPDATEREFERENCES(dl, e, t)) =

(IF dl = d2 THEN contains(e, d3) ELSE CONTAINS(d2, d3, t));

FORALL Descriptor dl; UserID u; Security.Level s; ReferenceTable t: "
REFERENCE.LEVEL(dl, u, t) = s

=> (ENTITYLEVEL(d1, t) = s
OR (EXISTS Descriptor d2:

ENTITY_ EXISTS(d2, t)
AND ENTITYLEVEL(d2, t) = s
AND directly_ or_ indirectly.contains(d2, dl, t)));

SECTION: INVARIANTS

FORALL Descriptor d:
entity(d).flag = ENTITYEXISTS(d, reference.tableo);

FORALL Descriptor d:
entity (d) .flag
=> entity(d).data.level ENTITYLEVEL(d, referencetable());

FORALL Descriptor dl; Descriptor d2:
contains(entity(dl), d2) = CONTAINS(dl, d2, referencetable));

FORALL ProcessID p:
process. table(p) .flag
=> validprocess(process-table(p) .data, * '"

clearance-table(process-table(p) .data.sponsor)); . .

FORALL Descriptor dl; Descriptor d2:
correct.hierarchy(entity(dl) , entity(d2) , d2);

-\-1 - :'?.6

L-..--: - ... .--. -. --. - °. -.-. - - *-. . - .5 * .. -. ... - -• ..~ -.. . - . . . . . ... -. -I-T I:



THE MLO MODEL--APPENDIX .-.

SECTION: TRANSITION CONSTRAINTS

Ilatest..subject()= PROCESS
=> (process-table(current.processo).flag

AND process-.table(current-.process().data.instructions NULL);

('latest-.subject() = PROCESS
AND FIRST(process~table(current-.processo) .data.instructions) .tag

INSET (CREATE, WRITE, UPGRADE, DOWNGRADE, DA..INDICATORS, *.

READ, DESTROY))
=> mandatory-.policy(process-.table(current..processo),

entity (FIRST(process.table(current..processo) .data
.instructions) .data.descriptor),

'entity(FIRST(process.table(current..processo) .data
.instructions) .data.descriptor),

reference-.table 0);

('latest.subject() = PROCESS
AND FIRST(process..table(current-.process)Ldata.instructions) .tag

INSET {CREATE, WRITE, UPGRADE, DOWqNGRADE, DAINDICATORS,
READ, DESTROY))

=> discretionary-.policy(process-.table(current-.processo),
entity (FIRST(process.table(current-.processo) .data

.instructions) .data.descriptor),
lentity(FIRST(process-.table(current-.processo) .data

. instructions) .data. descriptor) ,
DA-.tableo);

'14.



3041-f69 187 MULTILEVEL OBJECT SECURITY HODEL(U) SYTEK INC MOUNTAIN 212
VIEW CA E C SULLIVAN ET AL. AR 86 SYTEK-TR-8N15
RRDC-TR-86-1O F3S6O2-SS-C-00I

UNCLRSSIFIED F/0 9/2

L 0 11



4.

A~A.

~y~i

~.% i.%I.

~0P *O

A. ~*

4~~.4. ~*.
.pJ.

4. -4.

~., .p *~p~

- .4.
4 ~

*i. ..~.

.4..,

-~

IIIII~ *~ 332 ~ 
-

IIIII~ L
L 336

L

liii-
-

44~ III 1.25 11111_[4 *I 1.6

II~ _________

M'CRfl( ~4

e.
AA 3 '4.?

.4 .4

.44.4.

'4

.4 .4~ 4

,~.

44 ~**~ 44.

%

* .4.
4.. 4-............................... 4 . . . . 4 4 - 4 ~ ~

44444444*~

-
. - .4.4*** . ............- . - . . . - ., *..* 44.................................................

.~....
4%~ .*-........ - . . - .

** *.~---~4~V . .
.4 ***4~....--



THE MLO MODEL--APPENDIX

FUNCTIONS

VFUN latest- subject()
-> Subject-Class subject;
HIDDEN;
INITIALLY subject = SCHEDULER; -.

VFUN current_ process()
-> ProcessID process_ID;
HIDDEN;
INITIALLY TRUE; ,.

