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FINITE ELEMENT ANALYSES OF SHEAR LOCALIZATION IN RATE

AND TEMPERATURE DEPENDENT SOLIDS

by

J. LcMonds

and

A. Needleman
Division of Engineering
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Providence, RI 02912

ABSTRACT

The effects of strain hardening, strain rate sensitivity, thermal softening,
hcat conduction and the imposed strain rate on the shcar localization process in
plane strain compression arc examined. The-dcformation, stress and temperature
fields are computed in an infinite solid which contains a periodic rectangular
array of inhomogcncitics. The inhomogcncitics give rise to non-uniform
deformation fields which, under certain conditions, may localize in the form of a
shear band. Boundary conditions arc prescribed such that the resulting fields
possess periodicity with respect to the inhomogeneity distribution. In this
manner, attention may be confined to a rectangular region of the solid which
surrounds a single inhomogencity. Full two-dimensional analyses are performed
within the context of a viscoplasticity theory which, in the rate independent limit,
corresponds to flow theory with combined isotropic and kinematic hardening. Full
account is taken of finite strain and rotation effects, but attention is confined to
quasi-static loading. The initiation and propagation of shear bands is examined
for the bounding theories of isotropic and kinematic hardening. The predictcd
response depends significantly on the multi-axial hardening characterization of
the solid.
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1. INTRODUCTION

Shear bands frequently accompany the large plastic straining of materials.

The large localized strains in a shear band often precipitate fracture. When

shear bands do not lead to fracture, the localized shearing greatly affects p

subsequent plastic deformation. Hence, shear bands have a dual

significance: as a precursor to fracture and as a mechanism of large strain

plastic deformation. In metals subject to high rates of loading, shear bands can . -

form as the result of a thermomechanical instability. The same metal may "*. '

also undergo shear localization at very low strain rates, where thermal effects .4,

are negligible, with some other mechanism causing the observed localization.

The important role of thermal softening in triggering shear band

formation at high rates of deformation was recognized by Zener and Hollomon

[1]. Experimental investigations of thermal softening induced shear bands have

been directed toward microstructural features contributing to and resulting

from localization and to measurements of the strain and temperature conditions

at which the bands form, Rogers [2], Wright and Batra [3], Moss and Pond [4],

Costin et al. [5] and Hartley [6]. Analytical and numerical studies have

generally focussed on conditions for instability in simple shearing deformations,

Argon [7], Clifton f8], Recht [9], Culver [10], Backman and Finnegan [11],

Mcrzer [12], Fressengcas and Molinari [13], Olsen, Mcscall and Azrin [14], Wu

and Freund [15] and Shawki [16]. These theoretical studies have elucidated the

relative roles of thermal softening, strain hardening and strain rate sensitivity

on shear localization in circumstances where the onset of localization does not

involve a substantial change in stress state. '-4.

* . . ;...-,.c.
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Shear band instabilities are also observed at low rates where thermal

softening is not significant and, furthermore, in circumstances where there is no

evidence for material softening due to progressive rupture on the microscale, .% if

Chang and Asaro [17], Anand and Spitzig [18], Larsson et al. [19]. Under

isothermal conditions and when microrupture effects are absent, a key feature of

plastic material response for shear localization is the yield surface vertex structure

implied by the discrete nature of crystallographic slip, Rice [20], Needleman and

Rice [21], Asaro [221, Tvcrgaard ct al. [23] and Larsson et al. [19]. In this context

the significance of a yield surface vertex lies in the reduced stiffness to a change

in loading path.

For rate dependent constitutive relations, a flow potential surface vertex

is ruled out on quite general gounds, Rice [24]. However, Tvcrgaard [25] and

Hutchinson and Tvergaard [26] have shown that a solid having a smooth yield

surface but with a high curvature (relative to the isotropic hardening surface)

at the current loading point can give predictions of necking and shear band

instabilities in line with those based on a corner theory of plasticity.

In this investigation, we analyze the development of localization from a

small internal material inhomogeneity in a situation where localization involves

a considerable change in loading path. The formulation incorporates the

effects of thermal softening, strain hardening, strain rate sensitivity and heat

conduction. Full account is taken of finite geometry changes, but inertial

effects arc neglected. We confine attention to a range of strain rates, from say

10 sec "1  to 103 scc - , where material rate sensitivity is the main time effect

and higher strain rates where inertial effects play an important role arc

excluded from consideration. The particular boundary value problem analyzed

is plane strain compression of a block of material containing a doubly periodic

array of inhomogcneitics. The doubly periodic symmetry permits the problem

- . . . -
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[4-

for the entire array to be reduced to a boundary value problem for one square

cell. No heat flux is permitted between cells so that there is an overall

adiabatic response. However, within each ccli heat conduction is accountcd

for.

Previous analyses of shear localization at internal inhomogencitics have

been carried out for rate independent solids deforming isothermally by

Abcyaratne and Triantafyllidis [27] for plane strain and by Freund, Wu and

Toulious [28] for anti-plane shear. Abcyaratnc and Triantafyllidis [27] confined

attention to quasi-static deformations while in Freund, Wu and Toulios [281 full

account was taken of material inertia.

Here, we present results for both isotropically and kinematically-

hardening solids. A particular focus of our work is the influence of flow

potential surface curvature on the tendency for localization at various strain

rates and we use a kinematic hardening flow rule to model a "rounded vertex."

This use of kinematic hardening theory is intended for loading paths that do

not involve extreme deviations from p9roportional loading and is quite distinct

in focus from the use of kinematic hardening as a model for Bauschinger

effects. Our results exhibit the transition from plastic flow property,

dominated shear band localization at low rates to thermal softening dominated

localization at higher strain rates, with the details of this transition depending

sensitively on the dccription of the flow potential surfaces.

. -. . . . . . .- . . . . . . . . . . .~. . . . .

- . .
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2. FIELD EQUATIONS ,

2.1 Incremental Princinic of Virtual Work

The governing equations for the finite element discrctization of the

momentum balance equation arc based on a Lagrangian convected coordinate

system. This approach has been used extensively in a variety of contexts

involving finite deformation analysis, e.g., Necdleman [291, Tvcrgaard [30], and

for rate dependent constitutive relations by Peirce, Asaro and Ncedleman [31].

Some essential features of the formulation will be outlined here.

