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FINITE ELEMENT ANALYSES OF SHEAR LOCALIZATION IN RATE

AND TEMPERATURE DEPENDENT SOLIDS

by

J. LcMonds
and

A. Needleman
Division of Engincecring
Brown University
Providence, RI 02912

ABSTRACT

The effccts of strain hardening, strain rate scnsitivity, thermal softening,
heat conduction and the imposcd strain ratc on the shear localization process in
plane strain compression arc examincd. The-deformation, stress and temperature
ficlds are computed in an infinite solid which contains a periodic rectangular
array of inhomogencitics. The inhomogencitics give rise to non-uniform
deformation ficlds which, under certain conditions, may localize in the form of a
shcar band. Boundary conditions are prescribed such that the resulting fields
posscss periodicity with respect to the inhomogencity distribution. In this
manner, attcntion may be confined to a rectangular region of the solid which
surrounds a single inhomogencity. Full two-dimcnsional analyses are performed
within the context of a viscoplasticity theory which, in the ratc independent limit,
corrcsponds to flow theory with combined isotropic and kinematic hardening. Full
account is taken of finite strain and rotation c¢ffccts, but attention is confined to
quasi-static loading. The initiation and propagation of shcar bands is cxamined
for the bounding theorics of isotropic and Kincmatic hardening. The predicted
response depends significantly on the multi-axial hardening characterization of
the solid.
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1. INTRODUCTION

Shear bands frcquently accompany the large plastic straining of matcrials.
The large localized strains in a shear band often precipitate fracture. When
shear bands do not lcad to fracture, the localized shcaring greatly affecets
subscquent  plastic  deformation, Hence, shcar bands have a  dual
significance: as a prccursor to fracturc and as a mecchanism of large strain
plastic deformation. In mectals subject to high rates of loading, shcar bands can
form as the result of a thcrmomechanical instability. The same mctal may
also undergo shcar localization at very low strain rates, wherc thermal effects
arc ncgligible, with somc othcr mechanism causing the observed localization.

The important role of thermal softcning in  triggering shcar band
formation at high rates of deformation was rccognized by Zcner and Hollomon
[1]. Experimental investigations of thermal softening induced shear bands have
been directed toward microstructural featurcs contributing to and resulting
from localization and to mcasurcments of the strain and temperature conditions
at which the bands form, Rogers [2], Wright and Batra {3], Moss and Pond [4],
Costin ct al. [5] and Hartley [6]. Analytical and numecrical studics have
generally focussed on conditions for instability in simple shcaring dcformations,
Argon [7], Clifton §8], Recht [9], Culver [10], Backman and Finnecgan [l1],
Merzer [12), Fressengeas and Molinari [13), Olsecn, Mcscall and Azrin [14], Wu
and Frcund [15] and Shawki [16]. Thesc thcorctical studics have clucidated the
rclative roles of thcermal softening, strain hardening and strain rate scensitivity
on shcar localization in circumstances where the onsct of localization docs not

involve a substantial change in strcss statc.
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Shear band instabilities arc also obscrved at low ratcs where thermal
softening is not significant and, furthcrmore, in circumstances where there is no
cvidence for matcrial softening due to progressive rupturc on the microscale,
Chang and Asaro [17], Anand and Spitzig [18], Larsson ct al. [19]. Under
isothermal conditions and when microrupture ¢ffccts arc absent, a key fcature of
plastic material response for shear localization is the yicld surface vertex structure
implied by the discrcte naturc of crystallographic slip, Rice [20], Ncedleman and
Rice [21], Asaro [22], Tvergaard ct al. [23] and Larsson ct al. [19]. In this context
the significance of a yteld surface vertex lies in the reduced stiffness to a change
in loading path.

For rate depcndent constitutive rclations, a flow potential surface vertex
is ruled out on quitc gencral gounds, Rice [24). However, Tvergaard [25] and
Hutchinson and Tvergaard [26] have shown that a solid having a smooth yicld
surface but with a high curvature (rclative to thc isotropic hardcning surface)
at the current loading point can give predictions of necking and shcar band
instabilitics in linc with those bascd on a corncr thcory of plasticity.

In this investigation, wc analyze the dcvclopment of localization from a
small intcrnal material inhomogencity in a situation where localization involves
a considcrablc changc in Iloading path. The formulation ihcorporatcs the
effccts of thermal softcning, strain hardening, strain rate scnsitivity and heat
conduction. Full acsount is taken of finitc gcomctry changes, but incrtial
effects arc ncglected. We confinc attention to a range of strain rates, from say
10-3 sec”! to 103 scc'l, where material rate sensitivity is the main timc cffcct
and highcr strain rates where incrtial cffects play an important role arc
excluded from consideration.  The particular boundary value problem analyzed
is planc strain compression of a block of matcrial containing a doubly periodic

array of inhomogencitics. The doubly periodic symmetry permits the problem
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for thc entirc array to be rcduced to a boundary valuc problem for onc square .f(-}_
::«. )
cell. No hcat flux is pecrmitted between ccells so that there is an overall "
adiabatic rcsponsc. However, within cach ccll heat conduction is accountcd -
o
for. e
: . . A
Prcvious analyses of shcar localization at internal inhomogencitics have .
been carricd out for rate independent solids deforming isothermally by :'_«.
P
Abcyaratne and Triantafyllidis [27] for planc strain and by Frcund, Wu and e
Toulious [28] for anti-planc shcar. Abcyaratne and Triantafyllidis [27] confined o
attention to quasi-static deformations while in Frcund, Wu and Toulios [28] full ';
account was taken of matcrial inertia. (
A:JA-
Here, we  present  results for  both  isotropically and  kincmatically b
hardcning solids. A particular focus of our work is thc influcnce of flow R
potential surface curvaturc on the tendency for localization at various strain o
ratcs and wc usc a kincmatic hardcning flow rulc to model a "rounded vertex." :"_-,
This use of kincmatic hardcning thcory is intended for loading paths that do L0
not involve cxtrcme deviations from proportional loading and is quitc distinct v
. . . . : A
in focus from the use of kincmatic hardening as a model for Bauschinger -
effects. Our results cxhibit the transition from plastic flow property e
dominated shcar band localization at low rates to thermal softcning dominated j-:.-:-
localization at highcer strain rates, with the dcetails of this transition dcpending e
scnsitively on the deecription of the flow potential surfaces.
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2. FIELD EQUATIONS A

2.1 Incrcmental Principle of Virtual Work

et
»

N The governing cquations for the finite clement discretization of the

v
.
4 A

. momcntum balance cquation are bascd on a Lagrangian convected coordinate

]

7""
Ay

systcm. This approach has bcen used extensively in a varicty of contexts

involving finitec dcformation analysis, c.g.,, Ncedleman [29], Tvergaard [30], and .‘
for ratc dependent constitutive relations by Pcirce, Asaro and Ncedleman [31]. '-?::-
Some cssential features of the formulation will be outlined here. -

The reference configuration for the Lagrangian formulation corresponds to

the initial unstressed state with the matcrial points identified by the Cartesian

P il e i

coordinatcs xi. In the current deformed state, the matcrial points arc at xi ¢ ui
8 where ul arc the componcnts of the displaccment vector on the refercntial basc
vectors and F = 9(x+u)/3x is the dcformation gradient.

A current state of approximate cquilibrium is known at time t, and the s
incremental principle of virtual work is used to computc the time rate of change

of thc ficld variables for a time increment At.  Undcer planc strain conditions

with body forces neglected, this principle may be expressed as
Inlj SF:ji dA = JTI Sui ds + _A_t- [ '[ T! 8ui ds - Jnl-l Slji dA] 2.1 "
A S S A

where A and S dcenote the interior and the boundary of the body in the reference

~—~—
N configuration, respectively, and (°) indicates the material time dcerivative. The
. componcnts n'J arc the contravariant componcents of thc nominal stress tensor; T!
arc the componcnts of the nominal traction vector, given by T! = nJ! Vj, where v
3 is the unit normal to the boundary in the reference configuration; and Fij arc the NN
: \::-.
. covariant componcnts of the dcformation gradient; the components of cach of NN
- .
these tensors being on the rclercnce base vectors. The term in brackets on the
:.:\'.
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right side of (2.1) serves to correct slight deviations from equilibrium which result

from increcmental time integration.

