AD-A169 805 SOAR USER’S MANUAL(U) XEROX PALO ALTO RESEARCH CENTER 172

CA INTELLIGENT SVSTENS LAB J E LAIRD 31 JAN 86 ISL-13
N09914-82-C-0067
UNCLASSIFIED F/G 5710

NL

%
%

Sgh Wb sl Poip i,

el

.- L!.N.f.l...f.i

KD

i

e

igtet

*

parptan.’

Sa" 8 b8 a9,

- P

i

TSN

-~
L W'Y

I AT

SIS

= =
o ~n op
SEEE
m—m—ﬁw_ugtm
o

1.6

e
—_—
——
_

I
i

1.4

 e——
———

Il
|

——

iz |

MICRNCOP:

AAAAA

- Dl Sl v_-tj'\‘v—".- AR Sl A ntd nhd Al AR Al LAt e e o

-

Palo Alto Research Center'

Soar User's Manual

AD-A169 005

John E. Laird

Pl W A Vg S W

P S S Sl W I G Y ST S S A

P S

Unclassified
SECURITY CLASSIFICATION OF —RiS °XGe.

REPORT DOCUMENTATION PAGE

ta. REPORT SECURITY CLASSIFICATION

AGI075”

2a. SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION / AVAILABILITY OF REPORT

2b DECLASSIFICATION s DOWNGRADING SCHEDULE

approved for public release; distribution
unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

I1SL-15

5. MONITORING ORGAN!ZATION REPORT NUMBER(S)

. NAM¢ OF PERFORMING ORGANIZATION

Xerox Palo Alto Research
Center

60 OFFICE SYMBOL
(If applicable)

73 NAME OF MONITORING CRGANIZATION
Personnel and Training Research Program
Office of Naval Research (Code 442 PT)

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
3333 Coyote Hill Road
Palo Alto, CA 94304 Arlington, VA 22217
8a. NAME OF FUNDING /SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIF.CATION NUMBER
ORGANIZATION (If applicable)
N0O0O0O14-82C-0067
8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK JNIT
ELEMENT NO NO NO ACCESSION NO
61153N RR042-06 JRRO42-06-0A)NR66T-4T7

TITLE (Include Security Classification)

Soar User's Manual

12 PERSONAL AUTHOR(S)
Laird, John Edwin

13a. TYPE OF REPORT
Manual

13b. TIME COVERED

16. SUPPLEMENTARY NOTATION

14 DATE OF REPORT (Year, Month, Day)
January 31, 1986

15 PAGE COUNT
106

FROM 14182 TOQ“Eégé

Pty

v

sl -

COSATI CODES

FIELD GROUP SUB-GROUP

»13 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
"’Cognitive Architecture, problem solving, learning, produc-

tion system, problem spaces, goals,

P

19 ABSTRACT (Continue on reverse f necessary and identify by block number)
, Soar is an architecture for problem solving and learning, based on heuristic search and

chunking.

* This manual describes Soar, version 4.

This is the version of Soar currentlv

available (January, 1986) in Common Lisp, Franz-Lisp, Interlisp and Zeta-Lisp.

LI
RS R
e -
o &
Q'\ ‘, - o0

19 DISTR:BUTION "AVAILABILITY OF ABSTRACT

T oncuassiF epunumited £ SAME AS #p~

[onc USERS

2' ABSTRACT SECURITY CLASS/FICATION

223 NAVE OF RESPONSIBLE NOIVIDUAL

22b TELEPHONE (\nclude Area Code)

22¢ OFFCz 5YMBOL

V0 FORM 1473, 8a mar

83 APR edit:on Mmay be used Ln*! exnausted SECURITY €

CASSIECATION OF "HIS PAGE

Atl other eq:tions a-e cosc.ete

A

Aass

Unclassifieq

Soar User’s Manual | .

Accesstian For

CNTIS cregp
Version 4 Py A X

\E'!\ 23
i
0,058

N

I [}
s
3PS
b

e b U) D

. L..u:l,.. o d r—]
JohnE. Laird AP S wf;;.:m_k\l
f;” o T ———

© Copyright Xerox Corporation 1886. All rights reserved.

ISL-15 January 1986 [Pes-00140] PPy «'
! Distprivr, - “nf
= ‘ ——
| Avail iy o,
I

A, -1 N .
AVl Sl /orp

Principal researchers of the Soar Project:
John E. Laird (Xerox PARC)

Allen Newell (Carnegie-Mellon University)

Paul S. Rosenbloom (Stanford University)

The Soar software is available for non-commercial research purposes and it may be copied only
for that use. Any questions concerning the use of Soar should be directed to John E. Laird at the
address below. This software is made available AS IS and Xerox Corporation makes no warranty
about the software, its performance, or the accuracy of this manual in describing the software.
All aspects of Soar are subject to change in future releases.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory under Contract
F33615-81-K-1539 and the Personnel and Training Research Programs, Psychological Sciences
Division, Otfice of Naval Reseach, under Contract Number N0O0014-82C-0067, Contract Authority
Indentification Number NR 667-477. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of Defense Advanced Research Projects Agency, the Office of Naval
Research, or the US Government.

XEROX Xerox Corporation

Palo Alto Research Centers
3333 Cayote Hill Road

‘ Palo Alto, California 94304
Approved for public release:
Distribution unilimited.

L, L e T P L U
..............

-"4-.‘ ~" . -."-\‘ -, RS . ot e - -) - .
g ~ g, - » - e N R Tl R RO - e - " . . " ") - - - -.' - .. -.‘ ..' e
DIRGRRGYY . - e GRS U Y A A SR NS ES O AU SO

TABLE OF CONTENTS i

Table of Contents

1. Introduction 3
2. Data Representation in Working Memory 7
2.1. Working Memory in OpsS 7
2.2. Working Memory in Soar 7
2.3. Goal-contexts 9
2.4. Preferences 9
3. Productions 11
3.1. Production Conditions 11
3.2. Production Actions and Functions 13
3.3.SP Format 15
3.4. Conjunctive Negations 17
4. Decision Procedure 19
5. Subgoals 23
6. Detault Search Control 25
6.1. Common Search-Control Productions 25
6.2. Default Knowledge for impasscs 2
6.3. Selection Problem Space 26
6.4. Evaluauon Subgoal 30 S
6.5. Operator Subgoaling 32 NI
7. Chunking 3s RS
7.1. Determining Conditions and Actions 35 e
7.2. Replacing [dentifiers with Variables 3 -
7.3. Removing Extraneous Conditions 37 e
7.4. Splitting Chunks Based on Duplicate Conditions 37 '
71.5. Ordering Conditions 38
7.6. Making Different Variables Distinct 38
7.7.Refr ory Inhibition of Chunks 38
71.8. Qver-generalization 38
8. Encoding a Task 41
8.1. Problem Space Decomposition 41
8.2. States 41
8.3. Operator Creaticn 45
8.4. Operator Application 46
8.5. Goal Detection 47
8.6. Initializauon 50
8.7. Monitoring States 2
8.8. Set-up 83
8.9. Search Control 53
8.10. Example Trace 85
9. Advanced Topics 59
9.1. Operator Implementation Goal l'ests 59
9.2. Operator Parallelism 60
YERONPARL LU 4 "
R R R R R N R

il SOAR USER'SMANCLAL

10. Top-level Variables and Functions
10.1. Global Variables
10.2. Initialization
10.3. Loading, Running, and Breaking
10.4. Tracing
10.5. Displaying Information
10.6. Changing Working Memory and Production Memory
10.7. Chunking
11. Errors, Warnings, and Recovery Hints
11.1. Errors
11.2. Warnings
11.3. Recovery Hints
12. Installing Soar
13. Performance Comparison
14. Soar Bibliography
Appendix |. Default Search-Control Productions
Appendix It. Summary of Functions and Variables
Iindex

61
61
62
63
65
67
71
3

75
15
75
78

79

81

83

85

99

101

s
’
7

., -

v £
. »
e
[

»
‘

2 »
L'}

(3
v
.
(3]
.

s

Sl .'c

.

’

o
-

* .' "' L2
~ ‘.‘:l
.:'\- .'l o

!

. — s ~ ~—r ~ <y -

[e Rl Tl Mk g IR SR S A e A R e 0 £ 2aia e A i a i Lia At Al ity gl Do i gl Aty Al ate 4} P LE LS TN Y TN TR S VO U DY Y Y g
LA "

|

i

PREFACE 1

Preface

| This manual describes Soar. version 4. This is the version of Sear currently available (January, 1986) in
[Common Lisp. Franz-Lisp. Interlisp and Zeta-Lisp.

Soar is an architecture for problem solving and learning. based on heuristic search and chunking. Soar is
embedded in a production-system architecture — a modified version of Ops5 — where all the volatile
short-term informauon is held in working memory and all the fixed long-term knowledge is encoded as
productions. Chapter 1 is an overview and introduction to the structurc of the Soar architecture. Chapters 2
and 3 describe the nitty-gritty of working-memory representation and production representation in Soar.
Chapter 4 describes the decision scheme that determines the selection of problem spaces, states and operators.
Chapter 5 gives the details of how subgoals are automatically created and terminated. Chapter 6 describes the
default processing in Soar. that is. the search-control knowledge that comes with Sear. Chapter 7 describes
chunking, the lcarning mechanism in Soar. Chapter 8 is a short tutorial that describes how to encode goals.
problem spaces. states. operators. and evaluation functions using the Eight Puzzle as an example. Chapter 9
discusses advanced programming topics. Chapter 10 describes the global variables and top-level functions of
Soar. Chapter 11 lists all of the error and warning messages generated by Soar and includes some hints on

correcting difficult bugs. Chapter 12 describes how to obtain and install Soar for different machines. Chapter

13 is a summary of benchmarking runs of Soar on a wide variety of computers. Chapter 14 contains an

annotated bibliography of Seaer publications. An appendix lists all of the default productions that come with :.':j'}_ , ;‘.::
o 04

Soar. An index is at the end of the manual. This manual does not attempt to substitute for the general - :j-
.h - .."

scientific d scriptions of Sear provided by the publications listed in the bibliography. STy

Soar is the result of joint development between John Laird, Allen Newell and Paul Rosenbloom. Credit is
due to Paul Rosenbloom and Dan Scales for implementing parts of Soar and Ron Saul for writing the
programs that convert Soar from InterLisp to the other dialects. A note of appreciation is due Lanny Forgy
for creating OpsS. which forms the backbone of the production-system interpreter in the current

implementation of Soar.

[would like to thank Allen Newell. Paul Rosenbloom. Jill Fain. Gregg Yost, Stephen Smoliar. Dan Scales

and David Steier tor comments on carlier drafts of this manual.

! All suggestions, comments. and questions concerning this manual or Sear should be directed to
soar@h.cs.cmu.edu for computer net-mail or
: John E. Laird, Xerox PARC, 3333 Coyote Hill Rd.. Palo \lto. CA. 94304.

VCRONVPARC ST 5 7N v e

to -~ . R . " «%a - -

e e e e . O R S 2 S S ST T T
SO T R T R TE SRR) R A O T T
PSR I N AP S RIS S N "k.‘A PPN N DAL TR G S 1S

wm

¥
LN

el

T
- 1‘ 'C
A

L.

SN

P Y -
[T
- . l--.’..'
MLA-‘:_\LL

N < -
.- vu. “ .. . -._
y L - o
, > " o
v 2
- -
T3] N . 4
. 172} = 4
3 - M
. “ x A
_ 8 ERY
“ > Y
- DN
> .
' a .7 .m
~

“ada

.
UL S S

o«

..-qaa. T - Y . - - l..-\.-.‘-\. % . r e V™ St G e T % [RATYN-l, . . 1, e » AT . .

P NN AN WA AT CT T PP TPV IS j ' a'5 2 AL Y —-
-~y A 2 at g gt pt P A ot

e ' 9
Sy
INTRODLCTION 3 -
K
1. Introduction 325
- $\"Q
> Searis an architecture for general intelligence that has been applied to a variety of tasks: many of the classic
| 4%]
artificial intelligence (Al) toy tasks such as the Tower of Hanoi. and the Blocks World: tasks that appear to 2
involve complex. non-search reasoning, such as syllogisms, the three wise men puzzle, and sequence N 04
[} »
extrapolation: and large tasks requiring expert-level knowledge. such as the R computer-configuration task. ::::‘_'.:Z
[LA

This chapter provides a brict overview of the Soar architecture.

:‘ In Soar. every task or problem is formulated as heuristic search in a problem space to achieve a goal. A el
: problem space consists of a set of siutes and a set of aperators that transform one state into another. Problem 1.22 -
solving s the process of moving from a given inuial state in the problem space through intermediate states 7
generated by operators until a desired state 1s reached that is recognized as attaining the goal. For each goal. -',?f%}
there is always a single current problem space. state. and vperator. The current problem space. state and “‘t
operator. together with the goal. form a context. Goals (and their contexts) can have subgoals (and associated \\ A
contexts). which form a strict goal-subgoal hierarchy. The detailed structure of these objects is described in 5 .
Chapter 2. / L ’
Throughout the search. decisions are made to select between the available problem spaces, states. and
RN

operators. Every problem-solving episode consists of a sequence of such decisions and these decisioqs

determine the behavior of the system. Problem solving begins with the selection of a problem space for an

existing goal. This is followed by the selection of an imtial state. and then an operator to apply to the state. Ry
Once the operator is selected, it is applied to create a new state. The new state can (but need not) then be :'J
selected. and the process repeats as a new operator is sclected to apply to the selected state. The knowledge g

that implements a task — suggests feasible problem spaces. creates initial states, implements operators — is :‘E
collectively called task-implementation knowledge. All standard weak methods can be represented as ::'_._:
knowledge to control the selection of problem spaces, states and operators. The knowledge that controls these :;'::’.

decisions is collectively called search control. Problem solving without search control is quite common, e

however the result is an exhaustive search of the problem space.

Figure 1-1 shows a schematic representation of the decision-making process. To bring all available task-
implementation and search-control knowledge to hear on making a decision, each decision involves a
monotonic elaboration phase. Dunng the claboration phase. all direct/y available knowledge relevant to the

current situation is brought to bear. Knowledge that 1s not directly available. but can be extracted by search.

can bhe brought to bear onlv in subgodls. The directdy anvatlable knowledge in Soar 1s represented as
productions. Chapter 3 describes the language tor specitving productions in Sear. 'he contexts of the goal

hierarchy and their augmentations serve as the working memory for these productons, [he information

« T & a % .7 . TS a2 s + s » 2 'HEED>

AU N A S [RY A U

. =

“_ . .. P P I -
S .

B TR T TR Tt AR -
VAV S N R A R e e N R R S
FAFNN) N3 NSV 'l:‘.h,\.h\.\ A PR S G R

Loy

AR

x

]
LAY

L SRR |

-

- W W) v - » - ANt aad o R i an

4 SOAR USFR'S MANUAL

added during the elaboration phase can take one of two forms. First. existing objects may have their
descriptions augmented with new or existing objects. For example. a new state can be created that is the
result of applying the current operator to the current state. Second. data structures called preferences can be
created that assert the worth of an object for a role in a context. Each preference indicates the context in

which it is relevant by specifying the goal. problem space and state.

DECISION 1 DECISION 2 DECISION 3

Elaboration Decigion ¢

ey oo | Ly
RN

Gather
Preferences

“— <
——

Quiescence ¢ Replace
Interpret —3 Context

Preferences Object

b

Impasse

b

Create
Subgoal

Figure 1-1: The Soardecision cycle.

