o~
N
L J
-4
N
w

mu
~f
2
win
um
T
NO
==

P-4
¥
x5
o

ﬂ
Sa
-l
[g =3
CE

=]
mn
]
wo
>3
[%)
N--s
i
Ll =]
(-1 4
uu
i
(]
g8
-0

AD-A169 833
UNCLARSSIFIED

o W "B TIRCAR,

IW P 2

Al

e tve,

‘f

B
122

20

123

==

SEEFE

m_mhm.—m:p_..._.t“

2l

.8

—
—
—
E——

i

3

Iz |

MICROCOM

NAVAL POSTGRADUATE SCHOOL

Monterey, California &

AD-A169 053

THESIS

TACTICAL DISPLAY SIMULATION ON THE H/Z-100 :QJ

by
Kenneth W. Coomes

March 1986

Thesis Advisor: Uno R. Kodres

o SN

Q.

O

(-

Loy

[e
. E Approved for public release; distribution is unlimited. -::::':

SECURITY CLASSIFICATION OF THIS PA

REPORT DOCUMENTATION PAGE

ta REPORT SECURITY CLASSIFICATION

1b. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b OECLASSIFICATION / DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;
distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

S MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL
(If applicable)

Naval Postgraduate School Code 52

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6¢ ADDRESS (City, State, and ZIP Code)
Monterey, California 93943-5000

Monterey,

California

7b. ADDRESS (City, State, and 2/P Code)

93943-5000

8a NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL
ORGANIZATION (If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

B¢ ADDORESS (City, State, and 2IP Code)

10 SOURCE OF FUNDING NUMBERS

PROGRAM

ELEMENT NO

PROECT
NO

TASK
NO

WORK JUNIT
ACCESSION NO

Tt ONTLE (include Security Classification)

TACTICAL DISPLAY SIMULATION ON THE H/2-100

SERSONAL AUTHOR(S)
Coomes, Kenneth W.

"3a TYPL OF REPORT 13b TIME COVERED
Master's Thesis FROM 10

14 DATE OF REPORT (Year. Month Day)
1986 March

27

'S PAGE COUNT
143

- —

‘6 SLPP_EMENTARY NOTATION

i COSATI CODES

MACRO-86,

18 SUBJECT TERMS (Con

LANGUAGE

O ue on reverse f necessary and dentify by block number)
TELD GROUP SUB-GROUP TACTICAL DISPI .Y SIMULATOR, H/Z-100, GRAPHICS, 7BASIC,

ASSE IBLY

are performed for comparison.

implementation should be in Macro-86.

) A3$7RACT ‘Continue on reverse if necessary and dentify by block number}
This thesis explores the feasibility of developing a tactical displav simulator on the

H/7-100 microcomputer. A prototype simulator is implemented in ZBASIC, some graphics
functions reoutines are implemented in Macro-86, and timing and performance measurements

the

code,

Listings of the programs developed are presented, as well as instructions for their
effective use. Directions for the modification of
areas ot exploration and further development are included.
It is concluded that a tactical display simulator is feasible, and that the final

and suggested profitable

LV TP 3, T ONCAVAILABILITY OF ABSTRACT

X asSEEDUNLCMITED (D SAME AS ReT Ooric 1seRs

21 ABSTRACT SECURITY CLASSIFICATION
'melassitfied

L ANTE OF RESPONSIBLE NOIVIDUAL
Uno R. Kodres

22b TELEPHONE (Include Ared Codej
48 hAh=2197

22¢ QFFILE SYMBOL
S2Kr

DD FORM 1473, aamanr

83 APR ed:tion may be used untii exhausted

Alt other edit.ons are cbsolete

SECURITY CLASSIFICATION 0OF “w§ PAC T

Approved for public release; distribution is unlimited. Y

gt o e " ™

Tactical Display Simulation on the H/Z-100

[
L N]

by
X .
Ken Coomes Iy
Lieutenant, United States Navy N
B.S.E.E., University of Washington, 1978 “
Submitted in partial fulfillment of the -
5 requirements for the degree of o
.: MASTER OF SCIENCE IN COMPUTER SCIENCE 2
- from the ¢
- h Y
N NAVAL POSTGRADUATE SCHOOL ;
N March, 1986 z
. :) i
. Author: }’E;/b_ Cotraea— X

Ken Coomes

Approved by: é:ﬁ;,a %?\/é;35£%149 ;

Uno R. Kodres, Thesis Advisor

Ron Rautenberg, ond Reader

‘—V:\fi,)/j7f;j E

ViAcent Y. Ly Chailrman, Department of
omputer Science

| AR

Dean of Information and Policy_gfiences

-
‘

PRI NN

4 r""""&)

' . Rl el S lond o

N
)
;
ABSTRACT K
1)
) This thesis explores the feasibility of developing a Y
4/‘ i N)
. tactical display simulator on the H/Z-100 microcomputer. A :
prototype simulator is implemented in ZBASIC, some graphics -
functions routines are 1implemented in Macro-86, and timing }
and performance measurements are performed for comparison. :;
Listings of the programs developed are presented, as 3
.’-
well as instructions for their effective use. Directions .
for the modification of the code, and suggested profitable ﬁ
.
areas of exploration and further development are included.
It is concluded that a tactical display simulator is i
feasible, and that the final implementation should be in Ry
. Macro-86. ! ‘ .- . e fo B f-“v;if/‘i. "
:‘%
a Ascenon For . y
—_— ————eee - .
NTIS CRA& N -
Ui TA8 a Iy
U aohos cod 0 -
Jastfcation PN -
BY . e e
Dt tion]
| gy ol
PR A or ‘
Dist ! e
; | .
A-l | . 3
b)
Kd

Ry

o 5

L,
o

™
»

P]
PR

D2
DA}

.
e 1 81 8 8 2

R

FAFNEN

e ¢
[Y

N

y 3 « g .‘ »
Ay -va - e it i RN R A A Y

THESIS DISCLAIMER

Some terms used in this thesis are registered trademarks
of commercial products. Rather than attempt to cite each
occurrence of a trademark, all trademarks appearing in this
thesis will be listed below, following the firm holding the
trademark:

1. Zenith Data Systems Corporation

Zenith

H/2-100

Z2-DOS

ZBASIC .
2. Microsoft Corporation

Microsoft

MS-DOS

GML

D P e ettt . e e vt " m et e e . . Iy . e N Y P - T T S S S S

T e i LUNPC UL U - At et At T e e LR R S S L R

EYS i A T D - .. Y - o P
I T Tt I S S S P AR S N S A S R ISR R IR S TP N DN N T AT T S 3 A0 5 T A ST T D I I

S IPINS >l '.l‘. . .y Te g

} 0
A :
A TABLE OF CONTENTS :
‘

;' I. INTRODUCTION . . v & & v v v v & o o o v « « . 10 -
‘B II. ALGORITHMS . . + & v v o 4 4 v v o v v v « . . 16 E
. A. BASIC SIMULATOR ALGORITHM 16 :
3 B. EXPANDED SYSTEM ALGORITHM 17

2 C. CONCLUSION . . & v & v v ¢ o o o o o o« + o 24

ITI. CODE + v v v o o 4 o o o o s o o v s v v v v . 25

E? A, LANGUAGE . . . « v 4 v v o« ¢ « « « o« o« « . 25 ;
X B. DATA STRUCTURES « « v « « « o . . 27 E
] C. DESIGN DECISIONS 31 :

IV. PERFORMANCE TESTS « o « « « o « + . . 48 E

: A TIMING « v v v v v w4 o v o v o w o o . . 48 ;
: . B. EFFICIENCY . . + + v v v v v v v o o o« o . 50
i V. CONCLUSION . & v & v v 4 v o v v s o v « v o . 52

; APPENDIX A: LISTING OF NEWEST.BAS 56 :

: APPENDIX B: LISTING OF HEADER.BAS 71 N
Z APPENDIX C: LISTING OF INIT.BAS . . « + « « « « . . 72
: APPENDIX D: LISTING OF HARNESS.BAS 74

APPENDIX E: LISTING OF WINDOW.BAS 75 ;

R APPENDIX F: LISTING OF AXES.BAS 16 :

: APPENDIX G: LISTING OF UPDATE.BAS 78 i

APPENDIX H: LISTING OF MOVE.BAS 80 -

E APPENDIX I: LISTING OF LAND.BAS 82 S

; APPENDIX J: LISTING OF DATA.BAS 84 4

h)

5 -

.........................

- - . . - - , . . e . st . PR -
W E S LIS W S SIS T T ThE P Wl Yl S VIR SRS L UL TGk WL Sy Sl SO Syl W S-S Ty

LIAIMERAE AU A Al S A A5 YA Sl Ml il Pl
»

APPENDIX K: LISTING OF TRACKING.BAS 85 ~

APPENDIX L: LISTING OF KEYS,BAs 86
APPENDIX M: LISTING OF MATCH.BAS 90
APPENDIX N: USER'S MANUAL FOR DISPLAY SIMULATOR . . 91
APPENDIX O: LISTING OF TEST 10.ASM 116
APPENDIX P: LISTING OF TEST 8.ASM 120
APPENDIX Q: LISTING OF TIMER.SUB 122
APPENDIX R: LISTING OF BOX.SUB+ + « « .« . . 123
APPENDIX S: LISTING OF CLS.SUB . . . « + « « « « . . 126
APPENDIX T: LISTING OF DOS _FUNC.MAC 127
APPENDIX U: LISTING OF PARM.DEF « 128
APPENDIX V: USER'S MANUAL FOR ASSEMBLY PROGRAMS . . 130
LIST OF REFERENCES ¢ ¢ ¢ o o o o o o o o « o 139
BIBLIOGRAPHY . . . & & v 4« ¢« ¢« o o o o « o« « « &« « » 140

INITIAL DISTRIBUTION LIST . . ¢ ¢« ¢ &« & &« o « o+ « o . 141

T T TN T TRYTY W Ty

LIST OF TABLES

4.1 TIMING COMPARISONS, ZBASIC AND MACRO-86 48

4.2 PROTOTYPE SYMBOL GENERATION TIMING 50

A % 4 A

NN

S

wh NG

2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10

LIST OF FIGURES

Basic Simulator Algorithm
Expanded System Algorithm
Display Land Algorithm
Display Axes Algorithm
Do Indicated Function Algorithm . . ., .
TRACK Record Structure « .« .« .
Reference Grid Eclipsed by Land
Land Mass only Partially Painted
Solution One + v ¢ ¢ « ¢ o o 4 .
Solution TWO . . & ¢ & ¢ o o o o o o o o
Drawing a Symbol for use with PUT and GET
Moving a Symbol using PUT
Sfmbols Drawn with GML
Symbols Moved using Update
Target Course Incremeﬁts c v a4 e e .
Hooked Track o v ¢ ¢ ¢ o ¢ o« o « &
User Input Requested
Order of Data Entry ¢« ¢« . o« o .
Results of Operating with Symbol Directly

Results of Operating with Shape and Symbol

16
18
20
22
23
28
33
33
35
35
38
38
41
41
43
46
46
96
132

134

St S
etalel s
L)

g . ~ Ak ~ 5 N e
....... LA N A Sl e AR R A I A R S AR Y .. - P S I R S S S kN B o N A oy ~ 3, WY

R
» »
ACKNOWLEDGEMENT R
Q 5
A rl
N To Dr., Uno Kodres, whose patience and cooperation paved .
o
. (8
. the way for the <completion o©of this thesis. To CDR Ron &
Rautenberg, whose editorial comments improved the quality of
- the finished product. To LCDR Paul Callahan, who graciously
t donated time to proof-read the finished product. And
i especially to my wife Joanne, in appreciation of the loving Ly
3 , .)
S support and surrender of time together, in order that 1I -
.- -
: would be able to finish on time. »
:: ':‘
> .
)

" ‘e % s, b,

I. INTRODUCTION "4

A. BACKGROUND o
- The Naval Postgraduate School has arranged to purchase oo
approximately £fifty 2Zenith H/Z-100 microcomputers for the
microcomputer laboratories of the Computer Science Depart- S
ment. There were numerous reasons for that particular
microcomputer to be chosen, one of which is the fact that

it possesses a dual micro-processor architecture [Ref. 1:

R I

p. E.1]. It has the 8085, an 8-bit microprocessor, which
is typical of a simple architecture and instruction set,
. and able to run software under the CP/M operating system.
:; It uses a simple, single-segment model of memory. The -
H/Z-100 also <comes equipped with the newer and more -
powerful 8086, a l6-bit microprocessor, with an eight bit
memory interface. It makes use of a nmore complex
architecture, more internal registers (some useable as 8- .

or 1l6-bit), extended addressing modes, and a more complex s

memory management scheme, with segmentation registers.

Another attractive feature of the H/Z-100 1is 1its

e 2 » 8

graphics capability. In the <character display mode, the

H/2-100 <can display 25 rows of 80 characters. A very

important graphics ability 1is the degree of resolution —
N provided. The H/2-100 provides high-resolution dot _a
2 addressability, with a dot resolution of 640 horizontal 5

10 e

St T, FEEREEE AU S S .-
PP W WP WP Wy G PR G\ Al

dots by 225 vertical dots. In the interlace mode, the H/Z-
100 provides 640 x 512 pixels. It also comes equipped
with three 64K pages of video RAM memory, eight colors in
the color option with a color monitor, or eight grey scale
levels with the color option and a monochrome monitor ,
light pen <circuitry, and the potential for two pages of
video display to be stored simultaneocusly.[Ref. 1l: p.
E.2] As a natural consequence of this purchase, the
micro-computer laboratory 1is interested in developing a
variety of special-purpose software products to maximize
the value of these computers. A primary use for these
software products will be 1in courses which emphasize
tactical applications of computers. Graphical displays are
a vital and integral part of tactical app.ications.
Software products which ©provide dgraphical support for
tactical applications and demonstrations of interactive
graphical displays that enhance tactical decision-making is
very

desirable.

B. OPERATING SYSTEM SUPPORT

The operating system provided with the H/Z-100
computers purchased by the Naval Postgraduate School (NPS)
is the Microsoft Disk Operating System. It is our opinion
that the MS-DOS operating system 1is a powerful and
practical one. It provides the user with 54 commands, 27

resident commands and 27 transient commands [Ref. 2: pp.

11

O | CAREY

."J. : '.:'." ':

'l

S JURYY

P NSRS PSRN |

9.2-5,4]. Several of these commands are useful tools for
the software developer.

There is a deficiency in the MS-DOS operating system,
however, related to graphics-oriented applications. There
is wvirtually no operating system support of graphics
functions provided by MS-DOS, the one exception being the
CLS (clear screen) command [Ref. 2: p. 5.2].

There is a crucial need for graphics function support
of tactical applications involving real-time displays. The
system is required to provide a current graphical display
of the tactical situation at the same time that changes in
that tactical situation are being evaluated. Computations
of the time-dependent tactical elements, display of the
current situation and acceptance of user inputs to the
system must be performed simultaneously, or nearly so. The
tactical display, which may be changing rapidly in the case
of high-speed targets such as missiles and slowly where
stationary and slow-moving tactical units are concerned,
must be updated with a minimum frequency of once per second
to be useful. This requirement generates the need for

effective, special purpose, time efficient code.

C. PURPOSE

We propose, as an initial system development project to
meet the purposes stated above, the development of a Naval
Tactical Data System (NTDS) display simulator, to be

implemented on the H/Z2-100 microcomputer, A rapid

12

RS RN

X RAAAD

..-. ..
R RN

s

1
N

e~

", 7, s

DR

prototype of a display simulator will be developed, ¢to
provide guidelines for developing graphics support tools
for tactical systems applications such as those mentioned
earlier, The systematic approach used in developing this
prototype will demonstrate many of the considerations that
graphics support tools must entail. The displays this
prototype provides will be illustrative of typical tactical
displays that these applications require. Portions of the
prototype will be transferred into more time efficient
code, 1in order to ascertain the order of magnitude of
efficiency gain that may be expected and to demonstrate the
transfer process.

The development of an entire NTDS display simulator is
a major undertaking., Although it sounds good as a concept,
the 1logical first step would be a preliminary feasibility
study. This study will be an initial 1look at the
feasibility of developing an NTDS display simulator on the
H/Z2-100, We will be attempting to ascertain that
feasibility by exploring algorithms necessary to support
the graphics sub-system of such a system, since graphic
display is an integral part of the system being simulated
and will 1largely determine the real-time aspects of the
system., We will develop code for portions of the graphic
display subsystem, and perform some performance tests on
that code. We intend and hope for this to be the basis for
the development of a graphics system which permits NTDS

display subsystem simulation.

13

T [ARN:

'

* RS

r

IR TR

[N

Mr o aem San Jhut B Beb e w i dudh et A Agh A Tah Sk Jhdh Sk ok Stk g Tadhuind A e

:

D. THESIS ORGANIZATION

In Chapter II we present algorithms devel ped for this
initial project, We describe the symbol generator
subsystem algorithm in detail. Design focuses primarily on
the symbol generator itself. We also provide some of the
design considerations made, brief explanations of reasons
for specific choices, and discuss some ramifications of
alternatives. Algorithms employed to develop sample NTDS-
type displays are also presented here.

Chapter III describes the c¢ode developed and debugged
to date for the display simulator. We have a successful
prototype implemented in ZBASIC and some initial routines
for graphics support in Macro-86 assembler language.

The next chapter, Chapter 1V, is devoted to efficiency
issues. Much of the code provided in the Appendixes has
sacrificed efficiency for clarity. We felt that, in a
ground-breaking project such as this one, the use of easily
traceable logic in the code was more valuable than the use
of tricky code which might execute more rapidly. Initial
performance tests and timing runs are summarized.

The final chapter, Chapter V, provides suggestions for

the most effective use of what has been done to date, It

also suggests some of the potential future directions for
follow-on work. That is where the conclusions of this work

are presented. The focus is on what has been learned that

may be of value to other students and researchers.

Dl A s A i e i 4 At A Al Bud A~
R

Appendixes A-M are listings of the ZBASIC programs
developed to date as a working prototype of the NTDS
display simulator. A User's Manual which gives a line-by-
line description of the programs in Appendixes A-M, and
important considerations Qhen modifying the code, 1is
contained in Appendix N. Listings of Macro-86 programs are
in Appendixes 0O-U. Appendix V is a User's Manual for the

code in those Appendixes.

15

P o et e e

e
N
%!

™
>
o~
.
~
II. ALGORITHMS
'b.;:
"

O

;

A, BASIC SIMULATOR ALGORITHM
To perform the functions of an NTDS display sinulator,
we must implement an algorithm similar to that in Figure
2.1, The 1initialization depends somewhat on the
implementation chosen, The display simulator requires that
some basic items be displayed as a minimum, such as a
working area on the screen (window), a reference grid,
possibly some land or other special areas within the window
and basic symbols. A more detailed explanation of what is
displayed in our prototype is contained .n the next chapter
on code.
begin
initialize display, system
repeat
repeat
delay
update all tracks
until {(there is a user service request)
perform service requested
until (user requests exit)

end

Figure 2.1 Basic Simulator Algorithm

The user service requests are also defined by the NTDS
environment, We have chosen six NTDS-type user functions
to implement, two of which are related to use of this
simulator., Other functions may be added to the simulator

easily enough, as explained in the code chapter. They are

16

T T B T T R P JTE TN S O S T)

. e e e e B T A PR TR N L N e AR
PR N Y ~ e e e e Y e T L el e aike £adata iy tadad

not limited by those required by the simulation. The
system, particularly as a graphics subsystem, is eventually
able to support multiple purposes, including services that
are not NTDS related. The services implemented in the
prototype are a sampling of services, and are not meant to

be exhaustive,

B. EXPANDED SYSTEM ALGORITHM
The basic algorithm has been expanded through a series
of step-wise refinements to the algorithm shown in Figure
2.2. The intervening steps are not included as they would
not provide sufficient information that is not contained in
the final version to warrant inclusion.
In some statements greater detail than 1is normally
- associated with algorithmic language has been brought
forward to the algorithm itself and its explanation. This
is to begin to acquaint the reader with the prototype.
Some sections of the algorithm, whether they are
represented as single or multiple statements in Figure 2.2,
are expanded even further, where clarification was felt to
be necessary or desired. Where greater expansion has been
provided it is the aim of the author to provide insight
in o the decision-making process during the design of such
a prototype system. There has been more effort expended in
attempting to provide clear logic in the algorithms and

code presented than in driving for efficiency.

17

- B P

(AN ‘.". o ST s e t. . e I T N R o NN - - RN LA e e
L A PN S DU R RN , S SRR PRI JRP P I TP P) -‘.LA_-A‘\‘A\A‘-‘_._“_A‘. P PO Y ST R W

clear screen
initialize variables, tracks
display function key menu
read (window parameters)
display window
read (# of land masses to display)
if (# of land masses > 0) then
display land masses
read (Y-axis parameters, X-axis parameters)
display coordinate axes
read (# of tracks)
if (# of tracks > 0) then
begin
for (# tracks) times
begin
read (current track parameters)
look-up symbol to match parameters
make track active
calculate incremental movement of track
look-up speed leader to match parameters
end

end
repeat
while (no user input)
begin
update all tracks
delay
end while
if (user input is a function key) then
do indicated function
until (user input = halt)
end

Figure 2.2 Expanded System Algorithm

18

IR S R LI I B '.'."J’.‘.' Tt e e e e e e e e ", - DY LA -
Wl AL TR S S AT SR S PR AL S S Sl S P So i S i S ST s, S Tl . Vgt Pl o A S T W S T T e s

L4

) N

1., Expansion of "Display Land Masses"

Figure 2.3 is an expansion of the "display land
masses”™ statement of the Expanded System Algorithm. It is
shown because the lack of true dynamic memory allocation in
the prototype created special problems. This alcorithm
expansion 1illustrates one type of solution to those
problems. The problem is one that will not be evident in
the programming language which will be used in the future
to fully develop the graphics system. We accepted the
problem here, and dealt with it in this manner, in order to
develop the rapid prototype.

In this prototype we provide for three land masses.
The elements of the PTS array must be initialized, because
they are used to determine the amount of memory to allocate
for the 1land mass arrays. As a consequence, multiple
iterative loops are contained in the algorithm. Because
they are pre-initialized, the elements of the PTS array are
used as flags to indicate when to stop drawing land masses.
The lower bound of two was selected to allow this module to
draw even tiny representations on the display.

This is an example of a design decision point.
There are other ways that the lack of dynamic memory
allocation could have been handled. This is not the most
efficient choice, but it presents uncomplicated logic. The
data in this solution establishes a pattern. The number of

points and color for the maximum number of land masses the

19

begin
" for (# land masses) times
» read (PTS, LCOL) (# points, color for
< each land mass)
- for (PTS(1l)) times
y read (X, Y) (points for LANDI1)
for (PTS(2)) times
read (X, Y) (points for LAND2)
for (PTS(3)) times
read (X, Y) (points for LAND3)
. draw LAND1 0
- read (CENTX, CENTY) (interior pt.) N

paint LAND1

if (PTS(2)) >= 2 then (if there is LAND2) £
begin .
draw LAND2
read (CENTX, CENTY)
paint LAND2

ISR

end
else end -
v if (PTS(3)) >= 2 then (if there is LAND3)
i begin
draw LAND3
read (CENTX, CENTY) y
paint LAND3 e
end ~
end
. Figure 2.3 Display Land Algorithm g

),‘ "' .-'~' "‘ ‘; ” ‘

s 20

(B P

S, 8 aas

o« .

Yale
sfafnl el

LA,

o o 7
&6 2 s 4

system will handle must be provided as data, 1in order to
allow dimensioning of arrays. Since a number of points for
any dummy land (one point) 1s required in the data, this
solution requires that each dummy land mass have that one
point in the data. This also ensures that a user who
wishes to modify one data file rather than generate a new
one has created space 1in the data module for the added
land masses.

We note again that these are problems that will be
nonexistent in Ada, as well as in Macro-86 graphics
functions. They result from the use of ZBASIC in this
prototype, which was selected simply for the rapidity with
which a working demonstration of the display simulator
could be developed. This provides early feasibility
determination, guidelines for future development, and
demonstrates graphics concerns.

