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position, policy, or decision, unless so designated by other official
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Investigators adhered to the "Guides for the Care and Use of Laboratory

Animals," as prepared by the Committee on Care and Use of Laboratory Animals
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Abstract:

This study compared the reactive and contractile properties of helical

strips of femoral arteries taken from normothermic rabbits and rabbits that

were anesthetized with pentobarbitol and cooled to 210C at a rate of ?PC per

hour. The purpose of this comparison was to see if intrinsic factors would

alter the sensitivity and/or contractility of this vascular muscle to

norepinephrine during whole body hypothermia. We found that, after two

hours of in vivo hypothermia, the hypothermic derived tissue was from 10 to

IOOX more sensitive to norepinephrine than the normothermic derived tissue.

This augmented sensitivity continued while the tissue was in vitro for at least

twelve hours. The dose-response curves of the hypothermic derived arteries

were shifted to the left of the normothermic arteries resulting in a greater

contractility at lower levels of agonist. Moreover, the normothermic tissue

contracted slower than the hypothermic. The maximal tension developed by

the strips was equivalent. This study has identified prolonged alterations of

receptor sensitivities and contractility properties attributable to in vivo

influences than can, in part, explain the disruptions of blood pressure during and

following whole body hypothermia.
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Introduction

Humans that have recovered from whole body hypothermia typically have

alternating episodes of hypertension and hypotension. The time of this

cardiovascular instability can last beyond 48 hours and make it difficult for

suitable patient care. The hypertension is achieved even though there is an

augmented venous compliance and reduced cardiac output during this time.

Therefore, the spasmodic raising and lowering of systemic arterial pressure must

be attributed to changes in the total peripheral resistance through alterations

of the arteriolar radius. Suspect components, within a negative ff :Aback

system of arteriolar control, would be the activity of arterial baroreceptors,

neural cardiovascular control centers, plus the senstivity and/or contractility

of the vascular smooth muscle. Most of the information on the role of blood

vessel walls in this situation has come from observations during local cooling

(1,5,6,7,10), on isolated perfused vessels (12,13,17), and on strips of blood vessel

walls placed in a muscle bath (2,15,16). These latter studies have taken blood

vessels from normothermic animals and subjected them to cooling in a bath to

determine the alterations to contractility and reactivity. These methods have

provided information on the in vitro effects of temperature on isolated blood

vessel wall but have not permitted observations on in vivo mechanisms and

influences during whole body hypothermia, particularly those that would

persist for greater than 48 hours after the subject has been warmed to

normothermic levels. The intent of this study was to determine if there were

differences between in vitro and in vivo hypothermic alterations of the

contractility and reactivity of blood vessel walls. If in vivo mechanisms could

be identified and appropriately manipulated, then perhaps more suitable

management of hypothermic victims could be devised in the future.
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METHODS

This study used mature New Zeland White rabbits for the animal model to

be tested. The rabbits were anesthetized with pentobarbitol at the onset of all

experimental procedures to allow the induction of hypothermia. The animals

were never permitted to return to a conscious state and all efforts were made

prior to the experiments to ensure humane treatment. The rabbits were cooled

externally via a water blanket and circulating water bath after the chest,

back, and abdomen were shaved. Figure I shows the sequential protocol that

was used. Femoral arteries (collapsed od approximately 1.2mm) were the

blood vessels selected and the following experimental values were recorded

from 1.8 X 10.6 mm helical strips:

1. Norepinephrine thresholds (The Grass Polygraph was set at 0.05 mv/cm
after the original calibration was at 0.5 mv/cm where 500 mg = 25
mm).

2. Three minute norepinephrine dose-response curves to determine:

a. Maximal tension developed with each dose of agonist.
b. Contraction speed (time, sec, to reach 75% of maximal tension).

The bath contained nhvsiological salt solution (PSS) which was aerated with 95%

02 and 5% C02. The PSS had this compostion in millimoles per ht-r: NaCI, 119; ...

KCI, 4.7; KH 2 PO 4, 1.18; MgSO4, 1.17; NaHC0 3 , 14.9; dextrose, 5.5; sucrose,

50; CaCl2, 1.6; and calcium disodium EDTA, 0.026. The dose-response curves

and the norepinephrine thresholds were determined at theA 1/lo = 0.5 length.