The reference configuration for the Lagrangian formulation corresponds to

the initial unstressed state with the material points identified by the Cartesian

coordinates xi . In the current deformed state, the material points are at xi + u i

where ui are the components of the displacement vector on the referential base . -

vectors and F = a(x+u)/ax is the deformation gradient.

A current state of approximate equilibrium is known at time t, and the

incremental principle of virtual work is used to compute the time rate of change

of the field variables for a time increment At. Under plane strain conditions

with body forces neglected, this principle may be expressed as

S, fl' BFji dA = JTi Sui dS + 1A[ Ti ui dS - Jni bFji dA (2.1)

A S S A

where A and S denote the interior and the boundary of the body in the reference

configuration, respectively, and (') indicates the material time derivative. The

components n' j are the contravariant components of the nominal stress tensor; T'

are the components of the nominal traction vcctor, given by T i = nj ' vj, where v

is the unit normal to the boundary in the reference configuration; and Fij arc the

covariant components of the deformation gradient; the components of each of

these tensors being on the rcfercncc base vectors. The term in brackets on the

. . .* .* .~ *..* .
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right side of (2.1) serves to correct slight dcviations from equilibrium which result

from incremental time integration.

2.2 Balance of Energy

The principle of energy balance requires that the time rate of change of

energy (internal plus kinetic) be equal to the powcr input arising from internal

and surface forces and heating. The following simplifying assumptions arc made:

1) the rate of change of internal energy may be expressed as pcpaT/at where p is

the mass density and cp is the specific heat at constant pressure; 2) Fourier's law

of heat conduction applies - the heat flux is proportional to the temperature

gradient, with the constant of proportionality being the thermal conductivity;

3) the fraction of plastic stress work which is converted to heat is X, where X is

in the range of 0.85 to 0.95 for many metals (Taylor and Quinney [32]). These

assumptions allow the referential form of the energy balance equation to be

written as

aT p
pc o t- = " (kV°T) + XT: d (2.2)

atm

where VO represents the gradient with respect to the coordinates in the reference

configuration, and dp is the plastic part of the rate of deformation tensor. The

rate of deformation tensor d is the symmetric part of F.F "1 .

The use of the referential gradient in the energy balance equation is

justified as follows. Suppose that the deformation gradient can be expressed as

the product of an elastic and a plastic deformation gradient, i.e. F = FCFp (see

Lee [33] and Rice [34]). The elastic deformation gradient represents the

stretching of the atomic lattice along with any rigid body rotation. The plastic

deformation gradient includes the flow of material through the lattice. Since

heat conduction is affected primarily by the distance between atoms, a more

•77 .
***.*%* . .. . . . .
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appropriate representation of the cncrgy balane cequation is writtcn with FTC V0

replacing Vo . However, if the magnitude of the elastic strains is small, the elastic

deformation gradient is approximately a rotation. In this case, assuming that the hcat

conduction properties arc isotropic, the form of the cncrgy balance equation given by

(2.2) is obtained when terms of order stress/elastic modulus are neglected.

The variational equation which will be used in the finite element

formulation is obtained by multiplying (2.2) by ST and integrating over the

volume in the reference configuration, and is expressed by

p C t ST dA = k(VoT)-(VoT)dA+ x T: d ST dA + k(VoT.v)6T dS.J at fTf(oTvS
L A A S (2.3)

Two dimensionless groups characterize the thermal response,

k x o02' '7- (2.4)

PC 12 PC

1tcre, En is a reference strain rate, To is a reference temperature, ho is a

reference length and oo is a reference stress. The parameter , is the Fourier

modulus, and represents the ratio of heat dissipated by conduction to internal heat

storage. The quantity (k/pc defines a length scale over which heat

conduction effects are significant. The parameter 77 measures the magnitude of

internal heat generation.

2.3 Boundary Conditions

We consider a block of material containing a doubly periodic array of

material inhomogencities subject to plane strain compression. As in Fig. 1,

the array is imagined to be divided into square cells of dimension 2ho by 2ho ,

with one inhomogcncity centered in each cell. We restrict consideration to

deformations such that the straight lines bounding each cell remain straight

~.-I
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after deformation (this is a stronger constraint than required by periodicity).

Furthermore, attention is confincd to deformations that preserves the mirror

symmetry of the array so that straight lines connecting centers of the ..t

inhomogcncities also remain straight.

The compression axis is taken to be aligned with the x2 direction, so that

the boundary conditions for the quadrant analyzed are
2 .0

=0 i 2 = 0 at x I = 0 (2.5a)

fl 0 T 1  0 at x- = 0 (2.5b)

2 = -nho- U) T1 
= 0 at x- = h o  (2.5c)

ho 
2::

f T2 dx 0 = at xl ho  (2.5d)

0

Vo T v = 0 on S (2.5e)

where U is the displacement along x2  ho, defined to be positive for

compression, and n is the imposed nominal strain rate. The velocity of

material points along x I = ho, denoted by v, is a quantity determined in the

analysis as described in Section 4.2.

The boundary condition (2.5c) requires that there be no heat flux across

the boundary of the quadrant analyzed. Thus, the thermal boundary condition

is an overall adiabatic one, in that while there is a heat flux within a cell,

there is no heat flux between cells. This gives periodicity of the temperature

field with rcspcct to the inclusion distribution.

d..



"U".~ .- w r'-r .- r, -%

3. CONSTITUTVIVE RELATIONS

The flow potential surfaccs arc taken to be concentric cylinders centered

about a stress state a in stress space. The radius of the flo%%w potential surfacc

is denoted by oF and is givecn by

0 F -S (3.1)

%%here S =S-(x The tensor S is the K irchhoff stress deviator, given by

S =T - 1/3T : , where I is the identit\y tensor. Here, the kinematic and

isotropic hardening plastic flow rules are based on K irchhoff stress rathcr than on

Cauchyv stress. As long as elastic strains remain small, there is little diffe'rence

betxeen the two formula tions.

The rate of deformation tensor is expressed as the sum of elastic and .-

plastic parts by

d de + d1  (3.-)

The elastic part is given by

(ie u 1 (3.3)

where IS the Jaumann,111 rate of Kirchhoff stress and L is a fourth order

tensor representing- the elastic stiffness of the miaterial. The plastic part of

the rate of deformation tensor is given b)y

p 3E~
- S. (3.4)

herc. E' Is spccific1 d Iy the povker lawv relation1

(0 -2 1 -T l-)1 011 (3. 5)7"

%%here E, is a referecnce strain rate, To is a rcl'ercnc temperaturc. In Is the

strn r.1 11 cr I hrd nin1 lc p.\pnecn t, a nd 13 s peC[ Ces the1 thermIlal softening-
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characteristics of the material. This assumed linear temperature dependence

is representative of carbon steels in the range 0- 500 0C, e.g. Stakcr [35],

although at elevated temperatures the flow stress is generally a non-linear

function of temperature.