2. Expansion of "Display Coordinate Axes"

This algorithmic step 1is expanded for those who
have little or no computer graphics background. The simple
algorithm shown in Figure 2.4 deals with the problem of
maintaining the proper aspect ratio between the horizontal
and vertical axis scales, It 1is based on a program cited
in the code and written by James C, Adams [Ref. 3: p. 9-
15].

The aspect ratio in computer graphics is the ratio

of horizontal to vertical on the display. The H/Z-100

21

",
K

inndn de I 20 Be 4

4

ARARARAL I

~ .
£ v

« -
MPAT]

P XA

hY

monitor provides 640 pixels in the horizontal direction and
225 pixels in the vertical direction [Ref. 2: p. E.1]. 1In
order for the scale divisions on the two axes to appear

equal they must have different pixel spacing.

begin
calculate horizontal scale
calculate vertical scale
draw vertical axis
draw horizontal axis
draw horizontal scale divisions
draw vertical scale divisions
end

Figure 2.4 Display Axes Algorithm

3. Expansion of "Do Indicated Function®

The "do indicated function™ 1is expanded because it
is a case statement. That fact is not evident by looking
at the code, since it is written in a 1language that does
not provide a case statement construct,

We considered only partially expanding this section
of the system algorithm. Case statements are widely under-
stuod, and tend to become repetitive, Since one of the
concerns of this project is to provide development history,
and another is to document some decision process in
practice, we elected to fully expand it. The full expan-

sion is illustrated in Figure 2.5,

22

e e S I SR 1

VSRR
« ¢

‘.
B

o

begin
case function of:
begin
halt: begin
clear screen
restore function keys
exit system
end
suspend/continue:
begin
wait for user input
end
hook track:
begin
if (some track hooked) then
unhook track
2 read (track to hook)
: hook track
end
enter track:
begin
read (track parameters)
calculate track movement
look-up speed leader, symbol
display track
end
modify track:
begin
if (some track hooked) then
unhook track
read (track to modify
hook track
for (each track field)
begin
ask user if OK
if not OK then
make change

end

end

delete track:

begin
read (track to delete)
make track inactive

end

end (case)

Figure 2.5 Do Indicated Function Algorithm

R S - - s e s wm
N T e e T e e e e T -
B e P P T U I T SN SR e

Lt et . - . 0y - - -
N e e W e e, Wt . . RS
It ladalad e PO R PRV W P S SR PP Y GNP PG VI I QP

3 4s &2

C. CONCLUSION

These algorithms are simply the rough-hewn blueprints
for producing the prototype display simulator. Comparing
them with the code in Appendices A-M discloses some of the
design choices which had to be made during implementation.
Inspection of the algorithms alone reveals some of the pre-
thinking that they embody. Knowing the capabilities and
limitations of the target system and the programming lan-
guage influenced the construction of the algorithms. 1In
some instances that was beneficial, in others less so.

Algorithms could have been shown for each module of the
working prototype, no matter how trivial. This would have
served no useful purpose. The important design lesson here
1is that the more carefully the algorithm was developed and
thought out before the module was coded the more rapidly

the coding was successfully carried out.

24

T T S S e e e e e L .
-.t..\-.-'.n.'. e Te T e)'.J,‘.).__.' - - . -

- - -
P T T L P PTRRSL RPN A
DN TV TR L UGN SIS AR R B T S S

o

........

LR

-

I.I((l

P

L R

»
i’

AaAntad A el Sh. Ak Mool At Sl GalT A S I SF A D & BRI ARSI S A S 2t e a0 Bt aAl aSnaAd B iR ot SN ol st SR aAd- oA i

AAARASLN

ITII. CODE

v A. LANGUAGE

An early concern 1in any software development is the
choice of a programming language. There are a plethora of
languages and language subsets to choose from. Many times
the <choice 1is heavily dependent on the experience and
preferences of the programmer(s) and the availability of the
- preferred 1language on the target machine. These dependen-
; cies may narrow the choices but do not define absolutely the
language to use in most cases,

This NTDS display simulator is no exception to the
considerations listed above. The development phase of a new
piece of software 1is not the best of times to attempt to
learn a new language. Therefore only languages familiar to
us were considered, The H/Z-100 computers that NPS is pur-
chasing will not come with software support for all cur-
rently existing programming languages. They are capable of
using languages which possess most of the «currently

available language features.

The driving consideration 1in many projects, certainly

one of the most important issues if not the most, is the

project itself. Each lanquage has features which are better
for some applications and suffer inefficiency (or even
impotence) for others, For the display simulator the two

critical 1issues are graphics support and speed. The more

25

[NCY

T T T A T P P N S N N S S R S A S A N L N S WL A W S S S SR

ENEN

e N

graphics support the language provides, the more rapidly a
prototype may be imblemented and tested. The more efficient
the language in terms of processing speed the better it is
able to approach real-time updates of the display and its
symbology.

We feel that Macro-86 assembly language offers the most
real-time capability. If the NTDS display simulator were
written in assembly language, it would probably meet or
exceed the time requirements to provide realistic, dynamic
displays. Macro-86 maximizes the utilization of the power
of the H/Z-100 computer through segmentation and paging, as
well as allowing direct access to the color planes for video
control,

Macro-86 assembly language also offers a wide range of
interfaces with high-level languages. 1In particular we are
interested in Ada, which is available for the H/Z-100 and
which is playing an ever-increasing role in Department of
Defense applications. Ada has the ability to make use of
Macro-86 routines. This would allow Ada packages to be
written for numerous applications, making use of Macro-86
routines which provide basic graphics functions.

Macro-86 assembly language does not provide direct
support for the graphics functions the display simulator
needs, Even direct input and output requires special

handling, register control, and several lines of code.

26

ly RN

B AN N

P T

R

Y e

The considerations above led us to choose ZBASIC for an
initial prototype implementation, and Macro-86 for ultimate
development and production. We felt that a working
prototype could be developed in considerably less time in
ZBASIC (in fact, a prototype of the graphics display
subsystem has been completed and is included) and used for
experimentation, testing and further enhancement. We did
develop some basic Macro-86 routines for graphics support of
the simulator and testing, and they are included. The major
drawback of ZBASIC for further development 1is its lack of

compatibility with other high-level languages.

B. DATA STRUCTURES

It may help to visualize each track in this system as a
record of the type illustrated in Figure 3.1. ZBASIC does
not provide data structures which are composed of fields
with different types. A separate array, therefore, repre-
sents each field of the TRACK record.

The other arrays are used as look-up tables for various
attributes. The type of symbol assigned to a track is found
in the array SYM$, the speed leaders are in LDRS, the number
of points determining a land mass(up to three land masses
are provided for) are found in PTS with each corresponding

land mass color in LCOL. These tables (SYM$ and LDRS) are

initialized in lines 180-440 (see Appendix A).

e ihaie i Satebet W AL AS I AL A A e SR B S SN

.........

Rl aaih- i o tul ANl et

for ten and

There are provisions

pre~defined symbols,

seven symbols are defined in this prototype. By changing

the dimension of SYM$ and its initialization, any number of

symbols (up to memory limitations) are defineable, Changes

to the symbols should be accompanied by changes to the Match

module, which assigns symbols to tracks based on their

CLASS$. The dimension of CLASSS$ would not be changed--its

dimension, along with that of the other fields of each TRACK

record (see Figure 3,1), determine the number of tracks the

system will accommodate. These are some of the problems

inherent in a ZBASIC rapid prototype which will disappear

with Ada packages, and/or Macro-86 implementation of the
display simulator functions.
type TRACK = record

CLASS$: array [1..9] of char; (class)

cus : integer; (course)

SPD : integer; (speed)

TCOLOR : integer; (color)

TX : integer; (x position)

TY : integer; (y position)

XINC : integer; (x increment)

YINC : integer; (y increment)

TS : array [1..80] of char; (symbol)

L$: array [1l..2]) of char; (speed leader)

HKS : array [l1..2] of char; (scale)

ACTIVE : integer; (active/ref pt)

end; (TRACK)
Figure 3,1 TRACK Record Structure
There are eight pre-defined speed leaders, which

correspond to the four «cardinal and four inter~cardinal
directions. This, too, could be modified, with changes here

28

.............
NGETRAL S FAR YL IR AT R L TN T T TR Tl P SN

-
2

. .
N G

and in the Move module, which assigns speed leaders to each
TRACK based on course and speed.

The string construction of the elements of the SYM$ and
the LDR$ arrays makes use of a "language within a language"
that ZBASIC provides for graphics applications. This
language is the Microsoft "Graphics Macro Language" (GML).
(Ref. 3: p. 5.5]

There is no provision for subtypes in the ZBASIC lan-
guage. For that reason some of the fields of the TRACK
structure may inadvertently be assigned meaningless values.
In some cases that will result in program termination and
the display of an error message by the interpreter. 1In
other cases it may result in undesirable side effects, or
unexpected displays. Subtypes c¢ould have been enforced by
programming subtype checking--that is providing checks on
the bounds of variables that would be classified as subtypes
and generating error messages when they were assigned
improper values or re-assigning them automatically to values
within their bounds. For a prototype implementation of this
nature it was felt that the user could be responsible for
the correct assignment of values to variables,

The T$ and L$ fields are strings which determine the
symbol's appearance, The contents of the TS field is the
character string required to draw the symbol. It is copied
from the table of symbols (SYMS$S), based on the classifi-

cation (CLASSS$) of the track. The speed leader is looked up

29

' -~ . 4 o ALY S 4 At out Sl g S ArShdl SR Atk St S Sl Al Sk Jadh
P ~ AU AN RN AN RN A - . A . . il A AT Al AL A R A e

in the LDRS table, based on the track's course, and stored
in the L$ field for the track.

The only remaining character string field of the TRACK
record 1is HKS. This 1is a string indicating whether the
track is hooked or not (a hooked track is one that has 1its
parameters displayed on the right side of the display, at
the user's request). Regardless of whether monochrome or
color is used, a means is required to identify which track
is currently hooked (if any). We elected to indicate this
by enlarging the symbol. The HK$ string, indicating scale,
is always added to the T$ string when the symbol is drawn,

The only other data structures of note are the three

arrays for land masses which are dimensioned in the Land
module, They are two dimensional arrays in which the (x,y)
coordinate pairs for points defining the borders of land
masses (or other special areas) are stored. The Land module
then displays these areas by connecting the points with a
line the color of the land area and painting the area of the
screen bordered by that line the same color.

There is no true dynamic memory allocation in ZBASIC,
To circumnaviagate this limitation, the PTS array stores the
numbers of points defining each land mass (three are
provided for in this prototype); then the array elements of
PTS are used to dimension the land arrays when the Land
module 1is called. Multiple <calls to the module with

different values in the PTS array generate errors. The

30

WP

vy

v e -
A

-

.

DK

> v

Qe Tt e e T T e
PSR AT LR R R R

initialization of the 1lower array subscript to one will
cause errors if the elements of the PTS array are lower than
one, For that reason the PTS array elements are initialized
to ones, This problem also required that each land mass
have an array with a separate name, That led, in turn, to
the repetition of similar code 1in the Land module, once for

each land mass.

C. DESIGN DECISIONS

Some of the decisions made have already been discussed,
Others are described 1in an effort to present some project
history and design philosophy that may enlighten others, or
remove some of the mystique from "software design". The
documencation of these decisions and their reasons should
also enhance maintainability, and extend the life c¢ycle of
the project by creating an environment of modifiability.

The decision to use the special function keys for user
input was born of human factors engineering. The concept is
to make it simple for the user to make use of the system.
In order to make it as simple as possible, a special
function key menu is displayed at the bottom of the display
(close to the special function keys) which reminds the user
what each of them does. These keys are defined in the 1Init
module, and restored in the Keys module upon exit from the
system, We chose to make extensive use of data statements

for initializing the display. Because we also designed this

31

. . . - T . - - - Y. - - . - . . - Sl . .- % -".-
Vot L e e Ste e, S e s e et e SO e NS
P RS PRSP Y S U S SR S LI SRR N WP e MR e B A B Al nd LA R G S |

N

o Ty T et T Lty
L A R
A A A A s

prototype with mergable files (the data is in one file) only
the data file needs to be different for an entirely
different initial display.

The Axes module incorporates three simple yet
significant design choices. The first of these is the
scaling of the divisions along the axes. This scaling was
discussed in Section II.B.2.

The second decision was the way to draw the axes. As
shown in Figures 3.2-3.3, presenting four distinct areas
(background, land, symbols, reference grid) on a display
with only two colors (monochrome system) can be difficult,
Even on a color monitor problems arise when two or more of
these graphic entities of the same color are drawn 1in the
same area on the display. This prototype is written for
full color implementation. The sample runs illustrated were
run with the colors black and white, because the H/Z-100
monitors currently in use at NPS are monochrome monitors.

Figure 3.2 demonstrates the obvious problem. Where the
land and the reference grid overlap, the reference grid does
not appear. In this figure the land was drawn first.
Simply reversing the order of drawing, as expected, does not
solve the problem. It may introduce a different problem, as
shown in Figure 3.3.

There are two simple solutions to the problem. They are
shown in Figures 3.4-3.,5., Figure 3.4 presents the most

pleasing appearance. It was created by calculating where

EAui ek S At

a2 R S Ra Rl a R St

Figure 3.2 Reference Grid Eclipsed by Land

4
o
1!
L J
*
rS
-
-
L 4
L 3

Figure 3.3 Land Mass only Partially Painted

P e S - PR
T ST gt g e Ty e T g T L

Padifalin® el et

the conflicts would arise and mapping the reference arid in
sections, each section the <color opposite that of the
background. This may present the most elegant display, but
requires modification of the actual Axes module every time
different land is drawn,

The second method of solving the conflict is illus-
trated in Figure 3.5, After the land is drawn, a wide line
the color of the background (i.e., opposite that of the
land) is drawn where the grid will appear, then the grid is
drawn on top of it in a slightly narrower line. The picture
is not quite as elegant, and some of the land features are
obscured. This solution does offer the advantage of writing
one Axes module which will work whatever the 1land for any
particular display is. We employed this solution in the
prototype for just that reason.

The Update module may be considered the heart of the
system. It presented several interesting design alterna-
tives, many because of the language limitations of 7ZBASIC.
The reader may want to refer to Appendix G, which contains
the 1listing of the code of this module, during the reading
of the following discussion.

The first choice, which is not evident in examining the
code, was whether to place the update loop within this
module or in the <calling routine. The simulator should
periodically perform an automatic wupdate of all tracks,

independent of user input. This requirement seemed to infer

34

Solution One

Figure 3.4

L RO A A AL WMy v R, s, , R - . . . L

.....

e TS e

Solution Two

5

Figure 3.

35

that the loop should be internal. 1Initially we provided the
loop in this Update module. That worked fine, until user
interaction was added.

At any time the user may elect to delete, insert, hook
or modify a track. Ideally he/she would not have to wait N
for the next update of all tracks to see the effect of the L
service request, but should see it implemented immediately.
For this reason the 1loop was externalized, allowing this
module to be called for the single track being deleted,
inserted, hooked or modified.

We have stated that many decisions were made in the

PR

interest of <clarity rather than efficiency. One of the
exceptions to this rule is here, in the early lines of the
Update module. Several times within this module reference &
is made to elements of the TRACK record structure (Figure

3.1). Calculations of the actual address of an element in -

DR
(I BRI

1

an array are more time-consuming than references to simple

7t
.

variables. Almost all of the array elements that are
referenced are copied into local simple variables to save

time. -

et

Because the ACTIVE field 1is referred to at most twice

within Update, it was not copied but 1is referred to

;Z directly. The ACTIVE field serves two purposes with three

| allowable values. If the value of this field is zero, the
track is inactive (the user no longer desires it to be " d

displayed), and it is only erased. A value of one indicates

36

.........
:::::

an active track, and it is erased, updated, and re-drawn. A
value of two indicates a special type of "inactive" -- a
symbol which does not move (i.e., reference point, or target
with speed equal ¢to gzero). It is not erased or updated,
merely re-drawn (in case it has been partially over-written
by another track).

The next decision is one involving a sampling technique.
One common method for erasing a figure in computer graphics
is to re-draw it in the same color as its
background. That is the method we employ here.

This erasure/re-drawing could be performed automa-
tically, 1in ZBASIC, through the use I the PUT and GET
statements. The code would have been easier to write,
perhaps even quicker to execute. The problem with this easy
solution is illustrated in Figures 3.6-3.7.

The use of the PUT and GET statements is a three-step
process. The figure that 1is going to be moved is first
drawn somewhere on the screen. This has been done in Figure
3.6, providing the right-most symbol. This step precedes
the actual use of either the PUT or the GET statement. Then
the GET statement is wutilized, in the form GET (x1, vyl) -
(x2, vy2), <figure name> (A necessary preliminary step,
before even drawing the figure, is the use of a DIMension
statement to allocate memory for the drawing). The
subscripted X and y values are coordinates, the first pair

for the upper left-hand corner of a box on the screen which

..........
.......................................

TTTTY T ET A

Figure 3,6 Drawing a Symbol for use with PUT and GET

Figure 3.7 Moving a Symbol using PUT

encloses the figure, the second pair for the lower right-
hand <corner. The amount of space to set aside in memory
through the DIM statement is dependent upon the size of the
pixel box enclosing the figure. Figure name is a variable
name that 1is assigned to the portion of memory where this
pixel box is stored. The third and final step, the use of
the PUT statement, is of the form PUT (x, y), <figure name>.
The coordinates X and y are of the upper left-hand corner of
an area on the screen where the upper left-hand corner of
the original figure's containing box is to be placed. The
result will be the placement of the original figure where
the PUT statement has directed. Placing of a symbol with
the PUT statement is demonstrated by the white symbol in the
black box in Figure 3.6,

There are "action verbs", optional commands which follow
the <figure name> in the PUT statement, which determine the
relationship in the new location between the figure's box
and the background existing at the specified screen
location. Proper use of these action verbs relieves the
programmer of the need to be concerned with what the
background looks like by automatically ensuring that the
desired effect is produced when the figure is drawn, and the
background is restored when the figure is erased. The
problem with all of this is the requirement that an entire

box of pixels, enclosing the symbol, must be moved, The

results of this are illustrated 1in Figures 3.6 and 3.7.

[Ref 3: pp. 6.5-6.24)

WY Y Y YY
MR .

A solution which provides much cleaner displays, and
obscures less background wherever a symbol is placed, is

shown in Figures 3.8-3.9. The symbols are drawn using the

SIORAK

Graphics Macro Language (GML) of ZBASIC [Ref. 3: p. 5.5] in

.
P |

Figure 3.8. The results of moving them with the Update
module are shown in Figure 3.9.

We need, therefore, some method of determining the
background color (the symbol may even rest on a background
containing two colors in a monochrome display, or more than
two in a color display). We elected a point sample, for
speed and simplicity. There are problems attendant with
this method when the symbol rests on a multi-colored
background. Any sampling technique, other than examining
every pixel the symbol occupies, suffers from the same ‘%
problem. Rather than employ this time-consuming process :
(sampling every point) to solve what we expect to be an
infrequent problem, we elected to use a single point sample. ;3
We chose to look at a point two pixels to the right and one
pixel below the symbol center.

A When this sampling is applied to the new symbol position
. we face another decision. 1If the new background is the same

color as the symbol, what color should the new symbol be

R

drawn in? For a monochrome display the answer is already

XA

o

. -

determined. We elected to provide the same choice

7

RAAL AN I S R MR/ I A Sl S AR e A S e At Bl M A A A N A Rl Bl et A A Sl AL aAh MhL JAd srie SAS U SAMCHAS e taan et B ne

Figure 3.8 Symbols Drawn using GML

Figure 3.9 Symbols Moved using Update

41

N S . A - R S . . . [N A
et . N s e T e Nt f N . - . . .
fn'a 8 mn PRASUPAE/TASSRP U YO YN U T T T WP S S W W U A e S 9 " o L e o L s Ao a AJ

P APTS

in the color display. For the two darkest backgrounds,
black and blue, the symbol is drawn in white. All others,
if they match the actual symbol color, result in a black
symbol.

The final decision involved track histbry. We chose not
to store the information anywhere, partly due to the lack of
dynamic memory allocation, We did experiment with a track
history display, however. It was simple to implement,
interesting to see, and is left as an exercise for the
reader.

The decisions in the Move module have been addressed
earlier, after a fashion. We chose to use only eight speed
leader directions, For determination of the incremental
movement of the symbol across the display we divided a
circle into 20 sections (see Figure 3.10).

The actual listing of the Move module code, Appendix H,
looks more complex than it is. The first several lines of
code make the division of the circle (courses ranging from
000 degrees to 360 degrees), directing execution of the
appropriate statements to assign the increments for the
horizontal and vertical movement, as well as the speed
leader direction, The GOTO statements simply complete the
construction of a giant case statement, transferring program
control to the speed section.

Here we encounter another decision: how many different

states of speed to recognize. We chose three, representing

42

NN

Pt it ME T e

NS

slow targets (such as surface vessels), medium speed targets
(aircraft) and high-speed targets (jet aircraft and
missiles). Based on the speed category, the speed leader
and the movement increments are scaled. The special case of
a track with zero speed is also treated, by assigning no

speed leader and no incremental movement.

N

17.5° each<

10° /

Figure 3,10 Target Course Increments

o}

22.5 each 045° < cUs <= 067.5°

355°¢ CUS or

-/
—\ cus <= 005°

In the Tracking module we chose to provide £ r the
possibility of existing tracks in the initial display. This
feature allows for the establishment of various training
modules, each with different initial track selections. If
there are none, the code that treats them is skipped.

The next section o©of this module affects the delay
between updates. It also provides the opportunity to the

user to make a service request. While all tracks are being

43

s e PR TR NR

P T M M

updated, the user input is ignored. Then, for the length of
time between delays, or until the user makes a service
request, the keyboard is repeatedly checked for pressed
keys. 1In the Macro-86 implementation, this could be handled
through an interrupt service request. If the wuser makes a
request, it is checked for validity. We decided to ignore
invalid input rather than generate error messages., This was
felt to be more "user friendly" and robust. Valid input is
the use of any of the special function keys that have
defined functions. Those which are defined are displayed at
the bottom of the screen in the special function key menu,
as seen in Figures 3.8, 3.9, 3.11 and 3.12.

The decisions made in the Keys module were driven more
by requirement than <choice, in many cases. The "Halt"
request clears the screen of the display and restores the
special function keys, as a matter of good programming

. practice. The "Suspend/Continue" request waits for another
input from the keyboard. We chose to accept any key to
continue, again in the interests of robustness and "user
friendliness",

There are some interesting requirements generated by a
request to "Hook" a track. We have elected to have only one
track hooked at a time, The first thing this module does,
then, is to check to see if there is a track already hooked.
If there is, it must unhook it, This involves more than

merely changing the HKS field in its record.

44

D T ——" e C i A it e i e i g

L e e 4

0 G
* N e e

Hooked tracks are 1indicated, 1in +this prototype, by
enlarged symbols,. The enlarged symbol of the previously
hooked track must be erased, or the next erasure will only
erase a small part of it. After managing any previously
hooked track, the user is asked to specify the number of the
track to hook. It is then hooked, its symbol enlarged, and
the parameters of the track displayed to the right of the
screen. An example of a hooked track display is pictured in
Figure 3.11. In later implementations, it would be
desirable to indicate a track to hook by either its track
number or by placing the cursor near it. This prototype
does not provide for cursor-dependent user input.

The same problem, cursor-independent user input,
surfaces in the "Enter" request. The user is asked to enter
track parameters, including "Grid X" and "Grid Y". Details
of these parameters are included in the User's Manual,
Appendix N. Figure 3.12 shows a request for the user to
enter the <class of a track at the top of the screen, in
response to a depression of the "Enter” <F3> key by the
user. The problem re-appears in the "Modify" function,
where the "Grid X" and "Grid Y" of the track are verified or
modified by the user.

