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ABSTRACT

Pattern recognition methods were used to evaluate the
information content of mass spectrometry data obtained using
transition metal ions as an ionization source. Data sets
consisting of the chemical iohization mass spectra for Fet and
Yt with 72 organics (representing the six classes alkane,
alkene, ketone, aldehyde, ether, and alcohol) and 24 alkanes
(representing the three subclasses linear, branched, and cyclic)
were subjected to pattern recognition analysis using a k-nearest
neighbor approach with fea£ure weightings. The reactivites of

* and Y' toward the classes of compounds studied were

Fe
characterized using classification accuracies as a measure vuf
selectivity, and important chemical information was extracted
from the raw data by empirical feature selection methods. A
total recognition accuracy of 8l% was obtained for the

recognition of the six organic classes and 96% accuracy was

obtained for the recognition of the three subclasses of alkanes,
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INTRODUCTION

Electron impact (EI) ionization mass spectrometry has become
a standard means for the classification of unknown compounds
according to functionality or structure (1-5). The
differentiation of isomeric molecules, however, remains a
difficult problem and subtle differences in molecular structure
often cannot be distinguished by electron impact. The need
arises, therefore, for a more selgctive form of ionization.
Chemical ionization (CI) has the potential for such an increased
selectivity since it is possible to adjust the reactivity of the
CI reagent for selectivity in a way that is not possible for the
EI mass spectrometry experiment (6-8).

In our laboratory the reactivities of laser generated
transition netal ions toward various types of compounds have been
studied for several years (9-13). A major goal of this work has
been to evaluate the utility of metal ions as selective reagents
for mass spectral identification of the functionality and
structure of unknown compounds. In view of the potentially large
data matrix generated from the reactions of different metal ions
with various organic compounds, the application of pattern
recognition techniques provides a particularly useful means for
achieving these goals.

Pattern recognition has been applied to a wide variety of
chemical problems and numerous reviews on the subject have been
published (14-21). Some of its more recent applications include:

recognition of organic compounds using Fourier transform infrared



spectroscopy, interpretation of gas chromatography data, nuclear
magnetic resonance spectral interpretation, and analysis of
electrochemical systems (22-32). Many applications of pattern
recognition to mass spectral data have recently appeared in the
literature. Electron impact ionization is by far the most widely
used ionizatior means and has been employved in studies ranging
from the analysis of complex mixtures using gas
chromatography/mass spectrometry, to the reccgnition of steroids,
and the use of mass spectrometric cdata to predict the biological
activity of antibiotics (33—36). Pattern recognition has also
been applied to the experimental optimization of field-dssorption
and fast atom-bombardment mass spectrometry and for the locatiocn
of homoconjugated triene and tetracne units in aliphatic

cenpounds using NO chemical ionizatica (37,38).

Because pattern recognition ic a wlil established tool for
interpretation of mass spectral data, it was tie goal of the work
described hrere to use this tcol to erhance our understanding of
the information content of a new and important advance in

chemical ionization mass svectronetry. This was a particularly
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efficiant approach becanse ¢f “he potentially encruous

matricas, It alzo provicded a2 unigue oprortuai:cy to apply patiern

re

recogniticn to an enmerging catua base where the scientist is near

the botton of th=2 "learning curve,. This work illustrates how
such an awvdlication can enhance the rate of climbing that
"learniny curve.”

