
AD-AlES Gad TACTICAL DISPLAY SIMULATION ON THE H/Z-W(0) NA A
POSTGRMRDUTE SCHOOL MONTEREY CA K N COONES NAN 96

UNCLSSIFIED F/O 9/2 ML

M28.

La U3 IM
liiii~* U3

M'CRnCor r?

NAVAL POSTGRADUATE SCHOOL
r: Monterey, California

-oi

DTIC"
JU 0 9ELECTE

JL D

THESIS
TACTICAL DISPLAY SIMULATION ON THE H/Z-100

by

Kennth W. Coomes

Ma rch 1986

Thesis Advisor: Uno R. Kodres

Approved for public release; distribution is unlimited.

.

- . i

I

www~~~~~~ Vrw-.y 97k 17--- 7j -. 7 -77 -. 7iw -7 -7 7&~C '

SECURIty CLASSIFICATION OF THIS PAG=

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS 1

,'a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION IAVAILABILITY OF REPORT

Approved for public release;
2b DECLASSIFICATIONt DOWNGRADING SCHEDULE dis trib ution is unlimi ted

-J PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NJAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

(if applicable)

Naval Postgraduate School Code 52 Naval Postgraduate School

6c ADDRESS (City, State, and ZIPCode) 7b ADDRESS (City, State, and ZIP Code)
Monterey, California 93943-5000 Monterey, California 93943-5000

Sa NAME OF FUNDING/iSPONSORING Sb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c ADDRESS (City, State,"an ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK I ORK ,jNiT
ELEMENT NO NO NO ACCIEWSON NO -

;1, (inluhde Security Classification)

TACTICAL DISPLAY SIMULATION ON THE H/Z-lOO

z ERSOAi. AUTHOR(S)
Coomes, Kenneth W4.

* 3. TY~ C~FREPOT 13b !!ME COVERED 14 DATE OF REPORT (Year, Month. Day)15PE ON

Master's Thesis FROM ___ TO ____ 1986 March 27 143

6 SPK)-EVENTARY NOTATION

COSATI CODES 18 SUBJECT TERMS (Con .ie on reverse if necessary and identify by block number)

ED GROUP ISUB-GROuP TACTICAL DISPI Y SIMULATOR, H/Z-lO0, GRAPHICS, ZBASIC,

1- 1MACRO- 86, ASS F 4B LY LANGUAGF

43S RAC' 'Continue on reverse if necessary and identify by block number)
This thesis explores thle feasibility of developing ai tactical display simulator on thle

H/Z-lOO microcomputer. A prototype iultris implemented in ZBASIC, some graphics

functions reoutines are implemented in Macro-86, and timing and performance measurements
are performed for comparison.

Listings of the programs developed are presented, as well as instructions for their
efective use. Directions for thle modification of tile code, and suggested Profitable

Iisconcluded that a tactical disp lay simulator is feasible, and that the final

imp lementation should he in Macro-86.

*. r-3 7ON, AVAILABILITY Of ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

-A (-ASS.F EDIUNL-MTED 0 SAME AS RPT D TIC .,SERS I'nl as if i ed
. . ! 17,; ESPO S 8LE 1,DIV ictiL 2b ELE P O NE (Include A rea C o e 'T) F(E S M OUno R. Kodres 14()S ().'41-i- 1L7 'i2Kr

DD FORM 1473, A4 MAR 83 APR editon -ay be ,%edjntI exh~austed SECURITy-CLASS:-F)CAT'Q,-N)F '-S PA..T
All othier edt,ons are obsolete___

IIApproved for public release; distribution is unlimited.

Tactical Display Simulation on the H/Z-100
.4"
4<

by

Ken Coomes
Lieutenant, United States Navy

B.S.E.E., University of Washington, 1978

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March, 1986

Author: 2 ' .a-
Ken Coomes

Approved by: v' i-0 .t-:
Uno R. Kodres, Thesis Advisor

on Rautenberg, S ond Reader..m

Vincent Y. L Chairman, Department of
Computer Science

.,°-

Kneale T. Mar l....---
Dean of Information and Policy iences

ABSTRACT

This thesis explores the feasibility of developing a

tactical display simulator on the H/Z-100 microcomputer. A

prototype simulator is implemented in ZBASIC, some graphics

functions routines are implemented in Macro-86, and timing

and performance measurements are performed for comparison.

Listings of the programs developed are presented, as

well as instructions for their effective use. Directions

for the modification of the code, and suggested profitable

areas of exploration and further development are included.

It is concluded that a tactical display simulator is

feasible, and that the final implementation should be in

Macro-86.

iA,;c_ Ior. For

T IS CRA&I
L j 1, 3 AB"

I Q 3M.TYJ

0 r By

33 .

L,. t U'.t.. , I .-

,wJ,.'lty ,coJe5

-..

V.

THESIS DISCLAIMER

Some terms used in this thesis are registered trademarks

of commercial products. Rather than attempt to cite each

occurrence of a trademark, all trademarks appearing in this

thesis will be listed below, following the firm holding the

trademark:

1. Zenith Data Systems Corporation

Zenith

H/Z-100

Z-DOS

ZBASIC

2. Microsoft Corporation

Microsoft

MS-DOS

GML

4m

-ft

*~ ~ -~ 7 - w r'7 T~YY . ~ - ~. .. v-7v~~ lv -17 7.-T- R717% W7 I-~ .

TABLE OF CONTENTS

* I. INTRODUCTION...................10

II. ALGORITHMS....................16

A. BASIC SIMULATOR ALGORITHM..........16

B. EXPANDED SYSTEM ALGORITHM..........17

C. CONCLUSION..................24

III. CODE........................25

A. LANGUAGE...................25

B. DATA STRUCTURES...............27

C. DESIGN DECISIONS...............31

IV. PERFORMANCE TESTS................48

A. TIMING....................48

B. EFFICIENCY..................50

V. CONCLUSION....................52

APPENDIX A: LISTING OF NEWEST.BAS...........56

APPENDIX B: LISTING OF HEADER.BAS...........71

APPENDIX C: LISTING OF INIT.BAS............72

APPENDIX D: LISTING OF HARNESS.BAS...........74

APPENDIX E: LISTING OF WINDOW.BAS...........75

APPENDIX F: LISTING OF AXES.BAS............76

APPENDIX G: LISTING OF UPDATE.BAS...........78

APPENDIX H: LISTING OF MOVE.BAS............80

APPENDIX I: LISTING OF LAND.BAS............82

APPENDIX J: LISTING OF DATA.BAS............84

5

.1

APPENDIX K: LISTING OF TRACKING.BAS 85

APPENDIX L: LISTING OF KEYS.BAS 86

APPENDIX M: LISTING OF MATCH.BAS 90

APPENDIX N: USER'S MANUAL FOR DISPLAY SIMULATOR 91

APPENDIX 0: LISTING OF TEST_10.ASM 116

APPENDIX P: LISTING OF TEST 8.ASM 120

APPENDIX Q: LISTING OF TIMER.SUB 122

APPENDIX R: LISTING OF BOX.SUB 123

APPENDIX S: LISTING OF CLS.SUB 126

APPENDIX T: LISTING OF DOS FUNC.MAC 127

APPENDIX U: LISTING OF PARM.DEF 128

APPENDIX V: USER'S MANUAL FOR ASSEMBLY PROGRAMS . . 130

LIST OF REFERENCES 139

BIBLIOGRAPHY 140

INITIAL DISTRIBUTION LIST 141

6

.7"

-1- 7,

LIST OF TABLES

4.1 TIMING COMPARISONS, ZBASIC AND MACRO-86 48

4.2 PROTOTYPE SYMBOL GENERATION TIMING 50

7

774

LIST OF FIGURES

2.1 Basic Simulator Algorithm 16

2.2 Expanded System Algorithm 18

2.3 Display Land Algorithm 20

2.4 Display Axes Algorithm 22

2.5 Do Indicated Function Algorithm 23

3.1 TRACK Record Structure 28

3.2 Reference Grid Eclipsed by Land 33

3.3 Land Mass only Partially Painted 33

3.4 Solution One 35

3.5 Solution Two 35

3.6 Drawing a Symbol for use with PUT and GET 38

3.7 Moving a Symbol using PUT 38

3.8 Symbols Drawn with GML 41

3.9 Symbols Moved using Update 41

3.10 Target Course Increments 43

3.11 Hooked Track 46

3.12 User Input Requested 46

N.1 Order of Data Entry 96

V.1 Results of Operating with Symbol Directly 132

V.2 Results of Operating with Shape and Symbol 134

8

171
-. - .- a.. .- ". " '.' '? '.' ''-'.~*. . -'.....- " -"..-...,

b

ACKNOWLEDGEMENT

To Dr. Uno Kodres, whose patience and cooperation paved

the way for the completion of this thesis. To CDR Ron

Rautenberg, whose editorial comments improved the quality of

the finished product. To LCDR Paul Callahan, who graciously

donated time to proof-read the finished product. And

especially to my wife Joanne, in appreciation of the loving

support and surrender of time together, in order that I

would be able to finish on time.

_•

, , • " "" 'r ',, -' . .i,:.,","... -: '. i. _.. ..- .. . --' '. .. ,." ., .. ,.. ' , ' .~.9 ,

I. INTRODUCTION

A. BACKGROUND

The Naval Postgraduate School has arranged to purchase

approximately fifty Zenith H/Z-100 microcomputers for the

microcomputer laboratories of the Computer Science Depart-

ment. There were numerous reasons for that particular

microcomputer to be chosen, one of which is the fact that

it possesses a dual micro-processor architecture [Ref. 1:

p. E.1]. It has the 8085, an 8-bit microprocessor, which

is typical of a simple architecture and instruction set,

and able to run software under the CP/M operating system.

It uses a simple, single-segment model of memory. The

H/Z-100 also comes equipped with the newer and more

powerful 8086, a 16-bit microprocessor, with an eight bit

memory interface. It makes use of a more complex

architecture, more internal registers (some useable as 8-

or 16-bit), extended addressing modes, and a more complex

memory management scheme, with segmentation registers.

Another attractive feature of the H/Z-100 is its

graphics capability. In the character display mode, the

H/Z-100 can display 25 rows of 80 characters. A very

important graphics ability is the degree of resolution

provided. The H/Z-100 provides high-resolution dot

addressability, with a dot resolution of 640 horizontal

10

dots by 225 vertical dots. In the interlace mode, the H/Z-

100 provides 640 x 512 pixels. It also comes equipped

with three 64K pages of video RAM memory, eight colors in

the color option with a color monitor, or eight grey scale

levels with the color option and a monochrome monitor,

light pen circuitry, and the potential for two pages of

video display to be stored simultaneously.[Ref. 1: p.

E.2] As a natural consequence of this purchase, the

micro-computer laboratory is interested in developing a

variety of special-purpose software products to maximize

the value of these computers. A primary use for these

software products will be in courses which emphasize

tactical applications of computers. Graphical displays are

a vital and integral part of tactical app±icatiuns.

Software products which provide graphical support for

tactical applications and demonstrations of interactive

graphical displays that enhance tactical decision-making is

very

desirable.

B. OPERATING SYSTEM SUPPORT

The operating system provided with the H/Z-100 "

computers purchased by the Naval Postgraduate School (NPS)

is the Microsoft Disk Operating System. It is our opinion

that the MS-DOS operating system is a powerful and

practical one. It provides the user with 54 commands, 27 4

resident commands and 27 transient commands [Ref. 2: pp.

r 11

- - - - * .-Z4 1.1 .1 777. . .. '..

9.2-5.4]. Several of these commands are useful tools for

the software developer.

There is a deficiency in the MS-DOS operating system,

however, related to graphics-oriented applications. There

is virtually no operating system support of graphics

functions provided by MS-DOS, the one exception being the

CLS (clear screen) command [Ref. 2: p. 5.21.

There is a crucial need for graphics function support

of tactical applications involving real-time displays. The

system is required to provide a current graphical display

of the tactical situation at the same time that changes in

that tactical situation are being evaluated. Computations

of the time-dependent tactical elements, display of the

current situation and acceptance of user inputs to the

system must be performed simultaneously, or nearly so. The

tactical display, which may be changing rapidly in the case

of high-speed targets such as missiles and slowly where

stationary and slow-moving tactical units are concerned,

must be updated with a minimum frequency of once per second

to be useful. This requirement generates the need for

effective, special purpose, time efficient code.

C. PURPOSE

We propose, as an initial system development project to

meet the purposes stated above, the development of a Naval

*Tactical Data System (NTDS) display simulator, to be

implemented on the H/Z-100 microcomputer. A rapid

12

b" ' -

prototype of a display simulator will be developed, to

provide guidelines for developing graphics support tools

for tactical systems applications such as those mentioned

earlier. The systematic approach used in developing this

prototype will demonstrate many of the considerations that

graphics support tools must entail. The displays this

prototype provides will be illustrative of typical tactical

displays that these applications require. Portions of the

prototype will be transferred into more time efficient

code, in order to ascertain the order of magnitude of

efficiency gain that may be expected and to demonstrate the

transfer process.

The development of an entire NTDS display simulator is

a major undertaking. Although it sounds good as a concept,

the logical first step would be a preliminary feasibility

study. This study will be an initial look at the

feasibility of developing an NTDS display simulator on the

H/Z-100. We will be attempting to ascertain that

feasibility by exploring algorithms necessary to support

the graphics sub-system of such a system, since graphic

display is an integral part of the system being simulated

and will largely determine the real-time aspects of the

system. We will develop code for portions of the graphic

display subsystem, and perform some performance tests on

that code. We intend and hope for this to be the basis for

the development of a graphics system which permits NTDS

display subsystem simulation.

13

- - Un - w .- 1. -

D. THESIS ORGANIZATION

In Chapter II we present algorithms devel ped for this

initial project. We describe the symbol generator

subsystem algorithm in detail. Design focuses primarily on

the symbol generator itself. We also provide some of the

design considerations made, brief explanations of reasons

for specific choices, and discuss some ramifications of

alternatives. Algorithms employed to develop sample NTDS-

type displays are also presented here.

Chapter III describes the code developed and debugged

to date for the display simulator. We have a successful

prototype implemented in ZBASIC and some initial routines

for graphics support in Macro-86 assembler language.

The next chapter, Chapter IV, is devoted to efficiency

issues. Much of the code provided in the Appendixes has

sacrificed efficiency for clarity. We felt that, in a

ground-breaking project such as this one, the use of easily

traceable logic in the code was more valuable than the use

of tricky code which might execute more rapidly. Initial

performance tests and timing runs are summarized.

The final chapter, Chapter V, provides suggestions for

the most effective use of what has been done to date. It

also suggests some of the potential future directions for

follow-on work. That is where the conclusions of this work

are presented. The focus is on what has been learned that

may be of value to other students and researchers.

14

Appendixes A-M are listings of the ZBASIC programs

developed to date as a working prototype of the NTDS

display simulator. A User's Manual which gives a line-by-

line description of the programs in Appendixes A-M, and

important considerations when modifying the code, is

contained in Appendix N. Listings of Macro-86 programs are

in Appendixes O-U. Appendix V is a User's Manual for the

code in those Appendixes.

15

.........................

II. ALGORITHMS

A. BASIC SIMULATOR ALGORITHM

To perform the functions of an NTDS display simulator,

we must implement an algorithm similar to that in Figure

2.1. The initialization depends somewhat on the

implementation chosen. The display simulator requires that

some basic items be displayed as a minimum, such as a

working area on the screen (window), a reference grid,

possibly some land or other special areas within the window

and basic symbols. A more detailed explanation of what is

displayed in our prototype is contained in the next chapter

on code.

begin
initialize display, system
repeat

repeat
delay
update all tracks

until (there is a user service request)
perform service requested

until (user requests exit)
end

Figure 2.1 Basic Simulator Algorithm

The user service requests are also defined by the NTDS

environment. We have chosen six NTDS-type User functions

to implement, two of which are related to use of this

simulator. other functions may be added to the simulator

easily enough, as explained in the code chapter. They are

16

not limited by those required by the simulation. The

system, particularly as a graphics subsystem, is eventually

able to support multiple purposes, including services that

are not NTDS related. The services implemented in the

prototype are a sampling of services, and are not meant to

be exhaustive.

B. EXPANDED SYSTEM ALGORITHM

The basic algorithm has been expanded through a series

of step-wise refinements to the algorithm shown in Figure

2.2. The intervening steps are not included as they would

not provide sufficient information that is not contained in

the final version to warrant inclusion.

In some statements greater detail than is normally

associated with algorithmic language has been brought

forward to the algorithm itself and its explanation. This

is to begin to acquaint the reader with the prototype.

Some sections of the algorithm, whether they are

represented as single or multiple statements in Figure 2.2,

are expanded even further, where clarification was felt to

be necessary or desired. Where greater expansion has been

provided it is the aim of the author to provide insight

in o the decision-making process during the design of such

a prototype system. There has been more effort expended in

attempting to provide clear logic in the algorithms and

code presented than in driving for efficiency.

17

L .

begin
clear screen
initialize variables, tracks
display function key menu
read (window parameters)
display window
read (# of land masses to display)
if (# of land masses > 0) then

display land masses
read (Y-axis parameters, X-axis parameters)
display coordinate axes
read (# of tracks)
if (# of tracks > 0) then
begin

for (# tracks) times
begin

read (current track parameters)
look-up symbol to match parameters
make track active
calculate incremental movement of track
look-up speed leader to match parameters

end
end
repeat

while (no user input)
begin

update all tracks
delay

end while
if (user input is a function key) then

do indicated function
until (user input = halt)

end

Figure 2.2 Expanded System Algorithm

18

1. Expansion of "Display Land Masses"

Figure 2.3 is an expansion of the "display land

masseso statement of the Expanded System Algorithm. It is

shown because the lack of true dynamic memory allocation in

the prototype created special problems. This algorithm

expansion illustrates one type of solution to those

problems. The problem is one that will not be evident in

the programming language which will be used in the future

to fully develop the graphics system. We accepted the

problem here, and dealt with it in this manner, in order to

develop the rapid prototype.

In this prototype we provide for three land masses.

The elements of the PTS array must be initialized, because

they are used to determine the amount of memory to allocate

for the land mass arrays. As a consequence, multiple

iterative loops are contained in the algorithm. Because

they are pre-initialized, the elements of the PTS array are

used as flags to indicate when to stop drawing land masses.

The lower bound of two was selected to allow this module to

draw even tiny representations on the display.

This is an example of a design decision point.

There are other ways that the lack of dynamic memory

allocation could have been handled. This is not the most

efficient choice, but it presents uncomplicated logic. The

data in this solution establishes a pattern. The number of

points and color for the maximum number of land masses the

19

.'. . - ". "....-. .-. ' ". .' .' '. "

Ib

begin
for (# land masses) times

read (PTS, LCOL) (# points, color for
each land mass

for (PTS(l)) times
read (X, Y) (points for LAND1

for (PTS(2)) times
read (X, Y) (points for LAND2

for (PTS(3)) times
read (X, Y) (points for LAND3

draw LAND1
read (CENTX, CENTY) (interior pt.
paint LAND1

if (PTS(2)) >= 2 then (if there is LAND2)
begin

draw LAND2
read (CENTX, CENTY)
paint LAND2

end
else end

if (PTS(3)) >= 2 then (if there is LAND3)
begin

draw LAND3
read (CENTX, CENTY)
paint LAND3

end
end

Figure 2.3 Display Land Algorithm

20
.4

4 . . --.

system will handle must be provided as data, in order to

allow dimensioning of arrays. Since a number of points for

any dummy land (one point) is required in the data, this

solution requires that each dummy land mass have that one

point in the data. This also ensures that a user who

wishes to modify one data file rather than generate a new

one has created space in the data module for the added

land masses.

We note again that these are problems that will be

nonexistent in Ada, as well as in Macro-86 graphics

functions. They result from the use of ZBASIC in this

prototype, which was selected simply for the rapidity with

which a working demonstration of the display simulator

could be developed. This provides early feasibility

determination, guidelines for future development, and

demonstrates graphics concerns.

2. Expansion of "Display Coordinate Axeso

This algorithmic step is expanded for those who

have little or no computer graphics background. The simple

algorithm shown in Figure 2.4 deals with the problem of

maintaining the proper aspect ratio between the horizontal

and vertical axis scales. It is based on a program cited

in the code and written by James C. Adams [Ref. 3: p. 9-

*151.-

The aspect ratio in computer graphics is the ratio

of horizontal to vertical on the display. The H/Z-100

21

.°

monitor provides 640 pixels in the horizontal direction and

225 pixels in the vertical direction [Ref. 2: p. E.1]. In

order for the scale divisions on the two axes to appear

equal they must have different pixel spacing.

begin
calculate horizontal scale
calculate vertical scale
draw vertical axis
draw horizontal axis
draw horizontal scale divisions
draw vertical scale divisions

end

Figure 2.4 Display Axes Algorithm

3. Expansion of "Do Indicated Function"

The "do indicated function" is expanded because it

is a case statement. That fact is not evident by looking

at the code, since it is written in a language that does

not provide a case statement construct.