The Match module matches the symbol type to the CLASSS
field of the TRACK record. Arbitrary choices were made
here, and have no bearing on actual NTDS symbology. The

symbols chosen and the corresponding classifications were

45

[/

[A A

D)

e RN Ty T . o T . T ——— Te gy M i A An g S Aai Sad Mg b annd Anfh Andh Al And Bed i Sl And Bad Son et Il A - -

Figure 3.11 A Hooked Track

Figure 3.12 User Input Requested

T

46

™ 8 AL ia uidc M gaaidinter 0 i g o da- e Lt st et St B o A e Suit i g ol dud S Sk B Bh Sl Bk A B Al ahe ' @'y 4t 4

- 4

- 4
I

made simply to demonstrate the proper functioning of the

prototype.

! “1-’-'l'~' ":

k"
v s

.
», .
2 B

5

ki

”-

.
SN v e e

et ettt
R N

L L
I NN

47 .

|
4
.
"
]
.

Innly

el
48 L

."I; l. "

IV. PERFORMANCE TESTS

>
o

A, TIMING

Lol s

£

We present here the results of selected timing tests
= that were performed for purposes of comparison. The first
lj tests performed were timing two primitive functions by the
s prototype modules in each of the two languages proposed and
used., The results are presented in Table 4.1 and discussed

S below.

}4 TABLE 4.1 TIMING COMPARISONS, ZBASIC AND MACRO-86
. TEST #1 TEST #2

Window Symbol

Generation Generation

<

: ZBASIC .6854 .0846

Macro-86 .1300 .0015

All times in Table 4.1 are given in seconds. Test #l :
. was the generation of the window and the reference grid.
For the ZBASIC timing the Window and Axes modules were used
to generate 100 displays. The times were noted and the
elapsed time computed and divided by 100 to obtain the data

in Table 4.1. To time the Macro-86 routine, which does

..

. 4

v e
.

generate a reference grid but does not ensure freedom from o

color conflict and does not provide scale divisions, one K

PNLNEN

display was drawn. Timing interrupts were generated to

!

48

allow the system clock to time the performance. Although

the test conditions were not identical, the test results
are indicative of the order of magnitude of the different
performance of the two languages.

Test #2 timed the generation of one symbol. For the
Macro-86 test the screen was filled with 2000 symbols, the
time to do so recorded and divided by 2000 to obtain the
result recorded above, For ZBASIC 1000 symbols were
generated using the Update module. Because Update erases
each symbol and re-draws it, this was the time required, in
effect, to draw 2000 symbols. The relative efficiencies of
the two 1languages are again exposed, rather than the
precise difference in time required to perform the same
task.

Further timing tests were conducted using the entire
display simulator prototype. The results are tabulated in
Table 4.2 and disussed in the following paragraph.

The first three timing runs involve numbers of symbols
that are multiples of each other. The times do not follow
that exact correspondence. This is due to the overhead
involved in a call to a subroutine and a return, performed
in an iterative 1loop, Even at 99 symbols, where the
overhead per symbol becomes negligible, the update time per
symbol may be seen to exceed .15 seconds, almost twice the
time per symbol when Jjust the Update module was tested.

The suggested 1limitation of the system this data provides

49

AN AR ARt Aie 8 S \Ae A 2 AL AL A ST

is not as serious as it first seems. When only twenty
symbols were displayed, it required the operator more than
4,02 seconds to digest the graphic information displayed.
Of course, in high density tactical pictures, only the

targets of immediate priority are concentrated on.

TABLE 4.2 PROTOTYPE SYMBOL GENERATION TIMING

of Symbols Time required to update all tracks
10 2,07 seconds
. 20 4,02 seconds
- 40 7.89 seconds
S 99 15.27 seconds
.
P .

These 1initial timing results confirm our earlier

PR

e

suggestion that the prototype should be (and has been)

O 4

developed in ZBASIC in order to be available for use and
experimentation sooner, but the final system implemen-~
tation should be developed in Macro-86 assembly language.
Toward that end the Macro-86 listings in Appendices 0-U are

provided, and the User's Manual for them in Appendix V.

B. EFFICIENCY

There are other efficiency issues to be addressed. As
has been noted more than once, the prototype we have
implemented is not the most efficient possible. It may be
that when the code has been tightened up as much as can be
; the ZBASIC implementation may suffice. It is our opinion
N

. that it is, and may continue to be, gquite useful, but that

o 50

“»

a final implementation in Macro-86 would be well worth the

NN T

effort,
: Chapter 1III addressed some of the places in which the ;
S ZBASIC code sacrificed efficiency for clarity. There are g
: other indications of possible coding improvements suggested 3
in the User's Manual for the prototype, Appendix N. More -

suggestions for follow-on efforts are addressed in the next

chapter.

. -
.

51

a8 2 B

LAY

V. CONCLUSION

A. USES OF THIS PROTOTYPE

PSS

This NTDS display simulator prototype has been

developed as proof of the feasibility of such a simulator

h
P R

on the H/Z-100 microcomputer. It demonstrates the graphic
ability of the H/Z-100 to support such a simulator, gives
2 any users actual displays to experiment with and learn
from, and shows that such a simulator might present real-
time graphic updates. It may also be used to demonstrate
the graphics capability of the H/Z-100.
X The code 1listings provided, coupled with the design
. discussions 1in this text, document some of the thought
processes and decision criteria involved in developing such
a system., It may be used without modification or improve-
. ment as a simplistic display simulator for some of the
purposes put forth in Chapter I. It may become the kernel
" of a more fully developed NTDS system, wusing Ada as the
higher level language and Macro-86 when required,

The Macro-86 modules provided may be incorporated as
they are in other systems to perform very primitive graphic
functions. They model the type of development that may be
considered for _..:r assembly language functions users may
want to incorporate in this or other systems. They are

N also models of at least one form of internal documentation.

- 52

Aol R A R e S e ANAARL A Al Aia. g An AR Al taRadad An-albialatal Sotal il el Al ‘ol s Gad &d Saf- b8 Ll et g G Sl anhd B I
K

B. FOLLOW-ON WORK

The display simulator prototype in ZBASIC performs some
of the functions such a system 1is required to perform.
Functions such as track history (earlier alluded to),
automatic track sequencing, trouble tracks (tracks which
have not been updated recently enough by the user), etc.,
could be added. 1Interfaces between the assembly language
modules included and high-level languages (such as Aada)

could be developed.

C. LESSONS LEARNED

Many valuable lessons were learned during the develop-
ment of this prototype. It is not easy to assign priority
to them. The order in which they are presented 1is not
meant to imply such a prioritization. Each lesson here was
valuable, and should be given careful consideration in any
future development of this project,

Internal documentation is very important. Even as a
simple, one-programmer project, the internal documentation
of the code made corrective maintenance much easier, and
should enhance the maintainability of the code for other
programmers working with it in the future.

During prototype development such as this, clear logic
is more 1important than elegant code. Keeping the logic

clear caused a proliferation of variable names, and

53

- Ta - - » \ - v - _ _ _. ._ Ll S S A b e . - - - - it v , . - : , - . - o .E - - » "1‘\"L

y the repetition of some sections of code, but it greatly
by enhanced testing and debugging.

! ZBASIC is a more versatile langquage than it appears to
S be. This may verge on heresy in computer science circles,
: and it came as a surprise to us. The ease with which some

other high-level lanquage constructs could be constructed
in ZBASIC was an eye-opener.

At the same time, this project exposed some of the
i problems with ZBASIC for systems work. The lack of data
- structure definition was a difficult problem to overcome.

The inability to specify sub~types was also an unpleasant

.¥ reality. The real surprise was revealed in Table 4.1.

ZBASIC had not seemed visibly much slower than Macro-86,

N but the timing tests revealed the magnitude of the

difference,

D. CONCLUSIONS

The display simulator prototype has been developed.
The feasibility gquestion has been answered. The H/Z-100 is
definitely capable of providing the user with an NTDS-type
display, and with some of the NTDS user functions.

The display updates are noticeable, regardless of the
number of symbols in the system. This feature will remain
in any implementation language, because the re-location of

the symbols is in discrete steps.

54

The speed of the updates is a function of the language

e s & o & A

employed. The data in Table 4.1 provides evidence of the >

s savings in time achievable through the wuse of Macro-86

oW v e

routines. The window area alone may be generated in less

than one-fifth the time in assembly language. Drawing more
complex shapes on the screen take even longer in ZBASIC.
This is evidenced by the 56-1 time differential in drawing -
a simple symbol,

- The data in Table 4.2 1is even more revealing of the
inefficiencies of 2ZBASIC for real-time applications, It is
- readily apparent that the symbol generation within the
» prototype, rather than in a separate test module, takes
almost twice as long. The additional time delay is due to

the call-return sequence, utilizing the Update module for

L

each symbol re-location.

This does not mean that the prototype 1itself is "

LS ALDL A

useless., Fire control solutions require accurate solutions - N
- at precise instants in time, Tactical displays may lag the B
S real-time situation by as much as a few seconds and still -
. be wuseful to the human operators. A display simulator,
which utilizes keyboard input rather than radar and other
equipment inputs, is useful at even slower speeds.

We conclude that this prototype has value, as discussed
above,. Future implementation of a tactical display 3

simulator on the H/2-100, in assembly language, and/or

P A

another high-level language, is desirable and encouraged.

55 X

> >

RV T T 7T

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460

APPENDIX A:

SAMPLE NTDS

FRAME #7

LISTING OF NEWEST.BAS

DISPLAY SIMULATOR

PROTOTYPE DISPLAY

'CLEAR THE DISPLAY

' % % % % % % * INITIALIZATION AND TABLES * * * * % % *

OPTION BASE 1
)

'ARRAY SUBSCRIPT LOWER BOUND = 1

DIM CLASS$(10), CUS(10), SPD(10), TCOLOR(10)
DIM TX(10), TY(10), XINC(10), YINC(10), T$(10), L$(10)
DIM SYM$(10), LDR$(8), PTS(3), LCOL(3), HK$(10), ACTIVE(10)

SYM$(1)
SYM$(2)
SYM$(3)
SYM$(4)
SYM$(5)
SYM$(6)
SYM$(7)
SYM$(8)
SYM$(9)

[| O | N T I (I |

SYM$(10) =

LDR$(1)
LDR$(2)
LDR$(3)
LDR$(4)
LDR$(5)
LDR$(6)
LDR$(7)
LDR$(8)

L]

SYMBOL TABLE

"BM+0,-3 R3
"BM+0,-3 L3
“BM+0,-3 R3
"BM+0,-3 R2
"BM+0,-3 R3
"BM+0,-3 F3

D3 BM-6,0 D3 R3 BM+0,+3"

D3 BM+0,+3"

D6 L6 U6 R3 BM+0,+3"

F2 D3 G2 L4 H2°U3 E2 R2 BM+0,+3"
D3 BM-6,0 U3 R3 BM+0,+3"

G3 H3 E3 BM+0,+3"

"U3 R3 D6 L6 U6 R3 D6 U3"

(121
(131

SPEED LEADER TABLE

"Ul‘"
"E3"
"R5"
IIF3"
"DZ‘"
"GB"
"LS"
"HB"

START WITH NO TRACKS

DAY

56

W e

-

“‘“7 LI"Ad

. IS
- . -

470 TRACKS = 0

480

490 INITIALIZE PTS ARRAY ELEMENTS TO 1
500 '

510 FOR I = 1 TO 3: PTS(I) = 1: NEXT I
520 '

530 ' DEFINE FUNCTION KEYS

540 '

560 KEY 1, CHR$(27) + "S"

570 KEY 2, CHR$(27) + "T"

580 KEY 3, CHR$(27) + "u"

590 KEY &4, CHR$(27) + "v"

600 KEY 5, CHR$(27) + "w"

605 KEY 6, CHR$(27) + "p"

610 °

620 ' INITIALIZE HK$ AND ACTIVE
630 '

640 FOR I = 1 TO 10
650 HK$(I) = "so"
660 ACTIVE(I) = 0
670 NEXT I

680 '

690 ' DISPLAY FUNCTION KEY FUNCTIONS
700 '

710 COLOR 0,7

720 LOCATE 25, 5
730 PRINT " F1 "
740 LOCATE 25, 19
750 PRINT " F2 "
760 LOCATE 25, 29
770 PRINT " F3 "
780 LOCATE 25, 40
790 PRINT " F4 "
800 LOCATE 25, 52
810 PRINT " F5 "
820 LOCATE 25, 64
830 PRINT " F6 "
840 COLOR 7,0

850 LOCATE 25, 9
860 PRINT 'SUSP/CONT"
870 LOCATE 25, 24
880 PRINT 'HOOK"
890 LOCATE 25, 34
900 PRINT "ENTER"
910 LOCATE 25, 45
920 PRINT "MODIFY"
930 LOCATE 25, 57
940 PRINT "DELETE"
950 LOCATE 25, 69
960 PRINT "HALT"
1000 '

57

.‘.{q“'\v‘\.'_-_s'_-.. v et~
~ar a et . -

1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
4999
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5200
5210
5220

AN Al Aok A s Akt Add Al Ank S

! GET WINDOW PARAMETERS

READ XUL, YUL, XLR, YLR, CWIND

! DRAW THE WINDOW

GOSUB 5000

! GET LAND PARAMETERS

READ CONTS 'HOW MANY LAND MASSES?

! DRAW LAND MASSES

GOSUB 8000

' GET GRID PARAMETERS

[]

READ XYAX, YTOP, YBOTT, YCOL

READ YXAX, XLEFT, XRITE, XCOL

! DRAW THE GRID

GOSUB 5200

! RUN UPDATE TESTS

1
GOSUB 11000
1)

END

''% % % % % * ¥ DRAW WINDOW SUBROUTINE * * % % % % 3
l* %
' % INPUTS: XUL, YUL - UPPER LEFT-HAND COORDINATES *
'k XLR, YLR - LOWER RIGHT-HAND COORDINATES *
'k CWIND - COLOR OF WINDOW *
LIS %
' % OUTPUT: SOLID WINDOW, XLR - XUL PIXELS WIDE, *
'k YLR - YUL PIXELS DEEP, COLOR CWIND *
' % *
' % d % K % % %o Kk Kk K % Kk f Kk * ¥k K ok Kk f Kk K %
L}

1]

LINE (XUL, YUL) - (XLR, YLR), CWIND, BF

RETURN
?

'k ok ok ok Kk k% COORDINATE AXES SUBROUTINE ok ok ok odox X X
LR ¥
LY *

INPUTS: XYAX, YTOP, YBOTT - VERTICAL AXIS COORDINATES

a_ . . - - . - "."I - .
. I S . CR T
VRIS PP AT A W PV O S A

5230

5240

5250

5260

5270

. 5280
5290

5300

5310

5320

5330

5340

5350

5360

5365

5370

5380

5390

5400

5405

5410

5420

5430

5440

» 5450
- 5460
- 5470
- 5480
5490

5500

5510

: 5520
. 5530
5540

5550

’ 5560
. 5570
y 5580
v 5590
o 5600
5610

5620

5630

. 5640
- 5650
. 5660
5670

5680

5690

5700

5710

-
-

YXAX, XLEFT, XRITE - HORIZONTAL AXIS COORDINATES
XcoL, ycoL - GRID COLORS

OUTPUT: PROPERLY SCALED SET OF COORDINATE AXES,
OF XCOL AND YCOL

* 3 3k ok 3k % #

ok ok ok ok k k ok Kk kL hk %k khokk kA KKK XA XK

HSCALE = (XRITE - XLEFT)/20 'HORIZONTAL SCALE MULTIPLIE
VSCALE HSCALE * .46 'VERTICAL SCALE MULTIPLIER,
'FOR PROPER ASPECT RATIO

' DRAW VERTICAL AXIS

]

LINE (XYAX-1, YTOP) - (XYAX+1i, YBOTT), CWIND, BF
LINE (XYAX, YTOP) - (XYAX, YBOTT), YCOL

]

J DRAW HORIZONTAL AXIS

L}

LINE (XLEFT, YXAX-1) - (XRITE, YXAX+1), CWIND, BF
LINE (XLEFT, YXAX) - (XRITE, YXAX), XCOL

L}

' DRAW HORIZONTAL SCALE DIVISIONS, LEFT
1]
FOR H = XYAX TO XLEFT STEP -HSCALE

LINE (H, YXAX-2) - (H, YXAX+2), XCOL

LINE (H+l, YXAX-2) - (H+1, YXAX+2), XCOL
NEXT H
[]

! DRAW HORIZONTAL SCALE DIVISIONS, RIGHT
]
FOR H = XYAX TO XRITE STEP HSCALE
LINE (H, YXAX-2) - (H, YXAX+2), XCOL
LINE (H+1, YXAX-2) (H+1, YXAX+2), XCOL
NEXT H
]

! DRAW VERTICAL SCALE DIVISIONS, UPPER
]
FOR V = YXAX TO YTOP STEP -VSCALE
LINE (XYAX-4, V) - (XYAX+4, V), YCOL
NEXT V
L

' DRAW VERTICAL SCALE DIVISIONS, LOWER
]
FOR V = YXAX TO YBOTT STEP VSCALE
LINE (XYAX-4, V) - (XYAX+4, V), YCOL
NEXT V
)
RETURN
)

59

ASARTADY e R N R R TN T T T N T T T T T

*
*
*
*
*
*
*

R

AT 2 TLRIN 4

v s
.

N
"
LY
LY
[N
N
\

'.'

o S S S

NN

5720
5730
5740
5750
5760
6000
6010
6020
6030
6040
6050
6060
6070
6080
6100
6120
6130
6140
6150
6160
6170
6180
6190
6200
6210
6220
6230
6240
6250
6255
6260
6270
6280
6290
6295
6300
6305
6310
6320
6330
6340
6350
6360
6370
6374
6375
6376
6380
6390
6400
6410

THIS AXES SUBROUTINE IS BASED ON THE PROGRAM
9-2, PAGE 9-15, IN THE CONTINUING EDUCATION
CORRESPONDENCE COURSE "COMPUTER GRAPHICS",
WRITTEN FOR HEATHKIT/ZENITH BY
JAMES C. ADAMS
* ok ok ok ok UPDATE TRACKS SUBROUTINE * k% x Kk ok

INPUTS: UPD - # OF TRACK TO UPDATE

OUTPUT: TRACK UPD IS UPDATED

*

* % ok ok ok ok
%ok ok o %k o

k k k k k Kk Kk k k ko kX k h Kk Khk ko h Kk Kk Sk ok Kk K K

PERFORM ALL LOOK-UPS ONLY ONCE

UPDX = TX(UPD)
UPDY = TY(UPD)
UPDT$ = HK$(UPD) + T$(UPD)

UPDL$ = L$(UPD)
HORZUP = XINC(UPD)
VERTUP = YINC(UPD)

COLUP = TCOLOR(UPD)
)

UPGND = POINT(UPDX+2, UPDY+1)

ON UPGND+1 GOSUB 6520, 6530, 6540, 6550, 6560, 6570, 6580, 6590
WANT$ = COL$ + UPDT$: ALSO$ = COL$ + UPDL$

]

PSET (UPDX, UPDY), UPGND 'DRAW OLD SYMBOL IN

DRAW WANTS$ 'REVERSE COLOR

PSET (UPDX, UPDY), UPGND

DRAW ALSO$

DRAW "so"
1

IF ACTIVE(UPD) = O THEN 6490

UPDX = UPDX + HORZUP 'UPDATE POSITION
UPDY = UPDY + VERTUP

]

'CHECK BACKGROUND COLOR
OF NEW LOCATION

IF UPGND <> COLUP THEN 6375 'MAKE SYMBOL OPPOSITE
IF UPGND < 2 THEN COLUP = 7 ELSE COLUP = 0 'OF BACKGROUND

]

UPGND = POINT(UPDX+2, UPDY+1)
]

ON COLUP+1 GOSUB 6520, 6530, 6540, 6550, 6560, 6570, 6580, 6590

WANT$ = COL$ + UPDT$: ALSO$ = COL$ + UPDL$

]

PSET (UPDX, UPDY), COLUP 'DRAW NEW SYMBOL
DRAW WANTS$

PSET (UPDX, UPDY), COLUP

60

vy v e v e

Tt DL - - BRI |
TR s .

-
¢
‘h
... s
-
*
<,

oA e UV NN RN TN 'l Yoy O S b e il ol Nl ol hE g e g S g Sl el had b At ad BE ol g\
.

<

7330 IF CUS(MOVE) <= 315 THEN 7570 3

“

N 6420 DRAW ALSO$

N 6425 DRAW "S0"

N 6430 '
6440 TX(UPD) = UPDX 'STORE NEW POSITION

4 6450 TY(UPD) = UPDY

Y 6460

" 6480 '

5 6490 RETURN
6500 '
6510 '

X 6520 COL$ = '"CO'": RETURN

N 6530 COL$ = "C1": RETURN

: 6540 COL$ = "C2": RETURN

) 6550 COL$ = "C3": RETURN

. 6560 COL$ = "C4": RETURN
6570 COL$ = "C5": RETURN

» 6580 COL$ = "C6": RETURN

. 6590 COL$ = "C7": RETURN

N 7000 ' * % % * % * * SYMBOL MOVEMENT CALCULATOR % * * * *

“ 7010 ' * *

~ 7020 ' * INPUTS: MOVE - TRACK TO CALCULATE FOR *
7030 ' * *
7040 ' * OQUTPUT: XINC, YINC, SCALE FACTOR FOR SPEED *
7050 ' * LEADER OF EACH ACTIVE TRACK ARE *
7060 ' =* CALCULATED AND STORED *
7070 ' * *
7080'****:\-****** %k Xk Kk Kk K f K o ¥ Kk K * K X
7090 '

. 7100 '

s 7110 '

5 7130

- 7140 ' CALCULATE INCREMENTS BASED ON COURSE

- 7150 ')

- 7160 IF CUS(MOVE) <= 5 THEN 7400

» 7170 IF CUS(MOVE) <= 22.5 THEN 7410

- 7180 IF CUS(MOVE) <= 45 THEN 7420

. 7190 IF CUS(MOVE) <= 67.5 THEN 7430

- 7200 IF CUS(MOVE) <= 85 THEN 7440

- 7210 IF CUS(MOVE) <= 95 THEN 7450
7220 IF CUS(MOVE) <= 112.5 THEN 7460
7230 IF CUS(MOVE) <= 135 THEN 7470
7240 IF CUS(MOVE) <= 157.5 THEN 7480
7250 IF CUS(MOVE) <= 175 THEN 7490
7260 IF CUS(MOVE) <= 185 THEN 7500

‘ 7270 IF CUS(MOVE) <= 202.5 THEN 7510

. 7280 IF CUS(MOVE) <= 225 THEN 7520

~ 7290 IF CUS(MOVE) <= 247.5 THEN 7530

Y- 7300 IF CUS(MOVE) <= 265 THEN 7540

-2 7310 IF CUS(MOVE) <= 275 THEN 7550 .