Cnhe 0of the gcals of pattern recognition is to minimize the
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’ data set while maximizing the recognition accuracy through the ﬁ
A
elimination of features detrimental to class separation. Thus, "
N an empirical feature selection algorithm is often used to map a 4
} classification problem down from the space of all features to a ,
"
: space of smaller dimensionality which consists of only important, 4
o relevant features.  Not only does this procedure enhance the ‘
- \
2 ratio of patterns to features in order to have a statistically 3
:' valid separation of classes (15), but it also can provide new E
:f chemical insight based on the feature set selected to achieve a B
: given informational goal. 3
.4 In this study the use of two metal ions, Fe' and ¥%, as o
. chemical ionizaticn reagents was evaluated. Two different R
3 empirical feature selection algorithms were used to extract i
. »
- important features from the data: successive subtraction of :
; features with total recognition accuracy (SSTRA) as the selection 5
i criteria which emplovs constant weighting of the features, and E:
- forwvard addition of features using the nearest neighbor distance A
i error (FAURNDE) as selection criteria which performs weighting .
3 cptimization. A complete description of these algorithms has i
3 "
M toen given (39) . Using the recognition accuraecies obtained by -
" tiizse algorithms with the metal ion data, the selectivities of !&
§ the reagents for six orcanic functionalitices as well as §
2 selectivities for linear, branched and cvelic alk:ines vere 2
. evaluated. The analyticzl utility of Fet ang ¥', 2lone and "
; usoed in conbination, for the recognition of functicnality and ?
- )
y structure was also explored, Trends in reactivity have beon -
? inferred from tho misclassifiad compounds, N
>
. .
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EXPERIMENTAL

INSTRUMENTATION
A home-built capacitance bridge ion cyclotron resonance
(ICR) mass spectrometer, under the control of an IBM 9000
laboratory computer (40,41), and a Nicolet prototype Fourier
(FTMS 1000) were used to generate the
(42). Details of the ICﬁ and FTHMS
zpariment have been described elsewhere (35). For most of these
iments the magnetic field strength has been held constant at
and the sanple pressure has been maintained at
nproxinately 2 X 10~7 torr, while the trepping times ranged from
to 500 milliseconds. The chemicals used for the collection
Gi the deta in these experiments were obtained cemmercially in
and were used as supplied except for application of
eze-pump~thaw cycles to remove non-condensable gases.
The transition metal ions for chemical ionization were
generated by focusing the fundamental or gquadrupled beam of a

Cuonia Rav nd: laser (1.06u) onto a metal foil or rovd located

"AG
on one ¢l the ICR cell plates, The i . this method for

ions have been descri

non-tcnermal ions Laser mower

been adjusted to predominently form monopositive Icons,
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The metal ion CI mass spectra for each of the compounds

listed in Table 1 has been obtained as described above for both

+

Fe' and YY", The data used for the recognition of the organic

compounds consist of the branching ratios for the primary
products generated by the initial reaction of the metal ion of

»

interest with the organic neutral sample. Subsequent reactions

o]

£ these product ions with the neutral (ie. cecondary, tertiary,
etc. reactions) were not considered. The reaction time and
pressure were adjusted such that predominantly primarv products
were obcerved. The precursors of any product peaks in question
have been confirmed by double resonance techniques and data has
tecn collected under a variety of different conditions (trapping
times and pressures) to confirm the primary product intensity
retios. Much of the data collected has been repeated using both
the conventional ICR and FTMS to test the reproducibily of the
data. Under these conditions the relative intensities of the
precucts do not¢ vary widely and have been found to be
reproducibla to better than 1C%.

Six diffcrent training sets were generated £from the data
collect i, The first two contzin the data for the reactions of

72 compounds representing the six orvanic classe

&)

{alkaone,
alkene, ketone, aldehvdn, cther and alcohol) with re’ and Y+,
respectively. The third contains the corbination of the data in
the first twe. The fourth and [ifth training sets contain the

£ the threa subclasses

. . . C e o - ot .
(linezr, branched and cyclic) with Fe' and Y', respectively.

+ O
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And the sixth data set contains the combination of the data in

the fourth and fifth.
MPUT 7

All of the pattern recognition programs have been written
for the IBM 9000 léb computer using IBM version CS 9000 FORTRAN
77 and employ the k-Nearest Neighbor algorithﬁ (RKNN) (44).