On each cycle of the elaboration phase, all instantiations of satisfied productions fire in parallel. When the
elaboration phase reaches quiescence — no more productions eligible to fire — a fixed decision procedure is
run that integrates the preferences provided by the elaboration phase into a specific decision. The decision
procedure is described in detail in Chapter 4. Starting from the oldest context. the decision procedure uses
the preferences to determine if the current problem space, state and operator in each context should be
changed. If sufficient knowledge is available during the search to determine a unique decision. the search
proceeds unabated. However, in many cases, the directly available knowledge, enc yded as productions, may
be insufficient. When this occurs. because the available preferences do not determine a unique, uncontested
change in a context. an impasse 1n problem solving has been reached. Four types of impasses can arise: e
(no single object was better than all of the other objects competing to change a context). conflict (two or more
objects were better than each other while competing to change a context), no-change (the elaboration phase
ran to quiescence without suggesting any changes to the contexts), and rejection (all competing objects were

rejected, including the one currently in place).

ta ,'A.AJ—L}A_.‘_LL‘_A PPLINGICRIPL IR TAL IR TR S AT W SRR VA DRI I |

I. -
n.*q- (]

haiytal A ol Stk A e (e

INTRODUCTION

Soar creates a subgoal (and an associated context) to resolve the impasse. Once a subgoal is created. a

problem space must be sclected. followed by an intual state. and then an operator. If an impasse is reached in

any of these decisions. another subgoal will be created to resolve it. leading to the hierarchy of goals in Soar.

By treating an impassc 4s a subgoal. the full problem-solving power of Soarcan be brought to bear to resolve

"e¥s s "

the impasse. creating whatever responsc 1s appropriate for the particular instance of the impasse. These

l“,r- l"v

.
1)
Ay

subgoals correspond to th> full vaniety of subgodls created in standard Al systems. This ability to generate
automatically all subgoals in response to tmpasses and to open up all aspects of problem-solving behavior to
problem solving when necessary s called universal subgoaling. Chapter S gives a complete description of

subgoal creation and termination in Soar.

A subgoal terminates when its impasse 15 resolved. For example, if a tic impasse arose. 1t will terminate
when sutticient preferences have been created so that a single object dominates the others. When a subgoal
termunates. all augmentations and preterences created in that subgoal that are not connected, directly or
indirectly. to a prior context are removed from working memory. Those objects that are not removed

constitute the results of the subgoals.

Default knowledge exists in Soar to cope with the impasses, if no additional knowledge is available. For
some impasses this involves rejecting a prior choice in the context: for other impasses this involves searching
for knowledge to resolve the impasse. Any additional non-defauit knowiedge about how to resoive an
impasse dominates the default knowledge and controls the problem solving in the subgoal. The different

default responses to impasses are described in more detail in Chapter 6.

[n addition to general problem solving, Soar also supports a general learning mechanism called chunking.
Chunking occurs as a byproduct of problem solving in goals. Whenever a goal is satsfied. a chunk — a
production — is created that can generate the results of the goal when a similar situation recurs. The chunk’s
conditions are based on the working-memory elements that existed prior to the goal that were matched by the

conditions of productions that fired during the processing of the goal. The chunk’s actions arc the working-

memory elements that were created in the goal that are of potential use in the supergoal. The complete details

of chunking are given in Chapter 7.

Soar is meant to be the underlying architecture for an autonomous ntefligent agent. [ts behavior 1§
determined by the knowledge 1t contains. and ideally we should be able to deseribe and specity 1ts behavior in
terms of the knowledge 1t has tor implemenung and controtling 1ts behavior. Howeser. in this manual. the
viewpoint of the user as programmer is taken. This view 18 more standard in programming manudls, but it s

not the “true” point ot view tor Sear as an architecture tor zeneral intethieence,

g
X
,E

S RN R T N
e e . R R S . S et T .
. I N Ll e e R T T S N e e D
e T e T R T e N e e e e e e e S e T e T T T T T e e e T s L G e . .
AN SIS SR W R R SO NI S T TR “-‘I_AP_. ‘.n'.‘}_.h".‘;‘;\‘.“\.'z'.} PR R L PR S -‘7\-"-\" e

4 % el Wy ¢ A o B & S Ay .nn.-
L;n:\-! “V\ . UV\ A r.-.-.ﬂ.-f“fh--n\f‘ T
rIPLr [N e PV A R

SOAR USER'S MANLAL

BN ettt el R]

E
) -
..
:

»
A
]

.
-
-
-
-
3
l!
J

;

R T

4

e @& o

DATA REPRESENTATION IN WORKING MEMORY 7

2. Data Representation in Working Memory

The production-system aspects of Soar are derived from OpsS. and as such. Soar inherits the basic
representational scheme of working memory and productions provided in OpsS. [n this chapter, we start with
a brief review of the representation ot working memocy in OpsS. pointing out the differences in Soar. Next.
we describe how Sear uses this scheme 0 represent structures, such as goals, problem spaces. states and
operators. All information on OpsS in this and the following chapters is based on the OpsS User's Manual
(Forgy. 1981).

2.1. Working Memory in Ops5

Working memory in OpsS is a multi-sct of elements. called working-memaony elements. Each working-
memory clement consists of a class. tollowed by a set of attribute-vaiue patrs. Fach attribute is prefaced by 4

t. A template for a working-memory element is as follows:
(class tattributei valuel tattribute? value? . . .)

For example, a blue block that is called block3, weighs 200 grams. and 15 on a block called blockl could be

represented as
{block tname block3 tcolor blue tmass 200 tontop biock1l)

Each working-memory clement 1s represented internally in OpsS5 as a single data structure. When a working-
memory element 1s created (added to working memory) it is assigned a unique integer. called its (ime-tag.
These time-tags are often displaved by the system in place of the working-memory element when describing
sets of working-memory elements to the user. The function wm prints the working-memory element given a

time-tag (see Section 10.5.6).

2.2. Working Memory in Soar

Working memory in Soar is a set and not 2 multi-set (a change from OpsS). There is only one copy of a
working-memory element in working memory at a ume. If an action of' a production tries to add an exisung

element to working memory. it has no effect.

In Soar. there are two different types of data representatons in working memory: objects, and preferences.
Both of these are realized in the atiribute-value representation scheme of OpsS. However. the Ops§ scheme
has certain restrictions that force Saar to represent objects indirectly in another attnbute-value scheme on top
of the OpsS scheme: (1) Soar must be able to reference each individual attribute of an object without
accessing the others: (2) Sear must be able to have muluple values for the same attribute of an object (a
simple representation of scts): (3) muituple productions must be able to create ditferent attributes tor an

object 1n parallel: and (4) Soar allows vanables o match atnbutes. Fach working-memory element in Soar s

AT O A AT S

PP R P L. S, S P

.r".r-’~'.7'.,. RN NS SN AR L oA Nl il s SNBL e Sl ane s e e g

X R L

»% 0 s

4
-
-

Y

. -"‘."’.-'.'-
-'. ..’ -,..'..'_-)..

8 SOAR USER'S MANUAL

an identifier-attribute-value triple (except for preferences which are described later). The class name of the
working-memory element in Saar always ends in -info (or is just info). These working-memory elements are
called augmentations. Each augmentation has three OpsS attributes: tidentifier. tattribute and tvaive. To
avoid confusion. we will refer to the attributes of an Ops§ working-memory elements as fields. So, in the
following example, there are three ficlds: identifier. attribute and value. The identifier is B0O003, the attributes

are name and color. and the values arc bluck3 and blue respectively.

(block-info tidentifier BQ0OO3 tattribute name tvalue block3)
(block-info tidentifier BQOO3 tattribute color tvalue blue)

To overcome the redundancy ot this representation scheme. Soar provides many functions (essentially pre-
and post-processors) that hide the OpsS representation by supporting a new notation called SP (for Soar
production). For example, the above two working-memory elements would be represented as follows in SP

notation:
(block B0003 tname block3d rcolor blue)

[n SP notaton. an obyect begins with a class. However, this class name is the Ops5 class without -info (-info
lets the user know when he s dealing with OpsS working-memory elements instead of SP objects). The SP
class is translated into an OpsS5 class using the association list in the global variable *sp-classes®. All classes
not occurring in the list have -info added to them. Using this list. some Ops3J classes can be represented by
many SP classes. For example. gc. goal. context. and goal-context are all translated into goal-context-info.
while object is translated into just info. [nitially, there are eleven SP classes that map onto seven OpsS classes.

These are pre-defined by the global variable *sp-classes*:

((gc . goal-context-info) (goal . goal-context-info)

(context . goal-context-info) (goal-context . goal-context-info)
(problem-space . space-info) (space . space-info)

(state . state-info) (operator . op-info) (desired . desired-info)
(evaluation . eval-info) (object . info))

Following the class is the identifier (B0003 above). [n SP notation, the identifier must not be preceded by
the attribute tidentifier because a working-memory element with attribute tidentifier is assumed to be in
OpsS5 format. The identifier should always be a gensymed symbol, such as G0023. Following the identifier
are the attribute-value pairs. Each of these pairs is an augmentation. a separate OpsS working-memory
element. Thus. no single working-memory e¢lement defines all of the feaiures of an object. [nstead. the object

takes its definition from the augmentations that contain its identifier,

In Soar. the identifier is just an arbitrary gensym. If a meaningful label is desired for an object, it should be
the value of the name attribute. The tracing facilities will use the atom 1n the value field of a name

augmentauon when displaying information. 'his makes the traces much more readable. For example:
(op-info tidentifier S0012 rattribute name ftvalue configure-backplane)

M PONPARE St 0 AN aE T e

I

. SRR [. N .
- - - - L) . .t >, - " - - -
v .t] CRPET R) e P I

DATA REPRESENTATION IN WORKING MEMORY 9

This would be printed by the tracing facility as configure-hackplane.

2.3. Goal-contexts

Problem solving in Soar is controlled by goal-contexts. There is a strict goal hierarchy: a subgoal is only
created in response to an impasse in problem solving for an active goal. Each individual context contains four
roles: goal. problem space. state and operator. 'he combination of a role and a context defines a unique slot.
The object occupying the goal role in a context is the current goal for that context: the object occupying the
problem-space role is the current problem space tor that context, and so on. A goal-context is represented in
working memory by three augmentations of the goal identifier, one for cach of the non-goal slots. Thesc
augmentations are of class goal-context-info. (In SP format. the class can be goal-context, goal. context or
gc.) The identifier ticld contains the identifier of the goal, the attribute ticld contains the appropriate role.
The value field contains the identifier of the object that is current for that slot. The value of a slot is undecided
if no object has been selected for it. There is one and only one goal-context-info working-memory clement
for cach slot. Only the decision procedure (to be defined later) modifies, adds, or removes these working-
memory elements. Productions cannot create working-memory elements of the goal-context-info class that

have attribute problem-space, state or operator.

Below is an example of the working-memory elements that define a goal-context in SP format.
(gc G000l tprobiem-space G0034 tstate G0047 toperator G0O033)

This is expanded internally to three working-memory elements.

(goal-context-info tidentifier GOOO1 tattribute problem-space

tvalue G0034)
(goal-context-info tidentifier GOOO1 tattribute state tvalue G0047)
(goal-context-info tidentifier GOOO1 tattribute operator tvalue G0033)

2.4. Preferences

Preferences are a special type of data structure in Soar. A preference 1s an assertion of the relative or
absolute worth of an object for a context slot. Each preference is a single working-memory element that is of
class preference (it is a single working-memory element in OpsS notation and also SP notation, and in both its
class is preference). Preferences are created by productions. and they are used by the decision procedure to

replace an object in aslot. The processing ot preterences by the decision procedure is discussed in Chapter 4.

The fields of a preference are:

object T'his is the 1dentifier ot the object that the preference will atfect. (In SP notauen. the
tobject preceding the identttier 1s opuonal s long as 1t s the tirst tield tollowing the
class.)
A R S ANT CRY el

LSRG LR T

. . . - - - * - . - - -t St . - ~ - °
Lo . o e e e e T et e e - T IR
2 e e Cr e T L et e et T e ™ S T L T e R L N L A T N NN Y

LR AT e AN CRR St AT Rl Slt S Iu IS Aal lindl Al Sl At St Jaed b Shallh St 2ol o4 AR IOAS B TP S i S eSS Sl 6 e A e e S4e St B xn Din Pha Sre
LT AT AL TR TR T AT A T T TN '~ . . B SRR, e . Loae e NN I S L A L DI . - -

P .
b .
L

10 SOAR USER'S MANUAL
role This is the name of the role that the object will play in the context: problem-space.
state or operator.
value The value is a relative or absolute evaluation of the object in the object field. These

evaluations arc only rclevant when the goal, problem-space, state and operator fields
correctly match the current context. Two of the values (acceptable and reject)
determine whether an object will be considered. Three of the values (better.
indifferent. and worse) provide a comparison of an object to another object (the
reference object). The remaining values equate an object 1o a hypothetical ideal (best.
indifferent. worst). There is another value, parallel, which permits parallel execution
(see Section 9.2). The ¢xact semantics of these values are given in Section 4.

reference The identifier that is compared to the object field. only when the value field is
indifferent. better. worse, or parallel.

goal, problem-space. state, and operator
These fields define the relevant context for the preference. A preference is only used
when the current context corresponds to the context defined by these fields. If the
value of one of these fields is not nil. it is compared to the value in the corresponding
slot of a context. If all of the non-nil context tields ot the preference match the
identifiers in the corresponding slots of a context, the preference will be used in
determining new values for the context.

The following preference is for an operator (x33) that has been determined to be worse than another
operator (x32). Since the operator field is not specified. it becomes nil and the operator slot is not tested when

determining the relevance of the preference.

(preference tobject x33 trole operator tvalue worse treference x32
tgoal gl4 tproblem-space p34 tstate s10)

An object is selected for a role in a context only if there exists an acceptable-preference for that object.
Thus, the acceptable-preferences for previously selected objects provide a partial history of changes to the

context. Below is a short list of some of the information that is accessible via acceptable-preferences.

prior state The acceptable-preference for the current state contains the prior state in the state
field.

prior operator The acceptable-preference for the current state contains the prior operator in the
operator field. The prior operator is the operator used to create the current state.

resull An acceptable-preference for the state role that contains the results of applying the
object n the operator ficld t the object in the state field {(which must not be
undecided). If the operator field is nil or undecided. then it is not a result. but probably
a prior state,

initial state An acceptable-preference for the state role that contains undecided in the state tield.
contains the inutial states ot the problem space.

Ve ie N PENT YT an

I . — -
f:'-r'" LR LA D S A A Sie i She A M 34 AR o At ate B0 Ml A 1

DA L A LA A0 e Op 0 b i e d o iy " i B laFa i e el A e AR e e A b R
\

PRODUCTIONS 11

3. Productions

The operation of Searconsists of a sequence of decisions with each resulting in a change to the goal-context
stack. A decision consists of the claboration phase followed by the decision procedure. During the

claboration phase. all satistied productions fire in parallel (simulated). This continues until no more

L am it o o b 3

productions are satisfied. The decision procedure examines preferences and modifies the context-stack.
Processing continues by returning to the elaboration phase. The details of the decision procedure arc

described in Section 4.

The productions in Soarcan be written cxactly like Ops5 productions. A production consists of (1) an open
parenthesis. (2) the symbol p. (3} the name of the production tany symbel cxcept nil). (4) 4 set of conditions,
(5) the symbol -->. (6) a sct of actions. and (7) a close parenthesis. 'his production format is called P (since

these productions all start with P). For example, a very simple P format production 1s shown below.
(p joe-production
(goal-context-info tidentifier <(g> ftattribute state tvalue <s>)
(state-info tidentifier <s> tattribute hole-shape tvalue <x>)
(state-info tidentifier <(s> tattribute peg-shape tvalue <> <x>)
-->
{make state-info tidentifier (s> tattribute fits? tvalue no))

Productions can also be written in SP format. which makces them much more concise. For example. the above

production would be written in SP format as follows:
(sp joe-production
(gc <g> tstate (s>)
(state <s> thole-shape <x> tpeg-shape <> <x>)
-->
(state <s> tfits? no))

A v

3.1. Production Conditions

)
APy

~
.

