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1. INTRODUCTION AND TERMINOLOGY I

MATCHING EXTENSION AND CONNECTIVITY IN GRAPHS

by

M.D. Plummer*
Department of Mathematics 1 1 IC

Vanderbilt University E C T E
Nashville, Tennessee 37235 JN2 6 1986

dedicated to Frank Harary 0
on the occasion of his sixty-fifth birthday

1. Introduction and Terminology

All graphs in this paper will be finite and connected and will have
no loops or parallel lines.

Let n and p be positive integers with n < (p - 2)/2 and let G be

a graph with p points having a perfect matching. Graph G is said to
be n-extendable if every matching of size n in G extends to a perfect
matching. In this paper, we will be concerned primarily with studying
the relationship between n-extendability and connectivity in graphs.

Let us begin, however, with a few historical remarks. The concept
C:) of n-extendability seems to have its earliest roots in a paper of Hetyei

(1964) who studied the concept for bipartite graphs. In this early paper,
Hetyei obtained three different characterizations of 1-extendable bipar-

* I'tite graphs. Lova'sz and the present author (1977) gave a fourth such
characterization which they referred to as an "ear structure theorem".
Unknown to them, however, Hartfiel (1970) had already formulated an
equivalent theorem, but couched in terms of matrices. A year later,
Brualdi and Perfect (1971) published a paper in which they gave the first
characterization of n-extendable bipartite graphs, but they too couched
their results in terms of matrices ("extending partial diagonals") and set

systems ("extending partial systems of distinct representatives (PSDR's)").
I' For more on bipartite n-extendable graphs, see Plummer (1986a).'I The more general family of n-extendable graphs which are not neces-

2) sarily bipartite seems to have even earlier roots. In the late 1950's, Kotzig

' V. '  (1959a, 1959b, 1960) began to develop a decomposition theory for graphs
with perfect matchings, but unfortunately these papers did not receive
the attention that they deserve, due to the fact that they were written
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in Slovak. In the early 1960's, the study of decompositions of graphs
in terms of their maximum matchings was begun by Gallai (1963, 1964)
and independently by Edmonds (1965). One of the degenerate cases of
their theory for maximum matchings, however, arises when the graphs
in question have perfect matchings.

Motivated by the results of Kotzig, Gallai and Edmonds, Lovisz
(1972) extended and refined the canonical decompositions already extant
while analyzing further the structure of graphs which are elementary,
thus extending the earlier work of Hetyei and Kotzig. A graph G is
called elementary if the set of its lines which lie in at least one perfect
matching form a connected subgraph of G.

In this same paper, Lov.sz introduced the concept of a bicritical
graph. A graph G is said to be bicritical if G - u - v has a perfect
matching for every pair of distinct points u and v in V(G). In the last
ten years or so, the earlier work on decompositions of graphs in terms
of their matchings has evolved further (see LovAsz and Plummer (1986))
and today much attention continues to be focused upon the structure
of bicritical graphs which are, in addition, 3-connected. Such graphs
have been christened bricks. (See, for example, the paper by Edmonds,
Lov~sz and Pulleyblank (1982).)

But what is the connection between n-extendability and bicriticality?
In 1980, the author published a paper on general n-extendable graphs.
One of the results presented in that paper states that every 2-extendable
graph is either bipartite or is a brick. (The reader should convince himself
immediately that these two classes of graphs are disjoint.) Motivated by
this result, the author has continued to study properties of n-extendable
graphs (see (1985, 1986a, 1986b and 1986c)).

All graph terminology not defined in this paper may be found in
Bondy and Murty (1976) and Lovisz and Plummer (1986).

2. Connectivity and n-extendability of a Graph

In addition to the theorem of the author found in (1980) and men- []
tioned in the Introduction, there are two other results proved in that
paper which we shall need repeatedly and hence we state them without
proof.

1980A. THEOREM. If n > 2 and G is n-extendable, then G is also
(n - 1)-extendable. "ds

or
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1980B. THEOREM. If G is n-eztendable, then G is (n - 1)-con-
nected.

However, one can say more about the minimum point cutsets of
an n-extendable graph. But first we need the following lemma which
is immediate using Philip Hall's classical theorem on bipartite graph
matching.

2.1. LEMMA. Let G be k-connected, let S be a minimum cutset in
G, and let C be any component of G-S. Then given any subset S' C S,
S' =, 0 and IS'l _ IV(C)I, thee exists a complete matching of S' into
V(C).

