| ‘AD-A169 068 A VLSI-DRSED HIGH-PERFORMANCE RASTER IMMGE SYSTEN i i
NORTH CAROLINA UNIYV AT CHAPEL HILL DE% COHPUTég’ n

SCIENCE H FUCHS ET AL. 08 MAY 86 RRO-. 7. 3- !
UNCLASSIFIED DAAG29-83-K-0148 21‘. ; EL_nS

MWL LM

~

SR N MBS -0

Y v e

S EER
R EE] ur_...l_._hm
20 =

& % v e M ¢ c .y

1.6
E=—i

I

1.4

——
—

Iz |

MICROC O

IR

,, ~T - "’ . - ..-~.> - --4 4 - " v

-,

Alv L1/07.3-6C-H k:

A VLSI-based High-performance Raster Image System

N

>N Y

* ‘\;".(-'l‘ XA

NS

0 2 s B By

Final Report

. ., u'qi'
U

Henry Fuchs
John Poulton :

AD-A169 068

May 4, 1986

U. S. Army Research Office

N A

DARPA Contract DAAG 29-83-K-0148

LS N eyt e
PR R B
R I

University of North Carolina
Department of Computer Science
Chapel Hill, NC 27514

DT ®

-
..
S O
Jraeees .o ks

¢
Y 1 f
e ™
! '..‘
~. " -

A G

£

OTIC FILE COPY

Approved for Public Release;
Distribution Unlimited.

e T

SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

.

Our research objective is to create affordable, high-performance, 3-D raster display systems that
harness the highly parallel computational power of custom VLSI circuits. We want to make this
power available in an open system that encourages invention of new parallel algorithms for image
generation and image processing. The system has many potential applications including flight and
tactical displays, computer-aided mechanical design, and medical diagnosis and therapy.

As in other systems, ours includes an array of memory chips forming an image buffer from which
the video screen is refreshed. The novel feature of our design is that our memory chips have been
custom-designed to include processing circuitry so that each pixel (dot on display) can carry out its i
own image-generation calculations. Calculations are distributed throughout each chip in such a way '
that only a very small amount of circuitry is required for each pixel. In our current chips, this
processing circuitry takes up about one-third of the total area, with the remainder devoted to pixel
memory.

During the three years of this work, we have achieved significant experimental results. We have
developed algorithms for fast image generation, including very rapid rendering of spheres and
shadow-casting (our system is the only graphics machine, to our knowledge, that can render true
shadows in real time). We have also designed two custom integrated circuits for the machine; the
new memory chip is the fastest memory so far designed in the university/VLSI community. These
chips have been built into a running prototype. A full-scale, full-speed machine (512x512 pixels,
30,000 smooth-shaded triangles per second) 1s nearing completion. —

We next plan to explore two new architectural innovations: one will render curved surfaces directly
and the other will yield a 5-fold improvement in speed. We also plan to implement our custom chips
in newly-available i.2u CMOS fabrication, to make our system practical for personal workstations.
We plan to build two complete, full-scale machines, one of which will be delivered to our
collaborators at the Army Ballistic Research Laboratorv. These systems will become the platforms
for developing new algorithms and applications for ¢ " modeling and for image enhancements,
such as textures, shadows, and anti-aliasing. [

R A
N R T R I
1

L]
'
1]
SECURITY CLASSIFICATION OF THIS PAGE(When Daefe Entered) ’

—
'-J~‘

i.-‘ - . " :
NN A AL DN Sl
VIS VNP YRS TS Y L YA YR RO . f

N XN LU T LA TMCAtE G0 o U QU A T T R T . - P v

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered) R T T -

“—- REPCR I DOCUMENTATION PAGE BEFOSE CONPLETI G SORM

ARO 21107.3-EL-A

1. REPORT NUMBER 2. GOﬁ/ACCE?IOPzO 7- RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) : S. TYPE OF REPORT & PERIOD COVERED

Final Report
A Prototype for a VLSI-based High-performance 19 Sep 83 - 18 Mar 86

Raster Image System 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a) 8 CONTRACT OR GRANT NUMBER(®)
Henry Fuchs DARPA Contract
John Poulton . DAAG 29-83-K-0148
3. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT, PROJECT, TASK

. . . AREA & WORK T MBER
University of North Carolina € UNIT NU s

Department of Computer Science
New West Hall 035A Chapel Hill NC 27514

11. CONTROLLING.?FSIC NAME AND ADDRESS 12. REPORT DATE
“on j Research Office May 8, 1986
Post Office Box 12211
Rgmfth Tria | 13. NUMBER OF PAGES
ngle Park, NC 27709 52
14. MONITORING AGENCY NAME & ADORESS(1! ditferent from Controlling Oftice) 1S. SECURITY CL ASS. (of this report)
unclassified

1Se. DECL ASSIFICATION/ DOWNGRADING

SCHEDULE
16. msrmau?‘ou STATEMENT (of this Report)
un?jp,:,.?tved for pubiic releage: g;
tted. ’ dlstr“uﬁ”
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, i(different from Report) r-\—vﬂ v

18. SUPPL 5
et VAW, "iRicns. anD/oR FinoiNG

ARE THOSE OF THE AUTHOR(S)
AN OFFICIAL DEPARTMENT OF
CISION, UNLESS SO DESIGNA

S CONTAINED IN THIS REPORT
AND SHOULO NOT BE CONSTRUED AS
THE ARMY POSITION, POLICY, OR DE-
TED BY OTHER DCCUMENTATION,

19. KEY WORDS (Continue on reveree side {f necessary and identity by block number)

VLSI, Raster Graphics, Processor-enhanced Memories

20. ABSTRACT (Cootinue en reverss side i meceasary sud identify by block number)

e e

r
DD .55 T3 €oimom OF 1 HOV 6515 OBSOLETE

SECURITY CLASSIFICATION OF TMIS PAGE (When Date Entered)

-
‘-

-

AT e Tl

(ALY

. w -
y %0 % % 0
D

LY

Note: This work also sponsored by
National Science Foundation
Grant ECS-8300970

The views, opinions, and/or findings contained in this report are those of the
authors and should not be construed as official Department of the Army posttion,
policy, or decision, unless so designated by other documentation.

Table of Contents
I. Introduction et e et et e e R |
2. Review of Pixel-planes Project e e e e e e 2
2.1 SystemOverviewttt e tet oo oeno 2
22 Algorithmsttt i e e, 3
23 ChipDesign ittt ittt ettt e 4
3. Accomplishmentst ittt eeeneeenaonss 6
31 CustomChips . . . ¢« . v v ittt ettt et 6
32 SystemBuilding.0 i e, 7
33 Algorithmsttt ittt ennens 9
4 FutureWork.ottt t ittt innnns et e 10
S.Publications ittt it it 11
6. Personnelttt ittt 11
7. Bibliography C e e e e e e s e e et e e e 12
6. Referencesttt nnentenennsas 26
Appendices 1 & 2 ~

A

KA |

X,

- - r r
¥ LT, .,

o e e
gt

- -
‘ﬁ '. i‘ l‘ .

-

‘Pixel-planes: A VLSI-based High-performance Raster Image System 1

1. Introduction

Research Objective

To create high-performance 3-D raster display systems that harness the highly parallel
computational power of custom VLSI circuits and to make this power available in an open,
programmable system that encourages invention of new parallel algorithms for image generation
and image processing.

Background

Desk-top workstations cannot today be equipped with high-performance 3-D graphics systems
mainly because of the lack of fast, affordable hardware to handle the very demanding
screen-oriented tasks of image rendering (e.g., smooth shading, visibility determination, shadow
casting). The Pixel-planes design attacks this problem at the raster image memory (the 'frame
buffer' in a conventional graphics system). Our system is based on custom-designed,
logic-enhanced VLSI memory chips in which image memory elements are combined with a small
amount of processing circuitry that carries out the most burdensome calculations in image
rendering. These calculations are done in parallel for all pixels on the display by a binary tree of
tiny processing elements.

Pixel-planes is an open, programmable architecture rather than a black box that provides a single,
hard-wired solution. It encourages users to explore new parallel algorithms for image display and
processing. Several such algorithms have been developed from the architectural description of the
design, with only the promise of a real machine.

Among the many possible applications for Pixel-planes are solid modeling systems for
computer-aided mechanical design and analysis, diplays for medical diagnosis and therapy, and
molecular modeling systems.

The project has been under way for four years and has produced considerable experimental results,
including a variety of graphics algorithms and three generations of small prototype displays. We are
currently scaling up the latest full-speed prototype to a full-size display system (512 x 512 pixels,
72 bits per pixel) to be completed by summer, 1986.

Final Report May 4, 1986

"'l"’.' ‘.'

+

2 e o b
.

)
B

JPixel-planes: A VLSI-based High-performance Raster Image System 2

2. Review of Pixel-planes Project

2.1 System Overview

This section presents a brief overview of the Pixel-planes system. Figure 1 shows a conceptual
block diagram of a conventional interactive 3-D graphics system and Pixel-planes' relationship to it.
In such a system, a user interacts with a 3-D scene stored in a database, typically consisting of a list
of vertices of polygons that tile the surfaces of objects in the scene.

(x.y2,R.GB)

Image [a
~ =——p| Transistor Goneration [
Controlier

..

Linear Coefficients Linear Coofficionts
AB.C + Instructions AB.C + hstuctions
[{word-parallel) J [(bR-esrial) j

Pixel-planes Graphics Engine

Figure 1: Relationship between Pixel-planes Graphics Fngine and a conventional system for rendering 3-D images.
The Engine replaces rasterizer and frame buffer with a 'smart' frame buffer built from custom, logic-enhanced memory
chips.

Real-time interaction depends on computation in a processing pipeline whose elements perform the
following tasks:

1) Transform the scene according to the user's position and orientation; this step produces a list of
polygon vertices in ‘eye’ coordinates.

2) Clip away parts of objects that are outside the field of view.

3) Color cach polygon vertex according to a lighting model that takes into account the position,
intensity, and color of user-specified light sources and the color and orientation of the polygon.

Final Report May 4, 1986

L P
Pt et e e T et T
wgte Lt T B e 0

RIS

- - A.. r‘. h"—".".' N
VY v P VS VS VeV

oty et e Y

.................................

‘Pixel-planes: A VLSI-based High-performance Raster Image System 3

4) Scale for perspective by drawing closer together objects that are farther away; the result is a list
of polygon vertices whose coordinates are given in 'screen’ coordinates.

5) Scan-convert each polygon, determining which pixels are inside that polygon.

6) Remove hidden surfaces by determining which pixels in the current polygon are obscured by
previously processed polygons.

7) Color each pixel, interpolating between vertex colors.
8) Store pixels in a frame buffer, from which the system can:
9) Refresh the video display.

Steps (5)-(7) clearly represent the performance bottleneck in current graphics systems. Many
current, affordable graphics systems can handle polygon transformations, steps (1)-(4), sufficiently
rapidly to support real-time interaction with complex wire-frame images or with a restricted class of
flat-shaded polygonal images. There exists, however, no affordable solution to the problem of
painting highly realistic, fully rendered 3-D scenes, perhaps with image enhancements such as
smooth shading, anti-aliasing (to remove pixel artifacts), shadows, textures, transparent surfaces,
fog effects, and so forth.

The Pixel-planes design attacks this problem by replacing the conventional rasterizer/frame buffer
with a 'smart’ frame buffer that not only stores a digital image but also performs much of the
calculation needed to generate the image. This 'smart' frame buffer is built from custom chips in
which conventional memory circuits are combined with some processing circuitry that allows
computations to be carried out in parallel for all pixels in the display.

The processing circuitry in the enhanced memory chips can perform two kinds of operations:

¢ Evaluate linear expressions of the form F(x,y) = Ax + By + C simultaneously for all pixel
locations (x,y). A,B,C are data broadcast to the memory chips.

« Perform pixel-local arithmetic and logical operations on data stored at the pixel and on the
linear expressions.

The strategy for applying this system to a given graphics image generation problem is to re-cast the
problem into a form that requires only linear-expression evaluation and pixel-local operations. To
make use of these operations, the Translator (see Figure 1) converts the conventional description of
eraphics primitives (e.g., a list of vertices for each polygon) into the form of coefficients A,B,C
and instructions for the pixel-local processors. The Image Generation Controller converts these
coefficients and instructions into bit-serial form and broadcasts them to the array of enhanced
memory chips.

2.2 Algorithms
A basic set of graphics operations for rendering convex polygons includes:

Scan-conversion. At the beginning of each polygon, all pixels are enabled. For each edge of a
polygon, the Translator calculates the coefficients for an expression F(x,y)=Ax+By+C, where
F(x.y)=0 defines the points that lie along a line connecting two adjacent vertices, and broadcasts
A,B,C and an 'edge’ instruction to the array of enhanced memory chips. Each pixel-processor
examines the sign of its value for the expression F. If negative, the pixel is outside the current

Final Report May 4. 1986

0
atal ey,

. Pixel-planes: A VLSI-based High-performance Raster Image System 4

polygon and is disabled for further processing. If positive, the pixel remains enabled. As each
succeeding edge is processed, pixels are disabled by half-planes, until, after all edges are
processed, only those inside the polygon remain enabled.

Hidden-surface Elimination. In an implementation of the standard depth-buffer (z-buffer)
algorithm, the Translator calculates a set of coefficients for the expression z=F(x,y)=Ax+By+C,
the planar equation for the current polygon's surface, and broadcasts A,B,C and z-compare
instructions to the memory chips. Each pixel maintains the z-coordinate of the closest visible
polygon so far processed. Each pixel compares the value of the linear expression with its stored z;
if the new z is farther away than the stored z, the pixel is disabled (the new polygon is obscured at
that pixel); if closer, the pixel remains enabled.

Smooth Shading. The Translator calculates, for each color, coefficients for the expression
Intensity=Ax+By+C and broadcasts these coefficients and ‘color’ instructions to the memory
chips. A multi-sided polygon is at this stage broken into triangular patches for shading. For each
patch, and for each primary color, enabled pixels update their color-intensity buffers with the new
color intensity.

A number of other algorithms have been developed, including casting shadows, drawing and
shading spheres, painting textures, and anti-aliasing edges. They are described in Appendix 1.

2.3 Chip Design
Most of the system's processing power derives from Pixel-planes' novel Linear Expression

Evaluator (LEE), a binary-tree structure distributed uniformly over an array of identical enhanced
memory chips that form the 'smart’ frame buffer; its principle is illustrated in Figure 2.