VFUN clearance-table(User-_ID user)
-> Security-Level level;
HIDDEN;
INITIALLY level (IF SECURITYADMINISTRATOR(user)

THEN INITIAL_ CLEARANCE (user) -
ELSE NO_CLEARANCE);

VFUN process-table(ProcessID processID)
-> Flagged-Process process;
HIDDEN;
INITIALLY process = noprocesso; ".

VFUN entity(Descriptor descriptor)

-> Flagged-Entity entity; -
HIDDEN;
INITIALLY entity = noentityo;

VFUN reference- table()
-> ReferenceTable table;

4" HIDDEN; --. .

INITIALLY FORALL Descriptor dl;
Descriptor d2:

ENTITYEXISTS (dl, table)
AND ~CONTAINS(dl, d2, table);

* VFUN DA-table()
-> DiscretionaryAccessTable table;
HIDDEN;
INITIALLY FORALL UserID ul;

UserID u2;
Role rl;
Descriptor d;
DA.Indicators i;
Access a;
Level.Change c;
DA.SegmentID s:

-DB.ACCESS.OK(ul, rl, d, i, a, table) -,

AND -CLEARANCE_CANGE.OK(ul, rl, u2, c, table)
ND "PROCESS.KILL_OK(ul, rl, u2, r2, table) ,-

AND (IF SECURITYADMINISTRATOR(ul)
THEN TABLE.CHANGE.OK(ul, rl, s, table)

- A-12 .

I--'-

-'.4 . .... * qt . 9 .h 4 . .



* TWE MLO MODEL--APPENDIX

=IN ITIAL_.ACCESS..RIGHT (ul1 ri, s)
ELSE -TABLESHANGE.OK(ul, ri, s, table))l

A-13



THE MLO MODEL--APPENDIX

OFUN create-.entity 0;

* DEFINITIONS .

ProcessNi
process IS process-table(current-.processo) .data;

Instruction
step IS FIRST(process.instructions);

* Descriptor
*descriptor IS step.data.descriptor;

Entity-.Tag
* new-.tag IS step.data.new-.tag;

Security-.Level
* new-level IS step.data.new.level;

Flagged-.Entity
new-entity IS

STRUCT(tlag: TRUE,
data: STRUCT(level: new..level,

DA-indicators: DEFALTDA-INDICAIORS

tag ne...ag, (process.sponsor, process.role),

data: IF new..tag = CONTAINER THEN NULL
ELSE DEFAULT-DATAo));

* ASSERTIONS

access-.for-.current..step(CREATE, process-.table(current..processo));

* entity(descriptor) .tlag;

* DOMINATES (new- evel, process. da ta.clearance);

* DBACCESS-.OK(process.sponsor, process.role, descriptor,
DUMMYDAINDICATORS0, access(CREATE), DA..tableo);

* EFFECTS

- 'latest-subject() PROCESS;

process-table(current.processo)
* ~remove-.instruction(process-.table(current-.processo));

* 'entity(descriptor) =new-.entity;

* 'reference-.table() UPDATE-REFERENCES

(descriptor, new..entity, reference.table 0);

-A- 14-



L~* U"% -- L V V V75 -

THE MLO MODEL--APPENDIX

OFUN write-.entityo;

DEFIN IT IONS

Process
process IS process-.table(current.processo) .data;

Instruction
step IS FIRST(process.instructions);

Descriptor
descriptor IS step. data. descriptor;

Edit
edit IS step.data.edit;

Entity ~.
old-.entity IS entity(descriptor).data;

Enti ty-.Data
new-data IS DATA_[OWRITE(edit, old..entity.data, process.DB-.info);

Flagged-.Entity
new-.entity IS STRUCT(flag: TRUE,

data: STRUCT(data: new~data,
OTHER: old-.entity));

* ASSERTIONS

* access..jor-.current-step(WRITE, process-.table(current-.processo));

entity(descriptor) .tlag;

* DOMINATES(process.container.clearance,
REFER ENCELEVEL

(descriptor, process.sponsor, reference..tableofl);

DOMINATES(oldentity.level, process.data..clearance);

* old-.entity.tag = CONTAINER
=> (FORALL Descriptor d:

in..sequence (d, newdata)
=> (entity(d) .tlag

AND DOMINATES (old.entity. level,
entity (d) .data.level)));

DB..ACCESS.OK(process~sponsor, process.role, descriptor,
old-entity.DA-indicators, access(WRITE)p DA..tableW; S

EFFECTS

* 'latest-subject() PROCESS;