We employ combined isotropic and kinematic hardening, Goel and Malvern

[36], with h(?) and the evolution equation for o given by

h(,) = X 0o[l + T-/o ] N + (l-X) o (3.6)

= - (1- )b d (3.7)
3

where
Sm O N-

b -- [1 - t3(T-To)] N - [I + E/Eo] (3.8)
0 0

tere, o is a reference stress, Eo is a reference strain, N is the strain

hardening exponent and X is a constant ranging bctween zero and unity. Purcly

isotropic hardening corrcsponds to X 1, while purely kinematic hardening is

given by X 0. The parameter b, given by (3.8), is taken so that at constant

strain rate and temperature, the response for proportional loading is

independent of whether the change in flow potential surface is described by

isotropic hardening or by kinematic hardening, see Needleman and Tvergaard

[371.

An expression for the Jaumann rate of Kirchhoff stress is obtained in

terms of rate quantities by combining (3.2) through (3.4),

3E"
= L'd- 2 L S (3.9)2 0 F

Although there is no explicit yielding in this formulation, for small In there

is an effective yield point in that plastic strain rates are %,ery small when the

numerator is less than the denominator in (3.5).

J..

--
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4. FINITE ELEMENT IMPLEMENTATION

4.1 Rate Tangent Modulus

Using the expression for the Jaumann rate of Kirchhoff strcss given by (3.9)

in the incremental principle of virtual work (2.1) gives an explicit Euler time

integration method. This approach requires very small time steps for numerical

stability. In order to increase the stable stepsize, Peirce ct al. [38] employ a

formulation which results in a tangent modulus type method for solving the

governing rate equations. The method is explicit in that no iterations are required.

In this method the effective uniaxial plastic strain rate E within an increment is

expressed as a linear combination of its rates at times t and t + At by

E = (I - O) t + OTt+At (4.1)

where 6 is a parameter ranging from zero to unity. The plastic strain rate at time

t + At is approximated by

tF t +  -+ - TI At (4.2)
F t t Tt FaE 8TI

An expression for 6F is obtained by differentiating (3.1) and using (3.7) and (3.9),

3--
0 F = L"S d -[3G +( - X)b] (4.3)F 2a

where G is the elastic shear modulus and b is given by (3.8).

Combining (4.1) through (4.3) and solving for E yields

e= + L •S d (4.4)
2o;F

Zm



where

+ T0~ (4.5)

~D L m[ 1 13 (T - TO)] .

______ (4.6)%

e~E 3G +( 0 \)b 00 N
Dm N (+ EE 0)~ (4.7)

Substitution of (4.4) into thc expression for thc Jaumann rate of Kirchhoff

stress given by (3.9) results in

C d - -0L:S (4.8) -

where

C 1- 3-- c(L:S) (L S) (4.9)

Thc expression for given by (4.8) may bc used to compute the stress rates ij

needed in the incremental principle of virtual work (2.1). The details of this

computation arc given by Needleman 139).

4.2 Enforcement of the Periodic Boundary Conditions

The mixed finite element -Rayleigh-Ritz method dcveloped by Tvcrgaard

[401 is used to enforce boundary condition (2.5d). Applying this method, the

finite element solution of the momentum balance equation is decomposed into

four sub-problems, which are chosen to insure that the boundary conditions are

satisfied. The finite clement discretization of the incremcntal principle of

virtual work (2.1) is expressed as

Ki Uj6Ui (C (e+ si) Ui, (4.10)
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where K is the tangent stiffness matrix, c is the right hand side which ariscs from

the equilibrium correction term in (2.1), and s is the right hand side generated by

the second term on the right side of the expression for given by (4.8).

The nodal velocities are expressed as a linear combination of the four

sub-problems,

4

i  = m jI) m) (4.11) . -

-. m = l in-i

where am are the coefficients to be determined, and the velocities U(m) are

the solutions to

Kij Uj(
-

) F.(m) (4.12)

where is the right hand side for the ,-tlh sub-problem. The vectors U()

and U (2 ) are taken to be the velocities which arise from the equilibrium

correction and the stress rate right hand sides respectively, with homogeneous

boundary conditions. Therefore, F(1 ) = c and F(2) = s. In sub-problem 3 a

unit horizontal velocity is prescribed at xI = ho, and in sub-problem 4 a unit
vertical velocity is prescribed at x= h, with F(3) - 0.

Once the velocities associated with the sub-problems have been computed,

(4.11) may be substituted into (4.10) to obtain

4

Rmniam =Pn (4.13)
m =l , 2

where
Rnn = Kij Uj.(m) 1 j(n) (4.14)

Pn = (el + si) Ui(n) (4.15)

............. . .. .. .. .. .. .. . . . ..
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In order that boundary condition (2.5c) be satisfied, the coefficient a4 must be the

prescribcd vertical vclocity along x2 = ho (sce 2.5c). Tlhcrcforc, the unknown

coefficients cai (i = 1,3) arc governed by

3

Rmnam Pn + in (ho U) Rn 4  (4.16)

m=1

The velocity w in (2.5d) is given by the coefficient a 3.

4.3 Solution of the Coupled System

The differential equations resulting from the finite clement discrctization

of the variational equations associated with the momentum and energy balance

equations ((2.1) and (2.3)) arc of the form

Kij[X,U,T,cTlt Uj + Cij [X,U,Ta,Tlt T = Fi[X,U,T,crxTlt (4.17)

p
Mij[X1 Tj + Dij[X]T j = Qi[XT,T,d (4.18)

The equations may be effectively uncoupled by introducing an estimate forcd
the nodal temperature rate at time t + eAt, say T i, into (4.17). This is

accomplished by expressing Ti as a quadratic function of time based on its values

at the previous three points in time at which the solution has been obtained, and
.c

extrapolating to obtain Ti. Now the nodal vclocitics may be computed from the

equation

Kij Uj = Fi - Cij T (4.19)

Following the solution of the nodal velocities, the displacements, strcsscs

and internal variables are updated using a simple linear incremental updating

scheme. Next, the heat generation rate XT : dP is computcd for each clement,

and the nodal temperatures arc obtained from (4.18). The nodal temperature

.J--

-- -" " --" -" " -' ' .' _ -- _ -? , " .-' , " .' " ' .- -" " ., ' ' " " ." n ' . ." ', ' " " " ." " " , , ; . " . ' ... . ."..... .'. .-.. -.-.... ... .- '... .. ... . . ."
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rate at time t + OAt is then calculated, and the stcpsizc is reduced if the computed

and estimated temperature rates at that time differ by more than an allowable

tolerance.