. L
. [T A
aty P T
o R
., R et
t a8 N .
o o

The conditions of a P format production are patterns to be matched against the elements 1in working

Y

memory. Each condition is a form for matching a working-memory element. In Soar a condition 1s a hst,

starting with a class name, followed by a set of attnibute-value pairs. The attnbutes must be constants. while
the class name must be a constant or a variable. T'he valucs can he one of a number of patterns. A condition ﬁ -_‘:‘ '_;'1

R
is satisfied if all of its components (class and fields) can be consistently matched against a working-memory N

clement. A production is sansfied if all of its conditions are satisfied with a consistent binding for all ot the
variables that appear in the conditions. .\ production msiantation is the set of working-memory clements

that satisfy the production.

T'o simplify the matching of pretercnces that arc relevant to a context. there 15 a spectal case tfor matching

conditions that describe preterences. \ preference s refevdam to 4 context erther if the values i is context

RIre f e p T T R ey A
{ : _'._:. -_‘.."-‘“._.‘_. - ;_“I.:. ; ; :’ o -,..‘ . -..' .-:. .--. :..—‘.'- ._-. AR AR PN . j
ﬁ-u\.\- XAl-x-l YA SR PP .'4"4\' WIS IS AP 1.' s {.1’ or l.;‘n A\l l"l. A-LA-A.LL[I_.“\‘_-_A_.': ::

REGENLNL L WA | o e it

12 SOAR USER'S MANUAL

fields match the values of the appropriate slots or are nil. Therefore. a preference condition will match a
preference in working memory if the values of the context fields of the working-memory element either
match the values bound to the variables in the preference or are nil (nil fields are not show in working-

memory elements). For example:

(sp x
(gc <g> tproblem-space <p> tstate <s>)
(preference <{x> trole operator tvalue acceptable
tgoal <g> tproblem-space <p> tstate <s>)
-=>
(action ...)

will match

(gc g0001 tproblem-space p0003 tstate s0050)
(preference 00044 rrole operator tvalue acceptable
tproblem-space p0003)

All of the conditions of a production should be linked, via augmentations and preferences. to one of the
goal-context-infos of the production. Augmentations are one-way links, from the the identifier to the value.
Preferences are one-way links. from the context fields (all must be present or nil) to the object. If all

conditions are not linked. a warning is printed when the production is compiled.

3.1.1. Variables

A variable is a symbol that begins with a €, ends with a >, and contains an alphanumeric symbol in between.
For a production to be satisfied. all occurrences of the same variable must match the same symbol or number.
Two different variables can match the same symbol unless there is an explicit test that they are not equal
(using <O).

3.1.2. Disjunctions of constants

If a set of values are contained with the symbols << and >>. the condition will match a working-memory
element with any of those symbols. Variables cannot occur within a disjunction. nor can a disjunction appear

in a negated condition. There must be spaces separating both << and »> from the symbols in between them,
<< red blue >»>

would match either red or blue.

3.1.3. Predicates

There are six predicates that can precede constant or variable: <>, <=>,<, <=, >=,>. For example: >
<a>. <> means not equal and will match anything except the constant or vanable immediately rfollowing it.
<{=)> means same type and will match any svmbol that is the same type (numeric or symbolic) as the constant

or vanable immediately following it. Similarly. < is less than. < = 1s l¢ss than or equal. > = is greater than or

NEFON PARC ST 05 TANE ARY ayf,

S

v}‘f

’'e

8 5 &N

5

)
x50

{

..-.
a s 3

i

L] "...
-

o 0t

’l

LA
[]

(2%

-y

(ol
1
’

.
’
s

’
N

2 e
]

PRODUCTIONS

equal. and > is greater than.

3.1.4. Conjunction

To signifv conjunctive combinations of tests for a single field. the tests are contained within { and }. Fora

maltch to uccur, all tests within the brackets must succeed.
{ €50 > 20 <> <(x> <y>}

In this example. a match would occur only if the value is less than 50, greater than 20. not equal to the value

of <x> in other conditions and equal to ¥ in other conditions.

3.1.5. Negated conditions

In addition to the positive tests tor elements in working memory. conditions can also test for the absence of

patterns. A condition preceded by - is calied a negated condition and will be satisfied only if there does not
exist a working-memory clement consistent with its tosts and vanable bindings. A negated condition can not

include a disjunction suchas << a b ¢ >>.

3.2. Production Actions and Functions

If all of the conditions of a production are sausfied (with consistent variable bindings). the actions of the
production will be performed. One significant change from OpsS is that a variable that appears only in the
action of a production will automatically be bound to a new gensymed symbol (starting with the first letter of
the variable, ¢.g.. <s> might be bound to s1375). This symbol will be used for all occurrences of the variable

in the action. This convention eliminates the need for most calls to the bind action.

Productions create preferences and augmentations of current objects by creating new working-memory
elements. Logically, all creations occur in parallel and all satisfied productions fire in parallel. with the new
working-memory elements being added during the same production cycle. The only ordering of actions is
between multiple writes and accepts within a single production. Productions cannot remove or modify
working-memory elements. A production should not create a working-memory element that will lead o a
new instantiation of that same production because this will lead to an infinite loop. A production should only
create working-memory elements that are linked — via the identifier for augmentations. and the context fields
for preferences to identifiers bound — to vanables in the conditions of the production. [f this 1s not so. a

warning is printed when the production 1s compiled.

Below are the available production actions. [n the function defintions. arg® means that any number of

arguments (including 7ero) can be given.

Bind ure/ urg) Binds the value for arg? to arg/. Arel must be a vanable. 4rg. can be a previousiy

NERON PARC ISE- 5 BN vy

T TR T N N WU W YT e LT

i

aSalal s

SOAR LSER'S MANLAL

L% " 14
L
E

bound variable. a constant or an action-function such as compute or accept.

L

’-{' (bind <input> (accept))
i Call2 Farg* Applies function F to arguments arg*. F and arg* can be variables, bound to
X appropriate values. This is provided so that the actions of productions can control
s some of the top-level user functions such as watch. user-select. decide-trace. and learn.
A (call2 watch 2)
\

Halt Stops the execution of Soar.

(halt)
Make Adds to working memory the instantiated pattern that follows it.

(make state-info tidentifier <(s> tattribute color
tvalue blue)

Tabstop arg/ Binds the current tabstop being used by watch 0 to the vaniable arg/.
(tabstop (tab>)
(writel (tabto <(tab>) <o> |«x|)
[f <tab> is bound to 3 and <0> is bound to 4. the result is:
4 x

Writel arg* Writes its arguments with blanks in between.
(writel (tabto <tab>) <o> |x})
If<tab> is bound to 3 and <o> is bound to 4, the result is:
4 x

Write2 arg* Performs the same function as write except that spaces are not automatically inserted
between atoms.
(write2 (tabto <(tab>) <o> |x|)

{f<tab> is bound to 3 and <o> i1s bound to 4. the result is:
4x

Below are the functions that can be called within the actions.

Accept Suspends Soar as it waits for the user to type in an atom. The resuit is that atom.
(state tidentifier <s> tattribute input
tvaiue (accept))

Compute Evaiuates arithmetic expressions using the following five operators: + (additon), -
(subtraction), * (multiplication). // {division). and \\ (modulus). Onlv numbers and
variables bound to numbers can be used in expressions. The expressions are evaluated
using standard infix notauon. but there 15 no operator precedence. The vperators are
evaluated right to left. except when overridden by parentheses.

(state tidentifier <s» tattribute sum
tvalue (compute <x> + <y>))

(state tidentifier <(s> tattribute product-sum
tvalue (compute (<v> + <w>) * (<(x> + <y>)))

NEFONPARC ST 0 N AR e

e s A

M MENER

P i e)

PRODLCTIONS 15

Crlf A special function that can be called within any of the write actions. It takes no
arguments and forces a new line at its position in the write action.
(writel <x> (crif) <y>)

Tabto A special function that can be called within any of the write actions. {t takes one
argument that 1s a column number. either a number, or a variable bound to a number.
It modifies the write so that it begins printing at the column given as its argument.
(writel <x> (tabto <col>) <y>)

3.3.SP Format

The SP production format provides a set of mechanisms that allow more concise definitions. and automatic
opumization of Sear productions. SP is a preprocessor., so (1) it does not fundamentally change what can and
cannot be represented in OpsS productions, and (2) there 1s no problem with mixing together traditional

productions (1n OpsS format) and SP productions.

SP provides the ability to match a context in either the traditional way or by a single SP condition. A

context such as
(goal-context-info tidentifier <(g> tattribute problem-space tvalue <p>)
(goal-context-info tidentifier <g> tattribute state tvalue <s>)

can be given as is or shortened to
(goal-context <g> tproblem-space <p> tstate <s>)

SP provides the ability to specify the information about an object as either a set of separate conditions or as

asingle condition. A set of augmentations about an object such as
(state-info tidentifier (s> tattribute color
tvalue (<< red green >> <c>})
(state-info tidentifier <s> tattribute depth tvalue > 10)
-(state-info tidentifier <s> tattribute weight tvalue <> 30)
(state-info tidentifier <s> tattribute leg tvalue <legl>)
(state-info tidentifier (s> tattribute leg tvalue <leg2>)
(state-info tidentifier <{s> tattribute name)
(state-info tidentifier <s> tattribute << height width >>
tvalue small)

can be given as is or shortened to

(state <s> tcolor {<< red green >> <(c>} tdepth > 10 -tweight <> 30
tleg <(legl> <leg2> tname t<< height width >> small)

Four aspects are of note. (1) It is possible to mix the two representations within the same production. (2)
Whereas the final OpsS production can not have vanable or disjunctive attributes. both are possible for
attributes in SP. since each augmentation is a separate working-memory element where the SP attribute is
actually a value in the Ops$ representation. (3) Negations usually appear n front of the attribute, but can
appear in front of the whole object if there s only one attribute in the object. (4) If there are multiple values

for an attribute. a separate working-memory element s created for each value. giving a simple sct notation.

VROV PAKC 1y 5o ANtk e

. . , PRI L e e e et . o
RPN NS o« . . B R - A LI - o P <.

s

w0t

.
ST e e, -, P L L TR - . - ‘e et . GRS N .
P UL I I SPIEIP AP IR SRR I A AP ‘-:_.'_'.‘!:'."'c_'.g'_-.‘f.-:; PO T SRATIAIS oy

gy

- \‘:\j'

RS
P ."\‘;‘1

s
.
-
<
-
o

(o DR R AN

- WL - .

16 SOAR USER'S MANUAL

If the first symbol after the class name is not , then the condition is assumed to be in SP format. If the first
symbol is a t. then it is assumed that it is in OpsS format. Prefercnces are always in OpsS format, but the

tobject is optional if the object identifier directly follows the class: so

(goal-context-info tidentifier <g> tattribute impasse tvalue <d>)
(preference tobject <s> trole state tvalue acceptable tgoal <g>)

can be shortened to

(goal <g> timpasse <d>)
(preference <s> trole state tvalue acceptable tgoal <(g>)

The same format can be used for both conditions and actions. In the actions, the placement of a make at the
front of the object (of either format) is optional. There is a global list (in variable *opsS-actions*) which is

used 1o determine whether an action is a primitive action or a make.

The same format can also be used for makes at the top-level of LISP that initialize working memory. For

example

(make space-info tidentifier p tattribute operator tvalue opl)
(make space-info tidentifier p tattribute operator tvalue op?2)

can be given as
(smake space p toperator opl toperator op2)

SP provides automatic condition ordering to yield more efficient productions. The following two

productions show a single production in its SP form and its ordered P (Ops3) form.

(sp eight*create-new-state

(gc <g> tproblem-space {p> tstate <s> toperator <o>)

(problem-space <p> tname eight-puzzle)

(state <s> tblank-binding <bl> tbinding <b2>)

(operator <o> tcell <c2>)

(binding <b2> tcell <c2> ttile <t2>)

(binding <b1> tcell <c1> rtile <tl1>)

-->

(preference <s2> trole state tvalue acceptable
tgoal <g> tproblem-space <p> tstate <s> toperator <o>)

(state <(s2> tswapped <bl> <b2> tbinding <b3> <b4>
tblank-binding <b4>)

(binding <b3> ttile <t2> tcell <cl>)

(binding <b4> ttile <t1> tcell <c2)))

VERONPARC IST-1€ PANUARY ww

LA

Lot g
Bl

%Y
XA
'i"b'!‘k LA

b

;r’.‘
b4 4

- ¥ .,
{rﬁr.

|
!

- "I
X

I-Q‘-"

- - (A i aonir- i i A R S it i i Sl 1

PRODLCTIONS 17

(p eight*create-new-state

(goal-context-info tidentifier <g> tattribute probtem-space

tvatue <p>)
(space-info tidentifier <{p> tattribute name tvalue eight-puzzie)
(goal-context-info tidentifier <g> tattribute state tvalue <{s>)
(goal-context-info tidentifier <g> tattribute operator tvalue <0>)
(state-info tidentifier (s> rattribute blank-binding tvalue <bl1>)
(binding-info tidentifier <bl> tattribute cell tvalue <c1>)
(op-info tidentifier <o> tattribute cell tvalue <c2>)
(state-info tidentifier <(s> tattribute binding tvalue <b2>)
(binding-info tidentifier <b2> tattribute cell tvalue <c2>)
(binding-info tidentifier <bl> tattribute tile tvalue <t1>)
(binding-info tidentifier <b2> tattribute tile tvalue <t2>)
-=>
(make preference tobject <(s2> trole state tvalue acceptable

tgoal <g> tproblem-space <p> tstate {s> toperator <o)
(make state-info tidentifier {(s2> tattribute swapped tvalue <H1>)
(make state-info tidentifier <s2> tattribute swapped tvalue <b2>)
(make state-info tidentifier (s2> tattribute binding tvalue <BI)
(make state-info tidentifier <s2> tattribute binding tvalue <b4>)
(make state-info tidentifier <s2> tattribute biank-binding

tvalue <b4d>)
(make binding-info tidentifier <b3> tattribute tile tvalue (t2>)
(make binding-info tidentifier <b3> tattribute cell tvalue <cl>)
(make binding-info tidentifier <b4> tattribute tile tvalue <t1>)
(make binding-info tidentifier <b4> tattribute cell tvalue <c2>}))

in addition to ordering conditions. SP also modifies a variable in the role of a goal-context-info if that
variable is not used in any other conditions. The modification is to replace the variable, say <v> with { <>

undecided <v> }. This prevents the condition from matching if the role has value undecided.

3.4. Conjunctive Negations

The distributed representation of objects as multiple working-memory elements makes it difficult to test for
the absence of an object with a set of specific features. For example. if the user wants to test if there is not an
object in working memory that has blue toes and a blue nose, the following conditions would not make the

right test.

(sp notreallycold
context tests and other conditions

-(state <y> ttoes blue tnose blue)
-=>
L)

Assuming that <y> 1s unconstrained by the other conditions of the production. these conditions would be

satistied only if there are no objects that have blue toes and no objects that have a blue nose, while the desired

hehavior is to have them be satistied only 1f there are no objects that have both blue toes and a blue nose.