-I-S -



7HE MLO MODEL--APPENDIX .g

'process..table(current-.processo)=
remove-.instruction(process.table(current..processof))i

* lentity(descriptor) =new..entity;

'reference-,tableo( UPDATE-..REFERENCES
(descriptor, new..entity, reference..tableo);

A-16



P -. WpMa 1W

THE M4LO MODEL--APPENDIX

OFUN upgrade-.ertityog

DEFIN ITIONS

Process
process IS process-.table(current.processo) .dataI

Instruction
step IS FIRST(process.instructions);

Descriptor
descriptor IS step.data. descriptor; --

Securi ty-Level
new-level IS step.data.new.Aevel;

Entity
old-.entity IS entity(descriptor).data;

Flagged-.Enti ty
new-.entity IS STRUCT(flag: TRUE,

data: STRUCT(level: new-level,
O'THER: old-.entity));

ASSERTIONS

access-.for.current.step(UPGRADE, process-.table(current-.process));

* entity(descriptor) .tlag;

* DOMINATES(process.container-.clearance,
REF ER EN C E.LEV EL

(descriptor, process.sponsor, reference.table));

DOMINATES(new-level, process.data..clearance)
AND DOMINATES(new.level, old...entity.level)
AND new-l.1evel -= oldenti ty.1 evel;

FORALL Descriptor d:
* contains(entity(d), descriptor)

=> DOMINATES(entity(d) .data.level, new-level);

DB-.ACCESS.OK(process.sponsor, process.role, descriptor,
old-entity.DA..indicators, access (UPGRADE), DAtable()l

EFFECTS

latest-.subject() PROCESS;

'process..table (current process()
remove-instruction(process-table(currentprocesso));

* 'entity(descriptor) new..entity;

A :-17



THE MLO MODEL--APPENDIX I

reference,tableo( UPDATEREFERENCES
(descriptor, new-.entity, reference..tableo);



TRE MLO MODEL--APPENDIX

OFUN downgradeentity ();

* DEFINITIONS

* Process
process IS process-.table(current.processo) .data;

Instruction
step IS FIRST(process.instructions);

Descriptor
* descriptor IS step.data.descriptor;

Securi ty,.Leve1
newjlevel IS step.data.newjlevel;

Entity
old..entity IS entity(descriptor).data;

Flagged-.Entity
new~entity IS STRUCT(flag: TRUE,

data: STRUCT(level: new-.level,
OTH.1ER: old-.entity));

ASSERTIONS

access-.for-.current-.step(DOWNGRADE, process-.table(current-.processo));-

* entity (descriptor) .flag;

* DOMINATES(process.container-.clearancer
REF EREN C E_.LEVEL

(descriptor, process.sponsor, referencetable()));

* DOMINATES(old-.entity.level, process.data-.clearance)
AND DOMINATES(old-.entity.level, newjlevel)
AND old..entity.level -=newjlevel;

* FORALL Descriptor d:
contains(entity(descriptor), d)
=> DOMINATES(newlevel, entity(d) .data.level);

DB-ACCESS-OK (process.sponsor,
process. role,
descri ptor,
old..entity .DAjindicators, -

downgradeaccess (old-.entity.level, newlevel),
DA.tableo);

EFFECTS

* 'latest..subject() PROCESS;

- 194)



THE MLO MODEL--APPENDIXA ,

'process..table(current..processo) -
remove..nstruction(process-table(current.processo));

'entity (descriptor) =new..entity;

(descriptor, new..entity, reference..tableo);

A-20



THE NLO MODEL--APPENDIX
pr

OFUN write-DA-.indicators.of-.entity 0;

DEFINITIONS .

process IS process..table(current..proceSs0) .data;

Instruction
step IS FIRST(process.instructions);

Descriptor
* descriptor IS step.data.descriptor; * *

DA,.lndicators
* new-..indicators IS step.data.new-.indicators; .