2.2 Balancc of Encrgy

The principle of cnergy balance requircs that the time rate of change of
cnergy (internal plus kinctic) be cqual to the power input arising from internal
and surface forces and heating. The following simplifying assumptions are made:
1) the rate of change of intcrnal cnergy may be cxpressed as pcpaT/at where p is
the mass density and p is the specific heat at constant pressure; 2) Fouricr’s law
of hcat conduction applics - the hcat flux is proportional to the temperature
gradicnt, with the constant of proportionality being the thermal conductivity;
. 3) the fraction of plastic stress work which is converted to heat is X, where X is

in the range of 0.85 to 0.95 for many metals (Taylor and Quinncy [32]). These

, assumptions allow thc rcferential form of the cncrgy balance cquation to be

3 written as

: aT P

:: P Cp a = 9, - (kVOT) +XT: d (2.2)

: where ¥, represents the gradient with respect to the coordinates in the reference lf:_.‘_
O

- configuration, and dP is the plastic part of the rate of deformation tensor. The :::::
LS

ratc of deformation tensor d is the symmectric part of F.FL

The use of tire rclerential gradient in the c¢ncrgy balance cquation is
justificd as follows. Supposc that the deformation gradicnt can be expressed as
thc product of an clastic and a plastic deformation gradient, ic. F = Fch (sce
Lee [33] and Rice [34]). The clastic deformation gradicnt represents the
3 strctching of the atomic lattice along with any rigid body rotation. The plastic

deformation gradicnt includes the flow of matcrial through the lattice. Since

heat conduction is affected primarily by the distance between atoms, a more
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appropriate representation of the cnergy balance cquation is written with F;T v
replacing V,- However, if the magnitude of the clastic strains is small, the clastic
deformation gradicnt is approximatcly a rotation. In this casc, assuming that the heat
conduction propertics arc isotropic, the form of the energy balance cquation given by
(2.2) is obtaincd when terms of order stress/clastic modulus are neglected.

The variational cquation which will be wused in the finite clement
formulation is obtaincd by multiplying (2.2) by 8T and intcgrating over the

volume in the reference configuration, and is cxpressed by

aT p '
I pep o 8T dA = - Ik(VOT)~(V08T)dA+ X Ir :d sT dA + IR(VOT-V)ST ds.

A A A S (2.3)

Two dimensionless groups characterize the thermal response,
k X 9g

g = —— , N = ——— (2.4)
pcpénhg Pep Ty

Here, €, is a rcference strain rate, Ty is a reference temperature, hg is a
rcference length and oy is a reference stress. The paramcter & is the Fouricr
modulus, and rcepresents the ratio of heat dissipated by conduction to intcrnal heat
storagc. The quantity (k/pcpén)% defines a length scale over which heat

conduction cffeccts arc significant. The paramcter 7 mcasurcs the magnitude of

internal hecat gencration.

2.3 Boundary Conditions

Wc¢ consider a block of matcrial containing a doubly pcriodic array of

matcrial inhomogencitics subject to plane strain compression, As in Fig. 1,
the array is imagined to be divided into squarc cclls of dimension Zhy Ly 2hg,
with onc inhomogencity centercd in cach ccll. We restrict consideration to

deformations such that the straight lincs bounding cach c¢e¢ll remain straight
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after deformation (this is a stronger constraint than rcquired by periodicity).
Ly
y Furthcrmore, attention 1s confined to deformations that preserves the mirror o
. . . W
. symmetry of the array so that straight lincs connecting centers of the NN
.
A AN
. . .. . . (S
inhomogencitics also remain straight. NN
3 \.::\.
' The compression axis is taken to be aligned with the x2 dircction, so that N
F, thc boundary conditions for the quadrant analyzed are 5
- .7 .
- al = 0 T2 = 0 at x! = 0 (2.5a)
& i 7 - oot
ul = 0 T = 0 at x2 = 0 (2.5b) ]
: (12 -é (h, - U) ' = 0 at x> = h (2.5¢) -
. = n\o ¢ = Yo T
. ho ."::
2 2 _ i 1 _
T dx- =0 u = w at x° = hy (2.5d)
0 R
. g
~ V%T - -v =0 on S (2.5¢) R
N
) where U is the displacement along x2 = hgs defined to be positive for o
.- compression, and €n is the imposcd nominal strain rate. The vclocity of
~ -
e matcrial points along x! = h,, denoted by W, is a quantity dectermined in the :;:-'_-
analysis as described in Scction 4.2, e
The boundary condition (2.5¢) requircs that there be no heat flux across ‘:}f
the boundary of thc quadrant analyzed. Thus, the thermal boundary condition e

is an ovcrall adiabatic onc, in that while there is a heat flux within a cell,
there is no heat flux between cells.  This gives periodicity of the temperature

ficld with respect to the inclusion distribution.

0
>
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3. CONSTITUTIVE REILATIONS

The flow potential surfaces arc taken to be concentric cvlinders centered
about a stress state a in stress space.  The radius of the flow potential surface

is dcnoted by op and is given by
3 _ %
Op = [2— S:S] (3.1)

where §=S—a The tensor S is the Kirchhoff stress deviator, given by
S=1—-1/3t : I, wherc I is the identity tensor. Here, the kinematic and
isotropic hardening plastic flow rules are bascd on Kirchhoff stress rather than on
Cauchy stress. As long as clastic strains remain small, there is little difference
between the two formulations.

The rate of deformation tensor is cxpressed as the sum of clastic and

plastic parts by

d = d°+d" . (3.2)
The clastic part i1s given by

a¢ = Lhg (3.3)
where £ is the Jaumann ratc of Kirchhoff{ stress and L is a fourth order
tensor representing the clastic stiffness of the material. The plastic part of

the rate of deformation tensor is given by

3¢ —
af - — 5 (3.4
"OF

Here, € is specificd by the power law relation

Op ]1,’m
€ —
0 LI-B (1-T )] hie) (

where €, i1s a reference strain rate, T, is a rctference temperature, m is the

'ad
o

strain rate hardening  exponent, and B specities  the  thermal softening
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characteristics of the material. This assumed lincar temperature dependence
is rcpresentative of carbon steels in the range 0 - 500°C, c.g. Staker [35],

although at clevated temperatures the flow stress is generally a non-lincar
function of tecmpceraturc.
We cmploy combincd isotropic and kincmatic hardening, Gocl and Malvern

[36], with h(€) and the cvolution cquation for « given by

h(@) = X ool + e/l + (1-3) o (3.6)
& - % (-3 d° (3.7)
where
:;- m 9y _ N-1
b = [—] [1-B(T-Ty)l N —[1+¢€/eg] . (3.8)
€O 60

Here, o, is a rcference stress, € is a rclerence strain, N is the strain
hardening cxponent and X\ is a constant ranging bctween zero and unity. Purcly
isotropic hardcening corrcsponds to = 1, whilc purcly kinematic hardening is
given by X = 0. The paramcter b, given by (3.8), is taken so that at constant
strain ratec and temperature, the responsc  for proportional loading s
independent of whether the change in flow potential surface is described by
isotropic hardcning or by kincmatic hardcening, sce Ncedleman and Tvergaard
[37).

An cxpression for the Jaumann rate of Kirchhoff stress is obtaincd in

tecrms of rate quantitics by combining (3.2) through (3.4),

m|.

