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20. classification accuracies as a measure of selectivity, and important
chemical information was extracted from the raw data by empirical feature'

* selection methods. A total recognition accuracy of 81% was obtained for
the recognition of the six organic classes and 96q accuracy was obtained
for the recognition of the three subclasses of alkanes.
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BRIEF

A weighted k-nearest neighbor algorithm is used to analyze

and extract chemical information from mass spectral data derived

from Fe+ and Y+ chemical ionization of 72 organic compounds.
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ABSTACT t

Pattern recognition methods were used to evaluate the

information content of mass spectrometry data obtained using

transition metal ions as an ionization source. Data sets

consisting of the chemical ionization mass spectra for Fe+ and

Y+ with 72 organics (representing the six classes alkane,

alkene, ketone, aldehyde, ether, and alcohol) and 24 alkanes

(representing the three subclasses linear, branched, and cyclic)

were subjected to pattern recognition analysis using a k-nearest

neighbor approach with feature weightings. The reactivites of

Fe + and Y+ toward the classes of compounds studied were

- characterized using classification accuracies as a measure of

selectivity, and important chemical information was extracted

from the raw data by empirical feature selection methods. A

total recognition accuracy of 81% was obtained for the

recognition of the six organic classes and 96% accuracy was

obtained for the recognition of the three subclasses of alkanes.
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INTRODUCTION

Electron impact (EI) ionization mass spectrometry has become

a standard means for the classification of unknown compounds

according to functionality or structure (1-5). The

differentiation of isomeric molecules, however, remains a

difficult problem and subtle differences in molecular structure

often cannot be distinguished by electron impact. The need

arises, therefore, for a more selective form of ionization.

Chemical ionization (CI) has the potential for such an increased

selectivity since it is possible to adjust the reactivity of the

CI reagent for selectivity in a way that is not possible for the

El mass spectrometry experiment (6-8).

In our laboratory the reactivities of laser generated

transition metal ions toward various types of compounds have been

studied for several years (9-13). A major goal of this work has

been to evaluate the utility of metal ions as selective reagents

for mass spectral identification of the functionality and

structure of unknown compounds. In view of the potentially large

data matrix generated from the reactions of different metal ions

with various organic compounds, the application of pattern

recognition techniques provides a particularly useful means for

achieving these goals.

Pattern recognition has been applied to a wide variety of

chemical problems and numerous reviews on the subject have been

published (14-21) . Some of its more recent applications include:

recognition of organic compounds using Fourier transform infrared

. . . . .- *. * * .
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spectroscopy, interpretation of gas chromatography data, nuclear

magnetic resonance spectral interpretation, and analysis of

electrochcmical systems (22-32). Many applications of pattern

recognition to mass spectral data have recently appeared in the

literature. Electron impact ionization is by far the most widely

used ionization means and has been employed in studies ranging

from the analysis of complex mixtures using gas

chromatography/mass spectrometry, to the recognition of steroids,

and the use of mass spectrometric data to predict the biological

activity of antibiotics (33-36). Pattern recognition has also

been applied to the experimental optimization of field-desorption

and fast atom-bombardment mass spectrometry and for the location

of homoconjugated triene and tetraone units in aliphatic

compounds using NO chemical ionization (37,38)

Because pattern recognition is a vT1. established tool for

interpretation of mass spectral data, it was t'e goal of the work

described here to use this tool to enhance our understanding of

the information content of a new and important advance in

chemical ionization mass spuectrometry. This was a particularly

effic'nt aonroach boca-.s.. cf the potential"i enarvous data

marrce . It also praovidc-d a u.niju,: opa-ortu.ni vl to apply ptt. ern 

- recognition to an emerging Cata base where the scientist is near

the bottom of the ?ilea-rning curve." This work illustrates how

* such an apoliction can enhance rt of l

"learnin- curve. "

C.e of the gcals of pattern recognition is to minimize the

SnLber of u ures rcauire6 to Fffect cIas ss .. C'n within a
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data set while maximizing the recognition accuracy through the

elimination of features detrimental to class separation. Thus,

an empirical feature selection algorithm is often used to map a

classification problem down from the space of all features to a

space of smaller dimensionality which consists of only important,

relevant features. Not only does this procedure enhance the

ratio of patterns to features in order to have a statistically.

valid separation of classes (15), but it also can provide new

chemical insight based on the feature set selected to achieve a

given informational goal.