- Ay Ay Ay Ay A 00 —
.. C4C3 6, C, C, - N

Z§+// Aﬂ---

ANnm A+
A A+ Al A+
O o © O o o o o _
Y + + + + +
> 8 & £ ¢ & 3
Figure 2: Fundamental operation of the Linear Expression Evaluator.,
Final Report May 4, 1986

» Pixel-planes: A VLSI-based High-performance Raster Image System S

Each node of the tree takes in a serial bit-stream at its 'top' input, passing it unchanged, but delayed
by one clock cycle, to the left-hand output. The right-hand output is formed by adding a second
bit-stream from the 'side’ input; bit-serial addition injects a one-cycle delay in the right branch and
requires the usual local carry register shown in the figure. In effect, each tree node forms both
possible values of a partial product contributing to Ax + C. Because of the leading O's in the A bit
stream, A arrives at the bottom level of the tree at the same time as Cy thus, 1*A is added at each

node at the bottom level. At the second level, Ay is bit-aligned with C;, so that 2*A is added at this

level, and so on. In general an n-level tree can generate 2™ distinct values for an expression of the
form Ax+C.

For a system with 1024x1024 pixels, a 10-level X-tree is required to generate the 1024 distinct
values of Ax+C. The outputs of this tree in turn feeds the 'top' input of 1024 Y-trees, and this
ensemble generates the 22 distinct values of Ax+By+C. Note that the cost in silicon area for this
entire structure is only a single tree node (three one-bit registers and one bit-serial adder) for each
pixel, but the performance is equivalent to a full 20-stage serial multiplier at every pixel.

A simplified block diagram of the Pixel-planes memory chip is shown in Figure 3.

From Image Generation Controller

C A B Instructions Address, Control

| |

S

64
Pixel Memory ' B
ALUs | (64 rows x 72 col's) (.li
i 5
Y

Multiplier
Scan Path L Video Data Mux
Sca? Path . Controller |: ScarnPaih
n T Out
Scan Path . Pixel, Word
¥Control Video Data Address

To/From Video Controller

Figure 3: Block diagram of Pixel-planes enhanced memory chip. Pxpl4.0 chips contain one such module (64 pixels
x 72 bits); Pxpld.1 chips contain two modules (128 pixels x 72 bits).

Final Report May 4, 1986

.-'\i'.","\'.".V‘\V_"_-i"}f,'i'_r‘-.-—‘-_. T e T T TR e e T A R A st el sl aivl ot IR Sl anh sbuh et SRl hh A are Jail S NG g gy g
- - e Al [l B % R .

LA RN

+ Pixel-planes: A VLSI-based High-performance Raster Image System 6

In addition to the Linear Expression Evaluator, these chips contain an array of tiny bit-serial ALU's
that perform pixel-local operations (one ALU for each pixel), the pixel memory itself, and circuitry
for scanning out data to refresh a display.

N T TN

Sy g

Only a small subset of the pixels in a display can be placed on a single chip, so the LEE is
distributed over many chips. This is done by building a subtree that covers only the pixels on the
chip (organized as a vertical column); the remainder of the tree is implemented by circuitry that
maps a path through the complete tree from the root of the complete tree to the root of the subtree.
Called a 'supertree’, this path is programmed during system initialization, loading each chip with its
pixel-column address in the display. The supertree construct considerably simplifies the
system-level implementation of our system at little cost (about 5%) in silicon area. In our current
chips, about 18% of the circuit area is devoted to the LEE, about 12% to the ALU array, and the
remaining 70% to memory.

3. Accomplishments g

Our project has achieved considerable results during the past two years; these are described in detail
in Appendix 1 (Hardware) and Appendix 2 (Algorithms). We here describe the highlights of these
accomplishments.

3.1 Custom Chips

Between November, 1984, and May, 1985, our team designed two custom chips that were
fabricated, tested, and integrated into a working display system.

The first of these, the Coefficient Serializer, was relatively small (4.6x6.8 mm, 8,000 transistors,

4-t nMOS), but it solved a particularly difficult system-level problem, one whose details took ..
much time and simulation to work out. A standard-logic implementation would have required s
roughly 200 TTL packages, forcing a two-board implementation of the Image Generation .
controller. The Coefficient Seralizer chip had a particularly lucky history. Subsequent to Iy
finishing the layout, simulation of the extracted circuit ran perfectly after only a single minor fix. In -
April, 1985, we received 7 prototype chips from MOSIS and were surprised and delighted to find

that all of them ran perfectly and at the design speed of 10MHz.

Pxpl 4.0, the new design of the custom memory chip, was a 34,000-transistor 44 nMOS design in
a large (7.9x9.2 mm) die. Memory size was 64 pixels by 72 bits/pixel; of the internal active circuit
area, 70% was devoted to memory, 12% to the pixel-local ALU's, and 18% to the LEE. Prototype
parts were received from MOSIS in mid-April and were found to work correctly and at the design
speed. These parts were immediately incorporated into a 32-chip multi-board display able to
support near real-time interaction with simple images.

Crve o

During the summer of 1985, the design was recast in a 3u part, Pxpl4.1, with two modules
identical to the 4.0 design to give a total of 128 pixels. These parts also worked at speed on first
fabrication, and, installed on a new custom printed-circuit card. were incorporated into the
prototype display. At this point, we decided that the design was mature enough to incorporate into
a full-scale, full-speed display. During the fall of 1985, we carried out a thorough design review of
the 4.1 chip design to qualify it for quantity fabrication. The careful scrutiny of the review revealed
one minor problem, corrected in Pxpl4.2, and this new version is now in quantity fabrication.
Altogether, versions 4.1 and 4.2 have been fabricated by MOSIS five times with three different .
vendors; yield has been better than 20% on average, quite reasonable for such a large die.

Final Report May 34, 1986

Pixel-planes: A VLSI-based High-performance Raster Image System 7

3.2 System Building

In spring, 1985, we built our first system capable of expansion to usable size. This system verified
our design for a multi-board memory system and for the two special controllers (Image Generation
and Video). The system was housed in a Multibus card cage with memory chips mounted on
custom PC boards. Each of the two controllers was built on a double-height (12"x12") Multibus
wire-wrapped card, and each contained about 100 IC's; system integration and debugging required
only about 2 weeks. The graphics pipeline and Translator for this prototype were implemented in
software running in a UNIX workstation, with coefficients and instructions transmitted to the
Image Generation Controller via programmed I/O. This arrangement was able to support near
real-time interaction with very simple images through a keyboard interface. The system
demonstrated algorithms for shadow casting and for rendering shaded spheres.

In fall, 1985, with the verification of the 4.1 version of the enhanced memory chip, we began
designing a full-scale, full-speed system capable of displaying 512x512 pixels, 72 bits/pixel, and
cquipped with a hardware graphics pipeline. At the time of this writing, the hardware for this
system is essentially complete and running; only quantity fabrication and testing of chips and
boards remains to be done. During this time we have also constructed a high-speed VLSI tester
capable of testing wafers as well as packaged parts.

Figure 4 is an overview of the current Pixel-planes system. A UNIX workstation host supervises
configuring the system and loading graphics data bases into it. During operation, the host does
nothing but service graphics input devices and generate transformation matrices to be sent to the
graphics pipeline.

The central block contains the graphics pipeline and special controllers. At the moment we plan to
use two, and possibly up to four, Mercury Systems 3232 floating-point array processors for the
pipeline, connected by special hardware queues. In the two-processor version, the first AP
controls the display list, does geometric transformations, perspective division, and lighting; the
second is the Translator.

The Image Generation and Video controllers in this current system are minor modificaitons of the
designs verified in the previous prototype. They send control and data in broadcast form to the
array of memory <hips in the frame buffer, shown in the bottom block. This is simply a physical
structure to hold up to 2,048 custom memory chips, and to daisy-chain chips and boards together
to collect the video output. A serial scan path links every chip in the system to the video controller.
During setup, this path loads configuration registers on each chip; during operation, it carries a
series of tokens that act as chip-selects for scan-out.

The system is housed in a S-foot-high, 30"-wide rack donated to us, along with most of the system
power supplies, by Data General Corporation. This enclosure also provides a well-designed
air-handling system for removing heat from the frame buffer. Two custom PC board designs were
used in the frame buffer. A large backplane carries control/data signals and a total of up to 900
amps of DC power to 32 daughter boards. The backplane design features extra-thick copper traces
for current handling, provisions for heavy copper bus bars, and press-fit connectors for daughter
boards. Each daughter board contains 70 locations for enhanced memory chips, packaged in
84-pin pin-grid arrays; the design is fairly aggressive with .008" lines and spaces and 8000 vias.

Final Report May 4, 1986

Pixel-planes: A VLSI-based High-performance Raster Image System

Controller

Video Controller
#2 (Translator)
] #1 (Geometric
4 Transformations)
Host Interface

#{ Image Generation

1

€ Scan Path
{ Video Da

Frame Buffer
Board #31

L.l FrameBuffer |q@-

Figure 4: Overview of current Pixel-planes system.

Final Report

May 4, 1986

. v .
a0 .

!l'-

JEe > RINY

Tk DR g

L.t ~r s
IO

T T i

"Pixel-planes: A VLSI-based High-performance Raster Image System

NN/ i | | S

In spite of the complexity of the current system, only about two weeks were required for testing
and system integration, about the same time as for the previous prototype system. No serious
problems were encountered during this phase of construction, and we take this as evidence of the
success of our system design methodology. We took special care over several design issues:

Detailed (gate-level) simulation to debug the logic design and 'architectural'-level simulation to
test and refine algorithms.

« Careful design and specification of system interfaces, particularly at the chip I/O boundaries.

n YRR AER
[]

N e’
n"

¢ Use of 'signal typing’ borrowed from strongly-typed programming languages.

v
.

« Adoption of a simple and effective on-chip clocking strategy that greatly reduces the
possibility of skew; this method is intrinsically linked to hot-clocking for nMOS
implementations of our memory chip [Seitz, 1985].

« Complete, detailed, and continuously updated documentation.

3.3 Algorithms

A number of new algorithms have been developed for the architecture during the past year or so.
Details are included in Appendix 2. Highlights of this work are:

Fast Spheres. A clever algorithm, originally suggested by Fred Brooks, allows circles and spheres
to be rendered very rapidly. Essentially, one factors the implicit equation of a circle into a linear
part and a quadratic part. The linear part has exactly the form Ax+By+C, and encodes the circle's
center-position and radius. The quadratic part, x2 + y2, differs for every pixel, but is the same for
all circles; it can therefore be pre-computed and loaded into each pixel during system initialization
(this actually takes only about 100psec in our current system). To draw a circle, each pixel simply
adds its quadratic term to the incoming linear term to compute the circle equation. Rasterization
proceeds just as though the system were drawing a polygon with one edge. We have demonstrated
smooth shading and visible-surface calculations using variations of this technique; we intend to
explore the potential of this algorithm in a real application--molecular modeling.

Shadows. Jeff Hultquist has developed a variation of Pixel-planes visible-surface algorithm that
determines which pixels lie inside the shadow frustum of a light source and a polygon. Once
identified, the color values of these pixels are modified to give the appearance of shadowed
illumination. This shadow volume calculation is carried out as a post processing step, after the full
image has been rendered, and it takes less time that rendering. To our knowledge, Pixel-planes is
the only graphics system that can display shadows without treating them as separate objects.

Medical Image Enhancement. Adaptive histogram equalization (AHE) is a method of compressing
the intensity range of computed tomographic (CT) images so that the view can perceive contrast and
details. The method requires computation of a distribution of intensities at every pixel in the image,
and so is far too time-consuming to be practical on uni-processors (about S minutes on a VAX
i 11/780 for a 256x256 image). One of our team's engineers, John Austin, has discovered a method
. for computing AHE on Pixel-planes that will require only a few seconds of computation for a
. 256x256 image. It may at first be surprising that a machine designed for efficient image generation
can also be used effectively for image processing; we believe, however, that this is another
indication of the usefulness and generality of Pixel-planes linear expression evaluation.

Adaptive Refinement. We have been working for some time on techniques for improving the

Final Report May 4, 1986

..
.....................

T a2

‘Pivel-planes: A VLSI-based High-performance Raster Image System 10

performance of image rendering by using machine cycles that would otherwise go wasted while a
user is examining a static image on a screen. The goal is to convey as much information to the user
as early as possible, with image quality constantly improving with time. A crude image is first
generated rapidly; then adaptive refinements proceed where necessary as long as the user does not
change viewing parameters. While this work was motivated by a desire to run such algorithms on
Pixel-planes, the results are by no means limited to this machine. We have written a Technical
Report (listed below), submitted for publication, that describes this work.

;'; N I IR .111"-' vy

"

4. Future Work

We are currently negotiating funding for continuing work on Pixel-planes and its derivatives. We
plan four major areas of development:

Architectural Innovations. We will explore two new architectural enhancements: Pixel-powers
evaluates quadratic expressions on screen space in parallel for all pixels, just as Pixel-planes now
computes linear expressions. With this capability, objects described by curved primitives, as in
constructive solid geometry (CSG), can be rendered extremely rapidly. Buffered Pixel-planes
increases the parallelism that can be achieved in our systems, and may improve the performance of -
our current design by a factor of 5 or more. .

1.2 CMOS Memories. Access to state-of-the-art fabrication is now becoming available at the
MOSIS fabrication service, operated by DARPA/IPTO. We will therefore implement chip designs
for the two architectural enhancements in this technology (1.2y, double-metal CMOS) and couple it
with our novel direct-inking packaging technology to build systems on a few boards that fit within -
a personal workstation. -

Al_orithm Development. Using our first full-scale Pixel-planes system as a test bed, we are

planning a major effort in algorithm development for image generation and image processing: fast

anti-aliasing, textures, direct rendering of curved surfaces, solid modeling, and medical image
processing. With the arrival of Pixel-powers, we plan a joint effort with the Ballistic Research -
l.aboratory, Aberdeen Proving Ground, MD, to develop applications for rapid display, analysis,
and modification of complex solid objects.

System Building. We propose building a full-scale display that incorporates both the new
architectural enhancements and advanced chip and system fabrication. Because we believe strongly
that our design can be fully tested only by applying it to real applications, we plan to build two
copies of an advanced graphics machine: The first will be installed in our department's graphics
laboratory both for daily production use and as a platform for our algorithm development effort.
The second will be installed at the Ballistic Research Laboratory to enable collaboration in
developing solid modeling applications.

LA

Final Report May 4, 1986

..........

‘Pixel-planes: A VLSI-based High-performance Raster Image System 11

5. Publications

The following is a list of publications produced during the course of this project; they appear in
cronological order.