A classifier using this algorithm predicts the class of an
unknown to be the same as that of the majority of its k-nearest
neighbors. Due to the relatively small size of the data sets,
only the first nearest neighbor (k = 1) was used to effect
ciassification, and the distance measure employed was the
BEuclidian distance in an N-dimensional feature space. A scaling
factor or weighting of the features has been found to improve
clustering of the classes and a scheme has been developed to
woight the features differently for each class (39). Using this
weighting scheme, it is possible to assess the importance of a

ature for each class since the unigueness of a feature

m

iven §

Ne]
[

c k2 invercsely related to its weighting factor. The

)
o]

loavae-one-ott (LOO) algorithm (45,46) has been used to
gencrate recognition accuracies used by the pattern recognition

algorithms,

RESULTS AWD DISCUSSION
Frpncticeral Croup Recoosnition

The optimal feature selection searches for the two

o]

ithms with the three organic date seots are cempared in Table
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. II. From an examination of the individual class recognition E
G +
. accuracies for Fe' with the organics, it appears that iron ion ?
Y can distinguish alcohols most readily from the other compounds, f
2 In the reaction ¢f iron with alcohols, FeOH; is often observed ?,
; and is unigue to this class. Alkanes are separated from the X
X other class2s with 75% accuracy, and a very lcw recognition T
.; accuracy for the ketone class indicates that iron cannot :
distinguish this class frcm the others. g
; The nearest neighbors of the compounds that have been -
E . mnisclessified in the best of the two trials reported in Table II Ef
- are identified in Table IV. 1In accordance with the high ;‘
‘ recognition accuracies, fewest misclassifications of the iron %
E data set occur for the alkanes and the alcohols. The alkenes are E
% misclassified ac alkanes and ketones, two of the misclassified i;
alkenes being closest to cyclic ketones and two closest to »i
;i branched alkanes. In the reaction of ketones with Fet, the E
; oxygen is nost often lost as CO neutral, and often accompanied by 5
- H2 ané cther hydrocarbons. Thus the corresponding ions N
- cuserved are similar to those observed with alkenes. Two of the i
5 ketones are closcst to alkenes while the others are misclassified %
16 aeldehvds, alceohel, zlkane, and ether. Aldehydes are also i
pocrly gepiratod from the other classes, having E
. misclesagifications as alcohols, ketones, alkene, and alkane. "
f Cnly turee nisclassirications occur for ethers, two as alceohols f
i and one a3 xetone. i
A In cortrast to iron, ytitrium ion is particularly well suited 4
- for differentictino hydrocarbons from oxycen-—containing spacies.




O

A ate gty g}

-10~-

Due to a very strong yttrium-oxygen bond strength the major
primary product for virtually all oxygen-containing
functionalities studied has been Yo', with this single unique
feature it is possible to linearly separate oxygen-containing
from non-oxygen-containing species.
As with iron, high recﬁgnition accuracy (100% here) for
the alcohols is observed. Three unique peaks are observed for
¥t with alcohols, vot, YOH+, and YOH; allowing easy
distinction from the other oganics. Alkanes are also recognized
with high accuracy using yﬁtrium, and in contrast to iron, the
ketones are recognized with high accuracy from the yttrium data.
The alkenes are the most poorly recognized class at 50% accuracy.
The contrast in the reactivity of Y’ versus Fe' becomes g
apparent from the data presented in Table IV, The two cyclic
alkanes misclassified with yttrium are closest to cyclic alkenes.
¥t show a preference for dehydrogenation as opposed to C-C

bond cleavage and thus dehydrogenation of the cyclic alkanes

produces products similar to those found with alkenes.