3
2 - L:d-

5 L:S. (3.9)

Q

F
Although there is no explicit yicelding in this formulation, for small m there
is an cffcctive yicld point in that plastic strain rates arc very small when the

numcrator is less than the denominator in (3.5).
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4. FINITE ELEMENT IMPLEMENTATION

4.1 Ratc Tangent Modulus

Using thc cxpression for the Jaumann rate of Kirchhoff stress given by (3.9)
in the incremental principle of virtual work (2.1) gives an cxplicit Euler time
intcgration mcthod. This approach rcquires very small time steps for numcrical
stability. In ordcr to incrcasc the stable stepsize, Pcirce ct al. [38] cmploy a
formulation which results in a tangent modulus type mcthod for solving the
governing ratc cquations. The m'cthod is explicit in that no itcrations arc rcquired.
In this mcthod the effective uniaxial plastic strain rate € within an increment is

expressed as a lincar combination of its rates at times t and t + At by

e = (1- B)et + BEHM 4.1)
where @ is a paramcter ranging from zcro to unity. The plastic strain rate at time

t + At is approximated by

G
CF + —=

de

- - ac
Etent = €t 3o

3 aé‘| T lat (4.2
+ — . 4
. “Tar )

t t

t

An cxpression for op is obtained by differentiating (3.1) and using (3.7) and (3.9),

3 - =
op = T— L:S :d-[3G +(1-)\)b]e (4.3)
20p

where G is the clastic shear modulus and b is given by (3.8).

Combining (4.1) through (4.3) and solving for € yiclds

= . 3q =
e = p+ — L:S:d (4.4)
20p




where

t [l epat

D L Tm[l-8(T-Ty)

GAtet

Dm Op

e 2 A /A S S0 WYY 2 VY P.TLTIEERNS S S

4.7)

8Ate
t 3G+ -2 _
D =1+ [ ( ) ‘l]_

m op
Substitution of (4.4) into the cxpression for the Jaumann rate of Kirchhoff

stress given by (3.9) results in

”

]' q(L:S) (L:S) (4.9)

5
..0F

The cxpression for & given by (4.8) may be used to computc the stress rates !

needed in the incremental principie of virtual work (2.1). The dctails of this

computation arc given by Ncedleman [39].

4.2 Enforccment of the Pcriodic Boundary Conditions

The mixed finite clement - Raylcigh-Ritz mcthod developed by Tvergaard
[40] is used to cnforcc boundary condition (2.5d). Applying this mcthod, the
finite clement solution of the momentum balance cquation is dccomposed into
four sub-problems, which are choscn to insure that the boundary conditions arc
satisfied. The finite clement discrctization of the incremental principle of

virtual work (2.1) is expressed as

Kij Uj sU; = (c; + 5;) s8U; ,
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where K is the tangent stiffness matrix, ¢ is the right hand side which arises from
the cquilibrium correction term in (2.1), and s is the right hand side gencrated by
the sccond term on the right side of the cxpression for £ given by (4.8).

The nodal vclocitics arc cxpressed as a lincar combination of the four
sub-problcms,

4
U = ) e O™ (a.11)
m=] ‘

where «p, arc the cocfficients to be determined, and the velocitics ulm gec

the solutions to
K;; UM = F{m (4.12)

where F(M) s the right hand side for the mi-th sub-problem. The vectors uh)
and U(z) arc taken to be the velocitics which arisc from the ecquilibrium
corrcction and the stress rate right hand sides respectively, with homogencous
boundary conditions. Therefore, F(l) = ¢ and F2) - S. In sub-problem 3 a

unit horizontal velocity is prescribed at x! = h_, and in sub-problem 4 a unit

O)
vertical velocity is prescribed at x2 = h,, with FG) = F(d) = 0.
Once the velocitics associated with the sub-problems have been computed,

(4.11) may be substituted into (4.10) to obtain

4
E Run®m = Pp (4.13)
m=|

where . .
Rpn = Kj; UM gy (a.14)
P, = (c; +5) Ui(n) ) (4.15)
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In order that boundary condition (2.5¢) be satisficd, the cocfficient a4 must be the

prescribed vertical vclocity along x2 = h, (sec 2.5¢). Therefore, the unknown

cocfficients o (i = [,3) are governed by

Ryn®m = Pp+ €n(hg- URpy . (4.16)

I INAW

m

The vclocity w in (2.5d) is given by the cocflicient aj.

4.3 Solution of thc Couplcd System

The diffcrential equations resulting from the finite clement discretization
of the variational equations associated with the momentum and c¢nergy balance

equations ((2.1) and (2.3)) arc of the form
KijX.UTeT Uj + G IXUTaT) Tj = FX.UTaTl, (417
T P
lwij[X] T_] + DU[X]TJ = Qi[X,T,T,d ] . (4.18)

The cquations may be cffectively uncoupled by introducing an ¢stimate for
the nodal tecmpceraturc rate at time t + BAt, say 'i'ic, into (4.17). This is
accomplished by cxpressing 'i'-l as a quadratic function of timc bascd on its valucs
at thc prcvious three points in time at which the solution has been obtained, and
extrapolating to obtain T? Now thc nodal vclocitics may be computed {rom the
cquation

. . C
K::U:. = F, -C.. T; . (4.19)

—
S
—

-

—
L
—

Following the solution of the nodal vclocities, the displacements, stresses
and internal variables arc updated using a simplc lincar incremental updating
scheme. Next, the heat gencration rate XT . dP is computed for cach clecment,

and the nodal temperaturcs arce obtaincd from (4.18). The nodal temperature
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ratc at time t + 6At is then calculated, and the stepsize is reduced if the computed
and cstimated tcmperature rates at that time differ by morc than an allowable
tolcrance.

When the solution of the coupled system at time t + At has becn completed,
this solution becomes the new current state. The proccdurc is then repeated to

obtain the solution for the next displacement increment.

44 Finitc Elcments

The finitc clecment meshes used in the subscquent numerical computations
consist of four-node¢ quadrilateral clements, made up of four "crossed” constant
strain triangular sub-clements. In presenting results, the quadrilateral is regarded
as the basic element and when reporting valucs of ficld quantitics the avcrage
valuc over the triangles is associated with the centroid of the quadrilateral.

Nagtcgaal ct al. [41] have shown that an clement of this type can
accomodate isochoric dcformations. This is of significance since the plastic
strain ratc is volumec preserving, so that thc total dcformation at large strains
is ncarly isochoric. Another rcason for using the crossed-triangle clements in

the present context stems from the nced to resolve localized shecar bands.  As

discusscd by Tvergaard ct al. [23], 2 mcsh composed of crossed triangles can

rcsolve narrow shecar bands in four dircctions - parallcl with cither the sidcs
or thc diagonals of the clement. If thc mcsh is not oricnted so that onc of
these dircctions coincides with the critical oricntation for shecar bands then

localization can be significantly dclayed or cntircly suppressed, [23]




5. NUMERICAL RESULTS

5.1 Matcrial Propertics

The matcerial paramcters used in the calculations arc chosen to be representative
of a 4340 stccl studicd cxperimentally by Hartley [6]. Thcse properties arce
spccified by Oy = 1250 MPa, E = 200,000 MPa, v = 0.30, €o = 0.003, N = 0.08,
m = 001, ¢, = 0.001 scc™!, p = 7833 kg/m3, ¢, = 465 J/kg°C,k = 54 W/m°C (in
thc analyses involving hcat conduction), B = 0.0016 per 'C, and T, = 20°C.
The paramcter X in (2.2), which réprcscntsthc fraction of plastic work which is locally
dissipated as heat, is taken as unity in order to maximize the effects of thermal
softcning. Non-dimcensional parameters which depend on 0, arc 0,/E = 0.00625 and
n = 11714 in (2.4). The initial undcformed state is stress free and at a uniform
temperature specified by T,

Whether shcar band devclopment occurs under adiabatic or uniform
tempceraturc conditions strongly depends on the valuc of the dimensionless
paramcter § in (2.4). A priori knowledge of the thermomechanical behavior of the
solid allows for the paramcter h, to be chosen so that a varied thermal response is
obtained within the range of prescribed strain rates. Culver [10] calculated
tempcrature profiles in a finitc onc-dimensional region for uniform hcat input
corrcsponding to a uniform strain distribution. The rcsults show that the thermal
responsc is essentially uniform for £ > 5. As & decreascs, heat conduction cffects
diminish, and for & < 0.02 over onc-halfl of thc dcforming region s
adiabatic. For the choice of hy = I mm, the response of the solid varies from
essentially adiabatic at é,/é, = 5x10° (¢ = 500 scc'l) to having a ncarly
uniform temperature distribution at €,/é, = 5x103 (€ = 5 scc']),

An inhomogencity is prescribed by specifying a valuce of the flow stress o

0

for thc quadrilateral clement ncarcst the origin cqual to cighty percent of the

valuc of the flow stress for the surrounding clements. In addition, the valuc of the
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thermal softening paramcter B in (3.5) for this clement is taken as 0.0017 per °C
which is slightly highcer than that for the other clements. Therefore, this clement

remains softer than the surrounding matcrial throughout the dcformation history.