One solution to this problem requires using three productions. Production pl tests for the co-occurrence of

NERON PARC IS SN N2 e

AR SO SEEL S 2 6 S s S g St gt f R A D OIS 4 s igaliar gty lat g iatulieh ArbibA anAte /A Rt dei il et IR AR AN Ate 4ia d e fia At ok A% 41 a0e Sfeie b

.. N

18 SOAR USER'S MANUAL

positive instances of the negated conditions and produces a single working-memory element that encodes the
fact that both exist. Production p2 tests for the context when the original production would fire except for the
negative conditions and produces a unique symbol. Finally, production pJ tests for the absence of the

encoded working-memory element produced by pl and for the presence of the one generated by p2.
(sp p1
context tests and other conditions
(state <y> ttoes blue tnose blue)
-->
(state <y> ttoesandnose blue))

(sp p2 A
context tests and other conditions
-->
(state <y> tspecialattribute value))

(sp p3

(state <y> tspecialattribute value)
~(state <y> ttoesandnose blue)

-->

)
A simpler and more correct solution to this problem awaits a revised implementation of the OpsS matcher

used in Soar.

NP2ONPARC ISE 17 TN kY e

e e e e BRI S T P ~.'.\ ot ..
Tt e e e T e e e e e e et N N
s S e T i A e s A A PV, YRV A\L‘n_.\‘..'h ak

DR R i U e .

DECISION PROCEDURF 19

4. Decision Procedure

The purpose of the decision procedure is to make a change 1o the goal-context-stack based on the
preferences in working memory. The change is cither the replacement of the current value ot one role of an

existing context, or the creation of a new context because of an impasse.

The decision procedure processes the goal-context-stack from oldest goal to newest goal (ie.. from the
highest supergoal to the lowest subgoal). Fach role of a context is considered. staring with the problem-space
and continuing through the state and operator in order. For a given slot. all preferences refevant to that slot
are collected. A preference is relevant o a slot if all of «s non-nil context ticlds (goal. problem-space. state
and operator) have the same identifiers as the corresponding roles in the context and the role of the
preference is the same as the roie of the slot. Using these preferences, the different objects competing tor a
slot are compared. The decision procedure computes a final-choice for a slot according to the semantics of

acceptability, rejection and the desirability ordering. T'he semantics of these concepts 1s given in Figure 4-1.

To determine the final-choice. the set of considered-choices is first determined. [hese are objects that are
acceptable (there are relevant acceptable-preferences tor them) and are not rejected (there are no relevant
reject-preferences for them). Consider applying the decision procedure to the vperator slot given the context
and preferences in Figure 4-2. This example includes many preferences which may not arise in the normal

course of problem solving. but thev help cxemplify the details of the decision process.

The objects with relevant acceptable-preferences are 00001, 00002, 00004. These acceptable-preferences
differ in which fields they specify, but all of the specificd fields appear in the context. Object 00003 has an
acceptable-preference, but it is not relevant to the current context since it requires that state s0006 be sclected.
Even though there is a best-preference for 00003 that 1s relevant. it is not a considered-choice because there 1s
no relevant acceptable-preference. Although 00004 is acceptable, it is also rejected. so the set of considered-

chaices 1s only 00001, 00002. From this set. the dominant, maximal choice must be determined.

Dominance is determined by the best, better. indiffcrence. worst. and worse-preferences. An object
dominates another if it is better than the other (or the other is worse) and the latter object is not also better

than the former object (which is possible because conflicts are possibie). A best object dominates ail other

' non-best ohjects. except those that are hetter than it through a better-preterence or worse-preference. A worst
object 1s dominated by all other non-worst objects. except those that 1t is better than through a better or worse
i preference. F'he maximal-choices are those that are not dominated by any other objects. Consider our
o cxample. 00001 15 a best object. but 00002 1s better than o001, 00002 hecomes the maximal-choice hecause

1t drrecty dominates o001 through a better-preference. 1100002 were not better than 00001, 00001 would he

J
NON ke e N v
nalin s e, A S A L LY e e . et et T T T e Tt et T e T e T Lt e i
RS AT P TR PO O T T oA TP T A P A T e - - _

ERE R MEAA A A g BG4t Il i A b a Sk 4 SO Sk g M gt v gL L B S L S M S g I s S I g g ARAA VLA P N e A G o b8 ary

20 SOAR USER'S MANUAL

Primitive predicates and functions on objects, x, y, z, .
current The object that currently occupies the slot

acceptable(x) x is acceptable

reject(x) x is rejected

(x > y) x is better than y

(x <y) x is worse than y (same as y > x)

(x ~y) x is indifferent to y

(x > y) x dominates y = (x > y) and —~(y > x)

Reference anchors
indifferent(x) = Yy [indifferent(y) = (x ~ y)]
best(x) = Vy [best(y) = (x ~ y)] A [-best(y) A =(y > x) = (x> y)]
worst(x) = Vy [worst(y) = (x ~ y)] A [~worst(y) A ~(y < x) = (x < y)]

Basic properties
Desirability (x > y) is transitive, but ngt complete or antisymmetric
Indifference is an equivalence relationship and substitutes over >
(x > y) and (y ~ z) implies (x > 2)
Indifference does not substitute in acceptable, reject, best, and worst.
acceptable(x) and (x ~ y) does not imply acceptable(y),.
reject(x) and (x ~ y) does not imply reject(y). etc.

Default assumption
A1l preference statements that are not explicitly mentioned and
not implied by transitivity or substitution are not assumed to be true

Intermediate definitions
considered-choices = {xeobjects | acceptable(x) A -reject(x)}
maximal(X) = {xeX | Vy —~(y >» x)}
maximal-choices = maximal(considered-choices)
empty(X) = ~JxeX
mutually-indifferent(X) = Vx,yeX (x ~ y)
random(X) = choose one element of X randomly
select(X) = if currenteX then current else user-salect(X)

Final choice
empty(maximal-choices) A —reject(current) = final-choice(current)
mutually-indifferent(maximal-choices) A —empty(maximal-choices)
= final-choice(select(maximal-choices))

Impasse
empty(maximal-choices) A reject(current) = rejection-impasse()
—mutually-indifferent(maximal-choices) = impasse(maximal-choices)

Figure 4-1: The semantics of preferences.

the maximal-choice. [f there were neither the better-preference nor the best-preference. the maximal-choice

would consist of both objects.

Once the maximal-choice for a slot 1s computed. the decision procedure determines whether there 1s a final

choice or an impasse for the slot using the rules at the bottom of Figure 4-1 These rules are mutualhy

exclusive and complete. ['he current object acts as a detault so that 4 given slot will change only 1f the current

L
PERP IS 2 BN) L}

NERON PR 5] F Nt A

.“4-'4.'-‘.»'.’-'. P T S
A A A S AR SR S A A R AR NSRS WA

R e N e e e s T e e i o e i M CEA i e

DECISION PROCEDURE 21

(gc g0001 tproblem-space p0003 tstate s0004 toperator 00007)

(preference 00001 trole operator tvalue acceptable
tgoal g0001 tproblem-space p0003)
(preference 00001 trole operator tvalue best
tgoal g0001 tproblem-space p0003)

(preference 00002 trole operator tvalue acceptable

tgoal g0001 *problem-space p0003 tstate s0004 toperator 00007)
(preference 00002 trole operator tvalue better treference 00001

tgoal g0001 tproblem-space p0003 tstate s0004 toperator 00007)

(preference 00003 trole operator tvalue acceptable
tgoal g0001 tproblem-space p0003 tstate s0006)
(preference 00003 trole operator tvalue best
tgoal g0001 *problem-space p0003 tstate s0004)

{preference 00004 trole operator tvalue acceptable
tproblem-space p0003)

(preference 00004 trole operator tvalue reject
tgoal g0001 tproblem-space p0003 tstate s0004
toperator undecided)

Figure 4-2: An example goal-context with preferences for operator selection.
object is displaced by another object. Whenever there is no maximal-choice for a slot, the current object is
maintained, unless the current object is rejected. in which case a rejection impasse arises. [f the current object
is one of the maximal-choices and it is indifferent to the other maximal-choices (or it is the only maximal-
choice), then the current object is maintained. since indifferent signifies that either object is appropriate. If
the current object is not a maximal-choice, and the maximal-choices are mutually indifferent, the current
object is displaced by one of the maximal-choices. A set of objects arc mutually indifferent if all pairs in that
set are indifferent. Two objects are indifferent if cither there exists a binary indifferent-preference. there is a
transitive set of binary indifferent-preferences containing both of them, they are both in unary indifferent-
preferences. they are both in best-preferences or thev are both in worst-preferences. In the current example.
there is only a single maximal-choice. 00002. which would displace 00007. If all of the maximal-choices are
mutually indifferent, user-select is tested to determine how to select between the objects. This can be either

randomly, determunistically. or by the user. See Section 10.3.7 for more detatls.

If the current object is to be displaced by the maximal-choice. and there is not a single object (or set of
indifferent objects) that dominates. then either a ne or contlict impasse arises. A_conflic impasse arises if the
objects have contlicting better and worse preterences. A fre umpasse arises if there are n 1nang
between the maximal-choice objects. A no-chunge impasses anses if a context has been processed and none of
the slots has been changed, [t the current ohject 18 not displaced. or 1f 4 pre-existing impasse stll exasts, the

deciston procedure then processes the next slot. either in the current context or the next lower context if the

operator slot was just processed. It a new impasse 15 encountered. all subgoals are terminated. 4 new subgoal

NTRON PV N S AN e s

- .

~ et At n . - . .

-t~ S I R . Lt e S .t et -
. .

T R T . . - I T
L NP L N R e el . L. T T A N s e e e e et e e e e
PRV IS B VOO TS YRS S IRV DU VO U D WO, VAU P Sl U S LR S & SRS SRS SRR

N Al IS AV oN SR goeger haiC . BN ib i i il DA Sa S s v ot AN oA S

SOAR USER'S MANU AL

is created and the elaboration phase of the next decision cycle ensues. (A tie or conflict impasse is considered
to be equivalent to a previous tie or conflict impasse if the objects involved in the new impasse arc a subset of

those in the existing impasse.)

With appropriatc preferences from the claboration phase. it is possible for a single vbject to result from the
decision procedure, 1.c.. the maximal-choice set contains cxactly one object. or a sct of indifferent object from
which a single object is chosen as describe in Section 10.3.7. When there 1s a single object. the change is
installed, all unconsidered slots of the current context sct to undefined. all unconsidered contexts terminated.

and the elaboration phasc of the next decision cycle ensucs.

NERONPARC ST TAND SRY awn

AR AS At PO RS RS R Rt BASE A SRR SR te o S0t Win s & B le aite AP
SUBGOALS 23

5. Subgoals

All subgoals in Soar are created automatically by the architecture when a new impasse arises in the decision

procedure. There are currently four types of impasses, leading to four types of subgoals.

e A tieimpasse arises if the preferences for a slot do not distinguish between competing objects.

o A conflict impasse ariscs if at least two objects have conflicting preferences (such as A is better
than B and B is better than A) for a slot.

® A no-change impasse arises if none of the slots change value during the decision procedure.
e A rejection impasse ariscs if all objects with acceptable-preferences for a role also have
reject-preferences.
The first two impasses, tie and conflict. are multi-choice impasses, because more than one object remains
following the decision procedure. The last two impasses. no-change and rejection are no-choice impasses.

because there are no objects available from which to choose. The four impasses are mutually exclusive and

exhaustive,

When a new impasse is detected. Soarcreates a gensymed goal symbol and an associated goal-context which
includes the problem space. state and operator for the goal, as well as a set of augmentations that help define

the goal. Below are the nine goal-context-info augmentations that can be created.

problem-space This contains the identifier of the current problem-space for the goal: undecided.

state This contains the identifier of the current state for the goal: undecided.

operator This contains the identifier of the current operator for the goal: undecided.

impasse This contains the type of impasse: tie. conflict, no-change, rejection.

choices This contains either multiple. for tie and conflict impasses, and none, for no-change

and rejection impasses.

role For multi-choice impasses (tie and conflict), this contains the role that the choices
were competing for (problem-space. state, operator). For no-change impasses. this
contains the role of the last slot that is not undefined (goal. problem-space. state.
operator). For rejection tmpasses. this contains the role of the slot just above the slot
where the rejection occurred (goal. problem-space. state). Rejection is defined in this
way s0 that both no-change and rejection impasses have the same role tor a sumlar
difficulty.

item If the impasse has multiple choices. each acceptable object for the slot. that was cither
tied or conflicted. is included as an individual item augmentation.

Y ROV FARC 8 L5 TANT ARY e
~
LS
P.','.'_;' e TN T e e . .- - e R I G IR
'-.-'\".—'.-'.-.".- D R A i B N P R N IRV P Ny
o % AR DRI I R B T I S D P T R PR P B UL e -
PRI IR RN P AN e Ty PRI 3 & RO, '.._'..".-"_.T'.-;':AE."EA'.\..\:."_:'-:-'u‘;’-‘

Py

.‘:g

7/

/‘--‘

Gt

[}
[

." il
» 'l \

ll

e

A
[t
he

APV S

4

oy

2 e,

‘
L)
’,

»
’ .

i)
4

o4

a
[2]

»
AEEREN

Y Y T N N R T R T YT N T T R Y T T R T R T A Y T TN T AN YT T Y TTw Ty, v b At A S0 2t AU e Rha e is 4w aen Be B S S A T aan
EARS A K A A 3 < & A S At A Al CeNW TS T WY

SOAR USER'S MANL AL

supergoal This contains the identifier of the supergoal.

superoperator This contains the identifier of the supecroperator. This is necessary for the subgoals
that arise from parallcl operators so that each subgoal is for a different paraliel
superoperator (see Section 9.2).

Here is an example of a goal-context that is created for a tie between three operators:

(gc G0012 rimpasse tie tchoices muitiple trole operator
tsupergoal G0003 tsuperoperator undecided
tproblem-space undecided tstate undecided toperator undecided
titem 00009 titem 00010 titem O0011)

A subgoal terminates when its impasse is eliminated by the addition of preferences that change the results
of the decision procedure for a supergoal. For cxample. if there is a tie subgoal between two objects, it will
automatically terminate when a new preference i1s added to working memory that rejects one of the choices.
makes one a best choice, makes one better than another. makes one a worst choice. or makes them both
indifferent. If there is a tie between three objects, the tie will be broken when one of the objects (or a set of
indifferent objects) dominates the others. So the subgoal will terminate if a best-prefcrence is created for one

of the objects. if one object is made better than the other two, and so on.

When a subgoal is terminated, many of the working-memory elements that were created in the subgoal are
automatically removed from working memory. All working-memory elements created in the subgoal (and
those created in its subgoals) that are linked. directly or indirectly. to any supergoal, will be retained. The
determination of which working-memory elements to remove is done by a mark-and-sweep garbage-
collection scheme. When a subgoal terminates, all working-memory elements that were created in the

subgoal (and its subgoals) are collected together. All augmentations (but not preferences) whose identifier

appears in one of the working-memory elements that existed prior to the subgoal are saved. This recurs by

saving those elements whose identifiers appear in a saved element until no additional elements are saved.
Preferences are saved if their context objects (identifiers in the goal. problem space. state, and operator fields)
are nil or existed before the subgoal was created. All working-memory elements that were created in the
subgoal, but not saved. are removed from working memory. All saved elements are considered to have been

created in the supergoal for all future garbage collections.