Entity
* old-entity IS entity(descriptor).data;

ASSERTIONS

* access-forcurrent-step(DA-INDICAIDRS, process-.table(current-.processo));

entity(descriptor) .flag;

DOMINATES (process.container..clearance,
REFERENCE..LEVEL

(descriptor, process.sponsor, referencetableo));

C. DOMINATES(old..entity.level, process.data.clearance);

DB..ACCESS-.OK (process. sponsor,
process. role,
descriptor,
old-.entity .DA-indicator s,
indicators-.change..access (new-indicators),
DA_ table();

EFFECTS

* 'latest-.subject() PROCESS;

* 'process..table(current.processo)
remove-instruction(process-table(current-.process0));'

* entity(descriptor) =STRIJCT(flag: TRU E,
data: STRU CT (DA_ indi ca tor s: new-indicators,

OTHER: old..entity));

A-21 -.-

.e d.. . . -** - *S * S-S - . - .- *



THE MLO MODEL--APPENDIX

OFUN readentityo;

DEFIN ITIONS -. '

Process
process IS process-.table(current.processo) .data;

Instruction
*step IS FIRST(process.instructions);

Descriptor
*descriptor IS step.data.descriptor;

Entity
entity IS entity (descriptor).data;

ASSERTIONS

access.for..current-.step(READ, process..table(current..processo));

* entity(descriptor) .flag;

DOMINATES (process.container.clearance,
REFER EN C E_.LEVEL

(descriptor, process.sponsor, reference..table));

DOMINATES(process.data-.clearance, entity.level);

DB..ACCESS...OK(process.sponsor, process.role, descriptor,
entity.DA-.indicatorsp access(READ), DA..tableo);-

EFFECTS

'latest-.subject() PROCESS; *.

process-.table(current-.processo)
STRUCT(flag: TRUE,

data: STRUCT(DB-info: DATA-TO..READ(entity, process.DBjinto),
instructions: NONFIRST(process.instructions) ,

OTHER: process));

A - 221

-7 .. 2.7



THE MLO MODEL--APPENDIX

OFUN destroy...entityo;

DEFINITIONS

Process
process IS process-.table(current...processo) .data;

Instruction
step IS FIRST(process.instructions);

Descriptor
descriptor IS step. data. descriptor;

Entity
old-.entity IS entity (descriptor) data;

ASSERTIONS

access- forcurrent_ .step (DESTROY, process_.table (current-.processW)

entity(descriptor) .tlag;

* DOMINATES (process.container-.clearance,
REFER ENCELEVEL

(descriptor, process.sponsor, reference..tableo));

* FORALL Descriptor d: -contains(entity(d), descriptor);

* DB-.ACCESS-.OK~process.sponsor, process.role, descriptor,
old.entity.DAindicators, access(DESTROY), DA..tableofl;

EFFECTS

latest-subject() PROCESS;

'process-table(current.processo)
rerove-instruction(process-.table(current..processo));

pentity(descriptor) no...entityo;

'refierence..table() UPDATE REFERENCES

(descriptor, no..entity(), reference,.tableo);



THE MLO MODEL--APPENDIX

OFUN change..clearance ()

DEFINITIONS

Process
process IS process..table(current-.processo) .data;

Instruction *-

* step IS FIRST(process.instructions);

ijser..ID
user IS step.data.user;

* Security-..Level
* new-level IS step.data.new.level;

Level-Change
* level-.change IS STRUCT(old..level: clearance-.table(user),

new-level: new-level);

* ASSERTIONS

access-for-.current..step(CLEARANCE, process.table(current-.processc)));

* FORALL Process-.ID p:
process-table (p) .flag
=> process..table(p).data.sponsor -=user;

CLEARANCE-CHANG EOK
* (process.sponsor, process.role, user, level..change, DA..table);

EFFECTS

* 'latest..subject() PROCESS;

'clearance-table(user) = newjlevel;

process .table(current..processo)=

* ~rernove-.instruction(process-.table(current.processo));

-A-24-



THE MLO MODEL--APPENDIX ~P

OFUN change..di scr eti ona ry...access-..table();4

DEFIN ITIONS

* Process
* process IS process-.table(current-.processo) .data; *%

Instruction
* step IS FIRST(process.instructions); y

* DASegment_.ID
* segment_.ID IS step. data. segment_ ID;

DA-.Seguient...Update
- segment.update IS step. data. segment-.update;

* ASSERTIONS

access-forcurrent-step(DA-.TABLE, process..table(current-.processo));

* TABLE-.CHANGE.OK(process.sponsor, process.role, segmentID, DA..tableo);

EFFECTS

'latest-subject() PROCESS;

'process..table(current-.processo)
* remove-.instruction(process-.table(current..processo));

I DA table() UPDATE-.SEGMENT(segment-ID, segment-.update, DA_ table();