5.2 Homogcncous Dcformation

In order to provide a background for the finitc clecment results, the
behavior of the constitutive rclation in homogcncous planc strain compression
is analyzed. Also, thc¢ homogencous solution is uscd to obtain an cstimate of
the critical strain at which localization will occur so that the mesh can be
properly oricnted for shcar bands.

The homogencous solution is obtained for an adiabatic condition. The solid
is subjcct to the boundary conditions given by (2.5), with é,/é) = 5x10°
(é, = 500 scc'l). Figs. 2 to 4 show stress-strain curves where all material
propcrtics remain constant except for onc whose value is varied. All non-varying
paramectcrs arc assigned the values specificd previously.

Stress-strain curves are presented for various values of the strain hardening
exponcnt N in Fig. 3. Dcnote the strain corresponding to the point of maximum
stress by €,. For valucs of N beclow approximately 0.20, €, incrcascs with
increcasing N. However, for valucs of N greater than 0.20, the trend reversces.
Incrcasing strain hardcning lcads to two compcting cffccts. Stress levels, and
hence heat dissipation, arc incrcascd, which is dcstabilizing; on the other hand
stif [ness is increascd.

The cffccts of the dimensionless paramcter n defined in (2.4) arc shown in
Fig. 4. This paramctcr controls the magnitude of the internal heat gencration rate

during the deformation. Its ¢ffcct on the localization strain will depend to a great
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extent on the thermal softening characteristics of the material. For a given valuce
of B, thc strain €y dccreases rapidly as n incrcascs.
An interesting featurc of the behavi - of the constitutive model in a

homogencous deformation occurs when the material softens thermally, ie. when B

PSS DR A A

s ‘ is non-zcro. When B = 0, the stress-strain response is independent of X, the
mixcd hardcning paramcter in (3.6) and (3.7). Howecver, the responsc of the solid
. is not independent of X if it softens thermally.  When B is positive, different
stress-strain curves result for different values of ), with stresses always highest in
the casec of kincmatic hardening (M = 0). This difference is caused by the
tempcrature dependence of the parameter b given by (3.8), which is chosen so that
the isotropic hardening and kincmatic hardening characterizations give identical

responscs in proportional loading at constant strain ratc and tcmpcrature.

3 5.3 Adiabatic Analysis with Isotropic Hardening

In this calculation the rcsponse of an isotropically hardening solid under
adiabatic conditions is dctermined. Therefore, &€ = 0 in (24) and X = 1 in (3.6)
! and (3.7). The solid is deformed at éy/¢é, = 5x107,

The finitc clecment mesh is composed of 20 rows of 29 quadrilateral
clements, providing a total of 580 quadrilatcral c¢lements. Displaced shapes of the
finitc clement mesh are shown in Fig. 5 at various levels of the normalized

compression, U/h,, where U is the displaccment of nodes along the line x2 = h

o

Althiough cach quadrilateral clement is compriscd of four constant strain trianglcs,

[N A AL

only the boundary of the deformed quadrilaterals is shown in plots of this type.
The ovcrall pattern of deformation at U/hy = 0.12, which is slightly before the
maximum load, is cssentially uniform, as shown in Fig. 5(a) at this dcformation

level. Only a slight non-uniformity in the dcformation occurs ncar the inclusion.

Beyond this point thermal softening dominates over strain hardening. At
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U/h, = 0.16 sufficicnt strain accumulations have occurred so that a shear band
becomes discernable in the corresponding deformed mesh plot in Fig. 5(b). As the
dcformation procceds the shearing of the elements in the band occurs rapidly.
Bcyond U/h0 = 0.18 the shcar band is fully devcloped, and i1s shown at
U/hy, = 0.20 in Fig. 5(c). The shcaring dcformation is so intensc in some of the
quadrilateral clements that they have almost degencrated into triangles.

Plots of load vs. normalized compression arc shown in Fig. 6. The force per

unit refercnce arca is

(o]

h
P = I T2 (hyxlydx! . (5.3)
0

RN
h,
The curve labelled I in Fig. 6 corrcsponds to this analysis. The load has been
normalized with respect to the reference stress oy in this figure. The maximum
valuc of P occurs at approximately U/hy = 0.14, and a shcar band forms shortly
thcreafter. As the deformation procceds, the rapid softecning occurring in the
shear band results in the continual decrease of the load.

A morc quantitative description of the deformation pattern is shown by the
contours of constant maximum principle logarithmic strain, ¢, in Fig. 7. The
plots in this figure corrcspond to the samc normalized compression levels for
which the deformed meshes were presented. At U/hgy = 0.12 in Fig. 7(a) strains
vary between 0.12 and 0.14 throughout most of the domain, with strains as high as
0.22 occurring at the junction of the inclusion and the surrounding matcrial. The
pattcrn of straining changes considerably after the attainment of the maximum
load, as obscrved in Fig. 7(b) at U/hy = 0.16. Hcre the strain in the band is
approximatcly twicc that in the material on cither side of it, which has continued
to deform in a ncarly uniform manncr, Also c¢vident in this figure is a scction of

a shear band cxtending through the material ncar the upper right scction of the
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mcsh. This is part of a shear band which propagates from the inclusion initially

N
k
£
g
¥
i

located at (0,2h Part of the shear band propagating from the inclusion initially

o

located at (Zhy,2h,) also passes through the mesh in Fig. 7(b), oricnted in a

o=

dircction opposite to the predominant band. The strain in this band is only

slightly higher than in the surrounding material, providing an indication as to the

total distance of propagation of a shcar band originating from any inclusion.

Beyond this level of compression, any further increment of imposed deformation

produces a large incrcasc in strain within the band relative to the surrounding

matcrial, as cvident in Fig. 7(¢c) at U/h, = 0.20.

The width of thc shcar band is cssentially constant throughout the

dceformation. The discrctization of the mesh scts a minimum width for the shear

band, which is the clement size. In this analysis, the shear band forms over two

adjaccent rows of quadrilateral clements, with thc most intense deformation

occuring in cssentially onc triangular sub-clement in cach of the quadrilaterals in

the band.

The contours of constant tempcrature (in °C and at the same deformation levels

as beforc) in Fig. 8 illustratc thc rapid localized hcating that occurs. The

temperatures computed in this adiabatic analysis represent only an upper bound on

thc truc tempcerature distribution. Prior to the attainment of the load maximum,

temperatures range between 70 and 110°C as shown in Fig. 8(a) at U/h, = 0.12.

Howcever,at U/hy = 0.16, the temperature in the band has incrcased to approximately

200°C while the temperaturc of the surrounding matcrial has riscn to about 100 °C.

By the time the material is compressed to 80 percent of its original height, a

maximum band tempcraturc of over 350°C has occurrcd, with only a small

accompanying tecmperaturc risc on cither side of the band.
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5.4 Hcat Conduction with Isotropic Hardening

The effccts of hcat conduction on the localization process arc ¢xaminced in
this finitc clement calculation. The material propertics and the imposed strain rate
rctain the same values used in the previous analysis, with the exception of
= 2.965><10'2 in (2.4). This value of & will be used in all subscquent
calculations. Thc 20 by 29 finitc elcment mesh used in the adiabatic analysis will
also be used here.

This analysis shows that hcat conduction causcs a significant delay in the
initiation of shcar band localization at €n/ég = 5x10° (€, = 500 scc'l). The true
stress of the clements in the shear bands docs not attain a maximum value until
U/h, = 0.12, as compared with U/h, = 0.08 in thc adiabatic casc. A shcar band
did not become visible in a dcformed mesh plot in the adiabatic analysis until
U/hg = 0.16. In the hcat conducting solid a shcar band is not discernable until
approximatcly U/ho = 0.20.