VRON PR AN VK

DEFAUL T SEARCH CONTROL 25

6. Default Search Control

This chapter describes the default knowledge in Sear. This is encoded in a set of S1 productions that are
always loaded in with a task. These productions are listed in Appendix 1. The majority of this knowledge
provides default responses to the impasses that can arise during problem solving. Soar provides default
processing for every subgoal that can arise. This chapter starts with default knowledge that is applicable in all
subgoals. This is followed by the default responses to the different impasses. which includes the selection

problem space, evaluation subgoals and operator subgoaling.

6.1. Common Search-Control Productions

o default®*make-all-operators-acceptable: [f the current problem space is augmented with an
operator (the operator is the value of a toperator attribute). make an acceptable-preference for the
operator with the current problem space in the problem space field. and nil in ali other context
ficlds.

o default*no-operator-retry: [f there is an acceptable-preference for the current state. create a
reject-preference for the operator in the toperator field using the context fields for goal. problem
space and state from the acceptable-preference for the current state (assuming that the operator is
not undecided or nil).

o defanit*backup-if-failed-state: If there is a reject-preference for the current state. make an
acceptable-preference for the state that was used to create it.

6.2. Default Knowledge for Impasses

6.2.1. Multi-choice impasses

If a subgoal is created for a tie or conflict impasse. an acceptable-preference and a worst-preference are
created for the selection problem space. The selection problem space is used by default for all tie and conflict
impasses. See Section 6.3 for more information. As backup to the selection problem space. there are
additional productions that apply if a multi-choice impasse is followed by a no-choice impasse for the goal.
which would arise if the selection space was rejected. If the impasse was a tie, worst-preferences are created
for the items that tied by default®problem-space-tie. default®*state-tie, and default®*operator-tie. [f the impasse
was a contlict, reject-preferences are created for the items that conflicted by default®*problem-space-conflict.

default*state-conflict, and default®*operator-conflict.

NERUNPARC I ANt 2y e

MR T ATR TR MAT AR AL, TRV T LWLV WL RN PN W W W

26 SOAR USER'S MANUAL

6.2.2. No-choice impasses - goal

The impasses where tchoices is none and trole is goal are used as a signal that no progress was possible for
the next higher impasse. That is. only when there is no knowledge about how to eliminate an impasse (no
acceptable problem spaces are suggested. or they are all rejected) do these impasses arise. Such an impasse
leads to the rejection of the last defined object in the super-context. [f there is a no-choice impasse for the top

goal. default®*goal-no-choices halts Soar.

6.2.3. No-choice impasses - problem space, state and operator

If no problem space is selected to handle one of these subgoals (signalled by the creation of a no-choice
impasse for the goal). this implies that there is no knowledge asailable to resolve the no-choice impasse. The
default response s to reject the lowest object in the goal-cuntext that is not undecided. This has the effect of
allowing another choice to replace the rejected choice so that another path can be attempted. or of further
rejecting a higher-choice it the rejected vbject was the only candidate for its slot. This is implemented by

productions default*problem-space-no-choices. default®state-no-choices. and default®*operator-no-choices.

6.2.4. No-change impasses - operator

If a no-change subgoal is created for the operator role. there are three poussible reasons: (1) the conditions
of the operator were not satisfied; (2) the operator is incompletely specified (needs to be instantiated): (3) the
operator is too complex to be performed by productions and must be implemented in a subgoal in its own
problem space. For the first option. the appropriate response is to use the same problem space and search for
a state where the operator will apply (operator subgoaling). For the others, task-specific problem spaces must
be available to perform the necessary computations. Because task-specific knowledge 1s required for the last
two cases, we assume that the first is the default action: that is. an acceptable-preference and a worst-
preference are created for the super-problem-space. These will be overridden by any acceptable-preferences
for other problem spaces. See Section 6.5 for more details. 1f operator subgoaling fails. and all problem
spaces for the subgoal are rejected. default®*operator-no-choices will then reject the operator that led to the

impasse.

6.3. Selection Problem Space

Whenever a multi-choice impasse 15 cncountered. an acceptable-preference is made for the selection
problem space. There is also a worst-preference created tor (L. so that any user provided problem space will
be selected in 1ts place. Both of these are created by select*selection-space. [he states of the selection
problem space may have evaluations of the teing objects as augmentations. An initial. empty state is created

by select®*create-state. There is one operator provided with the selection space: evaluate-object

COCUNEARE N e VR e

DEFAULT SEARCH CONTROL 27

6.3.1. The evaluate-object operator

AR RAR N

Evaluate-object is meant to create evaluations for the ticing or conflicting objects so that preferences can be
created by comparing the evaluations of the different objects. Production eval*select-evaluate creates an
operator instance for each object that is an titem augmentation of the goal. These operators are named
evaluate-object. When they are created. acceptable and indifferent-preferences are also created for them. so
that there will be no tie between them (however. by using the user-select function. the user can choose which
evaluate-object operator to apply first). ‘The user can also have evaluate-object operators applicd in paraliel
by loading in production eval®*parallel-evaluate which resides in default.soar, but is currently commented out.

See Section 9.2 for more on parallelism.

Each evaluate-vbject operator is created with the following three augmentations.

e tstate: the current state of the selection subgoal.
o tname: evaluate-ohject.

e tobject: the identifier of the object to be evaluated.

Once an evaluate-object operator is selected as the current operator. it is augmented with further information.
This information is only necessary if the operator is going to be applied. therefore it is more efficient to

generate it only if the operator is sclected.

e trole: the role in the context for which the object is tied or conflicted (problem-space, state. or
operator).

e tevaluation: the identifier of an newly created object that will hold the evaluation. This is
descnbed in more detail in Section 6.3.2. q

o tdesired: the desired of the supergoal (the one in which the impasse arose). The desired of a goal o
contains the identifier of an object that describes the desired state of the goal. -

e tsupergoal: the (dentifier of the supergoal.
o tsuperproblem-space: the idenufier of the problem space selected in the supergoal.

o tsuperstate. the idenufier of the state selected in the supergoal.

T hese augmentations provide easy deeess (o mtormation required for computing evaluations.

6.3.2. Evaluation ob)rcts

\s mentioned ahove 1 onew object of class evaluation 1s created when an evaluate-object operator is
selected. 1t has the "ollow e tugmentinons
S
t e tohject. the rdentitier of the tied or conthicted object to be evaluated.
I.
~
[
L
! N < N AN ot Ry
X
e VAR IROASTS T WY YT VTR TAZ A Y T Y UL S S N A:‘_-‘A..'.AJ_A.L'AE_.-L'A“::‘._“ .

o e
28 SOAR USER'S MASUAL)
’__.-\'_r
o, a",
N
o tstate: the current state of the multi-choice subgoal. .j-j:..
:.‘::\ 8
o tdesired: the desired of the supergoal (the one in which the impasse arose). The desired of a goal NI
contains the identifier of an object that describes the desired state of the goal. e
s
o toperator: the identificr of the evaluate-object operator of which this cvaluation is an j-:.“;_::
augmentation. Ry
I'he evaluation object is used to hold the ¢valuation computed by the operator. For two-player games (such i

as Tic-Tac-Toe) the evaluation can also hold the side of the player to move. See Section 6.3.7 for more

information.

Currently. there is default knowledge tor two tvpes of evaluations: numeric and symbolic. They are

distinguished by the augmentation that is added to the cvaluation object when they are computed. Numeric \
cvaluations, such as a number between 1 and 10. are added as augmentations of the tnumeric-value attribute. ::"_;'.",‘-
For example. if an evaluation is computed to be 10, it might appear in working memory as: '.:'_f.-‘,.".
(evaluation E0004 robject 00044 tstate S0034 tdesired E3330 R
toperator 05555 tnumeric-value 10)
. g,
Symbolic cvaluations. such as success. failurc. win, lose. or draw are added as augmentations of the -,:4{:
'
. . - . . LS
tsymbolic-value attribute. For example. the same evaluation as above with success would be: ;:::\‘
(evaluation E0004 tobject 00044 tstate S0034 tdesired E3330 s(,-:'

toperator 05555 tsymbolic-value success)

6.3.3. Applying the evaluate-object operator

A specific instance of evaluate-object can, but often will not have any productions that directly implement
it. ‘The production eval®*apply-evaluate will apply. but only to tully instantiate the operator. Therefore. an
operator no-change impasse will arise; and a subgoal will be created to compute the evaluation. This s
discussed in Section 6.4. Once subgoals have been used to compute cvaluations. chunks that have been built

from the subgoals can directly compute the evaluations. Users arc tree to credte their own productions that

directly compute evaluations.

6.3.4. Terminating the evaluate-object operator ‘_A;{.}
Evaluate-object is terminated by production eval®reject-evaluate-finished. which detects if the current ._;{

evaluate-object operator 15 augmented with an ¢valuatnon object that has an evaluaton with either a =

tnumeric-value or tsymbolic-value augmentation. In crither case. 4 reject-preference s created tor the

evaluate-object operator. (f the evaluation does not lead to the temmunation ot the mult-choice subgoal. the e

reject-preference will lead to the selection of another evaludte-object operator or the tailure of the problem e

space. o
NTRON PaRe (s HENAN B

e D e I

e T s A RS i e e e

DEFALIL F SEARCH CONTRO!

6.3.5. Comparing numeric evaluations

Once evaluations are created for tieing objects, they can be compared and preferences can be created that
break the impasse. For numeric evaluations (evaluations with a tnumeric-value augmentation) users can write
their own productions to compare the evaluations. [f the objects being evaluated are operators (almost always
the case) Soar provides some help. If the object 1n the tdesired augmentation of the supergoal (which is
usually the desired state) is of class evaluation and is augmented with thetter higher or thetter lower
(depending on whether a higher or lower evaluation is better). then productions eval*prefer-higher-evaluation
and eval*prefer-lower-evaluation detect the appropriate thetter augmentations and create prefercnces when
one evaluation is numerically greater than another. Production eval*equal-eval-indifferent-preference creates
indifferent-preferences for objects that have evaluations that are numerically equal. independent of a thetter

augmentation.

6.3.6. Comparing symbolic evaluations

If an evaluation has tsymbolic-value success. production eval*success-becomes-best creates a best-
preference for the ubject that was being cvaluated. This should break the ue and allow problem solving to
continue. An evaluation should be marked with tsymbolic-value success only if it is known to be on the path
to the goal. either because the goal was reached when evaluating the object or because an intermediate state
was achicved that was known from prior experience (i.c.. chunks) to be on the path to the goal. We will see in
Section 6.4 that Soar has productions that will propagate success up a subgoal hicrarchy when it is

appropriate.

If an evaluation has tsymbolic-value failure. production eval*failure-becomes-worst creates a worst-
preference for the object that was being evaluated. This may or may not break the tie and allow problem
solving 1o continue. An evaluation should be marked with tsymbolic-value failure only if it is known not 10

be on a path to the goal.

6.3.7. Evaluations for two-player games

For two-player games, there are additional productions that process symbolic values win. lose. and draw.
'hese depend on the state having two augmentations: tside and toside. [he value of the side augmentation
should be a symbol. number or idenufier that represents the plaver that 1s to move next in the current state.
I'he value of the toside (other side) augmentation should represent the player that just moved. The values of
win. lose. ur draw are in rclation (o the player that just moved. that is. the one that is in toside. [heretore,
when an evaluation object 1s augmented with a symbolic value of win. lose. or draw. the evaluation must also
he augmented with tside which contains the value from toside in the state. If the state 1s augmented with

twin. tlose. or tdraw, as described in Section 6.4.3. then production eval*move-side-to-eval will copy the side

ORON AR N SN e ot

ERB B’ o BY LAt fte oy Sy, SA IS Sate A Risd /i NV N e SR b 48 e SR i M b i N A el A &S RO i et e A Tt A it S Sl T St Sl Bt e et st T S04

30 SOAR USFR'S MANL A

correctly. Once an evaluation of win. lose. or draw has been created. it is translated into a preference by
eval®*winning-values, eval®*winning-values2. eval®losing-values. eval*losing-values2 and eval®*draw-values. A
win for the side on move or a lese for the side that just moved becomes a best-preference. a lose for the side
on move or a win for the side that just moved becomes a worst-preference. and a draw becomes an indifferent-

preference.

6.4. Evaluation Subgoal

If an evaluate-object operator has been selected and no productions create evaluation values for it. an

operator no-change impassc will arise and 4 subgoal will be created. In this subgoal. the context that led to

the tie will be re-established and the ueing object that 1s an augmentation of the evaluate-object operator will
b be selected. This allows the problem solving to continue so that an evaluation of the success of that object can
be made. For different types of objects, ditterent amounts ot the context have to be re-established. The
production eval*select-role-prohlem-space is used for tied problem spaces. and it augments the current goal
with the old desired and makes an acceptable-preference for the problem space attuched to the evaluate-
object operator in the object augmentation. The production eval*select-role-state 1s used tor tied states. |t
augments the goal with the desired-state description (tdesired). creates an acceptable-preterence tor the
super-super-problem-space (which is in the super-problem-space augmentation of the evaluare-object
operator) and creates acceptable and best-preferences for the state in the object augmentation ot the evaluate-
object operator. Similarly. eval®select-role-operator re-establishes the old desired-state. problem space and
state and then creates an acceptable-preferences for the operator in the object augmentation of the evaluate-

object operator. The production eval®reject-non-slot-operator rcjects all of the other operators that compete

for the operator slot. This is necessary because new operator instantiations may be created in the subgoal that
will compete (and possibly receive best-preferences) for the operator slot. Following this, problem solving is
expected to continue until an evaluation is produced (of course, there may be many subgoals along the way to

an evaluation). Once the evaluation is produced. the evaluate-object operator is rejected as described above.

6.4.1. Detault evaluations

In four cases. the evaluations can be determined based on preferences created in the subgoals and not on

any fteatures of the states or operators.

L. If an operator is being evaluated and that operator is rejected for the imnal state of the evaluation e
subgoal. production eval*failure-if-reject-evaling-operator will augment the evalvation with l’::.':
tsymbolic-value failure. ot

et
PN
2. If an operator is being evaluated and the state that 1s created trom applying that operator to the N

nitial state of the evaluation subgoal s reyected. producton eval*failure-if-reject-state wiil
augment the evaluation with tsymbolic-value €ailure.

N RONPARY 8 TN .

o as e .
IR T T S S

A .
e R
LA R N SRR A I WA Y A A PR S IR T
W R T A A ST L OO " PO T G T O L AN

N it aa R i S 5 A% o

DIEFALUT T SEARCH CONTRO!) -

»
3. If an object is being evaluated below a selection problem space. there can be a tie impassc with a g ;’-:.';
second sclection problem space in the search for an evaluation. [f during the problem solving in Q:
Ly

the second selection problem space an cvaluation of tsymbolic-value success is produced relative
to the samc desired state as the original object. eval®pass-back-success will assign an cvaluation of o

tsymbolic-value success to that original ohject. Al

AN

4. If an operator is being cvaluated below a sclection problem space for a two-player game. there can R
be a tic impasse with a second selecuon problem space in the search for an evaluauon. IF during it

the problem solving in the second selection problem space an evaluation of tsymbolic-value win 15
produced for the same side as the original operator. eval®*pass-back-win and eval®pass-hack-win2
will augment its evaluation with tsymbolic-value win.

6.4.2. Computing numeric evaluations =

Numeric evaluations can be computed by a single production. a sct of productions. or a subgoal. All of
these methods must create the right augmentation of the correct object so that the rest of the productions can
usc it to terminate the evaluate-object operator and create preferences for the ticing objects by comparing
evaluations. The correct action is to augment the evaluation object (which is the value of the tevaluation
augmentation of the cvaluate-object operator) with taumeric-value number. For cxample, your production

would contain at least the following:

(sp your-production-name

(gc <g> tproblem-space <p> tstate { <> <ss> (s> } Lt
tsuperoperator <so>) .