Poulton, J., Fuchs, H. et al., "Pixel-Planes: Building a VLSI-Based Graphics System." Proc.
1985 Chapel Hill Conference on VLSI, 35-60, 1985. Included as Appendix 1 of this report.

Fuchs, H., J. Goldfeather, J. Hultquist, S. Spach, J. Austin, F. Brooks, J. Eyles, and J.
Poulton., “Fast Spheres, Shadows, Textures, Transparencies, and Image Enhancements in
Pixel-Planes". Proc. of SSIGGRAPH 85, 111-120, 1985. Included as Appendix 2.

Goldfeather, J., and H. Fuchs, "Quadratic Surface Rendering on a Logic-Enhanced Frame-Buffer
Memory System". IEEE Computer Graphics and Applications, 6(1), 48-59, January, 1985.

Goldfeather, J., J. P. M. Hultquist, and H. Fuchs, "Fast Constructive-Solid Geometry Display in
the Pixel-powers Graphics System”. Tech. Report 86-003, Department of Computer Science,
University of North Carolina at Chapel Hill.

Bergman, L., H. Fuchs, E. Grant, and S. Spach, "Image Rendering by Adaptive Refinement".
Tech. Report 86-008, Department of Computer Science, University of North Carolina at Chapel
Hill.

6. Personnel

Principal Investigator:
Henry Fuchs
Co-Principal Investigator:
John Poulton
Collaboration on algorithm development:
Prof. Jack Goldfeather (Dept. of Mathematics, Carleton Collge, Northfield, MN)
Engineering Staff:
John Austin (UNC-CH Microelectronic Systems Laboratory)
Wayne Dettloff (Microelectronics Center of North Carolina)
John Eyles (UNC-CH Microelectronic Systems Laboratory)
Trey Greer (UNC-CH Microelectronic Systems Laboratory)
System Software Support:
Mark Monger (UNC-CH Microelectronic Systems Laboratory)
Technical Support:
John Thomas (UNC-CH Microelectronic Systems Laboratory)
Graduate Research Assistants:
John Cromer (MS, Computer Science, May, 1986)
Justin Heinecke (MS, Computer Science, May, 1985)
Annamarie Helton
Scott Hennis (MS, Computer Science, December, 1983)
Cheng-Hong Hsieh (MS, Computer Science, May, 1985)
Jeff P. Hultquist
Susan Spach
Undergraduate Research Assistant:
Sonya Holder (BS, Physics, May, 1986)

Final Report May 4, 1986

B s 22207

‘ - 1"1".

“ ‘Pixel-planes: A VLSI-based High-performance Raster Image System 12

-~

L a0

7. Bibliography

~ Abram, G. and H. Fuchs., "VLSI Architectures for Computer Graphics". Proc. NATO Advanced

o Study Institute on Microarchitecture of VLSI Computers, 1984.

9 Bergman, L., H. Fuchs, E. Grant, and S. Spach, "Image Rendering by Adaptive Refinement". 3

' Tech. Report 86-008, Department of Computer Science, University of North Carolina at Chapel p
Hill.

- Bishop, G. and H. Fuchs., "The Self-Tracker: A Smart Optical Sensor on Silicon". Proc. Conf. on \ :

- Advanced Research in VLSI (MIT), 65-73, 1984. N

‘ Catmull, E., "A Hidden-Surface Algorithm with Anti-Aliasing". Proc. SIGGRAPH 78, 6-11, N
1978.

Clark, J. and M. Hannah., "Distributed Processing in a High-Performance Smart Image Memory".
Lambda, 4th Qtr. 1980, 40-45.

Clark, J., "The Geometry Engine: A VLSI Geometry System for Graphics". Proc. of SIGGRAPH -
82, 127-133, 1982.

Cohen, D. and S. Demetrescu. Presentation at ACM Comp. Graph. panel on Trends in .~
High-Performance Graphics Systems, 1980. .
Deitz, P., "Solid Geometric Modeling--The Key to Improved Materiel Acquisition from Concept to '—‘
Deployment”. Presented at Army Operations Research Symposium XXII, Ft. Lee, VA, 3-4 Oct, -
1983, and at Defense Computers-Graphics '83, Intl Conf and Expo, Washington, DC 10-14 Oct,

1983. 4
Deitz, P., "Predictive Signature Modeling Via Solid Geometry at the BRL". Presented at the 6th ; L

annual KRC Symposium on Ground Vehicle Signatures, Houghton, MI 21-22 August, 1984.

Deitz, P., "Modern Computer-Aided Tools for High-Resolution Weapons System Engineering". K
Presented at the 16th annual DOD Manufacturing Advisory Group (MTAG-84) Conference, A
Seattle, WA, 25-29 November, 1984. AN

v BOR M5 S0 2% 4t o
LIRS 'v—w e
LIPR A R e N

Frisch, B. and B. Isenstein., "New Array Processor Design Solves Key Problems". To appear in
Computer Technology Review, Spring 1985.

Fuchs, H. and B.W. Johnson, "An Expandable Multiprocessor Architecture for Video Graphics."
Proc. Sixth Annual Symposium on Comp. Arch., 58-67, 1979.

Fuchs, H., J. Goldfeather, J. Hultquist, S. Spach, J. Austin, F. Brooks, J. Eyles, and J.
Poulton., "Fast Spheres, Shadows, Textures, Transparencies, and Image Enhancements in

Pixel-Planes”. Proc. of SIGGRAPH 85, 111-120, 1985. 3
Gharachorloo, N. and C. Pottle., "Super Buffer: A Systolic VLSI Graphics Engine for Real-Time >
Raster Image Generation". Proc. 1985 Chapel Hill Conference on VLSI, 285-305, 1985. .

-

Goldfeather, J., and H. Fuchs, "Quadratic Surface Rendering on a Logic-Enhanced Frame-Buffer
Memory System”. IEEE Computer Graphics and Applications, 6(1), 48-59, January, 1985.

Final Report May 4, 1986

...

..............

.................

.............

.....................................

\
* Pixel-planes: A VLSI-based High-performance Raster Image System 13 -:_‘
-~
Goldfeather, J., J. P. M. Hultquist, and H. Fuchs, "Fast Constructive-Solid Geometry Display in R
the Pixel-powers Graphics System”. Tech. Report 86-003, Department of Computer Science,
University of North Carolina at Chapel Hill. o
4
Gupta, S., R. Sproull, and I. Sutherland, “A VLSI Architecture for Updating Raster Scan :'f-
Displays." Computer Graphics, Vol. 15, No. 3, 71-78, 1981. R
Ikedo, T., "High-Speed Techniques for a 3-D Color Graphics Terminal". IEEE Comp. Graphics -
and Appl., Vol. 4, No. 5, 46-58, 1984. .
Kedem, G. and J. Ellis., "Computer Structures for Curve-Solid Classification in Geometric
Modeling". Microelectronics Center of North Carolina Tech. Rep. TR84-37, 1984, N
Parke, F. I, "Simulation and Expected Performance Analysis of Multiple Processor Z-Buffer ‘
Systems.” Computer Graphics, Vol. 14, No. 3, 48-56, 1980.
. Pinkham, R., M. Novak, and K. Guttag., "Video RAM Excels at Fast Graphics". Electronic
; Design, 161-172, 1983. :
h Poulton, J., Fuchs, H. et al., "Pixel-Planes: Building a VLSI-Based Graphics System." Proc. -
1985 Chapel Hill Conference on VLSI, 35-60, 1985. -
Schachter, B., "Computer Image Generation for Flight Simulation". I[EEE Comp. Graphics and
Applications, Vol. 1, No. 4, 1981. .
Schumacker, R., "A New Visual System Architecture”. Proc. 2nd Annual IITEC, 1980. g
Seitz, C., A. Frey, S. Mattisson, S. Rabin, D. Speck, J. van de Snepscheut., "Hot-Clock "
NMOS". Proc. of 1985 Chapel Hill Conference on VLSI, 1-17, 1985. o
Shiffman, R. and R. Parker.., "An Electrophoretic Image Display with Internal NMOS Address i::
Logic and Display Drivers."”. Proc. of Society for Information Display, Vol. 25, No. 2, 105-116,
1984.
Sun, E., "Graphic Processor Speeds Generation of High-Resolution Images". Elec. Imaging, -
October, 1983, 34-38. g
Sutherland, I., "A Head-Mounted Three-Dimensional Display". AFIPS, Vol 33, Part 1, Fall Joint B
Computer Conference, 1968.
Sutherland, I. and R. Sproull.,, "A Clipping Divider". Proc. of AFIPS, Vol. 33, Part 1, 765-776,
1968. o
Vuilleumier, R., A. Perret, F. Porret, and P. Weiss., "Novel Electromechanical Microshutter .
Display Device". SID Euro-Display, 1984,
Watkins, G., "A Real-Time Visible Surface Algorithm". Computer Science Dept., Univ. of Utah, iy
UTECH-CSc¢-70-101, 1970. o
v
Weinberg, R., "Parallel Processing Image Synthesis and Anti-Aliasing." Proc. of SSIGGRAPH f
‘81, 1981. -
Final Report May 4, 1986
N N e e o e T B e e i e i e

APPENDIX I

PIXEL-PLANES: Building a VLSI-Based
Graphic System

John Poulton, Henry Fuchs, John D. Austin, John G.
Eyles, Justin Heinecke, Cheng-Hong Hsieh, Jack
Goldfeather, Jeff P. Hultquist, Susan Spach

Department of Computer Science
University of North Caroiina at Chapel Hill

1. Introduction

Pixel-planes is a VLSI-based raster graphics machine that
will support real-time interaction with three-dimensional shadowed,
shaded, and colored images. The system’s cost and complexity will
be comparable to present-day line drawing systems, making it suit-
able for use with high-performance workstations. Potential applica-
tions include computer-aided design, medical display and imaging,
molecular modeling, and simulators for flight and navigational train-
ing.

The fundamental ideas in this design have been previously pub-
lished {Fuchs and Poulton, 1981; Fuchs et al, 1982]. This paper
reports recent progress toward building a full-scale working Pixel-
planes system, development of a number of new graphics algorithms

for the machine, and refinements in system architecture and design
methods.

Much of current research in experimental graphics systems is
aimed at improving the speed of image generation by dividing the

* This research supported in part by the Defense Advance Research Project
Agency Contract number DAAG29-83-K-0148 (monitored by U.S. Army Research
Office, Research Triangle Park, NC) and the National Science Foundation Grant
sumber ECS-8300970.

** Department of Mathematics, Carleton College, Northfield, MN, on sab-
batical at Department of Mathematics at the University of North Carolina.

1985 Chapel Hill Conference on VLS! 35

36 Pixel-Planes

display into small regions, each of which is handled by separate con-
current processors [Clark and Hannah, 1980; Gupta et al.,, 1981;
Demetrescu, 1985). In Pixel-planes, this division is imbedded in a
binary tree that performs the bulk of the system’s computations
and distributes the results to all pixels. Each pixel consists of an
array of memory elements and a small processor that only performs
operations local to the pixel. The heart of the system is a Smart
Frame Buffer consisting of an array of identical custom chips that
contain the binary tree, pixel memories and processors, and video
scan-refresh circuitry. These enhanced memory chips employ a mod-
erately dense, conventional dynamic RAM that takes up about 2/3
of the chip’s silicon area; the processing circuitry takes up the re-
maining 1/3.

The fundamental operation of the Pixel-planes system is calcu-
lating linear expressions of the form Ax + By + C where x and y
are the coordinates of a pixel and A, B, and C are data inputs to
the system. These expressions are calculated bit-serially in a bi-
nary tree multiplier/accumulator, simultaneously for all pixels. The
system’s hardware i1s not built to execute a specific set of graphics
algorithms. Instead, many different algorithms can be recast into
forms that evaluate linear expressions and/or require only pixel-local
operations. We are continually surprised at the variety of algorithms
that we and others are able to express in this form, and it is clear
that the architecture is much more powerful and more general than
we had first imagined.

2. Pixel-Planes Graphics System
2.1 System Overview

Figure 1 shows the relationship between the Pixel-planes graph-
ics system hardware and a conventional color graphics system.

The ‘front end’ of the conventional graphics system is a pipeline
of special processors that manipulates an image database. The
database contains (typically) a list of polygons that tile the surfaces
of the objects in a scene. Each polygon is described as a list of
vertex coordinates (x,y, 2 in ‘world’ coordinates) and colors (values
of Red, Green, Blue that specify the intrinsic color of the vertex). A
transformation engine operates on the coordinates of the vertex list
for each polygon, transforming the polygon to ‘eye’ coordinates in
response to user input from joystick, trackball, or some similar de-
vice. Next, polygons (or portions of polygons) that are outside the
viewing pyramid are clipped and perspective division is performed to
transform ‘eye’ coordinates to ‘screen’ coordinates. Finally, a light-

..............................
o e Sl .

2 % 8 2 8 2

Ad P

J. Poulton et al. 37

Lighting
Model Resterrzer
Calculater

f P.I“on Yertices Chippeé Polnn v:vhtu 3
10 Screen Coordinates | |W'ID Modificd Vertex Color

Geametric Chipping,
Dl:‘.b“ Tronsfer metion Perspective
stadere Engine Sceling

Pelygen Yertices \
10 Werld Coordrnetes }

(x,y,2,R.G.B)

Yideo

/ i ———hl “““““ y Coatrsller

b

| mege
Transister Gensration
Centreller
- — T A}
Clipped, Colored Lisear Coeff's [1 Bt urul |

Pelygon Vuhqu (A8 C)+ Coetf's o |

tn Screen Coord’s | | Instructiens Linstrections |
Yides /
Contreller J
/
Pixel-Planes Graphic Engine o h /
| Standard /

{R.G,8 Yides:!

Figure 1: Pixel-Planes Graphlics Engine replaces the rasteriser,
frame buffer, and video controller In a conventional graphics
system.

ing model calculator modifies each vertex’s intrinsic color according
to the position and intensity of light sources. The output of the
front-end pipeline is still a list of polygon vertices, but with vertex
coordinates and colors transformed to the proper value for display.

In advanced color graphics systems, the rasterizer performs a
series of steps needed to translate a list of polygon vertices into a
smooth-shaded, rendered, digital image, with hidden surfaces prop-
erly removed, and perhaps anti-aliased to reduce pixelization arti-
facts. In general, these calculations must be performed for every
pixe! for every polygon processed, implying massive amounts of com-
putation and very large memory bandwidth.