We considered only partially expanding this section

of the system algorithm. Case statements are widely under-

stuod, and tend to become repetitive. Since one of the

concerns of this project is to provide development history,

and another is to document some decision process in

practice, we elected to fully expand it. The full expan-

sion is illustrated in Figure 2.5.

22

22!

begin
case function of:
begin

halt: begin
clear screen
restore function keys
exit system

end
suspend/continue:

begin
wait for user input

end
hook track:

begin
if (some track hooked) then

unhook track

read (track to hook)
hook track

end
enter track:

begin
read (track parameters)
calculate track movement
look-up speed leader, symbol
display track

end
modify track:

begin

if (some track hooked) then
unhook track

read (track to modify
hook track

for (each track field)
begin

ask user if OK
if not OK then

make change
end

end
delete track:

begin

read (track to delete)
make track inactive

end
end (case)

Figure 2.5 Do Indicated Function Algorithm

23

C. CONCLUSION

These algorithms are simply the rough-hewn blueprints

for producing the prototype display simulator. Comparing

them with the code in Appendices A-M discloses some of the

design choices which had to be made during implementation.

Inspection of the algorithms alone reveals some of the pre-

thinking that they embody. Knowing the capabilities and

limitations of the target system and the programming lan-

guage influenced the construction of the algorithms. In

some instances that was beneficial, in others less so.

Algorithms could have been shown for each module of the

working prototype, no matter how trivial. This would have

served no useful purpose. The important design lesson here

is that the more carefully the algorithm was developed and

thought out before the module was coded the more rapidly

the coding was successfully carried out.

24

III. CODE

A. LANGUAGE

An early concern in any software development is the

choice of a programming language. There are a plethora of

languages and language subsets to choose from. Many times

the choice is heavily dependent on the experience and

preferences of the programmer(s) and the availability of the

preferred language on the target machine. These dependen- %

cies may narrow the choices but do not define absolutely the

language to use in most cases.

This NTDS display simulator is no exception to the

considerations listed above. The development phase of a new

piece of software is not the best of times to attempt to

learn a new language. Therefore only languages familiar to

us were considered. The H/Z-100 computers that NPS is pur-

chasing will not come with software support for all cur-

rently existing programming languages. They are capable of

using languages which possess most of the currently

available language features.

The driving consideration in many projects, certainly

one of the most important issues if not the most, is the

project itself. Each language has features which are better

for some applications and suffer inefficiency (or even

impotence) for others. For the display simulator the two

critical issues are graphics support and speed. The more

25

graphics support the language provides, the more rapidly a

prototype may be implemented and tested. The more efficient

the language in terms of processing speed the better it is

able to approach real-time updates of the display and its

symbology.

We feel that Macro-86 assembly language offers the most

real-time capability. If the NTDS display simulator were

written in assembly language, it would probably meet or

exceed the time requirements to provide realistic, dynamic

displays. Macro-86 maximizes the utilization of the power

of the H/Z-100 computer through segmentation and paging, as

well as allowing direct access to the color planes for video

control.

Macro-86 assembly language also offers a wide range of

interfaces with high-level languages. In particular we are

interested in Ada, which is available for the H/Z-100 and

which is playing an ever-increasing role in Department of

Defense applications. Ada has the ability to make use of

Macro-86 routines. This would allow Ada packages to be

written for numerous applications, making use of Macro-86

routines which provide basic graphics functions.

Macro-86 assembly language does not provide direct

support for the graphics functions the display simulator

needs. Even direct input and output requires special

handling, register control, and several lines of code.

26
d;

5,

! ° '. '. . ., .'. °o,' '. -. . -. . -. % - - ° . ,. .•. .-. , - " . .- - . - % . ~", .. - ' - - - -. ..

The considerations above led us to choose ZBASIC for an

initial prototype implementation, and Macro-86 for ultimate

development and production. We felt that a working

prototype could be developed in considerably less time in

ZBASIC (in fact, a prototype of the graphics display

subsystem has been completed and is included) and used for

experimentation, testing and further enhancement. We did

develop some basic Macro-86 routines for graphics support of

the simulator and testing, and they are included. The major

drawback of ZBASIC for further development is its lack of

compatibility with other high-level languages.

B. DATA STRUCTURES

It may help to visualize each track in this system as a

record of the type illustrated in Figure 3.1. ZBASIC does

not provide data structures which are composed of fields

with different types. A separate array, therefore, repre-

sents each field of the TRACK record.

The other arrays are used as look-up tables for various

attributes. The type of symbol assigned to a track is found

in the array SYM$, the speed leaders are in LDR$, the number

of points determining a land mass(up to three land masses

are provided for) are found in PTS with each corresponding

land mass color in LCOL. These tables (SYM$ and LDR$) are

initialized in lines 180-440 (see Appendix A).

27
S. .

9 7777-74P-77_-. .-

There are provisions for ten pre-defined symbols, and

seven symbols are defined in this prototype. By changing

the dimension of SYM$ and its initialization, any number of

symbols (up to memory limitations) are defineable. Changes

to the symbols should be accompanied by changes to the Match

module, which assigns symbols to tracks based on their

CLASS$. The dimension of CLASS$ would not be changed--its

dimension, along with that of the other fields of each TRACK

record (see Figure 3.1), determine the number of tracks the

system will accommodate. These are some of the problems

inherent in a ZBASIC rapid prototype which will disappear

with Ada packages, and/or Macro-86 implementation of the

display simulator functions.

type TRACK = record
CLASS$ array [1..9] of char; (class)
CUS integer; (course)
SPD integer; (speed)
TCOLOR : integer; (color)
TX : integer; (x position)
TY : integer; (y position)
XINC : integer; (x increment)
YINC : integer; (y increment)
T$: array [l..80] of char; (symbol)
L$: array [l..2] of char; (speed leader)
HK$: array [l..21 of char; (scale)
ACTIVE : integer; (active/ref pt)

end; (TRACK)

Figure 3.1 TRACK Record Structure

There are eight pre-defined speed leaders, which

correspond to the four cardinal and four inter-cardinal

directions. This, too, could be modified, with changes here

28

and in the Move module, which assigns speed leaders to each
TRACK based on course and speed.

The string construction of the elements of the SYM$ and

the LDR$ arrays makes use of a "language within a language"

that ZBASIC provides for graphics applications. This

language is the Microsoft wGraphics Macro Language" (GML).

(Ref. 3: p. 5.5]

There is no provision for subtypes in the ZBASIC lan-

guage. For that reason some of the fields of the TRACK

structure may inadvertently be assigned meaningless values.

In some cases that will result in program termination and

the display of an error message by the interpreter. In

other cases it may result in undesirable side effects, or

unexpected displays. Subtypes could have been enforced by

programming subtype checking--that is providing checks on

the bounds of variables that would be classified as subtypes

and generating error messages when they were assigned

improper values or re-assigning them automatically to values

within their bounds. For a prototype implementation of this

nature it was felt that the user could be responsible for

the correct assignment of values to variables.

The T$ and L$ fields are strings which determine the

symbol's appearance. The contents of the T$ field is the

character string required to draw the symbol. It is copied

from the table of symbols (SYM$), based on the classifi-

cation (CLASS$) of the track. The speed leader is looked up

29

"" ,.,' ,- -,-_' .' -',......, , ,,, :",."-' ' . "-"-", '- k . " ." " '" -'",""" , - . ,""" " ." - " ' ."" -- ' -. .

in the LDR$ table, based on the track's course, and stored

in the L$ field for the track.

The only remaining character string field of the TRACK

record is HK$. This is a string indicating whether the

track is hooked or not (a hooked track is one that has its

parameters displayed on the right side of the display, at

the user's request). Regardless of whether monochrome or

color is used, a means is required to identify which track

is currently hooked (if any). We elected to indicate this

by enlarging the symbol. The HK$ string, indicating scale,

is always added to the T$ string when the symbol is drawn.

The only other data structures of note are the three

arrays for land masses which are dimensioned in the Land

module. They are two dimensional arrays in which the (x,y)

coordinate pairs for points defining the borders of land

masses (or other special areas) are stored. The Land module

then displays these areas by connecting the points with a

line the color of the land area and painting the area of the

screen bordered by that line the same color.

There is no true dynamic memory allocation in ZBASIC.

To circumnaviagate this limitation, the PTS array stores the

numbers of points defining each land mass (three are

provided for in this prototype); then the array elements of

PTS are used to dimension the land arrays when the Land

module is called. Multiple calls to the module with

different values in the PTS array generate errors. The

30

. * - *' .* - '.'. .-. .. *. .**..- . -. *. .. -'* '* '.*- .. -

initialization of the lower array subscript to one will

cause errors if the elements of the PTS array are lower than

one. For that reason the PTS array elements are initialized

to ones. This problem also required that each land mass

have an array with a separate name. That led, in turn, to

the repetition of similar code in the Land module, once for

each land-mass.

C. DESIGN DECISIONS

Some of the decisions made have already been discussed.

Others are described in an effort to present some project

history and design philosophy that may enlighten others, or

remove some of the mystique from "software design". The

documencation of these decisions and their reasons should

also enhance maintainability, and extend the life cycle of

the project by creating an environment of modifiability.

The decision to use the special function keys for user

input was born of human factors engineering. The concept is

to make it simple for the user to make use of the system.

In order to make it as simple as possible, a special

function key menu is displayed at the bottom of the display

(close to the special function keys) which reminds the user

what each of them does. These keys are defined in the Init

module, and restored in the Keys module upon exit from the

system. We chose to make extensive use of data statements

for initializing the display. Because we also designed this

31

.. . ,

p.a"J

,'

prototype with mergable files (the data is in one file) only

the data file needs to be different for an entirely

different initial display.

The Axes module incorporates three simple yet

significant design choices. The first of these is the

scaling of the divisions along the axes. This scaling was

discussed in Section II.B.2.

The second decision was the way to draw the axes. As

shown in Figures 3.2-3.3, presenting four distinct areas

(background, land, symbols, reference grid) on a display

with only two colors (monochrome system) can be difficult.

Even on a color monitor problems arise when two or more of

these graphic entities of the same color are drawn in the

same area on the display. This prototype is written for

full color implementation. The sample runs illustrated were

run with the colors black and white, because the H/Z-100

monitors currently in use at NPS are monochrome monitors.

Figure 3.2 demonstrates the obvious problem. Where the

land and the reference grid overlap, the reference grid does
.%

not appear. In this figure the land was drawn first.

Simply reversing the order of drawing, as expected, does not

solve the problem. It may introduce a different problem, as

shown in Figure 3.3.

There are two simple solutions to the problem. They are

shown in Figures 3.4-3.5. Figure 3.4 presents the most

pleasing appearance. It was created by calculating where

32

.7.

Figure 3.2 Reference Grid Eclipsed by Land

a'a

orI

Figure 3.3 Land Mass only Partially Painted

-3

33 -

I

the conflicts would arise and mapping the reference grid in

sections, each section the color opposite that of the

background. This may present :he most elegant display, but

requires modification of the actual Axes module every time

different land is drawn.

The second method of solving the conflict is illus-

trated in Figure 3.5. After the land is drawn, a wide line

the color of the background (i.e., opposite that of the

land) is drawn where the grid will appear, then the grid is

drawn on top of it in a slightly narrower line. The picture

is not quite as elegant, and some of the land features are

obscured. This solution does offer the advantage of writing

one Axes module which will work whatever the land for any

particular display is. We employed this solution in the

prototype for just that reason.

The Update module may be considered the heart of the

system. It presented several interesting design alterna-

tives, many because of the language limitations of ZBASIC.

The reader may want to refer to Appendix G, which contains

the listing of the code of this module, during the reading

of the following discussion.

The first choice, which is not evident in examining the

code, was whether to place the update loop within this

module or in the calling routine. The simulator should

periodically perform an automatic update of all tracks,

independent of user input. This requirement seemed to infer

34

Figure 3.4 Solution One

Figure 3.5 Solution Two

35

that the loop should be internal. Initially we provided the

loop in this Update module. That worked fine, until user

interaction was added.

At any time the user may elect to delete, insert, hook

or modify a track. Ideally he/she would not have to wait

for the next update of all tracks to see the effect of the

service request, but should see it implemented immediately.

For this reason the loop was externalized, allowing this

module to be called for the single track being deleted,

inserted, hooked or modified.

We have stated that many decisions were made in the

interest of clarity rather than efficiency. One of the

exceptions to this rule is here, in the early lines of the

Update module. Several times within this module reference

is made to elements of the TRACK record structure (Figure

3.1). Calculations of the actual address of an element in

an array are more time-consuming than references to simple

variables. Almost all of the array elements that are

referenced are copied into local simple variables to save

time.

Because the ACTIVE field is referred to at most twice

within Update, it was not copied but is referred to

directly. The ACTIVE field serves two purposes with three

allowable values. If the value of this field is zero, the

track is inactive (the user no longer desires it to be

displayed), and it is only erased. A value of one indicates

36

pp

an active track, and it is erased, updated, and re-drawn. A

value of two indicates a special type of "inactive" -- a

symbol which does not move (i.e., reference point, or target

with speed equal to zero). It is not erased or updated,

merely re-drawn (in case it has been partially over-written

by another track).

The next decision is one involving a sampling technique.

One common method for erasing a figure in computer graphics

is to re-draw it in the same color as its

background. That is the method we employ here.

This erasure/re-drawing could be performed automa-

tically, in ZBASIC, through the use of the PUT and GET

statements. The code would have been easier to write,

perhaps even quicker to execute. The problem with this easy

solution is illustrated in Figures 3.6-3.7.

The use of the PUT and GET statements is a three-step

process. The figure that is going to be moved is first

drawn somewhere on the screen. This has been done in Figure

3.6, providing the right-most symbol. This step precedes

the actual use of either the PUT or the GET statement. Then

the GET statement is utilized, in the form GET (xl, yl) -

(x2, y2), <figure name> (A necessary preliminary step,

before even drawing the figure, is the use of a DIMension

statement to allocate memory for the drawing). The

subscripted x and y values are coordinates, the first pair

for the upper left-hand corner of a box on the screen which

37

..."' ""., ,'"...............-", .

Figure 3.6 Drawing a Symbol for use with PUT and GET

Figure 3.7 Moving a Symbol using PUT

38

• " I

,1

encloses the figure, the second pair for the lower right-

hand corner. The amount of space to set aside in memory

through the DIM statement is dependent upon the size of the

pixel box enclosing the figure. Figure name is a variable

name that is assigned to the portion of memory where this

pixel box is stored. The third and final step, the use of

the PUT statement, is of the form PUT (x, y), <figure name>.

The coordinates x and y are of the upper left-hand corner of

an area on the screen where the upper left-hand corner of

the original figure's containing box is to be placed. The

result will be the placement of the original figure where

the PUT statement has directed. Placing of a symbol with

the PUT statement is demonstrated by the white symbol in the

black box in Figure 3.6.

There are "action verbs", optional commands which follow

the <figure name> in the PUT statement, which determine the

relationship in the new location between the figure's box

and the background existing at the specified screen

location. Proper use of these action verbs relieves the

programmer of the need to be concerned with what the

background looks like by automatically ensuring that the

desired effect is produced when the figure is drawn, and the

background is restored when the figure is erased. The

problem with all of this is the requirement that an entire

box of pixels, enclosing the symbol, must be moved. The

39

results of this are illustrated in Figures 3.6 and 3.7.

[Ref 3: pp. 6.5-6.24]

A solution which provides much cleaner displays, and

obscures less background wherever a symbol is placed, is

shown in Figures 3.8-3.9. The symbols are drawn using the

Graphics Macro Language (GML) of ZBASIC [Ref. 3: p. 5.5] in

Figure 3.8. The results of moving them with the Update

module are shown in Figure 3.9.

We need, therefore, some method of determining the

background color (the symbol may even rest on a background

containing two colors in a monochrome display, or more than

two in a color display). We elected a point sample, for

speed and simplicity. There are problems attendant with

this method when the symbol rests on a multi-colored

background. Any sampling technique, other than examining

every pixel the symbol occupies, suffers from the same

problem. Rather than employ this time-consuming process

(sampling every point) to solve what we expect to be an

infrequent problem, we elected to use a single point sample.

We chose to look at a point two pixels to the right and one

pixel below the symbol center.

When this sampling is applied to the new symbol position

we face another decision. If the new background is the same

color as the symbol, what color should the new symbol be

drawn in? For a monochrome display the answer is already

determined. We elected to provide the same choice

40

Figure 3.8 Symbols Drawn using GML

Figure 3.9 Symbols Moved using Update

41

". - " "'" ',".'- " ' -". -. ,,. ,° ;" - " " • ._ '- , _ _ . '- i , '. - -

in the color display. For the two darkest backgrounds,

black and blue, the symbol is drawn in white. All others,

if they match the actual symbol color, result in a black

symbol.

The final decision involved track history. We chose not

to store the information anywhere, partly due to the lack of

dynamic memory allocation. We did experiment with a track

history display, however. It was simple to implement,

interesting to see, and is left as an exercise for the

reader.

The decisions in the Move module have been addressed

earlier, after a fashion. We chose to use only eight speed

leader directions. For determination of the incremental

movement of the symbol across the display we divided a

circle into 20 sections (see Figure 3.10).

The actual listing of the Move module code, Appendix H,

looks more complex than it is. The first several lines of

code make the division of the circle (courses ranging from

000 degrees to 360 degrees), directing execution of the

appropriate statements to assign the increments for the

horizontal and vertical movement, as well as the speed

leader direction. The GOTO statements simply complete the

construction of a giant case statement, transferring program

control to the speed section.

Here we encounter another decision: how many different

states of speed to recognize. We chose three, representing

42

slow targets (such as surface vessels), medium speed targets

(aircraft) and high-speed targets (jet aircraft and

missiles). Based on the speed category, the speed leader

and the movement increments are scaled. The special case of

a track with zero speed is also treated, by assigning no

speed leader and no incremental movement.0 0
22.5 each 0450 < CUS <= 067.5 °

17.50 each < 355 < CUS or

CUS <= 0050

100

Figure 3.10 Target Course Increments

In the Tracking module we chose to provide f2 r the

possibility of existing tracks in the initial display. This

feature allows for the establishment of various training

modules, each with different initial track selections. If

there are none, the code that treats them is skipped.

The next section of this module affects the delay

between updates. It also provides the opportunity to the

user to make a service request. While all tracks are being

43

updated, the user input is ignored. Then, for the length of

time between delays, or until the user makes a service

request, the keyboard is repeatedly checked for pressed

keys. In the Macro-86 implementation, this could be handled

through an interrupt service request. If the user makes a

request, it is checked for validity. We decided to ignore

invalid input rather than generate error messages. This was

felt to be more "user friendly" and robust. Valid input is

the use of any of the special function keys that have

defined functions. Those which are defined are displayed at

the bottom of the screen in the special function key menu,

as seen in Figures 3.8, 3.9, 3.11 and 3.12.

The decisions made in the Keys module were driven more

by requirement than choice, in many cases. The "Halt"

request clears the screen of the display and restores the

special function keys, as a matter of good programming

practice. The "Suspend/Continue" request waits for another

input from the keyboard. We chose to accept any key to

continue, again in the interests of robustness and "user

friendliness".

There are some interesting requirements generated by a

request to "Hook" a track. We have elected to have only one

track hooked at a time. The first thing this module does,

then, is to check to see if there is a track already hooked.

If there is, it must unhook it. This involves more than

merely changing the HK$ field in its record.

44

,'1o

Hooked tracks are indicated, in 1his prototype, by

enlarged symbols. The enlarged symbol of the previously

hooked track must be erased, or the next erasure will only

erase a small part of it. After managing any previously

hooked track, the user is asked to specify the number of the

track to hook. It is then hooked, its symbol enlarged, and

the parameters of the track displayed to the right of the

screen. An example of a hooked track display is pictured in

Figure 3.11. In later implementations, it would be

desirable to indicate a track to hook by either its track

number or by placing the cursor near it. This prototype

does not provide for cursor-dependent user input.

The same problem, cursor-independent user input,

surfaces in the "Enter" request. The user is asked to enter

track parameters, including "Grid X" and "Grid Y". Details

of these parameters are included in the User's Manual,

Appendix N. Figure 3.12 shows a request for the user to

enter the class of a track at the top of the screen, in

response to a depression of the "Enter" <F3> key by the

user. The problem re-appears in the "Modify" function,

where the "Grid X" and "Grid Y" of the track are verified or

modified by the user.