In this study the use of two metal ions, Fe + and Y+, as

chemical ionization reagents was evaluated. Two different

empirical feature selection algorithms were used to extract

important features from the data: successive subtraction of

features with total recognition accuracy (SSTRA) as the selection

. criteria which emplovs constant weighting of the features, and

forward addition of features using the nearest neighbor distance

error (FA ,,DE) as selection criteria which performs weighting

o-, zai ization. A co:olete description of tha-,e algorithxs hac.

b cn given (39) Using the recognition accuracies obtained by

t> _3se algorithm2 with the metal ion eata, th see zoloctivrties of

the reagents for six orcninic f :nctionalitics as w-11 as

selectivities for linear, branched ani6 cyclic alk:nes 4.ere

evaluated. The onalytical utility of re' a aloau and .t

u-acd in co.bination, for tChe recognition of functicn9 ity and"

structure was also explored. Trends in reactivity have be-n

inforred from th- miclassified coi;lrounnI.-

ft.,
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EXPERIMENTAL

IN TRUM E NTATI ON

A home-built capacitance bridge ion cyclotron resonance

(IGM) mass spectrometer, under the control of an IBM 9000

laboratory computer (40,41), and a Nicolet prototype Fourier

trns.... ,mass soectrometer (FTMS 1000) were used to generate the

CI mass spectral data (42) Details of the IZ, and FTMS

ezorimcent have been described elsewhere (39) . For most of these

eaoer-:monLs the macnetic field strength has been held constant at

0.9 T.ia, and the sample pressure has been maintained at

approximately 2 X 10-7 torr, while the trapping times ranged from

* 100 to 500 rilliseconds. The chemicals used for the collection

c" o, the data in these experiments were obtained commercially in

hi gh pur itv and were used as supplied except for application of

,ultiplc freeze-pump-thaw cycles to remove non-condensable gases.

Tlhe transition metal ions for chemical ionization were

generatr.d by focusing the fundamental or quadrupled beam of a

'~ 7.ay ';d:YAG laser (l.06u) onto a metal foil or rod located

non QIQ c, ";e iCR cell plates. The details o2 this method for

eelrr7:"g atal ions have been described elstwbere (11,13), a,

O ..f thi with the gener-ation cf

nor, (40,13). Las.r .ower and beae diam.ter have

been adjusted to P.ecominantlv form mronopositive ions. A

,*,:k,,;iaound rresr:trr c nitrog.n at a pro::.... . 5 X 10-6 toruc

.ho e.n Tond to .......... i' :c2 the ICK sic;sl_ f the capacitance'-

Er ic::: inr.unaJnt during acuisiticn of slow re-n data and has

* 'een u cC-, for -.ost: of the eun-r irnts using this instrment (,'-

" " - " " m- " - 'i / . . '. . .. '- '. .. . . . . ..' . . .. = '
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DATA

The metal ion C! mass spectra for each of the compounds

listed in Table 1 has been obtained as described above for both

Fe and Y .The data used for the recognition of the organitc

compounds consist of the branching ratios for the primary

or o ucts generated by the init-ial reaction of the metal ion of

interest with the organic neutral sample. Subsequent reactions

of these product ions with the neutra.l (ie. Iecondary, tertiary,

etc. reactions) were not considered. The reaction time and

pressure we-re adjusted such that predoinantly primary products

wcre observed. The precursors of any product peaks in question

*hav-.e been confirmed by double resonance_ techniques and data has

* becri collected Linder a variety of different conditions (trapping

tii-ies anC pressures) to confirmi the primary product intensity

-*rcl'ios. M11uch of the data collected has been repeated using both

* th covenionl I?. nd TL to test the reproducibily ot the

data. Under these conditions the relative intensities ofl the

prcdfuct2. do no:- vary widely and' ha-ve been found to be

rc -Oproaucihle to bctter than 10").

S--,- diffIerent training set,, were cenerastcd from the data

co 1 c I . The firvtL two coi-ta-i,- thle data for t'he reaction.s of

- 72 conu:3ra'presentina the nix; orcannic cla-se.3 (alkr~ne,

alkei-e, ker,!one, aldehyda , other and alcohol) with Fe and Y +

* rc oectivel . Thr th r otainn th-cri on of the 6atai in

tefirsC t;oio. hefourth andi fi'f"-h t--a ini n-c s ets cc) n t .21n th e

daa for the reac".ions of 241 alk~nc-j of the three subclasnc,.