"n f'f‘f't'

With yttrium, as opposed to iron, a large improvement in

tS

the separation of the oxygen~containing organics from the
hydrocarbons is observed. No misclassification of the alkenes as
oxygenated species is observed for Y" which is in contrast to
iron; the misclassified alkenes are all closest to alkanes,

and similarly, cyclopentene and cyclohexene are closest to
cyclopentane and cyclohexane respectively. For ketones with

yttrium, only methylcyclopropyl ketone is misclassified and

appears closest to hexanal. Three of the aldehydes are
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misclassified and are closest to butanone for which the only
observed peak is YO'. Since the major peak for the ketones and
aldehydes is YO+, it is not surprising thet there is some
difficulty in distinguising these two classes., Three of the
misclassified ethers appear closest to butanone, on the basis of
yot intensity, and propylene oxide is closest to cyclohexanol.
When the data for the CI mass spectra using the two metals
are combined, an improvement in the ihdividual class accuracies
is observed as well as an improvement in the total recognition
accuracies for the data sets of the six organic classes. Alkanes
and alcohols are still recognized with high accuracy while a
large improvement in the recognition of alkenes is noted.
Alkenes are recognized with a maximum of 83% accuracy (10 of the
12 compounds) as compared to a maximum of 67% accuracy with iron
alone and 50% with yttrium alone. Using the data for iron alone,
it had been difficult to distinguish the alkenes from the alkanes
and oxygen containing classes; using yttrium alone it had been
difficult to separate the alkanes from the alkenes. By adding
the yttrium features to those of iron, oxygen-containing organics
are now distinguishable from alkenes by the presence of vo™.
Thus additional anrd complementary information for the alkenes is
obtained by combining the features of the two metals,
Recognition of the ketones has improved from 33% accuracy using
iron features to 67% accuracy at worst, and €3% at best when the
yttrium data is included. Using yttrium features alone, however,
a 92% recognition accuracy for ketones is possible. Thus some

iron features which are detrimental to the classification of the




ketones may have been included indicating that in feature
selection for a multicategory classification problem there is
often a trade-off between individual class recognition
accuracies. A similar trend is noted for the recognition of
aldehydes. No substantial improvement in the recognition of the

ethers is observed by combining the data for both metals.
St ! 1 Identificati

Table IIT lists the recognition accuracies found for the
three data sets of the alkane subclasses by the selection
algorithms. A high total recognition accuracy is obtained with
either metzl ion, indicating that either can distinguish the
three subclasses with ease. The nearest neighbors of the
misclassifications for the best trial of SSTRA or FANNDE
performed on these data sets are shown in Table V. Few
misclassifications occur since a good separation of the three
subclasses is observed for both metals. By combining the data
for the two metals reacted with the 24 alkanes, a total
recognition accuracy of 96% is possible, as opposed to a maximum
of 92% for iron alone and 92% for yttrium alone. Only

cyclobutane is misclassified as its nearest neighbor is prcpane.

The reaction of Fet with cyclobutane yields 95% FeC2H4+

while propane reacts with iron to form 76% this ion. 1In
examining the feature weightings for the three subclasses, this
fcature is most important for and unique to the linear subclass.
The addition of the yttrium features to those of iron are not

sufficient in this case to allow the correct classification of

e
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cyclobutane,.

In examining the misclassifications presented in both Tables
Iv and V, the cyclic compounds are most often misclassified., For
example, the three cyclic compounds, cyclopentene, cyclohexene,
and vinylcyclohexane are misclassified as cyclic alkanes in
almost every trial in Table IV. The cyclic subclass of alkanes

are most difficult to distinguish and are also misclassified most

AY
often as evidenced in Table V.