The Match module matches the symbol type to the CLASS$

field of the TRACK record. Arbitrary choices were made

here, and have no bearing on actual NTDS symbology. The

symbols chosen and the corresponding classifications were

45

. "

Figure 3.11 A Hooked Track

,V

Figure 3.12 User Input Requested

46

,. • . o

made simply to demonstrate the proper functioning of the

prototype.

4.

47

...-..-.- ~.

IV. PERFORMANCE TESTS

A. TIMING

We present here the results of selected timing tests

that were performed for purposes of comparison. The first

tests performed were timing two primitive functions by the

prototype modules in each of the two languages proposed and

used. The results are presented in Table 4.1 and discussed

below.

TABLE 4.1 TIMING COMPARISONS, ZBASIC AND MACRO-86

TEST #1 TEST #2
Window Symbol
Generation Generation

ZBASIC .6854 .0846

Macro-86 .1300 .0015

All times in Table 4.1 are given in seconds. Test #1

was the generation of the window and the reference grid.

For the ZBASIC timing the Window and Axes modules were used

to generate 100 displays. The times were noted and the

elapsed time computed and divided by 100 to obtain the data

in Table 4.1. To time the Macro-86 routine, which does

generate a reference grid but does not ensure freedom from

color conflict and does not provide scale divisions, one

display was drawn. Timing interrupts were generated to

48

allow the system clock to time the performance. Although

the test conditions were not identical, the test results

are indicative of the order of magnitude of the different

performance of the two languages.

Test #2 timed the generation of one symbol. For the

Macro-86 test the screen was filled with 2000 symbols, the

time to do so recorded and divided by 2000 to obtain the

result recorded above. For ZBASIC 1000 symbols were

generated using the Update module. Because Update erases

each symbol and re-draws it, this was the time required, in

effect, to draw 2000 symbols. The relative efficiencies of

the two languages are again exposed, rather than the

precise difference in Lime required to perform the same

task.

Further timing tests were conducted using the entire

display simulator prototype. The results are tabulated in

Table 4.2 and disussed in the following paragraph.

The first three timing runs involve numbers of symbols

that are multiples of each other. The times do not follow

that exact correspondence. This is due to the overhead

involved in a call to a subroutine and a return, performed

in an iterative loop. Even at 99 symbols, where the

overhead per symbol becomes negligible, the update time per

symbol may be seen to exceed .15 seconds, almost twice the

time per symbol when just the Update module was tested.

The suggested limitation of the system this data provides

49

is not as serious as it first seems. When only twenty

symbols were displayed, it required the operator more than

4.02 seconds to digest the graphic information displayed.

Of course, in high density tactical pictures, only the

targets of immediate priority are concentrated on.

TABLE 4.2 PROTOTYPE SYMBOL GENERATION TIMING

of Symbols Time required to update all tracks
10 2.07 seconds
20 4.02 seconds
40 7.89 seconds
99 15.27 seconds

These initial timing results confirm our earlier

suggestion that the prototype should be (and has been)

developed in ZBASIC in order to be available for use and

experimentation sooner, but the final system implemen-

tation should be developed in Macro-86 assembly language.

Toward that end the Macro-86 listings in Appendices 0-U are

provided, and the User's Manual for them in Appendix V.

B. EFFICIENCY

There are other efficiency issues to be addressed. As

has been noted more than once, the prototype we have

implemented is not the most efficient possible. It may be

that when the code has been tightened up as much as can be

the ZBASIC implementation may suffice. It is our opinion

that it is, and may continue to be, quite useful, but that

50

a final implementation in Macro-86 would be well worth the

effort.

Chapter III addressed some of the places in which the

ZBASIC code sacrificed efficiency for clarity. There are

other indications of possible coding improvements suggested

in the User's Manual for the prototype, Appendix N. More

suggestions for follow-on efforts are addressed in the next

chapter.

51

..........

bp

V. CONCLUSION

A. USES OF THIS PROTOTYPE

This NTDS display simulator prototype has been

developed as proof of the feasibility of such a simulator

on the H/Z-100 microcomputer. It demonstrates the graphic

ability of the H/Z-100 to support such a simulator, gives

any users actual displays to experiment with and learn

from, and shows that such a simulator might present real-

time graphic updates. It may also be used to demonstrate

the graphics capability of the H/Z-100.

The code listings provided, coupled with the design

discussions in this text, document some of the thought

processes and decision criteria involved in developing such

a system. It may be used without modification or improve-

ment as a simplistic display simulator for some of the

purposes put forth in Chapter I. It may become the kernel

of a more fully developed NTDS system, using Ada as the

higher level language and Macro-86 when required.

The Macro-86 modules provided may be incorporated as

they are in other systems to perform very primitive graphic

functions. They model the type of development that may be

considered for _3r assembly language functions users may

want to incorporate in this or other systems. They are

also models of at least one form of internal documentation.

52

B. FOLLOW-ON WORK

The display simulator prototype in ZBASIC performs some

of the functions such a system is required to perform.

Functions such as track history (earlier alluded to),

automatic track sequencing, trouble tracks (tracks which

have not been updated recently enough by the user), etc.,

could be added. Interfaces between the assembly language

modules included and high-level languages (such as Ada)

could be developed.

C. LESSONS LEARNED

Many valuable lessons were learned during the develop-

ment of this prototype. It is not easy to assign priority

to them. The order in which they are presented is not

meant to imply such a prioritization. Each lesson here was

valuable, and should be given careful consideration in any

future development of this project.

Internal documentation is very important. Even as a

simple, one-programmer project, the internal documentation

of the code made corrective maintenance much easier, and

should enhance the maintainability of the code for other

programmers working with it in the future.

During prototype development such as this, clear logic

is more important than elegant code. Keeping the logic

clear caused a proliferation of variable names, and

53

h

the repetition of some sections of code, but it greatly

enhanced testing and debugging.

ZBASIC is a more versatile language than it appears to

be. This may verge on heresy in computer science circles,

and it came as a surprise to us. The ease with which some

other high-level language constructs could be constructed

in ZBASIC was an eye-opener.

At the same time, this project exposed some of the

problems with ZBASIC for systems work. The lack of data

structure definition was a difficult problem to overcome.

The inability to specify sub-types was also an unpleasant

reality. The real surprise was revealed in Table 4.1.

ZBASIC had not seemed visibly much slower than Macro-86,

but the timing tests revealed the magnitude of the

difference.

D. CONCLUSIONS

The display simulator prototype has been developed.

The feasibility question has been answered. The H/Z-100 is

definitely capable of providing the user with an NTDS-type

display, and with some of the NTDS user functions.

The display updates are noticeable, regardless of the

number of symbols in the system. This feature will remain

in any implementation language, because the re-location of

the symbols is in discrete steps.

54

The speed of the updates is a function of the language

employed. The data in Table 4.1 provides evidence of the

savings in time achievable through the use of Macro-86

routines. The window area alone may be generated in less

than one-fifth the time in assembly language. Drawing more

complex shapes on the screen take even longer in ZBASIC.

This is evidenced by the 56-1 time differential in drawing

a simple symbol.

The data in Table 4.2 is even more revealing of the

inefficiencies of ZBASIC for real-time applications. It is

readily apparent that the symbol generation within the

prototype, rather than in a separate test module, takes

almost twice as long. The additional time delay is due to

the call-return sequence, utilizing the Update module for

each symbol re-location.

This does not mean that the prototype itself is

useless. Fire control solutions require accurate solutions

at precise instants in time. Tactical displays may lag the

real-time situation by as much as a few seconds and still

be useful to the human operators. A display simulator,

which utilizes keyboard input rather than radar and other

equipment inputs, is useful at even slower speeds.

We conclude that this prototype has value, as discussed

above. Future implementation of a tactical display

simulator on the H/Z-100, in assembly language, and/or

another high-level language, is desirable and encouraged.

55

0'-' , ' .. . - - ' " . -" . .- . - . - j - , .- - -

APPENDIX A: LISTING OF NEWEST.BAS

10 'SAMPLE NTDS DISPLAY SIMULATOR
20' 9

30 'FRAME #7
40
50 'PROTOTYPE DISPLAY
60'
70 CLS 'CLEAR THE DISPLAY
80
90
100 ' ******INITIALIZATION AND TABLES*******
110
120
130 OPTION BASE 1 'ARRAY SUBSCRIPT LOWER BOUND =1
140'
150 DIM CLASS$(1O), CUS(1O), SPD(1O), TCOLOR(1O)
160 DIM TX(1O), TY(10), XINC(1O), YINC(10), T$(10), L$(10)
170 DIM SYM$(1O), LDR$(8), PTS(3), LCOL(3), HK$(10), ACTIVE(1O)
180
190 'SYMBOL TABLE
200
210 SYM$(l) = "BM+O,-3 R3 D3 BM-6,O D3 R3 BM+0,+3"
220 SYM$(2) = "BM+0,-3 L3 D3 BM+O,+3"
230 SYM$(3) = "BM+O,-3 R3 D6 L6 U6 R3 BM+O,+3"
240 SYM$(4) = "BM+0,-3 R2 F2 D3 G2 L4 H2,U3 E2 R2 BM+O,+3"
250 SYM$(5) = "BM+O,-3 R3 D3 BM-6,O U3 R3 BM+0,+3"
260 SYM$(6) = "BM+O,-3 F3 G3 H3 E3 BM9-,.f3"
270 SYM$(7) = "U3 R3 D6 L6 U6 R3 D6 U3"

*280 SYM$(8) =""

290 SYM$(9) = "
300 SYM$(1O)=

* 310
320
330 'SPEED LEADER TABLE
340
350 LDR$(1) = "4
360 LDR$(2) = "3
370 LDRS(3) ="R1
380 LDR$(4) = "3
390 LDR$(5) ="D1

*400 LDR$(6) = "G3"@
410 LDR$(7) ="51

420 LDR$(8) ="H1

430
440
450 'START WITH NO TRACKS
460

56

470 TRACKS f0
480
490 ' INITIALIZE PTS ARRAY ELEMENTS TO I
500
510 FOR I 1 TO 3: PTS(I) 1 1: NEXT I
520'
530 ' DEFINE FUNCTION KEYS
540
560 KEY 1, CHR$(27) + "S"
570 KEY 2, CHR$(27) + "T"
580 KEY 3, CHR$(27) + "U"
590 KEY 4, CHR$(27) + "V"
600 KEY 5, CHR$(27) + "W"
605 KEY 6, CHR$(27) + "P"
610
620 ' INITIALIZE HK$ AND ACTIVE
630

640 FOR I = 1 TO 10
650 HK$(I) = "SO"

660 ACTIVE(I) = 0
670 NEXT I

680
690 ' DISPLAY FUNCTION KEY FUNCTIONS
700

710 COLOR 0,7
720 LOCATE 25, 5

730 PRINT " Fl "

740 LOCATE 25, 19
750 PRINT " F2 "
760 LOCATE 25, 29

770 PRINT " F3 "
780 LOCATE 25, 40

790 PRINT " F4 "

800 LOCATE 25, 52

810 PRINT " F5 "
820 LOCATE 25, 64

830 PRINT " F6 "

840 COLOR 7,0
850 LOCATE 25, 9
860 PRINT "SUSP/CONT"

870 LOCATE 25, 24
880 PRINT "HOOK"

890 LOCATE 25, 34
900 PRINT "ENTER"

910 LOCATE 25, 45
920 PRINT "MODIFY"
930 LOCATE 25, 57
940 PRINT "DELETE"
950 LOCATE 25, 69
960 PRINT "HALT"
1000

57

'. p

K- .
** %*-.** '** * --... .

1010 ' GET WINDOW PARAMETERS

1020
1030 READ XUL, YUL, XLR, YLR, CWIND
1040 '

1050 ' DRAW THE WINDOW
1060
1070 GOSUB 5000
1080
1090 ' GET LAND PARAMETERS
1100
1110 READ CONTS 'HOW MANY LAND MASSES?

1120

1130 ' DRAW LAND MASSES
1140
1150 GOSUB 8000
1160 '

1170 ' GET GRID PARAMETERS
1180

1190 READ XYAX, YTOP, YBOTT, YCOL
1200 READ YXAX, XLEFT, XRITE, XCOL

1210

1220 ' DRAW THE GRID
1230

1240 GOSUB 5200
1250
1260 ' RUN UPDATE TESTS
1270
1280 GOSUB 11000
1290

1300
4999 END
5000 ******* DRAW WINDOW SUBROUTINE *******

50101* *

5020 * INPUTS: XUL, YUL - UPPER LEFT-HAND COORDINATES *
5030 * XLR, YLR - LOWER RIGHT-HAND COORDINATES *

5040 * CWIND - COLOR OF WINDOW *

5050'* *

5060 * OUTPUT: SOLID WINDOW, XLR - XUL PIXELS WIDE, *

5070 * YLR - YUL PIXELS DEEP, COLOR CWIND *

5080'* *
5090'************* ***************

5100
5110

5120 LINE (XUL, YUL) (XLR, YLR), CWIND, BF
5130
5140 RETURN
5150 '

5160
5200' ******* COORDINATE AXES SUBROUTINE *********
52101* *

5220 ' * INPUTS: XYAX, YTOP, YBOTT - VERTICAL AXIS COORDINATES *

58

-- I

/. J " " -. • , . . •

5230 * YXAX, XLEFT, XRITE - HORIZONTAL AXIS COORDINATES *

5240 * XCOL, YCOL - GRID COLORS *

52501* *

5260 * OUTPUT: PROPERLY SCALED SET OF COORDINATE AXES, *

5270 * OF XCOL AND YCOL *

52801* *

5290 **** ********** ************** ****
5300
5310
5320 HSCALE = (XRITE - XLEFT)/20 'HORIZONTAL SCALE MULTIPLIER
5330 VSCALE = HSCALE * .46 'VERTICAL SCALE MULTIPLIER,

5340 'FOR PROPER ASPECT RATIO
5350 ' DRAW VERTICAL AXIS
5360

5365 LINE (XYAX-1, YTOP) - (XYAX+I, YBOTT), CWIND, BF
5370 LINE (XYAX, YTOP) - (XYAX, YBOTT), YCOL

5380
5390 ' DRAW HORIZONTAL AXIS
5400
5405 LINE (XLEFT, YXAX-1) - (XRITE, YXAX+1), CWIND, BF
5410 LINE (XLEFT, YXAX) - (XRITE, YXAX), XCOL

5420
5430 ' DRAW HORIZONTAL SCALE DIVISIONS, LEFT

5440
5450 FOR H = XYAX TO XLEFT STEP -HSCALE
5460 LINE (H, YXAX-2) - (H, YXAX+2), XCOL

5470 LINE (H+I, YXAX-2) - (H+I, YXAX+2), XCOL
5480 NEXT H
5490
5500 ' DRAW HORIZONTAL SCALE DIVISIONS, RIGHT
5510
5520 FOR H = XYAX TO XRITE STEP HSCALE
5530 LINE (H, YXAX-2) - (H, YXAX+2), XCOL

5540 LINE (H+1, YXAX-2) (H+I, YXAX+2), XCOL
5550 NEXT H
5560
5570 ' DRAW VERTICAL SCALE DIVISIONS, UPPER

5580
5590 FOR V = YXAX TO YTOP STEP -VSCALE
5600 LINE (XYAX-4, V) - (XYAX+4, V), YCOL

5610 NEXT V
5620
5630 ' DRAW VERTICAL SCALE DIVISIONS, LOWER

5640
5650 FOR V = YXAX TO YBOTT STEP VSCALE
5660 LINE (XYAX-4, V) - (XYAX+4, V), YCOL

5670 NEXT V
5680
5690 RETURN
5700
5710

59

I:!

5720 THIS AXES SUBROUTINE IS BASED ON THE PROGRAM
5730 9-2, PAGE 9-15, IN THE CONTINUING EDUCATION
5740 CORRESPONDENCE COURSE "COMPUTER GRAPHICS",
5750 WRITTEN FOR HEATHKIT/ZENITH BY
5760 JAMES C. ADAMS

6000 ****** UPDATE TRACKS SUBROUTINE *******
60101* *
6020 * INPUTS: UPD - # OF TRACK TO UPDATE *
60301* *

6040 * OUTPUT: TRACK UPD IS UPDATED *
60501*
6060 *

6070
6080
6100
6120
6130 PERFORM ALL LOOK-UPS ONLY ONCE
6140

6150 UPDX = TX(UPD)
6160 UPDY = TY(UPD)

6170 UPDT$ = HK$(UPD) + T$(UPD)
6180 UPDL$ = L$(UPD)

6190 HORZUP = XINC(UPD)
6200 VERTUP = YINC(UPD)
6210 COLUP = TCOLOR(UPD)
6220
6230 UPGND = POINT(UPDX+2, UPDY+I)
6240 ON UPGND+1 GOSUB 6520, 6530, 6540, 6550, 6560, 6570, 6580, 6590
6250 WANT$ = COL$ + UPDT$: ALSO$ = COL$ + UPDL$

6255
6260 PSET (UPDX, UPDY), UPGND 'DRAW OLD SYMBOL IN
6270 DRAW WANTS 'REVERSE COLOR
6280 PSET (UPDX, UPDY), UPGND
6290 DRAW ALSO$

6295 DRAW "SO"
6300
6305 IF ACTIVE(UPD) = 0 THEN 6490
6310 UPDX = UPDX + HORZUP 'UPDATE POSITIONp
6320 UPDY = UPDY + VERTUP
6330 '
6340 UPGND = POINT(UPDX+2, UPDY+I) 'CHECK BACKGROUND COLOR
6350 ' OF NEW LOCATION

6360 IF UPGND <> COLUP THEN 6375 'MAKE SYMBOL OPPOSITE
6370 IF UPGND < 2 THEN COLUP = 7 ELSE COLUP 0 'OF BACKGROUND

6374

6375 ON COLUP+1 GOSUB 6520, 6530, 6540, 6550, 6560, 6570, 6580, 6590
6376 WANTS = COL$ + UPDT$: ALSO$ = COL$ + UPDL$

6380 '

6390 PSET (UPDX, UPDY), COLUP 'DRAW NEW SYMBOL
6400 DRAW WANT$

6410 PSET (UPDX, UPDY), COLUP

60

I- -. .

* -- -- * *. .