(problem-space <p> tname your-task-problem-space-namec) PO,

(operator <(so> tname evaluate-object tevaluation <e> A S

tsuperstate <ss>) ::_}_-\.

conditions that match features of state <s> Ry

> NA
(evaluation <e> tnumeric-value your-evaluation))

\. i-' l_

Numeric evaluations are useful when features of a state correspond to the distance from the state (o the goal AN

el

ARA

and can be mapped onto either the integer or the real numbers. The value computed for cach state can then AN

be compared to the value computed for another state and a preference can be created based on the ordering -:':.-'.-"'

of the numeric values. Complex combinations of numbers for a numeric evaluation of a state is possible using
the compute action. For example. your-evaluation could be the addition of two other numbers: (compute

<num1> + <num2>). See Section 3.2 for a further description of compute.

6.4.3. Computing symbolic evaluations

The same approach that was used in numeric evaluations can also be used in symbolic cvaluations. except

that the correct augmentation tor the cvaluation object s tsymbolic-value instead of taumeric-value. \

simpler approach 1s also available so that the user does not have to even deal with evaluation objects. Instead

of augmenting the evaluation object, the user can augment the current state of the subgoal with onc of the ERSHE

following five attributes: tsuccess. tfailure, twin, tdraw. tlose. [he value of these sugmentations must be the

T e e e e e
1]
'

MERON Ve 0y NN AR emb ——s

. ‘_‘.‘\-‘ R RY Ve c -

I - e " . K . - . .- 2t e R . - At
. e DA AT DA LU Vo D T R e Tt Tetl - T e e N ot .
LJ A DN BICRRASIN SR ST AR IS B S-S DI A SPEN PSS T S R S I X G IR 5 G W AR TP A U TR R TR WU G S TR

| SN

&

i S S W Ml S A B S Sl e Sl Ml S it Al Sl
.
-

Ml et i Adent Biuiinie e b eie IL AN R et it ibe A e i M AL SRR L LA S Stk i A I RS AR

32 SOAR LSER'S MANUAI

tdesired augmentation of the goal. A default production then converts these state augmentations to the
corresponding symbolic-value augmentations for the cvaluation object. For example, use a production like

the following:

{sp your-production-name
(gc <g> rtproblem-space <p> tstate <s> tdesired <desired>)
conditions that detect subgoal success.
-=>
(state <s> tsuccess <desired>))

The production involved in the conversion is: eval®*state-to-symbolic-evaluation.

6.4.4. Detecting success and failure

It a state tor the top goal in Searis marked with tsuccess. twin, or tlese. onc of the following productions
will cause Soar to halt: eval*detect-success. eval®*detect-win. eval®*detect-lose. If a state for the top goal in

Soar is marked with tfailure. it will be rejected by eval*detect-failure.

6.5. Operator Subgoaling

[f an operator has been selected but cannot be applied to the current state. a useful strategy is to create a
subgoal to find a state where the operator can be applied. This strategy is called operator subgoaling (also
precondition satisfaction) and is a common Al technique dating back to GPS. In Soar. operator subgoaling is
appropriate when an operator has been selected and a no-change impasse arises. [n such a situation.
acceptable and worst-preferences are created for the super-problem-space for the subgoal by
opsub®try-operator-subgoaling. If no other problem spaces are suggested for the goal. the problem space of
the supergoal will be sclected, allowing a search to be performed in the same problem space as the supergoal.
but with a new goal — applying the currently selected operator. The presumption is that the selected operator
could not apply to the current state, so another state must be found. The default productions are adequate to

implement operator subgoaling, so that no additional productions must be added by the user.

Once the super-problem-space has been selected. the goal is named operator-subgoal and augmented with
the superoperator as its tdesired by opsub®*go-for-it. This establishes a convention that when the desired
augmentauon of a goal 1s an operator, then the object of the goal is to achieve a state in which the operator
can be applied. Opsub®*go-for-it also creates an acceptable-preference for the superstate. Once the superstate
1s selected. a reject-preterence is created for the superoperator with the inital state 1n the state context ticld.
by opsub®reject-opsub*operator. since 1t is known that 1t will not apply to . Other operators must be
available to create a new state. For every state created tollowing the inttial state. 4 best-preference is created
for the supcroperator by opsub®*select-opsub®operator to trv out the operator that Ied to the subgoal. [f it

generates a new state without going into another subgodl. an accepuable-preterence tor that state 1s created

N RO PARC N 0 AN Ay e

e N e e e e s e e R TR
.- L T T U T) N I T T SRS N S N A .
PP T R T -, PO S P PO, WP PP VLY

) Vi o as g o

> i i o o

g Y

LANCIR L S g

L e

DEFFAULT SFARCITCONTROL 3

that will be appropriate to the supercontext by opsub*detect-direct-opsub-success or
opsub®detect-indirect-opsub-success. This will terminate the subgoal. If the operator leads to another subgoal.

it is rejected by opsub®reject-double-op-sub.

.
' ala

NRON TR ey T vN ARy e

Ly T N SR TR TE, LA A 5 el AGA SR At sl gibA S NS afi e —_— T - g -

SOAR USER'S MANLAI

'
]

VPRON PARC (S - ¢ IAaNT Ry osn

- ~ e e

RV SR AR T DO T

e N - e Vaa

.
> FRPERY NI XN

PR
PRI R N N

I e)

CHUNKING

7. Chunking

Learning in Soaris based on building productions that permanently cache the processing done in a subgoal.

The actions of the production are based on the working-memory clements that are the results of the subgoal.
The conditions of the productions are based on the working-memory elements that were present when the

subgoal was created and then used in the subgoal to create the results.

A number of factors determine whether or not a chunk is created when a subgoal is terminated. A chunk is

built unless onc of the following conditions is true:

1. Learning is off.

2. The chunk would have no actions. (This attempts to guarantee that a chunk is not built for a
subgoal that produces no results. Such a situation can arise when a supergoal terminates without
the termination of all intermediate subgoals.)

3. The name of the current problem space of the subgoal is in *chunk-trec-problem-spaces®.
(*Chunk-free-problem-spaces* lets the user control which problem spaces should not be chunked.
It is initially empty. so that all problem spaces will be chunked. One strategy is only to learn
search-control knowledge by including all task problem spaces in *chunk-free-problem-spaces*.)

4. None of the conditions of the chunk have a class in *chunk-classes®*. *Chunk-classes®* is set
initally to (problem-space state operator). This prevents the creation of chunks that dv not test
any of the objects that existed before the subgoal was created. These chunks are usually very
overgencral.

S. Learning is bottom-up and a chunk was built for a subgoal of the current subgoal (possibly not the
immediate subgoal).

6. The chunk is a duplicate of a chunk that is being built at the same time. The detection of
duplicate chunks is done at a syntactic level. so sometimes chunks that are semantically equivalent
to previous chunks will be built.

7.1. Determining Conditions and Actions

The determination of the conditions and actions of a chunk-production depends on the creation and

reference of working-memory elements in a subgoal. This information is maintained automatically by Soar

for each working-memory element in every goal. When a production fires, a trace of the production — the
working-memory elements matched by its conditions and created bv its actions — 1S saved on the
production-trace preperty of the appropriate goal. ['he appropriate goal is the most recently created goal
(lowest i1n the subgoal hicerarchy) that occurs i the working-memory elements matched by the producuon.
Only productions that actually add something to working memory have their traces saved. Uheretore.

productions that just monitor the state (have only write statements) will not aifect the learning. If a

ViRON Pk SN oAy e

. LT s e o . S) T .. ' - A “~
et et e . v et - e S YL TP I] h

- - L N S A YL ~ - -
g TSRS SIS I R R R BT S S I R S A IR I

. - . - " - . - o . R - - . w - LAY
- - . - - . . - - - -~ - . - " - . MR - .
220 Te Al e A et e e e e N S e e Y)

. f
Attt

1
s

Ll Bl S I ot R

36 SOAR USFR'S MANLAL

production tries to add working-memory clements that already exist. it will not affect the learning (although

sce *chunk-all-paths® for an alternative).

Chunking is complicated by the fact that context slots and subgoal augmentations arc created by the
architecture and not by productions. If these structures arc tested. there are no associated conditions.
Thercfore. Soar associates with them those working-memory ¢lements that are responsible for their creation.

Below is the list of goal-context augmentations and their associated pseudo-conditions.

o Problem space. state, or operator roles. The acceptable-preterence for the object in the role. The
other preferences are not included in the production trace.

o Item (for tie and conflict impasses). The acceptable-preference tor the object in the item.
o Superoperator. The goal-context-info for the operator of the supergoal.
o Impasse rejection. All the reject-preterences that led to the impasse.

o Impasse no-change. The goal-context-into for the next slot. with undecided as the value. (This is
not used for operator no-change. since there 15 no next role.)

o Choices none. If this is a rejection impasse. all the reject-preferences that led to the impasse. [f
this is a no-change impasse

Negated .onditions of >roductions that fire in a subgoal are included in a trace as follows. When a
production fires, its negated conditions are fully instantiated with the appropriate values for its variables
based on the rest of the data that matched the production’s positive conditions. [f the identifier used to
instantiate the identifier field of the condition was created before the subgoal, then the instantiated negated

condition is added to the trace (as a negated condition): otherwise it is ignored.

The actions of the chunk for a subgoal are taken to be thosc working-memory elements created in the
subgoal (or its subgoals) that are accessible from the supergoal. An augmentation is accessible if its identifier
existed before the subgoal was created or is in another result. A preterence is accessible if all of its non-nil
context objects (goal. problem space. state and operator) existed before the subgoal was created or is in
another result. Once the total set of results is determined. it is split into subgroups such that no two
subgroups share objects that were created in the subgoal. These results arc logically separate and can be

generated in the future by separate productions

Once the actions of a chunk have been determined. a dependency analysis of the production traces 1s used
to determine exactly those working-memory clements that existed prior o the creation ot the subgoal that
were tested in creating the actions, Not all working-memory clements tested in a subgoal become conditions

in a chunk. unly thosc responsible for the actions. Specitically. those productions that created non-acceptable-

SERON e ST s AN VR Nk

CHUNKING 37

preferences will usually not be included (unless the preferences are results of the subgoal) in the dependency
analysis because they contribute only to the decision scheme. For the decision scheme, only acceptable-

preferences are saved in production traces.!

7.2. Replacing Identifiers with Variables

The working-memory elements that are used to create the conditions and actions have the identifiers of
specific objects in their identifier ficlds. When building productions. all object identifiers are replaced by
variables. A}l occurrcnces of an identifier are replaced with the same variable. This sometimes leads to a
slightly overspecific chunk (two objects that did not have 1o be the same in the subgoal, but just happened to

be the same. must be the same for the chunk to apply).

7.3. Removing Extraneous Conditions

Soar removes conditions where the identifier in the value field does not occur in any other condition or
action of the production. This process recurs, so that a long linked-list of conditions (connected by value and
identifier attributes) will be removed if the final one in the list has a value that is unique to that condition.
These conditions provide little or no constraint on the match and greatly increase the number of

instantiations.

7.4. Splitting Chunks Based on Duplicate Conditions

Following the removal of unnecessary conditions, it is possible that many conditions will match exactly the
same working-memory elements. This is most serious when substructures are copied from one state to
another. To eliminate these duplicate conditions (which cause combinatorial processing in the matcher), the
production is split into multiple productions. Two (or more) conditions are duplicates if they are exactly the
same except that they differ in the tvalue field. [n addition, the identifiers in both of those fields must not be
referenced by any other condition and must be referenced by actions. It is assumed that these conditions are
used for copying structures and do not really test an important aspect. One of these conditions is saved along
with the actions that share the identifier in its tvalue field. All of the other duplicate conditions and the
actions that share the identifiers of their tvalue field are eliminated. More than one set of duplicates can
occur for a single production. and a list is maintained of the representative condition and actions for cach set

of duplicates.

From these lists. productions will be created. The first production butlt does everything the subgoal did

except for processing the duplicates. T'his production does not contain any ot the conditions or actuons that

L . .
This may lead to overgeneral chunks. We are curtentty re-examining this design choice and may modity it in the future

NE2ONPARE ISE 0 AN Wy e

AL RS A S SaP dian D a5 ax il ot Dl ak St A Bk S AR Atel 2l acs Wt Yad e She ghe oh
.

A e
S

‘.
«

s

& o
a

'!

RN Y]
.‘.,‘v h .‘.n
LA

~
[
[J

RS R o o 2% #
Sy %
L4
[%

’
v

X A

38 SOAR USER'S MANLUAL

were duplicates. Additional productions are built for each set of duplicates. The conditions of these
productions contain:(1) all of the conditions of the first production; (2) all actions of the first production (so it
won't fire until after the first and can bind to all identifier’s crcated in the first production); and (3) the one
instance of a duplicatc condition saved away. The actions of the production are only those actions that were

saved with the duplicate condition. Thercfore. tor one subgoal. many productions may be built.

7.5. Ordering Conditions

The efficiency of the Rete matcher used in Soaris heavily dependent on the order of the conditions in the
productions. ‘Thercfore. Soar orders the conditions in an attempt to make the matching process more
cfficient. The ordenng algorithm is implemented by trving to determine, at cach stage. which cligible
condition, if placed next. will have the fewest number of instantiations when the production is used. The

details of the orderir.g algorithm are given in the Soar Technical Manual.

7.6. Making Different Variables Distinct

When variables were assigned to conditions. all identical identifiers were replaced by the same variable.
However, the resuiting production could match the same identifier to different variables. so that the semantics
of the productions are incorrect. Since variables in OpsS do not have to match distinct identifiers, Soar
explicitly modifies the production so that no two variables can match the same identificr. Saar also
automatically modifies any goal-context-info with attribute tproblem-space, tstate. or toperator that has a
variable in 1ts value field that does not appear in any other condition (but does appear in an action). The

modification is to replace the variable, say <p>. with { <> undecided <p> }.

7.7. Refractory Inhibition of Chunks

When a production is built as a part of a chunk. it may be able to fire immediately on those working-
memory elements that were used to create it. [f the actions of the production include the creation of new
objects. the production will immediately fire and create another object. in addition to the object that was the
original result of the subgoal. To avoid this. cach production that is built during chunking s retracted so that
it will not fire on the working-memory elements used to create it. This does not prevent a newly learned

production from firing on other working-memory clements that are present.

7.8. Over-generalization

Chunking in Searcan lead to over-gencralization in three ways. First. when there 1s speciai-case knowledge
that is not used in solving a subgoal. Lhis knowledge is encoded in productions tor which most but not all ot

the conditions were satistied during a problem-solving episode. [hose that were not satisfied cither tested tor

NPPON BARE S - 5 ANT ey e

- v v e
1/1~Id’) A

-

>

o« .o
PRI
.

el

.

olel 0w '
NS |

’l l.
Y B)
v,

U P

.
.

N -s.'—ﬂ .
Y
G

.
e
»

s
y)

.I..f~
s

DA AN CI I STl e o Y "l 1Y PRS2 Sl gt AL N g gen g\ pl g g ot g aoit g Al e g

CHUNKING 39

the absence of something that is available in the subgoal (using a negated condition) or for the presence of
something missing in the subgoal. The chunk that is built for the subgoal may be over-general because it does
not include the inverses of these conditions. During a later episode, when all of the conditions of a special-
case production would be satisfied in a subgoal. the chunk learned in the first trial bypasses the subgoal. if
the special-case production would lead to a different result for the goal. the chunk is over-general and

produces an incorrect result.