% .4 % 

-A-25

%i.:. %



THE MLO MODEL--APPENDIX '- ~

OFUN spawn-.process(Process-.ID process_.ID;
Role role;
Security-Level container-.clearance;
Security-.Level data..cleararice)

[UserID user];

DEFIN ITIONS

* Process
new-.process IS STRUCT(sponsor: user,

role: role,
* container-clearance: container-.clearance,

data-clearance: data-.clearance,
instructions: NULL,
DB-.info: NO-INFORMATIONO);

ASSERTIONS

process.table(process-.ID) .flag;

DOMINATES(clearance.table (user), container..clearance);

* DOMINATES (container..clearance, data~clearance);

EFFECTS

* 'latest-.subject() USER;

process-..table (process_..ID)= STRUCT(flag: TRUE,
data: new-.process);

-A-26-



T~~~~~~~ - .'V -W,-

P %

THiE MLO MODEL--APPENDIX

OFUN kill..processol;

DEFINITIONS

Process
process IS process..table(current.processo) .data;

step IS FIRST(process.instructions);

Process..ID
* ending..process..ID IS step.data;

Process
ending..process IS process..table(ending.process-.ID) .data;

ASSERTIONS

* ~access-.for-.current..step(KILL, process-.table(current~processo));

process..table (ending-.process..ID) .flag;

* ~ending-,process..ID = current..process()
OR PROCESSKILL.OK (process.sponsor,

process. role,
ending.,process. sponsor ,
ending.,process. role,
DA..tableofl;

* EFFECTS

* 'latest-subject() PROCESS;

* 'process.table(ending.process-I.D) =no.processo;

ending-.process-.ID =current-process()

=> 'process-.table(current..processo)
=remove-.instruction(process-table(current..processo)); -.

-A-27-

. . .. .. .. .... .. .. ... ...... . .

.. . . . . .. . . ..



I

THE MLO MODEL--APPENDIX

OVFUN display-.to..user (Process..ID proces..ID;
Query query)
[User..ID user]
-Display display;

DEFINITIONS ~1

Process.
process IS proceSs..table(process..ID).data;

* ASSERTIONSr

process- table (process_. ID) .flag;

process.sponsor =user;

* EFFECTS

'latest-.subject() USER;

display =DISPLAY(query, process);

-A-28-



THlE M4LO MO0DEL--APPENDIX

* OFUN instruct-.process(Process-ID process.ID;
Instructions new-.instructions)

(User_.ID user]; 'Zd

DEFINITIONS

Processr
*process IS process_..table (process_. ID) .data;

* ASSERTIONS

process..table(process_.ID) .flag;

* process.sponsor =user;

* EFFECTS

* 'latest-.subject() USER;

'process-..table (process-..IN)
STRUCT(flag: TRUE,

data: STRUCT (instructions: CHANGE_.INSTRUCTIONS
(process. instructions,
new-.instructions),

OTHER: process));

* - A-29-

.. .&7



THE MLO MODEL--APPENDIX

OFUN schedule-.procesB(Process..ID process_.ID) ;.' a-~

EFFECTS a.

'latest.subject() SCHEDULER;

'current-.process() process_.ID; .,l

* END_140MDULE

-A-30-

J'a



MISSION
Of

Rome Air Development Center
RAVC r~ans and execu~tes tes<eat~ch, devetopmevvt, test

( LInd~ seeted ctcquisition ptogtams iun suppot.t o6
C3)act v-ties. Tecnicu and enginev~n

suppoi~t withiun a'tea6 o6 competence is pLitc ded toc
ESO Ptogtam 0664h'es (PcXsj and o-thet ESP etement5

The Lttea5 o/) techn~caZ compe-tence -Lnceude
cc mmuiiicat4~'ons, command and con.Ltot, ba-ttft

*makia ement, -{fl jotma-ticn p'Locessefl9, 6u'Lve-ci~czce "
selsots, Cnteb2Lence da-ta co2Iecton and hande-utgq,

s -'id staLte sciences, e~ec tomagne tics, and
k-cj:aati ea, and etecttoc'n-c, rnatntcLaabiLLty1 ,



I - - ~- - - -

U

I

I
pI.

I

J

S. *~ ~. - - - .-. *.--. --. 5-.. .. *.5.*.*. 5 .5... .5 -5.- *555~555* *5 -

S-- .. *P~*...* ~ 'S..

-. >5~** b . ~ *->---~i; C~ -.&-Y& .~-:--~ ~