6420 DRAW ALSO$

6425 DRAW "SO"
6430 '

6440 TX(UPD) = UPDX 'STORE NEW POSITION
6450 TY(UPD) = UPDY
6460

6480'
6490 RETURN
6500

6510
6520 COL$ = "CO": RETURN
6530 COL$ ="Cl": RETURN
6540 COL$ = "C2": RETURN
6550 COL$ = "C3": RETURN
6560 COL$ = "C4": RETURN
6560 COL$ = "C4": RETURN

6580 COL$ = "C6": RETURN
6590 COL$ = "C6": RETURN

7000 ' * * * * * * * SYMBOL MOVEMENT CALCULATOR ** * * *
7010 * *

7020 * INPUTS: MOVE - TRACK TO CALCULATE FOR *

70301* *
7040 * OUTPUT: XINC, YINC, SCALE FACTOR FOR SPEED *

7050 * LEADER OF EACH ACTIVE TRACK ARE *

7060 * CALCULATED AND STORED *

70701* *

7080 *
7090
7100
7110

7130 '

7140 CALCULATE INCREMENTS BASED ON COURSE
7150
7160 IF CUS(MOVE) <= 5 THEN 7400
7170 IF CUS(MOVE) <= 22.5 THEN 7410
7180 IF CUS(MOVE) <= 45 THEN 7420
7190 IF CUS(MOVE) <= 67.5 THEN 7430

7200 IF CUS(MOVE) <= 85 THEN 7440
7210 IF CUS(MOVE) <= 95 THEN 7450

7220 IF CUS(MOVE) <= 112.5 THEN 7460
7230 IF CUS(MOVE) <= 135 THEN 7470

7240 IF CUS(MOVE) <= 157.5 THEN 7480
7250 IF CUS(MOVE) <= 175 THEN 7490

7260 IF CUS(MOVE) <= 185 THEN 7500
7270 IF CUS(MOVE) <= 202.5 THEN 7510
7280 IF CUS(MOVE) <= 225 THEN 7520
7290 IF CUS(MOVE) <= 247.5 THEN 7530
7300 IF CUS(MOVE) <= 265 THEN 7540
7310 IF CUS(MOVE) <= 275 THEN 7550
7320 IF CUS(MOVE) <= 292.5 THEN 7560
7330 IF CUS(MOVE) <= 315 THEN 7570

61

t • -._ " _," - -, ... ' £ . ' " ".. " "" " - """' . . - . ' - - " '- '" - ', -

- -C -U .. -<=-. 337. 5 .. T E 7580-

7340 IF CUS(MOVE) <= 337.5 THEN 7580
" 7350 IF CUS(MOVE) <= 355 THEN 7590 '

7360
7370

. 7400 XINC(MOVE) = 8: YINC(MOVE) = 0: L$(MOVE) = LDR$(3): GOTO 7600
7410 XINC(MOVE) = 7: YINC(MOVE) = -3: L$(MOVE) = LDR$(2): GOTO 7600
7420 XINC(MOVE) = 5: YINC(MOVE) = -5: L$(MOVE) = LDR$(2): GOTO 7600
7430 XINC(MOVE) = 5: YINC(MOVE) = -5: L$(MOVE) = LDR$(2): GOTO 7600

* 7440 XINC(MOVE) = 3: YINC(MOVE) = -7: L$(MOVE) = LDR$(2): GOTO 7600
7450 XINC(MOVE) = 0: YINC(MOVE) = -8: L$(MOVE) = LDR$(t): GOTO 7600

7460 XINC(MOVE) = -3: YINC(MOVE) = -7: L$(MOVE) = LDR$(8): GOTO 7600
7470 XINC(MOVE) = -5: YINC(MOVE) = -5: L$(MOVE) = LDR$(8): GOTO 7600
7480 XINC(MOVE) = -5: YINC(MOVE) = -5: L$(MOVE) = LDR$(8): GOTO 7600
7490 XINC(MOVE) = -7: YINC(MOVE) = -3: L$(MOVE) = LDR$(8): GOTO 7600

7500 XINC(MOVE) = -8: YINC(MOVE) = 0: L$(MOVE) = LDR$(7): GOTO 7600
7510 XINC(MOVE) = -7: YINC(MOVE) = 3: L$(MOVE) = LDR$(6): GOTO 7600
7520 XINC(MOVE) = -5: YINC(MOVE) = 5: L$(MOVE) = LDR$(6): GOTO 7600
7530 XINC(MOVE) = -5: YINC(MOVE) = 5: L$(MOVE) = LDR$(6): GOTO 7600
7540 XINC(MOVE) = -3: YINC(MOVE) = 7: L$(MOVE) = LDR$(6): COTO 7600
7550 XINC(MOVE) = 0: YINC(MOVE) = 8: L$(MOVE) = LDR$(5): COTO 7600
7560 XINC(MOVE) = 3: YINC(MOVE) = 7: L$(MOVE) = LDR$(4): GOTO 7600
7570 XINC(MOVE) = 5: YINC(MOVE) = 5: L$(MOVE) = LDR$(4): GOTO 7600
7580 XINC(MOVE) = 5: YINC(MOVE) = 5: L$(MOVE) = LDR$(4): GOTO 7600
7590 XINC(MOVE) = 7: YINC(MOVE) = 3: L$(MOVE) = LDR$(4): GOTO 7600
7595 XINC(MOVE) = 8: YINC(MOVE) = 0: L$(MOVE) = LDR$(3): GOTO 7600
7600
7610 ' CALCULATE AMOUNT OF INCREMENT, SPEED LEADER
7620 ' SCALE, BASED ON SPEED
7630
7640 IF SPD(MOVE) >= 100 THEN 7690
7641 IF SPD(MOVE) <> 0 THEN 7650
7642 XINC(MOVE) = 0
7643 YINC(MOVE) = 0

7644 L$(MOVE) =
7645 GOTO 7770
7650 XINC(MOVE) = INT(.5 * XINC(MOVE))
7660 YINC(MOVE) = INT(.T * YINC(MOVE))

" 7670 L$(MOVE) = "S2" + L$(MOVE)
7680 GOTO 7770
7690 IF SPD(MOVE) <= 600 THEN 7770
7700 XINC(MOVE) = INT(2 * XINC(MOVE))

7710 YINC(MOVE) = INT(2 * YINC(MOVE))
7720 L$(MOVE) "S8" + L$(MOVE)
7760
7770 RETURN
7780
8000 ******* DRAW LAND SUBROUTINE ********
8010 *
8020 * INPUTS: PTS - ARRAY OF #s OF BORDER POINTS *
8025 * CONTS # OF LAND MASSES

8030'* *

62

.

8040 '*OUTPUT: PLOTTED LAND MASSES, IN SPECIFIED COLORS *

8050'**
8060 ** * * * * * ** * * * * * *

8070
*8075 IF CONTS =0 THEN RETURN 'NO LAND MASSES, NO DRAW

8080
8090 FOR I = 1iTO CONTS
8100 READ PTS(I), LCOL(I)
8110 NEXT I
8120 '
8125 DIM LAND1(PTS(1), 2), LAND2(PTS(2), 2), LAND3(PTS(3), 2)
8130 FOR ISLE = 1 TO PTS(1)
8140 READ LAND1(ISLE, 1), LAND1(ISLE, 2)
8150 NEXT ISLE
8160
8170 FOR ISLE = 1 TO PTS(2)

*8180 READ LAND2(ISLE, 1), LAND2(ISLE, 2)
*8190 NEXT ISLE

8200

8210 FOR ISLE = 1 TO PTS(3)
8220 READ LAND3(ISLE, 1), LAND3(ISLE, 2)

8230 NEXT ISLE
* 8240
*8250 PSET (LAND1(1,1), LAND1(1,2)), LCOL(1)

8260 FOR ISLE = 2 TO PTS(1)
8270 LINE - (LAND1(ISLE, 1), LAND1(ISLE, 2)), LCOL(1)
8280 NEXT ISLE
8290
8300 READ CENTX, CENTY

* 8310
8320 PAINT (CENTX, CENTY), LCOL(1), LCOL(1)
8330'
8340 IF PTS(2) < 2 THEN RETURN
8350
8360 PSET (LAND2(l,1), LAND2(1,2)), LCOL(2)
8370 FOR ISLE = 2 TO PTS(2)

*8380 LINE - (LAND2(ISLE, 1), LAND2(ISLE, 2)), LCOCL(2)
*8390 NEXT ISLE

8400
8410 READ CENTX, CENTY
8420
8430 PAINT (CENTX, CENTY), LCOL(2), LCOL(2)
8440'
8450 IF PTS(3) < 2 THEN RETURN

* 8460
8470 PSET (LAND3(1,1), LAND3(1,2)), LCOL(3)
8480 FOR ISLE = 2 TO PTS(3)

8490 LINE - (LAND3(ISLE, 1), LAND3(ISLE, 2)), LCOCL(3)
*8500 NEXT ISLE

* 8510
8520 READ CENTX, CENTY

63

8530
8540 PAINT (CENTX, CENTY), LCOL(3), LCOL(3)
8550

8560 RETURN
10000 ' ************ DATA ************

10010
10020 ' XUL, YUL, XLR, YLR, CWIND

10030
10040 DATA 15, 27, 470, 190, 7
10050 '
10060 ' CONTS
10070
10080 DATA 3
10090 1
10100 ' PTS, LCOL, # OF TIMES THERE ARE LAND MASSES
10110
10120 DATA 13, 0
10130 DATA 8, 2
10140 DATA 10, 1
10150
10160 ' BORDER POINTS FOR LAND MASSES
10170

10180 DATA 16, 155, 55, 172, 90, 175, 130, 165, 175, 150, 175, 127
10190 DATA 210, 110, 180, 85, 260, 67, 245, 45, 160, 28, 16, 28, 16, 155

10200
10210
10220

. 10230 DATA 330, 155, 360, 165, 400, 160, 440, 140, 385, 125, 340, 133
10240 DATA 370, 142, 330, 155
10250

"" 10260
10270
10280 DATA 385, 40, 405, 45, 400, 60, 380, 65, 365, 60, 375, 52
10290 DATA 350, 52, 370, 45, 390, 55, 385, 40
10300
10310 CENTERS OF LAND MASSES
10320
10330 DATA 100, 90
10340 '
10350 DATA 380, 150
10360
10370 DATA 380, 60
10380
10390 ' XYAX, YTOP, YBOTT, YCOL
10400

10410 DATA 157, 27, 190, 0
10420
10430 ' YXAX, XLEFT, XRITE, XCOL
10440
10450 DATA 145, 15, 470, 0
10460

64

10470 ' NUMBER OF TEST TRACKS
10480 DATA 3
10490 '
10500 ' CLASS$, CUS, SPD, TCOLOR, TX, TY FOR EACH TEST TRACK
10510
10520 DATA "HOSTILE ", 180, 35, 0, 420, 80
10530
10540 DATA "SURVEILL ", 4, 135, 0, 50, 100
10550 '
10560 DATA "UNKNOWN ", 110, 650, 0, 430, 170
10570
10580 ' NUMBER OF MOVES TO TEST UPDATING
10590

10600 DATA 10
11000 * * * * * * * TEST TRACKING SUBROUTINE * * * * ,
11010 * *
11020 * INPUTS: TRACKS - # OF TEST TRACKS *
11030 * *
11040 * OUTPUT: SAMPLE OF TRACKS BEING UPDATED *
11050 * *

11060 ************ ** ************ *
11070

11080 READ TRACKS
11090
11100 IF TRACKS = 0 THEN 11200
11110 FOR I = 1 TO TRACKS
11120 READ CLASS$(I), CUS(I), SPD(I), TCOLOR(I), TX(I), TY(1)
11125 UPD = I

11130 GOSUB 20000
11135 ACTIVE(I) = 1
11140 NEXT I
11150
11160
11165 FOR MOVE = I TO TRACKS
11170 GOSUB 7000

11175 NEXT MOVE
11180
11190
11200 DO$ =
11210 '
11220 WHILE DO$ =

11225 FOR UPD = 1 TO TRACKS

11230 GOSUB 6000
11235 NEXT UPD

11240 FOR I = 1 TO 2000
11250 DO$ = INKEY$

11255 IF DO$ = "" THEN NEXT I ELSE 11280
11260 WEND

11270
11280 IF DO$ <> CHR$(27) THEN 11200 ELSE D02$ INKEY$
11300

65

.

11310 IF D02$ = "P" THEN GOSUB 12000
11320 IF D02$ = "S" THEN GOSUB 12100
11330 IF D02$ = "T" THEN GOSUB 12200
11340 IF D02$ = "U" THEN GOSUB 12500
11350 IF D02$ = "V" THEN GOSUB 12800
11360 IF D02$ = "W" THEN GOSUB 13500
11370 'Il

11380 GOTO 11200
11390
12000 * * * * * * * FUNCTION KEY SUBROUTINES * * * * *
12010
12020
12030 '7. 7 7 7 7 HALT PROGRAM
12040 FUNCTION KEY F6
12050
12060 CLS
12062 KEY 1, "LIST "
12064 KEY 2, "RUN" + CHR$(13) + CHR$(10)
12066 KEY 3, "LOAD" + CHR$(34)
12068 KEY 4, "SAVE" + CHR$(34)
12070
12072 KEY 5, "CONT" + CHR$(13) + CHR$(1O)
12074 KEY 6, "PRINT "

12080 END
12085 RETURN
12090
12100 ' 7 7. 7. 7. 7 SUSPEND/CONTINUE PROGRAM
12110 ' FUNCTION KEY Fl

12120
12130 GO$ =

12140

12150 WHILE GO$ =
12160 GO$ = INKEY$

12170 WEND
12180
12190 RETURN
12200' 7.7. 7 7. 7 HOOK TRACK
12210 ' FUNCTION KEY F2
12220
12230 LOCATE 2, 10
12240 '
12250 IF HOOK = 0 THEN 12270
12252 ACTIVE(HOOK) = 0

12254 UPD = HOOK
12256 GOSUB 6000
12258 ACTIVE(HOOK) = 1

12259 HK$(HOOK) = "SO"
12260
12270 INPUT "TRACK TO HOOK: ";HOOK
12275 LOCATE 2, 10
12276 PRINT "

66

.t
"

%: " *' ' ""* " " %'..' • ' '
..

-
.

- L '
* -* • ." " - .' " " " "' '.% .

I-'
12280
12282 ACTIVE(HOOK) = 0
12284 UPD = HOOK

12286 COSUB 6000
12288 ACTIVE(HOOK) = 1

12290 HK$(HOOK) = "S8"
12300 '

12310 LOCATE 6, 62
12320 PRINT "TRACK NO. ";HOOK
12330 LOCATE 7, 62
12340 PRINT "CLASS ";CLASS$(HOOK)
12350 LOCATE 8, 62
12360 PRINT "COURSE ";CUS(HOOK)
12370 LOCATE 9, 62
12380 PRINT "SPEED ";SPD(HOOK)
12390
12400
12410 RETURN
12420 1 ""
12500' % % % % % ENTER NEW TRACK
12510 FUNCTION KEY F3
12520
12530 TRACKS = TRACKS + 1
12540 MOVE = TRACKS
12550
12560 LOCATE 2, 10
12570 INPUT "ENTER CLASS ";CLASS$(TRACKS)
12571 SIZECL = LEN(CLASS$(TRACKS))

12572 IF SIZECL < 9 THEN ADD = 9 - SIZECL
12573 IF ADD = 0 THEN 12575

12574 FOR I = 1 TO ADD:CLASS$(TRACKS) = CLASS$(TRACKS) + " ":NEXT I
12575 LOCATE 2, 10

12576 PRINT "
12580 LOCATE 2, 10

12590 INPUT "ENTER COURSE ";CUS(TRACKS)
12595 LOCATE 2, 10

12596 PRINT "
12600 LOCATE 2, 10
12610 INPUT "ENTER SPEED ";SPD(TRACKS)
12615 LOCATE 2, 10 N
12616 PRINT "
12620 LOCATE 2, 10
12630 INPUT "ENTER GRID X ";TX(TRACKS)
12635 LOCATE 2, 10
12636 PRINT " "

12640 LOCATE 2, 10
12650 INPUT "ENTER GRID Y ";TY(TRACKS)
12655 LOCATE 2, 10
12656 PRINT "

12660 LOCATE 2, 10
12670 INPUT "TRACK COLOR ";TCOLOR(TRACKS)

67

6.
* -.

12680 LOCATE 2, 10
12690 PRINT "
12700 1
12705 GOSUB 20000
12710 GOSUB 7000
12712 UPD = MOVE
12715 GOSUB 20000
12716 HK$(UPD) = "SO": ACTIVE(UPD) = 1
12717 GOSUB 6000
12720
12730 RETURN
12740
12750
12800' 7 7 % % 7 MODIFY TRACK
12810 ' FUNCTION KEY F4

12820
12830 IF HOOK = 0 THEN 12840
12832 ACTIVE(HOOK) = 0
12834 UPD = HOOK
12836 GOSUB 6000
12838 ACTIVE(HOOK) = 1
12839 HK$(HOOK) = "SO"
12840 LOCATE 2, 10
12850 INPUT "TRACK TO MODIFY: ";HOOK
12855 LOCATE 2, 10
12856 PRINT "
12860 1
12870 GOSUB 12300
12872 ACTIVE(HOOK) = 0
12874 UPD = HOOK
12876 GOSUB 6000
12878 ACTIVE(HOOK) = 1
12879 HK$(HOOK) = "SO"
12880
12890 LOCATE 2, 10
12900 INPUT "IS CLASS OK ";A$
12910 IF A$ <> "Y" THEN LOCATE 2, 40: INPUT "NEW CLASS :";CLASS$(HOOK)
12915 LOCATE 2, 10
12916 PRINT "
12920
12930 LOCATE 2, 10
12940 INPUT "IS COURSE OK ";A$
12950 IF A$ <> "Y" THEN LOCATE 2, 40: INPUT "NEW COURSE:";CUS(HOOK)
12955 LOCATE 2, 10
12956 PRINT "
12960
12970 LOCATE 2, 10
12980 INPUT "IS SPEED OK ";A$
12990 IF A$ <> "Y" THEN LOCATE 2, 40: INPUT "NEW SPEED:";SPD(HOOK)
12995 LOCATE 2, 10
12996 PRINT " "

68

" " 4..- - . . ,

13000 '
13010 LOCATE 2, 10
13020 INPUT "IS COLOR OK ";A$
13030 IF A$ <> "Y" THEN LOCATE 2, 40: INPUT "NEW COLOR:";TCOLOR(HOOK)
13035 LOCATE 2, 10

13036 PRINT "

13040 '

13050 LOCATE 2", 10
13060 INPUT "IS GRID X OK ";A$
13070 IF A$ <> "Y" THEN LOCATE 2, 40: INPUT "NEW GRID X:";TX(HOOK)
13075 LOCATE 2, 10
13076 PRINT " "

13080 '

13090 LOCATE 2, 10
13100 INPUT "IS GRID Y OK ";A$
13110 IF A$ <> "Y" THEN LOCATE 2, 40: INPUT "NEW GRID Y:";TY(HOOK)
13115 LOCATE 2, 10
13116 PRINT "

13120
13130 MOVE = HOOK

13140 GOSUB 7000
13145 UPD = HOOK
13147 GOSUB 6000

13150 '

13160 RETURN
13170 DE A C
13500 ' % % % % DELETE A TRACK
13510 ' FUNCTION KEY F5

13520

13530 LOCATE 2, 10
13540 INPUT "TRACK TO DELETE: ";DEL
13550

13560 ACTIVE(DEL) = 0
13565 LOCATE 2, 10
13566 PRINT "

13570

13580 RETURN

13590
20000 ******* SYMBOL ASSIGNMENT *******

20010'* *

20020 * INPUTS: UPD - TRACK TO HAVE SYMBOL ASSIGNED *

200301* *

20040 * OUTPUT: TRACK(UPD) IS ASSIGNED A SYMBOL *
20050 * THAT MATCHES ITS CLASSIFICATION *

20060'* *

20070 ************ *************

20080
20090
20100 IF CLASS$(UPD) = "HOSTILE " THEN T$(UPD) = SYM$(4): GOTO 20240
20110 '

20120 IF CLASS$(UPD) = "HOST SURF" THEN T$(UPD) = SYM$(6): GOTO 20240

69

20130
20140 IF CLASS$(UPD) = "UNKNOWN " THEN T$(UPD) = SYM$(3): GOTO 20240
20150
20160 IF CLASS$(UPD) = "UNK AIR " THEN T$(UPD) = SYM$(5): GOTO 20240
20170
20180 IF CLASS$(UPD) = "FIGHTER " THEN T$(UPD) = SYN$(2): GOTO 20240
20190
2020t0 IF CLASS$(UPD) = "SURVEILL " THEN T$(UPD) = SYM$(1): GOTO 20240
20210
20220 IF CLASS$(UPD) = "REF PNT " THEN T$(UPD) = SYM$(7): GOTO 20240
20230
20240 RETURN
20250

ft70

APPENDIX B: LISTING OF HEADER.BAS

10' SAMPLE NTDS DISPLAY SIMULATOR
20
30 'FRAME #1
40
50 'DISPLAY WINDOW WITH GRID

a 60

70 CLS 'CLEAR THE DISPLAY
80
90

a71

- 71.7- 09.7- 7

APPENDIX C: LISTING OF INIT.BAS

100 '********INITIALIZATION AND TABLES *******

110
120
130 OPTION BASE 1 'ARRAY SUBSCRIPT LOWER BOUND =1
140
150 DIM CLASS$(10), CUS(10), SPD(1O), TCOLOR(1O)
160 DIM TX(10), TY(10), XINC(1O), YINC(10), T$(10), L$(10)
170 DIM SYM$(10), LDR$(8), PTS(3), LCOL(3), HK$(10), ACTIVE(1O)
180
190 'SYMBOL TABLE
200
210 SYM$(1) ="BM+0,-3 R3 D3 BM-6,O D3 R3 BM+0,+3"
220 SYM$(2) = "BM+0,-3 L3 D3 BM+O,+i3"'
230 SYM$(3) = "BM+O,-3 R3 D6 L6 U6 R3 BM+O,+3"
240 SYM$(4) = "BM+0,-3 R2 F2 D3 G2 L4 H2 U3 E2 R2 BM+0,+3"
250 SYM$(5) = "BM+0,-3 R3 D3 BM-6,O U3 R3 BM+0,+3"
260 SYM$(6) = "BM+0,-3 F3 G3 H3 E3 BM+O,+3
270 SYM$(7) = "U3 R3 D6 L6 U6 R3 D6 U3"
280 SYM$(8) =
290 SYM$(9) =
300 SYM$(10)=
310
320
330 'SPEED LEADER TABLE
340
350 LDR$(1) = U
360 LDR$(2) = "E3"
370 LDR$(3) = "5
380 LDR$(4) ="3
390 LDR$(5) = "D41'
400 LDR$(6) = "03"
410 LDR$(7) = "5
420 LDR$(8) ="H1
430
440
450 'START WITH NO TRACKS
460
470 TRACKS =0

480
490 'INITIALIZE PTS ARRAY ELEMENTS TO 1
500
510 FOR 1 1 TO 3: PTS(I) = 1: NEXT I
520
530 'DEFINE FUNCTION KEYS
540'
560 KEY 1, CHR$(27) + "S"

72

570 KEY 2, CHR$(27) + "T" .j
580 KEY 3, CHR$(27) + "U"

590 KEY 4, CHR$(27) + "V"
600 KEY 5, CHR$(27) + "W"

605 KEY 6, CHR$(27) + "P"

610
620 ' INITIALIZE HK$ AND ACTIVE
630
640 FOR I = 1 TO 10
650 HK$(I) = "SO"

660 ACTIVE(I) = 0
670 NEXT I

680
690 ' DISPLAY FUNCTION KEY FUNCTIONS
700
710 COLOR 0,7
720 LOCATE 25,5
730 PRINT " Fl "

740 LOCATE 25, 19

750 PRINT " F2 "

760 LOCATE 25, 29
770 PRINT " F3 "

780 LOCATE 25, 40
790 PRINT " F4 "

800 LOCATE 25, 52

810 PRINT " F5 "

820 LOCATE 25, 64

830 PRINT " F6 "

840 COLOR 7, 0

850 LOCATE 25, 9
860 PRINT "SUSP/CONT"

870 LOCATE 25, 24
880 PRINT "HOOK"

890 LOCATE 25, 34
900 PRINT "ENTER"

910 LOCATE 25, 45
920 PRINT "MODIFY"

930 LOCATE 25, 57
940 PRINT "DELETE"
950 LOCATE 25, 69
960 PRINT "HALT"

73

-

* 5u

APPENDIX D: LISTING OF HARNESS.BAS

1000 ' '

1010 ' GET WINDOW PARAMETERS
1020
1030 READ XUL, YUL, XLR, YLR, CWIND
1040
1050 ' DRAW THE WINDOW
1060 ' .5

1070 GOSUB 5000
1080
1090 ' GET LAND PARAMETERS
1100
1110 READ CONTS 'HOW MANY LAND MASSES?
1120
1130 ' DRAW LAND MASSES
1140
1150 GOSUB 8000
1160
1170 ' GET GRID PARAMETERS
1180

1190 READ XYAX, YTOP, YBOTT, YCOL
1200 READ YXAX, XLEFT, XRITE, XCOL
1210
1220 ' DRAW THE GRID

1230
1240 GOSUB 5200
1250 '
1260 ' RUN UPDATE TESTS
1270
1280 GOSUB 11000
1290
1300
4999 END

74

............................-......,. -.. --.- ..-. -. ,... -,. .,.-.-.- -.. -,.-.-.-.-,-,,, -,- . ', .. , - ,.'