*(lina~r , branched and3 cyclic-) ihFe+ an_ Y , re-,rCcIciVolv.

........ L7 :41*



And the sixth data set contains the combination of thie data in

the fourth and fifth.

COMPUTER SOFTWARE

U

All of the pattern recognition programs have been written

-for the IBM 9000 lab computer using IBM version CS 9000 FORTRAN

77 and employ the k-Nearest Neighbor algorithm (KNN) (44).

A classifier using this algorithm predicts the class of an

unknown to be the same as that of the majority of its k-nearest

neichbors. Due to the relatively small size of the data sets,

only the first nearest neighbor (k = 1) was used to effect

classification, and the distance measure employed was the

Euclidian distance in an N-dimensional feature space. A scaling
factor or weighting of the features has been found to improve

clustering of the classes and a scheme has been developed to

wcight the features differently for each class (39). Using this

weighting scheme, it is possible to assess the importance of a

qiven feature for each class since the unicueness of a feature

can t2 inversely related to its weighting factor. The

!cw.=---one-out (LOO) algorithm (45,46) has been used to

Cenrate recognition accuracies used by the pattern recognition

algorithms.

RESULTS MIUD DISCUS ICA

The optimal feature selection zearches for the two

'alccrithr-s with the thrze oroanic dat, sets are cc v":red in T£able

7

'.. .- . • .* .- °.= ". .*. ". . . ".- -. .. -.. - '; . .a .-. - . . . . ' . . - , '. - - " - ' , .- . . .. -' . .. ,- . - . - -. .-

-* "- •. * -. , .. . . * * * - - * **- ,=' 
'
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II. From an examination of the individual class recognition

accuracies for Fe+ with the organics, it appears that iron ion

can distinguish alcohols most readily from the other compounds.

In the reaction of iron with alcohols, FeO +2 is often observed

and is unique to this class. Alkanes are separated from the

other classes with 75% accuracy, and a very lcw recognition

accuracy for the ketone class indicates that iron cannot

distinguish this class from the others.

The nearest neighbors of the compounds that have been

misclassified in the best of the two trials reported in Table iI

are identified in Table W. In accordance with the high

recognition accuracies, fewest misclassifications of the iron

data set occur for the alkanes and the alcohols. The alkenes are

misclassified as alkanes and ketones, two of the misclassified

alkenes being closest to cyclic ketones and two closest to

branched alkanes. In the reaction of ketones with Fe+, the

-" oxygcen is most often lost as CO neutral, and often accompanied by

H2 and other hydrocarbons. Thus the corresponding ions

. observed are similar to those observed with alkenes. Two of the

ketones are closest to alkenes while the others are misclassified

.'z cohol, alkane, and other. Aldehydes are also
* pclv e-n:at.- frei "ne other class .-, having

sclassifcationo, as alcohols, ketones, alkene, and. akane.

Only three misclassifications occur for ethers, two as alcohols

anc on'a as 'eto ne.

In convtrast to iron, yttrium ion is particularly well suited

for differantiatino hvdrocarbons fr.on oxyvaen-containing species.

* :.:v- . • • ." " •. ................................
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Due to a very strong yttrium-oxygen bond strength the major

primary product for virtually all oxygen-containing

functionalities studied has been YO+. With this single unique

feature it is possible to linearly separate oxygen-containing

from non-oxygen-containing species.

As with iron, high recognition accuracy (100% here) for

the alcohols is observed. Three unique peaks are observed for

Y+ with alcohols, YO+ , YOH + , and YOH2 allowing easy

distinction from the other oganics. Alkanes are also recognized

with high accuracy using yttrium, and in contrast to iron, the

ketones are recognized with high accuracy from the yttrium data.

The alkenes are the most poorly recognized class at 50% accuracy.

The contrast in the reactivity of Y+ versus Fe+ becomes

apparent from the data presented in Table IV. The two cyclic

alkanes misclassified with yttrium are closest to cyclic alkenes.

show a preference for dehydrogenation as opposed to C-C

bond cleavage and thus dehydrogenation of the cyclic alkanes

produces products similar to those found with alkenes.