Dcformed finite clement meshes are shown in Fig. 9. Shear bands in the
carly stages of formation are shown in Fig. 9(a) at U/hgy = 0.22. The shear
bands arc significantly broader than the ones in the adiabatic case, cven as
they begin to form. At this dcformation level significant shcaring is occurring
over ncarly three rows of quadrilateral elements. Heat conducted out of the
shcar band cminating from thc inclusion at the origin results in a stiffening
within this band rciative to the adiabatic case. The redistribution of strain
associated with this rclative stiffening activates a sccondary shear Dband,
oricnted pcrpendicular to  the primary onc, as shown in Fig. 9(b) at
U/hO = 0.26. Thc substantially greater thermal softening in the band in the

adiabatic czs¢ docs not permit the formation of a sccondary band. The

deformed mesh in Fig. 9(c) corresponds to U/h0 = 0.30. The normalized width

of the shecar bands (rclative to the thermodynamic length scale (k/pcpe‘n)%) is

373
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0.726 as thcy form and increcases stcadily to 1.307 at U/h0 = 0.50. In this
calculation, a normalized width of unity corrcsponds to  approximately
172 microns, so that the predicted shear band width is about 223 microns at
U/hgy = 030. In thc adiabatic analysis, the shear band width remained nearly
constant throughout the dcformation history at about 100 microns.

The maximum principle logarithmic strain rate for the clements in the
shcar bands in the adiabatic analysis incrcased monotonically following the
formation of the bands. Howcver, this is not the casc in the present analysis.
The ratc of change of maximum p-inciple logarithmic strain for the clements
in the Land cmanating (rom the origin incrcases to about é = 1.7x103 sce™! at
U/hgy = 022, giving a strain ratc concentration in the band of 3.4. From this
point until U/hy = 030 the strain rate concentration decrecases, dropping to
about 1.6. Beyond U/hy = 0.30 it begins to incrcasc again.

The normalized load for the heat conducting solid is shown by curve II in
Fig. 6. The load pecaks at U/h, = 0.18 and, as in thc adiabatic casc, a2 shecar band
forms shortly afterwards. Beyond this point the load decercases and then
increases again, varying between 1.84 gy and 1.90 O

Contours of maximum principle logarithmic strain and tcmperature arc
presented in Figs. 10 and 11, respectively. They are shown at thce deformation

levels corresponding to the deformed meshes in Fig. 9.

5.5 Kincmatic Hardcning

This calculation is identical to the previous one with the exception that the
solid hardens kinematically (X = 0 in (3.6) and (3.7)).

Dctformed finite clement meshes are presented in Fig. 12 at compression
levels of U/hO = 0.19, 0.21, and 0.23. Figs. 12(a) and (L) show the mesh just prior

to and just after the formation of the shear band. Prior to the onsct of
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localization, the strain and temperature distributions given by the kinematically
hardening modcl are in closc agrecement with the predictions of the isotropically
hardening model. The stresses in the kinematically hardening solid arc about five
percent greater than in the isotropically hardening onc. Bevond this point. the two
modcls give very different results. The shear band in the kinematically hardening
solid develops rapidly, and is fully formed shortly after its initiation, as shown in
Fig. 12(¢). The primary cffcct of kincmatic hardening is to producc shear bands
at lower ovcrall strain levels relative to the isotropically hardening model
Furthcrmore, the shear band is narrow and well-defined, and its width varics lcss
with incrcasing heat conduction than in the isotropic hardcning casc.

The load for the kincmatically hardening solid is shown by curve III in
Fig. 6. The load in this casc is consistently greater than for the isotropically
hardening solid. as discussed in Scction 5.2. An abrupt drop in thc load occurs
just aftcr the attainment of the load maximum at U/h0 = 0.19. In fact, the load
decrcases much faster than in the adiabatic casc. This rapid softening of the
matcrial provides cvidence that strain rates in the band arc quite high,

Contours of maximum principle logarithmic strain and tcmpcraturc arc
presented in Figs. 13 and 14, respectively, at compression levels corresponding to
the deformed meshes in Fig. 12, In contrast to the isotropically hardening solid,
the strain rates in the band incrcasc monotonically throughout the deformation.
The strain rates in the band in this casc arc approximately thrce times greater

than in the isotropically hardening solid.

5.6 Analyscs at LLower Strain Ratces

The calculations which follow e¢xamine the response of the heat conducting

solid at lower imposcd strain rates, specifically €,/€, = 5x107 (€ 30 scc")

0 n

and €,/€, = 5x10° (€, = 3 scc'l). In these calculations, the values of ¢ in (2.9)

Ty,

R
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'.’: arc 0.2965 and 2.965, respectively. At cach of these strain rates, the response is \:
: calculated for both isotropic and kinecmatic hardening. In cach of the analyses, all bt
R matcrial propertics arc assigned the values specificd in Scction 5.1, :r_"
\ Results for the isotropically hardening solid deformed at En/éo = 5x10% "j.
. (€, = 50 scc'l) arc shown in Figs. 15 through 17. Dcformed finite clement meshes =
:} arc presented in Fig. 15 at compression levels of U/hy = 0.31 and U/hy = 0.40. T
The mesh ‘consists of 20 rows and 40 columns of clements. Corresponding contour o .
plots of ¢ and T arc shown in Figs. 16 and 17, respectively. What appears to be ,,
the beginning of a rather bLroad shcar band is evident in Fig. 15(a) at »F
U/h, = 0.31, and thc strain distribution in Fig. 16(a) provides supporting
- evidence that localization is initiating. However, as the deformation continues and *,
A thc band broadens duc to hcat flow, the maximum principle logarithmic strain -
ratcs throughout the band ncver cxceed 1.5€,. What occurs is a diffusc mode of
A shearing, as observed in thc plot of € at U/hy = 0.40 in Fig. 16(b). The ,
i tempceraturcs throughout the material arc incrcasing only slightly faster than they .::.
;1 would in a hemogencous deformation. ‘::
- Results for the kincmatically hardening solid dcformed at é,/é, = 5%10% i:::
arc shown in Fig., 18. The mesh used in this calculation consists of 20 rows and 35
columns of clements. The strain rate in eclements which are inclined at )
: approximatcly 45 dcgrees to the compression axis begins to incrcase rapidly at '-:}-:
U/h, = 0.28, and a shcar band becomes discernable in a deformed mesh plot at s
U/hy = 0.31. The shear band is wcll-developed at U/hg = 0.33, as shown in the
2 dcformed mcsh plot at this compression level in Fig., 18(a). Corresponding contours :\;-
5 of ¢ and T arc shown in Figs. 18(b) and (c), respectively. o
When the isotropically hardening solid is deformed at é,/é) = 5x103 \-
X <
N (€, =5 scc'l), hecat conduction c¢ffects are so prcdominant that at no time during :':‘
the deformation docs the temperature vary by more than 0.1°C throughout the e
w7
Z-;;I:
: S

F T SN L T TP S
.- et T et et e At e S -t -
B et

‘l"‘-‘.n . - a " et . - - . - » = . Y= -~ - . -
e e e T e e T e e e e e e e T e e e e T e e e e e e e e e T
LU Nt W W ™ T SRS TV ATV TR Y4 T T T TV TRV TR T VR TRV TV T P TR v




(R R Ol S ey |

-24-

solid. The solid was deformed to U/ho = (.60, and showed no signs of shcar
banding. Although the strains ncar the inclusion are as much as ten percent
grcater than in the surrounding matcerial, the isotropically hardcning solid is quite
resistant to localization.

A shcar band docs form in the Kincmatically hardcening solid when it is
deformed at €n/éy = 5><103. The band begins to form at U/h, = 0.40, and is
well-defined  at U/h, = 044 as shown in Fig. 19(a). The mesh in  this
calculation consists of 20 rows and 55 columns of quadrilaterals. The
corresponding strain and tcmperature distributions are shown in Figs. 19(b) and
(c), respectively.  This calculation illustrates that a shcar band can form
although the temperature distribution is ncarly uniform. Unlike the previous
analyses which involved kincmatic hardening, the shecar band here is broadened

by the cffects of heat conduction, and cxtends over ncarly four rows of

quadrilateral clements.