3 7320 IF CUS(MOVE) <= 292.5 THEN 7560 8

RS

[N

L
8 4

-
.
-
v
-
,
.

el . el e .
R IR SRR P L e

. PN N w Lt
VT P PV SRR WL W AT N

. ™ e e . . e
B A AT RSO

P g TR —_——wTe

it AR AR

P

L é Ll

i 7340 IF CUS(MOVE) <= 337.5 THEN 7580
: 7350 IF CUS(MOVE) <= 355 THEN 7590 .
2 7360 ' :
7370 '
' 7400 XINC(MOVE) = 8: YINC(MOVE) = 0: L$(MOVE) = LDR$(3): GOTO 7600 N
: 7610 XINC(MOVE) = 7: YINC(MOVE) = -3: L$(MOVE) = LDR$(2): GOTO 7600 :
. 7420 XINC(MOVE) = 5: YINC(MOVE) = -5: L$(MOVE) = LDR$(2): GOTO 7600 .
y 7430 XINC(MOVE) = 5: YINC(MOVE) = -5: L$(MOVE) = LDR$(2): GOTO 7600
] 7440 XINC(MOVE) = 3: YINC(MOVE) = -7: L$(MOVE) = LDR$(2): GOTO 7600
7450 XINC(MOVE) = 0: YINC(MOVE) = -8: L$(MOVE) = LDR$(1): GOTO 7600
7460 XINC(MOVE) = -3: YINC(MOVE) = -7: L$(MOVE) = LDR$(8): GOTO 7600 X
y 7470 XINC(MOVE) = -5: YINC(MOVE) = -5: L$(MOVE) = LDR$(8): GOTO 7600 N
- 7480 XINC(MOVE) = -5: YINC(MOVE) = -5: L$(MOVE) = LDR$(8): GOTO 7600 "]
. 7490 XINC(MOVE) = -7: YINC(MOVE) = -3: L$(MOVE) = LDR$(8): GOTO 7600 :
7500 XINC(MOVE) = -8: YINC(MOVE) = 0: L$(MOVE) = LDR$(7): GOTO 7600 R
7510 XINC(MOVE) = -7: YINC(MOVE) = 3: L$(MOVE) = LDR$(6): GOTO 7600
, 7520 XINC(MOVE) = -5: YINC(MOVE) = 5: L$(MOVE) = LDR$(6): GOTO 7600 =
2 7530 XINC(MOVE) = -5: YINC(MOVE) = 5: L$(MOVE) = LDR$(6): GOTO 7600 "
- 7540 XINC(MOVE) = -3: YINC(MOVE) = 7: L$(MOVE) = LDR$(6): GOTO 7600 .
¢ 7550 XINC(MOVE) = O: YINC(MOVE) = 8: L$(MOVE) = LDR$(5): GOTO 7600 N
K. 7560 XINC(MOVE) = 3: YINC(MOVE) = 7: L$(MOVE) = LDR$(4): GOTO 7600 .
e 7570 XINC(MOVE) = 5: YINC(MOVE) = 5: L$(MOVE) = LDR$(&): GOTO 7600 =
o 7580 XINC(MOVE) = 5: YINC(MOVE) = 5: L$(MOVE) = LDR$(4): GOTO 7600 "
: 7590 XINC(MOVE) = 7: YINC(MOVE) = 3: L$(MOVE) = LDR$(4): GOTC 7600 2
N 7595 XINC(MOVE) = 8: YINC(MOVE) = O: L$(MOVE) = LDR$(3): GOTO 7600 X
N 7600 ' W
7610 ' CALCULATE AMOUNT OF INCREMENT, SPEED LEADER o
7620 ' SCALE, BASED ON SPEED g
7630 ' b
7640 IF SPD(MOVE) >= 100 THEN 7690 ~
7641 IF SPD(MOVE) <> O THEN 7650 .
7642 XINC(MOVE) = 0 -
7643 YINC(MOVE) = 0 <4
7644 L$(MOVE) = ""
7645 GOTO 7770 »
7650 XINC(MOVE) = INT(.5 * XINC(MOVE)) g
7660 YINC(MOVE) = INT(.T * YINC(MOVE)) .
. 7670 L$(MOVE) = "S2" + L$(MOVE) o
a 7680 GOTO 7770 -
' 7690 IF SPD(MOVE) <= 600 THEN 7770 ”
7700 XINC(MOVE) = INT(2 * XINC(MOVE)) =
7710 YINC(MOVE) = INT(2 * YINC(MOVE)) -
7720 L$(MOVE) = "S8" + L$(MOVE)
7760 '
7770 RETURN 3
7780 ' =
8000 ' * * * % * % * DRAW LAND SUBROUTINE * * * % % & % * .
8010 ' * * :
8020 ' * [INPUTS: PTS - ARRAY OF #s OF BORDER POINTS * N
8025 ' * CONTS - # OF LAND MASSES * .
8030 ' * %* ;

A, W AR A I S SO AN o I G N I SR i i i e et e e Ui Stutos i (A A b IACA AT B A Rd B4 B AR A S A aa Surph g S 28 S5

8040
8050
8060
8070
8075
8080
8090
8100
8110
8120
8125
8130
8140
8150
8160
8170
8180
8190
8200
8210
8220
8230
8240
8250
8260
8270
8280
8290
8300
8310
8320
8330
8340
8350
8360
8370
8380
8390
8400
8410
8420
8430
8440
8450
8460
8470
8480
8490
8500
8510
8520

' % OUTPUT: PLOTTED LAND MASSES, IN SPECIFIED COLORS *

l* *
A R R R EEE R ok o ok Ak h ok o h Kk KK N
]
IF CONTS = 0 THEN RETURN 'NO LAND MASSES, NO DRAW
’
FOR I = 1 TO CONTS
READ PTS(I), LCOL(I)
NEXT I
L}
DIM LAND1(PTS(1), 2), LAND2(PTS(2), 2), LAND3(PTS(3), 2)

FOR ISLE = 1 TO PTS(1)

READ LAND1(ISLE, 1), LAND1(ISLE, 2)
NEXT ISLE
1)

FOR ISLE = 1 TO PTS(2)

READ LAND2(ISLE, 1), LAND2(ISLE, 2)
NEXT ISLE
L

FOR ISLE = 1 TO PTS(3)

READ LAND3(ISLE, 1), LAND3(ISLE, 2)
NEXT ISLE
)

PSET (LAND1(1,1), LAND1(1,2)), LCOL(1)
FOR ISLE = 2 TO PTS(1)
LINE - (LAND1(ISLE, 1), LAND1(ISLE, 2)), LCOL(1)
NEXT ISLE
?

%EAD CENTX, CENTY

?AINT (CENTX, CENTY), LCOL(1), LCOL(1)
}F PTS(2) < 2 THEN RETURN

PSET (LAND2(1,1), LAND2(1,2)), LCOL(2)
FOR ISLE = 2 TO PTS(2)

LINE - (LAND2(ISLE, 1), LAND2(ISLE, 2)), LCOCL(2)
NEXT ISLE
J

1y / ,f 1'1',1"f.

READ CENTX, CENTY
1]
PAINT (CENTX, CENTY), LCOL(2), LCOL(2)
1
IF PTS(3) < 2 THEN RETURN
1]
PSET (LAND3(1,1), LAND3(1,2)), LCOL(3)
FOR ISLE = 2 TO PTS(3)
LINE - (LAND3(ISLE, 1), LAND3(ISLE, 2)), LCOCL(3)
NEXT ISLE
L]

READ CENTX, CENTY

63

o
Y
[|
7'—1

4
N J
Tt

ey

:. 7
L’
- 8530 ° ;
", 8540 PAINT (CENTX, CENTY), LCOL(3), LCOL(3) s
8550 °
8560 RETURN
3 10000 ' dededkdedek e DATA Tekdedekfehdddededhih N ; :
% 10010 ' 3
. 10020 ' XUL, YUL, XLR, YLR, CWIND 3
b 10030 ' &
) 10040 DATA 15, 27, 470, 190, 7
, 10050 ' N
g 10060 ' CONTS
: 10070 * y
- 10080 DATA 3
. 10090 '
- 10100 ' PTS, LCOL, # OF TIMES THERE ARE LAND MASSES
0 10110 ' .
- 10120 DATA 13, 0 :
- 10130 DATA 8, 2 -
. 10140 DATA 10, 1 -
- 10150 .
i 10160 ' BORDER POINTS FOR LAND MASSES
10170 °* -
10180 DATA 16, 155, 55, 172, 90, 175, 130, 165, 175, 150, 175, 127 o
10190 DATA 210, 110, 180, 85, 260, 67, 245, 45, 160, 28, 16, 28, 16, 155 -
10200 ' -
10210 ' -
10220 '
. 10230 DATA 330, 155, 360, 165, 400, 160, 440, 140, 385, 125, 340, 133 X
< 10240 DATA 370, 142, 330, 155 -
- 10250 ' -
o 10260 ' -
- 10270 ' N
} 10280 DATA 385, 40, 405, 45, 400, 60, 380, 65, 365, 60, 375, 52
. 10290 DATA 350, 52, 370, 45, 390, 55, 385, 40
a 10300 ' -
v 10310 ' CENTERS OF LAND MASSES -
x 10320 ' .
2 10330 DATA 100, 90
10340 ' g
. 10350 DATA 380, 150 -
- 10360 ' "
N 10370 DATA 380, 60 -1
. 10380 ' .
y.. 10390 ' XYAX, YTOP, YBOTT, YCOL -
. 10400 y
i 10410 DATA 157, 27, 190, O
. 10420 '
e 10430 ' YXAX, XLEFT, XRITE, XCOL
X 10440
N 10450 DATA 145, 15, 470, 0
10460 '

64

=y

[e e

S xT

10470
10480
10490
10500
10510
10520
10530
10540
10550
10560
10570
10580
10590
10600
11000
11010
11020
11030
11040
11050
11060
11070
11080
11090
11100
11110
11120
11125
11130
11135
11140
11150
11160
11165
11170
11175
11180
11190
11200
11210
11220
11225
11230
11235
11240
11250
11255
11260
11270
11280
11300

' NUMBER OF TEST TRACKS

?ATA 3

: CLASS$, CUS, SPD, TCOLOR, TX, TY FOR EACH TEST TRACK

?ATA "HOSTILE ", 180, 35, 0, 420, 80

?ATA "SURVEILL ", &4, 135, 0, 50, 100

?ATA "UNKNOWN ", 110, 650, 0, 430, 170

: NUMBER OF MOVES TO TEST UPDATING

DATA 10

: : * % % % * * TEST TRACKING SUBROUTINE * * * =% :

: * INPUTS: TRACKS -~ # OF TEST TRACKS *
*

: *# OUTPUT: SAMPLE OF TRACKS BEING UPDATED :

':*********** **************:

'

READ TRACKS
]

IF TRACKS = O THEN 11200
FOR I = 1 TO TRACKS
READ CLASS$(I), CUS(I), SPD(I), TCOLOR(IL), TX(I), TY(I)
UPD = I
GOSUB 20000
ACTIVE(I) = 1
NEXT I
L}

FOR MOVE = 1 TO TRACKS
GOSUB 7000

NEXT MOVE

]

Do$ = W
]

WHILE DO$ = ""
FOR UPD = 1 TO TRACKS
GOSUB 6000
NEXT UPD
FOR I =1 TO 2000
DO$ = INKEY$
IF DO$ = "' THEN NEXT I ELSE 11280
WEND
L}

IF DO$ <> CHR$(27) THEN 11200 ELSE DO2$ = INKEY$
'

65

2 AR

-

P

RN

MG]

AL

IF DO2$ THEN GOSUB 12000
IF DO2$ THEN GOSUB 12100
IF DO2$ THEN GOSUB 12200
IF D02$ = THEN GOSUB 12500
IF D02$ = THEN GOSUB 12800
IF DO2§$ = THEN GOSUB 13500
t

GOTO 11200
* k% Kk ok ok ok FUNCTION KEY SUBROUTINES

% % % % % HALT PROGRAM
FUNCTION KEY F6

"LIST "

"RUN" + CHR$(13) + CHR$(10)
"LOAD" + CHR$(34)

"SAVE" + CHR$(34)

"CONT" + CHR$(13) + CHR$(10)
"PRINT "

RETURN
'

'% % % % % SUSPEND/CONTINUE PROGRAM
! FUNCTION KEY F1

G0$ = e

WHILE Go$ = ""
GO$ = INKEYS$
WEND
L]
RETURN
'7% % % % % HOOK TRACK
' FUNCTION KEY F2

LOCATE 2, 10
1)

IF HOOK = 0 THEN 12270
ACTIVE(HOOK) = 0

UPD = HOOK

GOSUB 6000
ACTIVE(HOOK) = 1

HK$ (HOOK) = "so"

]

INPUT "TRACK TO HOOK:
LOCATE 2, 10
PRINT "

e
[P |

-
NN

RN ey

v

12280
12282
12284
12286
12288
12290
12300
12310
12320
12330
12340
12350
12360
12370
12380
12390
12400
12410
12420
12500
12510
12520
12530
12540
12550
12560
12570
12571
12572
12573
12574
12575
12576
12580
12590
12595
12596
12600
12610
12615
12616
12620
12630
12635
12636
12640
12650
12655
12656
12660
12670

ACTIVE(HOOK) = 0

UPD = HOOK
GOSUB 6000

ACTIVE(HOOK) = 1
HK$ (HOOK) = "s8"
]

LOCATE 6, 62

PRINT "TRACK NO. ";HOOK

LOCATE 7, 62

PRINT "CLASS

LOCATE 8, 62

PRINT "COURSE
LOCATE 9, 62

PRINT "SPEED

]

1

RETURN

]

"% %% %%

L

)

TRACKS = TRACKS + 1

MOVE = TRACKS
'

LOCATE 2, 10

INPUT "ENTER CLASS

";CLASS$ (HOOK)
" CUS (HOOK)

"": SPD(HOOK)

ENTER NEW TRACK
FUNCTION KEY F3

"sCLASS$ (TRACKS)

SIZECL = LEN(CLASS$(TRACKS))
IF SIZECL < 9 THEN ADD = 9 - SIZECL

IF ADD = 0 THEN 12575
FOR I = 1 TO ADD:CLASS$(TRACKS) = CLASS$(TRACKS) + " ":NEXT I

LOCATE 2, 10
PRINT "

LOCATE 2, 10
INPUT "ENTER
LOCATE 2, 10
PRINT "

LOCATE 2, 10

INPUT "ENTER SPEED

LOCATE 2, 10
PRINT "

LOCATE 2, 10
INPUT "ENTER
LOCATE 2, 10
PRINT "

LOCATE 2, 10

INPUT "ENTER GRID Y

LOCATE 2, 10
PRINT "
LOCATE 2, 10

INPUT "TRACK COLOR

""sCUS (TRACKS)

" ; SPD(TRACKS)

" TX (TRACKS)

";TY(TRACKS)

" TCOLOR(TRACKS)

67

~ -

[D A A A S A AP A S .‘_'.'. B P S B St
FAR T N WA U W P P W S S (L W Y RNy PR/ T AR PRI T Wi Vi T YRPUD SO PRIV 07 TR T §

4
R

_-Q
-4
. ‘.4
\“
o
N »
UL
<4
!.

AR PPV YN
'-'y L '._fgfg’L ,‘.’4. s

o

-

B AR

.. s s
S R R)

A te

N - - - ".'.'-.‘~~.'. ‘.'_~'.-.>'_‘- o -
SR VR TPV TR S GRS

it Sl Siafia

12680
12690
12700
12705
12710
12712
12715
12716
12717
12720
12730
12740

12800
12810

12830
12832
12834
12836
12838
12839
12840
12850
12855
12856
12860
12870
12872
12874
12876
12878
12879
12880
12890
12900
12910
12915
12916
12920
12930
12940
12950
12955
12956
12960
12970
12980
12990
12995
12996

®a ‘s - y S * Te *.
R\ WA VPR

LOCATE 2, 10
PRINT "
]

GOSUB 20000
GOSUB 7000
UPD = MOVE
GOSUB 20000

HK$(UPD) = "SO0": ACTIVE(UPD) = 1

GOSUB 6000
L

RETURN
L

% % % % % MODIFY TRACK

IF HOOK = 0 THEN 12840
ACTIVE(HOOK) = 0

UPD = HOOK

GOSUB 6000
ACTIVE(HOOK) = 1

HK$ (HOOK) = "so"
LOCATE 2, 10

INPUT "TRACK TO MODIFY: "' ;HOOK
LOCATE 2, 10

PRINT "

]

GOSUB 12300
ACTIVE(HOOK) = 0
UPD = HOOK
GOSUB 6000
ACTIVE(HOOK) = 1
HK$ (HOOK) = "soQ"
1

LOCATE 2, 10

INPUT "IS CLASS OK ";A$

IF A$ <> "Y" THEN LOCATE 2, 40:
LOCATE 2, 10

PRINT "

L

LOCATE 2, 10

INPUT "IS COURSE OK ";A$

IF A$ <> "Y" THEN LOCATE 2, 40:
LOCATE 2, 10

PRINT "

]

LOCATE 2, 10

INPUT "IS SPEED OK ";A$

IF A$ <> "Y" THEN LOCATE 2, 40:
LOCATE 2, 10

PRINT "

«

FUNCTION KEY F4

INPUT '"NEW CLASS :'';CLASS$ (HOOK)

INPUT "NEW COURSE:";CUS(HOOK)

INPUT "NEW SPEED:";SPD(HOOK)

‘‘‘‘‘‘‘‘‘‘

L S e A S M i L WAL - i

T,

z

1t
.

LI I
» s e

A St -0 frn 2 St dhie bt ging LA Y o e o IR Bt
.

3
.

-

. 13000 '

%% %N

13010 LOCATE 2, 10

13020 INPUT "IS COLOR OK ";A$

13030 IF A$ <> "Y" THEN LOCATE 2, 40: INPUT "NEW COLOR:";TCOLOR(HOOK)

13035 LOCATE 2, 10

13036 PRINT " "

13040 '

13050 LOCATE 2., 10

13060 INPUT "IS GRID X OK ";A$

13070 IF A$ <> "Y" THEN LOCATE 2, 40: INPUT "NEW GRID X:";TX(HOOK)

13075 LOCATE 2, 10

13076 PRINT " "

13080 '

13090 LOCATE 2, 10

13100 INPUT "IS GRID Y OK ";A$

13110 IF A$ <> "Y" THEN LOCATE 2, 40: INPUT "NEW GRID Y:";TY(HOOK) v

13115 LOCATE 2, 10 -

13116 PRINT " " .
]

- ey e e

TR

13120

13130 MOVE = HOOK .

13140 GOSUB 7000 P
13145 UPD = HOOK :

13147 GOSUB 6000 :

13150 °' o
13160 RETURN 7
13170 ° -
13500 ' % % % % % DELETE A TRACK z

. 13510 ' FUNCTION KEY F5

13520 -
13530 LOCATE 2, 10 -
13540 INPUT "TRACK TO DELETE: ";DEL -
13550 <
13560 ACTIVE(DEL) = 0 =
13565 LOCATE 2, 10 g
13566 PRINT " " 3
13570 ! -
13580 RETURN iy
13590 ' :

20000 ' % % * % % % % SYMBOL ASSIGNMENT * % % % % % ¥ =
20010 ' * * .
20020 ' * INPUTS: UPD - TRACK TO HAVE SYMBOL ASSIGNED * K
20030 ' = % -
20040 ' * OUTPUT: TRACK(UPD) IS ASSIGNED A SYMBOL * i’
20050 ' = THAT MATCHES ITS CLASSIFICATION * b
20060 ' =* * K
20070':‘:*****:‘:***;‘:* * F * L A X X X kXK XN !

20080 ' -
20090 ! -
20100 IF CLASS$(UPD) = "HOSTILE ' THEN T$(UPD) = SYM$(4): GOTO 20240 .o
20110 ']
20120 IF CLASS$(UPD) = "HOST SURF" THEN T$(UPD) = SYM$(6): GOTO 20240 <

69 T

v w e 2%

R

PRSI AMATRIN

P ROl A

~
g

20130 '

20140 IF CLASS$(UPD)
20150 '

20160 IF CLASS$(UPD)
20170 '

20180 IF CLASS$(UPD)
20190 '

20200 IF CLASS$(UPD)
20210 '

20220 IF CLASS$(UPD)
20230

20240 RETURN

20250 '

"UNKNOWN
"UNK AIR
"FIGHTER
"SURVEILL

"REF PNT

70

THEN T$(UPD)
THEN T$(UPD)
THEN T$(UPD)
THEN T$(UPD)

THEN T$(UPD)

n

SYM$(3):
SYM$(5):
SYM$(2):
SYM$(1):

SYM$(7):

GOTO 20240

GOTO 20240

GOTO 20240

GOTO 20240

GOTO 20240

DAL R S

B o " e
SN

N

'L e st

PNCRE M

ey e v

e AA YN

10
20
30
40
50
60
70
80
90

APPENDIX B: LISTING OF HEADER,BAS

SAMPLE NTDS DISPLAY SIMULATOR
FRAME #1
DISPLAY WINDOW WITH GRID

'CLEAR THE DISPLAY

71

R I

P

9
o

'y Py . N 4 . pulie ""'."-T'.F_"’ Kttt it Aok el Ay L e W N N R N W TR Y
...... B - - - DI - - . - e . - - - - Pl -t -

AT e s

LY
£
[y
A
-
APPENDIX C: LISTING OF 1INIT.BAS
'.; 100 " * % % ¥ % % % % INITIALIZATION AND TABLES # #* % % # % % %
4 110 '
L 120
! 130 OPTION BASE 1 "ARRAY SUBSCRIPT LOWER BOUND = 1 .
140 '

150 DIM CLASS$(10), CUS(10), SPD(10), TCOLOR(10)
160 DIM TX(10), TY(10), XINC(10), YINC(10), T$(10), L$(10)
170 DIM SYM$(10), LDR$(8), PTS(3), LCOL(3), HK$(10), ACTIVE(10)
180 '
190 ' SYMBOL TABLE
200 '
- 210 SYM$(1)
- 220 SYM$(2)
i 230 SYM$(3)
- 240 SYM$(4)
N 250 SYM$(5)
260 SYM$(6)
270 SYM$(7)
280 SYM$(8)
290 SYM$(9)
300 sYM$(10) = "

"BM+0,-3 R3 D3 BM-6,0 D3 R3 BM+0,+3"
"BM+0,-3 L3 D3 BM+0,+3"

"BM+0,-3 R3 D6 L6 U6 R3 BM+0,+3"

"BM+0,-3 R2 F2 D3 G2 L4 H2 U3 E2 R2 BM+0,+3"
"BM+0,-3 R3 D3 BM-6,0 U3 R3 BM+0,+3"
"BM+0,-3 F3 G3 H3 E3 BM+0,+3

"U3 R3 D6 L6 U6 R3 D6 U3"

310
320 !

- 330 ' SPEED LEADER TABLE

iy 340 '

N 350 LDR$(1) = "uy4a"

.. 360 LDR$(2) = "E3"

- 370 LDR$(3) = "R5"

i 380 LDR$(4) = "F3"

: 390 LDR$(5) = "p4s"

- 400 LDR$(6) = "g3"

S 410 LDR$(7) = "L5"
420 LDR$(8) = "H3"
430 '
440
450 ' START WITH NO TRACKS
460 '

: 470 TRACKS = 0

L. 480 '

- 490 ° INITIALIZE PTS ARRAY ELEMENTS TO 1
500 !
510 FOR I = 1 TO 3: PTS(I) = 1: NEXT I

i 520 '

- 530 ' DEFINE FUNCTION KEYS
540 '

560 KEY 1, CHR$(27) + "S"

72

» e -
v

570 KEY 2, CHR$(27)

580 KEY 3, CHR$(27)
' . 590 KEY 4, CHR$(27)
600 KEY 5, CHR$(27)
605 KEY 6, CHR$(27)
610 '
620 ' INITIALIZE HK$ AND ACTIVE]
630 ' :
640 FOR I = 1 TO 10 -
650 HK$(I) = "so"
660 ACTIVE(I) = 0 -
670 NEXT I :
680 '
690 ' DISPLAY FUNCTION KEY FUNCTIONS '
700 :
710 COLOR 0,7 -
720 LOCATE 25,5
- 730 PRINT " F1 "
.. 740 LOCATE 25, 19
A 750 PRINT " F2 "
760 LOCATE 25, 29
770 PRINT " F3 "
780 LOCATE 25, 40
790 PRINT " F4 "
800 LOCATE 25, 52
810 PRINT " F5 "
- 820 LOCATE 25, 64

830 PRINT " F6 "
i 840 COLOR 7, 0
- 850 LOCATE 25, 9 :
. 860 PRINT "SUSP/CONT" o

‘ 870 LOCATE 25, 24 -

) 880 PRINT "HOOK"

890 LOCATE 25, 34

900 PRINT "ENTER"

"T" o X
"U"
uvn
nyge
"P" Ll

+ 4+ + + 4

L4'. ‘))

R

V.
Ly

. 910 LOCATE 25, 45 -3
x 920 PRINT "MODIFY" -
- 930 LOCATE 25, 57 N
B 940 PRINT "DELETE" v
950 LOCATE 25, 69 o
: 960 PRINT "HALT"
. R
: -’
3 .
' o

73

APPENDIX D: LISTING OF HARNESS.BAS

! GET WINDOW PARAMETERS

READ XUL, YUL, XLR, YLR, CWIND
.