PROOF. Suppose that the conclusion of the Lemma is false. So there
exists a non-empty subset S' of S with IS'I IV(C)I, but no complete
matching of S' into V(C). Consider the bipartite graph B with point
set bipartition V(B) =S' u V(C) and with E(B) consisting of all lines
of G joining S' to V(C).

Applying P. Hall's theorem to the bipartite graph B, there must be
a set S" C S', with IF(S")I < IS"I and S" 34 0.

Then since IrF(S")I < IS" I _< IS' < IV(C)I, there must be a point
u E V(c) - F(S"1). But then T = (S - s") U (F(S") separates u from
any other component C' of G - S where C' 34 C. But then jTI =

is- Si + Ir(s")l = ISl - IS"l + Ir(s")I < ISl, contradicting the fact
that S is a minimum cutset in G.

We are now prepared for the main result of this section.

2.2. THEOREM. Let G be an n-extendable graph with n > 1 and
let S C V(G) be a cutset of G with ISI = n + 1. Then:

(a) S is independent.
(b) If in addition, n > 2, then G - S has at most n + 1 components

and equality holds if and only if G = K,+l,n+.

PROOF. First note that since IV(G)I = p > 2n+2 > n+2, it follows
that G 34 K,+ 2 and hence S is a non-trivial cutset; that is, G - S has
at least two components. By Theorem 1980B, G is (n + 1)-connected and
hence S must be a minimum cutset of G.

Suppose S is not independent. Then we may assume that S "
{a, b, u,... ,u,} where ab E E(G). Let the components of G - S be
C1,.. ., C, where r > 1. Relabeling the components if necessary, we may
assume that IV(Ci) > IV(C.)1, for ' > 1.

Claim. For each component Ci of G - S, jV(C,)J < n - 2.

" ' "'"" " " '" """ " " '" '"""............................",.'...... .. ".".......... ::::;,::'



Suppose, to the contrary, that, say, IV(C1) n - 1. By the
preceding lemma, we can match all of ul,..., u,,- into V(Cl). Let this
matching be Mi = {Uiti,. . -i .

Now M, + ab is a matching of size n which must, therefore, extend
to a perfect matching F, of G. Thus in particular, IV(Ci)[-(n-1) must
be a non-negative even integer.

Now ul must be adjacent to some point wi E V(C 2 ). Then M 2 =

M, - uivi + ulw1 + ab must be a matching of size n which cannot be
extended to a perfect matching for G since M2 covers S, but leaves an
odd number of points in V(Ci) unmatched. So we have a contradiction
of the assumption that G was n-extendable and the Claim is proved.

Now let us suppose that at least one component, say C 1 , of G - S
contains at least 2 points. Since then by the above Claim, 2 < IV(C1)I
n-2 < n- 1, by the preceding Lemma we can match some JV(Ci)j points
from S - a - b into (and therefore onto) V(Ci). Denote this matching
by M3 = {el,. ,et} where e, = uiv, and t = IV(C)l. Note that M3

leaves m = (n - 1) - t > 0 points of S - a - b unmatched.
Suppose now that m < Y_.2IV(C)I. Then by Lemma 2.1, the m

points in S- a-b unmatched by M 3 can be matched into V(C 2 ) u.. U
V(C,). Let M 4 = {e,... ,etet+1 P...,en-1 } be this extension of M 3,
where e = uivi, where ui E S - a - b.

Suppose one of u,,...,ut, say u,, is adjacent to y E Uir2 V(C )
such that y is not covered by matching M 4. Then M == M4 - u1 V1 +
uly + ab is a matching of size n which does not extend to a perfect
matching of G, since v, cannot be matched. This is a contradiction of
n-extendability.

So we may suppose that Ul,... , ut are adjacent only to points in

Ui- 2 V(C) which are covered by matching M 4 .
Now we may assume that our matching M 4 is "greedy" in the sense

that no point in C.+i is covered by M 4 until all points of C, are covered
by M4 . In this way, we see that at most one of the components C 1,. .. , C,
is partially - but not completely - matched by M 4 . (See Figure 1.)

Now suppose M 4 covers all points of Ur., V(C). Then IV(G)
2+2(n-1) = 2n, a contradiction since G n-extendable implies p _ 2n+2.
So there are points in Ui=2 V(Ci) which are not matched by M 4 .