With yttrium, as opposed to iron, a large improvement in

the separation of the oxygen-containing organics from the

hydrocarbons is observed. No misclassification of the alkenes as

oxygenated species is observed for Y+ which is in contrast to

iron; the misclassified alkenes are all closest to alkanes,

and similarly, cyclopentene and cyclohexene are closest to

cyclopentane and cyclohexane respectively. For ketones with

yttrium, only methylcyclopropyl ketone is misclassified and

appears closest to hexanal. Three of the aldehydes are
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misclassified and are closest to butanone for which the only

observed peak is YO+ . Since the major peak for the ketones and

aldehydes is YO+ , it is not surprising that there is some

difficulty in distinguising these two classes. Three of the

misclassified ethers appear closest to butanone, on the basis of

YO+ intensity, and propylene oxide is closest to cyclohexanol.

When the data for the CI mass spectra using the two metals ?f.

are combined, an improvement in the individual class accuracies

is observed as well as an improvement in the total recognition

accuracies for the data sets of the si-x organic classes. Alkanes

and alcohols are still recognized with high accuracy while a

large improvement in the recognition of alkenes is noted.

Alkenes are recognized with a maximum of 83% accuracy (10 of the

12 compounds) as compared to a maximum of 67% accuracy with iron

* alone and 50% with yttrium alone. Using the data for iron alone,

' it had been difficult to distinguish the alkenes from the alkanes

* and oxygen containing classes; using yttrium alone it had been

difficult to separate the alkanes from the alkenes. By adding

" the yttrium features to those of iron, oxygen-containing organics

are now distinguishable from alkenes by the presence of YO+ .

Thus additional and complementary information for the alkenes is

obtained by combining the features of the two metals.

*' Recognition of the ketones has improved from 33% accuracy using

iron features to 67% accuracy at worst, and 83% at best when the

*. yttrium data is included. Using yttrium features alone, however,

a 92% recognition accuracy for ketones is possible. Thus some

-.iron features which are detrimental to the classification of the

-'-.- • -". "- ".. ". " --- "- .-.-. " -.--.- %*:.-- ..- '. -.. " -" "-a- *","* €-% % ' -"" -'.-* ".- * 4 *-"4 *4' ' W' " " . .'. ""
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ketones may have been included indicating that in feature

selection for a multicategory classification problem there is

often a trade-off between individual class recognition

accuracies. A similar trend is noted for the recognition of

aldehydes. No substantial improvement in the recognition of the

ethers is observed by combining the data for both metals. r

Structural Identification

Table III lists the recognition accuracies found for the

". three data sets of the alkane subclasses by the selection

" algorithms. A high total recognition accuracy is obtained with

either metal ion, indicating that either can distinguish the

three subclasses with ease. The nearest neighbors of the

misclassifications for the best trial of SSTRA or FANNDE

performed on these data sets are shown in Table V. Few

misclassifications occur since a good separation of the three

subclasses is observed for both metals. By combining the data

for the two metals reacted with the 24 alkanes, a total

recognition accuracy of 96% is possible, as opposed to a maximum

of 92% for iron alone and 92% for yttrium alone. Only

cyclobutane is misclassified as its nearest neighbor is propane.

The reaction of Fe with cyclobutane yields 95% FeC 2 H4

Swhile propane reacts with iron to form 76% this ion. In

examining the feature weightings for the three subclasses, this

*" feature is most important for and unique to the linear subclass.

The addition of the yttrium features to those of iron are not

sufficient in this case to allow the correct classification of

**.n. . * -- ,,.- ' -

.* ..- "* . . . .**~*%**..*..* %.. '.N .'. ~
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cyclobutane.

In examining the misclassifications presented in both Tables

IV and V, the cyclic compounds are most often misclassified. For

example, the three cyclic compounds, cyclopentene, cyclohexene,

and vinylcyclohexane are misclassified as cyclic alkanes in

almost every trial in Table IV. The cyclic subclass of alkanes

are most difficult to distinguish and are also misclassified most
a

often as evidenced in Table V.

In the reactions of Fe+ and Y+ with cyclic organics,

often fewer products are observed than in the reactions with

linear and branched species which makes the cyclics very

difficult to distinguish. Thus, the cyclic compounds within an

organic class react differently than the linear and branched

compounds in the same class and often appear more similar to the

cyclics of other classes.