The results of the last two calculations (at é,/¢, = 5><103) arc in accord
with the rcsults of Hutchinson and Tvergaard’s [42] study of shcar band formation
in ratc indcpendent solids deforming in plane strain,  The classical clastic-plastic
solid with a smooth vyicld surface s highly resistant to localization. The

flow potential surface of the kincmatically hardcening solid acts as a "rounded"

vertex and permits localizaiton at physically achicvable strain levels [42].
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6. CONCLUDING REMARKS

Previous analytical and numerical studics of thermal cffects on shear band
devclopment have focussed on the competition between thermal softening and
matcrial hardening in circumstances where localization docs not involve a change in
loading path, Such analyscs apply to high ratc torsion tests, Costin ct al. [5],
Hartley [6], Duffy ¢t al.[43]. Indced most, if not all, detailed cxperimental data on
thermally induced shear localization is available from such tests.  However, in this
investigation we have confined cﬁtcntion to quasi-static deformations and analyzed a
modecl thermomechanical problem where shear localization is accompanicd by a
substantial shift in stress state. Even when thermal softening is the dominant
destabilizing mechanism, the multi-axial constitutive response of the material playsa
major role in the flow localization proccess.

Within the framcwork we have used, there is a continuous transition from
thermal softening dominated localization at high rates to plastic matcrial property
dominatcd localization at low rates. A strong similarity of the shear localization
process under adiabatic and isothcrmal conditions was observed by Olsen, Azrin
and Tsangarakis [44] in 4340 stcel and they remarked that whatever mechanism
plays a rolc undcr cssentially isothermal conditions undoubtedly also contributes
to instability undcr adiabatic conditions. They discussed void initiation and
growth as thc destabilizing factor wunder isothcrmal conditions. While the
wecakening induced by progressive micro-rupturc can play an important role in
triggering localization under isothcrmal conditions, localization can also occur
under these conditions when there is no prior progressive rupture on the
microscale, Chang and Asaro [17]), Anand and Spitzig [18} and Larsson ct al. [19].

We have used kinematic hardening to modcl the path dependent hardening
associated with a sharply curved flow potential surface. This use of kinematic

hardening is intendcd for loading paths that do not involve cxtreme dcviations
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from proportional loading, such as rcverse yiclding, and is quite distinct in focus
from the usc of kinematic hardcning as a model for Bauschinger cffects.
Furthermore, for the strain levels and deformation historics encounterced here, the
usc of the Jaumann rate in the cvolution cquation for o (3.7), is not at issue.

Our results show a significant dcpendence of the course of shear band
development on the multi-axial constitutive characterization of the material,
Spccifically, shecar band development is very sensitive to the curvature of the flow
potential surface; localization occurs sooncr and more abruptly in a kinematic
hardcning solid than in an isotropic hardcning solid. The cffect of flow
potential surfacc curvaturc on shear band development found in our calculations
is consistent with previous comparisons of the behavior of kincmatic hardcning
and isotropic hardcning solids in localization phenomena, c.g. Tvergaard [25] and
Hutchinson and Tvergaard [26]. In this context, the main c¢ffect of an increcase in
curvaturc of the flow potential surface is the reduction in the matcrial’s stiffness
in responsc to an abrupt change in loading path.

The inclusion of hcat conduction into the formulation introduces a matcrial
dependent length scale so that our analysis is capable of predicting shear band
thickness.  We find that with heat conduction, the morc sharply rounded flow
potential surface, as modclled by the kincmatic hardening flow rule, gives risc to
narrowcer shcar bands. For the isotropic hardening solid, with hecat conduction
accountcd for, the shear band width greatly incrcascs with dcecrecasing strain rate,
comparc Figs. 10 and 16, as well as beccoming much less intense.  Another cffcet is
sccn by comparing Figs. 10 and 13.  For the kincmatic hardening solid, Fig. 13,
dcformation concentrates rather rapidly into a well defined shear band.  On the
other hand, for the isotropically hardening solid, the concentration of deformation is
slow cnough for heat conduction to inducc some stiffening in the shear band. This

leads to the formation of the sccondary set shear bands scen in Fig. 10.




CafCaiie AR S gt Rl i St Anatiee Sag A Saft dhas SRt Indh M 4 Bl Al W A e a0 Ao an 8w Bl 4 WA Ae Jban JheeSie S ae S e aderaen B S S

-28-

ACKNOWLEDGEMENTS

The support of this work through ARO Grant DAAG29-85-K-0003 s
gratcfully acknowledged. The computations reported on here were carried out at
the Brown University, Division of Enginccring, Computational Mcchanics Facility.
The acquisition of this facility was madc possible by grants from the U.S.
National Scicnce Foundation (Grant ENG78-19378), thec General Electric

Foundation, the Ford Motor Company and the Digital Equipment Corporation.

- * . . - . - . . - 0 . - . . - - P - . - . . - - - . . - - B - - T
A ST A N T B A S S A P . K S A




oqEmtl .

K = ¥
el a

{1

(2]

(4]

15]

(6]

(7]

(8]

{91

(10]

(1

(2]

(13]

REFERENCES

Zener, C. and Holloman, J.H., "Effcct of Strain Rate Upon Plastic Flow of
Stecl," J. Appl. Phys., Vol. 15, p. 22, 1944,

Rogers, H.C., "Adiabatic Shcaring - A Review," Drexel University Report,
1974.

Wright, T.W. and Batra, R.C, "Furthcr Results on the Initiation and
Growth of Adiabatic Shear Bands at High Strain Rates," Proc. International
Conference on Mechanical and Physical Behavior of Materials under Dynamic
Loading, Paris, France, 1985.

Moss, G.L. and Pond, R.B, "Inhomogencous Thermal Changes in Copper
During Plastic Elongation,” Met. Trans., Vol. 6A, p. 1223, 1975.

Costin, LS., Crisman, E.E., Hawley, R.H, and Duffy, J, "On the
Localization of Plastic Flow in Mild Stcel Tubes under Dynamic Torsional
Loading," Proc. Second Conference on Mechanical Properties at High Rates of
Strain, c¢d. J. Harding, The Institute of Physics, Bristol and London, Conf.
Scrics No. 17, pp. 90-100, 1979.

Hartley, K.A., "Temperature Mcasurcments During the Formation of Shcar
Bands at High Rates of Dcformation,” PiD. Thesis, Brown University, 1986.

Argon, A.S., "Stability of Plastic Dcformation,” Chapter 8 in The
Inhomogencity of Plastic Deformation, ASM, Mctals Park, OH, 1973.

Clifton, R.J., "Adiabatic Shcar Banding,” Chapter 8 in Matcrials Response
to Ultra Hieh lLoading Rates, National Matcrials Advisory Committce,
NMAB-356, 1980.

Rccht, R.F., "Catastrophic Thermoplastic Shear,” J. Appl. Mech.. pp. 189-193,
1964.

Culver, R.S., "Thermal Instability Strain in Plastic Dclformation,” in
Mectallureical Effects at High Strain Rates, eds. R. W. Rhode, B. M
Butcher, J. R. Holland and C. H. Karncs, Plenum Press, Ncw York, 1973.

Backman, M.E. and Finncgan, S.A., "The Propagation of Adiabatic Shear,”
in Mctallureical Effccts at High Strain_ Rates, cds. R. W. Rhode, B. M.
Butcher, J. R. Holland and C. H. Karncs, Plcnum Press, New York, 1973.

Mcrzer, A.M., "Modclling of Adiabatic Shcar Band Devclopment from
Small Imperfections,” J. Mech. Phys. Solids. Vol. 30, pp. 323-338, 1982.

Fressengeas, C. and Molinari, A., "Incrtial and Thermal Effcects on the
Localization of Plastic Flow," dcta Metall., Vol. 33, 1985,




rAA A

AP RO N R

R R

-27-

We have considered the propagation of shear bands from an initial defect, in
contrast to a matcrial stability analysis, c.g. Hill [43], Rice [24], Hutchinson and
Tvergaard [26], where localization is presumed to occur instantancously all along a
narrow band. Necvertheless, the overall behavior is well represented in terms of a
material instability. For c¢xample, the computed band oricntations ar:
approximately thosc prcdicted by a matcrial instability analysis, c.g. 45 deg.
from thc compression axis for J5 flow theory. Also, the critical strains at which
deformation concentrates in tixc band arc in good agrecment with a material
instability analysis, LeMonds and Ncedleman [46]. In fact, this information is
uscd, as described by Tvergaard ct al. [23], in the numecrical investigations to
design a finite eclement mesh capable of resolving concentrated deformation in a
narrow band.