The Pixel-planes Graphics Engine replaces the rasterizer, frame
buffer, and video controller of a conventional system. Its main com-
ponent is a8 Smart Frame Buffer composed of custom VLSI enhanced
memory chips. It addresses the computational problem with a highly
parallel processor that mimics a processor per pixel. The memory

RIPL

TPRIR X

L A A PRI

IIC LA

38 Pixel-Planes

bandwidth bottleneck is overcome by intimately connecting process-
ing circuitry and memory.

2.2 Pixel-Planes Graphics Engine

The components of the Engine are:

l
.
1
!
.
-
\
l.
N
i
>

The Translator, a special purpose micro-programmable floating-
point computer, converts the scene description from a polygon ver-
tex list into the form of coeflicients A, B, C of the linear expression
F(x,y) = Ax + By + C. It also produces an encoded instruction
for each step in processing polygons or other primitives (e.g., edge,
z-compare, circle, paint-Red). Translation will involve, for example,
describing an edge of a polygon in the form F(x,y) = 0, or speci-
fying the polygon’s planar surface in the form z = F(x,y). In the
system now under construction, the Translator is a 5§ MFlop micro-
programmable engine based on the Weitek 1032/1033 floating-point
chip set.

The Image Generation Controller (IGC) converts the word-
parallel, floating-point A, B, C coefficients from the Translator to bit-
serial, 2’s complement data, decodes each instruction into a stream
of control words, and outputs this data and control along with the
clock for the Smart Frame Buffer. Currently, the [GC is implemented
as a custom chip that serializes the coeficient data and a micro-
programmable control sequencer built using standard TTL parts.

The Smart Frame Buffer is organized as a series of ‘logical
boards’, each with an array of enhanced memory chips, as shown
in Figure 2. This organization reduces the bandwidth (pin-count,
operating speed) necessary at the memory chip’s video-data output
port. Each logical board contains a 32-bit-wide register for video
data, and successive logical boards are daisy-chained together to form
a high-speed shift-train. Every L cycles (where L is the number of
logical boards), shifting is disabled and the shift-train is loaded from
a parallel set of registers on each board. While shifting is enabled,
these parallel registers are loaded, one byte at a time, from selected
memory chips.

Data, control, and clocks both for image generation and video
output are broadcast to the enhanced memory chips. No data or
control need be returned from the memories to the IGC or Video
Controller, so the busses can easily be pipelined for high-speed
operation.

R .
.

¢
A

In addition to these two uni-directional busses, a single serial
scan-path links all memory chips in the frame buffer. During system

AL WP RS g W REANN

"s%s

J. Poulton et al. 39

o Date,
instreuctions,
Cleck frem IGC

25 A r

4

“Logicel Board”

4# 4;
y &) 52 y 4]

] j_f 4
,/vmgo-c_lk\ Yideo] i Scan Cotls: Pixel, | (To From -
|] Scan Path -~

, o T R

| Mux Cat1] | Deta ;| Byte Addr-s; Px Cik

B S, SR

video Controltler

Figure 2: Plxel-Planes Smart Frame Buffer organisation.

operation, the scan-path takes the place of chip-address decoding,
carrying a series of scan tokens that determine which set of memory
chips is enabled for video output (only one chip on each logical board
is enabled at one time). During system initialization, the scan-path

is used to load various configuration registers, as discussed in Section
2.3.

ad
-
L}
1
‘

L,
B o)

’

. e e e e e e et et e tmtam Tt et ..

.. Lt e e e . T T N T e et e e et et e Tl e e,
A e T e e e T e e T e e e e e e e e e 3 R o
AR Sy R R A C L R UR YL 0. T Y PP v VT VTR YT S P R Y) O P DU)

Pixel-Planes

From Imege-Generation Contreller

A
[4 A
C A] Iastructions Address Contreol
b) '
R 3
10-Stege
X-Supertree 3 S
po-oy ——
¢ fo-of ho—
po-oy po—y
4-Stege oo ...: E
Y-Supertree E 64 ; Memory : :i
of ALU's |l (64 rews x 72 cola) j ¢ <
: . Ll :
. L L] a
Multipher E E

,_,,(Yideo Date Mux
Scen Path Scan Path Scan Path
in Controller l Out

Scen Path Yideo Pixel Word
Control Detc Address
\
v—

To/From Yideo Controller

Figure 8: Block diagram of the Pixel-Flanes memory chip.

The Video Controller is similar to those in conventional systems,
with the exception of the token-passing method of addressing. The
current version is capable of supporting a variety of display types (30
and 60 Hz, interlaced and non-interlaced, NTSC and non-standard)
and any number of enhanced memory chips.

2.3 Enhanced Memory Chips

Figure 3 i3 a block diagram of the enhanced memory chip.
It contains the Multiplier that implements the binary-tree linear-
expression evaluator, an array of pixel ALU’s, and a Memory system
that stores data for each pixel and provides a video scan-out mech-
anism.

A conceptual model of a binary-tree multiplier/accumulator is
shown in Figure 4. This structure is recognizable as a variation on
the simple seriai-parallel multiplier [Lyon, 1976, where both possible
values of partial product are generated at each stage. If such a tree
has N levels, and A contains K significant bits, A must be preceded
by (N - 1) 0’s; 2V distinct values of Ax + C will be generated

(0 <= x < 2¥), each value being N + K + 1 bits long.

N - - - "
e . e e e e et e T R .
. L i T R A B Y
AP R TR RO L NS B 0 WP R e |

......................................

J. Poulton et al.

. Deley

Figure 4: Conceptual model of blnary-tree linear expression
evaluator.

To generate the linear expression Ax + By + C, two binary-tree
multiplier/accumulators are stacked one atop the other. For a system
with 1024 x 1024 pixels, a 20-level tree is required. The top 10 levels
of the tree calculate the 1024 values of Ax + C. The bottom 10 levels
can be thought of as 1024 subtrees, each of which receives one value
of Ax + C as its root input, gets B as its side input, and generates
1024 values of Ax + B{v + C. For a system with N x N pixels, the
binary tree requires N — 1 multiply/accumulate stages. It performs
the same function, at the same speed, as a full 2N-stage multiplier
at every pixel (requiring 2N2logN stages). S

Only a small fraction of the pixels in a display can be put ‘
on a single chip, 80 it is necessary to break the binary tree into N
multiple chips. This is done by implementing a small sub-tree on
each chip that covers only the pixels on the chip. A ‘supertree’ on i
each chip implements the tree levels above the sub-tree. It contains .
one multiply /accumulate stage for each level above the sub-tree. As -
shown in Figure §, registers in the supertree are loaded at system .
initialization to map a path through the full tree to the local subtree. N
This defines the position of the chip’s 64-pixel column in the full
image.

It is possible, of course, to design a system without supertrees. If
each c_hip were equipped with one extra tree node whose outputs go
off-chip, the tree levels above each local subtree could be completed

.............. . .
............. ~ ~ Ot
....................

P B IR T T A R NP
A aladacasatalalal el el adle s a4 ol ot AP PSP T PFE T PT TR VT PR PY Y ve v)

42 Pixel-Planes

Ae29 Be2!9 Branching
ot each tevel

fRight -
Left
Right -
Right -
Left

1

0

1

|

U 0
BNy Right - 1
-0

o

1

1

Ve

N Left
[_.A Left

) Right -
Right -

\— 19pw-x 41D

Left 0
left -0
1
0

/

appw-A diy)
10 GSH ¥

Right -
Left

\'\

Y multipher
Tree

1] ‘.......]
- m 2}
. e .
~ ~ ~
NS ~
LS I o
> > >
. . .
NS]
@ 0 4
@ ®

Figure 5: Supertree maps a path through full tree on each chip.

using inter-chip wiring. This external wiring would, however, reduce
system speed and complicate board-level construction. The config-
urable supertree on our current chips has 14 levels, requiring only
another 14 multiply /accumulate stages and 14 registers—a relatively
modest penalty in silicon area. It also makes possible a module-
redundancy scheme, described below, that supports fault tolerance
ln our system.

Figure 6 shows the block diagram of the ALU at each pixel.
Logical operations in the ALU are performed by a one-bit adder
with a multiplexer/complementer on each of its three inputs. All
ALU’s in the system receive function-select and register-load con-
trols broadcast from the IGC, so the ensemble of memory chips has
SIMD concurrency. The ALU contains an Enable register that con-

e et e e e v e s et S, S teme e X R . oL NN [
et e e e e e T R e e e e e .- . .
el lat s akat oo sl alasaliatan .__(._":&._ﬂn_ PRV T P S, DRI S T TR TR S s v P)

L o

ST T TRV 24 Py
Sy

J. Pouiton et al. 43

X o Read -
. " Dete =
A .
: Tree §-|—¥ Mux/Cmp) Write =
) Dete
N Mux/Cmp To/from '
Memeory L
| N
| ™M : :
| Memory -
| Enable T Enable -
Function Carry Enadle .
X Select Load Loed -~
. \N i .”'
. 4 :
’ From IGC

- Figure 8: Block dlagram of the pixel ALU.

trols memory write access, allowing each pixel to determine locally
whether current memory contents can be overwritten.

The Memory system consists of a relatively dense dynamic RAM
array. Each column of cells in the array contains corresponding bits
in each pixel on the chip. Each row contains all of the bits in a pixel
and is equipped with read/write circuitry; thus the ‘word width’ is ;
extremely wide relative to a conventional memory. The memory also 8
must provide a means for the Video Controller to access memory bits -
containing color-intensity information. -

3. Systemn Realisations

This section describes our experiences building several Pixel- .

planes display systems. Our first enhanced memory chip was in-)

- tended as a first VLSI design exercise and not intended to be- '
: come part of a working display. Two small prototype displays have

K been built with second- and third-generation enhanced memory chips =

;. (Pxpl2 and Pxpl3), and they were sufficient to prove the basic con- X

5 cepts in the design. We believe, however, that it is extremely impor- «
tant to build a system large enough to support ‘real’ applications;

only in this way will we convincingly demonstrate the utility of this "
approach to building high-performance graphics machines. We are <
therefore constructing a much more ambitious system using fourth-

44 Pixei-Planes

generation chips (Pxpl4) that will grow to a full-scale, full-speed
working display within the next year. :.,

3.1 Pxpla o

Our second memory chip design [Fuchs et al., 1982| included the
local subtree for 64 pixels, a memory array with 16 bits/pixel and v
a single read/write port, and a simplified ALU with only a Carry
generator. It lacked circuitry for the remainder of the tree, and
could therefore only be used to build a ‘toy’ system. .

Lo afape

A chip tester was built using a microcomputer with a parallel
I/O port, the 10 chips received from fabrication were tested, and 3
four were found to be mostly functional. The tester then became
the host for a small prototype display, with Translator and Image
Generation Controller functions carried out by software running on
the microcomputer. The Pxpl2 prototype verified the basic concepts -
in the design, executing (very slowly!) a basic set of polygon-oriented =
operations (polygon area definition, hidden-surface calculations using \
a depth-buffer, Gouraud-like smooth shading).

This exercise immediately suggested a number of design improve-
ments:

(1) Since the memory had only a single port, image-generation had

to be halted to refresh the display. This required a complex
. control mechanism with an external scan-line buffer to allow
o both image generation and video data scan-out to access pixel
- memory. It was clearly essential to separate these functions and
3 to allow them to be asynchronous.

(2) Working through the details of generating separate root inputs
for the sub-trees on each chip led to constructive thinking about
supertrees.

:'.~ (3) Several interesting algorithms had been proposed for Pixel-
planes that would require both a more complex ALU and more
memory bits/pixel.

Neither chip testing nor system operation would have been easy
(or perhaps possible) if we had not first written a functional simulator
for the chip. This simulator modeled all of the circuitry in the

-ﬁf—-r
s, S .

chip at the gate level, was event driven, but did not model circuit R
delays. It essentially captured the functional specification for the i
chip in an executable form. This simulator was written in a standard R

programming language (Pascal), a practice that we have maintained
through the current version of the design (current simulators are s
written in C). -

oy '—"7'-'

»

.
K
-2

J. Poulton et al. 45

' AY AF RY AE R AN AF -

E

Tree ALY Memory ~ '
——— T
A |
Supertree -8
_ R - M
b)
L WRIL B e
il ﬂu Voo . ;
—TE U
] . l: Wil Memory Contrel
1. L3 I . o e RPN, pegyres
1 ~
- -
| . _...‘“
1§ !fﬂ_-x
. =
|} -)

Figure 7: Photo of Pxpl$ memory chip showing major function
blocks.

3.2 Pxpls

Based on our experience with the first prototype, the next chip
(Figure 7) contained many architectural improvements:

(1) A complete tree was included on each chip, implemented with
the supertree notion described above.

(2) The ALU was modified to the form shown in Figure 6 to support
a variety of new algorithms.

(3) Memory sire was increased to 32 bits/pixel. We used a dual-
ported memory cell to allow separate, asynchronous access to -
the pixel memory for scan refresh.

BEE BN

o T T,
., - [. . et e Ta ettt RN P I R o et D A AT NI S T N .

L R A A G N e P A L S, . MR SRS Sete N R R .
I I N A I S - Caa s ¥ s 3

.

[y
14

.
"
L
“v
d

o

46 Pixel-Planes

(4) Since memory access on the video-data port always proceeds in
scan-line order, we installed a pixel-addressing mechanism that
uses serial-shift tokens. A ‘global’ token that passes from chip
to chip performs chip select, while a ‘local’ token register in-
side each chip manipulates the pointer to the currently selected
pixel. The token-addressing scheme reduces chip pin-count sig-
nificantly, and is a faster mechanism than conventional address
decoders.

(5) Since a serial shift-path was already needed to support the global
token mechanism, we elected to make multiple use of this path.
During system initialization, this inter-chip path can be diverted
on each chip into the ‘configuration’ register that programs the
supertree, thus linking all configuration registers into one large
scan-path.

(6) Reasonable yield from fabrication at 4 micron feature size allows
only 64 pixels on a chip (1.5 micron feature size would allow a
few hundred pixels per chip). Current fabrication limits led us
to investigate other ways of getting more memory on a single
packaged device. We saw that in future chip implementations,
the 64-pixel chip might become merely one of a number of mod-
ules on a much larger chip, where some modules are allowed to
be faulty. An Alive register was installed on the chip to provide
a way of turning off faulty modules under software control. On
initialization, these registers can, like the configuration registers,
be linked together by the serial scan-path. A pattern of 1’s and
0’s scanned in corresponding to good and faulty modules. Mod-
ules (chips) with Alive set to 0 are disabled for video output, and
their configuration registers are disconnected from the scan-path
during supertree programming.