Let Ck be a component containing a point v0 not matched by M4.
Let IV(Ck)I = s. Now t = JV(C 1)j ! IV(Ck) 8 = s, so by the preceding
Lemma, there exists a complete matching N of {ui,...,u.} into, and
therefore onto, V(Ck). Hence N must match one of u1 ,..., u, to vo, say
ujvo E N. Hence M = M 4 + ab - ujv. + ujvo is a matching of size n
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FIGURE 1.

which covers all of S and all of C1, except point vj. Thus M5 does not
extend to a perfect matching for G, a contradiction.

So we may assume that m = (n - 1)- t _> 'i"._2IV(C )I. But then

IV(G)I = 1 + IV(C)I

r

(n + 1) + Iv(cl)l + Ejv(cj)j
i=2

--n + 1 + t + EIv~Coi)
i-2

< n + 1 + t + n - 1 - t =2n,

contradicting the hypothesis that G is n-extendable.
Thus we may assume that all components of G - S are singletons,

say zi,..., z., where a > 2. But then we have 2n < IV(G)I - n +1+ a,
or a > n- 1, that is, a > n.

Now by Theorem 1980A, graph G is 1-extendable and so the single
line ab extends to a perfect matching F2 of G which must match the set
{z,,... z,} into {u,, u,-,} and hence a < n- 1, a contradiction.

..................... .. __.



This completes the proof of part (a).
To prove part (b), suppose once again that C,,..., C, are the com-

ponents of G - S, that IV(Ci) > IV(Cj)m for j > 1 and that r > n + 1.

Suppose that IV(CI)I > 2. Since S is a minimum cutset in G, by the
preceding Lemma we may match ul and U2 into V(CI), and uj (if any)
into Cj- 1 for 3 < ] _ n. Extend this matching to a perfect matching
F3 of G.

First suppose that F3 matches un+1 into Ci. Then C,,..., C7 must
all be even and C1 ,.. ., C,,-l all odd. On the other hand, again because
S is a minimum cutset, we may match u, into C2 , u2 into Ca,..., and

un into Cn+1 . Extend this matching to a perfect matching F4 of G.
Then F4 must match u,+, into C1 , since C1 is odd. But then C, must
be odd, a contradiction.

So we may assume that F3 does not match un+l into C1 . We have
two cases to consider.

Case 1. Suppose n = 2. Without loss of generality, assume that F3

matches un+ - u3 into C2 . Then C 1,C 3 ,.. ., C, are all even, but C 2

is odd. Now form a different matching which matches ul to C, and u2

to C3 and extend to a perfect matching F5 of G. Then F5 must match
point u3 to even component C1 . But then it follows that C2 must be
even, a contradiction.

Case 2. Suppose n > 3. There are two subcases to consider.
First, suppose F3 matches u,,+, into some C,, where 2 < j < n-1.

Without loss of generality, assume that u,+, is matched into C2 . Then
C 1 , C2 , C,... C, are all even, while the rest of the C, 's, if any, are all
odd. Now construct a new matching taking u, to C, and u2 to C,+1

and leaving u 3 , ... ,u, as matched by F3 above. Extend to a perfect
matching F6 of G. But then it follows that since C2 is even, F6 must
match u,+ into C2 . But then component Cn must be odd and again
we have a contradiction.

Second, suppose that F3 matches u,+, into Some C, with J > n.
Renumbering if necessary, we may suppose that j = n. Thus components
C,,C,+i,...,C, must all be even, while C2,...,C, are all odd.

Now construct yet another matching pairing ul to Cn+1 and leaving
U2, u, as matched by F3 . Extend this to a perfect matching F 7 of

G. But then since C1 is even, F7 must match u,, to C1 . But then C,
must be even, a contradiction.

Thus we may assume that IV(CI)l ... IV(C)- 1. But then
if r > n + 1, graph G cannot have a perfect matching, so we have that
r-n+l.
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FIGURE 2.

But again since G is (n + 1)-connected, we have deg v > n + 1 for
all v E V(G) and hence G = ,+,,,+,.

Trivially, if G = K,+ 1,,+, and S is any minimum cutset of points
in G, then S must be one of the two classes of the bipartition and hence
G - S has precisely n + 1 (singleton) components.