Whcn the solution of the coupled system at time t + At has been completed,

this solution becomes the new current state. The procedure is then repeated to

obtain the solution for the next displacement increment.

4.4 Finite Elements

The finite clement meshes used in the subsequent numerical computations

consist of four-node quadrilateral elements, made up of four "crossed" constant ."

strain triangular sub-elements. In presenting results, the quadrilateral is regarded

as the basic element and when reporting values of field quantities the average

value over the triangles is associated with the centroid of the quadrilateral.

Nagtcgaal et al. [41] have shown that an element of this type can

accomodate isochoric deformations. This is of significance since the plastic

strain rate is volume preserving, so that the total deformation at large strains

is nearly isochorie. Another reason for using the crossed-triangle elements in

the present context stems from the need to resolve localized shear bands. As

discussed by Tvcrgaard ct al. [23], a mcsh composed of crossed triangles can

resolve narrow shear bands in four directions - parallel with either the sides

or the diagonals of the element. If the mesh is not oriented so that one of

these directions coincides with the critical orientation for shear bands then

localization can be significantly delayed or entirely supprcsscd, [23].

*%
,.€.,
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5. NUMERICAL RESULTS

5.1 Material Properties

The material parameters used in the calculations are chosen to be representative

of a 4340 steel studied experimentally by Hartley [6]. These properties are

specified by c o = 1250 MPa, E = 200,000 MPa, v = 0.30, Eo = 0.003, N = 0.08,

m = 0.01, o = 0.001 sce1, p = 7833 kg/m 3 , C p = 465 J/kg°C, k = 54 W/m°C (in

the analyses involving heat conduction), 13 = 0.0016 per °C, and To = 20 0 C.

The parameter x in (2.2), which represents the fraction of plastic work which is locally

dissipated as heat, is taken as unity in order to maximize the effects of thermal

softening. Non-dimensional parameters which depend on oo are co/E = 0.00625 and

n 1.1714 in (2.4). The initial undcformed state is stress free and at a uniform

temperature specified by TO.

Whether shear band development occurs under adiabatic or uniform

temperature conditions strongly depends on the value of the dimensionless

parameter k in (2.4). A priori knowledge of the thermomechanical behavior of the

solid allows for the parameter ho to be chosen so that a varied thermal response is

obtained within the range of prescribed strain rates. Culver [10] calculated

temperature profiles in a finite one-dimensional region for uniform heat input

corresponding to a uniform strain distribution. The results show that the thermal

response is essentially uniform for 4 > 5. As k decreases, heat conduction effects

diminish, and for k < 0.02 over one-half of the deforming region is

adiabatic. For the choice of ho = 1 mm, the response of the solid varies from

essentially adiabatic at n/ o = 5x,05 ( n = 500 sec "-) to having a nearly

uniform temperature distribution at n/o = 5x,0 3 ( n = 5 see'l).

An inhomogcncity is prescribed by specifying a value of the flow stress ao

for the quadrilateral clement nearest tle origin equal to eighty percent of the %..

value of the flow stress for the surrounding elements. In addition, the value of the

......,...,-,.-..- - ...... .. .-
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thermal softening parameter 13 in (3.5) for this clement is taken as 0.0017 per C

which is slightly higher than that for the other elements. Therefore, this element

remains softer than the surrounding material throughout the deformation history.

5.2 Homogeneous Deformation

In order to provide a background for the finite element results, the

behavior of the constitutive relation in homogeneous plane strain compression

is analyzed. Also, the homogeneous solution is used to obtain an estimate of

the critical strain at which localization will occur so that the mesh can be

properly oriented for shear bands.

The homogeneous solution is obtained for an adiabatic condition. The solid

is subject to the boundary conditions given by (2.5), with n/Oo = 5xl05

( n = 500 secc 1 ). Figs. 2 to 4 show stress-strain curves where all material

properties remain constant except for one whose value is varied. All non-varying

parameters are assigned the values specified previously.

Stress-strain curves are presented for various values of the strain hardening

exponent N in Fig. 3. Denote the strain corresponding to the point of maximum
stress by 6m" For values of N below approximately 0.20, Em increases with

increasing N. However, for values of N greater than 0.20, the trend reverses.

Increasing strain hardening leads to two competing effects. Stress levels, and

hence heat dissipation, are increased, which is destabilizing; on the other hand

stiffness is increased.

The effects of the dimensionless parameter r? defined in (2.4) are shown in

Fig. 4. This parameter controls the magnitude of the internal heat generation rate

during the deformation. Its effect on the localization strain will depend to a great

....................... ... ... .... .... ...
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extent on the thermal softening characteristic of the material. For a given value

of 13, the strain Em decreases rapidly as n7 increases.

An interesting feature of the bchav : of the constitutive model in a

homogeneous deformation occurs when the material softens thermally, i.e. when 3

is non-zcro. When 13 = 0, the stress-strain response is independent of X, the

mixed hardening parameter in (3.6) and (3.7). However, the response of the solid

is not independent of x if it softens thermally. When 13 is positive, different

stress-strain curves result for different values of X,, with stresses always highest in

the case of kinematic hardening (X = 0). This difference is caused by the

temperature dependence of the parameter b given by (3.8), which is chosen so that

the isotropic hardening and kinematic hardening characterizations give identical

responses in proportional loading at constant strain rate and temperature.

5.3 Adiabatic Analysis with Isotropic lardening

In this calculation the response of an isotropically liardening solid under

adiabatic conditions is determined. Therefore, = 0 in (2.4) and X = 1 in (3.6)

and (3.7). The solid is deformed at in/'o = 5x105.

The finite element mesh is composed of 20 rows of 29 quadrilateral

elements, providing a total of 580 quadrilateral elements. Displaced shapes of the

finite element mesh are shown in Fig. 5 at various levels of the normalized

compression, U/h o , %&here U is the displacement of nodes along the line x2 = ho.