As in the Pxpl2 prototype, a complete functional simulator was
written for each of the image-generation functional blocks, the Trans-
lator, IGC, and Frame Buffer. This simulator could produce crude
images to help check the correct operation of various algorithms. The
simulators for the Translator and IGC, with slight modifications, be-
came the driver programs for the actual hardware.

Chip testing was done essentially on the display system itself.
Since the memory chips are intended to produce graphics images, we
simply plugged a single chip into the prototype display, exercised its
functions, and observed the results on a color monitor where groups
of memory bits were interpreted as color intensities. This rather

crude testing strategy was surprisingly effective, even in diagnosing
design faults.

INCaaOw”

N XN AA

3RS S A Y

J. Poulton et al. 47

Testing revealed several problems with the design:

(1) Over-aggressive use of the newly-available buried contacts in
the memory (design rules for burieds were still rather vague)
was most likely responsible for rather poor yield (approximately

20%).

(2) The dual-ported memory cell design was flawed and failed to
decouple the two ports fully. Image-generation and video scan
clocks therefore had to be synchronized.

(3) Failure to carry through a rigorous timing analysis of the memory
system and its video output circuitry led to a timing fault that
drastically reduced scan-out speed (approximately 1 MHz), but
still allowed the chip to function. Under this limitation, the
prototype display could be populated only with eight chips per
logical board.

The system works correctly under restrictions imposed by the
design flaws. Its speed is limited not by hardware design problems,
but by the software that emulates the Translator and IGC. Since this
software runs about 1000 times slower than the on-chip processors,
the system is fast enough to produce only very crude animation
(about 2-3 updates per second on an image with 6 polygons).

The module-level fault tolerance scheme using the Alive register
was successfully tested on the Pxpl3 prototype. In fact, the entire
serial-shift mechanism for Alive, supertree configuration, and global-
token passing worked successfully on first silicon.

Building and testing the Pxpl3 prototype brought forcefully to
our attention the need to build hardware to execute the Translator
and IGC functions. The experience also suggested three important
design changes in the memory chip:

(1) The fabrication yield for the Pxpi3 chips would have been greatly
improved (better than 2x) with the addition of a redundant
memory column and a redundant row.

(2) The dual-ported memory scheme did not appear to be a very ef-
fective way to support scan refresh, even had it been successfully
implemented. It provides much higher bandwidth in the second
port than is required by the scan-out process and requires a
memory cell about twice the size of a conventional cell.

(3) Since the multiplier tree in Pxpl3 is implemented essentially as
shown in Figure 4, the tree must be flushed after the formation
of each result, in order to clear the carry registers at each node.

l.,

P

jal ey

48 Pixel-Planes

A 30% speedup could be achieved if the multiplier were more
fully pipelined.

3.3 Pxpld

The improvements suggested by the Pxpl3 prototype have been
built into a new enhanced memory chip (Pxpl4), in fabrication at
the time of writing. The chip contains 64 pixels, each with 72 bits of
memory. In 4-micron nMOS, active circuitry (excluding pad frame
and wiring) is 7.5 x 4.0 mm and contains about 33,000 transistors.
Of this area, about 70% is devoted to memory, 20% to the binary-
tree circuitry, and 10% to the pixel ALU. With MOSIS’s 3-micron
fabrication, two modules (128 pixels) can be built inside a MOSIS-
standard pad frame.

The system built around this chip will be expandable to 512 x 512
pixels with 72 bits/pixel (or it can display 1024 x 1024 pixels with
18 bits/pixel). This system will be hosted by a high-performance
workstation that will store and manipulate image data-bases, pro-
vide user interaction, and initially carry out part of the polygon
transformation tasks in scene generation. (Later versions of the sys-
tem will perform transformations using special hardware, such as the
Geometry Engine in the Silicon Graphics IRIS [Clark, 1982]).

The following paragraphs detail various design enhancements in
the current memory chip.

Multiplier Pipelining

Multiplier operations are fully overlapped by including a small
amount of additional hardware for a pipeline register. Figure 8
shows the details of this scheme, which differs somewhat from that
in conventional pipelined multipliers [Lyon, 1976]. The pipelining
register i8 ‘sticky’: when it receives a logic-1 it is locked into this
state until a global clear is generated. Thus, a stream of 1's marches
down the multiplier just behind the formation of partial products
contnbuting to the MSB of the result, and just ahead of the LSB
of the new constant coefficient. When the stream of 1's reaches
the last stage, a clear is generated that simultaneously re-enables
multiplication at all stages.

Memory Design

Pxpl4 uses a 4-transistor dynamic memory cell that has the
useful property of refreshing itself during a read operation. Since
each memory row is connected only to its pixel ALU, no special
sense amplifier is needed for read access; simulations show that the
memory operates faster (about 20 MHz) without one.

-
d
te

AR AR

A r" Iy .') ’,

s
[J « @

¢ T
.

LA

L4

~

2.V «N_e K 5 Y.

-

"

-
-
K
<
v,
0
-,
",
i
.

J. Poulton et al. 49

first of 10 Steges
of X-Supertree = 9 Steges —

(4 oo}
Pht (4 ¥4
'L 'L (:oc) Taput
_L v b l te Y- multiphrer l
C Coeff }- _L J.
Phi Ph2

Pipeline Catl
ts V- multiplier

b
=

°

b

Pipeline Reset

Figure 8: Clrcultry for pipelining tree operations. The X-super-
tree Is shown, but the scheme Is used In the Y-tree as well.

The video output port of the pixel memory is implemented as
a single double-buffered register per chip, the Shadow Register, in
which a copy of the currently selected pixel’s memory is built up
sequentially. The scheme is shown in Figure 9.

A pixel selector points at the pixel (memory row) needed for the
next scan-line and puts a copy of the data from each bit onto a one-bit
bus during each read or write cycle. Simultaneously, the memory
address decoder output is delayed and used to load data from this
bus into the element of the shadow register corresponding to the
selected memory bit. Thus, as each bit of memory is ‘visited’ during
image generation, it is copied into the master half of the Shadow
Register. At the end of a scan-line, the Video Controller unloads
the master into the slave of the Shadow Register, where the data is
available for output. The Shadow Register mechanism is much more
space-efficient than a full dual-ported memory. It requires some care,
however, in design and in operation to avoid data corruption due
to synchronization failure and to ensure that image-intensity bits
are visited often enough to update the register once per scan-line.
Neither of these problems is difficult to overcome in practice.

e ;':.'..\ .;._\ &\‘An.’i ._.-..‘n; -A'A DR U AP Y . laia

o gia gt A SAS S 0l 2t A RA A A4 R R Bat Rall I R e R ol

R PRPUSSRIAIT IO

. -
‘aa _..'-“&- o)

e T T T Y Y YL T LT T T e v ey e Ty T 2 w0 4§ T T

50 Pixel-Planes

' L T T T T T T T T
Pixel ALD Pixel Selecter Jqﬂemr' Catl 72- Bit Pixel ﬂc‘-o‘v

v
T T T T T T T #
Pixe) ALY Pixe! Selector Memery Catt 53] 72- Bit Pixel Memeory
S S S0 U S S 2 s <
Pixel ALV Pixet Selecter Memeory Coat) 72- Bit Pixel Memery
1tt1t----t11%
L Decoder Pixel
01t Addr
l l ! 1-Cycle Dclul I
I BEREIIDREN!
VTOTOTOTVUT TOTOTOY

Shetev Re’uter Master
L e + < e

Tlsllan: I I M

)
Yides Dete Out Dste Mux Oyte
Addr

Figure 9: Video memory port implemented as a Shadow Reglster.

P

Redundant Modules and Circuits

Pxpl4 retains the Alive mechanism for module fault tolerance
that was tested in Pxpl3 and adds circuitry to support redundant
memory elements to make each module more robust.

The chip contains one extra memory column. A redundant-
column address register is added to the chip’s configuration register,
so that the address of the column to be replaced can be scanned in
during system initialization.

Provision of a redundant row is somewhat more difficult, since
one of the ALU-memory interfaces must be re-connected to the re-
dundant memory row. Re-connection cannot be readily implemented
without undue loss in system speed, so instead we provide an entire
extra pixel with ALU and complete sub-tree path. The 6 nodes of
local tree above the redundant pixel are realized simply by building
a full 20 stages of supertree. The configuration (address) registers
in these stages contain the address of the redundant pixel, and are
loaded with the rest of the address at initialization. Redundant row

and column enables are also provided to turn the entire mechanism
off.

The redundant column circuitry requires only about 1.4% of the
total active circuit area and the redundant row about 5.3%.

3.4 Buffered Pixel-Planes
One drawback of our present system is that the full parallelism

R IR R R
PR .
P S A R S P

ARADS 1

J. Poulton et al. 51

cannot be utilized subsequent to scan-conversion. During visibility
and painting calculations, all pixels outside the currently processed
primitive are idle.

We are investigating an alternative system design, called
‘Buffered Pixel-Planes’, that improves parallelism. A modified Im-
age Generation Controller with accept/reject circuitry and a FIFO is
fully integrated onto a custom chip, and many copies are distributed
across the system, each supervising a group of enhanced memory
chips. The Translator sends bounding-box data for each primitive
ahead of its coefficients and instructions. Each IGC accepts or re-
jects the current primitive based on the bounding box; if inside,
coefficients and instructions are accepted and pushed into the FIFO
for processing.

We have simulated the behavior of such a system processing
images of moderate complexity (up to 1000 polygons), and we predict
approximately 5-fold speedup with modest (10-polygon) FIFO size.

4. Design Methodology
4.1 Tools

For the nMOS realization of our current chips, we use mask-
level layout, layout analysis, and circuit simulation design tools
distributed by the University of California at Berkeley.

We have written in C the logic-gate-level simulators for the
memory chip and for other system components. These simulators
are used first to check the correctness of the logic design for the
system, then to generate test vectors for switch-level simulation of
the chip circuitry.

Most of the design of the custom chips was done by two designers
working on a Digital Equipment VAX 11/750 minicomputer with two
Lexidata 3700 color displays.

The lack of well-integrated design tools that go smoothly from
silicon design to board design is a serious impediment to our work.
Board-level logic design and analysis are still done using paper and
pencil, with considerable assistance from standard UNIX program-
development tools. Boards are layed out with a graphic chip-layout
editor and fabricated using MOSIS's PC-board service.

For some time we have been working on a CMOS version of
the enhanced memory chip. Mask-level design of CMOS projects
is unattractive for two reasons: First, the additional complexity of
CMOS technology makes an already-difficult layout task much more

..........

R I At A I A it B 2 ol R »‘_C'_kw S A A Sh A Ml Al S Bl A Ak A il A i AR b oAl e ai- shaee ey g o,

52 Pixel-Planes

tedious. Second, the fabrication technology is developing rapidly,
and it is not clear that scalable design rules for mask layout will be
an effective way of tracking these advances. We have therefore been
using (and assisting in the development of) the VIVID* symbolic-
layout design system [Rosenberg et al., 1985]. The system includes
a hierarchical layout compactor that translates symbolic layout to
mask with the belp of a technology file that captures all relevant
information about a particular fabrication process. In this way a
given symbolic design can hope to survive considerable change in the
target fabrication technology.

4.2 Design Style

Constructing a full-scale, full-speed system is a much more com-
plex task than building a small prototype. The principal lesson
learned from our early prototype construction was the need for com-
plete documentation and precise interface specifications. We have
therefore adopted for all system components a design style whose
elements are:

(1) The system is decomposed into modules following a restricted
hierarchy, in which only leaf-cells are allowed to contain circuit
elements. The hierarchy is maintained in parallel in the physical
domain (e.g., chip layout) the logical domain (e.g., logic schemat-
ics), and the behavioral domain (e.g., simulators that model the
logic). Composition cells may contain only interconnection in-
formation (abuttment, for example, within a chip layout) and
other cells. Leaf cells may contain only circuit elements (logic
gates in the logical description; transistors, wires, contact cuts
in the physical description).

Cho avar
LN N

(2) Borrowing from strongly-typed programming languages, we im-
pose a strong-typing scheme on all signals in the system. To
ensure that modules are ‘correctly connected’ (e.g., timing con-
ventions and active-levels are observed), only a few signal types
are allowed for connection between modules. The typing scheme
is based on non-overlapping multi-phase clocks, and if applied
carefully, avoids race conditions in sequential circuits. The sig-
nal types are encoded in a suffix attached to every signal name,
providing a powerful documentation aid.

(3) Special hazards are involved where clocking convention (e.g.
edge-triggered vs. level-sensitive latching) and implementation

* VIVID is a trademark of the Microelectronics Center of North
Carolina

L et e - - . - T S R T
R R AP TR S R A

J. Poulton et al. 53

technology (TTL logic vs. custom MOS) changes, particularly
at the chip I/O pads. To help assure that this interface will work
properly, we define its timing conventions in a simple way, using
. two-sided timing constraints.

(4) Every major module in the design is modeled by a functional
simulator. The simulated modules are tested separately, then
plugged together to check the correctness of interfaces and overall
operation of the simulated system. The simulators provide test
vectors for chip simulation and testing.

DARREANE AN

The signal-typing/timing schemes are similar to [Noice et
al., 1982] and [Karplus, 1984]. Other elements of the style were
influenced by [Lattin et al., 1981; Stefik and Conway, 1982; Stefik et
al., 1982), among other sources.

9 4.3 Clocking Techniques 5

Our nMOS custom chips use a high-voltage clocking scheme (‘hot
clocks’) suggested to us by [Seitz, 1982] and described in [Seitz et
al., 1985]. The main advantage of the technique is that n-enhance-
ment transistors transmit a logic-HI without threshold drop and
at much higher speed. In general, this clocking method produces x
layouts that are denser and much faster than conventional single- '
supply designs. -

In a system with many custom chips, it is extremely inconvenient

to generate these clock signals off-chip at a non-standard voltage.

We have therefore built on-chip clock drivers that perform level

translation and single-to-2-phase conversion. A separate input pin,

: biased typically at 8 volts, powers only these circuits. We have

- successfully built and tested a number of such high-voltage drivers,
.- and our current design charges 100 pf to 7 volts in about 10 nsec.

G
n e

The clock signals are produced in a single generator on the chip
and distributed, so far as possible, continuously in metal wiring. For
routing purposes, the clocks are second in importance only to Vdd
and ground. For the inevitable cross-unders, we use ‘low resistance
wire’, essentially an extended buried contact whose sheet resistance .
we have measured at about 7-8 ohms/square. A

Level-sensitive register controls require qualified clocks that are
generated in clocked, bootstrapped drivers [Joynson et al., 1972].
The design of these compact drivers is not diffcult, and they can
be made to generate qualified clocks that follow the primary clock X
signal with nearly zero delay.