Here A I is the increment in resting length above the initial length lo; lo is the

length of the strip when it is subjected to the smallest resting tension which will

keep it hanging straight in the bath.

2



NORMOTHERMIC RABBITS

W'hole body cooling to 25"C

at a rate of 7"Clhr.[ I
Bald at 250C for 2hrs. .

Remove blood vessels. "

Prepare helical blood vessel strips.
Strips attached in vitro to a
Grass FT .03 Force displacement
transducer. Equilibrate strips in
physiological salt solution for 2 hrs
at 250C.

Stimulate with norepinephrine for

threshold levels and dose response
values.

v%-

Warm to 37"C and hold for 2 hrs.

St imulate with norepinephrine for

threshold levels and dose responsevlues. ' ' -

Leave helical strips in 37*C bath foria period greater than 12 hrs. .

Figure 1. Experimental protocol.
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RESULTS

Norepinephrine thresholds for both the hypothermic and normothermic derived

tissues were determined at bath temperatures of 250 C and 370 C. The 37 0 C

threshold determinations were made when: 1) the strips had equilibrated for 2

hours at that temperature and 2) after the strips had been in the bath for >

Normothermic
100 Hypothermic

80

-. 6 0

'~40

20

11 10 9 8 7 6
-log concentration (g/ml)

Figure 2. Frequency distribution of the norepinephrine thresholds for tissure at

25°C for two hours.

12 hours. Figure 2 shows the 250 C norepinephrine thresholds for both the

hypothermic and normothermic derived tissue. In both instances, the thresholds

were in the 10-6 g/ml and 10- 7 g/ml ranges of agonist. The vast majority of

" the recordings for the hypothermic thresholds being at 10- 7 g/ml , whereas the

normothermic thresholds are more equally divided between the 10-6 6. ' and 10

- g/ml levels. Figure 3 displays the thresholds after the strips had

4
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100

Normothermic
80

aR Hypothermic
S60

c, 40

20-

11 10 9 8 7 6

-log concentration (g/ml)

Figure 3. Frequency distribution of the norepinephrine thresholds for tissue at

37 0 C for two hours.

equilibrated at 37 0 C for two hours. Both types of tissue display increased

sensitivity to this agonLst, but equally apparent is the distinctive separation of

sensitivities. The hypothermic strips are, in most instances, from 10 to IOOX

more sensitive than the normothermic strips. However, as we see in figure 4,

this augmented sensitivity appears to diminish after 12 hours. The dose-

response curves of the hypothermic derived strips shift to the left of the

normothermic derived during the period of augmented sensitivity (fig. 5).
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Figure 4. Frequency distribution of the norepi'mepnri.e thresholds for tissue at

37 0 C for longer than 12 hours.

Therefore, there would be greater contractile strength shown by the

hypothermic derived tissue at the lower doses of agonist. This persisted to the

-0 - 7 g/rnl level. In figure 6 we see a comparison of contraction speeds between

the hypothermic and normothermic obtained strips during the three different

temperature trials. The hypothermic obtained strips are significantly slower (P

<.0.05) than the controls when it is cold (25'C) and after it has been warm for

> 12 hours. The only time it was not significantily slower, was during the period

of enhanced norepinephrine sensitivity of the early warming period. Even though

6
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80 x-x Normotherraic
e-9 Hypothermic

*~60

- 40

S20
x

p x
11 10 9 8 7
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Figure 5. Dose-reponse curves for norepinephrine inouced contractions for
hypothermnic derived tissure and norrnitfor-ic deriyed is2

60- Normothermic

Dj Hypothermic
50

40-

S20-
~X

X. 
N

10-

25 0C 37 0C 37 oc
2 hirs 2 hrs >12 hrs

Figure a. Time to reacn 7', of ndxinial ,)~~oitr t l e nic cierived
tissure and nor;riotherrnic derived tissue.



the results show the slowest contractions when both tissues are cold, the fastest

during the early warming period, and later an intermediate value after the

> 12 hour warming, significant differences could not be shown between the

normothermic obtained strips at these different In vitro temperatures. There

was however, a significant increase (P < 0.05) in contraction speed for the

hypothermic obtained strips as they were first warmed. This difference did

not last, and after 12 warm In vitro hours, the contraction speed for the

warm tissue was comparable to the cold. There were no significant

differences in maximal contractility between the two sources of arterial

strips. However, when the tissues were cold (250C), they developed about 50%

of the maximal tension possible (P < 0.05) as compared to when the strips had

been warm (370 C) for two hours or more (fig 7).