Although each quadrilateral element is comprised of four constant strain triangles,

only the boundary of the deformed quadrilaterals is shown in plots of this type.

The overall pattern of deformation at U/h o - 0.12, which is slightly before the

maximum load, is essentially uniform, as shown in Fig. 5(a) at this deformation

level. Only a slight non-uniformity in the deformation occurs near the inclusion.

Beyond this point thermal softening dominates over strain hardening. At

-~~~~~~... .......... ....... •... . C ..-



U/h o = 0.16 sufficient strain accumulations have occurred so that a shear band

becomes disccrnablc in the corresponding deformed mesh plot in Fig. 5(b). As the

deformation proceeds the shearing of the elements in the band occurs rapidly.

Beyond U/h o = 0.18 the shear band is fully developed, and is shown at :..

U/10 = 0.20 in Fig. 5(c). The shearing deformation is so intense in some of the

quadrilateral elements that they have almost degenerated into triangles.

Plots of load vs. normalized compression are shown in Fig. 6. The force per

unit reference area is

ho  . ,

P I T2 (ho,xl)dxl (5.3)

0
0

The curve labelled I in Fig. 6 corresponds to this analysis. The load has been

normalized with respect to the reference stress o in this figure. The maximum

value of P occurs at approximately U/h o ; 0.14, and a shear band forms shortly

thereafter. As the deformation proceeds, the rapid softening occurring in the

shear band results in the continual decrease of the load.

A more quantitative description of the deformation pattern is shown by the

contours of constant maximum principle logarithmic strain, e, in Fig. 7. The

plots in this figure correspond to the same normalized compression levels for

which the deformed meshes were presented. At U/h o = 0.12 in Fig. 7(a) strains

vary between 0.12 anO 0.14 throughout most of the domain, with strains as high as

0.22 occurring at the junction of the inclusion and the surrounding material. The

pattern of straining changes considerably after the attainment of the maximum

load, as observed in Fig. 7(b) at U/h 0 = 0.16. Here the strain in the band is

approximately twice that in the material on either side of it, which has continued

to deform in a nearly uniform manner. Also evident in this figure is a section of

a shear band extending through the material near the upper right section of the

**<***'** ." ----.
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mcsh. This is part of a shcar band which propagates from the inclusion initially

located at (0,2ho). Part of the shcar band propagating from the inclusion initially-

located at (2h o, 2 ho) also passes through the mesh in Fig. 7(b), oriented in a

direction opposite to the predominant band. The strain in this band is only

slightly higher than in the surrounding material, providing an indication as to the

total distance of propagation of a shear band originating from any inclusion.

Beyond this level of compression, any further increment of imposed deformation

produces a large increase in strain within the band relative to the surrounding

material, as evident in Fig. 7(c) at U/h o = 0.20.

The width of the shear band is essentially constant throughout the

deformation. The discretization of the mesh sets a minimum width for the shear

band, which is the clement size. In this analysis, the shear band forms over two

adjacent rows of quadrilateral elements, with the most intense deformation

occuring in essentially one triangular sub-element in each of the quadrilaterals in

the band.

The contours of constant temperature (in °C and at the same deformation levels

as before) in Fig. 8 illustrate the rapid localized heating that occurs. The

temperatures computed in this adiabatic analysis represent only an upper bound on

the true temperature distribution. Prior to the attainment of the load maximum,

temperatures range between 70 and I I10C as shown in Fig. 8(a) at U/h o = 0.12.

However, at U/h 0 = 0.16, the temperature in the band has increased to approximately
0 . 0

200°C while the temperature of the surrounding material has risen to about 100°C.

By the time the material is compressed to 80 percent of its original height, a

maximum band temperature of over 350°C has occurred, with only a small

accompanying temperature rise on either side of the band.
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5.4 leat Conduction with Isotropic llardening

The effects of heat conduction on the localization process arc examined in

this finite elcmcnt calculation. The material properties and the imposed strain rate

retain the same values used in the previous analysis, with the exception of

= 2.965x10 "2 in (2.4). This value of k will be used in all subsequent

calculations. The 20 by 29 finite element mesh used in the adiabatic analysis will

also be used here.

This analysis shows that heat conduction causes a significant delay in the ,

initiation of shear band localization at o = 5xl05 (in 500 see'l). The true

stress of the elements in the shear bands does not attain a maximum value until

U/h o = 0.12, as compared with U/h o = 0.08 in the adiabatic case. A shear band

did not become visible in a deformed mesh plot in the adiabatic analysis until

U/h o = 0.16. In the heat conducting solid a shear band is not discernable until

approximately U/h 0 = 0.20.

Deformed finite element meshes are shown in Fig. 9. Shear bands in the

early stages of formation are shown in Fig. 9(a) at U/h o  0.22. The shear

bands are significantly broader than the ones in the adiabatic case, even as

they begin to form. At this deformation level significant shearing is occurring

over nearly three rows of quadrilateral elements. Heat conducted out of the

shear band eminating from the inclusion at the origin results in a stiffening

within this band rcative to the adiabatic case. The redistribution of strain

associated with this relative stiffening activates a secondary shear band,

oriented perpendicular to the primary one, as shown in Fig. 9(b) at

U/h o = 0.26. The substantially greater thermal softening in the band in the

adiabatic czse does not permit the formation of a secondary band. The

deformed mesh in Fig. 9(c) corresponds to U/h 0 = 0.30. The normalized width

of the shear bands (relative to the thermodynamic length scale (k/pcp n) ) is
.. n) Is
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0.726 as they form and increases stcadilv to 1.307 at U/h o  0.30. In this

calculation, a normalized width of unity corrcsponds to approximately

172 microns, so that the predicted shear band width is about 225 microns at

U/h 0 = 0.30. In the adiabatic analysis, the shear band width rcmaincd ncarly.

constant throughout the deformation history at about 100 microns.

The maximum principle logarithmic strain rate for the elements in the

shear bands in the adiabatic analysis increased monotonically following the

formation of the bands. However, this is not the case in the present analysis.

The rate of change of maximum p-inciple logarithmic strain for the elements

in the band emanating from the origin increases to about = 1.7x10 3 scc " at

U/h 0 = 0.22, giving a strain rate concentration in the band of 3.4. From this

point until U/h 0 = 0.30 the strain rate concentration decreases, dropping to

about 1.6. Beyond U/h o = 0.30 it begins to increase again.