-'K -V

APPENDIX E: LISTING OF WINDOW.BAS

5000 ******* DRAW WINDOW SUBROUTINE *******

5010 * *

5020 * INPUTS: XUL, YUL - UPPER LEFT-HAND COORDINATES *
5030 * XLR, YLR - LOWER RIGHT-HAND COORDINATES *

5040 * CWIND - COLOR OF WINDOW
5050 * *

5060 * OUTPUT: SOLID WINDOW, XLR - XUL PIXELS WIDE, *

5070 * YLR - YUL PIXELS DEEP, COLOR CWIND *

5080 * *'
5090 ************ * **************

5100
5110
5120 LINE (XUL, YUL) - (XLR, YLR), CWIND, BF
5130
5140 RETURN
5150

5160

75

S. . . . 7

APPENDIX F: LISTING OF AXES.BAS

5200 * * * * * * * COORDINATE AXES SUBROUTINE * * * * * * **
5210 *
5220 * INPUTS: XYAX, YTOP, YBOTT - VERTICAL AXIS COORDINATES *

5230 * YXAX, XLEFT, XRITE - HORIZONTAL AXIS COORDINATES *
5240 * XCOL, YCOL - GRID COLORS *
5250 * *
5260 * OUTPUT: PROPERLY SCALED SET OF COORDINATE AXES,

5270' * OF XCOL AND YCOL *

5280 ' *
5290' ************** *************** **
5300
5310

. 5320 HSCALE = (XRITE - XLEFT)/20 'HORIZONTAL SCALE MULTIPLIER
5330 VSCALE = HSCALE * .46 'VERTICAL SCALE MULTIPLIER,
5340 'FOR PROPER ASPECT RATIO
5350 ' DRAW VERTICAL AXIS
5360
5365 LINE (XYAX-1, YTOP) - (XYAX+1, YBOTT), CWIND, BF
5370 LINE (XYAX, YTOP) - (XYAX, YBOTT), YCOL

5380'
5390 ' DRAW HORIZONTAL AXIS
5400'
5405 LINE (XLEFT, YXAX-1) - (XRITE, YXAX+1), CWIND, BF

5410 LINE (XLEFT, YXAX) - (XRITE, YXAX), XCOL
5420
5430 ' DRAW HORIZONTAL SCALE DIVISIONS, LEFT

5440
5450 FOR H = XYAX TO XLEFT STEP -HSCALE
5460 LINE (H, YXAX-2) - (H, YXAX+2), XCOL

5470 LINE (H+1, YXAX-2) - (H+I, YXAX+2), XCOL
5480 NEXT H
5490
5500 ' DRAW HORIZONTAL SCALE DIVISIONS, RIGHT
5510

5520 FOR H = XYAX TO XRITE STEP HSCALE
5530 LINE (H, YXAX-2) - (H, YXAX+2), XCOL

5540 LINE (H+I, YXAX-2) - (H+I, YXAX+2), XCOL
5550 NEXT H
5560
5570 ' DRAW VERTICAL SCALE DIVISIONS, UPPER
5580
5590 FOR V = YXAX TO YTOP STEP -VSCALE
5600 LINE (XYAX-4, V) - (XYAX+4, V), YCOL '

5610 NEXT V
5620 '

5630 ' DRAW VERTICAL SCALE DIVISIONS, LOWER
5640

76

-I-.

5650 FOR V = YXAX TO YBOTT STEP VSCALE

5660 LINE (XYAX-4, V) - (XYAX+4, V), YCOL
5670 NEXT V

5680 '
5690 RETURN

5700
5710
5720 THIS AXES SUBROUTINE IS BASED ON THE PROGRAM
5730 9-2, PAGE 9-15, IN THE CONTINUING EDUCATION

5740 CORRESPONDENCE COURSE "COMPUTER GRAPHICS",
5750 WRITTEN FOR HEATHKIT/ZENITH BY
5760 JAMES C. ADAMS

77

77

APPENDIX G: LISTING OF UPDATE.BAS
p

6000 * * * * * * UPDATE TRACKS SUBROUTINE * * * * * * *

6010 *

6020 * INPUTS: UPD - OF TRACK TO UPDATE
6030 ' *
6040 * OUTPUT: TRACK UPD IS UPDATED *

6050 ' *
6060 ************* ******** *******
6070
6080
6100
6120
6130 PERFORM ALL LOOK-UPS ONLY ONCE
6140
6150 UPDX = TX(UPD)
6160 UPDY = TY(UPD)
6170 UPDT$ = HK$(UPD) + T$(UPD)
6180 UPDL$ = L$(UPD)
6190 HORZUP = XINC(UPD)
6200 VERTUP = YINC(UPD)
6210 COLUP = TCOLOR(UPD)
6220
6225 IF ACTIVE(UPD) = 2 THEN 6375
6230 UPGND = POINT(UPDX+2, UPDY+1)
6240 ON UPGND+I GOSUB 6520, 6530, 6540, 6550, 6560, 6570, 6580, 6590
6250 WANT$ = COL$ + UPDT$: ALSO$ = COL$ + UPDL$

6255
6260 PSET (UPDX, UPDY), UPGND 'DRAW OLD SYMBOL IN
6270 DRAW WANT$ 'REVERSE COLOR
6280 PSET (UPDX, UPDY), UPGND
6290 DRAW ALSO$
6295 DRAW "SO"
6300
6305 IF ACTIVE(UPD) = 0 THEN 649-
6310 UPDX = UPDX + HORZUP 'UPDATE POSITION

6320 UPDY = UPDY + VERTUP
6322 IF UPDX<15 OR UPDX>470 THEN 6482

6324 IF UPDY<27 OR UPDY>190 THEN 6482
6330
6340 UPGND = POINT(UPDX+2, UPDY+1) 'CHECK BACKGROUND COLOR
6350 ' OF NEW LOCATION

6360 IF UPGND <> COLUP THEN 6375 'MAKE SYMBOL OPPOSITE
6370 IF UPGND < 2 THEN COLUP = 7 ELSE COLUP 0 ' OF BACKGROUND
6374
6375 ON COLUP+1 GOSUB 6520, 6530, 6540, 6550, 6560, 6570, 6580, 6590
6376 WANT$ = COL$ + UPDT$: ALSO$ = COL$ + UPDL$

6380
6390 PSET (UPDX, UPDY), COLUP 'DRAW NEW SYMBOL

78

|-

6400 DRAW WANTS

6410 PSET (UPDX, UPDY), COLUP
6420 DRAW ALSO$
6425 DRAW "SO"
6430
6440 TX(UPD) = UPDX 'STORE NEW POSITION
6450 TY(UPD) = UPDY
6460 '

6480

6482 ACTIVE(UPD)=0
6490 RETURN

6500
6510
6520 COL$ = "CO": RETURN
6530 COL$ = "Cl": RETURN
6540 COL$ = "C2": RETURN
6550 COL$ = "C3": RETURN
6560 COL$ = "C4": RETURN
6570 COL$ = "C5": RETURN
6580 COL$ = "C6": RETURN
6590 COL$ = "C7": RETURN

79

- ".:' 5 a * *. * - ~ ' -.... 1,.? . '<'' " '.. . ;. ." ,-, -" .. -"' : "4" -" "4", ,- -" ",: " -a "" '-" : -"

APPENDIX H: LISTING OF MOVE.BAS

7000 '******* SYMBOL MOVEMENT CALCULATOR *** *

7010'
7020 '*INPUTS: MOVE - TRACK TO CALCULATE FOR
7030'

7040 '*OUTPUT: XINC, YINC, SCALE FACTOR FOR SPEED
7050 '*LEADER OF EACH ACTIVE TRACK ARE*
7060 '*CALCULATED AND STORED
7070'
7080' * * * * * * * * * * * * *

7090
7100
7110
7130
7140 'CALCULATE INCREMENTS BASED ON COURSE
7150
7160 IF CUS(MOVE) <= 5 THEN 7400

*7170 IF CUS(MOVE) <= 22.5 THEN 7410
7180 IF CUS(MOVE) <= 45 THEN 7420
7190 IF CUS(MOVE) <= 67.5 THEN 7430
7200 IF CUS(MOVE) <= 85 THEN 7440
7210 IF CUS(MOVE) <= 95 THEN 7450
7220 IF CUS(MOVE) <= 112.5 THEN 7460
7230 IF CUS(MOVE) <= 135 THEN 7470
7240 IF CUS(MOVE) <= 157.5 THEN 7480
7250 IF CUS(MOVE) <= 175 THEN 7490

7260 IF CUS(MOVE) <= 185 THEN 7500
7270 IF CUS(MOVE) <= 202.5 THEN 7510
7280 IF CUS(MOVE) <= 225 THEN 7520
7290 IF CUS(MOVE) <= 247.5 THEN 7530

7300 IF CUS(MOVE) <= 265 THEN 7540
7310 IF CUS(MOVE) <= 275 THEN 7550

7320 IF CUS(MOVE) <= 292.5 THEN 7560
7330 IF CUS(MOVE) <= 315 THEN 7570
7340 IF CUS(MOVE) <= 337.5 THEN 758-i
7350 IF CUS(MOVE) <= 355 THEN 7590

7360
7370
7400 XINC(MOVE) 8: YINC(MOVE) = 0: L$(MOVE) LDR$(3): GOTO 7600
7410 XINC(MOVE) = 7: YINC(MOVE) = -3: L$(MOVE) = LDR$(2): GOTO 7600
7420 XINC(MOVE) 5: YINC(MOVE) = -5: L$(MOVE) LDR$(2): OTO 7600

7430 XINC(MOVE) 5: YINC(MOVE) = -5: L$(MOVE) = LDR$(2): COTO 7600
7440 XINC(MOVE) 3: YINC(MOVE) = -7: L$(MOVE) = LDR$(2): COTO 7600
7450 XINC(MOVE) = 0: YINC(MOVF) = -8: L$(MOVE) = LDR$(): COTO 7600

7460 XINC(MOVE) -3: YINC(MOVE) = -7: L$(MOVE) = LDR$(8): GOTO 7600
7470 XINC(MOVE) -5: YINC(MOVE) = -5: L$(MOVE) = LDR$(8): GOTO 7600
7480 XINC(MOVE) = -5: YINC(MOVE) = -5: L$(MOVE) = LDR$(8): COTO 7600

8O

7130

7490 XIN(MOVE) -7: YIN(....... -3:.........= OTO 760

7490 XINC(MOVE) =-7: YINC(MOVE) = 0: L$(MOVE) =LDR$(8): OTO 7600
7500 XINC(MOVE) =-8: YINC(MOVE) = 0: L$(MOVE) = LDR$(7): GOTO 7600
7510 XINC(MOVE) =-7: YINC(MOVE) = 3: L$(MOVE) =LDR$(6): COTO 7600
7520 XINC(MOVE) =-5: YINC(MOVE) =5: L$(MOVE) =LDR$(6): G0T0 7600
7540 XINC(MOVE) =-5: YINC(MOVE) = 5: L$(MOVE) = LDR$(6): GOTO 7600
7540 XINC(MOVE) -30: YINC(MOVE) = : L$(IOVE) = LDR$(6): GOTO 7600
7550 XINC(MOVE) 0 : YINC(MOVE) = 8: L$(MOVE) = LDR$(5): GOTO 7600
7560 XINC(MOVE) 3 : YINC(MOVE) = 7: L$(MOVE) = LDR$(4): GOTO 7600
7570 XINC(MOVE) =5: YINC(MOVE) =5: L$(MOVE) = LDR$(4): GOTO 7600
7580 XINC(MOVE) 5 : YINC(MOVE) 5 : L$(MOVE) =LDR$(4): GOTO 7600
7590 XINC(MOVE) = 7: YINC(MOVE) = 3: L$(MOVE) = LDR$(4): OO70

7600
7610 'CALCULATE AMOUNT OF INCREMENT, SPEED LEADER
7620 'SCALE, BASED ON SPEED
7630'
7640 IF SPD(MOVE) >= 100 THEN 7690
7641 IF SPD(MOVE) <> 0 THEN 7650
7642 XINC(MOVE) = 0
7643 YINC(MOVE) = 0
7644 L$(MOVE) =
7645 GOTO 7770
7650 XINC(MOVE) = INT(.5 * XINC(MOVE))
7660 YINC(MOVE) = INT(.5 * YINC(MOVE))
7670 L$(MOVE) = "S2" + L$(MOVE)
7680 GOTO 7770
7690 IF SPD(MOVE) <= 600 THEN 7770
7700 XINC(MOVE) = INT(2 * XlNC(MOVE))
7710 YINC(MOVE) = INT(2 * YINC(MOVE))
7720 L$(MOVE) ="S8" + L$(MOVE)
7760
7770 RETURN
7780

APPENDIX I: LISTING OF LAND.BAS

8000' * ***** DRAW LA ND SUBROUTINE *

8010'
8020 '*INPUTS: PTS - ARRAY OF #s OF BORDER POINTS*
8025 '*CONTS - # OF LAND MASSES
8030'
8040 '*OUTPUT: PLOTTED LAND MASSES, IN SPECIFIED COLORS *

8050'
8060' * * * * * * * * * * * * *

8070
8075 IF CONTS =0 THEN RETURN 'NO LAND MASSES, NO DRAW
8080
8090 FOR I = 1 TO CONTS
8100 READ PTS(I), LCUL(I)
8110 NEXT I
8120'
8125 DIM LAND1(PTS(1), 2), LAND2(PTS(2), 2), LAND3(PTS(3), 2)
8130 FOR ISLE = 1 TO PTS(1)
8140 READ LAND1(ISLE, 1), LAND1(ISLE, 2)
8150 NEXT ISLE
8160
8170 FOR ISLE = 1 TO PTS(2)
8180 READ LAND2(ISLE, 1), LAND2(ISLE, 2)
8190 NEXT ISLE
8200
8210 FOR ISLE = 1 TO PTS(3)
8220 READ LAND3(ISLE, 1), LAND3(ISLE, 2)
8230 NEXT ISLE
8240
8250 PSET (LAND1(1,1), LAND1(1,2)), LCOL(1)
8260 FOR ISLE = 2 TO PTS(1)
8270 LINE - (LAND1(ISLE, 1), LAND1(ISLE, 2)), LCOL(1)
8280 NEXT ISLE
8290
8300 READ CENTX, CENTY
8310
8320 PAINT (CENTX, CENTY), LCOL(1), LCOL(1)
8330
8340 IF PTS(2) < 2 THEN RETURN
8350
8360 PSET (LAND2(1,1), LAND2(1,2)), LCOL(2)
8379 FOR ISLE = 2 TO PTS(2)
8380 LINE - (LAND2(ISLE, 1), LAND2(ISLE, 2)), LCOL(2)
8390 NEXT ISLE
8400
8410 READ CENTX, CENTY
8420

82

7. 71 -7 7 7, .T- •. 0 N . .T.7 V

8430 PAINT (CENTX, CENTY), LCOL(2), LCOL(2)
8440 '

8450 IF PTS(3) < 2 THEN RETURN

8460 '

8470 PSET (LAND3(1,1), LAND3(1,2)), LCOL(3)

8480 FOR ISLE = 2 TO PTS(3)

8490 LINE - (LAND3(ISLE, 1), LAND3(ISLE, 2)), LCOL(3) '.

8500 NEXT ISLE

8510
1

8520 READ CENTX, CENTY

8530

8540 PAINT (CENTX, CENTY), LCOL(3), LCOL(3)

8550

8560 RETURN

.8 .

.1'

,.-

•'C

83
t'4°

.- .- ."- -,.-."-.-- -- -,. " -, . -.-..- ' . ,,"- - .. -. .. .i , .-'.- .- .-. - '"- "* ;-. -.. ,-2 ,

b.

APPENDIX J: LISTING OF DATA.BAS

10000 '****** DATA ******

10010
10020 'XUL, YUL, XLR, YLR, CWIND
10030 DATA 15, 27, 470, 190, 7
10040 ' CONTS
10050 DATA 2
10060 ' PTS(1), LCOL(1), PTS(2), LCOL(2)

*10070 DATA 8, 3
*10080 DATA 5, 5

10090 ' BORDER POINTS FOR LAND MASS ONE
10100 DATA 100, 125, 120, 150, 130, 140, 125, 135, 155, 134
10110 DATA 160, 127, 125, 125, 100, 125
10120 ' BORDER POINTS FOR LAND MASS TWO

*10130 DATA 240, 100, 270, 105, 290, 90, 265, 85, 240, 100
*10140 ' BORDER POINTS FOR DUMMY LAND MASS

10150 DATA 1, 1
10160 ' CENTER OF LAND MASS ONE
10170 DATA 120, 135
10180 ' CENTER OF LAND MASS TWO
10190 DATA 265, 95

*10200 'XYAX, YTOP, YBOTT, YCOL
10210 DATA 157, 27, 190, 0
10220 ' YXAX, XLEFT, XRITE, XCOL
10230 DATA 145, 1:, 470, 0
10235 DATA 3
10240 ' TRACK(1), CLASS$(1), cuS(1), SPD(1), TCOLOR(1), TX(1), TY(1)
10250 DATA "HOSTILE", 180, 35, 0, 420, 80
10260 ' TRACK(2), CLASS$(2), 0135(2), SPD(2), TCOLOR(2), TX(2), TY(2)
10270 DATA "FRIENDLY", 4, 135, 0, 50, 100

10275 'TRACK (3)
10280 DATA "UNKNOWN", 110, 650, 0, 430, 170

*10290 'NUMBER OF MOVES TO TEST UPDATING
10300 DATA 5

84

ft.

APPENDIX K: LISTING OF TRACKING.BAS

11000 * * * * * * * TEST TRACKING SUBROUTINE * * * * *
11010 * *
11020 * INPUTS: TRACKS - # OF TEST TRACKS
11030 * *
11040 * OUTPUT: SAMPLE OF TRACKS BEING UPDATED *

11050 * *

11060 ****************************

11070
11080 READ TRACKS
11090
11100 IF TRACKS = 0 THEN 11200
11110 FOR I = 1 TO TRACKS

11120 READ CLASS$(I), CUS(I), SPD(I), TCOLOR(I), TX(I), TY(I)
11125 UPD I

11130 GOSUB 20000
11135 ACTIVE(I) 1
11136 IF CLASS$(I) = "REF PNT " THEN ACTIVE(l) = 2
11140 NEXT I
11150
11160
11165 FOR MOVE = 1 TO TRACKS
11170 GOSUB 7000
11175 NEXT MOVE
11180
11190
11200 DO$ =
11210
11220 WHILE DO$ =

11225 FOR UPD = 1 TO TRACKS
11230 GOSUB 6000
11235 NEXT UPD

11240 FOR I = I TO 2000
11250 DOs = INKEY$

11255 IF DO$=.... THEN NEXT I ELSE 11280
11260 WEND
11270
11280 IF DO$ <> CHR$(27) THEN 11200 ELSE D02$ = INKEY$
11300
11310 IF D02$ = "P" THEN GOSUB 12000
11320 IF D02$ = "S" THEN GOSUB 12100
11330 IF D02$ = "T" THEN GOSUB 12200
11340 IF D02$ = "U" THEN GOSUB 12500
11350 IF D02$ = "V" THEN GOSUB 12800
11360 IF D02$ = "W" THEN GOSUB 13500

11370
11380 GOTO 11200

85

ft.