! DRAW THE WINDOW

GOSUB 5000
L]

! GET LAND PARAMETERS

READ CONTS
)

! DRAW LAND MASSES

GOSUB 8000
)

! GET GRID PARAMETERS

READ XYAX, YTOP, YBOTT, YCOL
READ YXAX, XLEFT, XRITE, XCOL
]

! DRAW THE GRID

GOSUB 5200
)

! RUN UPDATE TESTS

GOSUB 11000
1]

'HOW MANY LAND MASSES?

5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160

APPENDIX E: LISTING OF WINDOW.BAS

* % % % % * DRAW WINDOW SUBROUTINE * * % # s s

INPUTS: XUL, YUL - UPPER LEFT-HAND COORDINATES
XLR, YLR - LOWER RIGHT-HAND COORDINATES
CWIND - COLOR OF WINDOW

OUTPUT: SOLID WINDOW, XLR - XUL PIXELS WIDE,
YLR - YUL PIXELS DEEP, COLOR CWIND

% ok b k% ok ok ok #

ok h ok ok ko hdhhEr kh ok ok ok e hk ok h Kk %

L)
'
1
!
1?
1)
L)
]
)
1
]
)

LINE (XUL, YUL) - (XLR, YLR), CWIND, BF

RETURN

ate
ry

*

e
W

4
7'-
*
*
*
*

ols
"

s a e s

O

5200
5210
5220
5230
5240
5250
5260
5270
5280
5290
5300
5310
5320
5330
5340
5350
5360
5365
5370
5380
5390
5400
5405
5410
5420
5430
5440
5450
5460
5470
5480
5490
5500
5510
5520
5530
5540
5550
5560
5570
5580
5590
5600
5610
5620
5630
5640

APPENDIX F: LISTING OF AXES.BAS

' % % % % % * * COORDINATE AXES SUBROUTINE = 3 s % ¥ % % % *
] * %
' % INPUTS: XYAX, YTOP, YBOTT - VERTICAL AXIS COORDINATES *
o YXAX, XLEFT, XRITE - HORIZONTAL AXIS COORDINATES *
'o* XCOL, YCOL - GRID COLORS *
1 - *
' % OUTPUT: PROPERLY SCALED SET OF COORDINATE AXES, *
tox OF XCOL AND YCOL *
'k *
' % ok K Kk % L ok Nk N N N X Jo e ke d F k% h F ek % d ok K% kX
L]

]

HSCALE = (XRITE -~ XLEFT)/20 'HORIZONTAL SCALE MULTIPLIER

VSCALE = HSCALE * .46 'VERTICAL SCALE MULTIPLIER,
'FOR PROPER ASPECT RATIO

! DRAW VERTICAL AXIS

]

LINE (XYAX-1, YTOP) - (XYAX+1, YBOTT), CWIND, BF

LINE (XYAX, YTOP) - (XYAX, YBOTT), YCOL
L

! DRAW HORIZONTAL AXIS

)

LINE (XLEFT, YXAX-1) - (XRITE, YXAX+1), CWIND, BF
LINE (XLEFT, YXAX) - (XRITE, YXAX), XCOL

A

' DRAW HORIZONTAL SCALE DIVISIONS, LEFT
t
FOR H = XYAX TO XLEFT STEP -HSCALE

LINE (H, YXAX-2) - (H, YXAX+2), XCOL

LINE (H+1, YXAX-2) - (H+1, YXAX+2), XCOL
NEXT H
)

! DRAW HORIZONTAL SCALE DIVISIONS, RIGHT
]
FOR H = XYAX TO XRITE STEP HSCALE
LINE (H, YXAX-2) - (H, YXAX+2), XCOL
LINE (H+1, YXAX-2) - (H+1, YXAX+2), XCOL
NEXT H
L

! DRAW VERTICAL SCALE DIVISIONS, UPPER
]
FOR V = YXAX TO YTOP STEP -VSCALE
LINE (XYAX-4, V) - (XYAX+4, V), YCOL
NEXT V
'

! DRAW VERTICAL SCALE DIVISIONS, LOWER

76

i dite e it

- r T Y Y v e
¥

PR

Fig O el SN

[NI A

5650
5660
5670
5680
5690
5700
5710
5720
5730
5740
5750
5760

......

FOR V = YXAX TO YBOTT STEP VSCALE
LINE (XYAX-4, V) - (XYAX+4, V), YCOL

NEXT V

1

RETURN

1

L

! THIS AXES SUBROUTINE IS BASED ON THE PROGRAM
! 9-2, PAGE 9-~15, IN THE CONTINUING EDUCATION
! CORRESPONDENCE COURSE ''COMPUTER GRAPHICS",

! WRITTEN FOR HEATHKIT/ZENITH BY

' JAMES C. ADAMS

77

AR o b e DA peasa by Y

' '.o < N LR

L P

s

.
o e

T e

B o e,
-"' [N , 'y

NI

, . .
"y % %

3
o
'

R

it et e & it Sl S bttt Al Sl Tanh i St S it S S I i A S e At S aa AN v fvee ha e Anci AR en iy &g N e BAn e 4

YR T

S g
r D

APPENDIX G: LISTING OF UPDATE.BAS

2 a s

6000 ' * % % * * % UPDATE TRACKS SUBROUTINE % * * & * % %
6010 ' = *
6020 ' * INPUTS: UPD - OF TRACK TO UPDATE %
6030 ' =% *
6040 ' * OUTPUT: TRACK UPD 1S UPDATED %
6050 ' * *
6060 ' k% f Y ko d % fod ok Kok k hdoh ok Fok ok ok odok ook doh K
6070 '

6080 '

6100 '

6120 '

6130 ' PERFORM ALL LOOK-UPS ONLY ONCE

6140 '

6150 UPDX = TX(UPD)

6160 UPDY = TY(UPD)

6170 UPDT$ = HK$(UPD) + T$(UPD)

6180 UPDL$ = L$(UPD)

6190 HORZUP = XINC(UPD)

6200 VERTUP = YINC(UPD)

6210 COLUP = TCOLOR(UPD)

6220 '

6225 IF ACTIVE(UPD) = 2 THEN 6375

6230 UPGND = POINT(UPDX+2, UPDY+1)

6240 ON UPGND+1 GOSUB 6520, 6530, 6540, 6550, 6560, 6570, 6580, 6590

6250 WANT$ = COL$ + UPDT$: ALSO$ = COL$ + UPDL$
L

6255
6260 PSET (UPDX, UPDY), UPGND 'DRAW OLD SYMBOL IN
6270 DRAW WANTS$ 'REVERSE COLOR

6280 PSET (UPDX, UPDY), UPGND
6290 DRAW ALSO$
6295 DRAW "SO"

|

6300
6305 IF ACTIVE(UPD) = O THEN 6499
6310 UPDX = UPDX + HORZUP 'UPDATE POSITION

6320 UPDY = UPDY + VERTUP

6322 IF UPDX<15 OR UPDX>470 THEN 6482

6324 IF UPDY<27 OR UPDY>190 THEN 6482
L}

6330

6340 UPGND = POINT(UPDX+2, UPDY+1) ' CHECK BACKGROUND COLOR
6350 ' OF NEW LOCATION

6360 IF UPGND <> COLUP THEN 6375 'MAKE SYMBOL OPPOSITE
6370 1IF UPGND < 2 THEN COLUP = 7 ELSE COLUP = 0 ' OF BACKGROUND
6374 '

6375 ON COLUP+1 GOSUB 6520, 6530, 6540, 6550, 6560, 6570, 6580, 6590
6376 WANT$ = COL$ + UPDT$: ALSO$ = COL$ + UPDL$

6380 '

6390 PSET (UPDX, UPDY), COLUP 'DRAW NEW SYMBOL

78

w - %y P - - v ~ « TV i ke A% 2 AW y ¥, -, N
\!
D' t
) q. 3
. 6600 DRAW WANTS$ 2
‘ 6410 PSET (UPDX, UPDY), COLUP I
6420 DRAW ALSO$ 2
6425 DRAW "s0"
A 6430 -3
K 6440 TX(UPD) = UPDX 'STORE NEW POSITION -
;- 6450 TY(UPD) = UPDY .
h 6460 ' NS
' - 6480 ' "
6482 ACTIVE(UPD)=0 N
6490 RETURN 5
6500 '
6510 '
6520 COL$ = "CO0": RETURN "~
6530 COL$ = "C1": RETURN .
6540 COL$ = "C2": RETURN)
. 6550 COL$ = "C3": RETURN -
X 6560 COL$ = "C4": RETURN
. 6570 COL$ = "C5": RETURN .
Y 6580 COL$ = "C6": RETURN g,
y 6590 COL$ = "C7": RETURN =
: :
) R
“~
'
L
) :
: 2
: 79 -
: ”

,‘~..‘ A _.. N \’ n e e __-
E RPN .:'q(.k("_z’,.af.,(;.f._'."&

a;
13
¥
]
rg
3
L5

S wL W TR UTE LN

DO 0 | Lo/ L AP RON

APPENDIX H: LISTING OF MOVE.BAS

» 4

N 7000 ' * % %k o k% % SYMBOL MOVEMENT CALCULATOR Tk oK%k
7010 ' = %
7020 ' * INPUTS: MOVE - TRACK TO CALCULATE FOR *
7030 ' * 3
7040 ' * OUTPUT: XINC, YINC, SCALE FACTOR FOR SPEED ¥*
7050 ' * LEADER OF EACH ACTIVE TRACK ARE *
7060 ' = CALCULATED AND STORED ¥
7070 ' = : *
TOBO ' F K * Kk %k Kk ok Kk Kk h Kk %ok ok ok ok Lok hh ook ko ok Kh kK
7090 '

7100 '
7110
7130 °
7140 ' CALCULATE INCREMENTS BASED ON COURSE
7150 '

7160 IF CUS(MOVE)
7170 IF CUS(MOVE)
7180 IF CUS(MOVE)

A

5 THEN 7400
22.5 THEN 7410
45 THEN 7420

A A
[]

7190 IF CUS(MOVE) <= 67.5 THEN 7430

7200 IF CUS(MOVE) <= 85 THEN 7440

7210 IF CUS(MOVE) <= 95 THEN 7450

7220 IF CUS(MOVE) <= 112.5 THEN 7460

7230 IF CUS(MOVE) <= 135 THEN 7470

7240 IF CUS(MOVE) <= 157.5 THEN 7480

7250 1IF CUS(MOVE) <= 175 THEN 7490

7260 IF CUS(MOVE) <= 185 THEN 7500

7270 IF CUS(MOVE) <= 202.5 THEN 7510

7280 IF CUS(MOVE) <= 225 THEN 7520

7290 IF CUS(MOVE) <= 247.5 THEN 7530

7300 IF CUS(MOVE) <= 265 THEN 7540

7310 IF CUS(MOVE) <= 275 THEN 7550

7320 IF CUS(MOVE) <= 292.5 THEN 7560

7330 IF CUS(MOVE) <= 315 THEN 7570

7340 IF CUS(MOVE) <= 337.5 THEN 758y

7350 IF CUS(MOVE) <= 355 THEN 7590

7360 '

7370

7400 XINC(MOVE) = 8: YINC(MOVE) = 0: L$(MOVE) = LDR$(3): GOTO 7600
7410 XINC(MOVE) = 7: YINC(MOVE) = -3: L$(MOVE) = LDR$(2): GOTO 7600
7420 XINC(MOVE) = 5: YINC(MOVE) = -5: L$(MOVE) = LDR$(2): GOTO 7600
7430 XINC(MOVE) = 5: YINC(MOVE) = -5: L$(MOVE) = LDR$(2): GOTO 7600
7440 XINC(MOVE) = 3: YINC(MOVE) = -7: L$(MOVE) = LDR$(2): GOTO 7600
7450 XINC(MOVE) = O: YINC(MOVF) = -8: L$(MOVE) = LDR$(1): GOTO 7600
7460 XINC(MOVE) = -3: YINC(MOVE) = -7: L$(MOVE) = LDR$(8): GOTO 7600
7470 XINC(MOVE) = -5: YINC(MOVE) = -5: L$(MOVE) = LDR$(8): GOTO 7600
7480 XINC(MOVE) = -5: YINC(MOVE) = -5: L$(MOVE) = LDR$(8): GOTO 7600

80

v € 4 e, e .
et et
y'v'n.vlvr‘_A'-',‘.'.'.'.'.

-

-

T TN

o rammir

7 7490 XINC(MOVE) = -7: YINC(MOVE) = -3: L$(MOVE) = LDR$(8): GOTO 7600 .
y 7500 XINC(MOVE) = -8: YINC(MOVE) = O: L$(MOVE) = LDR$(7): GOTO 7600 .
7510 XINC(MOVE) = -7: YINC(MOVE) = 3: L$(MOVE) = LDR$(6): GOTO 7600 3
7520 XINC(MOVE) = -5: YINC(MOVE) = 5: L$(MOVE) = LDR$(6): GOTO 7600 1
7530 XINC(MOVE) = -5: YINC(MOVE) = 5: L$(MOVE) = LDR$(6): GOTO 7600 -
. 7540 XINC(MOVE) = -3: YINC(MOVE) = 7: L$(MOVE) = LDR$(6): GOTC 7600 .
. 7550 XINC(MOVE) = 0O: YINC(MOVE) = 8: L$(MOVE) = LDR$(5): GOTO 7600 ‘
v 7560 XINC(MOVE) = 3: YINC(MOVE) = 7: L$(MOVE) = LDR$(4): GOTO 7600 ;
7570 XINC(MOVE) = 5: YINC(MOVE) = 5: L$(MOVE) = LDR$(4): GOTO 7600 ¢
7580 XINC(MOVE) = 5: YINC(MOVE) = 5: L$(MOVE) = LDR$(4): GOTO 7600 |
7590 XINC(MOVE) = 7: YINC(MOVE) = 3: L$(MOVE) = LDR$(4): GOTO 7600 f
7595 XINC(MOVE) = 8: YINC(MOVE) = O: L$(MOVE) = LDR$(3)
7600 '
7610 ' CALCULATE AMOUNT OF INCREMENT, SPEED LEADER
7620 ' SCALE, BASED ON SPEED

7630 ' |
7640 IF SPD(MOVE) >= 100 THEN 7690

3 7641 IF SPD(MOVE) <> O THEN 7650

. 7642

XINC(MOVE) =
7643 YINC(MOVE) =
7644 L$(MOVE) = " :
7645 GOTO 7770 |

7650 XINC(MOVE)
7660 YINC(MOVE)
7670 L$(MOVE) =
7680 GOTO 7770
7690 IF SPD(MOVE) <= 600 THEN 7770 /
7700 XINC(MOVE) = INT{(2 * XINC(MOVE)) |
7710 YINC(MOVE) = INT(2 * YINC(MOVE))
7720 L$(MOVE) = "S8" + L$(MOVE)

7760 '

7770 RETURN

7780 '

INT(.5 * XINC(MOVE))
INT(.5 * YINC(MOVE))
"s2" + L$(MOVE)

81

APPENDIX I: LISTING OF LAND.BAS

3

% % % % % % % DRAW LAND SUBROUTINE &% ¢ s % % % &
%

* INPUTS: PTS - ARRAY OF #s OF BORDER POINTS

i CONTS - # OF LAND MASSES

*

* OUTPUT: PLOTTED LAND MASSES, IN SPECIFIED COLORS
:************ R R R I O I I R

% ok ok % b

*

IF CONTS = O THEN RETURN 'NO LAND MASSES, NO DRAW
.

FOR I = 1 TO CONTS
READ PTS(I), LCOL(IL)

NEXT I

1]

DIM LAND1(PTS(1), 2), LAND2(PTS(2), 2), LAND3(PTS(3), 2)
FOR ISLE = 1 TO PTS(1)
READ LAND1(ISLE, 1), LAND1(ISLE, 2)
NEXT ISLE
]

FOR ISLE = 1 TO PTS(2)

READ LAND2(ISLE, 1), LAND2(ISLE, 2)
NEXT ISLE
1

FOR ISLE = 1 TO PTS(3)

READ LAND3(ISLE, 1), LAND3(ISLE, 2)
NEXT ISLE
]

PSET (LAND1(1,1), LAND1(1,2)), LCOL(1)
FOR ISLE = 2 TO PTS(1)
LINE - (LAND1(ISLE, 1), LAND1(ISLE, 2)), LCOL(1)
NEXT ISLE
L}

READ CENTX, CENTY

1]

PAINT (CENTX, CENTY), LCOL(1), LCOL(1)
]

IF PTS(2) < 2 THEN RETURN

]

PSET (LAND2(1,1), LAND2(1,2)), LCOL(2)
FOR ISLE = 2 TO PTS(2)

LINE - (LAND2(ISLE, 1), LAND2(ISLE, 2)), LCOL(2)
NEXT ISLE

READ CENTX, CENTY
]

PAINT (CENTX, CENTY), LCOL(2), LCOL(2)
1]
IF PTS(3) < 2 THEN RETURN
t
PSET (LAND3(1,1), LAND3(1,2)), LCOL(3)
FOR ISLE = 2 TO PTS(3)
LINE - (LAND3(ISLE, 1), LAND3(ISLE, 2)), LCOL(3)
NEXT ISLE
L]

READ CENTX, CENTY
1

PAINT (CENTX, CENTY), LCOL(3), LCOL(3)
)

RETURN

T T ERT YT

10000
10010
10020
10030
10040
10050
10060
10070
10080
10090
10100
10110
10120
10130
10140
10150
10160
10170
10180
10190
10200
10210
10220
10230
10235
10240
10250
10260
10270
10275
10280
10290
10300

L e Mk Bat da A
LR oM F A aFE 0t I

APPENDIX J: LISTING OF DATA.BAS

' kderdekddoiobdd DATA dededddedcdrdedochodod
L}

' XUL, YUL, XLR, YLR, CWIND

DATA 15, 27, 470, 190, 7

' CONTS

DATA 2

' PTS(1), LCOL(1), PTS(2), LCOL(2)

DATA 8, 3

DATA 5, 5

' BORDER POINTS FOR LAND MASS ONE

DATA 100, 125, 120, 150, 130, 140, 125, 135, 155, 134

DATA 160, 127, 125, 125, 100, 125

' BORDER POINTS FOR LAND MASS TWO

DATA 240, 100, 270, 105, 290, 90, 265, 85, 240, 100
' BORDER POINTS FOR DUMMY LAND MASS

DATA 1, 1

' CENTER OF LAND MASS ONE

DATA 120, 135

' CENTER OF LAND MASS TWO

DATA 265, 95

' XYAX, YTOP, YBOTT, YCOL

DATA 157, 27, 190, 0

' YXAX, XLEFT, XRITE, XCOL

DATA 145, 17, 470, 0

DATA 3

' TRACK(1), CLASS$(1), CUS(1), SPD(1), TCOLOR(1), TX(1), TY(1)
DATA "HOSTILE", 180, 35, 0, 420, 80

' TRACK(2), CLASS$(2), CUS(2), SPD(2), TCOLOR(2), TX(2), TY(2)
DATA "FRIENDLY", 4, 135, 0, 50, 100

' TRACK (3)

DATA "UNKNOWN", 110, 650, 0, 430, 170

' NUMBER OF MOVES TO TEST UPDATING

DATA 5

84

- v
LU

r

,
s

": wd

Yelgatr

ra
3 4 s s

)

APPENDIX K:

LISTING OF TRACKING.BAS

11000 ' % % % % % % & TEST TRACKING SUBROUTINE L
11010 ' = *
11020 ' * INPUTS: TRACKS - # OF TEST TRACKS *
11030 ' = *
11040 ' * OUTPUT: SAMPLE OF TRACKS BEING UPDATED *
11050 ' * *
11060' I I R B R A R S R N N
L}

11080 READ TRACKS

11090 '

11100 IF TRACKS = 0 THEN 11200
11110 FOR I = 1 TO TRACKS

11120 READ CLASS$(1), CUS(I), SPD(I), TCOLOR(I), TX(I), TY(I)
11125 UPD =1

11130 GOSUB 20000

11135 ACTIVE(I) =1

11136 IF CLASS$(I) = "REF PNT
11140 NEXT I

11150 '

11160 '

" THEN ACTIVE(I) = 2

11165 FOR MOVE = 1 TO TRACKS
11170 GOSUB 7000
11175 NEXT MOVE
i 11180 '
11190 '
11200 DO = ""
11210 '

11220 WHILE DO$

11225 FOR UPD = 1 TO TRACKS

11230 GOSUB 6000

11235 NEXT UPD

11240 FOR I =1 TO 2000

11250 DO$ = INKEYS$

11255 IF DO$="" THEN NEXT I ELSE 11280

11260 WEND

11270

11280 IF DO$ <> CHR$(27) THEN 11200 ELSE DO2$ = INKEY$

11300 '

11370

- .

GO

TO 11200

...........
.........

~ .

: 11310 IF DO2$ = "P" THEN GOSUB 12000
: 11320 IF DO2$ = "S" THEN GOSUB 12100
11330 IF D02$ = "T" THEN GOSUB 12200
11340 IF DO2$ = "U" THEN GOSUB 12500
11350 IF DO2$ = "V" THEN GOSUB 12800
11360 IF DO2$ = "W'" THEN GOSUB 13500

.....

e

[Pl it

12000
12010
12020
12030
12040
N 12050
» 12060
N 12062
" 12064
12066
12068
12070
12072
12074
12080
12085
12090
12100
12110
12120
12130
12140
12150
12160
12170
12180
12190
12200
12210
12220
12230
L 12240
a 12250
- 12252

12254

12256
: 12258
- 12259
: 12260
. 12270

12275

12276
N 12280
12282
12284
12286

.
a"a®a¥ete

SN S

SR S AR L

.....

APPENDIX L: LISTING OF KEYS.BAS

''% % % % % % % FUNCTION KEY SUBROUTINES
1

1

''9% % % % HALT PROGRAM

! FUNCTION KEY F6

1

CLS

KEY 1, "LIST "

KEY 2, "RUN" + CHR$(13) + CHR$(10)
KEY 3, "LOAD" + CHR$(34)

KEY 4, "SAVE" + CHR$(34)

]

KEY 5, "CONT'" + CHR$(13) + CHR$(10)

KEY 6, "PRINT "

END
RETURN
[]
''9 %7 % % SUSPEND/CONTINUE PROGRAM
! FUNCTION KEY F1
1
GO = "
: $
WHILE GO$ = ""
GO$ = INKEY$
WEND
L}
RETURN
''9% 7 % % % HOOK TRACK
' FUNCTION KEY F2
L

LOCATE 2, 10
1)

IF HOOK = 0 THEN 12270
ACTIVE(HOOK) = 0

UPD = HOOK

GOSUB 6000
ACTIVE(HOOK) = 1

HK$ (HOOK) = "so"

1)

INPUT "TRACK TO HOOK: " ;HOOK
LOCATE 2, 10

PRINT "

L}

ACTIVE(HOOK) = 0

UPD = HOOK
GOSUB 6000

86

- e L

Yook X

......