This completes the proof of the theorem. "

REMARK 1. The restriction in part (b) of the theorem above that
n > 2 is necessary in the following sense. If n = 1, there are infinitely
many 1-extendable graphs with cutsets S such that ISI = 2, but having 2
or more components in G - S. Moreover, such components may be non-
trivial. In Figure 2, we show an infinite family of 1-extendable graphs
each having a cutset S of size 2, but having the number k of components
of G - S as large as one likes. (Note: The large plus sign in Figure 2 and
in subsequent figures in this paper signifies the "join" operation where
all points on the left are joined to all points on the right.)

REMARK 2. The examples in Figure 2 show that 1-extendable graphs
may have arbitrarily small toughness. (Recall that the toughness of a
graph G is defined by min(ISI/(c(G- S)) where S ranges over all cutsets
of G and c(G - S) denotes the number of components of G - S.)

,". . . .'"." • "' "' '" " ". " . ... ' . . . .. i. .. _ ." ./
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FIGURE 3. The family {G,}

For general n, the toughness of an n-extendable graph may be
arbitrarily small as well. In Figure 3 we show an infinite family of graphs
{G,}, n = 1,2,..., where for each n, graph G,, is n-extendable, but
the toughness of Gn, = tOGn) <_ 2n/(2n + k), where k can be any positive
integer chosen as large as one likes.

REMARK 3. At the other extreme, there are n-extendable graphs
with minimum cutsets S of size n + 1, but where G - S has only two
components. Figure 4 shows an infinite family of such graphs {H,},
n > 1, where K(H,) = n + 1. This family also shows that the line-
connectivity of an n-extendable graph can be arbitrarily large, while
the point-connectivity remains at its minimum value n + 1. In this
family, k may denote any odd positive integer. It is a tedious, though
straightforward, argument to show that each H,, is n-extendable.

REMARK 4. There are n-extendable graphs which not only have
point-connectivity n + 1, but even have minimum degree n + 1. (Hence
tc(G) = X(G)= mindeg(G) = n + 1.) For each n > 1, a family of such
graphs (which are, in fact, bipartite) is given by Bn = Kn+2,n+2 - F,
where F is a perfect matching.

Let us now recall the definition of local connecti'vity of a graph. A

. . .
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J

FIGURE 4. The family {H}

graph G is said to be locally connected if for every point v E G, the
induced subgraph G[I'(v)], i.e., the subgraph induced by the (deleted)
neighborhood of v, is connected. It was first shown by Chartrand and
Pippert (1974) that neither the property of being connected nor the
property of being locally connected implies the other. (See also Vanderjagt
(1974).)

The following result involves connectivity, local connectivity and n-
extendability, and is an immediate consequence of Theorem 2.2.

2.3. THEOREM. If G is n-extendable (n > 1) and locally con-
nected, then G is (n + 2)-connected. Moreover, this lower bound on the
connectivity of G is sharp for all n.

PROOF. We know that G is (n + 1)-connected by Theorem 1980B, so
suppose that K(G) = n + 1 and that S = {ui,..., Un+l} is a minimum

cutset. By Theorem 2.2, this cutset S is independent. But then for every
u E S, G[J(u)] is disconnected, a contradiction.

A family of extremal graphs {M,}, 1 is shown in Figure 5.
It is easy to see that for each n, graph M, is n-extendable, locally

connected and has ic(M,) = n + 2. We hasten to point out that the
extremal graphs in this family are not the smallest to be had, but it is
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FIGURE 5. The family {Mn}

especially easy to prove that these particular graphs are n-extendable.m

3. Removing and Adding Lines to an n-extendable Graph

The next theorem treats the effect on matching extendability of
removing a line.

3.1. THEOREM. Suppose G is n-extendable, for some n > 1 Then
if e is any line in G:

(a) if n = 1, G - e has a perfect matching, while
(b) if n > 2, G - e is (n - 1)-extendable.

* PROOF. If G is 1-extendable, then G is connected and IV(G)I > 4.
Thus there must be a line f adjacent to line e. Extend f to a perfect
matching F, for G and note that F, cannot contain e. Thus G - e has
a perfect matching and (a) is proved.

t," ,¢. . . . . •. .'I. %.. - •
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Now suppose that n > 2. Then by Theorem 1980A, graph G is
1-extendable and by part (a) graph G - e has a perfect matching.

Now suppose X = {el, ... ,e,,-i}, where ei = aibi, is a set of n - I
independent lines in G - e which does not extend to a perfect matching
of G- e. Again by Theorem 1980A, we know that G is (n- l)-extendable
and so X extends to a perfect matching F2 of G. Hence we may suppose
that every perfect matching for G which contains X also contains line
e. In particular, X + e is an independent set of lines in G.