.

- 4

APPENDIX L: LISTING OF KEYS.BAS

12000 * * * * * * * FUNCTION KEY SUBROUTINES . * * * *

* 12010
12020
12030 % % % % % HALT PROGRAM
12040 FUNCTION KEY F6

12050
12060 CLS

12062 KEY 1, "LIST "
12064 KEY 2, "RUN" + CHR$(13) + CHR$(10)
12066 KEY 3, "LOAD" + CHR$(34)
12068 KEY 4, "SAVE" + CHR$(34)

12070
12072 KEY 5, "CONT" + CHR$(13) + CHR$(10)
12074 KEY 6, "PRINT "

12080 END
12085 RETURN
12090
12100 '% % % % % SUSPEND/CONTINUE PROGRAM

4 12110 ' FUNCTION KEY Fl

12120
12130 GO$ =
12140
12150 WHILE GO$
12160 GO$ = INKEY$
12170 WEND
12180
12190 RETURN
12200' % % % % % HOOK TRACK
12210 ' FUNCTION KEY F2

12220 '

12230 LOCATE 2, 10

12240 '

12250 IF HOOK = 0 THEN 12270
12252 ACTIVE(HOOK) = 0

12254 UPD = HOOK
12256 GOSUB 6000

12258 ACTIVE(HOOK) = 1
12259 HK$(HOOK) = "SO"
12260
12270 INPUT "TRACK TO HOOK: ";HOOK
12275 LOCATE 2, 10

12276 PRINT "

12280

12282 ACTIVE(HOOK) = 0
12284 UPD = HOOK

12286 GOSUB 6000

86

I."

• - - -. . ." / " -- " . - . , . " - . •- - - - -. . -,," . . - * - - . . - - . -4..

12288 ACTIVE(HOOK) = 1

12290 HK$(HOOK) = "S8"
12300
12310 LOCATE 6, 62
12320 PRINT "TRACK NO. ";HOOK
12330 LOCATE 7, 62
12340 PRINT "CLASS ";CLASS$(HOOK)
12350 LOCATE 8, 62
12360 PRINT "COURSE ";CUS(HOOK)
12370 LOCATE 9, 62
12380 PRINT "SPEED ";SPD(HOOK)
12390
12400
12410 RETURN
12420
12500 ' % 7% 7 7 ENTER NEW TRACK
12510 ' FUNCTION KEY F3

12520
12530 TRACKS = TRACKS + 1
12540 MOVE = TRACKS
12550
12560 LOCATE 2, 10
12570 INPUT "ENTER CLASS ";CLASS$(TRACKS)
12571 SIZECL = LEN(CLASS$(TRACKS))
12572 IF SIZECL < 9 THEN ADD = 9 - SIZECL
12573 IF ADD=0 THEN 12575
12574 FOR I = 1 TO ADD:CLASS$(TRACKS) = CLASS$(TRACKS) + " ":NEXT I
12575 LOCATE 2, 10
12576 PRINT "

12580 LOCATE 2, 10

12590 INPUT "ENTER COURSE ";CUS(TRACKS)
12595 LOCATE 2, 10
12596 PRINT "

12600 LOCATE 2, 10
12610 INPUT "ENTER SPEED ";SPD(TRACKS)
12615 LOCATE 2, 10
12616 PRINT "
12620 LOCATE 2, 10
12630 INPUT "ENTER GRID X ";TX(TRACKS)
12635 LOCATE 2, 10
12636 PRINT "i
12640 LOCATE 2, 10
12650 INPUT "ENTER GRID Y ";TY(TRACKS)
12655 LOCATE 2, 10
12656 PRINT " "

12660 LOCATE 2, 10
12670 INPUT "TRACK COLOR ";TCOLOR(TRACKS)
12680 LOCATE 2, 10
12690 PRINT "
12700
12702 IF CLASS$(MOVE) = "REF PNT " THEN ACTIVE(MOVE) = 2

87

f~r~ £2'... ~*2~~A~2"-

12705 GOSUB 20000

12710 GOSUB 7000
12712 UPD = MOVE

12715 GOSUB 20000
12716 HK$(UPD) "SO": ACTIVE(UPD) = 1
12717 GOSUB 6000
12720
12730 RETURN
12740
12750
12800 ' 7 7, 7 7 7° MODIFY TRACK
12810 ' FUNCTION KEY F4

12820
12830 IF HOOK = 0 THEN 12840
12832 ACTIVE(HOOK) = 0
12834 UPD = HOOK
12836 GOSUB 6000
12838 ACTIVE(HOOK) = 1
12839 HK$(HOOK) = "SO"
12840 LOCATE 2, 10
12850 INPUT "TRACK TO MODIFY: ";HOOK
12855 LOCATE 2, 10
12856 PRINT "
12860
12870 GOSUB 12300
12872 ACTIVE(HOOK) = 0
12874 UPD = HOOK
12876 GOSUB 6000
12878 ACTIVE(HOOK) = 1
12879 HK$(HOOK) = "SO"
12880
12890 LOCATE 2, 10
12900 INPUT "IS CLASS OK ";A$
12910 IF A$ <> "Y" THEN LOCATE 2, 40 INPUT "NEW CLASS :";CLASS$(HOOK)
12915 LOCATE 2, 10
12916 PRINT "
12920
12930 LOCATE 2, 10
12940 INPUT "IS COURSE OK ";A$
12950 IF A$ <> "Y" THEN LOCATE 2, 40 : INPUT "NEW COURSE:";CUS(HOOK)
12955 LOCATE 2, 10
12956 PRINT "
12960
12970 LOCATE 2, 10
12980 INPUT "IS SPEED OK ";A$
12990 IF A$ <> "Y" THEN LOCATE 2, 40 : INPUT "NEW SPEED: ";SPD(HOOK)
12995 LOCATE 2, 10
12996 PRINT "
13000
13010 LOCATE 2, 10
13020 INPUT "IS COLOR OK ";A$

88

13030 IF A$ <> "Y" THEN LOCATE 2, 40 INPUT "NEW COLOR: ";TCOLOR(HOOK)

13035 LOCATE 2, 10

13036 PRINT "

13040 '

13050 LOCATE 2, 10
13060 INPUT "IS GRID X OK ";A$

13070 IF A$ <> "Y" THEN LOCATE 2, 40 INPUT "NEW GRID X: ";TX(HOOK)
13075 LOCATE 2, 10

13076 PRINT "

13080 '
13090 LOCATE 2, 10
13100 INPUT "IS GRID Y OK ";A$
13110 IF A$ <> "Y" THEN LOCATE 2, 40 INPUT "NEW GRID Y: ";TY(HOOK)
13115 LOCATE 2, 10
13116 PRINT "

13120 '
13130 MOVE = HOOK
13140 GOSUB 7000
13145 UPD = HOOK
13147 GOSUB 6000
13150
13160 RETURN
13170
13500 ' 7. 77 7. 7. DELETE A TRACK
13510 ' FUNCTION KEY F5

13520
13530 LOCATE 2, 10
13540 INPUT "TRACK TO DELETE: ";DEL
13550
13560 ACTIVE(DEL) = 0
13565 LOCATE 2, 10
13566 PRINT "

13570
13580 RETURN

89

***~.. Q -7
....... ~ .-.- !

APPENDIX M: LISTING OF MATCH.BAS

20000' SYMBOL ASSIGNMENT * * **

20010'*
20020 '* INPUTS: UPD - TRACK TO HAVE SYMBOL ASSIGNED *

20030'*

20040 '* OUTPUT: TRACK(UPD) IS ASSIGNED A SYMBOL *

20050 '*THAT MATCHES ITS CLASSIFICATION
20060*
20070'* * * * * * * * * * * * *

20080
20090

20100 IF CLASS$(UPD) ="HOSTILE "THEN T$(UPD) =SYM$(4): GOTO 20240
20110
20120 IF CLASS$(UPD) ="HOST SURF" THEN T$(UPD) = SYM$(6): GOTO 20240
20130

20140 IF CLASS$(UPD) ="UNKNOWN " THEN T$(UPD) =SYM$(3): GOTO 20240
20150
20160 IF CLASS$(UPD) = "UNK AIR " THEN T$(UPD) = SYM$(5): GOTO 20240
20170
20180 IF CLASS$(UPD) = "FIGHTER " THEN T$(UPD) = SYM$(2): GOTO 20240
20190

20200 IF CLASS$(UPD) = "SURVEILL " THEN T$(UPD) = SYM$(1): GOTO 20240
20210

20220 IF CLASS$(UPD) = "REF PNT " THEN T$(UPD) = SYM$(7)
* 20230

20240 RETURN
20250

90

APPENDIX N: USER'S MANUAL FOR DISPLAY SIMULATOR

A. HOW TO USE THIS SIMULATOR

The minimum system configuration requirements for this

NTDS display simulator are as follows:

- H/Z-100 or compatible computer
- 128K RAM memory
- 1 DS/DD 5 1/4 w disk drive
- Z-DOS 1.25 operating system
- ZBASIC interpreter or compiler
- the file NEWEST.BAS

or
- the subroutine files making up NEWEST.BAS, which are:

-- HEADER.BAS

-- INIT.BAS
-- HARNESS.BAS

-- WINDOW.BAS
-- AXES.BAS

-- LAND.BAS
-- MOVE.BAS

-- UPDATE.BAS
-- TRACKING.BAS

-- DATA.BAS or DATA1.BAS
-- MATCH.BAS

-- KEYS.BAS

B. GETTING STARTED

"Boot up" the computer system under the Z-DOS operating

system. After getting the system prompt ensure that the

default disk drive (if there are two or more) contains the
1%

file ZBASIC.COM (the ZBASIC interpreter), unless using the

compiled version. If working with the compiled version,

follow the instructions for compiling and running a ZBASIC

program that came with the compiler being used.

91

1. This step is for users without the file NEWEST.BAS.

If that file is present, skip to step B.2.

Type the command "ZBASIC". This will load the ZBASIC

S interpreter. When it displays its prompt, load any one of

the subroutine files. Then type MERGE "filename" for each

of the other files, one by one. Once they are all merged

type RUN (If any error messages are displayed when

attempting to do this, one or more of the files may not be

stored properly. In order to store them properly they will

have to be loaded when there is no other program stored in

memory, and saved with the command SAVE "filename", A. This

saves them in an ASCII format, which allows them to be

merged with other files).

2. Load NEWEST. Type RUN.

C. INTERACTING WITH THE SIMULATOR

While the simulator is running it accepts user input

through the use of the special function keys. The special

function key menu is displayed on line 25 of the mon±uor,

below the NTDS display.

The Suspend/Continue key is a double action key -- to

suspend the automatic updating of tracks (and all other

system functions) depress the Fl key. To resume system

operation depress it again. When it is depressed for the

"continue" function all tracks will be updated.

92

. .I

The Hook key (F2) allows the display of the tzack

parameters for one of the tracks in the system. When it is

depressed the system will request an input at the top of the

screen. It will prompt the user to input the track number

of the track to hook. The input must be a number between 1

and 10, or an error will result. If the number is the

number of an active track that track will have its symbol

enlarged as long as it is hooked, and its parameters

displayed to the right of the NTDS display area.

The Enter key (F3) allows a new track to be entered.

The user will be prompted for inputs at the top of the

screen. For CLASS$, input the classification of the new

track (no more than nine characters, please). If the

classification does not match one the system recognizes, the

speed leader only will be displayed for the new track. The

currently recognized inputs are: "HOSTILE', "FIGHTER',

"UNKNOWN", 'HOST SURF", "REF PNT", "SURVEILL", and "UNK

AIR". The CUS (course) should be a number between 0 and

360, representing degrees true. Speed (SPD) should be a

positive number, greater than or equal to zero, representing

speed in knots. Grid X is the X coordinate of the track, in

terms of the display. It should be a number in the range of

15-470. Likewise Grid Y is a display coordinate, and ranges

from 27-190. Numbers other than these will work, if they

are within the range of the pixels of the display. The

Update module tests for the coordinates of the track,

93

. .

ly 7 7-- V7 VV- 7

however, and the track will not move if placed outside the

display window. Track Color should be a number between 0-7.

On the monochrome systems this will not matter unless it is

0 or 7--on color systems these numbers correspond to the

colors listed in the User's Manual.

The F4 key, Modify, will go through the same track

parameters that were just discussed for the F3 key. It will

first ask which track to modify, and the track number must

be input. The system then hooks that track, and goes

through each track parameter asking if it is OK. The user

should input a "Y" if the parameter is fine, anything else

if it is not. If the response is other than "Y" the user

will be requested to input the correct value for that

parameter, and the hooked track will be modified

accordingly.

The Delete key, F5, asks the user to provide a track

number, and the track number input will be deleted. Upon

the next update of the system it will no longer appear on

the screen.

The Halt key, F6, provides a gracious exit from the

display simulator system. When it is depressed it restores

the special function keys to their ZBASIC settings, clears

the screen, and returns the ZBASIC interpreter prompt.

94

~94

=I

D. MODIFYING THE INITIAL DISPLAY'4

The initial display, in its entirety, is determined from

the DATA module. By modifying the DATA module, or creating

a new one, and re-merging it with the system, a new initial

display may be created. There is a caution here: if a new

(or modified) DATA module is used, the line numbers must

match .all those of the old module, or the unused old numbers

must be deleted, to prevent erroneous assignments.

The data should be entered in the order of Figure N.1,

within the ranges and for the purposes stated below.

The first five data values relate to the window. The

first two of them, XUL and YUL, are the X and Y coordinates

of the upper left-hand corner of the display window,

respectively. The X value should fall between 0-480, and

the Y value between 20-212. The same range restrictions

apply to the XLR and YLR values, which are the coordinates

for the lower right-hand corner of the window. The color of

the box, a number between zero and 7, is given by CWIND.

The window parameters are followed by CONTS, the number

of land masses (or special areas) the initial display will

contain. The current system limitation is for a maximum of

3, and this number should not be less than zero. If CONTS

is zero, the next data value to be read in is XYAX.

Otherwise there are CONTS number of entries of the variables

specified within the square brackets (]).

95

..............................

N-*169 153 ThCTICAi. DXSPLRY SINIPLATION ON THE H/Z-IN(U) NMY12.
POSTORADUATE SCHOOL MONTEREY CA K N COONES MAR 96

UNCLASSIFIED F/O 9/2 ML

mhhhmmhmhhhu

4%4

7. V

r

For each 'continent' there should be a value pair (PTS,

LCOL). The PTS is the number of points ((x,y) coordinate

pairs) that specify the border of the land area, LCOL is

- XUL

- YUL
- XLR
- YLR
- CWIND
- CONTS
[- PTS, LCOL] - CONTS TIMES

[- Xl, Yl, X2, Y2, ... XN, YN] - CONTS TIMES
[- CENTX, CENTY] - CONTS TIMES

XYAX
YTOP

- YBOTT
- YCOL
- YXAX
- XLEFT
- XRITE
- XCOL
- TRACKS
[- CLASS$, CUS, SPD, TCOLOR, TX, TY] - TRACKS TIMES
- MOVES

Figure N.1 Order of Data Entry

the color of that piece of land. After the PTS, LCOL pairs

(one pair for each land area to be input) there are CONTS

lists of ordered pairs, Xm, Ym, each pair representing a

border point of the land mass. The final subscript, N,

should match the PTS number for each particular land mass,

and XN, YN should match Xl, Yl to ensure that the land mass

will be painted properly. After the list of border points

is read in, an interior point, CENTX, CENTY, is read in.

This should be a point not on the border but within in.

This is the point that determines the area of the screen

that will be painted in LCOL color.

96

The following four data values specify the vertical grid

parameters, and the four after that the horizontal grid.

The XYAX value should fall somewhere between the XUL and XLR

values read in earlier. It is the horizontal, or X,

coordinate of the Y axis. YTOP and YBOTTOM are the top and

bottom of the Y-axis, and should match YUL and YLR

respectively, if the grid is to be from the top of the

window to the bottom. The grid's color is determined by

YCOL, which should be between 0-7.

The vertical grid parameters are followed by those for

the horizontal grid, and they are of the same form. The

first, YXAX, is the vertical location of the horizontal grid

line, and should be between YUL and YLR. The XLEFT and

XRITE specify the ends of the horizontal grid, and should

match XUL and XLR for a full-window grid. The grid color is

independent of the vertical grid colo and is specified by

a number 0-7 for XCOL.

If the initial display is to have any test tracks prior

to user input the number of them is read in through the

parameter TRACKS. This number should have a value between

zero and ten, the system currently being limited to ten

tracks. If TRACKS is zero the next data value is MOVES.

Otherwise, the data following TRACKS is sets of parameters

for the initial tracks.

CLASS$ is the classification of each test track, and

should be a character string surrounded by quotes, no longer

97

• • - . - . . • - - .. • . . ., , ° . , -

than nine characters (excluding the quotation marks). The

currently recognized classifications are "HOSTILE", "HOST

SURF', "UNK AIR", "REF PNT", "FIGHTER", "SURVEILL" and

"UNKNOWN". Any classification other than these will result

in a symb 1 which consists only of a speed leader for the

track.

CUS and SPD are the course and speed of the track. They

should be positive or zero. The course is in degrees true

(0-360) and the speed is in knots(0-?). TCOLOR is the track

color, and should again be a 0-7 number.

The TX and TY are the grid coordinates of the track's

initial position. They are pixel coordinates on the screen.

TX should be between XUL and XLR, T b-twe-n YUL and YLR.

If they are not one of two things will happen. If they are

outside the range of the window but within the range of the

screen they will be drawn on the screen in the specified

position, and not updated. If they are outside the range of

the screen (0-639 for x, 0-224 for y) an error will result,

and the system will be exited.

The value of MOVES should be zero if TRACKS is zero. It

represents the number of automatic times the system will

update the tracks if there is no user input. Actually, this

is a hold-over from an earlier version of the system. It

may be used if the system is modified--otherwise it will be

ignored.

98

E. UNDERSTANDING THE CODE

Following is a line by line explanation of the code.

The subsections correspond to the subroutines that make up

the display simulator system. Each subsection is titled

according to its subroutine. The code may be examined by

following, in order, Appendix A, which is a listing of the

assembled subroutines, or by following the appropriate

Appendix for each subroutine.

1. Header

We begin with a header, identifying the program and

clearing the screen. These statements are lines 10-90.

2. Init

" The next section of code, wINITIALIZATION AND

TABLES" (lines 100-960) performs several housekeeping chores

to set up the prototype. Line 130 sets the array subscript

lower bound, and lines 150-170 allocate memory for the

necessary arrays. The symbol and speed leader tables (SYM$

and LDR$) are initialized in lines 180-440.

The variable TRACKS is initialized to zero. Later

in the program it is read from a DATA statement, to

determine how many tracks the system starts with prior to

user input. Whenever a track is added, TRACKS is incre-

mented. If it exceeds ten, the dimension of the parts of

the TRACK record (see Figure 3.1), a subscript out of range

error will result. The prototype does no 'garbage

99

at

collection", as such, and flags inactive tracks with a value

of zero in the ACTIVE field.

Line 510 initializes the elements of the PTS array

to one. This is necessary because of the lack of dynamic

memory allocation in ZBASIC. The elements of the PTS array

are used in the Land module to dimension arrays, and must be

greater than or equal to one.

The special function keys are initialized in lines

530-600. This prototype was developed with a ZBASIC inter-

preter, ZBASIC, under Z-DOS version 1.25. In that

environment the special function keys are pre-set to provide

ZBASIC commands. These lines re-set them to generate their

normal escape sequences when depressed,

The HK$ and ACTIVE fields of each track are

initialized in lines 620-670. This prototype was developed

for color and/or monochrome use. The current Zenith

monitors at NPS are monochrome. For that reason we elected

to indicate a hooked track by enlarging its symbol. The HK$

field will always be drawn as part of the symbol. If the

track is not hooked it will be scale zero ("SO"), for normal

size. For hooked tracks it is changed to "S8", for double

size. The ACTIVE field is primarily used to determine which

tracks are active. Reference points require special

treatment in this prototype, for efficiency. A more

detailed explanation is with the Update module. A value of

100

zn

2 in the ACTIVE field indicates that the track is a

reference point.