LR PR

\‘:'-“-\‘- %)

LS

-
o
.

(s

N
.,

NEWHXTETL TATNART L T A

[)

54 Pixel-Planes

Polygon input dotae:
A;, B;, C; for each edge i

For each edge i define:
F(x.y) = A;x + By + C,

Pixel ot (x,y) is inside polygon
if and only if:
Fi{x.y) > O for all i

Figure 10: Scan-coverting polygons using linear expressions.

5. Pixel-Planes Algorithms

In this section we briefly describes how polygonal images are
processed in Pixel-planes, and we outline several new algorithms,
more fully described in [Fuchs et al., 1985]. The timing estimates in
this section assume that the Pxpl{ chips are clocked at 10 MHz.

Rendering smooth-shaded polygons requires scan comversion,
hidden surface elimination, and shading calculations:

Scan conversion is outlined in Figure 10. Processing begins
by enabling all pixels in the display. Edges are encoded in linear
equations of the form F(x,y) = Ax+ By+ C = 0, and the sign of
F is tested at every pixel to determine visibility. Scan conversion
leaves pixels outside the current polygon disabled; only those
inside participate in further visibility and shading calculations.

Hidden surface elimination can be performed using a depth-
buffer algorithm in which the z-coordinate of a pixel is encoded
in a set of coefficients A, B,C by the linear expression z =
Ax+By+ C. Each pixel stores a value of z for the closest polygon
so far processed and compares this value with the incoming z. If
the new z is closer, the current polygon is visible at this pixel,
- and it remains enabled for shading, updating its z-buffer. If the
. stored z is closer than the new z, the pixel is disabled during

shading.

Smooth shading is accomplished by computing a set of coeffi-
cients for each of R, G, and B, so that the color-intensity at each
pixel is approximated by F(x,y). Gouraud-like smooth shading
can be carried out by painting each multi-sided polygon as a se-
ries of triangles (scan-conversion and hidden surface elimination,

NACAER DA AACLS. Lalelrs

4
.

-
»

T

J. Poulton et al. 55

however, need only be done once for each polygon).

Polygon processing time depends on the number of edges and
the number of bits needed to represent the function F(x,y) for each
operation. Approximately 30,000 4-sided polygons of arbitrary shape
and orientation can be processed per second, using the steps outlined
above.

Shadows are important depth cues in interactive systems, and
we have developed a method, similar to [Brotman and Badler, 1984],
for casting shadows from arbitrary light sources using using shadow
volumes [Crow, 1977]. For each polygon in the image, the set of
visible pixels that lie in the frustum of the polygon’s cast shadow
are determined, and the color intensity of these pixels is diminished
by an appropriate factor. Shadows are post-processed after a non-
shadowed polygon image has been generated. The shadows for
approximately 78,000 polygons can be computed per second.

Filled circles can be rendered rapidly in Pixel-planes by treating
a circle as a polygon with one edge. The method separates the
equation of a circle into a linear part that differs for each circle size
and position, and a quadratic part that is the same for all circles. The
quadratic part is pre-computed and its distinct values are loaded into
every pixel at system initialization. Circles are processed by encoding
center-position and radius in coefficients A, B,C and adding the
linear expression to the stored quadratic term at each pixel. This h
method can readily be extended to render the other conic sections,
such as ellipses. Spheres can be approximated by a quadratic surface,
depth-sorted using a Z-bufler, and highlighted from an arbitrary light '
source. Approximately 34,000 spheres can be processed per second.

Texture mapping can be performed by using the linear expression
evaluator to compute a texture plane address at every pixel. The
appropriate color value for a pixel is then looked up in a texture
table, transmitted entry by entry to the Smart Frame Buffer.

Anti-aliasing may be accomplished by one of two methods. The
first, similar to ‘super-sampling’, blends a newly computed image
with a previously computed image in a series of steps that succes-
sively refine the image. To support rapid interaction, the image is
only refined when stationary. A second approach utes a method sim- 1
ilar to that used or the Evans and Sutherland CT-5 real-time image .
generation system [Schumacker, 1980]. This method assumes that a
visibility ordering of the polygons has already taken place, and uses
a sub-pixel coverage mask to compute the anti-aliased image.

Transparency effects can be produced using the sub-pixel cover-

e

56 Pixei-Planes N

age mask for successive refinement, or by disabling patterns of pixels
(e.g. a checkerboard) during polygon processing.

Adaptive Histogram Equalization (AHE) [Pizer et al., 1984] is a
powerful image processing technique used for grey level assignment
and contrast enhancement of Computed Tomographic (CT) images.
A local histogram is computed for every pixel in the image, and
then used to compute a new grey level assignment for that pixel.
For a 512 x 512 image, this method requires about 5 minutes of
computation on a VAX 11/780, and is therefore too inefficient for
most uses. The parallel processing power of Pixel-planes can be
used to compute simultaneously the grey level assignment for each
pixel in the image, without the need for histogram calculation. A
rank counter, maintained in a portion of each pixel’s memory, can
be incremented using the pixel ALU. The intensity of a given pixel
is broadcast and compared, in parallel, to the intensity of all pixels
that are within a local region. The rank counter is incremented at
all pixels in the local region whose intensity is greater than the given
pixel. After all pixels have been processed, the rank counter values
are scaled and displayed. We estimate a 512 x 512 image will require
approximately 4 seconds to compute on Pixel-planes.

6. Comparison with Other Architectures

We divide alternative VLSI-based architectures for graphics into
two classes (as outlined in [Abram and Fuchs, 1984]): those that
divide the image plane into sub-planes, with a processor for each
i subdivision, and those that divide the object database, assigning a

processor to each subdivision. The Pixel-planes system is an example
of the former, and we therefore compare it with two other systems
of this type.

6.1 Architectures for Image-plane Subdivision

Several groups ([Fuchs and Johnson, 1979); [Clark and Han-
nah, 1980]; [Gupta et al., 1981]) have proposed systems that make
more effective use of commercial RAM chips than conventional frame
buffers; we refer to this as the interlaced approach. In [Clark and -
Hannah, 1980}, the RAM’s are interlaced so that on any 8 x 8 area of -
the screen, one pixel comes from each of the RAM's; each memory X
contains every eighth pixel in every eighth row. The scheme uses two
layers of special processors organized in columns and rows, with a
row-processor in charge of each RAM chip (or group of RAM chips
when more than 1 bit/pixel). An entire 8 x 8 patch on the screen can
be accessed with a single memory reference by the 64 row processors,

AT T T P

............

'''''''''

J. Poulton et al. 57

so a polygon (or other primitive) roughly the size of a patch, or larger,
can be processed with considerable parallelism.

A major advantage of the interlaced approach is that it uses
high-density commercial RAMs and yet achieves performance greatly
improved over conventional frame buffers with relatively few custom
chips. This design is hampered, however, by the bandwidth limita-
tions imposed by separating memories and processors onto separate
chips.

Another recent approach, described in [Demetrescu, 1985], em-
ploys ‘Scan-Line Addressable Memories’ (SLAM’s). A system with
1024 x 1024 one-bit pixels is organized in 16 rows, each with a Scan-
Line Processor in charge of 4 SLAM chips. Each of these units con-
tains and controls all of the pixels in 64 successive scan-lines. Each
SLAM chip contains a conventional RAM array, organized as 64 rows
of 256 one-bit pixels, augmented with an array of very simple pro-
cessors that operate in parallel on all pixels in a row. In one cycle of
operation, all pixels in 16 scan lines can be accessed. The Scan-Line
Processors provide buffering of graphics primitives, so that very high
parallelism can be achieved.

The system-level implementation of a SLAM-based display
should be very clean. In contrast to the interlaced design, high-
bandwidth memory-processor communication wiring is completely
encapsulated in the SLAM chips. Commands and data are broadcast
from each Scan-Line Processor to its SLAM’s over a low-bandwidth
bus. The SLAM design solves the display-refresh problem without
interrupting image processing (by including a display shift register
on the SLAM chip). These are the principal features common to the
SLAM and Pixel-planes approaches.

6.2 Comparison with Pixel-planes

For today’s high-performance workstations, where the display
requires one or a few bit-planes and handles (mainly) multiple win-
dows with text, lines, and flat-shaded polygons, the SLAM approach
is extremely attractive. For such applications, it appears to be con-
siderably faster than either the interlaced or Pixel-planes designs
and is several orders of magnitude faster than conventional frame
buffers. The cost of the approach, like ours, is the need to use
custom-designed memory chips. The processors on the SLAM chip
are extremely simple and appear to require very little area, however,
perhaps as little as 1/10 that of our processors.

The Pixel-planes system is targeted at applications more de-
manding than the displays in current workstations, such as medical

L aa & B s o

58 Pixel-Planes

display and imaging, molecular modeling, mechanical design systems,
and flight and navigational simulators. These applications require
interaction with 3D images needing visibility determination, smooth
shading, shadows, and textures; images with perhaps thousands
of primitives and significant depth complexity must be updated at
frame rates.

Methods for improving perceived image quality necessarily rely
on storing additional information at each pixel. Clearly, the most
effective means of improving performance is accessing and processing
this data in parallel, closely associating a large amount of pixel
memory with a pixel processor. The Pixel-planes design provides
the power of a processor per pixel, at relatively modest cost in silicon
area, and a very general method for computing images.

The interlaced approach cannot grow gracefully in the dimension
of bits/pixel because of chip I/O limitations. In the SLAM design,
one alternative for growth in this direction is multiple banks of
SLAM, one for each bit plane. To expand such a system to the
size accommodated by the current Pixel-planes chip would entail a
copy of the processor for each of 72 bit-planes, an intolerable increase
in silicon area. The other alternative is using a column in the SLAM
to hold all bits of a pixel, then bit-serially processing data; this
alternative is similar to our approach, but it fails to provide a very
general image-computation method.

For applications that require accessing large amounts of memory
per pixel, our system should be denser and faster than either of
the other approaches. In effect, we have already paid the price of
accessing many bits/pixel: bit-serial data access and a more general
(and costly) method of display refresh.

7. Acknowledgements

We wish to thank Vernon Chi (Director), Mark Monger, and
John Thomas, of the UNC Microelectronic Systems Laboratory, for
design and technical assistance in building the Pixel-planes system.
We also wish to thank Alan Paeth and Alan Bell of Xerox Palo Alto
Research Center for collaborating in the design of Pxpl2 and Pxpl3,
Scott Hennes for assistance with the Pxpl3 chip, Fred Brooks for
the basic circle scan-conversion algorithm, and Turner Whitted for
discussions about anti-aliasing and transparency algorithms.

8. References

Abram, G. D. and H. Fuchs. July, 1984. “VLSI Architectures
for Computer Graphics,” Proceedings of the NATO Advanced

A T N TR T T G T F O T I e ow,

J. Poulton et al. 59

Study Institute on Microelectronics of VLSI Computers,
Sogesta-Urbino, Italy.

Brotman, L. S. and N. I. Badler. October, 1984. “Generating Soft
Shadows with a Depth Buffer Algorithm,” IEEE Computer
Graphics and Applications, 5-12.

Clark, J. H. and M. R. Hannah. 4th Quarter, 1980. “Distributed
Processing in a High-Performance Smart Image Memory,”
LAMBDA, 40-45. (LAMBDA is now VLSI Design).

Clark, J. H. July, 1982. “The Geometry Engine: A VLSI Geometry
System for Graphics,” Computer Graphics, 16(3), 127-133.
(Proc. Siggraph ’82).

Crow, F. C. July, 1977. “Shadow Algorithms for Computer
Graphics,” Computer Graphics , 11(2), 242-248. (Proc.
Siggraph '77).

Demetrescu, S. May, 1985. “High Speed Image Rasterization Using
Scan Line Access Memories,” In these Proceedings.

Fuchs, H. and B. Johnson. April, 1979. “An Expandable Multiproces-
sor Architecture for Video Graphics,” Proceedings of 6th ACM-
IEEE Symposium on Computer Architecture, 58-67.

Fuchs, H. and J. Poulton. 3rd Quarter, 1981. “Pixel-planes: A VLSI-
Oriented Design for a Raster Graphics Engine,” VLSI Design,
2(3), 20-28.

Fuchs, H., J. Poulton, A. Paeth, and A. Bell. January, 1982.
“Developing Pixel Planes, A Smart Memory-Based Raster
Graphics System,” Proceedings of the 1982 MIT Conference
on Advanced Research in VLSI, Dedham, MA, Artech House,
137-146.

Fuchs, H., J. Goldfeather, J. P. Hultquist, S. Spach, J. D. Austin,
J. G. Eyles, and J. Poulton. January, 1985. Fast Spheres,
Shadows, Textures, Transparencies, and Image Enhancements
in Pixel-Planes, Technical Report 85-002, Dept. of Computer
Science, University of North Carolina at Chapel Hill.

Gupta, S, R. F. Sproull, and I. E. Sutherland. August, 1981. A VLSI
Architt.ecture for Updating Raster Scan Displays,” Computer
Graphics, 15(3), 71-78. (Proc. Siggraph '81).

e e e e e e T . o R L S R B . . RIS s TeT T e B .. N ce e T et
R R LA RSP A RLSA G L ~-, S PR T LI B .
L SUPK G SEPE WL AL PR SN S P I S R P T NP ¢

........................

s, =

60 Pixel-Planes

s A N_9,

) Joynson, R. E, J. L. Mundy, J. F. Burgess, and C. Neugebauer.
. June, 1972. “Eliminating Threshold Losses in MOS Circuits
by Bootstrapping Using Varactor Coupling,” IEEE Journal of
Solid-State Circuits, SC-T, 217-224.

Karplus, K. August, 1984. A Formal Model for MOS Clocking
Disciplines, Technical Report 84-632, Dept. of Computer
Science, Cornell University, Ithaca, NY.

o Lattin, W. W., J. A. Bayliss, D. L. Budde, J. R. Rattner, and
W. S. Ricbardson. 2nd Quarter, 1981. “A Methodology for VLSI
Chip Design,” LAMBDA, 2(2), 34-44. (LAMBDA is now VLSI
Design).

A I B Ju e] l’_!

- Lyon, R. F. April, 1976. “Two’s Complement Pipeline Multipliers,”
L~ IEEE Transactions on Communications, COM-24, 418-425.

Noice, D., R. Mathews, and J. Newkirk. 1982. “A Clocking Discipline
for Two-Phase Digital Systems,” Proc., IEEE International
Conference on Circuits and Computers, 108-111.