Normothermic

*120J Hypothermic

S80 -.....
40

25 C 37 C
2 hra 512 hre

Figure 7. The percent of maximal tension development for tissue at 250C and

370C > 12 hrs. when compared to tissue at 37C for two hours.
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DISCUSSION AND CONCLUSIONS

The arterial blood pressure reflex is a finely tuned negative feedback

system involving arterial baroreceptors, cardiovascular control centers, and

efferent descending pathways that can alter total peripheral resistance and

cardiac output. This study has identified long-term hypothermic alterations

of arterial reactivity and contractility that can profoundly modify the stability

of this reflex. The afferent portion of this reflex would be changed at the level

of the arterial baroreceptors due to the increased norepinephrine

sensitivity, increased contractile strength at lower doses of agonist, and

decreased rate of wall tension development. The sensitivity changes would

likely lead to increased vasomotor tone under normal sympathetic innervation

activity, therefore, the baroreceptors would be less sensitive to a given pressure

load. Moreover, because of the decreased rate of tension development, these

receptor structures could not adjust as rapidly to control center regulation. At

the effector end of this reflex, the arteries would have a reduced radius under

normal efferent discharge, thereby magnifying the total peripheral resistance

and the arterial pressure. Hence, the cardiovascular control centers would

be receiving sensory input from detector mechanisms that had been dulled

and, at the same time, be sending efferent discharge to blood vessels with

amplified reactivity. Synaptic control could not proceed accurately under these

conditions, which probably accounts for the exaggerated fluctuations of blood

pressure following hypothermia. Clinical intervention with vasoactive drugs

might very well magnify these adverse conditions. The mechanism for these

vascular wall modifications remains obscure. We have observed that they last

for greater than twelve hours in vitro and probably longer in vivo. The fact

that they persist so long in a physiological salt solution would suggest some

9
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enduring structural change occured in vivo which involves macromolecules. The

active force-length relationship appears unaltered because we see comparable

contractility between the hypothermic and normothermic derived blood vessel

strips. However, the velocity of contraction is slowed. Therefore, the

number of cross-bridges being formed must be equal, but the cycling rate has

probably been altered (18). This could be due to the level of cytoplasmic

calcium present that is serving as the activator. It has been suggested that

activator calcium fluxes are dependent on the source of the calcium i.e.

transmembrane, sarcoplasmic reticulum, and mitochondria. Perhaps under these

conditions, a more slowly exchanging site, i.e. the mitochondria, becomes the

primary calcium source (3). It could also be a function of augmented calcium AP

efflux or calcium uptake into intracellular organelles. Reduced rate of calcium

influx or organelle discharge could also explain the observed results. These

alterations in calcium homeostasis could also be implicated in contributing to

the observed non-deviant supersensitivity to norepinephrine. Norepinephrine

is presumed to start contractions in part by mobilizing calcium from

intracellular pools. A change in pool size or source would therefore contribute

to the supersentivity by increasing the availability of activating calcium.

Another potential mechanism would call for changes in the translocation of

calcium at the plasma membrane which in turn would change the

electrophysiological properties to permit a reduction in the depolarization

necessary for threshold response (8,9,11,14). Alterations to receptors such as

changing either the affinity or density of receptors for drugs has long been

suggested as a cause for non-deviant supersensitivity (4). However, current

evidence is either lacking or does not support these possibilities for this tissue. .

The results of this study establish prolonged alterations to vascular smooth

10
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.

muscle contractility and reactivity due to hypothermia. However, it offers

sparse evidence for mechanism. Additional studies are in order that not only

test this evidence with other species, but also provide definitive tests of

cellular and subcellular calcium homeostasis and receptor affinity and/or

density.
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