Now Let A = {a,,...,a-, }, B = {b,...,b,-1i}, and let e - ab.
Suppose that 'G-,(a) U r_,(b) 5 A U B; say for example, that a is
adjacent to point c where c E A U B. Then X U {ac} is a set of n
independent lines in G - e containing X and thus by the hypothesis of
this theorem, X U {ac} extends to a perfect matching F 3 of G which
cannot contain e. But this contradicts the definition of X.

So we may suppose that JG-e(a) U FG-,(b) C A U B. From now
on, we may assume n > 3, for if n = 2, either {a,, bi} is a cutset for
G, contradicting the fact that (by Theorem 1980B) K(G) > 3, or else
IV(G)I = 4 < 6 = 2n + 2 < IV(G)I which is also a contradiction.

Now let S = AU B. Since IS U V(e) = S]+ 2 = 2n, and IV(G)I _
2n + 2, we must have that T -- G - (S U V(e)) F 0.

Now S is a cutset of G, separating a and b from T. (See Figure 6.)
But G is (n + 1)-connected by Theorem 1980B so at least n + 1 points in
S are adjacent to points in T.

Let us call points a1 and b mates of each other for i 1,...,n-1.
Suppose a point a of S is adjacent to a point of T via a line g. We claim
t1-t P, the mate of a, does not lie in lGae(a)UIGa_(b). Suppose, to the
contrary, that ft E IGa_(a), say. Then if a E V(ei), say, we have a set
X - e, + g + af3 of n lines which are independent in G - e, and hence in
G. Thus this set extends to a perfect matching F4 of G. But F4 cannot
cover point b and we have a contradiction.

Thus whenever a point a of S is adjacent to a point of T, its mate
8 F_0G(a) U FTG_(b). But since ic(G) n + 1, at least n + 1 points of
S are adjacent to points of T and so at least n + 1 points of S are not in
r'G-(a)Ur _e(b). Hence at most 2n-2-(n+ 1) = n-3 points of S are
in FG-e(a) U FG-e(b). Hence tc(G) ! n - 3, a contradiction of Theorem
1980B. "

If one removes a matching of size 2 or more from an n-extendable

graph, one cannot hope to retain (n-1)-extendability in general. Consider
the graph B in Figure 7.
This bipartite graph B is 2-extendable, but B - UV2- u2 v is not 1-

................. '' . .. - *.' * , .. ~ b - ~ *I.'~ % . . ...
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FIGURE 8.

FIGURE 7. The graph B

extendable, for line u 4v4 will not extend to a perfect matching.
However, if one removes a matching of size 2 the lines of which are

not "far apart", we can preserve (n - 1)-extendability. More precisely,
we have the following result.

II
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3.2. THEOREM. Suppose n > 2, graph G is n-eztendable and {e, f}
is a set of two independent lines joined by/ at least one other line g. (That
is, egf is a path of length 3.) Then G - e - f is (n - 1)-eztendable.

PROOF. Note first that G-e-f contains a perfect matching because
G is 1-extendable and hence contains a perfect matching which includes
line g.

Now suppose X is a set of (n - 1) independent lines in G - e - f.
We know that X extends to a perfect matching F, for G since G is
(n - 1)-extendable. So if F, n {e, f} --0, we axe done.

Hence suppose that for every perfect matching F, of G which con-
tains X, we have F, n {e, f} 34 0. Let F, be such a perfect matching

and suppose, without loss of generality, that e E F1 .
First suppose also that f is adjacent with a line of X, say x1. By

Theorem 3.1, there is a perfect matching F2 for G - e which contains
X. But then F2 cannot contain f and hence F2 is a perfect matching
for G - e - f containing X.

So now suppose that X U {e, f} is a set of n + 1 independent lines.
But then X U {g} is a set of n independent lines which must, therefore,
extend to a perfect matching F3 of G. But F3 n {e, f} 0 0 and the proof
is complete.

It is interesting to contrast the effect of deleting a line from an n-
extendable graph with the effect of adding a line not previously present.
Actually, if G is n-extendable and one adds a new line e, it may happen
that the new graph G + e is not even 1-extendable! For example, for
every n > 1 the complete bipartite graph K,,+l,, + is n-extendable,
but if one adds a new line e joining two points in the same set of the
bipartition, that line e clearly cannot lie in any perfect matching of the
graph K,,+1 x+ + e.

................ .... .... .... .... .. .....
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