The final chore performed by the Init module is the

display of the function keys menu. Lines 690-960 provide

the user with reverse video labels of the active function

keys, and normal video display of their purposes on line 25

of the display. This places the menu close to the keys

involved and out of the main display area.

3. Harness

The test harness, or Harness module, follows in

lines 1000-4999. It grew as the prototype was developed.

The final line, 4999, which is an END statement, is no

longer necessary, but was prior to the installation of user

interaction as a feature. During development and testing

all inputs were through program lines and DATA statements.

This may be a good point at which to mention that there are

some unnecessary lines remaining, many unused line numbers,

4 and some sections of code where line numbers are too close

together.

The presence of unnecessary lines does not adversely

affect the performance of the prototype. Some of them are

left in to allow follow-on researchers to see some history

* of the thought process and development procedures used

before. Most of them are present to allow for spacing and

readability of the code, and are left in for those reasons.

101

In most cases the line numbers are spaced by tens.

This allows for the insertion of several lines wherever

necessary during the ongoing development of the system. In

some cases they are closer together, demonstrating the prior

development and debugging. There are wide gaps in some

sections of code, illustrating the modular development

process. It is particularly important when writing files

which will be merged to attempt to assign line numbers which

will not risk duplication.

I- The Harness module requires little explanation. It

reads DATA statements to obtain parameters, calls on

P subroutines to make use of the parameters to draw static

portions of the display, and transfers control to the

Tracking module in line 1280.

4. Window

The Window module, lines 5000-5160, is also self-

explanatory. It is written in general terms, and may be

used to draw any size box, anywhere on the screen, in any

p color and for any purpose.

5. Axes

Most of the modules are written to be useful

elsewhere. The Axes module is no exception. We could have

made use of the previous module, Window, and re-defined what

have been labelled the window parameters, since Axes also

draws boxes. This is just one example of extra code being

written, and trickiness avoided, for clarity and

102

readability. This feature, abundant code and prolific

variable creation rather than re-using the same variable

names for different purposes, also enhances maintainability.

Lines 5320-5330 ensure that aspect ratio is

maintained when the two axes are scaled. Line 5365 draws a

box one pixel wider on each side than the vertical axis line

of the window's color. This enables the axis to cross any

color land mass without getting lost. Line 5405 does the

same thing for the horizontal axis.

6. Update

The Update module is, in many ways, the heart of the

system. It is the module that re-positions the track

symbols periodically, draws and erases them, and checks to

see if they fall within the window limits.

The first thing Update does is look up all array

variables that are referenced frequently in the module.

This saves time when each variable is used. It is much

faster for the interpreter to look up the copy in the local

simple variable than to compute the address from an array

index. Lines 6150-6210 do the copying of array variables

into local simple variables.

Line 6230 samples a background point at the current

symbol position. A common method of erasing in computer

* graphics, and the one employed here, is to re-draw the

symbol in the color of its background. Based on the color

of the local background one of eight subroutines determines

103

Y7

the proper color for the string COL$. The reason the

statement using UPGND + 1 is because the colors are from 0-

7, but the ON <exp> GOSUB statement requires a number equal

to or greater than one to branch.

The string WANT$ is then composed of the color and

the symbol, ALSO$ is composed of the color and the speed

leader (both of these being the color of the background in

this case, to perform an erasure), then each string is drawn

at the current symbol position.

In line 6260 the symbol is located at its current

position. Line 6270 draws the symbol, line 6280 relocates

at symbol center and line 6290 draws the speed leader. The

scale is returned to normal in line 6295.

If the symbol is inactive (ACTIVE = 0) this is all

that is required and line 6305 directs program flow to the

RETURN statement. For active symbols lines 6310-6320 update

the position of symbol center and program flow continues.

Line 6340 samples the background at the updated

symbol position. If there is no conflict logic similar to

that just completed for the erasure, using COLUP (the

current symbol color) rather than UPGND (background color)

draws the re-located symbol in lines 6375-6425. If there is

a conflict line 6370 makes the symbol white for dark

backgrounds and black for light backgrounds.

Lines 6440-6450 store the updated symbol position in

the TX and TY fields of the track record. Line 6490 returns

104

to the calling routine. Each of the lines 6520-6590

contains two statements, constituting an entire subroutine.

These are the subroutines called upon to set COL$, which is

used to determine the color the symbol will be drawn in.

7. Move

The Move module determines how many pixels in each

direction a symbol will move when it is updated and which

speed leader will be assigned to a track, based on track

course and speed. Lines 7160-7350 branch to the appropriate

line number based on the course, dividing the full circle of

directions (courses 0-360 degrees true) into 20 zones.

Lines 7400-7590 are the lines branched to, only one of which

will be executed. They make the assignment of incremental

values of change in the x and y direction and assign one of

the eight speed leaders from the speed leader table, then

branch to 7600. Together these lines (7160-7590) form one

giant case statement.

Line 71640 branches to 7690 if the target is not a

slow speed track. For slow speed tracks that do have motion

line 7641 branches to 7650. Lines 7642-7645 handle tracks

with no motion, ensuring no incremental movement and no

speed leader. For slow speed tracks that do move lines

7650-7680 reduce the incremental movement and scale the

speed leader down.

medium speed tracks, treated as the norm, are

handled by the branch from line 7690-7770, 7770 being the

105

42 -2-

im W

RETURN. Lines 7700-7720 handle high speed tracks by

increasing the incremental movement and scaling up the speed

leader.

8. Land

This is the module that draws the land masses. It

currently provides for only three land masses. Because

ZBASIC has no dynamic memory allocation the DIM (dimension)

statements cannot be executed more than once or an error

results. For more land masses to be introduced to the

system they must be described by the same number (or fewer)

points than one of the first three and one of the three land

arrays re-used, or more land arrays must be added to this

module in the DIM statement(s). The latter solution is the

easiest to implement, and will be the easiest for others to

follow later on. That is why it was chosen here, rather

than simply dimensioning one array large enough to handle

any probable number of points.

Line 8075 guards against execution if there are no

land masses to draw. If there are land masses the variable

CONTS contains the number, and is used as an index in the

loop of lines 8090-8110, which reads in the numbers of

points of each of the masses and their color. Line 8125

sets aside memory for the arrays, as mentioned earlier.

This module has been designed for zero or three.

The intention was to make the logic clear, and also to

provide loops for all three so that only data statements

106

would need to be changed if any number 0-3 were input. That

is why there are three loops, lines 8130-8150, 8170-8190 and

8210-8230 which read in the points describing the land

masses. If there are fewer than three at least one dummy

point must be in the data statements for each of the unused

arrays.

Lines 8250-8280 draw the first land mass (if there

were none to draw line 8075 would prevent the branch to

here). Line 8300 reads the coordinates of an interior point

for the first land mass, and line 8320 paints it.

If there is only one land mass line 8340 executes

the RETURN. Otherwise lines 8360-8430 perform the same

functions for land mass two as 8250-8320 did for land mass

one. Lines 8450-8540 perform a similar test and conditional

execution of land mass three function. If there were three

land masses line 8560 executes the RETURN, otherwise it

would have already been executed.

9. Data

We have already gone over the data format. The Data

module follows it, interspersing the data with comments for

clarity. It is recommended that users follow the same

procedure. It makes corrective maintenance and enhancement

much easier. Another design philosophy embodied here and

encouraged is the matching of one data statement to one read

statement. Code could be reduced by combining, for example,

the data in lines 10080 and 10120-10140. Instead we opted

107

to keep the data on separate lines matching read statements

in the program. This procedure reduces debugging time (it's

easy to create mis-matched data/read pairs) and makes the

module more readable.

10. Tracking

This module performs the automatic system updating

of tracks and monitoring for user input. It is the driver

program, in essence, whereas the Harness module is the

initialization driver.

Line 11080 determines if there are any initial

tracks in the system. If not line 11100 branches to 11200,

skipping lines 11110-11140, which read in the initial tracks

if there are any.

For initial tracks lines 11165-11175 calculate the

appropriate incremental movements and assign speed leaders,

through the use of the Move module.

Line 11200 initializes the DO$ variable to an empty

string. DOS is used to tell the system what to do if there

is user input.

Lines 11220-11260 drive the system until there is

user input. All tracks are automatically updated in lines

11225-11235, the user is given a chance for input during a

pause between updates in lines 11240-11255. The constant

2000 in line 11240 determines the length of time between

updates when there is no user input. If it is reduced,

shortening the delay, a reasonable minimum would probably be

108

500. If the delay is too short the user reaction may be too

slow to input a selection, resulting in at least one more

update than desired. The motions of the tracks may also

appear too jerky and/or rapid if there is not sufficient

delay between updates. When the system detects that the

N user has depressed a key the program branches to 11280.

Line 11280 reverts to the initialization in line

11200 and repeats the process if the key struck was not a

special function key, by checking for the first character to

be an wESCapew (CHR$(27). If a special function key was

struck lines 11310 to 11360 branch to the appropriate

*routine to handle the request. Line 11380 reverts to

initialization of DO$ and repeats the update/delay process

if the key was not a pre-defined function key, or upon

completion of the service of the request.

11. Keys

This module defines the special function key

routines. Keys Fl-F6 are currently defined, more could

easily be added. They should be initialized in the Init

module, branches to their routines provided for in the

Tracking module, and their routines defined in this one.

Lines 12000-12085 handle the request for a halt.

The screen is cleared and the function keys are restored

before the END statement is executed. The RETURN statement

is not really necessary. Actually only the END statement is

needed here, but it is good programming practice to clear

109

the screen when finishing a graphics routine, as well as

restoring functions keys defined. The RETURN statement is

included for similar reasons, since this is a subroutine.

Lines 12100-12190 perform the suspend/continue

function, by simply waiting for another keyboard input Lo

continue.

The hook track function is in lines 12200-12420.

The locate statements ensure that messages and input

requests appear at the top of the screen. Lines 12250-12259

check to see if there is already a track hooked, and unhook

one if one is hooked.

Line 12270 requests the input of the track to hook,

lines 12275-12276 clear the request from the screen when the

requested input has been provided. The track input as the

one to hook is hooked in lines 12282-12290. After it has

been hooked and its symbol enlarged (the way a hooked track

is displayed) lines 12310-12380 display its parameters to

the right of the display window.

Lines 12500-12750 perform the enter new track

function. First the number of tracks is incremented in

lines 12530-12540. Then lines 12560-12690 request for each

of the user inputs and clear the requests when the input has

been made (lines 12571-12574 ensure that the classification

will be exactly nine characters in length for symbol

assignment).

110

..

After track parameter input lines 12705-12717

perform necessary calculations and matching to provide the

rest of the track parameters and display the new track.

12. Match

This routine simply matches the CLASS$ of a track

(classification) to its appropriate symbol. Only the line

which finds a string match will be executed, and the RETURN.

If there is no match no symbol will be assigned, and only

the speed leader will be displayed. This distinguishes

unidentified tracks (which may be unconfirmed, bogus, or

whatever) from tracks known to exist but unclassified

(UNKNOWN).

F. CROSS-REFERENCE

The following cross-reference of variables is provided

as an aid to modifying the code in further development. It

is for the version of the code listed in Appendix A, the

first and un-numbered version.

NAME PURPOSE LOCATIONS

CLASS$() classification INIT, TRACKING,
of track KEYS, MATCH,

DATA

CUS() track's course INIT, MOVE,
TRACKING, KEYS,
DATA

4iii

11

I~

Vi

NAME PURPOSE LOCATIONS

SPD() track's speed INIT, MOVE,
TRACKING, KEYS,
DATA

TCOLOR() track color INIT, UPDATE,
TRACKING, KEYS,
DATA

TX() track x coord INIT, UPDATE,
TRACKING, KEYS,
DATA

TY() track y coord INIT, UPDATE,
TRACKING, KEYS,
DATA

XINC() horizontal INIT, UPDATE,
movement TRACKING, KEYS,

MOVE, DATA

YINC() vertical INIT, UPDATE,
movement TRACKING, KEYS,

MOVE, DATA

T$() track symbol INIT, UPDATE,

MATCH

L$() track speed INIT, UPDATE,

leader MOVE

SYM$() generic symbol INIT, MATCH

LDR$() generic speed INIT, MOVE
leader

PTS() number of points INIT, LAND, DATA
defining land mass

LCOL() land color INIT, LAND, DATA

HK$() scale to draw track INIT, UPDATE,

KEYS

ACTIVE() state of track INIT, UPDATE,

KEYS

TRACKS number of tracks INIT, TRACKING,

DATA, KEYS

112

-....-.-- |

NAME PURPOSE LOCATIONS

I generic loop INIT, LAND,
counter TRACKING, KEYS

XUL x coordinate HARNESS, WINDOW,
upper left-hand DATA
corner of window

YUL y coordinate HARNESS, WINDOW,
upper left-hand DATA
corner of window

XLR x coordinate HARNESS, WINDOW,
lower right-hand DATA
corner of window

YLR y coordinate HARNESS, WINDOW,
lower right-hand DATA
corner of window

CWIND window color HARNESS, WINDOW,
AXES, DATA

CONTS # of land masses HARNESS, LAND,
DATA

XYAX x coordinate HARNESS, AXES,
Y-axis DATA

YTOP y coordinate HARNESS, AXES,
Y-axis top DATA

YBOTT y coordinate HARNESS, AXES,
Y-axis bottom DATA

YCOL Y-axis color HARNESS, AXES,
DATA

YXAX y coordinate HARNESS, AXES,
X-axis DATA

XLEFT x coordinate HARNESS, AXES,
X-axis left DATA

XRITE x coordinate HARNESS, AXES,
X-axis right DATA

XCOL X-axis color HARNESS, AXES,
DATA

113

NAME PURPOSE LOCATIONS

HSCALE horizontal scale AXES

VSCALE vertical scale AXES

H loop counter AXES

V loop counter AXES

UPDX x coordinate UPDATE
symbol center

UPDY y coordinate UPDATE

symbol center

UPDT$ symbol UPDATE

UPDL$ speed leader UPDATE

HORZUP horizontal UPDATE
increment

VERTUP vertical UPDATE
increment

COLUP symbol color UPDATE

UPGND pixel color UPDATE

COL$ color string UPDATE

WANTS symbol string UPDATE

ALSO$ speed leader string UPDATE

UPD loop counter UPDATE, KEYS,
TRACKING

LAND1(,) land point LAND, DATA

LAND2(,) land point LAND, DATA

LAND3(,) land point LAND, DATA

ISLE loop counter LAND

CENTX x coordinate LAND, DATA
land point

114

"A

NAME PURPOSE LOCATIONS

CENTY y coordinate LAND, DATA
land point

p
1
.MOVE loop counter TRACKING, DATA,

DO$ uer inut TRCKIN

DO$ user input TRACKING
D0$ue nptTAKN

GO$ user input KEYS

HOOK hooked track KEYS

indicator

SIZECL length of CLASS$ KEYS

IA$ user input KEYS

DEL delete track KEYS

indicator

115

LA

APPENDIX 0: LISTING OF TEST 10.ASM

TITLE -- TEST OF FILLING SCREEN WITH SYMBOL

PSTACK SEGMENT STACK 4

DW 100H DUP (OFH)
STK TP LABEL WORD
PSTACK ENDS

P DATA SEGMENT
SYMBOL DB 00000000B, 00000000B, 01111110B

DB OOOOOOOOB, OOOOOOOOB, 01100110B
DB OOOOOOOOB, OOOOOB, 01100110B
DB OOOOOB, OOOOQOOB, 01100110B
DB OOOOOOOOB, OOOOOB, 01100110B
DB 00000000B, OOOOOB, 01100110B
DB OOOOOOOOB, 00300000B, 01100110B
DB 00000000B, 00000000B, 01100110B
DB OOOOOOOOB, OOOOOOOOB, 01111110B

SHAPE DB 01111110B
DB 01100110B
DB 01100110B
DB 01100110B
DB 01100110B
DB 01100110B
DB 01100110B
DB 01100110B
DB 01111110B

TIME DB '00:00:00.00', 13, 10, $
TEN DB 10
DATAl DB 16 DUP (OBH)
DATA2 DW 8 DUP (OBOH)
PDATA ENDS

INCLUDE PARM.DEF
INCLUDE DOSFUNC.MAC

PCODE SEGMENT
ASSUME CS:PCODE, DS:PDATA, SS:PSTACK

START: MOV AX, PSTACK ;set up SS through AX
NOV SS, AX
NOV SP, OFFSET STK TP ;set up SP

PUSH DS ;save for far return
SUB AX, AX ;ensure 0 offset for far rtn
PUSH AX

116

MOV AX, P DATA ;set up DS through AX

MOV DS, AX

SUB AX, AX ;zero AX, to save 10 port
IN AL, 10_PORT ;status

PUSH AX ;save status

CALL CLS ;clear the screen

PUSH CX ;save registers, then
PUSH DX ;call the timer routine

CALL TIMER

POP DX ;restore the registersPOP CX

MOV AL, 78H ;prepare 10 port
OUT 10 PORT, AL

MOV Sf, 0 ;set up symbol part counter

SUB BP, BP ;zero BP, for offset

SUB AX, AX ;zero AX, for symbol
MOV AL, SYMBOL[SI] ;top scan-line of symbol

MOV BH, L COUNT ;loop counter for loop L

MOV BP, L:NE ;start BP negative, to
NEG BP ;bring it to 0 at beginning

;of loop

;outer loop (L) -- for L=1 to L COUNT do

begin
fill line (L) with symbol r

end

LOOPL: ADD BP, LINE ;move offset to next line
MOV CL, ICOUNT ;set loop I counter

;second loop (I) -- for I 1 to I COUNT do
; begin

write (symbol) @ line L, position I
end

LOOPI: MOV DI, 0 ;reset scanline counter
MOV AL, SYMBOL[SII ;get top scan-line

MOV AH, SHAPE[DI] ;symbol shape, for clearing
NOT AH ;space with inverse

;third loop (J) -- for J=1 to JCOUNT do
begin

write(symbol, scanline(J)
end

117

.-. - --- '. ". . '. " -. -. -'. ' - : '- -. . -' -' - - -v.-L •, ' • .: " ' - - 'j ' Z :

LOOPJ: PUSH AX ;save symbol, use AX to
NOV AX, B PLANE ;reset ES to blue plane
MOV ES, AX
POP AX ;restore symbol to AL
MOV BL, KCOUNT ;set counter for loop K

;inner loop (K) -- for K=1 to KCOUNT do
begin

negate symbol
; AND symbol with plane (K)

negate symbol
OR symbol with plane (K)

end

LOOPK: AND ES:[BP], AH ;AND shape inv. with plane (K)
OR ES:[BP], AL ;OR symbol with plane (K)
DEC BL ;count loop K iterations
CMP BL, 0 ;loop K done?
JLE K DONE ;Yes, go to end of loop K
PUSH AX ;No, save symbol, use AX
MOV AX, ES ;to modify ES for next
ADD AX, PLANE ;color plane

MOV ES, AX
POP AX ;restore symbol in AL
INC SI ;move to next symbol part
MOV AL, SYMBOLISI] ;get next symbol part
JMP LOOPK ;repeat loop K

KDONE: INC DI ;count loop J iterations
CMP DI, J COUNT ;loop J done?
JGE J DONE ;Yes, go to end of loop J
ADD BP, VERT ;No, move to next scan-line

INC SI ;get next symbol part
MOV AL, SYMBOL[SI] ;next scan-line of symbol

MOV AH, SHAPE[DI] ;next scan-line of shape
NOT AH

JMP LOOP_J ;repeat loop J

JDONE: DEC CL ;count loop I iterations
CMP CL, 0 ;loop I done?
JLE I DONE ;Yes, go to end of loop I
MOV SI, 0 ;back to first part of svbol
SUB BP, LINE ;No, move to start of synbol

;just done, then
INC BP ;move to right one byte
JMP LOOP I ;repeat loop I

I DONE: DEC BH ;count loop L iterations
CMP BH, 0 ;loop L done?
JLE LDONE ;Yes, go to end of loop L

118

d

4

SUB BP, XLINE ;No, move to start of
;last character, then

MOV SI, 0 ;reset symbol part counter
JMP LOOPL ;repeat loop L

L DONE: PUSH CX ;save registers, and
PUSH DX ;call timer
CALL TIMER
POP DX ;restore registers
POP CX
POP AX ;restore 10 port status
OUT 10 PORT, AL

EXIT PROC FAR
RET

EXIT ENDP

INCLUDE CLS.SUB

INCLUDE TIMER.SUB

INCLUDE BOX.SUB

P CODE ENDS
END START

119

o . . . o o. ° ,

APPENDIX P: LISTING OF TEST 3.ASM

TITLE EXPERIMENT 8 -- TEST BOX SUBROUTINE

P STK SEGMENT STACK
DW 100H DUP (OOH)

STK TP LABEL WORD
PSTK ENDS

P DATA SEGMENT
TIME DB '00:00:00.00', 13, 10, '$'

TEN DB 10
DB 20H DUP (7)

PDATA ENDS

INCLUDE PARM.DEF
INCLUDE DOS FUNC.MAC

P CODE SEGMENT

ASSUME CS:PCODE, DS:PDATA, SS:PSTK

START: MOV AX, P STK
MOV SS, AX
MOV SP, OFFSET STK TP

PUSH DS.
SUB AX, AX

PUSH AX

MOV AX, PDATA
MOV DS, AX

SUB AX, AX

IN AL, 10 PORT ;save 10 port status
PUSH AX

CALL CLS ;clear the screen

PUSH CX
PUSH DX

CALL TIMER
POP DX
POP CX

MOV B1, Y START ;vertical start line
MOV AH, Y STOP ;vertical stop line

MOV BL, X-START ;horizontal start column
MOV AL, XSTOP ;horizontal stop column

120

.. ' 7 _'.l, .,o ,.
-

" :£ - , 'k - *.", .'a . "- . , "

n~-. . .~* - w-v- s'ww r

MOV CL, COLOR ;COLOR box
MOV CH, OFFH ;solid pixel line "

CALL BOXF ;draw box

MOV BH, Y START

MOV BL, GRIDX START ;draw Y-axis

MOV AH, Y STO P

MOV AL, GRIDX STOP

NOV CL, GCOLOR

MOV CH, 0FOH ;to blank out space

CALL BOXF

CMP CL, 0 ;if grid black,

JE X AXIS ;it is already drawn K]

MOV CU, OFOH ;half-byte width

CALL BOX F ;actually draw Y-axis

X AXIS: MOV BH, GRIDY START ;draw X-axis

MOV BL, X START

MOV AH, GRIDY STOP

MOV AL, XSTOP

MOV CL, GCOLOR

MOV CH, OOH ;to blank out space

CALL BOX_F

CMP CL, 0 ;if grid black,

JE OVER ;it is already drawn
MOV CH, OFFH ;solid pixel line

CALL BOX F ;actually draw X-axis

OVER: PUSH CX
PUSH DX

CALL TIMER
POP DX

e. POP CX

POP AX ;restore 10 control port
OUT 10 PORT, AL

EXIT PROC FAR

RET
EXIT ENDP

INCLUDE BOX.SUB
INCLUDE CLS.SUB
INCLUDE TIMER.SUB

P CODE ENDS

END START

121

• I.