We also notc that although localization i1s a prominent fcature of our
rcsults, the mathcmatical difficultics associated with loss of ellipticity do not
arisc. For thc ratec dependent constitutive rclation used in this investigation,

thc governing cquations rcmain clliptic as long as stresses are small comparcd

to the clastic stiffnesses.

B T T T SRR PO SR
D Y >

'-'.- - - |..n'-..'.' .x'-“'. T,
1 VG DN NS T DS TN W T T T T Y " "

IR PR




(14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22

(23]

[24]

(25]

(26]

-30-

Olsen, G., Mcscall J.F, and Azrin, M., "Adiabatic Dcformation and Strain
Localization," in Proc. Conf. on Shock Waves and High Strain Rate
Phenomena, c¢ds. M. A. Mcyers and L. E. Murr, Plcnum Press, New York,
1981.

Wu, F.W. and Frcund, L.B.,, "Dcformation Trapping Duc to Thermoplastic
Instability in Onc-Dimcnsional Wave Propagation,” J. Mech. Phys. Solids,
Vol. 32, pp. 119-132, 1984,

Shawki, T.G., "Analysis of Shcar Band Formation at High Strain Rates and
the Visco-Plastic Response of Polyerystals,” Ph.D. Thesis, Brown University,
1985.

Chang, Y.W. and Asaro, R.J., "An Expcrimecntal Study of Shear
Localization in Aluminum-Copper Single Crystals," Acta Metall., Vol. 29, p.
241, 1981.

Anand, L. and Spitzig, W.A., "Initiation of Localized Shear Bands in Planc
Strain,” J. Mcch. Phys. Solids, Vol. 28, pp. 113-128, 1980.

Larsson, M., Necdleman, A, Tvergaard, V. and Storakers, B, "Instability
and Failurc of Internally Pressurized Ductile Mctal Cylinders,” J. Mech.
Phys. Solids. Vol. 30, pp. 121-154, 1982.

Rice, J.R,, "On the Structure of Stress-Strain Relations for Time-Dependent
Plastic Dcformation in Mctals," J. Appl. Mech., Vol. 37, pp. 728-737, 19770.

Needleman, A. and Rice, J.R., "Limits to Ductility Sct by Plastic Flow
Localization,"” in Mecchanics of Sheet Mctal Forming, cds. D. P. Koistinen
and N. M. Wang, Plcnum Press, New York, 1978.

Asaro, R.J., "Gcometrical Effccts in the Inhomogencous Dcformation of
Ductile Single Crystals," Acta Metall., Vol. 27, pp. 445-453, 1979,

Tvergaard, V., Nccdleman, A. and Lo, K.K,, "Flow Localization in the
Plane Strain Tensile Test,” J. Mech. Phys. Solids, Vol. 29, pp. 115-142, 1981,

Rice, J.R.,, "The Localization of Plastic Deformation,” in Theorctical and
Applicd Mecchanics, ¢d. W. T. Koiter, North-Holland, Amstcrdam, pp.
207-220, 1976.

Tvergaard, V., "Effcct of Kinematic Hardening on Localized Necking in
Biaxially Strctched Shecets," Int. J. Mech. Sci., Vol. 20, pp. 651-658, 1978.

Hutchinson, J.W. and Tvcrgaard, V. "Shcar Band Formation in Planc
Strain,” Int. J. Solids Struct., Vol. 17, pp. 451-470, 1981.

Abevaratne, R, and Triantafyllidis, N., "The Emcrgence of Shear Bands in
Planc Strain," Int. J. Solids and Structures, YVol. 17, pp. 1113-1134, 1981,

" Al Gl AL AC AL Y B b SR & g andeped ardh SN g she G SN

.‘.l.v.*-




-31-

N
.‘.

[28) Wu, F.W,, Frcund, L.B. and Toulios, M., "Initiation and Propagation of
- Shcar Bands in Antiplanc Shear Deformation," Brown University Report
N DAAG-29-81-K-0121, 1984.
N
N [29] Necedleman, A, "A Numcrical Study of Neccking in Circular Cylindrical

Bars,” J. Mech. Phys. Solids, Vol. 20, pp. 111-127, 1972.

{30] Tvergaard, V., "Effcct of Thickness Inhomogencitics in  Internally
: Prcssurized Spherical Shells," J. Mech. Phys. Solids, Vol. 24, pp. 291-304,
. 1976.

[31] Pcirce, D., Asaro, R.J. and Ncedleman, A, "Matcrial Rate Dcpendence and
Localized Dcformation in Crystalline Solids,” Acta Metall.. Vol. 31, No. 12,
pp. 1951-1976, 1983.

{32] Taylor, G.I. and Quinncy, H., "The Latent Encrgy Rcemaining in a Mectal
Aftcr Cold Working,"” Proc. Roy. Soc. London, p. 143, 1934,

[33] Lce, E.H., "Elastic-Plastic Dcformation at Finite Strains," J. Appl. Mech.,
Vol. 36, pp. 1-6, 1969.

- [34] Rice, J.R.,, "Inclastic Constitutive Rclations for Solidss An Intcrnal
N Variable Theory and its Application to Mctal Plasticity," J. Mech. Phys.
- Solids, Vol. 19, pp. 433-455, 1971,

[35] Stakcr, M.R,, "The Rclation Between Adiabatic Shear Instability Strain and
Matcrial Propertics,” Acta Metall., Vol. 29, pp. 683-689, 1981.

[36} Gocl, R.P. and Malvern, L.E,, "Biaxial Plastic Simplc Waves with Combincd
Kincmatic and Isotropic Hardening," J. Appl. Mcch., Vol. 37, 1970.

(37 Ncedleman, A. and Tvergaard, V., "Limits to Formability in
- Ratc-Scnsitive Mctal Sheets,” in Mcchanical Behavior of Materials - IV, ed.
. by J. Carlsson and N. G. Ohlson, Pcrgamon, 1984,

[38] Pcirce, D., Shih, C.F. and Necedleman, A., "A Tangent Modulus Method for
Rate Dependent Solids,"” Computers and Structures, Vol. 18, pp. 875-887,
1984.

[39] Ncedleman, A, "Finite Elements for Finite Strain Plasticity Problems,"” in
Plasticity  of  Mctals _at  Finitec  Strain:  Thecorv, Computation and
Expcriment, c¢d. by E. H. Lece and R. H. Mallett, pp. 387-436, Stanford

' University, 1982,

[40] Tvergaard, V., "Effcct of Thickness Inhomogencitics in  Internally
Pressurized Spherical Shells," J. Mech. Phys. Solids. Vol. 24, pp. 291-304,
1976.




[ a il ae e S i o g
X . SR

[41]

[45]

(46]

-32-

Nagtegaal, J.C, Parks, D.M. and Rice, J.R, "On Numecrically Accuratc
Finitc Elcment Solutions in the Fully Plastic Range,” Comp. Meth.
Appl. Mech. Engr., Yol. 4, pp. 153-177, 1974.

Hutchinson, J.W. and Tvergaard, V., "Shcar Band Formation in Planc
Strain,” Int. J. Solids Struct., Vol. 17, pp. 451-470, 1981.

Hartley, K.A., Duffy, J. and Hawley, R.H.,, "Mcasurcment of the
Temperature Profile During Shecar Band Formation in Stecls Deforming at
High Strain Rates,” Brown University Report DAAG29-85-K-0003/2, 1986.
Olson, G.B., Azrin, M. and Tsangarakis, N.J,, "Plastic Shcar Instability in
4340 Stcel," Proc. of the 29th Sagamore Army Conference - Materials
Behavior under High Stress and Ultrahigh Loading Rates - Part 11, 1984,

Hill, R., "Accclcration Waves in Solids," J. Mech. Phys. Solids. Vol. 13, pp.
10-16, 1962.