In the reactions of Fet and Y' with cyclic organics,
often fewer products are observed than in the reactions with
linear and branched species which makes the cyclics very
difficult to distinguish. Thus, the cyclic compounds within an
organic class react differently than the linear and branched
compounds in the same class and often appear more similar to the

cyclics of other classes.
Information from Feature Extraction

Along with the examination of misclassifications for the
evaluation of the selectivities and reaction trends within
organic classes, information is also contained in the features
which are chosen to maximize the recognition accuracy of the
data. The feature corresponding to the attachment of Hzo to
Fe' is chosen for the best total recognition of the iron data
set. This feature is unique to the reaction of iron with
alcohols which is evident from the feature weightings. 1Its

occurence in the set of features which best separate alcohols

from the other compounds in the data set indicates a difference
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in the reaction of iron with other organics., With thie
information a reaction mechanism involving the initial insertion _
. B [y
) of Fet into the HO-R bond of an alcohol, with subsequent shift {
L

of a 8-~hydrogen to the metal, and loss of the corresponding .

y

alkene neutral could be postulated. PFurther study of these

}

-
o

reactions could produce information about the relative bond

strengths of iron to various alkenes versus water. Thus an

A RS

important piece of chemical information concerning chemical
. reactivities is extracted and highlighted using a purely .
y empirical pattern recognition approach.

The peak corresponding to YoH' is chosen for the
recognition of the organics using yttrium. This feature is
distictive for alcohols. An important difference in the £
reactivity of vyt toward alcohols is indicated by the selection
of this feature, since no FeOH” is observed for the reactions
of iron with alcohols. The initial insertion of Y’ into the
R-OH bond of the alcohol must be much more exothermic than that
of Fet in order to provide enough internal energy to the
reaction complex to fragment to YoRT and a hydrocarbon radical.

Thus an important reactivity difference between the two metals is

e s B

Much of the chemical information extracted through pattern o
recognition could be inferred by a detailed manual analysis of
the data. The same analysis could be accomplished virtually
h instantaneously with the aid of a super-computer. It is

encouraging that the same important features are extracted by

g empirical algorithms as would be selected by intuition of an -




experienced analyst. It is believed however, that the pattern
recognition approach will uncover information which is more
subtle yet important, and which is difficult to detect without

the aid of this analysis,

CONRCLUSION

Pattern recognition provides an objective means whereby

trends in reactivity of the two metal ions along with their

selectivities and differences are examined, The selectivities of

the metals can be quantitated by examination of the individual
class recognition accuracies as well as the misclassifications.
Trends in reactivity and information regarding reaction
mechanisms can be discovered through analysis of the features
which have been extracted empirically by feature selection.

In this study 72 organics representing six classes have been
recognized with an overall -ccuracy of 8l1%, and 24 alkanes,
representing linear, branched and cyclic subclasses, have been
recognized with 96% total accuracy using the combined CI mass
spectral data of yttrium and iron (random guess classification
would produce accuracies of only 16% and 33%, respectively).

Thus metal ions can be very useful for analytical
applications in unknown analysis. The data from several metal
ions can be combined for general unknown identification or a
single selective metal may be used for identification of a
specific organic,

The speed of the analysis and the fact that the unknown does

RO ¢
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not have to be present in the data set make pattern recognition
attractive for online applications. Some further applications

for our study will be to expand the technique to more complex
molecules of interest, such as multiple functionalities, isomeric
compounds, and biologically active samples, and the range of

metal ions will be expanded. .Another long range goal is the
application of artificial intelligence to the optimization of
experimental parameters involved in the metal ion FTMS experiment

such that the maximum information can be obtained.
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Table I.

Compounds used for recognition experiments.

ORGANICS FOR RECOGHNITIOR OF SIX CLASSES

2-methylpentane
3-methylpentane

3-methyl-1-butene
2-methyl-1-pentene

ALKANE ALXENE KETONE
“butane l-butene butanone
pentane l-pentene 2-pentanone
hexane l-hexene 2~-hexanone
heptane E-3~hexene

3-heptanone
4-heptanone
3-methyl-2-butanone

2,3~dimethylbutane 4-methyl-l-pentene 3,3-dimethyl-2-butanone
2 ,3-dimethylpentane 2,3—dimethyl-l-butene 2,4-dimethyl-3-pentanone
cyclopentane 2,3-dimethyl—-2-butene cyclopentanone
l-methylcyclopentane cyclopentene methylcyclopropyl ketone
cyclohexane cyclohexene 3-methylcyclopentanone
l-methylcyclohexane vinylcyclohexane cyclohexanone