APPENDIX Q: LISTING OF TIMER.SUB

, this is a subroutine which gets and converts the time,

then displays it

INPUTS: none

I
OUTPUTS: the time is displayed on the screen

FLAGS: none

REGISTERS: none

TIMER: GET TIME
CONVERT CH, TEN, TIME
CONVERT CL, TEN, TIME[3]

CONVERT DH, TEN, TIME[6]
CONVERT DL, TEN, TIME[9]

DISPLAY TIME
RET

end of timer subroutine

122

~ -- ~ - .,- -. . . .

APPENDIX R: LISTING OF BOX.SUB

wa-ohaeqls eh topx p whiqt§uhihost osueplraipo posp hl ebs wuossl

COMMENT *

INPUT: BH vertical line to start box on (0 - 23)
BL = horizontal column to start box on (0 - 79)

AH = vertical line to stop box on (1 - 24)

AL horizontal column to stop box on (1 - 80)

NOTE: if AX < BX an error will result
10 control port needs to be saved prior to calling this
subroutine

OUTPUT: generates a colored box on the screen

FLAGS: none returned

REGISTERS: used as noted above, preserved

BOX F: PUSH AX ;save all registers used
PUSH BX
PUSH CX
PUSH DX
PUSH DI
PUSH SI
PUSH BP
PUSH DS

SUB DX, DX ;zero DX
MOV DH, BH ;get start line
SHL DX, 1 ;convert to necessary offset
SHL DX, 1
SHL DX, 1
MOV DL, BL ;rest of start offset
MOV SI, DX ;starting offset

SUB AL, BL ;how many bytes across
MOV DL, AL ;DL <--- horizontal count

SUB AH, BH ;how many lines down
MOV DH, AH ;DH <--- vertical count

CMP CL, 4 ;does color include green?
JGE GREEN ;Yes, go to green
CMP CL, 2 ;No, does it include red?

123

JGE RED ;Yes, go to red

JCXZ BLACK ;if CL=O, handle black
MOV AX, OCOOOH ;No, handle blue

MOV DS, AX
MOV AL, 38H

JMP PREP

RED: MOV AX, ODOOOH ;handle red, magenta
MOV DS, AX

SUB CL, 2 ;is color red?

JNZ MAGNTA ;No, go to magenta
MOV AL, 68H

imp PREP

MAGNTA: MOV AL, 28H

imp PREP

GREEN: MOV AX, 0E000H ;handle green, cyan, yellow,

MOV DS, AX ;and white
SUB CL, 4 ;is color green?
JNZ CYAN ;No, check for cyan

MOV AL, 58H ;Yes, handle green
imp PREP

CYAN: CMP CL, 1 ;is color cyan?
JNE YELLOW ;No, try yellow

MOV AL, 18H ;Yes, handle cyan

JMP PREP

YELLOW: SUB CL, 2 ;is color yellow?
JNZ WHITE ;No, must be white

MOV AL, 48H ;Yes, handle yellow
JMP PREP

WHITE: MOV AX, OCOOOH
MOV DS, AX

NOV AL, 08H

JMP PREP

BLACK: MOV AX, OCOOOH
MOV DS, AX
MOV AL, 78H

PREP: OUT 10 PORT, AL
MOV AL-, CH

SUB CX, CX
MOV CL, DL ;horizontal count

XOR BP, BP
NOV DL, DH
XOR DH, DH
MOV BP, DX ;vertical count j

124

NOV DI, 128 ;l.ine spacing
PUSH SI
PUSH CX

LUPE: NOV [SI], AL
NOV ES:[SI], AL

INC SI
LOOP LUPE

DEC BP
JZ FINISH
POP CX
POP SI
ADD SI, DI
PUSH SI
PUSH CX
imp LUPE

FINISH: POP CX
POP SI
POP DS
POP BP
POP SI
POP DI
POP DX
POP CX
POP BX
POP AX

RET

end of subroutine to draw box

125

APPENDIX S: LISTING OF CLS.SUB

subroutine to clear the screen, ZENITH

INPUT: none

OUTPUT: none

FLAGS: none

REGISTERS: none

CLS: PUSH AX ;save register used

IN AL, OD8H ;prepare to save 1O control
PUSH AX ;port status, and save it

MOV AL, OFH ;blank the screen

OUT OD8H, AL

IN AL, ODBH
AND AL, OF7H ;SET = 0
OUT ODBH, AL

IN AL, OD9H

AND AL, OF7H ;activate CLRSCRN
OUT OD9H, AL

MOV CX, 6680 ;wait
DELA: NOP

LOOP DELA

IN AL, OD9H

OR AL, 08H ;de-activate CLRSCRN
OUT OD9H, AL

POP AX

OUT OD8H, AL ;restore 10 control port

POP AX ;restore register

RET

end of clear screen routine

126

°..-.--...-- ~

APPENDIX T: LISTING OF DOS FUNC.MAC

this is a file of MS-DOS 2.0 function macros

gettime is a macro which puts the time in CX and DX

GETTIME MACRO
MOV AH, 2CH
INT 21H
ENDM

; convert is a macro which converts the value parameter into
; a number in the base parameter system, and puts the
; converted value in the destination parameter location

CONVERT MACRO VALUE, BASE, DESTINATION
LOCAL TABLE, START
JMP START

TABLE DB "0123456789ABCDEF"

START: MOV AL, VALUE
XOR AH, AH

XOR BX, BX

DIV BASE
MOV BL, AL
MOV AL, CS:TABLE[BX]

MOV DESTINATION, AL
MOV BL, AH
MOV AL, CS:TABLE[BXI
MOV DESTINATION[1], AL
ENDM

display is a macro which displays a string located in
; memory at the location passed in the parameter string,

; and the string must end with the ASCII code for '$', 24H.

DISPLAY MACRO STRING
MOV DX, OFFSET STRING

MOV AH, 09H
INT 21H
ENDM

127

~ .. b . ~ .A i

APPENDIX U: LISTING OF PARM.DEF

file of parameter definitions

i/o port address
IOPORT EQU OD8H

;horizontal(X), vertical(Y) start/stop corners of a box

X START EQU 4
X -STOP EQU 58
Y-START EQU 6

Y7 STOP EQU 243

;color of the box

COLOR EQU 3

;horizontal(X), vertical(Y) start/stop corners of boxes that

;will serve as grid lines

GRIDX START EQU 18
GRIDX STOP EQU 19
GRIDY START EQU 17

GRIDYSTOP EQU 19

;color of the grid lines

GCOLOR EQU 4

;constants for loop counts and symbol location shifting

LINE EQU 1024 ;required to shift one vertical line

;on the screen

;length of line in bytes

X LINE EQU 79
BPLANE EQU OCOOOH ;start address of blue plane
I-COUNT EQU 80
J COUNT EQU 9 ;counter for loop J
K--COUNT EQU 3 ;counter for loop K
L-COUNT EQU 20 ;counter for loop I
PLANE EQU 1000H ;address difference between color

;planes
HORZ EQU 1 ;horizontal space shift
VERT EQU 128 ;vertical space shift

128

J - - , " . . y * " . . *, , ,, K2 . a . -- -U -

.- j

;size of one character, nine scan-lines

SIZE EQU 1152
HITE EQU 1280

12

s. 129

1.2 C _I..

.%

APPENDIX V: USER'S MANUAL FOR ASSEMBLY PROGRAMS

A. HOW TO USE THE MACRO-86 PROGRAMS 0

Thp Macro-86 assembly language programs included in this

thesis have been assembled and linked. To run any of the

tests simply type the filename at the system prompt. The

file READ.ME on each distribution disk describes what

each file is named and what it does.

B. UNDERSTANDING THE CODE

The internal documentation explains the Macro-86 code

step by step. We will not indulge in a line by line

explanation as Appendix N does for the BASIC code. This

Appendix will discuss some of the reasons behind the code in

the test file, Appendices 0 and P.

We set up our own segments for stack, data, and code

because we are using the EXE format rather than the COM

format. The EXE format is necessary to provide direct

control of the video random access memory (VRAM) addresses.

The first entries in the data segment are the bytes

which define the test symbol. For these tests we did not

establish complete symbol tables and perform table look-ups,

as we were interested in establishing simple timing bases

for efficiency comparisons with the BASIC prototype. SYMBOL

is defined in binary form to allow visualisation of its

130

! °'' --. .''''' . .- .'-'.-' . . , % - ' ? • - " ' '% , .. , ., . I

- - - .- -*~S ,~p .'.- - .- r~r~r -W ' - * ~ wy

constituent parts. The first byte on each line of SYMBOL

defines its blue plane, the second the red and the third the

green planes. This initialization may alter the shape or

color of the symbol. The symbol may even be constructed of

multi-colored parts. This would not matter in a monochrome

system, of course. Since the microcomputer laboratories

currently operate only monochrome monitors, this test symbol

is defined in the green plane only.

The shape of the symbol is next defined separately.

This is necessary because a non-white symbol possesses a

shape which differs in each color plane. The test symbol is

a prime example -- its shape in the green plane matches

* exactly that of SHAPE, but it has no shape in the red and

blue planes.

In order to maintain the purity of the background and

symbol colors, a space must be cleared for the symbol in all

three color planes (on a color system, or a monochrome

system with the color option installed) to all zeroes. The

way in which color is generated (superimposing three pixels,

one of each color plane) drives this necessity.

Figure V.1 illustrates the problem. In Figure V.1 the

background color planes are represented in part (a), the

test symbol in part (b). Parts (c), (d) and (e) of the

Figure exhibit the results of an OR, AND and XOR operation,

respectively, between the color planes of the symbol and

those of the background. None of the results produces the

correct result of background and symbol, shown in part (f).
131

COLOR PLANE

BLUE RED GREEN

1 1 10 0 011 1
I0

1 1__0 0 1_ _1

(a) Background

00 1 1 0 0 0

0 0 0 0 0 0 00 0

(b) Symbol

0 1 0 0 0 0 00 0

0 00 0 0

(c) Background AND Symbol

i II i0 1 1

01 0 0 0 11 1

(d) Background OR Symbol

1 0 0 0 1 1 11 1

11 1 0 0 0 1 1 1

(e) Background XOR Symbol

0 1 1 1 0 0

11 10 0 0 1 1 1

(f) Desired Results

Figure V.1 Results of Operating with Symbol Directly

132

r

- .. S *
o
.** ~ q., * 4 4

*Figure V.2 illustrates the solution. The background

planes are in part (a), as before. Part (b) is the shape of

the symbol inverted and stored in each plane, creating a

mask which is ANDed with the background to produce part (c).

This mask is created by the SHAPE stored in data. By

performing the AND operation of the background and the

inverse of the symbol shape, a screen area of background

with black where the symbol will appear is created (c).

Part (d) is the actual symbol, which will appear differently

in each color plane unless it is all white. When (c) and

(d) ar 4 OR'd together the correct background/symbol colors

appear in part (e), matching part Mf.

The PARM.DEF file which is included next is a file of

defined constants. During the development process the

collection of all constants in one separate file allowed :

simpler experimentation and debugging.

Another file, DOSFUNC.MAC, is included after PARM.DEF.

This is a file of Microsoft Disk Operating System Function

Macros (hence the name and the extension). These files may

be found at the end of chapter four in Reference 4. They

are macros that perform some of the basic MS-DOS functions.

The first three lines of the code segment (after the

ASSUME statement) initialize the stack segment register and

the stack pointer. The AX register is used as an inter-

mediary, because the segment registers should never be

written to directly.

133

COLOR PLANE

BLUE RED GREEN

1 1 1 0

11 1 0

(a) Background

1 0 0 1 1 1 1 0 0

(b) Symbol Shape, Inverted

10 0 0 0 01 0 0

1 1 10 0 011 1

(c) Background AND Inverted Shape

0 1 '1 0 1 1 0 0 0

00 00 0 0 0 0 0

(d) Symbol

11 01 110 0

(e) Symbol OR'd with (c)

10 1 1

1 1 10 0 01 1 1

(f) Desired Results

Figure V.2 Results of Operating with Shape and Symbol

134

b.N

* ** -.r *.*-- * .- ,-..* .-. ,*.

.°,. * '.' . .- . ', . ".,". • i . ' ". , .. " - . -. -. > < . .'. . --. -. - . -* ? .i . .- . .. " -- . , .- . . - . ' - .' . .. , < . - . - .i

Jr

After that, three lines prepare for a graceful exit. If

a Macro-86 program is ended with a far return, and the stack

has had the proper addresses saved on it for this type of

exit, a simple return to the operating system is effected.

The preparation of the stack involves saving the DS

register, and an offset of zero. Having saved the DS

register for the return, the next two lines initialize it to

access our own data segment.

It is not absolutely necessary to include the next three

lines of code. They read and save the input/output port

status. This is our standard programming practice of

utilizing the stack to save values (such as status

registers) that our program modifies, in order that they may

be properly restored upon completion of our program's

execution.

After clearing the screen, the registers involved in

creating a window on the screen are loaded with the

necessary values. The header at the top of the BOX.SUB file

describes what values are needed, and how they are used.

Next we call the timer routine, in order to measure the

time efficiency of the routine which draws the symbols. The

input/output port is prepared by the next few lines of code

to allow our symbol-drawing operation.

The next six lines of code, from SUB BP, BP through NEG

BP, make preparation for entering our outer loop. The base

pointer (BP) register is initialized to a negative

135

value so that the outer loop may begin each repetition by

incrementing a value equal to LINE and still begin the first

iteration at a value of zero. The value of zero is

equivalent to the upper left-hand corner of the screen.

Labels identify the statements which make up the tops of

each of the iterative loops. The internal documentation

identifies the initialization required for each loop. The

order of steps could be modified to save a few operations

involving the accumulator (AX). We elected to write the

code this way for clarity of purpose.

The inner loop, LOOPK, first performs the AND

operations discussed earlier, to clear a space for the

symbol. Then the OR operation described is performed, to

write the appropriate plane of the symbol into the proper

color plane. The loop is repeated for each color plane, 2

making use of the ES register to point to the proper

location in VRAM.

The third loop, LOOP J, repeats the inner loop for each

scan line of the symbol. LOOP I fills each line with

symbols, and LOOP L fills the specified number of lines.

C. MODIFYING THE CODE

The easiest changes are to the symbol. Its shape is

modified by changing the binary definition of it within the

data segment of the driver program. Corresponding changes

should be made to the bytes defining SHAPE in the same

136

program. Defining the symbol in different color planes

and/or combinations of color planes modifies its color. If

the binary representation differs from color plane to color

plane a multi-colored symbol is possible. However, the

shape is singly defined with the current program version,

and the colors desired may not be the ones displayed. The

actual symbol display will depend upon background. All

other simple changes, those not affecting the program logic

but just modifying the display, are made by altering the

values of the constants in the PARM.DEF file. Those are

discussed in the next section.

D. CONSTANTS

The constants defined in the PARM.DEF file (Appendix U)

determine the display characteristics. They are listed in

tabular form below, along with their use.

NAME PURPOSE

10 PORT port address for Zenith input!
output port status register

XSTART x coordinate (in pixels) of left
side of window

X STOP x coordinate (in pixels) of right
side of window

Y START y coordinate (in pixels) of top
of window

YSTOP y coordinate (in pixels) of bottom
of window

COLOR color of window

137

" . Z 7- 7 . -.

NAME PURPOSE

GRIDXSTART x coordinate (in pixels) of
left of vertical reference grid

GRIDX STOP x coordinate (in pixels) of
right of vertical reference grid

GRIDYSTART y coordinate (in pixels) of
thu g2 ,,.c,,. yd2dyd'd ,ynl

GRIDY STOP y coordinate (in pixels) of
bottom of horizontal reference grid

GCOLOR color of reference grid

LINE address modification required to
shift down one line on the screen

X LINE number of right-most byte on one
character line of the display

B PLANE address of blue color plane in
VRAM

I-COUNT number of symbols to write

horizontally

J_COUNT number of scan lines per symbol

KCOUNT number of color planes

L COUNT number of lines to fill with
symbols

PLANE hex difference between color
plane addresses

HORZ number of bytes to shift right
while filling symbols in

VERT difference in address between
top scan-line address and
bottom scan-line address of
the same symbol position on
the screen

SIZE not used

HITE not used

138

! I.

4I

LIST OF REFERENCES

*1. Z-100 User's Manual, Zenith Data Systems Corporation,
1982.

2. Microsoft MS-DOS Version 2, Zenith Data Systems
Corporation, 1984.

3. Adams, James C., Computer Graphics, Heath Company, 1985.

4. MS-DOS Version 2 Programmer's Utility Pack, Zenith Data

Systems Corporation, 1984.

139

CSAL

. , ,, .Y I- 5 _ , ,q, . v-. , . . ' : .'- . -S" - . _'- " " -- ; " - : . ;--- w -- - . ' -.- - " -. " " "--- ' ''

I
BIBLIOGRAPHY

Barnes, J.G.P., Programming in Ada, Addison-Wesley
Publishing Company, 1984.

Larsen, Lawrence P., Assembly Language Programming, Heath
Company, 1984.

Rector, Russell and Alexy, George, The 8086 Book, OSBORNE/
McGraw-Hill, 1980.

140

,4 4

Ul

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943

3. Department Chairman, Code 52 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

4. Dr. Uno R. Kodres, Code 52Kr 3
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

5. LT Ken Coomes 3
c/o Peggy Todd
12 Horseshoe Drive
Litchfield, New Hampshire 03051

6. CDR Ron Rautenberg, Code 52Rt 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

7. CAPT J. Donegan, USN
PMS 400B5
Naval Sea Systems Command
Washington, D.C. 20362

8. PCA AEGIS Data Repository
RCA Corporation
Government Systems Division
Mail Stop 127-137
Moorestown, New Jersey 08057

9. Library (Code E33-05) 1
Naval Surface Warfare Center
Dahlgren, Virginia 22449

141

10. Dr. M. J. Gralia
Applied Physics Laboratory
John Hopkins Road
Laurel, Maryland 20707

11. Dana Small
Code 8242, NOSC
San Diego, California 92152

12. LCDR Paul Callahan, Code 52Cs
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

13. Computer Technology Programs, Code 37
Naval Postgraduate School
Monterey, California 93943-5100

142

142

,°,

% *J