Information from Feature Extraction

Along with the examination of misclassifications for the

evaluation of the selectivities and reaction trends within

organic classes, information is also contained in the features

which are chosen to maximize the recognition accuracy of the

data. The feature corresponding to the attachment of H20 to2H
Fe+ is chosen for the best total recognition of the iron data

set. This feature is unique to the reaction of iron with

alcohols which is evident from the feature weightings. Its

occurence in the set of features which best separate alcohols

from the other compounds in the data set indicates a difference

aI
J-

"*- -- :".- *-*° " - .""."" *'" ;" "'","';"'""* ." " B"B . , " "* *." ;'" '" ' " ,* "



-14-

in the reaction of iron with other organics. With this

information a reaction mechanism involving the initial insertion

of Fe+ into the HO-R bond of an alcohol, with subsequent shift

of a S-hydrogen to the metal, and loss of the corresponding

alkene neutral could be postulated. Further study of these

reactions could produce information about the relative bond

strengths of iron to various alkenes versus water. Thus an

important piece of chemical information concerning chemical

reactivities is extracted and highlighted using a purely

empirical pattern recognition approach.

The peak corresponding to YOH+ is chosen for the

recognition of the organics using yttrium. This feature is

distictive for alcohols. An important difference in the

reactivity of Y+ toward alcohols is indicated by the selection

of this feature, since no FeOH+ is observed for the reactions

of iron with alcohols. The initial insertion of Y+ into the

R-OH bond of the alcohol must be much more exothermic than that

of Fe+ in order to provide enough internal energy to the

reaction complex to fragment to YOH+ and a hydrocarbon radical.

Thus an important reactivity difference between the two metals is

highlighted.

Much of the chemical information extracted through pattern

recognition could be inferred by a detailed manual analysis of

the data. The same analysis could be accomplished virtually

instantaneously with the aid of a super-computer. It is

encouraging that the same important features are extracted by

empirical algorithms as would be selected by intuition of an

I

.,.%;
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experienced analyst. It is believed however, that the pattern

recognition approach will uncover information which is more

subtle yet important, and which is difficult to detect without

the aid of this analysis.

CONCLUS ION

Pattern recognition provides an objective means whereby

trends in reactivity of the two metal ions along with their

selectivities and differences are examined. The selectivities of

the metals can be quantitated by examination of the individual

class recognition accuracies as well as the misclassifications.

Trends in reactivity and information regarding reaction

mechanisms can be discovered through analysis of the features

which have been extracted empirically by feature selection.

In this study 72 organics representing six classes have been

recognized with an overall -ccuracy of 81%, and 24 alkanes,

representing linear, branched and cyclic subclasses, have been

recognized with 96% total accuracy using the combined CI mass

spectral data of yttrium and iron (random guess classification

would produce accuracies of only 16% and 33%, respectively).

Thus metal ions can be very useful for analytical

applications in unknown analysis. The data from several metal

ions can be combined for general unknown identification or a

single selective metal may be used for identification of a

specific organic.

The speed of the analysis and the fact that the unknown does

S. ",*; :'. > " .''. ". ***'.. " ".; -. . . "" ''" " *'= "* . •. t
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not have to be present in the data set make pattern recognition

attractive for online applications. Some further applications

for our study will be to expand the technique to more complex

molecules of interest, such as multiple functionalities, isomeric

compounds, and biologically active samples, and the range of

metal ions will be expanded. Another long range goal is the

application of artificial intelligence to the optimization of

• .experimental parameters involved in the metal ion FTMS experiment

such that the maximum information can be obtained.
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Table I. Compounds used for recognition experiments.

ORGANICS FOR RECOGNITION OF SIX CLASSES

ALJAJE AL-KE KETONE

butane 1-butene butanone
pentane 1-pentene 2-pentanone
hexane 1-hezene 2-hexanone

* eptane E-3-hezene 3-heptanone
2-methylpentane 3-methyl-l-butene 4-heptanone

* 3-metbylpentane 2-methyl-l-pentene 3-methyl-2-butanone
2,3-dimethylbutane 4-methyl-l-pentene 3#3-dimetbyl-2-butanone

* 2 ,3-dimethylpentane 2 ,3-dimethyl--l-butene 2 ,4-dimethyl-3-pentanone
cyclopentane 2 ,3-dinethyl-2-butene cyclopentanone
1-methyl cyclopentane cyclopentene methyl cyclopropyl k etone
cyclobexane cyclohexene 3-methyl cyclopentanone