Overly general chunks can also be learned when there are negated conditions of productions in a subgoal
that test for the absence of a working-memory element that would be created in the subgoai. If the creation of
that working-memory element was directly related to the existence of a working-memory clement that existed
before the subgoal, then the test for the absence of the working-memory clement local to the subgoal should
be replaced by a test for the absence of the working-memory element that existed before the subgoal.
Chunking is currently unable to perform such an analysis and include tests for the absence of working-
memory elements unless they are explicitly made in a production. This inability can lead to overly general

chunks.

When determining the conditions of a chunk via the dependency analysis, the conditions of productions
that created non-acceptable preferences are included only if they were results of the subgoal. or the results
were produced based on them. They are not included if the preferences only influenced the decisions during
the problem solving. The theory is that these productions influence the efficiency of the search. but do not
change its validity. That is the theory, but in practice. problem spaces can be implemented that depend on
productions that create non-acceptable preferences. Instead of applying all tests for success (the goal test) to
each state in the problem space, it is possible to move some of the goal test 0 productions that reject
intermediate state (or operators) that do not satisfy some of the goal constraints. This allows the final goal test
to be much simpler, since any state it tests is guaranteed to satisfy some of the constraints already. In these
cases. the productions created by chunking are overly general because they do not include all the conditions
they should since only the final goal test is included in the chunk, and not the implicit tests made during the

search that guaranteed that a valid state was always chosen.

NPRONPARE S 5 AN RS wwn

e rurRT e g Ty VLR LW ENVEAVWLUNUWUEL

SOAR USFR'S MANLAL

NERONPARU IS AN ARY e

FNCODING A TASK 41

8. Encoding a Task

This chapter describes how to represent goals, problem spaces. states, operators and search control for a
task. The Eight Puzzle will serve as an example. All of the productions will be in SP format, and these
productions will actually perform the task. The productions will be given in lower-case, which is appropriate

for all systems cxcept Interlisp.

8.1. Problem Space Decomposition

The first step in encoding a task in Soar is to decompose it into a set of problem spaces. This is a difficult
step and corresponds to structuring the task. However, only a single problem space is necessary to represent
and solve the Eight Puszle. This problem space consists of states that have different configurations of cight
numbered tiles in a 3x3 frame and operators that move tiles adjacent to the blank space into the blank space.
In contrast. R/-Sear has a hierarchy of up to ten different problem spaces. Such a hierarchy arises when the
operators of one problem space require a second problem space for their implementation. The operators of
the high-level problem spaces are not implemented directly by productions, but instead are implemented by
other operators in other problem spaces. At some point the hierarchy bottoms out, and the operators are
implemented directly by productions.

As of yet, there are no hard and fast rules for decomposing a problem into multiple problem spaces. It is
never necessary to decompose a task into separate problem spaces because every hierarchy of problem spaces
can be represented as a single problem space, with search-control knowledge that simulates the control
achieved through decomposition into separate problem spaces. With decomposition, it is often possible to
represent a task as a set of problem spaces with little or no search control. Problem space decomposition is
possible when different aspects of the state of the task can be modified independently of other parts of the
state, or when different sets of operators are selected together. independently of other operators. The sets of
operators that act independently can then be grouped into separate problem spaces. These problem spaces are
then selected in response to no-change impasses for a high-level operator that represents the problem solving

that will occur in the subgoal.

8.2. States

As in a standard programming language, the next step in designing and implementing a task is deciding on
a representation of the data being manipulated. In Soar. this involves defining the representation of the states
of the problem spaces. Given the available attribute-value scheme. many different representations are
possible for a given task. One structural restriction 1s that all substructure of a state must be linked to the

state. either directly (through a single augmentation). or indirectly (through a chain of augmentations). The

NFRONPARC S L2 N Ay v

i 1 G ot g i Ll ol Sl S A S AN AN SN S AR gl A DA Pt i) CAAE A ANl A i

42 SOAR USER'S MANUAL

augmentations then form a directed lattice. where the identifier of the state is the root.

[NN

The representation of the states has a large impact on the ctficicncy and the generality of problem solving

A

and learning. From our cxperience, cfficiency and generality is maximized if the implementations of

v s
LA

L]
B

¢

operators and search control arc able to test and create only those aspects of the problem that are necessary to

a a4 5 & a
3

. e
’

v

perform the required functions. There are two general rules tor implementing this principic.

1. Every picce of information that is relevant to the problem solving should be represented
explicitly. either as an object. as the augmentation of an object. or in the structure of a sct of
augmentations. This removes the need for complex condition predicates that can detect implicit
information. such as comparing two absolute positions given in a coordinate system and detecting
that they are adjacent. If a picce of information ts not represented explicitly. the testing or
crcation of that information will involve testing or creating other intormation, (I only the

. absolute positions arc explicitly represented. the absolute positions must be tested o determine

: adjacency.)

P -’. . rsr" N
I

.
AN

2. Dynamic and static information should be represented separately. minimizing the amount of
information that is dynamic. DDynamic information (data that can be changed by operators) should
be represented by augmentations of the state. If the static information is tied directly to the state.
it must be explicitly copied trom state to state. When possthle. static intormation (data that is not
changed by operators) should be represented by augmentations of dynamic information. By
making this separation, the static information is unchanged by operator application. minimizing
the amount of processing required to apply an opcrator. If the static information is tied directly to
the state. it must be explicitly copied from state to state.

"
3T. .
'i.l

“r e

e

“r
oy
s

S
et

P i
.

.
P
e

e

g Let’s apply these two principles to the Eight Puzzle. In this example, there is only a single problem space.
% When there are multiple problem spaces that share the same data structures, the application of these rules is

more problematic because information that is static in one problem space may be dynamic in another.

) In determining an appropriate representation, the operators of a problem space must be considered because
they determine what information is necessary to solve the problem and whether the information is dynamic or
static. Consider the Eight Puzzle, which consists of a 3x3 frame with eight tiles. labelled 1-8. and a blank
space. The nine positions that contain the tiles are called cells. The operators of the problem space move a
tile in a cell adjacent to the blank space into the cell with the blank. A problem is to start at some initial
configuration and, through a series of tile movements, obtain some desired configuration. Figure 8-0 contains

an example initial and desired state.

D N)

To derive a representation that obeys both of the representational rules. we tirst determine the information

that is used in solving the problem and therefore must be explicitly represented. I'wo types of knowledge are

1

a necessary part of problem solving: (1) operator-implementatton knowledge. and (2) goal-test knowledge.

X Each of these test different aspects of the state. Below s a list of the information required to unplement the

MPOVEARC (ST I3 aNTARY e

ST '_'."."."‘-. ".‘M‘_'.‘. ‘u _'4'. . .. I A T Y
RN AP ZE S A L I S R U P A OO TR P

A

Lt

a0 o

NN s

Initial State PRMOBRGATASK Desired State 43
2 3|1 1|2]3

8 | 4 8 4
716 | s 7le6 s

Figure 8-1: Eight Pus/le initial and desired states.
task.

1. The relative positions of the ties and the blank. Fhese are needed 10 determine if a tile is next to
the blank so that the ule can be moved: operator-implementation knowlcdge.

2. The absolute posttions of the tles and the blank. [l'hese are needed to determine if the ties are in
the same cells as those 1n the desired state: goal-test knowledge.

3. The numbers on the tles. lhese are needed to determine if the tiles are in the same position as
those in the desired state: goai-test knowiedge.

The next issue is to minimize the amount of dynamic data that must be modified when an operator applies.
When an operator is applied. it changes neither the tile. nor the cell that it occupied. All it changes is the
relationship between the tile and two cells on the board (the cell where 1t was and the cell that it now
occupies). We can reify that relationship and represent it as an object. Once the relatonship is an object. the
operators need only manipulate the relationship and not the other objects. Let's call the relationship a
binding. since it represents a binding of the tile to a specific cell. Therefore. a state consists of a set of nine
bindings one for each of the tile and cell combinations. Fach binding has an augmentation for a tile and a cell.
Each tile is augmented with the number on it, while each cell is augmented with its absolute position. To
represent the relative positions of the cells (so that the relative position ot the tiles can be determined). the
cells are also augmented with their adjacent cells. All the dynamic information is encoded as bindings. while
all of the static information is encoded in the tile and cell objects. The opcrators will only manipulate
bindings. and never modify the tile or cell objects. To improve the efficiency of some of the matches. the state
is also augmented directly with the binding for the blank (tblank-binding) and the binding ot the tile that was

just moved (*moved-tile-binding). Below are a set of actions that create a state in this format.

N RONPARE IS v 0 ANLARY n

' ‘-

\‘:

In addition to the two rules stated carlier. there are three special cases of them that should be kept in mind

AaliAst Aol A IS I A atieatis ot A pid o7 & ot ot st gEA ol ac AL i Afe o e

SOAR USEFR'S MANUAL

(state <s> tblank-binding <bb5> tbinding <bb0> <bbl> <bb2> <bb3>
<bb4> <bbb5> <bb6> <bb7> <bb8> tblank <c23>)
(binding <bb0> tcell <cll> ttile <t2>)
(cell <cl1> tname 11 tcell <cl12> tcell <c21>)
(tile <t2> tname 2)
(binding <bbl> tcell <cl12)> ttile <t1>)
(cell <cl12> tname 12 tcell <cl1> tcell <cl13> rtcell <c22>)
(tile <t1> tname 1)
(binding <bb2> tcell <c13> ttile <t7>)
(cell <c13> tname 13 tcell <cl2> tcell <c23>)
(tile <t7> tname 7)

when creating state representations,

1.

[]

A constant can be tested in two ditferent ways by the productions used in solving a problem.
First, a production may test that a constant is a specific value. in which case the constant would
appear in the conditions of the production. In this case, the problem solving is dependent on that
specific value. and any chunk built to summarize the problem solving would correctly contain that
constant. In the second case. a production may test if two different objects have the same constant
(an equality test). This test 18 pertormed by matching both constants by the same variable. In this
case. the problem solving is independent of the specific values of the constants. being dependent
only on the fact that they are equal (or not equal). A chunk would nevertheless include the
specific constants because the constant is being functionally overloaded. with its specific value.
and its equality relation to other constants. The solution to this problem is to have ndirect
pointers to constants when they will be used in equality tests. [n our cxample. the tile numbers
were not contained in the binding augmentations of the state but were represented indirectly in
the tile objects. The tile-object identifiers can then be compared for equality. without referencing
the exact values of the tilc names. One uscful convention is that constants should appear as values
only in tname augmentations. All other augmentations should he the identifier of another object
that has a further description.

. All functionally independent uses of a concept should be represented as separate objects. 1o not

overload an attribute or value with many different uses. Fach use should be represented
separately. For example. if the state contains the description of an algebra problem. it might have
the concept left used in two different contexts. to represent expressions on the left side of equals
sign and to represent terms on the lett side of another operator. such as plus. These two lefts are
functionally independent. However. it both of these are tested in a problem solving eptsode. the
resulting chunks will contain tests making them dependent. T'hats, any tests concerning the sides
of the equation will be dependent on tests ot sides of the operator. This arises hecause chunking
assumes that if the same identifier s used in multiple places (in this case. the idenufier ot the
object named left). then a chunk must test that it 1s the same. even though in this example 1t did
not have to be the same.

- If a disjunction ts used n a condition of 4 production. say tor the names of two problem spaces

(such as << problem-space-one problem-space-two >>). a chunk that included a tinng ot that
production would include < test tor only one of the two aames. not both. This would muake the
chunk less general than necessary . Lo soive this problem. reity the disjunction and create another
augmentation for both problem spaces and then test tor that augmentauen. Lhs 1s exactly the

NTRONEARC IS 0 T oN v o

. . . - ._-.»‘.-‘ . T RO] “.'_- T et
« " a

" R N N TN TN A

ST P e U S

. . N T N T AN T N, e "-"
(A.A(‘(‘_u‘f -’ pAd' LRI IOIERE IEIT AP PIEIT SR T .' I SRR I S S BN S R R B A IO ol P A AN Tas e

AR MEA SR A 2As 2@ Aa o

-® .

"
NS

; .“ l“.ﬁ- I'
» '."'. A

Ty

RN

LT T MRATR R s DA Ao ST ACERIA A S e e i A A S A A AR 20 02 B R Dl Dt Y b IS I Saf i ¢ 8 e Bt Satotu by A IR oA A AL oy o
NI

-

FNCODING A TASK 45

reason that there is a tchoices augmentation for goals. Many productions used to test for
timpasse << tie conflict >> or timpasse << no-change rejection >> and the chunks built for the
subgoals would be over-specific. By adding the tchoices augmentation, a single augmentation can
be tested that embodics the disjunction: and the disjunction 1s then included in the chunks.

8.3. Operator Creation

Once a representation for the states has been designed. the problem-space operators should be defined. For
a given problem. many different sets of operators may he possible for essentially the same problem space. For
the Eight Puzzie. there could be twenty-four operators. one for each possible movement from each cell to an
adjacent cell. In such an implementation. all operators could be made acceptable for each state and then all of
those that cannot apply because the blank is not in the appropnate place would be rejected. A convention in
Soar is that if a problem space is augmented with an operator (such as (problem-space p0003 toperator
00002)). an acceptable-preterence for that operator wiil automatically be made so that the operator will be
considered for everv state tn the problem space (by production default®make-all-operators-acceptable).

Alternatively. only those operators that are applicable to a state could be made acceptable. which we will

describe in our example below. Another implementation could have four operators, one for each direction

that tiles can be moved into the blank. up. down, left. and right. Those operators that do not apply to a state

(because no tile exists that can be moved in that direction) could be rejected.

In our implementation of the Eight Puzzle, there is a single general operator. which moves a tile adjacent to
- the blank into the blank. For a given state, instantiations of this operator are created for each of the adjacent

tiles. To create the operator instantiations requires a single production. shown below. Each operator has

three fields: tname contains the name of the operator. which is always move-tile: tblank-cell for the cell that
contains the blank: and ttile-cell for the cell that contains the tile that will be moved into the cell with the
blank. At the same time that an operator is created, an acceptable-preference is created. so that the operator
can be selected to be the current operator for the context containing the eight-puzzle problem space and the
state with which the operator was instantiated. Since operators are created only if they can apply. no

additional production is required to reject inapplicable operators.
(sp eight*acceptable

(gc <g> tproblem-space <p> tstate <s>)

(problem-space <p> tname eight-puzzle)

(state <s> tblank-binding <blank>)

(binding <blank> tcell <{c1>)

(cell <c1> rcell <c2>)

-(preference trole operator tvalue acceptable
tgoal <g> tproblem-space (p> tstate <s>)

-=>

(operator <o> tname move-tile ttile-cell <c2> rblank-cell <cl>)

(preference <o0> trole operator *tvalue acceptable
rgoal <g> tproblem-space <p> tstate <s>))

NPRONEARE N S AN Wk Ra

L PR R - . . PRI e . . L. T T ST P R S g ™
e .

()

Pk il

46 SOAR USER'S MANLAL

8.4. Operator Application

An operator of a problem spacc is applicd when it is sclected by the decision procedure. i.c.. when its
dentifier replaces the existing symbol in the role of an operator. That is. whatever happens while a given
identifier occupies an operator role comprises the attempt to apply that operator. Selecting an operator and
installing its identifier in the opcrator role produces 4 context in which productions assoclated with the
operator can exccute (they contain a condition that tests that the operator is selected). Opcerator productions

are just elaboration productions, used for operator application rather than for search control.