Pizer, S. M., J. B. Zimmerman, and E. V. Staab. 1984. “Adaptive N
Grey Level Assignment in CT Scan Display,” Journal of -
Computer Assisted Tomography, 8(2), 300-305.

_ Rosenberg, J. B., C. D. Rogers, and S. Daniel. 1985. “An Overview
- of VIVID, MCNC’s Vertically Integrated Symbolic Design
- System,” To appear in the Proceedings of the 1985 Design
Automation Conference.

rj'. Schumacker, R. A. November 1980. “A New Visual System
- Architecture,” Proceedings of the 2nd Annual IITEC, Salt Lake
City.

Seitz, C. 1982.Private Communication.

Seitz, C. L., A. H. Frey, S. Mattisson, S. D. Rabin, D. A. Speck, and

N J. L. A. Snepscheut. May, 1985. “Hot-Clock nMOS,” In these
Proceedings.

Stefik, M., D. Bobrow, A. Bell, H. Brown, L. Conway, and C. Tong.
January, 1982. “The Partitioning of Concerns in Digital System
Design,” Proceedings of the 1982 MIT Conference on Advanced N
Research in VLSI, Dedham, MA, Artech House, 43-52. N

Stefik, M and L. Conway. April 28, 1982. Toward the Principled !
Engineering of Knowledge, KB-VLSI-82-18, Xerox, Palo Alto. '3

T Y Y Y LN Y XV Y Y N S Y T W R Y YT Y TN T T T

A custom VLSI-based system offers rapid rendering of elaborate,
curved objects defined by constructive solid geometry,
paving the way for real-time interaction.

Quadratic Surface
Rendering on a
Logic-Enhanced

Frame-Buffer Memory

Jack Goldfeather Carleton College

Henry Fuchs
University of North Carolina at Chapel Hill

Thc Pixel-planes system was designed to generate 3D,
smooth-shaded polygonal images rapidly enough to sup-
port real-time interaction.' ' The system design takes ad-
vantage of the fact that many of the calculations necessary
to generate a polygonal raster graphic image (polygon scan
conversion, z-buffer visibility testing, and Gourand shad-
ing) often are hnear in the pixel coordinates. The design
incorporates a tree of adders to compute expressions of the
torm Ax t B + Csimultancously at each pixel (x, v).

In essence this tree, which we shall call the [incar
Expression Evaluator (the “multiplier tree™ in previous
reports), receives the three bit streams A, B, and C as input,
and distributes the calculations for the lincar expression
Ax t Byt Can terms of the binary representation of the
pixel coordinates (x, v). Wath our colleagues, we have built

4% 02721716 X6 0100 DO4RSOL 00 < 19K6 TEE T

three generations of small prototy pes of thiy svatem, and
have developed image-generation algorithms for them.

This article reports a major enhancement to the Pixel-
planes design, for directly handling sccond-order curved
surfaces as well as planar ones. This enhanced system also
appears to generalize to still higher order surfaces. We call
the new system Pixel-powers.

Pixel-powers has a more elaborate tree structure than
Pixel-planes, one that can directly evaluate expressions of
the form Ax’ + Bxy + Cv" + Dx+ Ev + Ffor every pixel
(x. v) simultaneously, when the coefficients 4, B, C, D. L.
and F are input directly to the enhanced tree structure. We
call this module the Quadratic txpression Fvaluator.
Briefly, the QEE is constructed by linking two LEE’s
together with some additional delavs and adders.

With this capability, Pixel-powers should be able to
generate elaborate, smooth-shaded, curved objects defined.
for instance, by constructive solid geometry (CGS) in real
tme. The primitive objects (eyhinders and spheres, for
example) are calculated cfticiently with the enhanced tree
structure, and a one-bit ALU at cach pixel calculates the
logical combinations (union, ntersection, difference) of
these primitive objects.’

We estimate that Pixel-powers will have a 35 percent
greater chip area than Pixcl-planes, but should run at the
same clock speed. We estimate that the presentiy running
(10-MH7) Pixel-planes chips vield a system capable ot
generating approximately 30,000 smooth-shaded, full-color

Il COG&A

PN '\%'..

. - w
.

P

YT

R R

i (.’.'A-' VL

. .
P

VORI

€ » o

. -
A

D’l

[SN

NN
)

ot
]

4

Pt

‘»

polvgons per second, ancluding z-buffer visibility com-
putations

We do not vet have a precise estimate of the speed of a
10-MH7 Pixel-powers system, but our functional simulator
gencrates images of an internal combustion engine con-
necting rod 10 900 us (simulated time) assuming the rest of
the system can heep up (a ditficult task).

It s important to note in passing that, although CSG
representations are widely used there have been only a few
custom V1S1-based designs for them'’

The Linear Expression Evaluator

A conceptual description of the LLEE that is incorporated
into the Pixel-planes system follows; a detailed description
appears ehsewhere™ The idea (similar to some serial
multiphiers®) 1s to construct a tree-structured, serial-parallel

multipher which takes as input the three bit streams A, A,
and € and produces as output the value of the expression
Av + By + Csimultancously at every pixel (v, v) on the

csereen.

| o iltustrate how this tree is constructed, Figure | shows
a three-level example which will evaluate Ax 4 Cfora - 0,
7. The products Av accumulate going down the
tree as a sertes of partial products, with tie approprate
multiple of 4 added at each level. as shown in Figure la.
FFigure 1b illustrates an efficient implementation of this
idea. The three-level binary tree has at each node a one-but
adder, delay, a side bit-stream input, and a parent bit-
stream 1nput. The bit streams, least significant bit (1.SB)
first, are sent down the tree in the following way:
. The left child is sent the parent stream delayed one
time unit.
2. The right child is sent the sum of the parent stream
and the side stream.

Laovel 0

C added to all descendants

4A added to right descendants

Fevel 1

| 2A added to right
descendants

/

. +0A CHI1A C12A

1)

A added to right
descendants

| [+
/+

C+5A C+OA

b O

[evel 0O

tevel 2 [A

A+

(o) ' : 3

CHi1A C+2A 4 3A

A+

CHaA
]

Figure 1. A three-level LEE multiplier tree.

lanuary 1986

- W
O A

-

N U

’
-

X tevel O

. BB, 00 —

...AlA‘I()]

X level 1

Al+

Y level O

'

(b)

viwa 1] 1081H a1 A+ [a[+ ‘A-I- gA+
C_"-,-;At- _C+ZB"'§: 4| C+A C+A+2B C+2A {CH+2A+2B C+3A ’Cf3A+ZB
c+B C+3B|l CH+A+B C+A+3B|| C+2A+B-C+2a+3Bfl C+3A+B C+3A+3B
() Y(0) Y(1) Y(2) Y(3)
A B
-l
X tree
-
X
200 o o o
(Y X) -1 e o o -t
- g
eoe Y(x) o 3 o 0o o vize1) \
¥
Ve {f..i.l Hl
'

Figure 2. (a) Complete two-level XY-tree to compute Ax + By + Cforx,y = 0,1, 2, 3. (b) Schematic diagram of complete

n-level XY-tree.

Lhe delay to the left child s simply to keep the bit
streams flowing down the left and right branches at the
same rate. Note that the Oth bit of a level 0 side input
reaches level 2 at the same time as the second bit from a
level 2 side input. Hence, if A is the side input at level 0
{that v, the root node) it arrives at the leaf node as a 4.4,
and 1t 4 s the side input at level |, it arrives at the leaf node
as a 24 In order to have something in the parent stream at
fevel 2 when the 1.SB'S of the side inputs arrive, we append

SO

two zeros in front of the L.SB of each side input, and ignore
the first two bits coming out of the leaf nodes.

If we want the eight bit streams emanating from the leaf
nodes to be C, C + A, .. | C + 7A, then the root input
must be €, and cach side input must be 4 with two zeros
put in front of them. For example, consider 64 + . The
binary form of 6. (110),, defines a umgue path through the
tree: night branch at level 0. night branch at level 1, left
branch at level 0. This translates to: add A shifted twice at

IHEE CG&A

. v v s v e o

R ALY

kS
. O
*
'l.
. '~.
\ level 20 add A shifted once at tevel I This, in turn, s cach node at level & 18 labeled with the binary number (5,0,
cquivalent to adding 44 + 24 + 0 = 64 at level 2. The A (100 .. .0F (by is the most signilicant bit) where b, is ‘
) oot input (" passes through the tree as a constant sum- | if the node can be traced back to a right branch at level 4,
mand to each termmnal bit stream. and is 0 otherwise. The root node (k == 0) recerves the label P

. I he LEE is constructed by generalizing this designinthe 10 01§ x = (bh, . h,). then the value that accumu-
: following way: fates at location x in the X-tree s X
Y

1. An n-level, binary adder delay X-tree s constructed, Root Input +
cach node of which has a parent-input bit stream and voohamd ‘hk <(Side Input at node hoby . biy 10 .. 0) -
a side-input bit stream. Each node itself 18 a one-ba S AN gk l/,‘ A= Avi C
adder, delay that (a) delays the bit stream from the
parent and sends this parent bit stream to the left
chila (the parent stream to the root node 1s '), and
(b) adds the parent bit stream to the side bit stream
2" ' 4 (that is, the bit stream with n [zeros preceding
the 1.SB of 4). and sends this sum of two bit streams
to the right child.

The purpose of the delay to the left child is simply
to keep the bit streams flowing down the tree at the
same rate, since the add operation delays the flow to
the right child.

‘The vy term. Although not presently implemented in the .
Pixcl-planes system, the outputs from the X-tree could be)
rerouted into the side inputs of the Y(x) trees, rather than
into the root node. This modified LEE would produce Bxy
when B is the side input into the X-tree.

PO
e
ot

7oy

e

Path design. Technology constraints make it impossible
to put the entire tree on a single chip. A portion of the
Y(x)-tree is put on the chip together with the path from the
root node of the X-tree to this portion of the Y(x)-tree, as

e e
5

’

B

(Y

2. There are 2" bit streams emanating from the leaf g 8 . ; .
nodes of this n-level X-tree. By writing Ax + By + C ‘sh?wn n flgure 3. Th; path is activated on each chip by
X in the form By + (Ax + (), we see that it suffices to using the binary code discussed above. -
N construct, for each X-tree, another n-level binary N , -
. adder, delay tree. This tree, called the Y(x)-tree, will I'here are scvcrfil possible schemes for the QEE, somg of -
. receive root input Ax + C from the xth bit stream of Winch may look simpler than others from the point of view .
the X-trec, and side input B. Because the xth bit of the global layout, but the one that we chose seems to be -
Jtream has‘ '1lrca(i\' been dclay.cd by n~l as il'passcd the most promising, considering the constraints mentioned ;
: through the X-tree, we must add 2n-2 zeros in front above. >
. of the LSB of 8. o
:: 1. The bit stream emanating from the yth leaf node of =
. the Y(x)-tree represents the value of 4x + By + Cfor ~
the pixel (x, v). Figure 2a tllustrates a complete, smali '
X-Y tree with two levels for X and two levels for Y. -
. Such a LEE would suffice for a trivially small . . B
- memory chip for a frame buffer with two scan lines The key idea in the QEE o
'.' and two pixels per scan line. Figure 2b is a schematic design is to send a d,:fferen(side -
or = general X-Ytree. input to every node in the -
Several observations about this construction will be X dY)-t ce .
. usctul in our discussion of the quadratic version of the LEE an (x)-trees.
QN later 1n this article. .
:; f.eading seros. The 7eros that precede the 1.SB of each .;T

bit stream as a result of its multiplication by a power of two
are necessary to *initialize™ the computation. That is, the
zeros are needed in every parent stream when the LSB of 4
in the X-tree (or B in the Y-tree) arrives from the side

The Quadratic Expression Evaluator

input. The appropriate number of “early arriving™ bits to
cach pixel are discarded. For the rest of this article, unless
otherwise indicated, we will omit mention of these leading
reros. For example, we will say the side inputs to the X-tree
arce A4 rather than 2" ' 4.

Node labels. | he effect of adding A at a node at level &

We now illustrate the construction of an enhanced tree
structure that accepts as input the six coefficients (A, B, C,
D, E. F) and produces as output the expression Ax' 4 By
t v+ Dx 4 Ev + Fsimultancously for every pixel (x,
). The kev idea in the design of the QEE 15 to send a
difterent side input to every node in the X- and Y(x)-trees,
rather than the same inputs as in the LLEE. Recall that cach

node of the X-tree at level k can be labeled by the binary
number (hoby .. biy 10, .. 0); and that if

: (k-0 .. n 1)inthe X-tree s that of adding 2" * ' 4 1o all
. pixels which are nght descendants of that node. Suppose

'r'.'- et "I A

January 19%6 51

FFFor

Rt ot e N i il
.h
3
;.
3 . « A B
X
rt
. —C1
i £
L —c %
;*. » Chip oy
é . address
C]: {)/ ll
e——
4'—G)/
Chip y
: addroess
p———ned

T

b

Figure 3. Path through X-tree and part of Y(x)-tree.

HA+D
{16A +4D)|

rd
Al

(10A+4D1F)

l KA+ D (actual input)
[6:4A +8D] (cfect for nght descendants)

(O4A+ 8D+ F) accumulating sum

JOAt D

A1 [BOA + 4D}

(AP RD 1) (LA 12D+ b))

ﬁ)

2A+D A +D INA D JOA LD
f -
,LQ?K‘ fra+ 2D} alt] [2044 2D] /@‘Z}‘ [oA+ 2D) ol [52a+2D]
/ { \ /
3
/ \\ / / \ /
CEY (N E2DHEY (TOA Y D4 Y (R6ACOD Y) (GIA+RD <) (100N cJOD ¢ 1) /’ \
/V ‘ i ! | CLaA 12D 1) CE90A s 1D 1 1)
; \ /! \ / i !
f v \ ’ . 4
Al A D Al] At VA D [Altle 180D (Al DAL 210 DA 250 DA+ 200D
[t jal ol L b7 gl Il (ot}
\ I\ ;N fod / / N
\ ! \ H i ;
/ ' X \ / | ’ \ / ¢
| PN 2D TOA + 41y s) ﬂ(u\‘(»l)'l"'l\’”l)"| xltmvInlx-l‘ln\‘l,’lwl |->(.\A|.|)o|$ N
VD AR 2SAESDIOE 0A T b NEACUD S 1A T TOUAF LAD | 1354« 1A | .'v‘
oo \ : §) 5 o - » o n " 12 1S I 15 Ay
t-.‘
. . e
Figure 4. Side inputs for a four-level tree to produce Ax? + Dx + Florx 0.1,...15. N

TH

IEEE CG&A

)
N
1

S S T Tk Bl AN A A Sl e AN She AIANMA ANV A el e a0 a0 g g\ g

~a
o
[aS]
3
x*
>

v = (/';nhl

b,)= X

then the x bit stream s

Root Input +

N 7 I ym k)

SO 027 b -(Side Input at byby . b 10 0)

We maodity the side inputs to the X-tree to generate the
expression 4%+ Dy + K Since we already know how to
evaluate Dyt F(using sideinput 1) and root input F), we
will concentrate for the moment on the Ax™ part of the
expression. Suppose we write v on the binary expansion

=F+DX71 427 b+
D LY W LA IR S
= F 4+ Dx+ A

Sce Figure 4 for a four-level example.