The normalized load for the heat conducting solid is shown by curve 1I in

Fig. 6. The load peaks at U/h 0 = 0.18 and, as in the adiabatic case, a shear band

forms shortly afterwards. Beyond this point the load decreases and then

increases again, varying between 1.84 o and 1.90 0o.-

Contours of maximum principle logarithmic strain and temperature are

presented in Figs. 10 and 11, respectively. They are shown at the deformation

levels corresponding to the deformed meshes in Fig. 9.

5.5 Kinematic Ilardcnin,,

This calculation is identical to the previous one with the cxccption that the

solid hardens kinematically (>X = 0 in (3.6) and (3.7)).

Deformed finite element meshes are presented in Fig. 12 at conipc:,sin-..

levels of U/h 0  = 0.19, 0.21, and 0.23. Figs. 12(a) and (b) show the niesh just prior

to and just after the formation of the shear band. Prior to the on,;ct ot'
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localization, the strain and tempcraturc distributions given by the kinematicallv

hardening model are in close agrecment with the predictions of the isotropically

hardening model. The stresses in the kinematically hardening solid are about five

percent greater than in the isotropically hardening one. Beyond this point, the two

models give very different results. The shear band in the kincmaticallv hardening

solid develops rapidly, and is fully formed shortly after its initiation, ra shown in

Fig. 12(c). The primary effect of kinematic hardening is to produce shear bands

at lower overall strain levcls relative to the isotropically hardening model.

Furthermore, the shear band is narrow and well-defined, and its width varies less

with increasing heat conduction than in the isotropic hardening case.

The load for the kinematically hardening solid is shown by curvc III in - .

Fig. 6. The load in this case is consistently greater than for the isotropically

hardening solid, as discussed in Section 5.2. An abrupt drop in the load occurs

just after the attainment of the load maximum at U/h o = 0.19. In fact, the load

decreases much faster than in the adiabatic case. This rapid softcning of the

material provides evidence that strain rates in the band are quite high.

Contours of maximum principle logarithmic strain and temperature are

presented in Figs. 13 and 14, respectively, at compression levels corresponding to

the deformed meshes in Fig. 12. In contrast to the isotropically hardening solid,

the strain rates in the band increase monotonically throughout the deformation.

The strain rates in tqie band in this case are approximately three times greater

than in the isotropically hardening solid.

5.6 Analyses at Lower Strain Rates

The calculations which follow examine the response of the heat conducting

solid at lower imposed strain rates, spccifically n"'o = 5xl04 ( n =  50 scc "1)

and 4n/ o  = 5 10 = 5 scc). In these calculatlions, the valucs of in (2.4)

in IE i
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are 0.2965 and 2.965, respectively. At each of thcse strain rates, the response is

calculated for both isotropic and kinematic hardening. In each of the analyses, all

material properties are assigned the values specified in Section 5.1.

4.

Results for the isotropically hardening solid deformed at in/'o = 5x10 4

(in = 50 scc l ) arc shown in Figs. 15 through 17. Deformed finite element meshes

are presented in Fig. 15 at compression levels of U/h o = 0.31 and U/h o = 0.40.

The mesh consists of 20 rows and 40 columns of elements. Corresponding contour

plots of E and T are shown in Figs. 16 and 17, respectively. What appears to be

the beginning of a rather broad shear band is evident in Fig. 15(a) at

U/h 0 = 0.31, and the strain distribution in Fig. 16(a) provides supporting

evidence that localization is initiating. However, as the deformation continues and

the band broadens due to heat flow, the maximum principle logarithmic strain

rates throughout the band never exceed 1.5in* What occurs is a diffuse mode of

shearing, as observed in the plot of E at U/h o = 0.40 in Fig. 16(b). The

temperatures throughout the material arc increasing only slightly faster than they

would in a homogeneous deformation.

Results for the kinematically hardening solid deformed at n/o = 5x10 4

are shown in Fig. 18. The mesh used in this calculation consists of 20 rows and 35

columns of elements. The strain rate in elements which are inclined at

approximately 45 degrees to the compression axis begins to increase rapidly at

U/h 0 = 0.28, and a shear band becomes discernable in a deformed mesh plot at

U/h o = 0.31. The shear band is well-developed at U/h o = 0.33, as shown in the

deformed mesh plot at this compression level in Fig. 18(a). Corresponding contours

of E and T are shown in Figs. 18(b) and (c), respectively.

When the isotropically hardening solid is deformcd at in/io = 5xl03

n  5 see'), heat conduction effects are so predominant that at no time during

the deformation does the temperature vary by more than 0.1 C throughout the

7'2-
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solid. The solid was deformed to U/h o : 0.60, and showcd no signs of shear

banding. Although the strains near the inclusion arc as much as ten percent

greater than in the surrounding material, the isotropically hardening solid is quite

resistant to localization.

A shear band does form in the kinematically hardening solid when it is

deformed at n/Oo = 5x10 3 . The band begins to form at U/h 0 = 0.40, and is40

well-defined at U/h o = 0.44 as shown in Fig. 19(a). The mesh in this

calculation consists of 20 rows and 55 columns of quadrilaterals. The

corresponding strain and temperature distributions are shown in Figs. 19(b) and

(c), respectively. This calculation illustrates that a shear band can form

although the temperature distribution is nearly uniform. Unlike the previous

analyses which involved kinematic hardening, the shear band here is broadened

by the effects of heat conduction, and extends over nearly four rows of

quadrilateral elements.

The results of the last two calculations (at n/o = 5x103) are in accord

with the results of Ilutchinson and Tvcrgaard's [42] study of shear band formation

in rate independent solids deforming in plane strain. The classical elastic-plastic

solid with a smooth yield surface is highly resistant to localization. The

flow potential surface of the kinematically hardening solid acts as a "rounded"

vertex and permits localizaiton at physically achievable strain levels [42].

. . ° .
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6. CONCLUDING REMARKS

Previous analytical and numerical studies of thermal cffccts on shear band

development have focussed on the competition between thermal softening and

material hardening in circumstanccs where localization does not involve a change in

loading path. Such analyses apply to high rate torsion tests, Costin ct al. [5],

Hartley [6], Duffy et al. [431. Indeed most, if not all, detailed experimental data on

thermally induced shear localization is available from such tests. However, in this

investigation we have confined attention to quasi-stati. deformations and analyzed a

model thcrmomcchanical problem where shear localization is accompanied by a

substantial shift in stress state. Even when thermal softening is the dominant

destabilizing mcchanism, the multi-axial constitutive response of the material plays a

major role in the flow localization process.