ALDEHYDE ETHER ALCOHOL

propanal ethyl ether ethanol

butanal methyl butyl ether l-propanol

pentanal ethyl propyl ether 2-propanol

hexanal propyl ether l-butanol

beptanal ethyl butyl ether 2-butanol

octanal butyl ether l1-heptanol
2-methylbutanal isopropyl ether l-octanol

3-methylbutanal
2,2—-dimethylpropanal
benzaldehyde
cyclohexanecarboxaldehyde
cyclooctanecarboxaldehyde

methyl-t-butyl ether
sec-butyl ether
ethylene oxide
propylene oxide
tetrahydrofuran

2-methyl-2-propanol
2-methyl-2-butanol
2,2—dimethyl-l1-propanol
cyclopentanol
cyclohexanol

ALXANRES FOR RECOGNITIOR OF THREE SUBCLASSES

LINEAR

LN PRI+

dl

Ty vV
-

M ol g
) .

R )

S
. 18 gt -.

BRANCHED CYCLIC

propane methylpropane cyclopropane A

butane 3-methylpentane cyclobutane o
- pentane 2,2-dimethylpropane cyclopentane :
‘ heptane 2,3-dimethylbutane methylcylopentane

octane 2,3—dimethylpentane cyclchexane
. nona..e 2,4-dimethylpentane l1-methylcyclohexane N
: decane 2,2,4-trimethylpentane ethylcyclopentane KA
" dodecane 2,2,3,3~tetramethylbutane 1,4—dimethylcyclohexane s
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Table II. Recognition accuracies for six organic classes with two
feature selection algorithms with three data sets.

| R

re* Yt ret anp y* o]

SSTRA  FANNDE SSTRA  FANNDE SSTRA  FANNDE |

¥

ALKANE 75 75 83 92 92 92 5

ALKENE . 67 50 50 50 83 75 =

RETONE 33 25 92 83 67 83 i

ALDEH YDE 50 50 75 50 67 67 %

ETHER 75 50 67 50 75 42 N
ALCOHOL 92 92 100 100 100 92

TOTAL 65 50 78 71 81 75 ‘

P/F 4.2 9 . 5.1 12 3.4 14.4
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Table III. Recognition accuracies for three alkane subclasses using
two feature selection algorithms with three data sets.

re* yt rEt anp Y
SSTRA PANNDE SSTRA FANNDE SSTRA  PANNDE
100 100 Y 88 100 100
100 100 100 88 100 100

63 75 75 100 88 88
88 92 88 92 ' 96 96
2.7 5.6 3.4 4 3 4.8
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Table IV.

Nearest neighbors of the misclassifications occurring in the best trials

of the two feature search algorithms with the six organic classes,

B \_‘___\' —— -
IROM
NISCLASSIFIED AND YTTRIUN
CoONPOUND IRON ITTRION
ALKANE
2,3-dimethylbutane 2-methylbutanal .
cyclopentane cyclopentene . cyclopentene cyclopentene
methylcyclopentane 3,3~dimethyl-2-butanone
cyclohexane cyclohexene
ALKEXE
l-butene methylcyclopropyl ketone
l1-hexene 2,3—dimethylbutane
E-3-hexene 2,3-dimethylbutane J-methylpentane
J-methyl-1l-butene J-methylcyclopentanone cyclopentane
2-methyl-l-pentene 2-methylpentane
{-methyl-l-pentene 2,3-dimethylbutane
cyclopentene cyclopentane cyclopentane
cyclohexene cyclohexane methylcyclopentane
KETORE
butanone butanal o o
2-pentancne cyclopentanol pentanal ~
2-hexanone 2,3-dimethyl-2-butene 1--pentene
_J-methyl-2-butanone 2,3-dimethylpropanal propanal
3,)-dimethyl-2-butanone methylcyclopentane
2,4-dimethyl-3-pentanone pentane
cyclopentanone E-3~hexene
methylcyclopropyl ketone ethyl butyl ether hexanal
J-wethylcyclopentanone 2-methyl-2-butanocl
ALDZH YDE
propanal ethanol butanone butanone
butanal butanone butanone butanone
pentanal l-octanol butanone 2-pentanone
hexanal 2-hexanone
3-methylbutanal l-methylpentane
benzaldehyde cyclopentene
cyclooctanecarboxaldehyde cyclopentane
ETHER
ethyl butyl ether methylcyclopropyl ketone
lsopropyl ether 2-prtopanol butanone butanone
ethylene oxide butanone butanone
propylene oxide cyclohexanol
tetrahydrofuran l1-propanol butanone l1-pentene
ALCOHOL
ethanol