02" b (24)))

The problem of generating Ax’ + Dx + F has now been
reduced to computing these side inputs to the X-tree. The
key observation is that the summand

XA a2 24)
can be evaluated by “siphoning off ™ the feft child output of

lorm the corresponding node of another n-level tree with root
v X7 a2, nput 0 and a constant side input 2A4.
Putting this all together, the side inputs into the X-tree
Phen that are necessary to evaluate the expression Ax’ + Dx +
RN LY W T F at location x can be generated as follows:
NI A AR D S Y N SARR A I. A new “PX-tree” of adders identical to the X-tree is

sent a root input of 0, and a constant side input of
24.

2. The left child output of a node at level k in the PX-
tree, in addition to being sent down the PX-tree in the
usual way, is (a) added to A. delayed (n-/-k) time
units, added to D; and (b) becomes the side input to
the corresponding node of the X-tree.

b, (since b, =0 or 1) and use the
, o(amthmg) =0, then we

1t we observe that b, =
convention lhdl itk =0thenX
can write Ax as

NI a2 e A+ E50026,24)))
Hence if we let the root input be £, and the side input to
node (hh, . by 10...0) be

DY 2 24)) Figure 4 shows an example of a four-level tree to
evaluate Ay’ + Dx + F. and Figure Sa illustrates the
calculation that generates side inputs for the top two levels
of the tree. Figure 5bis a schematic of the general node-to-
node linking, referred to as a Quadratic Linked X-tree with
inputs (A4, D, F).

then the x bit stream s

Rootinput = X ¢ 42" * 'h, (Side input at
boby b 100 0)

F4 D027, (1)+°"‘ A+ E502Yh,(24)))

(BA+D) —é~(8A)-A‘-(A)-é’—(0)
(.,\+m-é.(m)ﬂ«(mﬁé‘-w)
E(20A H))-é-(zm)ﬁ-(sm-éo-u,\)

A g
DAL

T
LN

TYWINET

Figure 5. (a) Creating inputs for the top two levels of the tree in Figure 4. (b) PX-to-X node connection at level k.

Tanuary YR6 N

PSR TR L MR
o

. e e s e e et L - .) ..
LA{.‘..'J:'.':E_'\'..'.Q.’ S e T e e AT ~-_o.,...‘,..‘_'._ e A T

-A..\-g VPR O

B

EVR R IR AR

0y
B

L™y

0 2A
{
aaas ©
®
A a
a C(*
® PX-tree

Ax’+ Bxy+Cy +Dx+Ey+F

x leat E B
(BxFE) C 0 2C
XTkE
| l |
aaa ®
aa [@
o] K14 K6
Y-tree ® PY tree
T
v

Figure 6. Schematic layout of the QEE.

{ he quadratic expression in two variables 1s an extension
of this scheme. Suppose we write the expression (O (x, v)
AV 4 Bo £ OF Dy # Ev Fintheform O+ (B ¢
Y vt (A + Dx 4+ F). Then. to evaluate Qv
suthices to construct a Quadratic Linked Y(x)-tree with
nputs (C. By 4 E AV + Dx+ F) The last two mputs are
generated via a Linear X-tree and a Quadratic Linked N
tree. respectively. Figure 6 shows the complete schematic of
the Q'L

Since the entire QEL tor all pinels on the screen cannot
be contined on a single chip, we proceed ina manner
analogous to the path to-subtree scheme of the 1 FE On
cach chip, we put as much of the hinked PY(2) and Yoo

trees as are needed for the pixels on this chip | hree

54

wentical, complete X paths and two wdenucal, pattal Y
paths are constructed. and linked appropriately to replicate
that portion of the complete QFF relevant to the pixels on
this chip. Anallustranon of this is gvenain Figure 7 Figure
X lustrates the PY(v)- and Y(x)-subtrees that would be
implemented on g small 16-pixel chip

Implementing a system with a QEE

W have just begun to plan the implementation ot Pivel-
posers Ttappears so tan to be astragghttors ard expansion
ol the Povel planes implementation A briet fook at that
miplementation may help explin the one being plinned

HEL G

R S

’

IS R LR S S A B IR it T A Aadh Bl SR A W LA -2 A b e i i Mt A e e 8 Sclinciib e Sites S A A St et anl o

Chip x
address

Chip y
address

(Bxt+E)

AXS 4 DX+ FHPartial (Bxy+Ey+Cy?)
}
Figure 7. Linked paths through PX-X tree and PY-Y tree together with extra x path for xy term.

TR

vt (BN by Gy)
AN DN

Figure 8. Chip organization of linked subtrees.

Tanuary 1986 o

[== -
L) 1 413 r
b i) m;"\u.; 4
1 %:: § Wining 1o pads)
Ve K
E‘ 7 F" - T wperie 7
E‘] Tree
;’i ALl ~]
g : - Memon
:—.:5 3 Z (T2t por pondd
,:’g t ese C: eoe G4 pxcdsm chip)
gﬁ ‘ - Control {
E:: g L Adtine arca
1]
i 3 L B 2L, s bOpads
.
[L Figure 9. Micrograph of Pixel-planes4.0 memory chip Figure 10. Pixel-planes4.0 general floor plan.
v (Melgar Photographers).
-
.

Al W/
T T T T T 1T
L supertree j T S P S W
N ||| Sl e el an il | [Sal e] I_lfﬁj“ —1—

I-bit ALU"s - 1-bit ALU's -— L-bit ALU"s

A=

Momory grid Memory grid Memory grid

- e e o e [R CMETRTIM L es e e imets SR N e G e

Figure 11. Pixel-planes to Pixel-powers organization (common central wiring channel not shown).

Preure 9 samucograph of our fourth-gencration Pinel- parson.) o implement a QEE within such g svstem, we

planesd 0 memory chip,and Figure 10 s a general oot puta QEE n place of the THE
plan of thes chip (We actually have a newer, Lurger chup Fhe PEE onachip consints of two modules the portion
that s now workimg, Pivel-planes 3 1 but since that chip s af the complete binany “multipher tee™ tor the pivels on
fundamentally two Pixel planesd 0 chips it s just as vahid, this chip. and the extra free path Csupertree™ to the toot
; but simpler. to use Pixel planesd &4 as the basis of com ol the global tree Froure T allustiates the transtormation
S IHEE CGAN

R R I AU S S S AR I L G ST R OO DI CIC

}- = 0 T D AN S SN S e B e sl i aad - oy b e

¢ Aibimages are produced by a tunctional simu-

L3 eveqe atter processing ot 190 opcodes
{16 opoodes o not need coef-
! ooty the area snd Jepth of the
S ate e nxnly that aoe snliiesslad by other

e ¢ butter

Tedhogent st

atied piedte are cope Loanla

R . -
. - » POU SN W WY Y G S T L DU

and those still visible are shaded—total of opcodes is now
222; (d) completed simulation with a final total ot 342
opcodes with 260 coetficient sets. Time to gen=rate this
image in a 10-MHz chip is estimated to be 900 micro-
seconds.

-
. V‘-'PAT"FV"rv.*v_v--rv-r,v'.,.J

Aoa

A

-
et et

™

e

“HYHE Y E Y s T T -0

N

HANERRAR 1LY

e A AR SAT AT B A e et i hi At it A aA SIS it L b et et e

CSG-defined object in Pixel-powers a connecting rod of

an internal combustion engine. The object has 17 primi-
tives, of which 14 are evident in this image. Scventy coeffi-
cient sets (4, B, C, D, E, F) were required to gencrate the
image. We estimate that the object could be generated by
Pixel-powers memory chips in less than 900 ps. The
image-genciation process itself is described in an upcoming
report.

Conclusions

The generalization of the LEE tree to a QEE gives vastly
increased power to our logic-enhanced memory chips.
Since the number of primitives in a curved surface model
of an object is typically much less than a polygonal mode}
of it, the effect of the extra power in the memory chip is
even more dramatic. The challenge now is to develop

algorithms and systems to convert efficiently the geometn-
cally transformed representation into a form suitable for a
frame-buffer system composed of these chips. I

Acknowledgments

We thank Jeff Huliquist for developing ihe functional
simulator that generated the images in Figure 12, and John
Eyles for developing a detailed simulator of the QEE. We
also thank both Hultquist and Eyles, and John Poulton for
valuable discussions and suggestions. We thank Paul Deitz
and Paul Stay of the U.S. Army Ballistic Research Labo-
ratory for the CSG data of the connecting rod.

This research is supported in part by the Defense
Advanced Research Projects Agency, monitored by the
U.S. Army Research Office, Research Triangle Park,
North Carolina, under contract number DAAG29-83-K-
0148, and the National Science Foundation grant number
ECS-8300970.

References

1. Henry Fuchs and John Poulton, “Pixel-planes: A
VISE-Oriented System for & Raster Graphies Fn-
gine.” FLST Design (formerly Lambda). Vol 2. No.
1. 3d quarter 1981, pp.20-2K.

[)

. Henry Fuchs, Jack Goldfeather, left P Hultquist,
Susan Spach, John D. Austin, Fredenick P. Brooks,
Jr..John G Evies.and John Poulton, “Fast Spheres.
Shadows, Textures. Transparencies, and Image Fn-
hancements in Pixel-Planes.” Computer Graphues,
Vol 19, No. 3, July 1985 (Proc. SIGGRAPH 85)

3 John Poulton, Henry Fuchs, Tohn 1Y Austan, John
G. Fyles. Jusun Heineche, Cheng-Hong Hsich, lack
Goldfeather, Jett Po Hultquist, and Susan Spach.,
“Implemention ot a Full Scale Pinel-planes System”

S8

C .,

. - . . Te
WP W S DRI S Y ¢

.. . e e
T RN R SR
PP AP PO R AR PORC AL ¢

in Proc. 1985 Chapel Hill Conference on V9IS, H.
Fuchs. ed.. Computer Science Press. Rockvitle, Md.

4. Gershon Kedem and John L. Ellis, *Computer Struc-
tures for Curve-Sohd Classification in Geometric
Modcehng. ™ techmcal report TRE4-37, Microclectronic
Center of North Carohna, Research Triangle Park,
N O Sept. 1984

S A AG Requicha, “Representation tor Rigid Objects:
Fheory, Methods, and Systems.™ ACA Compunng
Survevs, Vol 12, No 4, Dec 1980, pp.437-464

6 Richard b 1 von " ITwos Complement Pipeline Mul-
uphers.™ IEEE rany Communications, Vol COM-
23, Apnl 1976, pp 481-425

IHEE CO&A

o el Bo* dat Rat Dot St et St it 208" it ia W AU N g A SR il el

E \:
s
A -.
) Jack Goldfeather 1s an associate professor of Henry Fuchs 18 a professor ol computer ..
L] . N . !
. mathematies at Carleton College in North- science at the University of North Carolina -
- ficld. Minnesota, where he teaches a vaniety at Chapel Hill, where he has been teaching N
: of undergraduate mathematics and computer gradudte courses in computer graphies and :-'
science courses. His pnimary research in VISE design, and directs the research of
mathematics s an the arca of algebraie PhD students and rescarch associates an
tapology. especially the algebraic properties graphies algonithms and VI Sl architectures -
of mappings between mfimite. dimensional I-uchs 1s the principal investigator of re- X
topological spaces During a [984-19%5 sab- search projects tunded by DARPA, NIH, :\
batical at UNC at Chapcel Hill, he was a mathematics consultant and Y\'S} Hc consults tor a vanety of industrial orgamizations 2
to the Pixel-planes research group He 1y an associate editor of ACM Tranvactions on Graphies and W
Goldfeather received a BA in mathematies from Rutgers was chairman of the 1985 Chapel Hill Conterence on VIST He -
Uiniversity in 1969, and an MS and PhD in mathematies from recened a4 BA from the Unnersity of Calitorma at Santa Cruy
Purdue University n 1971 and 1975, respectively. He taught at i 1970, and a PhD trom the Uninversity of Utab in 1975, $ 7
the Umiversity of Wisconsin at Malwaukee from 1975 to 1977 .
hetore jonmng the Carleton faculty :
J
L]
Jack Goldteather can be contacted at Carleton College, p
Muathematics Department, One N. College St.. Northfield. MN "
O S$S057. Henry Fuchs can be contacted at the University ot North '
Carolina, Department of Computer Science, New West Hall by
03ISA. Chapel Hill, NC 27512, y
25th Anmal SPATIAL ToRMATIoN cumoLoGis b N
T .
Symposium on Foundations A\ N4 -
of(ompmer\nem . .
WJW 4 .
(-
| -
|
!
PROCEEDINGS !
i
{
| J
j .
I his symposium represents an opportuniny to expose all of us to ' y
Py mne papers orgamzed i sivosessions . The sympostumoan the vanety of compater spatial handling from the pomts of view
N fadis papers on paraliel posenine, computer networking, ot hardware, sobtware, spatial data structures, arihiaoal intelh
i Ficar anatrond - lambda caloadand deorthme SEE pp cence graphicos, natural lanpuape, peopraphic mformation
- Order #591 svstemis, and remote sensing 426 pp
Order #588
25th Annual Symposium on Proceedings — Pecora IX
Foundations of Computer Science Spatial Information Technologies
October 24-26, 1984 For Remote Sensing Today and Tommorrow
October 2-4, 1984
Nonmembers —$56.00 Members —$28.00 Nonmembers —$56.00 Members—$28.00 b
:.-. Handhng Charges Extra Handling Charges E xtra B
:.‘,. Order trom IEEE Computer Society Order Dept Order trom IEEE Computer Socrety Order Dept !
-:. PO Box 80452 Wantdway Postal Center PO Box 80452 Worldway Postal Center
K L os Angeles. CA QDORO LIS A tos Angeles, CA 90080 USA
(714) 821 8380 (714) 821 8380
h

»

(,:J"." NC oA e
Ly e,

o ll'f*f")'_v‘f- D