. 5

P,
A 2 4 e T

N 12288 ACTIVE(HOOK) = 1 2
. 12290 HK$(HOOK) = "s8" y
12300 ' y
12310 LOCATE 6, 62
. 12320 PRINT "TRACK NO. ";HOOK
< 12330 LOCATE 7, 62 N
o 12340 PRINT "CLASS '";CLASS$(HOOK)
4 12350 LOCATE 8, 62 N
K 12360 PRINT "COURSE '";CUS(HOOK) ;
12370 LOCATE 9, 62
“ 12380 PRINT "SPEED " s SPD(HOOK)
N 12390
5 12400 °*
12410 RETURN
12420 '
12500 ' % % % % % ENTER NEW TRACK
12510 ' FUNCTION KEY F3
12520 '
12530 TRACKS = TRACKS + 1
12540 MOVE = TRACKS
12550 '
12560 LOCATE 2, 10
12570 INPUT "ENTER CLASS " ;CLASS$(TRACKS)
12571 SIZECL = LEN(CLASS$(TRACKS))
- 12572 IF SIZECL < 9 THEN ADD = 9 - SIZECL - g
g 12573 IF ADD=0 THEN 12575 B
. 12574 FOR I = 1 TO ADD:CLASS$(TRACKS) = CLASS$(TRACKS) + " ":NEXT I .
12575 LOCATE 2, 10 ‘
12576 PRINT " " 5
12580 LOCATE 2, 10]
12590 INPUT "ENTER COURSE " ;CUS(TRACKS) *3
12595 LOCATE 2, 10 .
12596 PRINT " "
12600 LOCATE 2, 10
12610 INPUT "ENTER SPEED " ;SPD(TRACKS) g
12615 LOCATE 2, 10 -
12616 PRINT " " .
- 12620 LOCATE 2, 10 -
a 12630 INPUT "ENTER GRID X ";TX(TRACKS))
12635 LOCATE 2, 10
12636 PRINT " "
12640 LOCATE 2, 10 2
- 12650 INPUT "ENTER GRID Y '";TY(TRACKS) .
. 12655 LOCATE 2, 10 .
- 12656 PRINT " " -
12660 LOCATE 2, 10
12670 INPUT "TRACK COLOR ' ;TCOLOR(TRACKS) X
N 12680 LOCATE 2, 10
v 12690 PRINT " "
2 12700 '
K 12702 IF CLASS$(MOVE) = "REF PNT " THEN ACTIVE(MOVE) = 2

g

L R A

-

T ..
P

[3en 2%

g 87 N

12705
12710
12712
12715
12716
12717
12720
12730
12740
12750
12800
12810
12820
12830
12832
12834
12836
12838
12839
12840
12850
12855
12856
12860
12870
12872
12874
12876
12878
12879
12880
12890
12900
12910
12915
12916
12920
12930
12940
12950
12955
12956
12960
12970
12980
12990
12995
12996
13000
13010
13020

AT A e A A A e e R el MDA W e St e Sal e e B e e Yl e Ahe-AAe A A Sha S e & S S)

GOSUB 20000
GOSUB 7000
UPD = MOVE
GOSUB 20000

HK$(UPD) = "SO": ACTIVE(UPD) = 1
GOSUB 6000

?

RETURN

L}

1

'7% % % % % MODIFY TRACK

! FUNCTION KEY F4
L

IF HOOK = O THEN 12840

ACTIVE(HOOK) = 0

UPD = HOOK

GOSUB 6000

ACTIVE(HOOK) = 1

HK$ (HOOK) = "so"

LOCATE 2, 10

INPUT "TRACK TO MODIFY: " ;HOOK
LOCATE 2, 10

PRINT " "
1

GOSUB 12300

ACTIVE(HOOK) = 0
UPD = HOOK
GOSUB 6000
ACTIVE(HOOK) = 1

HK$ (HOOK) = "so"
]

LOCATE 2, 10
INPUT "“IS CLASS OK ";A$

IF A$ <> "Y" THEN LOCATE 2, 40 : INPUT "NEW CLASS :";CLASS$(HOOK)

LOCATE 2, 10
PRINT "
]

LOCATE 2, 10
INPUT "IS COURSE OK ";A$

IF A$ <> "Y" THEN LOCATE 2, 40 : INPUT "NEW COURSE:';CUS(HOOK)

LOCATE 2, 10
PRINT "
L]

LOCATE 2, 10
INPUT "IS SPEED OK ";A$

IF A$ <> "Y" THEN LOCATE 2, 40 : INPUT "NEW SPEED: " ;SPD(HOOK)

LOCATE 2, 10
PRINT "
!

LOCATE 2, 10
INPUT "IS COLOR OK ";A$

88

A IONE

R

oL

13030 IF A$ <> "Y" THEN LOCATE 2, 40 : INPUT "NEW COLOR: ";TCOLOR(HOOK) -
13035 LOCATE 2, 10
v 13036 PRINT " " 9
13040 '
. 13050 LOCATE 2, 10 3
‘ 13060 INPUT "IS GRID X OK ";A$ R
13070 IF A$ <> "Y' THEN LOCATE 2, 40 : INPUT "NEW GRID X: ";TX(HOOK)
13075 LOCATE 2, 10 .
13076 PRINT " " N
13080 '
. 13090 LOCATE 2, 10 b,
-- 13100 INPUT "IS GRID Y OK ";A$ s
. 13110 IF A$ <> "Y" THEN LOCATE 2, 40 : INPUT "NEW GRID Y: " ;TY(HOOK) 2
13115 LOCATE 2, 10 R
13116 PRINT " " 5
13120 '
13130 MOVE = HOOK E
13140 GOSUB 7000 B
13145 UPD = HOOK
13147 GOSUB 6000
13150 '
13160 RETURN
13170 '
13500 ' % % % % % DELETE A TRACK
L 13510 ' FUNCTION KEY F5
. 13520 '
- 13530 LOCATE 2, 10
13540 INPUT "TRACK TO DELETE: ";DEL
13550 ' : ?
. 13560 ACTIVE(DEL) = 0 -
. 13565 LOCATE 2, 10 -
. 13566 PRINT " " N
. 13570 ° o
13580 RETURN i

’
-

-
* .

.
oy e

. 89

’;’.:.-'..‘ Y IR S Y R A A S o e

-

.. P T T T L WU - . *
AL, AL ~ e e e T T T e e e e T t e
PRI, LN . AT, PUPE AN A A AL ALt ek il ol e e A e e i e A "y

e e o e e s AT e e
PP AP ISP -SRI SRR B SN G S YR QP

20000
20010
20020
20030
20040
20050
20060
20070
20080
20090
20100
20110
20120
20130
20140
20150
20160
20170
20180
20190
20200
20210
20220
20230
20240
20250

SO A PR PR D

IF
t
IF
]

IF

IF

RETURN

R I

ofs
iy

%
*
*
*
*
*

CLASS$(UPD)
CLASS$(UPD)
CLASS$(UPD)
CLASS$(UPD)
CLASS$(UPD)
CLASS$(UPD)

CLASS$(UPD)

y

APPENDIX M:

SYMBOL ASSIGNMENT

LISTING OF MATCH.BAS

e o %

UPD - TRACK TO HAVE SYMBOL ASSIGNED

TRACK(UPD) IS ASSIGNED A SYMBOL
THAT MATCHES ITS CLASSIFICATION

% ok ok ke koh ok ok ko of ok Kk kXX
= "HOSTILE " THEN T$(UPD) = SYM$(4):
= '"HOST SURF'" THEN T$(UPD) = SYM$(6):
= "UNKNOWN " THEN T$(UPD) = SYM$(3):
= "UNK AIR " THEN T$(UPD) = SYM$(5):
= "FIGHTER " THEN T$(UPD) = SYM$(2):
= "SURVEILL " THEN T$(UPD) = SYM$(1):
= "REF PNT " THEN T$(UPD) = SYM$(7)

%

PR R T S

GOTO

GOTO

GOTO

GOTO

GOTO

GOTO

20240

20240

20240

20240

20240

20240

- LIPS

AN B¢

APPENDIX N: USER'S MANUAL FOR DISPLAY SIMULATOR

A, HOW TO USE THIS SIMULATOR
The minimum system configuration requirements for this

NTDS display simulator are as follows:

- H/Z-100 or compatible computer
- 128K RAM memory
- 1 DS/DD 5 1/4" disk drive
- Z-DOS 1.25 operating system
- ZBASIC interpreter or compiler
- the file NEWEST.BAS
or
- the subroutine files making up NEWEST.BAS, which are:

-- HEADER.BAS
—-- INIT.BAS

—-— HARNESS.BAS
-- WINDOW.BAS
-- AXES.BAS

-- LAND.BAS

-- MOVE.BAS

-— UPDATE.BAS
-= TRACKING.BAS
-- DATA.BAS or DATAl.BAS
-- MATCH.BAS

-- KEYS.BAS

B, GETTING STARTED

"Boot up" the computer system under the 2-DOS operating
system, After getting the system prompt ensure that the
default disk drive (if there are two or more) contains the
file ZBASIC.COM (the ZBASIC interpreter), unless using the
compiled version. If working with the compiled version,

follow the instructions for compiling and running a ZBASIC

program that came with the compiler being used.

91

oo a0,

y L

1. This step is for wusers without the file NEWEST,BAS.

e a8

If that file is present, skip to step B.2.

- Type the command "ZBASIC",. This will load the ZBASIC
W interpreter. When it displays its prompt, load any one of
t the subroutine files. Then type MERGE "filename" for each
of the other files, one by one. Once they are all merged

type RUN (If any error messages are displayed when

i ."v'.l": N

attempting to do this, one or more of the files may not be

jie

stored properly. 1In order to store them properly they will
have to be loaded when there is no other program stored in

N memory, and saved with the command SAVE "filename", A. This
saves them in an ASCII format, which allows them to be
merged with other files).

) 2. Load NEWEST. Type RUN.

C. INTERACTING WITH THE SIMULATOR
v While the simulator is running it accepts user input
through the wuse of the special function keys. The special
g function key menu is displayed on line 25 of the mon..or,
below the NTDS display.

The Suspend/Continue key is a double action key -- to
suspend the automatic wupdating of tracks (and all other
system functions) depress the Fl1 key. To resume system
operation depress it again. When it is depressed for the

"continue™ function all tracks will be updated.

92

R T T N T o W W N W W W

.....

The Hook key (F2) allows the display of the track ;
parameters for one of the tracks in the system. When it is :
depressed the system will request an input at the top of the
screen, It will prompt the user to input the track number i
of the track to hook. The input must be a number between 1
and 10, or an error will result, If the number is the
number of an active track that track will have its symbol
enlarged as long as it 1is hooked, and 1its parameters
displayed to the right of the NTDS display area.

The Enter key (F3) allows a new track to be entered,
The user will be prompted for inputs at the top of the
screen, For CLASSS, input the classification of the new
track (no more than nine characters, please). If the
classification does not match one the system recognizes, the
speed leader only will be displayed for the new track. The
currently recognized inputs are: "HOSTILE", "FIGHTER",
"UNKNOWN", ®"HOST SURF", "REF PNT", "SURVEILL", and "UNK
AIR". The CUS (course) should be a number between 0 and
360, representing degrees true. Speed (SPD) should be a
positive number, greater than or equal to zero, representing
speed in knots. Grid X is the X coordinate of the track, in
terms of the display. It should be a number in the range of
15-470., Likewise Grid Y is a display coordinate, and ranges
from 27-190. Numbers other than these will work, if they
are within the range of the pixels of the display. The

Update module tests for the coordinates of the track, -

93

........ N \- "

however, and the track will not move if placed outside the

display window. Track Color should be a number between 0-7.
On the monochrome systems this will not matter unless it 1is
0 or 7--on <color systems these numbers correspond to the
colors listed in the User's Manual.

The F4 key, Modify, will go through the same track
parameters that were just discussed for the F3 key. It will
first ask which track to modify, and the track number must
be input. The system then hooks that track, and goes
through each track parameter asking if it is OK. The user
should input a "Y" if the parameter is fine, anything else
if it is not. If the response is other than "Y" the user
will be requested to 1input the correct value for that
parameter, and the hooked track will be modified
accordingly.

The Delete key, F5, asks the user to provide a track
number, and the track number input will be deleted. Upon
the next update of the system it will no 1longer appear on
the screen.

The Halt key, F6, provides a gracious exit from the
display simulator system. When it is depressed it restores
the special function keys to their ZBASIC settings, <clears

the screen, and returns the ZBASIC interpreter prompt.

A R)

(4
'l.

LT,

-

ICRSI | B R L

s A

DR TR T

e W il sl Sa i aid Sl il Sl Anib et Al

D. MODIFYING THE INITIAL DISPLAY

The initial display, in its entirety, is determined from
the DATA module. By modifying the DATA module, or creating
a new one, and re-merging it with the system, a new initial
display may be created. There is a caution here: if a new
(or modified) DATA module 1is wused, the line numbers must
match all those of the 0ld module, or the unused old numbers
must be deleted, to prevent erroneous assignments.

The data should be entered 1in the order of Figure N.1,
within the ranges and for the purposes stated below.

The first five data values relate to the window. The
first two of them, XUL and YUL, are the X and Y coordinates
of the upper left-hand corner of the display window,
respectively. The X value should fall between 0-480, and
the Y value between 20-212. The same range restrictions
apply to the XLR and YLR values, which are the coordinates
for the lower right-hand corner of the window. The color of
the box, a number between zero and 7, is given by CWIND.

The window parameters are followed by CONTS, the number
of land masses (or special areas) the initial display will
contain, The current system limitation is for a maximum of
3, and this number should not be 1less than zero. If CONTS
is =zero, the next data value to be read 1in is XYAX.
Otherwise there are CONTS number of entries of the variables

specified within the square brackets ([1]).

95

......

..'.'-'--". . -
TP P SR I

AD-A169 032

UNCLASSIFIED

TRCTICAL DISPLAY SINULATION ON THE H/Z-100(U) NAVAL
S NAR 96

POSTGRADUATE SCHOOL MONTEREY CR K MW COONE:

. . L) N
MY)

4
g
f\f\-\f\..\r.\ /

!
1
"
>

Y Nk S SN

o

‘o raahp

{RE]
.
+
!
\

e g AT AT AN

oy

b 22

1

1= 29
==
I
.6

b
s
u
u
[
&
L
-
- -
LY

| = E XTI
d =l < :
! = = = 5
i —_ = = g
»
¢
....
:

L G S Mt I T i, N B A BT i St 0 S WA

Rkl A e A P R XA S. SBYBEBIREESE X IR e P N

Bt e T o Nl e » ¥ .-

TRTETAT T AT T

TeTaT]

For each 'continent' there should be a value pair (PTS,

LCOL) . The PTS is the number of points ((xX,y) coordinate

pairs) that specify the border of the land area, LCOL |is
- XUL

- YUL

- XLR

- YLR

- CWIND

- CONTS

- PTS, LCOL] - CONTS TIMES

X1, Y1, X2, ¥2, ... XN, YN] - CONTS TIMES
- CENTX, CENTY] -~ CONTS TIMES

XYAX

- YTOP

- YBOTT

- YCOL

- YXAX

- XLEFT

- XRITE

- XCOL

- TRACKS

[- CLASSS, CUS, SPD, TCOLOR, TX, TY] - TRACKS TIMES
- MOVES

—r
|

Figure N.l1 Order of Data Entry -

the color of that piece of land. After the PTS, LCOL pairs

n
)
P
w
e
»
i
¢
E:
E
F
P
i
L .
r-
}
i
v
-
r
|38
;-
b
Ls
.' .
A
%
P
{.
E

(one pair for each land area to
lists of ordered pairs, Xm, Ym,
border point of the land mass,

should match the PTS number for

be input) there are CONTS
each pair representing a
The final subscript, N,

each particular land mass,

and XN, YN should match X1, Y1 to ensure that the land mass
will be painted properly. After the list of border points
is read in, an interior point, CENTX, CENTY, is read in.
This should be a point not on the border but within in.

This is the point that determines the area of the screen

that will be painted in LCOL color.

96

. T Y
n] e
e .
. ' o AR

The following four data values specify the vertical grid
parameters, and the four after that the horizontal grid.
The XYAX value should fall somewhere between the XUL and XLR
values read in earlier. It is the horizontal, or X,
coordinate of the Y axis. YTOP and YBOTTOM are the top and
bottom of the Y-axis, and should match YUL and YLR
respectively, if the grid is to be from the top of the
window to the bottom. The grid's color is determined by
YCOL, which should be between 0-7.

The vertical grid parameters are followed by those for
the horizontal grid, and they are of the same form. The
first, ¥YXAX, is the vertical location of the horizontal grid
line, and should be between YUL and YLR. The XLEFT and
XRITE specify the ends of the horizontal grid, and should
match XUL and XLR for a full-window grid. The grid color is
independent of the vertical grid colo. and is specified by
a number 0-7 for XCOL.

If the initial display is to have any test tracks prior
to user input the number of them is read in through the
parameter TRACKS. This number should have a value between
Zero and ten, the system currently being 1limited to ten

tracks. If TRACKS 1is zero the next data value is MOVES.

Otherwise, the data following TRACKS is sets of parameters

for the initial tracks.
CLASSS is the classification of each test track, and

should be a character string surrounded by quotes, no longer

97

,
P

. than nine characters (excluding the quotation marks). The .
45 currently recognized <classifications are “"HOSTILE", "HOST .
N SURF", "UNK AIR", "REF PNT", "FIGHTER", "SURVEILL" and {
5 "UNKNOWN". Any classification other than these will result ' -~

in a symb 1 which consists only of a speed leader for the
track.

CUS and SPD are the course and speed of the track. They
should be positive or zero. The course is in degrees true
(0-360) and the speed is in knots(0-2?). TCOLOR is the track
color, and should again be a 0-7 number. »

The TX and TY are the grid coordinates of the track's
3 initial position. They are pixel coordinates on the screen.
TX should be between XUL and XLR, T b.twe_.n YUL and YLR.
If they are not one of two things will happen. If they are
outside the range of the window but within the range of the
; screen they will be drawn on the screen in the specified
position, and not updated. 1If they are outside the range of
the screen (0-639 for x, 0-224 for y) an error will result, !
and the system will be exited. j

The value of MOVES should be zero if TRACKS is zero. It '1
represents the number of automatic times the system will !!
update the tracks if there is no user input. Actually, this]

is a hold-over from an earlier version of the system. It o

may be used if the system is modified--otherwise it will be

ignored.

98

........ - - . Y DR T
AP S L. o 5 »,.
LR e I TR S T S e S P T Tl Tl Sy Y gl Pl

DGR

E. UNDERSTANDING THE CODE

. 5 »
D]

Following is a line by 1line explanation of the code.
The subsections correspond to the subroutines that make up

) the display simulator system, Each subsection 1is titled

-
g v v s.a v o

according to its subroutine. The code may be examined by

following, in order, Appendix A, which is a listing of the

A

assembled subroutines, or by following the appropriate
Appendix for each subroutine,

1. Header
N We begin with a header, identifying the program and

clearing the screen. These statements are lines 10-90.

) 2. 1Init “
S The next section of code, "INITIALIZATION AND
TABLES" (lines 100-960) performs several housekeeping chores
to sét up the prototype. Line 130 sets the array subscript
lower bound, and 1lines 150-170 allocate memory for the
y) necessary arrays. The symbol and speed leader tables (SYMS
and LDR$) are initialized in lines 180-440.

The variable TRACKS is initialized to zero. Later
- in the program it 1is read from a DATA statement, to
determine how many tracks the system starts with prior to

user input. Whenever a track 1is added, TRACKS is incre-

. mented. If it exceeds ten, the dimension of the parts of X
S the TRACK record (see Figure 3.1), a subscript out of range h
- error will result. The prototype does no 'garbage X

el .
- 99 .

. A et R

e S on R Ant ANt M) b A Jhie A4 M v Bl A I A Al Tt AL Dl S i Rl e P P R R o IR e e

collection', as such, and flags inactive tracks with a value

A T AENERIC LN

of zero in the ACTIVE field,

il

Line 510 initializes the elements of the PTS array

to one,. This is necessary because of the lack of dynamic

2

memory allocation in ZBASIC. The elements of the PTS array
are used in the Land module to dimension arrays, and must be
greater than or equal to one,

The special function keys are initialized in lines
530-600. This prototype was developed with a ZBASIC inter-
preter, ZBASIC, under 2Z-DOS version 1.25. In that
environment the special function keys are pre-set to provide
ZBASIC commands. These lines re-set them to generate their
normal escape sequences when depressed,

The HK$ and ACTIVE fields of each track are
initialized 1in lines 620-670. This prototype was developed
for color and/or monochrome use. The current Zenith
monitors at NPS are monochrome. For that reason we elected
to indicate a hooked track by enlarging its symbol. The HKS$
field will always be drawn as part of the symbol. 1If the
track is not hooked it will be scale zero ("S0"), for normal
size. For hooked tracks it is changed to "S8", for double

size, The ACTIVE field is primarily used to determine which

rARN .o

| I
PRI
R

'u'

PR

tracks are active. Reference points require special
treatment 1in this prototype, for efficiency. A more

detailed explanation is with the Update module. A value of

.
SR A

100

\
.
MY
Y
“
..‘.'
N
—~
B
s S
RS

...... g T U TR TL I T UPILPI S S S
PR U N T R A R A AR P A s W N

" et el «T, v 4y w7

2 in the ACTIVE field indicates that the track is a

reference point.

The final chore performed by the Init module is the
display of the function'keys menu. Lines 690-960 provide
the user with reverse video labels of the active function
keys, and normal video display of their purposes on line 25
of the display. This places the menu close to the keys
involved and out of the main display area.

3. Harness

The test harness, or Harness module, follows in
lines 1000-4999. It grew as the prototype was developed.
The final line, 4999, which 1is an END statement, is no
longer necessary, but was prior to the installation of user
interaction as a feature. During development and testing
all inputs were through program lines and DATA statements,
This may be a good point at which to mention that there are
some unnecessary lines remaining, many unused line numbers,
and some sections of code where line numbers are too close
together,

The presence of unnecessary lines does not adversely
affect the performance of the prototype. Some 0of them are
left in to allow follow-on researchers to see some history
of the thought process and development procedures used
before. Most of them are present to allow for spacing and

readability of the code, and are left in for those reasons.

101

IR
, o

1

YRy Y| PP RAS

'.v'l

.
[POR

RSN

'

AL
Yt g
o

'

In most cases the 1line numbers are spaced by tens.

oL e
. aa

This allows for the insertion of several lines wherever
necessary during the ongoing development of the system. In
some cases they are closer together, demonstrating the prior
development and debugging. There are wide gaps in some

sections o0f code, illustrating the modular development

R LS

process, It 1is particularly important when writing files

which will be merged to attempt to assign line numbers which

will not risk duplication.

-

The Harness module requires 1little explanation. It
reads DATA statements to obtain parameters, calls on
subroutines to make use of the parameters to draw static .

portions of the display, and transfers control to the y

- « ¢ ¢ ¥ ¢
SOMOENTM CAEAEREARAE

.
s 2

[

Tracking module in line 1280. <

4, Window 3
The Window module, lines 5000-5160, 1is also self-
explanatory. It is written in general terms, and may be '

used to draw any size box, anywhere on the screen, 1in any .

v % v A A A A
AN MO
drateT T ST

color and for any purpose.

’-
L=

5. AXes

Most of the modules are written to be useful .
elsewhere. The Axes module is no exception, We could have
made use of the previous module, Window, and re-defined what
have been labelled the window parameters, since Axes also
draws boxes. This is just one example of extra code being

written, and trickiness avoided, for clarity and

102 3:'

LAY

. . s e e e e e e e e e
AU S e N e s e .‘-:-._-, e T e
A.MJ_ P W A P AN P Dy ‘—A‘ PR WP Uy

. 7. v RECE o 2R aA A of A0 ARE A o DR oL AR AL gel ol sl A gl ol ar SN AP i s i i A i e i dad AR A A Sl Al int Sul durt

readability. This feature, abundant code and prolific

RS

variable creation rather than re-using the same variable

names for different purposes, also enhances maintainability,

P

Lines 5320~5330 ensure that aspect ratio 1is
maintained when the two axes are scaled. Line 5365 draws a
box one pixel wider on each side than the vertical axis line .
of the window's color. This enables the axis to <cross any
color land mass without getting lost. Line 5405 does the
same thing for the horizontal axis. N
6. Update :
The Update module is, in many ways, the heart of the
system. It is the module that re-positions the track
symbols periodically, draws and erases them, and checks to

see if they fall within the window limits.