Within the framework we have used, there is a continuous transition from

thermal softening dominated localization at high rates to plastic material property

dominated localization at low rates. A strong similarity of the shear localization

process under adiabatic and isothermal conditions was observed by Olsen, Azrin

and Tsangarakis [44] in 4340 steel and they remarked that whatever mechanism

plays a role under essentially isothermal conditions undoubtedly also contributes

to instability under adiabatic conditions. They discussed void initiation and

growth as the destabilizing factor under isothermal conditions. While the

weakening induced by progressive micro-rupture can play an important role in

triggering localization under isothermal conditions, localization can also occur

under these conditions when there is no prior progressive rupture on the

microscale, Chang and Asaro [17], Anand and Spitzig 1181 and Larsson et al. [19].

We have used kinematic hardening to model the path dependent hardening

associated with a sharply curved flow potential surface. This use of kinematic

hardening is intended for loading paths that do not involve extreme deviations

~ ~ .. - .. .. . . . . . . .. ~*~'.%* *
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from proportional loading, such as reverse yielding, and is quite distinct in focus

from the use of kinematic hardening as a model for Bauschingcr effects.

Furthermore, for the strain levels and deformation histories encountered here, the

use of the Jaumann rate in the evolution equation for a, (3.7), is not at issue.

Our results show a significant dependence of the course of shear band

development on the multi-axial constitutive characterization of the material.

Specifically, shear band development is very sensitive to the curvature of the flow

potential surface; localization occurs sooner and more abruptly in a kinematic

hardening solid than in an isotropic hardening solid. The effect of flow

potential surface curvature on shear band development found in our calculations

is consistent with previous comparisons of the behavior of kinematic hardening

and isotropic hardening solids in localization phenomena, e.g. Tvergaard [25] and

Hutchinson and Tvergaard [26]. In this context, the main effect of an increase in

curvature of the flow potential surface is the reduction in the material's stiffness

in response to an abrupt change in loading path.

The inclusion of heat conduction into the formulation introduces a material

dependent length scale so that our analysis is capable of predicting shear band

thickness. We find that with heat conduction, the more sharply rounded flow

potential surface, as modelled by the kinematic hardening flow rule, gives rise to

narrower shear bands. For the isotropic hardening solid, with heat conduction

accounted for, the shear band width greatly increases with decreasing strain rate,

compare Figs. 10 and 16, as well as becoming much less intense. Another effect is

seen by comparing Figs. 10 and 13. For the kinematic hardening solid, Fig. 13,

deformation concentrates rather rapidly into a well defined shear band. On the

other hand, for the isotropically hardening solid, the concentration of deformation is

slow enough for heat conduction to induce some stiffening in the shear band. This

leads to the formation of the secondary set shear bands seen in Fig. 10.

-, -o

-I

................ . .



-28-

ACKNOWLEDGEMENTS

Thc support of this work through ARO Grant DAAG29-85-K-0003 is

gratefully acknowlcdged. The computations rcportcd on hcre were carricd out at

the Brown University, Division of Engineering, Computational Mcchanics Facility.

The acquisition of this facility was made possible by grants from the U.S.

National Science Foundation (Grant ENG78-19378), the General Electric

Foundation, the Ford Motor Company and the Digital Equipment Corporation.

',I

. .
".2g



-29-

REFERENCES

[1] Zcncr, C. and liolloman, J.H., "Effect of Strain Rate Upon Plastic Flow of

Steel," J. Appl. Phyis., Vol. 15, p. 22, 1944.

[21 Rogers, HI.C., "Adiabatic Shearing - A Review," Drexel University Report,

1974.

[3] Wright, T.W. and Batra, R.C., "Further Results on the Initiation and

Growth of Adiabatic Shear Bands at High Strain Rates," Proc. International

Conference on Mechanical and Physical Behavior of Materials under Dynanlic

Loading, Paris, France, 1985.

[41 Moss, G.L. and Pond, R.B., "Inhomogeneous Thermal Changes in Copper

During Plastic Elongation," Met. Trans., Vol. 6A, p. 1223, 1975.

15] Costin, L.S., Crisman, E.E., Hawlcy, R.HI., and Duffy, J., "On the

Localization of Plastic Flow in Mild Steel Tubes under Dynamic Torsional

Loading," Proc. Second Conference on Mechanical Properties at tfigh Rates of

Strain. cd. J. llarding, The Institute of Physics, Bristol and London, Conf.

Series No. 17, pp. 90-100, 1979.

[6] Hartley, K.A., "Temperature Measurements During the Formation of Shear

Bands at ligh Rates of Deformation," Ph.D. Thesis. Brown University., 1986.

[7] Argon, A.S., "Stability of Plastic Deformation," Chapter 8 in The

Inhomocencitv of Plastic Deformation, ASM, Metals Park, OH, 1973.

[8] Clifton, R.J., "Adiabatic Shear Banding," Chapter 8 in Materials Response

to Ultra Hieh l.oading Rates, National Materials Advisory Committee,
NMAB-356, 1980.

191 Recht, R.F., "Catastrophic Thermoplastic Shear," J. Appl. Mech.. pp. 189-193,
1964.

[10] Culver, R.S., "Thermal Instability Strain in Plastic Deformation," in

Metallureical Effects at tliph Strain Rates, cds. R. W. Rhode, B. M.

Butcher, J. R. lolland and C. 1t. Karnes, Plenum Press, New York, 1973.

[11] Backman, M.E. and Finnegan, SA., "The Propagation of Adiabatic Shear,"

in Metallurcical Effccts at High Strain Rates, eds. R. W. Rhode, B. M.

Butcher, J. R. Holland and C. II. Karnes, Plenum Press, New York, 1973.

[12] Mcrzer, A.M., "Modelling of Adiabatic Shear Band Development from

Small Imperfections," J. Mech. Phys. Solids. Vol. 30, pp. 323-338, 1982.

[13] Fresscngcas, C. and Molinari, A., "Inertial and Thermal Effects on the

Localization of Plastic Flow," Acta Metall.. Vol. 33, 1985.

-- . -'- .



, -. ..- ..

-27-

We have considered the propagation of shear bands from an initial dcfcct, in
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design a finite element mesh capable of resolving concentrated deformation in a
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to the elastic stiffncsses.
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FIGURE CAPTIONS

Fig. I The undcformcd periodic array of inclusions. The shaded area in

this figure represents the region of the domain which is modelled

numericall y.