propylene oxide

TRAAIRALY  |*

+

- . - -
P AP

t

. WS PN R

x, 2 2 %]

-
LR

e

Y

RV IR

AR I ININT .

s P AN

\
'Y
b
>
)




IAUAD D

Phaie’ o o a
A e ety *..Pr.rf-..

MMM MMM OM|

Table V., Nearest neighbors of the mieclassifications occurring in the best trials
of the two feature search algorithma with the three alkane subclasses.

MISCLASSIFIED IRON
ALKANE AND YTTRIUM

LINEAR

butane 2,2-dimethylpropane

BRANCHED

2,2,3,3-tetramethylbutane

CYCLIC

cyclopropane
cyclybutane

methylpropane

propane

. P, - . .

-

e 0T W T 0

.
.
\‘-‘.‘. :: .‘-.

‘.h

e

"y

e
o

L%

Ry



OL/413/83/01
GEN/413-2

TECHNICAL REPORT DISTRIBUTION LIST, GEN

No.
| Copies
; Qffice of Naval Research 2
‘ Attn: Code 413
| 800 N. Quincy Street
, Arlington, Virginia 22217
P
: Dr. Bernard Douda 1
! Naval Weapons Support Center
‘ Code 5042

Crane, Indiana 47522
; Commander, Naval Air Systems 1
S Command
Attn: Code 310C (H. Rosenwasser)
Washington, D.C. 20360
Naval Civil Engineering Laboratory I

Attn: Dr. R. W. Drisko
Port Hweneme, California 93401

Defense Technical Information Center 12
Building £, Caneron Station
Alexandria, Virginia 22314

DTNSRDC 1
Attn: Dr. G. Bosmajian

Applied Chemistry Division

Annapolis, Maryland 21401

Dr. William Tolles

Superintendent 1
Chemistry Division, Code 6100

Naval Research Laboratory

Washington, D.C. 20375

Dr. David Young

Code 334

NORDA

NSTL, Mississippi 39529

Naval Weapons Center

Attn: DOr. Ron Atkins
Chemistry Division

China Lake, California 93555

Scientific Advisor

Commandant of the Marine Corps
Code RD-1

Washington, 0.C. 20380

U.S. Army Research Qffice

Attn: CRD-AA-IP

P.0. Box 12211

Research Trangle Park, NC 27709

Mr. John Boyle

Materials Branch

Naval Ship Engineering Center
Philadelphia, Pennsylvania 19112

Naval Ocean Systems Center
Attn: Dr. S. Yamamoto
Marine Sciences Division

San Diego, California 91232

. T e
o

R
-~

v
[

R
o
N
!
N
\




ol N w P ¥ T I A i LA AT LR LT Y L LS 3 . ' A & Wyt galt gt u e, 6t By dle RN e Al ofy 20y she M 45, 0L, 0k, el ey el ok, 0t T
B Biath i Jo el o A M e N SR NS CTE y R R Y ; . .
»

4
by

)
r—' S

B

T

R EOTACKRLOho!

" ? v -

‘-".‘.-
I\