1 3

The first thing Update does 1is 1look up all array

variables that are referenced frequently in the module,

L, Ny a0,

This saves time when each variable is used. It 1is nmuch
faster for the interpreter to look up the copy in the 1local
simple variable than to compute the address from an array
index. Lines 6150-6210 do the copying of array variables
into local simple variables.

Line 6230 samples a background point at the current
symbol position. A common method of erasing in computer
graphics, and the one employed here, 1is to re-draw the
symbol in the color of its background. Based on the color

of the local background one of eight subroutines determines

103

A,
a2 »

A

g
'

_ -
2% A

-
»
P a4

B M

LA

.
b

T Tlr'f'
.'.' Y
LN LG8

¥ ¥ vV v w

Ty S
: fale

the proper <color for the string COLS. The reason the

statcment using UPGND + 1 is because the colors are from 0-
7, but the ON <exp> GOSUB statement requires a number equal
to or greater than one to branch.

The string WANTS is then composed of the color and
the symbol, ALSO$ 1is composed of the color and the speed
leader (both of these being the color of the background in
this case, to perform an erasure), then each string is drawn
at the current symbol position.

In line 6260 the symbol 1is located at its current
position. Line 6270 draws the symbol, line 6280 relocates
at symbol center and line 6290 draws the speed leader. The
scale is returned to normal in line 6295,

If the symbol is inactive (ACTIVE = 0) this is all
that 1is required and line 6305 directs program flow to the
RETURN statement. For active symbols lines 6310-6320 update
the position of symbol center and program flow continues,

Line 6340 samples the background at the updated
symbol position. If there is no conflict logic similar to
that just completed for the erasure, using COLUP (the
current symbol color) rather than UPGND (background color)
draws the re-located symbol in lines 6375-6425, 1If there is
a conflict 1line 6370 makes the symbol white €for dark
backgrounds and black for light backgrounds.

Lines 6440-6450 store the updated symbol position in

the TX and TY fields of the track record. Line 6490 returns

104

AP AN AL I SRR NN S At e AN SR DA st Y o B S Nk A A S) S B A pla g A S Al Wi T, L Al Sal Bal Seol nadl Gof Gof 8 A& o)
. -

. to the <calling routine. Each of the 1lines 6520-6590

. contains two statements, constituting an entire subroutine,
These are the subroutines called upon to set COLS$, which 1is
used to determine the color the symbol will be drawn in.

' 7. Move

The Move module determines how many pixels in each
direction a symbol will move when it is updated and which
speed leader will be assigned to a track, based on track
course and speed. Lines 7160-7350 branch to the appropriate
line number based on the course, dividing the full circle of

" directions (courses (0-360 degrees true) into 20 zones.

Lines 7400-7590 are the lines branched to, only one of which

will be executed. They make the assignment of incremental -

values of change in the X and y direction and assign one of

. LRI . .
e N L

the eight speed leaders from the speed leader table, then
,: branch to 7600. Together these lines (7160-7590) form one
giant case statement.

Line 7640 branches to 7690 if the target is not a

U (AR

slow speed track, For slow speed tracks that do have motion
line 7641 Dbranches to 7650, Lines 7642-7645 handle tracks
with no motion, ensuring no incremental movement and no
speed leader. For slow speed tracks that do move lines

7650-7680 reduce the incremental movement and scale the

speed leader down.
Medium speed tracks, treated as the norm, are

handled by the branch from 1line 7690-7770, 7770 being the

105

L AR and 2AG NAG gige ur e e L i abd Seih cub gul Sl gc gt At P S ari g S SR A S dt Sl i T Lo el ok ded S g ead ek aait At el e e s ek 0 S iie She Sk e A

RETURN, Lines 7700-7720 handle high speed tracks by
increasing the incremental movement and scaling up the speed
leader.

8. Land

This is the module that draws the land masses. It
currently provides for only three land masses. Because
ZBASIC has no dynamic memory allocation the DIM (dimension)
statements cannot be executed more than once or an error
results. For more land masses to be introduced to the
system they must be described by the same number (or fewer)
points than one of the first three and one of the three land
arrays re-used, or more land arrays must be added to this
module in the DIM statement(s). The latter solution is the
easiest to implement, and will be the easiest for others to

follow later on. That 1s why it was chosen here, rather

than simply dimensioning one array large enough to handle
any probable number of points.
Line 8075 guards against execution if there are no

land masses to draw. If there are land masses the variable

P TTTS .“"

CONTS contains the number, and is used as an index in the

loop of 1lines 8090-8110, which reads in the numbers of
points of each o0of the masses and their color. Line 8125

sets aside memory for the arrays, as mentioned earlier,.

A .
- ' .

This module has been designed for zero or three,

o ro e
e
.

.

N The 1intention was to make the logic clear, and also to

v

-
.
)

4
& provide loops for all three so that only data statements

S

106

AL S AR

- - . - - . . . - ~ AP . -
AL IR RIS S I T R P AL I R R S SRV TR P

would need to be changed if any number 0-3 were input. That

is why there are three loops, lines 8130-8150, 8170-8190 and

. 'l..l’ RS < I‘

8210-8230 which read in the points describing the land

masses, If there are fewer than three at least one dummy .
point must be in the data statements for each of the unused o)
arrays. .

Lines 8250-8280 draw the first land mass (if there
were none to draw line 8075 would prevent the branch to
here). Line 8300 reads the coordinates of an interior point
for the first land mass, and line 8320 paints it.

If there is only one land mass line 8340 executes
the RETURN. Otherwise lines 8360-8430 perform the same
functions for land mass two as 8250-8320 did for land mass ~ g
one, Lines 8450-8540 perform a similar test and conditional S
execution of land mass three function. If there were three
land masses line 8560 executes the RETURN, otherwise it
would have already been executed.

9, Data

We have already gone over the data format. The Data -
module follows it, interspersing the data with comments for
clarity. It 1is recommended that wusers follow the same -
procedure. It makes corrective maintenance and enhancement
much easier. Another design philosophy embodied here and
encouraged is the matching of one data statement to one read
; statement. Code could be reduced by combining, for example, ;

the data 1in lines 10080 and 10120-10140. 1Instead we opted

107

to keep the data on separate lines matching read statements
in the program., This procedure reduces debugging time (it's
easy to create mis-matched data/read pairs) and makes the
module more readable.

10. Tracking

This module performs the automatic system updating
of tracks and monitoring for user input. It is the driver
program, in essence, whereas the Harness module 1is the
initialization driver.

Line 11080 determines if there are any initial
tracks in the system. If not line 11100 branches to 11200,
skipping lines 11110-11140, which read in the initial tracks
if there are any.

For initial tracks lines 11165-11175 calculate the
appropriate incremental movements and assign speed leaders,
through the use of the Move module.

Line 11200 initializes the DO$ variable to an empty
string. DOS is used to tell the system what to do if there
is user input,

Lines 11220-11260 drive the system wuntil there is
user input. All tracks are automatically updated in lines
11225-11235, the user is given a chance for 1input during a
pause between updates in 1lines 11240-11255. The constant
2000 in 1line 11240 determines the length of time between
updates when there is no user input. If it 1is reduced,

shortening the delay, a reasonable minimum would probably be

108

T B 3 "

os Ay d, Ay e A8

.
.l ‘l .

TR

a2 4

;; 500. If the delay is too short the user reaction may be too

A e -, v

slow to input a selection, resulting 1in at least one more

update than desired. The motions of the tracks may also

e &, A,

appear too jerky and/or rapid if there 1is not sufficient

-a” pmu

delay between updates, When the system detects that the

N user has depressed a key the program branches to 11280,

‘ Line 11280 reverts to the 1initialization in line
11200 and repeats the process if the key struck was not a ‘
special function key, by checking for the first character to
be an "ESCape" (CHR$(27). If a special function key was
struck lines 11310 ¢to 11360 branch to the appropriate N
routine to handle the request, Line 11380 reverts to
initialization of DOS$ and repeats the update/delay process
if the key was not a pre-defined function key, or upon

completion of the service of the request.

11. Keys

This module defines the special function key

OO B, Lt

routines. Keys F1l-F6 are currently defined, more could o

easily be added. They should be initialized in the 1Init -

module, branches to their routines provided for 1in the
Tracking module, and their routines defined in this one,
Lines 12000-12085 handle the request for a halt. X
The screen 1is cleared and the function keys are restored "
before the END statement is executed. The RETURN statement q

is not really necessary. Actually only the END statement is

needed here, but it 1is good programming practice to clear

109

.............. PRI

LAY - . -
RN A S PR FP S S S L A K R
PV YOI O, T S P T, T S S I A IR AC N I P PR U S

........

Al RS - s st S i R W W W Wy W vV /I W, Ca. Yy Il Ao i A S gt et ot

the screen when finishing a graphics routine, as well as
restoring functions keys defined. The RETURN statement 1is
included for similar reasons, since this is a subroutine.

Lines 12100-12190 perform the suspend/continue
function, by simply waiting for another keyboard input .o
continue.

The hook track function is in lines 12200-12420.
The locate statements ensure that messages and input
requests appear at the top of the screen. Lines 12250-12259
check to see if there is already a track hooked, and unhook
one if one is hooked.

Line 12270 requests the input of the track to hook,
lines 12275-12276 clear the request from the screen when the
requested input has been provided. The track input as the
one to hook is hooked in lines 12282-12290. After it has
been hooked and its symbol enlarged (the way a hooked track
is displayed) 1lines 12310-12380 display its parameters to
the right of the display window.

Lines 12500-12750 perform the enter new track
function. First the number of tracks is incremented in
lines 12530-12540. Then lines 12560-12690 request for each
of the user inputs and clear the requests when the input has

been made (lines 12571-12574 ensure that the classification

will be exactly nine characters in 1length for symbol

assignment).

110

.-‘ '-. ‘.- .-‘ . --. . " Ve o T A e e e P S S AP . -'..- ..-.. ...- BN
AL S LR B ST S N I WA ST DI T 0 % S P e S I T

2R At i e 4\ ol

A

a"s & & &

After track parameter input 1lines 12705-12717
perform necessary calculations and matching to provide the

rest of the track parameters and display the new track.

12. Match

This routine simply matches the CLASSS of a track
(classification)

which finds a string match will be executed,

its appropriate symbol.

If there is no match no symbol will be

the speed leader
unidentified tracks

whatever) from

(UNKNOWN) .

F. CROSS-REFERENCE

will Dbe

known to exist

The following cross-reference of

as an aid to modifying the code in further development.

is for the version of the code listed

first and un-numbered version.

NAME

CLASSS()

CUS()

PURPOSE

classification
of track

track's course

111

displayed.

but

and the RETURN,
assigned, and only
This distinguishes

(which may be unconfirmed, bogus, or

variables is provided

Appendix A, the

LOCATIONS

INIT, TRACKING,
KEYS, MATCH,
DATA

INIT, MOVE,
TRACKING, KEYS,
DATA

Only the line

unclassified

It

,",".‘.',. A

L

e T v
(AR] PA

L2 4

v
‘l

7.'

.

AR ORI o) AN

YA

v,

N XA

.
L

» v B
.
-

¥y |-
() £
ot .

.I' l.j'.l‘ ')

vy vr v v ¥V.,.'s
A s a4 P
% 2 T s T B By

ORI
P 2

NAME

SPD{()

TCOLOR()

TX{)

TY ()

XINC()

YINC()

TS()

LS()

SYMS ()

LDRS$ ()

PTS()

LCOL()

HKS ()

ACTIVE()

TRACKS

PURPOSE

track's speed

track color

track x coord

track y coord

horizontal
movement

vertical
movement

track symbol
track speed
leader

generic symbol

generic speed
leader

number of points

defining land mass

land color

scale to draw track

state of track

number of tracks

112

LOCATIONS

INIT, MOVE,
TRACKING, KEYS,
DATA

INIT, UPDATE,
TRACKING, KEYS,
DATA

INIT, UPDATE,
TRACKING, KEYS,
DATA

INIT, UPDATE,
TRACKING, KEYS,
DATA

INIT, UPDATE,
TRACKING, KEYS,
MOVE, DATA
INIT, UPDATE,
TRACKING, KEYS,
MOVE, DATA

INIT, UPDATE,
MATCH

INIT, UPDATE,
MOVE

INIT, MATCH

INIT, MOVE

INIT, LAND, DATA

INIT, LAND, DATA

INIT, UPDATE,
KEYS

INIT, UPDATE,
KEYS

INIT, TRACKING,
DATA, KEYS

vs e

s a 2D I2IPS

NAME

XUL

YUL

XLR

YLR

CWIND

CONTS

XYAX

YTOP

YBOTT

YCOL

YXAX

XLEFT

XRITE

XCOL

PURPOSE
generic loop
counter

X coordinate
upper left-hand
corner of window
y coordinate
upper left-hand
corner of window
x coordinate
lower right-hand
corner of window
y coordinate
lower right-hand
corner of window

window color

$# of land masses
X coordinate
Y-axis

y coordinate
Y-axis top

y coordinate
Y-axis bottom

Y-axis color
y coordinate
X-axis

X coordinate
X-axis left

X coordinate
X-axis right

X-axis color

113

......

..............

LOCATIONS

INIT, LAND,
TRACKING, KEYS
HARNESS, WINDOW,
DATA

HARNESS, WINDOW,
DATA

HARNESS, WINDOW,
DATA

HARNESS, WINDOW,
DATA

HARNESS, WINDOW,
AXES, DATA

HARNESS, LAND,
DATA

HARNESS, AXES,
DATA

HARNESS, AXES,
DATA

HARNESS, AXES,
DATA

HARNESS, AXES,
DATA

HARNESS, AXES,
DATA

HARNESS, AXES,
DATA

HARNESS, AXES,
DATA

HARNESS, AXES,
DATA

.........

.‘-"'n)

""{t.' e v .

RO RN

NAME PURPOSE LOCATIONS

— 1%
a \
L] \
HSCALE horizontal scale AXES
A VSCALE vertical scale AXES 2
X H loop counter AXES 5
) L
' v loop counter AXES
A UPDX x coordinate UPDATE "
. symbol center o
: UPDY y coordinate UPDATE v
) symbol center
. UPDTS$ symbol UPDATE
’ UPDL$ speed leader UPDATE =
: HORZUP horizontal UPDATE :
increment e
¢ VERTUP vertical UPDATE #
. increment >
COLUP symbol color UPDATE
UPGND pixel color UPDATE .
COLS$ color string UPDATE =
WANTS symbol string UPDATE]
ALSO$ speed leader string UPDATE N
-_
UPD loop counter UPDATE, KEYS, N
TRACKING Pt
3 LAND1(,) land point LAND, DATA 3
. LAND2(,) land point LAND, DATA -
: LAND3(,) land point LAND, DATA =)
d ISLE loop counter LAND N,
CENTX X coordinate LAND, DATA .
land point X
114

]

v

V.

».

[

'.g-

g NAME
.vl

o

D CENTY
E; MOVE
0.

P DO$

2 DO2$
3 GO$

- SIZECL
b AS

- DEL

e

')
*»

xSy
v

R ARAMNGAN AlAN

"

>

coss oMK TN

PURPOSE

y coordinate
land point

loop counter

user input

user input

user input
hooked track
indicator

length of CLASSS$S
user input

delete track
indicator

115

LOCATIONS

LAND, DATA
TRACKING, DATA,
MOVE

TRACKING
TRACKING

KEYS

KEYS

KEYS

KEYS

KEYS

vraraa .
R

T - e
¥ R

STK_TP
P_STACK
;
P_DATA
SYMBOL

SHAPE

TIME
TEN
DATA1
DATA2
P_DATA

5
P_CODE

H
START:

...............

DW
LABEL
ENDS

SEGMENT
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
bW
ENDS

INCLUDE
INCLUDE

SEGMENT
ASSUME

MOV
MOV
MOV

PUSH
SUB
PUSH

APPENDIX O:

’
P_STACK SEGMENT STACK

100H DUP (OFH)

WORD

000000008,
000000008,
000000008,
000000008,
000000008,
000000008,
000000008,
000000008,
000000008,
011111108
011001108
011001108
011001108
011001108
011001108
01100110B
011001108
01111110B

000000008,
000000008,
000000008,
000000008,
000000008,
000000008,
009000008,
000000008,
000000008,

LISTING OF TEST 10.ASM

TITLE -~ TEST OF FILLING SCREEN WITH SYMBOL

011111108
01100110B
011001108
011001108
011001108
011001108
011001108
011001108
011111108

'00:00:00.00', 13, 10, '$'

10

16 DUP (OBH)
8 DUP (OBOH)

PARM.DEF

DOS_FUNC.MAC

CS:P_CODE, DS:P_DATA, SS:P_STACK

AX, P_STACK

SS, AX

SP, OFFSET STK TP

DS
AX, AX
AX

116

;set up SS through AX
;set up SP

;save for far return
sensure O offset for far rtn

l’f'l‘nl
Tl
v s r

RN

L~

e~
(N

PR AN

AX, P_DATA sset up DS through AX
DS, AX

AX, AX ;zero AX, to save I0 port
AL, I0_PORT sstatus
AX ;save status

CLS sclear the screen

CX ;save registers, then R
DX ;jcall the timer routine -
2 POP DX sjrestore the registers .
‘ POP X :
H -
. MOV AL, 78H ;prepare 10 port -
ouT I0_PORT, AL s
MOV S1, O ;set up symbol part counter .
e
; -
SUB BP, BP szero BP, for offset '
SUB AX, AX ;zero AX, for symbol
MoV AL, SYMBOL[SI] ;top scan-line of symbol .
MOV BH, L COUNT ;loop counter for loop L .
MOV BP, LINE ;start BP negative, to
NEG BP sbring it to 0 at beginning
sof loop
» : ;
> H
- ;outer loop (L) -- for L=1 to L_COUNT do
) H begin
X 3 fill line (L) with symbol
3 end
’
" LOOP_L: ADD BP, LINE smove offset to next line
. MOV CL, I COUNT sset loop I counter
s .
. ’
2 ;second loop (I) -- for I= 1 to I_COUNT do
H begin
; write (symbol) @ line L, position I
3 end
?
LOOP_I: MOV DI, O ;jreset scanline counter
MOV AL, SYMBOL[SI] ;get top scan-line
MOV AH, SHAPE([DI] ssymbol shape, for clearing
NOT AH s;space with inverse

9
;third loop (J) -- for J=1 to J_COUNT do
begin
write(symbol, scanline(J)
end

ws we e

117

o

.\‘.p"‘,

- . - . . Y s ™ 4T et - " . o . o ‘. - - N .-. b-. .v >-‘ - - - N ..‘ 'o. - ‘-
M TR P TN AR A TR T T P . S T R A T N e A S T S T i N,

’

LOOE_J: PUSH
MOV
MOV
POP
MOV

H

;inner loop (K)

;
]
?
’
;
’

LOOP_K: AND

OR
DEC
CMP
JLE
PUSH
MOV
ADD
MOV
POP
INC
MOV
JMP

K DONE: INC
CMP
JGE
ADD
INC
MOV
MOV
NOT
JMP

J DONE: DEC
CMP
JLE
MoV
SUB

INC
JMP

?

I_DONE: DEC
CMP
JLE

AX
AX, B_PLANE
ES, AX

AX

BL, K_COUNT

-- for K=1 to K_COUNT do

begin

negate symbol

ssave symbol, use AX to
s;reset ES to blue plane

sjrestore symbol to AL
;set counter for loop K

AND symbol with plane (K)

negate symbol

OR symbol with plane (K)

end

ES:[BP], AH
ES:[BP], AL
BL

BL, 0
K_DONE

AX

AX, ES

AX, PLANE
ES, AX

AX

S1

AL, SYMBOL[SI]
LOOP_K

DI
DI, J_COUNT
J_DONE

BP, VERT

SI

AL, SYMBOL[SI]
AH, SHAPE[DI]
AH

LOOP_J

CL
cL, 0
1_DONE
sT, 0
BP, LINE

BP
LOCP_I

BH
BH, 0
L_DONE

118

3AND shape inv. with plane (K)
sOR symbol with plane (K)
scount loop K iterations

;loop K done?

;Yes, go to end of loop K

sNo, save symbol, use AX

;to modify ES for next

;color plane

srestore symbol in AL
smove to next symbol part
sget next symbol part
srepeat loop K

jcount loop J iterations
;loop J done?

;Yes, go to end of loop J
;No, move to next scan-line
;get next symbol part

sjnext scan-line of symbol
;jnext scan-line of shape

;repeat loop J

scount locp I iterations
sloop I done?

;Yes, go to end of loop 1
;back to first part of svmhol
;No, move to start of symbol
s just done, then

;move to right one byte
srepeat loop I

;jcount loop L iterations
sloop L done?
s;Yes, go to end of loop L

LI -t et e .
A) - ~ O *
Y L. . Y . S

\ SUB BP, X LINE ;No, move to start of .
. ;last character, then "
s MOV S1, O ;reset symbol part counter

JMP LOOP_L ;Tepeat loop L v

; .

. L_DONE: PUSH CcX ;jsave registers, and

PUSH DX jcall timer -

CALL TIMER Iy

POP DX jrestore registers

POP cX oy
! POP AX ;jrestore I0 port status X
i ouT 10_PORT, AL v

H

H .

EXIT PROC FAR -
RET

EXIT ENDP

INCLUDE CLS.SUB
INCLUDE TIMER.SUB
INCLUDE BOX.SUB

5
P_CODE ENDS
END START

a8 AR

119

- WIS - WL e e e
PRS- Nl SRIL TN AR T, TN Ty SR T Y Y SN N R P VY R T

- o <A

T W T WS I WU WUW YN UYL TWOUW WY R LT T T

APPENDIX P: LISTING OF TEST_8.ASM

TITLE -~ EXPERIMENT 8 -- TEST BOX SUBROUTINE

I

P STK SEGMENT STACK

- DW 100H DUP (OOH)
STK_TP LABEL WORD

P_STK ENDS

b
P_DATA SEGMENT

TIME DB '00:00:00.00', 13, 10, '$'
TEN DB 10
DB 20H DUP (?)

P_DATA ENDS

b

INCLUDE PARM.DEF
INCLUDE DOS_FUNC.MAC

H
P_CODE SEGMENT
ASSUME (CS:P_CODE, DS:P_DATA, SS:P_STK

3
START: MOV AX, P_STK
MOV §S, AX
MOV SP, OFFSET STK TP
’
PUSH DS .
SUB AX, AX
PUSH AX
3
MOV AX, P_DATA
MOV DS, AX
>
SUB AX, AX
IN AL, 10_PORT ssave 10 port status
PUSH AX
)
CALL CLS ;clear the screen
H
PUSH cX
PUSH DX
CALL TIMER
pPOP DX
POP CcX
3
MOV BH, Y START svertical start line
MOV AH, Y STOP svertical stop line
MOV BL, X_START shorizontal start column
MOV AL, X _STOP shorizontal stop column

120

PRGNS SRR Sl T LT TS S AL . P Sl S

RN S

MOV
MOV

CALL

MOV
MOV
MOV
- MOV
MOV
MOV
CALL

CMP
JE
MOV
CALL

MOV
MOV
MOV
MOV
MOV
MOV
CALL

RATAE RS L A as s s o e o

CMP
JE
MOV
CALL
’
OVER: PUSH
PUSH
CALL
POP
POP
POP
ouT

PROC
RET
ENDP

H
EXIT

v
",
»~
|
.
»,

s A

EXIT

INCLUDE
INCLUDE
INCLUDE
>
P _CODE ENDS
END

e e e, ,',_
[AEAEAR RS LY ThENE

L 3
w L

B NEAACRI

LIt Ad g & &5

CL, COLOR
CH, OFFH

BOX_F

BH, Y_START

BL, GRIDX_ START
AH, Y_STOP

AL, GRIDX_STOP
CL, G_COLOR

CH, OFOH

BOX_F

CL, 0
X_AXIS
CH, OFOH
BOX_F

BH,
BL,
AH,
AL,

GRIDY_START
X_START
GRIDY_STOP
X_STOP

CL, G_COLOR

CH, OOH

BOX_F

cL, 0
OVER
CH, OFFH
BOX F

cx

DX

TIMER

DX

cx

AX

I0_PORT, AL

FAR

BOX.SUB
CLS.SUB
TIMER.SUB

START

LRI A S A N i A et e

121

; COLOR box
;solid pixel line

sdraw box

sdraw Y-axis

;to blank out space

3if grid black,

AR 4% 20 e aie o b e o 4

;it is already drawn

shalf-byte width

sactually draw Y-axis

ydraw X-axis

;to blank out space

;if grid black,

;it is already drawn

;solid pixel line

sactually draw X-axis

;restore I0 control port

PP VA VR SR N U UL UL UR LR, SR Yl AT TP N RV

RIS e Sl i o Juie oA

||

. .y

TR
s 0
£ o

U8
s
.