LcMonds, J. and Needleman, A. "A Flow Localization Analysis
Incorporating Hecat Conduction Effccts,” to be published.

- .o .- . R T N IS LT |
. . P P T T L L L S e e R
RS SR S S R SO S A P SPOT GRS U N PU N S SR VL VL VR T RN S TSP L:L“h‘.L v



A "I ST 2V T hes T 0 A e A S ™y [ S A iRt A i PRt M N '."(,'..‘. o

-

-33-
we
.“’-"
T
Ny
u.:::.
FIGURE CAPTIONS g
:
g
Fig. 1 The undeformed periodic array of inclusions. The shaded area in oY
this figure rcpresents the region of the domain which is modelled e
numcrically. i:'-:',.-_l
Fig. 2 Normalized truc stress vs. logarithmic strain for a homogencous -
dcformation in  planc strain  compression  with €n/éy = 5x10° j-’_:fi_
(¢, = 500 scc’!) and wvarious values of the thermal softening f.‘_'-ii-_:
paramcter B8 in (3.5). The values of all other matcrial propertics ;:-;'.:':
arc specificd in Scction 5.1. ’
Fig. 3 Normalized truc stress vs. logarithmic strain for a homogencous
dcformation in planc strain compression  with €n/éy = 5x107 )
(€, = 500 scc'l) and various values of the strain hardcning cxponent fi,':
N in (3.6). The valucs of all other material propertics are specificd -"':
in Scction 5.1 :.:::-f'
Fig. 4 Normalized true stress vs. logarithmic strain for a homogcencous \
dcformation in  plane strain compression  with €n/éy = 5x10° '_:
(€, = 500 scc'l) and various valucs of the non-dimensional :_:l_j-'
paramcter 7 in (2.4) which mcasurcs the magnitude of the rate of "‘
intcrnal hecat gencration. The values of all other matcrial propertics L
arc specificd in Section S.1. \
Fig. 5 Dcformed finite clement meshes for the casc where €,/é) = 5x10° ::
(¢n = 500 scc™!), with isotropic hardcning and § = 0 in (2.4) being the Y
adiabatic limit. The valucs of all other matcrial propertics arc speciflied ::::
in Scction 5.1. () U/hy = 0.12,(b) U/hy = 0.16and (¢) U/hy = 0.20. !
R
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Fig. 6 Normalized load vs. displacement for the cases where (1) €,/¢é, = 5x10°
: and § = 0 with isotropic hardcning; (II) é,/¢, = 5x10° and n
3 § = 2.965x10°> with isotropic hardening; and (III) ¢,/é, = 5x107 and RS
§ = 2.965x10"2 with kincmatic hardcning. The Fourier modulus § 1is ;~.':"‘
defined in (2.4), with ¢ = 0 being the adiabatic limit, and the non-zcro
value of & results from the thermal conductivity k = 54 W/m°C. The
valucs of all other material properticsarc specificed in Section 5.1, j:
Fig. 7 Contours of maximum principle logarithmic strain for the casc where -:'_
én/éy = 5x10° (€, = 500 scc'l), with isotropic hardening and £ = 0 in N
(2.4) ULcing the adiabatic limit. The valucs of all other material . ':
propertics arc specified in Scction 5.1, (a) U/hy = 0.12, (V) U/h0 = 0.16 "
R
and (¢) U/h, = 0.20. L
X Fig. 8 Contours of tcmperature (in °C) for thc casc where €n/éy = 5><105 ;-‘_--,
(¢, = 500 scc'[), with isotropic hardcning and & = 0 in (2.4) being the
adiabatic limit. The values of all other material propertics are specificd ':::'_-;
s in Scction 5.1. (a) U/hy = 0.12, (b) U/hy = 0.16 and (¢) U/hy = 0.20, Py
A The initial temperature is 20°C. o
y Fig. 9 Deformed finite clement meshes for the casc where €n/éy = 5x10° e
(¢ = 500 sccl), with isotropic hardening and & = 2.965x10°2 in (2.4). -
The valueg of all other material propertics arce specificd in Section 5.1, T
(a) U/hy = 0.22, (b) U/h, = 0.26 and (¢) U/h, = 0.30.
Fig. 10 Contours of maximum principle logarithmic strain for thc case where ooy
én/éo = 5x105 (&, = 500 sec™)), with isotropic hardening  and
t = 2.‘)65x10'2 in (2.4). The valucs of all other matcrial propertics arc Lol
specificd in Scction 5.01. (a) U/hy = 0.22, (b) U/hy = 0.26 and (c) o
U/hgy = 0.30. ol
)
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Fig. 11 Contours of temperature (in C) for the case where €n/égy = 5x10°
(¢, = 500 scc'l), with isotropic hardcning and ¢ = 2.965x1072 in (2.4).
The valucs of all other material properties are specified in Scction 5.1.

(@) U/hy = 022, (b) U/hy = 026 and (¢) U/h, = 0.30. The initial

" temperaturce is 20°C.
{
‘ -
! Fig. 12 Dcformed finite clement meshes for the case where € /é. = 5x10°

n’ ‘o

A

. (¢, = 500 scc'l), with kinematic hardening and § = 2.965x107~ in
:: (2.4). The wvalucs of all other matcrial propertics are specified in
:'_', Scction 5.1. (a) U/h, = 0.19, (b) U/hy = 0.21 and (¢) U/h, = 0.23.

Fig. 13 Contours of maximum principle logarithmic strain for the case where
' . 5 .
- €n/é€g = 5x10 (ép

[}

500 scc'l), with Kkincmatic hardcning  and
t = 2.965x10°2 in (2.4). The valucs of all other material propertics are
specificd in Scction 3.1, (a) U/hy = 0.19, (b) U/hy = 021 and (c)
U/h, = 0.23.

Fig. 14 Contours of temperature (in °C) for the casc where €n/éy = 5x10°

. (¢, = 500 scc'l), with Kkincmatic hardcening and § = 2.965x10°2 in
. 24). Thc valucs of all other matcrial propertics are specified in
Scction 5.1. (a) U/hy = 0.19, (b) U/hy = 0.21 and (¢) U/hy = 0.23.  The

initial tempcrature is 20 °C.

Fig. 15 Dcformed finite clement meshes for the case where én/éo = 5><104

(é, = 50 scc‘l), with isotropic hardening and & = 0.2965 in (2.4). The

valucs of all other material propertics arc specificd in Section 5.1, (a)
U/ho=0.3l,(b)U,’ho=0.~10.
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Fig. 16 Contours of maximum principle logarithmic strain for the case where S
€n/éo = 5x10% (€, = 50 scc!), with isotropic hardening and § = 0.2965 :::E:::
in (2.4). The valucs of all other material properties arc specified in r;
Scction 5.1. (a) U/hy = 0.31, (b) U/h, = 0.40. o

Fig. 17 Contours of tempcerature (in °C) for the casc where €,/€é, = 5><IO4
(¢, = 50 scc'l), with isotropic hardecning and & = 0.2965 in (2.4). ;_
The valucs of all other material propertics are specificd in Scction .
5.1. (@) U/hy = 031, (b) U/hy, = 0.40. The initial temperature 18
20°C.

Fig. 18 Results at  U/hg = 033 for the casc where €p/¢y = 5x10% :
(¢, = 50 sec!), with kinematic hardening and & = 0.2965 in (2.4); (a) 'a::f:
deformed finitc clement mcsh, (b) contours of maximum principle Ry
logarithmic strain, and (c) contours of tecmpcrature (in °C). The initial
temperaturce is 20°C. The valucs of all other material propcrtics arc o
specificd in Section 5.1.

Fig. 19 Results at U/hg = 044 for the casc where  é,/éy = 5x10
(€, =5 scc'l) and ¢ = 2,965 in (2.4) with Kkincmatic hardening; (a) 3
Dcformed finite clement mesh, (b) contours of maximum principlc
logarithmic strain, and (¢) contours of tecmpcrature (in °C). The
initial tcn'upcrnturc is 20°C. The wvalues of all other material
propertics arc specified in Scction 5.1, Ny
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