Fig. 2 Normalized true stress vs. logarithmic strain for a homogeneous

deformation in plane strain compression with = 5x10 5

(&n 500 scc1 ) and various values of the thermal softening

parameter 13 in (3.5). The values of all other material properties

are specified in Section 5.1.

Fig. 3 Normalized true stress vs. logarithmic strain for a homogeneous

deformation in plane strain compression with in/to = 5x10 5

(in = 500 sec-1) and various values of the strain hardening exponent

N in (3.6). The value;s of all other material properties arc specified

in Section 5.1.

Fig. 4 Normalized true stress vs. logarithmic strain for a homogeneous

deformation in plane strain compression with n 5x10 5

(in = 500 secc') and various values of the non-dimensional

parameter 7 in (2.4) which measures the magnitude of the rate of

internal heat generation. The values of all other material properties

are specified in Section 5.1.

Fig. 5 Deformed finite element meshes for the case where n/io 5x10 5

(in = 500 sec' 1 ), with isotropic hardening and = 0 in (2.4) being the

adiabatic limit. The values of all other material properties are specified ,

in Section 5.1. (a) U/h 0 = 0.12, (b) U/h 0 = 0.16 and (c) U/h 0 = 0.20.
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Fig. 6 Normalized load vs. displacement for the cases where (I) n/o = 5x10 5

and 0 with isotropic hardening; (II) in/i o = 5x10 and

= 2.965xl0 - 2 with isotropic hardening; and (Ill) in/io = 5x105 and

= 2.965xl0 -2 with kinematic hardening. The Fourier modulus k is

defined in (2.4), with = 0 being the adiabatic limit, and the non-zero

value of k results from the thermal conductivity k = 54 W/m°C. The

values of all other material properties are specified in Section 5.1.

Fig. 7 Contours of maximum principle logarithmic strain for the case where

in/o= 5xl05 (in = 500 sec-l), with isotropic hardening and k = 0 in

(2.4) being the adiabatic limit. The values of all other material

properties are specified in Section 5.1. (a) U/h o = 0.12, (b) U/h o - 0.16

and (c) U/h o = 0.20.

Fig. 8 Contours of temperature (in 0C) for the case where In/io = 5x10 5

= 500 sce'), with isotropic hardening and - 0 in (2.4) being the

adiabatic limit. The values of all other material properties arc specified

in Section 5.1. (a) U/h o = 0.12, (b) U/h o = 0.16 and (c) U/h 0 = 0.20.

The initial temperature is 20 0C.

Fig. 9 Deformed finite element meshes for the case where in/io = 5x10 5

(in = 500 see'l), with isotropic hardening and = 2.965x10 "2 in (2.4).

The valucs, of all other material properties arc specified in Section 5.1.

(a) U/h o = 0.22, (b) U/h o = 0.26 and (c) U/h o = 0.30.

Fig. 10 Contours of maximum principle logarithmic strain for the case where

n = 5xl05 (n = 500 see 1 ), with isotropic hardening and

= 2.965xl0 " 2 in (2.4). The values of all other material properties are

specified in Section 5.1. (a) U/l o = 0.22, (b) U/ho = 0.26 and (c)

U/h 0 = 0.30.

-Ii
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Fig. 11 Contours of temperature (in °C) for the case where in/ o 5x10 5

(&n 500 see 1 ), with isotropic hardening and - 2.965x10- in (2.4).

The values of all other material properties are specified in Section 5.1.

(a) U/h o = 0.22, (b) U/h o = 0.26 and (c) U/h 0 = 0.30. The initial

temperature is 20 0 C.

Fig. 12 Deformed finite element meshes for the case where in/ o = 5x,05

(in = 500 sce 1 ), with kinematic hardening and = 2.965xl0 - 2 in

(2.4). The values of all other material properties are specified in

Section 5.1. (a) U/h o = 0.19, (b) U/ho = 0.21 and (c) U/h 0 = 0.23.

Fig. 13 Contours of maximum principle logarithmic strain for the case where

n/o -= 5xl05 (in = 500 scc-1), with kinematic hardening and

= 2.965xl0 - 2 in (2.4). The values of all other material properties are

specified in Section 5.1. (a) U/h 0 = 0.19, (b) U/h o = 0.21 and (c)

U/h 0 = 0.23.

Fig. 14 Contours of temperature (in °C) for the case where n/io = 5x10 5

(in  500 see 1 ), with kinematic hardening and , 2.965x10 - 2 in

(2.4). The values of all other material properties are specified in

Section 5.1. (a) U/h o = 0.19, (b) U/h o = 0.21 and (c) U/h o - 0.23. The

initial temperature is 20°C.

Fig. 15 Deformed finite element meshes for the case where n/o= 5x10 4

(in = 50 sec' 1 ), with isotropic hardening and = 0.2965 in (2.4). The

values of all other material properties are specified in Section 5.1. (a)

U/110  0.3 1, (b) U/'10 =0.40.
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Fig. 16 Contours of maximum principle logarithmic strain for the case where

."/o = 5×10 ( n = 50 see 1), with isotropic hardening and = 0.2965

in (2.4). The values of all other material properties are specified in
0. 3. 1, b)U/h .,0

Section 5.1. (a) U/h o = 0.3], (b) U/h 0 = 0.40.

Fig. 17 Contours of temperature (in °C) for the case where /o- 5×l0,

( =n 50 scc' 1 ), with isotropic hardening and k = 0.2965 in (2.4).

The values of all other material properties are specified in Section

5.1. (a) U/h o  0.31; (b) U/h 0  0.40. The initial temperature is

20 0 C.

4n
Fig. 18 Results at U/h 0  0.33 for the case where n/o =5×0

( n = 50 sec-l), with kinematic hardening and = 0.2965 in (2.4); (a)

deformed finite element mesh, (b) contours of maximum principle

logarithmic strain, and (c) contours of temperature (in °C). The initial

temperature is 20°C. The values of all other material properties are

specified in Section 5.1.

Fig. 19 Results at U/h 0 = 0.44 for the case where in/Eo = 5xl03

(En = 5 scc " 1 ) and = 2.965 in (2.4) with kinematic hardening; (a)

Deformed finite clement mesh, (b) contours of maximum principle

logarithmic strain, and (c) contours of temperature (in °C). The

initial temperature is 200C. The values of all other material

properties are specified in Section 5.1.
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