* 1-methyl cyclobeiane vinyl cyclohexane cyclohexanone

* ALDEH YDE ETHER ALCOHOL

propanal ethyl ether ethanol
butanal methyl butyl ether 1-propanol
pentanal ethyl propyl ether 2-propanol
hexanal propyl ether 1-butanol
beptanal ethyl butyl ether 2-butanol
octanal butyl ether 1-heptanol
2-methylbutanal isopropyl ether 1-octanol

* 3-methylbutanal methyl-t-butyl ether 2-methyl-2-propanol
2 ,2-dimethylpropanal sec-butyl ether 2-methyl-2-butanol
benzaldehyde ethylene oxide 2,2-dimethyl-1-propanol

* cyclohexanecarbozaldehyde propylene oxide cyclopentanol
cycloo ctane carboxaldehyde tetrahydr of uran cyclohexanol

ALXANES FOR RECOGN~ITION OF THREE SUBCLASSES

-' LINEAR BRANCHED CYCLIC

* propane metbylpropane cyclopropane
butane 3-methylpentane cyclobutane

* pentane 2,2-dimethyipropane cyclopentane
heptane 2 ,3-dime thylbutane methyl cylopentane
octane 2 , -dimethylpentane cyclohexane

* noaa;..e 2 ,4-dimetbylpentane 1-methylcyclohexane
* decane 2,2 ,4-tr imethylpentane ethyl cyclopentane
* dodecane 2,2,3,3-tetramethylbutane 1,4-dimethylcyclobexane
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Table II. Recognition accuracies for six organic classes with two a
feature selection algorithms with three data sets.

FE+  Y+ FE+ AND Y+

SSTRA FANNDE SSTRA FANNDE SSTRA FANNDE

ALKANE 75 75 83 92 92 92
ALKENE 67 50 50 50 83 75
KETONE 33 25 92 83 67 83
ALDEHYDE 50 50 75 50 67 67
ETHER 75 50 67 50 75 42
ALCOHOL 92 92 100 100 100 92

TOTAL 65 50 78 71 81 75

P/F 4.2 9 5.1 12 3.4 14.4

qq
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Table III. Recognition accuracies for three alkane subclasses using
two feature selection algorithms with three data sets.

FE Y+ FE+ AND Y+
SSTRA FANNDE SSTRA FANNDE SSTRA FANNDE

LINEAR 100 100 88 88 100 100
BRANCHED 100 100 100 88 100 100
CYCLIC 63 75 75 100 88 88

TOTAL 88 92 88 92 96 96

P/F 2.7 5.6 3.4 4 3 4.8
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Table XV. Nearest neighbors of the misclassificationsu occurring in the best trials
of the two feature search algorithms with the six organic classes.

COMPOUND IRON ?TRIII

* ALKNSI

*2,3-dinethylbotane 2-methylbutanal
cyclopentane cyclopentene. cyclopentene cyclopentene

*metbylcyclopentane 3,3-dixwthyl-2-butanons
* cyciobexahe cyclobexene

ALKENE

1-butene methylcyclopropyl ketone
1-hesene 2,3-dimethylbutant
E -3-hexene 2,3-diu~thylbutane 3-methylpentane

*3-methyl-l-butene 3-aethylcyclopentanone cyclopentane
*2-methyl-l-pentene 2-methylpentane

4-mohyl--pen~ne2,3-dimethylbutane

butanone butanal '
* 2-pentanone t-yclopentanll.- Petainal -

2-hesanone 2,3-dimethyl-2-butene 1--pentene
3-methyl-2-butanone 2,3-dimethylpropanal propanal

-3,3-diaethyl-2-butanone methylcyclopentane
*2,4-dimethyl-3-pentanone pentane
*cyclopentanone E-3-hezene

methylcyclopropyl ketone ethyl butyl ether hexanal
* 3-eethylcyclopentanon. 2-utethyl-2-butanol

propenal ethanol butanon. butanone
butanal butanone butanone butanone
pentanal I-octanol butanone 2-pentanone

* hexarnal 2-hexanone
*3-methylbutanal 3--otylpontane
*benzaldehyde, cyclopentene
*cyclooctantecarbosaldehyde cyclopentane

ETEI Ei

ethyl butyl ether methylcyclopropyl ketone
isopropyl ether 2-propenol hutanon. butanon*
ethylene oxide butanone butanone
propylene oxide cyclohexanol
tetrahydrofuran 1-propanol butanon. I-pente.

ALCOHOL

ethanol propylente oxide

a, -*
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