) |

»
1"
A e A

r.“i’.':*;'r’,::"' "".' ‘

{ii
"

e "L s R R A WS VvV € & & T

TTEEERY YW YT,

Lol 2 a8

T A Y W, W LW

S L AR SRR M

] ws we we we ue we wr we we we W

ws we we

IMER: GET TIME

A AT A A Skl b i B S R IRURTYR Y 07 h R R
P N T Tk e e Ce T e T . - R D R P .

APPENDIX Q: LISTING OF TIMER.SUB

this is a subroutine which gets and converts the time,
then displays it

INPUTS: none
OUTPUTS: the time is displayed on the screen
FLAGS: none

REGISTERS: none

CONVERT CH, TEN, TIME
CONVERT CL, TEN, TIME[3]
CONVERT DH, TEN, TIME[6]
CONVERT DL, TEN, TIME([9]
DISPLAY TIME

RET
end of timer subroutine
122 S
ey e ea i etetamee e e tetag - ettt as a o ANt dedeeeide da s
LRI SRS S LTI B ST R SRS "

! APPENDIX R: LISTING OF BOX.SUB

: s wa-ohaeqls eh topx p whiqtSuhihost osueplraipo posp hl ebs wuossl
]
3 COMMENT
N INPUT: BH = vertical line to start box on (0 ~ 23)
BL = horizontal column to start box omn (0 - 79)
AH = vertical line to stop box on (1 - 24)
AL = horizontal column to stop box on (1 - 80)

NOTE: 1if AX < BX an error will result
I0 control port needs to be saved prior to calling this
subroutine
OUTPUT: generates a colored box on the screen

FLAGS: none returned

REGISTERS: used as noted above, preserved

*
?
BOX F: PUSH AX ;save all registers used
~ PUSH BX
. PUSH cX
PUSH DX
. PUSH DI
N PUSH SI
A PUSH BP
~ PUSH DS
’
X SUB DX, DX ;zero DX
y MoV DH, BH ;get start line
< SHL DX, 1 jconvert to necessary offset
3 SHL DX, 1
- SHL DX, 1
MOV DL, BL ;rest of start offset
MOV SI, DX sstarting offset
]
. SUB AL, BL ;how many bytes across
) MOV DL, AL 3sDL <--- horizontal count
-~ ;
SUB AH, BH ;how many lines down
. MOV DH, AH 3sDH <--- vertical count
. ’
. cMP CL, 4 ;does color include green?
N JGE GREEN ;Yes, go to green
i~ CMP CL, 2 31No, does it include red?

- 123

e e

PR A TS N S A, U A T S SRR O L e e

v

| S

v

4?
::: JGE RED ;Yes, go to red
t_.; JCXZ BLACK ;if CL=0, handle black
’. MOV AX, 0CO00H ;No, handle blue
. MOV DS, AX
G MOV AL, 38H
&) JMP PREP
3 H
E; RED: MOV AX, ODOOOH shandle red, magenta
) MoV DS, AX
SUB cL, 2 sis color red?
R{ JNZ MAGNTA ;sNo, go to magenta
- MOV AL, 68H
E}_.v JMP PREP
- ;
" MAGNTA: MOV AL, 28H
JMP PREP
o H
t; GREEN: MOV AX, OEOOQOH ;handle green, cyan, yellow,
N MOV DS, AX sand white
. SUB CL, 4 3is color green?
JNZ CYAN ;+No, check for cyan
MOV AL, 58H sYes, handle green
JMP PREP X
H "
CYAN: CMP CL, 1 3is color cyan? 1
JNE YELLOW ;No, try yellow ;
MOV AL, 18H s;Yes, handle cyan
JMp PREP
H
YELLOW: SUB CL, 2 3is color yellow?
JNZ WHITE sNo, must be white
MOV AL, 48H ;Yes, handle yellow
JMP PREP
H
WHITE: MOV AX, 0COOOH
MOV DS, AX
MOV AL, O8H
JMP PREP
H
BLACK: MOV AX, 0COO0OH
MOV DS, AX
MOV AL, 78H
’
PREP: OUT I0_PORT, AL
MOV AL, CH :
SUB CX, CX ‘
MOV CL, DL shorizontal count n
XOR BP, BP 2
MOV DL, DH A
XOR DH, DH p
MOV BP, DX svertical count i
124 :
X
!
T R Rt g R R

LA R AR A RA £ 00 L AR A G Bl ol Al Al et Gl Sl Aaf Ral N ol \ab, a1 o

L
1)
[)
L]
) MOV DI, 128 ;line spacing ‘
. PUSH SI '
” PUSH cX .
]
LUPE: MOV [s1], AL
4 MOV ES:[SI], AL
b INC SI
. LOOP LUPE
’
DEC BP
Jz FINISH
X POP cX
: POP SI
2 ADD SI, DI
' PUSH SI
B PUSH cX
JMP LUPE
- ’
. FINISH: POP cX
> POP SI
- POP DS
POP BP
s POP SI
2 POP DI
" POP DX
- POP cX
" POP BX
POP AX
il H
N RET
. 9
: ; end of subroutine to draw box
?

ety e oty

A MR
s

h »
. -
- RS
o N
. N
' o
] ,'\
b, 125 N
¥ RS
' .
>y N
5
*.
lv-._'..-f"l‘ . N LR SR - . ':l\ YRR . \ > "‘ '-” . S -.) ..\.-.: - .- -' (‘\ "(N ~ - RN .-‘::'; .'- “\- >

> .
, »
, 5
: ;
APPENDIX S: LISTING OF CLS.SUB K
\
g 3 subroutine to clear the screen, ZENITH
A ;
2 3 INPUT: nomne
5
s OUTPUT: none o
. H
; FLAGS: none
; L
3 REGISTERS: none
- . [
H4
CLS: PUSH AX ;save register used !i
. ; 2
IN AL, OD8H sprepare to save I0 control .
PUSH AX sport status, and save it f
5 -
> MOV AL, OFH sblank the screen
OUT OD8H, AL
H
IN AL, ODBH
AND AL, OF7H ;SET = 0
ouT ODBH, AL
5
IN AL, OD9H
- AND AL, OF7H ;activate CLRSCRN
- ouT OD9H, AL
K 5
- MOV CX, 6680 ;wait
. DELA: NOP
y LOOP DELA
) H
. IN AL, ODSH
X OR AL, O8H ;de-activate CLRSCRN
. ouT OD9H, AL
i H
POP AX
X ouT OD8H, AL ;restore I0 control port
. H
- POP AX jrestore register
3
RET

end of clear screen routine

-e we we

: 126

o .-.A.L.-"A.\ ‘_. -- ._’ ‘-..,

LA A RA B Al i R A ANA RS At 20 Ah et AL et M S L AL sl ad e A) Sal Gl L Gd tuk Gl Sl AR A AEAA A DA Ak Sl SR S Ak o SR S AN

APPENDIX T: LISTING OF DOS_FUNC.MAC

this is a file of MS-DOS 2.0 function macros

get time is a macro which puts the time in CX and DX

() we we we s

ET TIME MACRO
MOV AH, 2CH
INT 21H
ENDM

convert is a macro which converts the value parameter into
a number in the base parameter system, and puts the
converted value in the destination parameter location

ONVERT MACRO VALUE, BASE, DESTINATION
LOCAL TABLE, START

JMP START

TABLE DB "0123456789ABCDEF"

START: MOV AL, VALUE
XOR AH, AH
XOR BX, BX
DIV BASE
MOV BL, AL

. MOV AL, CS:TABLE[BX]

MOV DESTINATION, AL
MOV BL, AH
MOV AL, CS:TABLE[BX]
MOV DESTINATION[1], AL
ENDM

; display is a macro which displays a string located in
; memory at the location passed in the parameter string,
; and the string must end with the ASCII code for '$', 24H.

b
DISPLAY MACRO STRING

MOV DX, OFFSET STRING
y MOV AH, O9H
g INT 21H
N ENDM
;; H
ji H
!
{: 127
).
}‘I
)’

« B

.. -‘-. - . _-‘-.«_~~ o - . " 1. \.‘
VS IV P SR O TR IR PO TS S I

P " ‘.
AL RS

APPENDIX U: LISTING OF PARM.DEF

file of parameter definitions

we we we

i/o port address
I0_PORT EQU OD8H

b}
shorizontal(X), vertical(Y) start/stop corners of a box

’

X_START EQU 4
X_STOP EQU 58
Y_START EQU 6
Y STOP EQU 243

3
scolor of the box

’
COLOR EQU 3

H
shorizontal(X), vertical(Y) start/stop corners of boxes that
swill serve as grid lines

?

GRIDX_START EQU 18
GRIDX_STOP EQU 19
GRIDY_ START EQU 17
GRIDY_STOP EQU 19

’
s;color of the grid lines

-

4
G_COLOR EQU 4

b
sconstants for loop counts and symbol location shifting

H
LINE EQU 1024 s;required to shift one vertical line
son the screen

.

1
;length of line in bytes

’
X LINE EQU 79
B PLANE EQU 0COO0OH ;start address of blue plane
I COUNT EQU 80
J COUNT EQU 9 ;counter for loop J
K_COUNT EQU 3 ;counter for loop K
L COUNT EQU 20 scounter for loop I
PLANE EQU 1000H s;address difference between color
splanes
HORZ EQU 1 shorizontal space shift
VERT EQU 128 svertical space shift
5
128

s Cr el

ol s

N Y T TR TR T T TR FRR TN
AER LR el i S S T St IS A

ssize of one character, nine scan-lines
5

SIZE EQU 1152

HITE EQU 1280

- JERAY,

.
.
sTete e

129

AN

- e
v e

" W AN W W We TS TR TR T W ¢ W

T 0 AN - - ¥ W

B adinalit ool okl dNn.

s e, Minha Mibisams Bedube NS Aun acair shemie Thbaade b Aninte AR R T L
M Aea A ey A d 0 hun f o et ey el g b AA I M O e S A A A S LTINS . - R
Ol " STETNER AR R

APPENDIX V: USER'S MANUAL FOR ASSEMBLY PROGRAMS

A, HOW TO USE THE MACRO-86 PROGRAMS

The Macro-86 assembly language programs included in this
thesis have been assembled and 1linked, To run any of the
tests simply type the filename at the system prompt. The
file READ.ME on each distribution disk describes what

each file is named and what it does,

B. UNDERSTANDING THE CODE

The internal documentation explains the Macro-86 code
step by step. We will not indulge 1in a line by line
explanation as Appendix N does for the BASIC code, This
Appendix will discuss some of the reasons behind the code in
the test file, Appendices O and P.

We set up our own segments for stack, data, and code
because we are using the EXE format rather than the COM
format. The EXE format 1is necessary to provide direct
control of the video random access memory (VRAM) addresses.

The first entries in the data segment are the bytes

which define the test symbol. For these tests we did not

-y .
e
o

establish complete symbol tables and perform table look-ups,
as we were interested in establishing simple timing bases N
for efficiency comparisons with the BASIC prototype. SYMBOL ﬁfj

is defined in binary form to allow visualisation of its

'-.'p.l
'ﬁﬁﬂl

S
130
.-t .q
Tl
O
ot
-~—
2
e
.
~.
S, . « - - P N P S TS R SURCIPNTI JUEY e et et T et A e AT AT TN TN et N e ams
'i.'l Te S e U TR R TP S ".f:‘_z. ‘.-"\. ‘-'_1:.4."'.“_! S e e g e s e el st Y PRI I I AP LT I YT S

e

| N N)

Vale s s sy

constituent parts. The first byte on each line of SYMBOL
defines its blue plane, the second the red and the third the
green planes, This initialization may alter the shape or
color of the symbol. The symbol may even be constructed of
multi-colored parts. This would not matter in a monochrome
system, of <course. Since the microcomputer laboratories
currently operate only monochrome monitors, this test symbol
is defined in the green plane only.

The shape of the symbol 1is next defined separately.
This 1is necessary because a non-white symbol possesses a
shape which differs in each color plane. The test symbol is
a prime example -- its shape in the green plane matches
exactly that of SHAPE, but it has no shape in the red and
blue planes.

In order to maintain the purity of the background and
symbol colors, a space must be cleared for the symbol in all
three color planes (on a color system, or a monochrome
system with the color option installed) to all zeroes. The
way in which color is generated (superimposing three pixels,
one of each color plane) drives this necessity.

Figure V.l illustrates the problem. In Figure V.1 the
background color planes are represented in part (a), the
test symbol in part (b). Parts (c), (d) and (e) of the
Figure exhibit the results of an OR, AND and XOR operation,
respectively, between the color planes of the symbol and
those of the background. None of the results produces the

correct result of background and symbol, shown in part (f).
131

LI .,."-.’ ..." . _..‘_..‘f _-.'_.. 4..“..' -.'_."..'_..' . T v e .“_A i ‘_r‘ - ‘-'_.-.' . '.1 e . e d
. et .« 2% . . g e s . -t o g T M - . - o

L 0
Aa s o a

)

R
PRSP SR) g

L

I

l" ll

.....................

COLOR PLANE

BLUE ’ RED
1 1 1 0 0 0
1 1 1 0 0 0

0] 1 1 0 1l 1
0] O 0 0 0 0

(b) Symbol
ol 1 1 0 0 Q
0] 0 0 0 0 0

(c) Background AND Symbol

1101 1 0 1 1
111 1 0 0 0

(d) Background OR Symbol

1[0 0 0 1 1
111 1 0 0 0

e) Background XOR Symbol b

—

111 1 0 1 1 1]0 0

1)1 1 0 0 0 111 1

(f) Desired Results

Figure V.1 Results of Operating with Symbol Directly

132

R S S e RN JEPT S SPRPAY I S
..................

------- 'q~ _...-

e T e e e a e el R S Cg
A.'.-.‘cq_ \'._A.'\"'!.':s P S L R AP A A _“_. hm_‘l.&mm‘.hk-n~;.ﬁn..nn,.\u.& Wb i —M-A-’.A..‘*‘_J.—‘.J«—LA.«AM‘

a & 4

Figure V.2 illustrates the solution, The background
planes are in part {(a), as before., Part (b) is the shape of
the symbol inverted and stored in each plane, creating a
mask which is ANDed with the background to produce part (c).
This mask is created by the SHAPE stored in data. By
performing the AND operation of the background and the
inverse o0of the symbol shape, a screen area of background
with black where the symbol will appear 1is created (c),
Part (d) is the actual symbol, which will appear differently
in each color plane unless it 1is all white. When (c) and
(d) ars OR'd together the correct background/symbol colors
appear in part (e), matching part (f).

The PARM.DEF file which 1is included next is a file of
defined constants. During the development process the
collection of all constants in one separate file allowed
simpler experimentation and debugging.

Another file, DOS_FUNC.MAC, is included after PARM.DEF.
This 1s a file of Microsoft Disk Operating System Function
Macros (hence the name and the extension). These files may
be found at the end of chapter four in Reference 4., They
are macros that perform some of the basic MS-DOS functions.

The first three 1lines of the code segment (after the
ASSUME statement) initialize the stack segment register and
the stack pointer. The AX register is wused as an inter-
mediary, because the segment registers should never be

written to directly.

133

SNV

fdintadiecs die’ Attt g

COLOR PLANE

Adade e San Sah oo id S8 Aol Sk Sl S Sk S A8 a0 a0 Ak Al A\ AL

BLUE RED GREEN
11 1 0 0 0 1] 1
111 1 0 0 0 111

(a) Background
110 0 1 0 0 1; 0
1] 1 1 1 1 1 1) 1
(b) Symbol Shape, Inverted
110 0 0 0 0 1] 0
1] 1 1 0 0 0 11
(c) Background AND Inverted Shape
0|1 1 0 1 1 0 0
0 0 0 0 0 0 0] 0
(d) Symbol
11 1 0 1 1 1] 0
171 1 0 0 0 17 1
(e) Symbol OR'd with (c)
111 1 0 1 1 11 0
1] 1 1 0 0 0 11 1
(f) Desired Results
Figure V.2 Results of Operating with Shape and Symbol

' PR
AT SRERY)

2
n
) 9

After that, three lines prepare for a graceful exit, If

a Macro-86 program is ended with a far return, and the stack
has had the proper addresses saved on 1t for this type of
exit, a simple return to the operating system is effected.
The preparation of the stack involves saving the DS
register, and an offset of zero. Having saved the DS
register for the return, the next two lines initialize it to
access our own data segment.

It is not absolutely necessary to include the next three
lines of code. They read and save the input/output port
status. This 1s our standard programming practice of 1
utilizing the stack to save values (such as status !’
registers) that our program modifies, in order that they may i
be properly restored upon completion of our program's j
execution,. q

After clearing the screen, the registers involved in -
creating a window on the screen are loaded with the .

necessary values. The header at the top of the BOX.SUB file !

PSR

describes what values are needed, and how they are used,

« .o
G

Next we call the timer routine, in order to measure the
time efficiency of the routine which draws the symbols. The
input/output port is prepared by the next few lines of code

to allow our symbol-drawing operation.

AR -

The next six lines of code, from SUB BP, BP through NEG

BP, make preparation for entering our outer loop. The base

pointer (BP) register is 1initialized to a negative
135
T T T e e e e e e e e L N RS

-

SNT, S

value so that the outer loop may begin each repetition by

incrementing a value equal to LINE and still begin the first
iteration at a value of zero. The value of zero is
equivalent to the upper left-hand corner of the screen.

Labels identify the statements which make up the tops of
each of the iterative 1loops. The internal documentation
identifies the initialization required for each loop. The
order of steps could be modified to save a few operations
involving the accumulator (AX). We elected to write the
code this way for clarity of purpose.

The inner 1loop, LOOP_K, first performs the AND
operations discussed earlier, to <clear a space for the
symbol. Then the OR operation described is performed, to
write the appropriate plane of the symbol into the proper
color plane. The 1loop is repeated for each color plane,
making use of the ES register to point to the proper
location in VRAM.

The third loop, LOOP_J, repeats the inner loop for each
scan line of the symbol. LOOP_I fills each line with

symbols, and LOOP_L fills the specified number of lines.

C. MODIFYING THE CODE

The easiest changes are to the symbol. Its shape is
modified by changing the binary definition of it within the
data segment of the driver program. Corresponding changes

should be made to the bytes defining SHAPE in the same

136

5. WRAPOORAR AROAANS

e 0 00
. e
Il e e

-
. "
e
L
]
..
)
»

)
D)

.........

program. Defining the symbol 1in different color planes i\
and/or combinations of color planes modifies its color. If ™
the binary representation differs from color plane to color R
plane a multi-colored symbol 1is possible. However, the E
shape 1is singly defined with the current program version, X
and the colors desired may not be the ones displayed. The N
actual symbol display will depend upon background. All
other simple changes, those not affecting the program logic
but just modifying the display, are made by altering the
values of the constants in the PARM.DEF file. Those are

discussed in the next section.

D. CONSTANTS
The constants defined in the PARM.DEF file (Appendix U)
determine the display characteristics. They are listed in 1

tabular form below, along with their use,

NAME PURPOSE N
I0_PORT port address for Zenith input/ .
output port status register .

X_START x coordinate (in pixels) of left N
side of window -

X_STOP X coordinate (in pixels) of right .
side of window -

Y START y coordinate (in pixels) of top -
of window =

Y STOP y coordinate (in pixels) of bottom %
of window R

COLOR color of window :
137 g

..

NAME PURPOSE

GRIDX_START x coordinate (in pixels) of
left of vertical reference grid

GRIDX STOP X coordinate (in pixels) of
right of vertical reference grid

GRIDY_ START y coordinate (in pixels) of
t''u g2 ry..., ,,...C.. yd2dydi'd ,ynl

GRIDY_STOP y coordinate (in pixels) of
bottom of horizontal reference grid

G_COLOR color of reference grid
LINE address modification required to
shift down one line on the screen

X LINE number of right-most byte on one
character line of the display

B_PLANE address of blue color plane in
VRAM

I_COUNT number of symbols to write
horizontally

J_COUNT number of scan lines per symbol
K_COUNT number of color planes

L _COUNT number of lines to fill with
symbols

PLANE hex difference between color
plane addresses

HORZ number of bytes to shift right
while filling symbols in

VERT difference in address between
top scan-line address and
bottom scan-line address of
the same symbol position on
the screen

SIZE not used

HITE not used

138

R AR R BLCR . YRR BRI

L g Al gl gl Sl it ol Aol So4 a g B - R B ; . ¥ - ry 7
A : . FON fad e At ot/ A R v e A4 io o A, & 2t ted . AW T Nt At o) A

b
‘
3
LIST OF REFERENCES S
1. Z-100 User's Manual, Zenith Data Systems Corporation, N
1982, R
Y
2. Microsoft MS-DOS Version 2, Zenith Data Systems
Corporation, 19384,
3. Adams, James C., Computer Graphics, Heath Company, 1985.
4., MS-DOS Version 2 Programmer's Utility Pack, Zenith Data -
Systems Corporation, 1984, 2
N
Y
“w
“w;

[

139

B W T T W LT

;-f

:

Cd

'

e

3 BIBLIOGRAPHY

- Barnes, J.G.P., Programming in Ada, Addison-Wesley

2 Publishing Company, 1984.

), Larsen, Lawrence P., Assembly Language Programming, Heath

Company, 1984,

Rector, Russell and Alexy, George, The 8086 Book, OSBORNE/
McGraw-Hill, 1980.

e A

e O

140

r3N
AR

el |

"i'iﬁ\

A AR

INITIAL DISTRIBUTION LIST

No. Copies

l. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

5 % vy e

2. Library, Code 0142 2 -
Naval Postgraduate School -
Monterey, California 93943

3. Department Chairman, Code 52 1
Department of Computer Science
Naval Postgraduate School -
Monterey, California 93943 R

’ 4. Dr. Uno R. Kodres, Code 52Kr 3
) Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

5. LT Ken Coomes 3
c/o0 Peggy Todd
12 Horseshoe Drive
Litchfield, New Hampshire 03051

% 6. CDR Ron Rautenberg, Code 52Rt 1 .
Department of Computer Science P
Naval Postgraduate School .
Monterey, California 93943

7. CAPT J. Donegan, USN 1
PMS 400B5
Naval Sea Systems Command o
Washington, D.C. 20362 ia

v v
VN

o 8. PCA AEGIS Data Repository 1
B RCA Corporation .
. Government Systems Division -
2 Mail Stop 127-137 .
Moorestown, New Jersey 08057 N

[N

9. Library (Code E33-05)
Naval Surface Warfare Center
Dahlgren, Virginia 22449

Y

141

10, Dr. M. J. Gralia 1 .
Applied Physics Laboratory 3
John Hopkins Road
Laurel, Maryland 20707

11. Dana Small 1
Code 8242, NOSC ’
San Diego, California 92152

12, LCDR Paul Callahan, Code 52Cs 1 =
Department of Computer Science -
Naval Postgraduate School .
Monterey, California 93943 T

13. Computer Technology Programs, Code 37 1
Naval Postgraduate School
Monterey, California 93943-5100

i U)

142

)

a&&@%’ ' 1.‘&‘&-‘5
SRR AT
"

e

S _-:
AR R .

» IR

NN '."' ."-.‘..." e o N "-“ .\: e
2 RIS IS T 2T s PSR X