When a4 nonmonotonic operator (an operator that modifics the current state) is successfully applied. it must
create a preference for the new state it creates. That preference includes the current goal. problem space. state
and operator. Based on this preference. the new state can he selected; and the operator will not he re-applied
to the state (default*no-operator-retry will reject the operator). [f the operator 1S monotonic (only adds
information to the state) or fails to apply. it should create a new preterence for the current state, which then

leads to the operator’s rejection (by default*no-operator-retry).

To apply an instantiated operator in the Eight Puszzle requires the two productions shown below. When the
identifier of a move-tile operator is sclected as an operator in the eight-puzzle problem spacc. production
eight®create-new-state will apply and create a new state with the moved tile and the blank in their new
positions. [t detects that there is an operator in the operator role and matches the binding (<h1>) for the
blank tile (<tt>) and its cell (<c1>). It also matches the cell that 1s connected to <cl> via the operator (<c2>)
and matches the tile in that cell (€t2>). The actions of the production are to create a new state symbol (<s2>).
a preference for that state (with the current context in its context fields), and then swap the bindings of cell
<c1> and <c2>. [t marks in the state the bindings that were swapped (tswapped) and the bindings that werc
just created. distinguishing the old and new positions of the moved tile (thlank-binding. tmoved-tile-binding).

These latter augmentations will be used by search control.
(sp eight®*create-new-state
(gc <g> tproblem-space <{p> tstate (s> toperator <o>)
(problem-space <p> tname eight-puzzle)
(state <s> tbinding <bl> tbinding <b2> tblank-binding <bl>)
(binding <bl> ttile <tl> tcell <(cl>)
(binding <b2> ttile <{t2> tcell <(c2>)
(operator <o> tname move-tile tblank-cell <cl> ttile-cell <c2>)
-->
(preference <s2> trole state tvalue acceptable
tgoal <g> tproblem-space <p> tstate <(s> toperator <o>)
(state {s2> tswapped <bl> tswapped <b2> tblank-binding <b3>
tmoved-tile-binding <b4> tbinding <b3> tbinding <bd>)
(binding <b3> ttile <t2> tcell <cly)
(binding <b4> ttile <t1> rcell <c2>))

A second production. eight*copy-unchanged. copies over ail of the bindings that did not have to he swapped.

NEPRONPARC N S AN v ey

A L Y T v . rJrrrrroyrrre e

- AP Sk Sl S ol A Tl A Y AN oA Al ae g a4 " . —yr
R MRS N Sl S i Sl At A A0 A) STV RIS ARSI A 0 i S I St i g A A Sd SR I S h Sad B A S dvie A

ENCODING A FASK 47

[t applies after the previous production by testing for the creation of the preference for the new state (created
by eight®create-new-state). The test of the preference must include tests that the state and operator are not
equal to nil, because even though <s> and <o> were previously bound in the first conditions. the prefercnce
will match if its context ficlds match exactly or match nil (so that it is casy to match those preferences that arc

relevant tw a context).
(sp eight*copy-unchanged

(gc <g> tproblem-space <p> tstate <s> toperator <o>)

(problem-space <p> tname eight-puzzle)

(preference <n> trole state tvalue acceptable
tproblem-space <p> tstate { <> nil <s>}
toperator { <> nil <o0>})

(state <s> tbinding)

(operator <o> tname move-tile)

(state <n> -tswapped)

-=>

(state <n> tbinding))

This production and the previous one are typical of the types of productions used to implement simple
operators in Soar. One production makes the changes and creates a new state. while another (or possibly
others) copies those aspects of the state unaffected by the operator. This shows how to implement an operator
that changes or adds new augmentations to a state. If an operator is to delete some aspect of a state. the
productions that implement it should create a new state and copy only those augmentations that are to be

retained.

8.5. Goal Detection

All subgoals are terminated by the architecture, which detects the resolution of an impasse through the
creation of new preferences. So, in one sense, goal detection is done automatically. However. for many
subgoals (and usually the top-level goal), the decision to create a preference that resolves the impasse becomes

equivalent to a goal test. In addition, when an evaluation subgoal is used. it is useful to be able to signify that

a state created in the subgoal will achieve a higher-level goal. Therefore, there is default knowledge in Soar
that detects when a state is augmented with success or failure with respect to a given desired state. [hese rules
create the appropriate preferences if it is a subgoal. or terminates problem solving if it is in the top-level goal

{see Section 6.4).

In detecting that a state achieves a goal, the actual test can be represented either explicitly or impliculy.
Sometimes the desired stat>s are represented explicitly as an augmentation of the goal. This augmentation
would usually be created after the problem space has been selected. Alternatively. the desired states may not
be explicitly represented: and instead there may be 4 production, a set of productions. or an operator that
recognize when a given state satisties the goal without comparing 1t to an exphcit description. There can be

any level of explicit or implicit representation in between where parts of the desired state are explicitly

VORONPAKRGE ISP TaNE Ay T

DAL TR T N U S R) Mo

Ca e e . .'_‘,'.‘. e . . . N .
CAIERITR T .\.v...‘..-..- et Lt - T T et T T, "-‘_.'.‘-‘.‘.'v".".'.
EFLIA IS T 15 SR VTR TR G, Sk S A NP AL S AT e W S iy St S TR

48 SOAR USER'S MANUAL

represented, and parts of the goal test are embedded in productions. However, the satisfaction of a goal
should be detected by a test of a state (including its augmentations) and the information tied to the goal. If
other informaton is tested (such as aspects of the problem space or the operator), then that information
belongs either in the goal or in the state. Whenever the goal is augmented with additional information to be
used in the goal test. it should be encoded as an object that is the value of the tdesired augmentation of the

goal.

Although Soar allows the detection of desired states through recognition by a production (without
comparison to an explicitly represented desired state), it is not the recommended practice because it leads to
the learning of overly specific chunks. The production that tests for the desired state must include conditions
that test for the actual values of the constants in the state. In the Eight Puzzle this would mean testing that a
specific cell had a specific tile. Any chunk built to summarize the subgoal in which the test applied would be
specific to the cxact desired state. [nstead. a comparison can be done between an explicitly represented
desired state and the current state. In this case, only the equality of the identitiers that are augmented with
the constants need be tested, and not the constants themselves.? [he resulting chunk 1s sensitive to the
relative values of the desired state and the states in the problem space and not the exact values of the constants

in the state.

For the Eight Puzzle, the desired state is explicitly represented in working memory as a state. The desired
state ({d>) is in tdesired augmentations of the goal. The following production detects that the desired state

has been achieved.

R
“This assumes that it is possible to coordinate the states and the desired state in the problem space ~o that they share the same
idenufiers for the constants. This is not always possiple

R N R N -

. . ~ . . . - S R
- - . - . - . K . - = . - = . R -~ = - - -~ '.- o ‘5 e " L Lt et - . - - . ot LT) -t . T . T b Ol -" ..' - - S -
N PNC R AU SRR, Syl Sy SO SV L S WS G PRI S PP PP T, W A U WA S U U P U U S S S PR D Rt

ENCODING A [ASK 49 -

(sp eight*detect-goal R
- (gc <g> tproblem-space <p> tstate <(s> tdesired <d>) ue
) (space <(p> tname eight-puzzle) et
(state <s> tbinding <x11> <x12> <x13> <{x21> <x22> <(x23>
(x31> <(x32> <x33>)
(binding <x11> tcell <c11> rtile <oll>)
(binding <x12> tcell <c12> ttile <o0l2>)
. (binding <x13> tcell <c13> ttile <ol3>)
\ (binding <x21> tcell <c21> ttile <021>)
(binding <x22> tcell <c22> ttile <022>)
(binding <x23> tcell <c23> ttile <023>)
(binding <x31> tcell <c31> ttile <031>)
: (binding <x32> tcell <c32> ttile <032>)
. (binding <x33> tcell <c33> ttile <033>)
(ceil <cl1> tname 11) (cell <c12> tname 12)
(cell <c13> tname 13) (cell <c21> tname 21)
(cell <c22> tname 22) (cell <c23> tname 23)
(cell <c31> tname 31) (cell <c32> tname 32)
(cell <c33> tname 33)
(desired <(d> tbinding <di1> <d12> <d13> <d21> <d22> <d23>
b, <d31> <d32> <d33>)
(binding <d11> tcell <cl11> ttile <oll))
(binding <d12> tcell <c12> ttile <012>)
(binding <d13> tcell <cl13> ttile <o0l3>)
(binding <d21> tcell <c21> ttile <021>)
(binding <d22> tcell <(c22> ttile <022>)
(binding <d23> tcell <c23> ttile <023>)
{(binding <d31> tcell <c31> ttile <o31>)
(binding <d32> tcell <c32> ttile <032>)
(binding <d33> tcell <c33> ttile <033>)
-=>
(state <s> tsuccess <d>))

The action is to augment the state with tsuccess and the value of tdesired. By including the desired. this
guarantees that only those goals that share the same desired state will be terminated. Default productions

handle tsuccess. so that if a top-goal is detected in a subgoal (and labeled with tsuccess). evaluations and

selection subgoals are handled correctly. See Section 6.4 for more information on evaluations.

In this example, the test was performed with a single, very large production. Other options are possible: (1)
test each of the bindings of a state independently in parallel. and then combine the resulits of those tests: or (2)

test the initial state and then incrementally update the comparison based on the changes made to the state.

For many problems. the generality of chunks learned by Soar is maximized if the goal test is done
incrementally. An incremental goal test involves keeping track of the differences between a state and the
desired state. When a new state s created. its ditferences are computed hased on the differences in the state it
was created from and any changes to the prior state that were necessary o create the new state. When there

are no differences between a state and the desired state. the goal 1s achieved. This improves the generality of

N RO E Y IS s AN s

R '-‘ '.’ - "» '- A-o "’ .‘Q".P"'-"’. "- '-- PR - .. o . - . . --‘ e ~ > -0 - . P - ;“". ‘- . .t a "
W ARSI R A AL Sl SR S e T e N e -_‘-:‘,.'f 'n_'-:.; '.'.".‘."-‘.".\.‘-‘-'.- L T N T R R
E S I e AP I A ‘i'.'{:"... R S I R N S P T N I AL AL A I N AR A T A WO

E:"..“ RN A At A I T i afi st iar it s Jisto e S Sl gk Sd Bt A Sk e 5 Bl S I g S

50 SOAR USER'S MANUAL

the conditions of a chunk built for the goal because the detection of goal achievement is based only on the
parts of a state that changed, and not on the complete state. When non-incremental goal tests are used. the
complete state must be tested, not just the aspects that changed. Not all goals can be tested incrementally,
although any goal that has a conjunction of conditions can be. In the Eight Puzzle, the position of each tile in
its desired cell can be detected independently and an incremental goal test can be used. When the initial state
is selected, it is augmented with a difference that is the number of tiles that are out of place. Whenever a new
state is created. its difference would be computed modifying the difference of its prior state to reflect the

changes in the new state (a tile is moved into or out of its desired cell).

8.6. Initialization

In addition to defining the operator selection, operator application and goal detection rules, working
memory must be initialized to an appropriate goal. problem space and initial state. so that problem solving
can begin. Following a call to init-soar. working memory is empty. When Soar starts with an empty working

memory. a context is created that has all of the slots set to undecided. This context does not have a supergoal.

One way 1o get a task started (as in eight*start below). is to use a production that detects a goal without a
supergoal, and creates a preference for a new problem space, in this case. one named cight-puzzle. Since the
variable <p> only appears in the action, it will be bound 0 a newly generated symbol, starting with the first
letter of the variable (something like P0034). The second occurrence of <p> (in the preference) will use this

same symbol. The goal is augmented with a name that can be tested by later productions.
(sp eight*start
(gc <g> tproblem-space undecided ~tsupergoal)
-=>

2 (gc <g> timpasse none tname solve-eight-puzzle)

L: (probtem-space <p> tname eight-puzzle)

] (preference <p> trole problem-space tvalue acceptable

o tgoal <g>))

3 The preference created to select a problem space is only sensitive to the current goal.

N

',':j Another type of initialization is available using the init-context function, which allows the user to set the
"»

-
*e

-V T T, T LTI N

values of the top context (see Section 10.2.3).

Production eight®initial-desired-states creates the initial and desired state as well as a preference for the
initial state. The acceptable-preference for the initial state (<s>) has undecided in the state field so that this
state will be selected only at the beginning of problem solving. [f the state tield were unspecttied (or nil). the

acceptable-preference would make the state a candidate at ull umes during problem solving in goal <g> and

problem space <p>. since a preference is used whenever all of its non-nil context ticlds match the roles of a

R W
AN

context.

.

MERONPARC ISE 5 AN ARy e

SRR L

I S e e ."..'.‘-_ e T T - R T S TR ST
IR RIS . Set

..' B St -.‘'\..'_-‘ : e ~._ DRI ~a - --_‘.'_ R R e ."_.'-..""".-'v- .!. - "."1“ .t
FVG- TIPS IS . BE. TS RIS TR LA L S L U AT R L, AT AL SRR S T 6 NSRS RS

NP TR WNROIOA AN YR S B RN T KT RN VIV TE e TwIw] g bl pte s 4 g4 g v " Gl b d ‘gl ke aly g

ENCODING A TASK 51

(sp eight*initial-desired-states
(gc <g> tproblem-space <{p> tstate undecided
tname solve-eight-puzzle)
(problem-space <p> tname eight-puzzle)
-=>
(gc <g> tdesired <d>)
(preference <s> trole state tvalue acceptable
tgoal <g> tproblem-space <{p> tstate undecided)
(state <s> tbinding <bb0> <bb1> <(bb2> <bb3>
<bb4> <bb5> <bb6> <bb7> <bb8> rtblank-binding <bbb5>)
(binding <bb0> tcell <cl1l> ttile <t2>)
(binding <bbl> tcell <c12> ttile <t1>)
- (binding <bb2> tcell <c13> ttile <t7>)

- (binding <bb3> tcell <c21> ttile <t8>)
- (binding <bb4> tcell <c22> ttile <t6>)
(binding <bb5> tcell <c23> ttile <t0))
(binding <bb6> tcell <c31> ttile <t3>)

(binding <bb7> tcell <c32> ttile <(t4>)
(binding <bb8> tcell <c33I> ttile <(t5>)

- (desired <d> tbinding <d0> <d1> <d2> <d3> <d4>
b, <d5> <d6> <d7> <d8>)

(evaluation <d> tbetter higher)

(binding <d1> tcell <cl1> ttile <t1))

(binding <d2> tcell <c12> ttile <(t8>)

(binding <d3> tcell <cl13> ttile <(t7>)

(binding <d8> tcell <(c21> ttile (t2>)

(binding <d0> tcell <c22> ttile <t0>)

(binding <d4> tcell <c23> ttile <t6>)

(binding <d7> tcell <c31> ttile <t3I>) "

. (binding <d6> tcell <c32> ttile <t4>) S
(binding <d5> tcell <c33> ttile <t5>) N
(cell <c11> tname 11 tcell <c12> tcell <c21>))
(cell <c12> tname 12 tcell <cl1> rcell <c13> tcell <c22>) e
(cell <c13> tname 13 tcell <c12> tcell <c23>) Lk
(cell <c21> tname 21 tcell <cl1> tcell <c31> tcell <(c22>) s
(cell <c22> tname 22 tcell <c21> tcell <ci2> tcell <c23> rcell <c32>) gf:ﬂ
(cell <c23> tname 23 tcell <c22> tcell <c33> tcell <c1d) SN
(cell <c31> tname 31 tcell <c32> tcell <c21>) :;_:ﬂ
(cell <c32> tname 32 tcell <c31> tcell <c22> tcell <c33>) e

'
Ly
i ¢

(cell <c33> tname 33 tcell <c32> tcell <c23>)

(tile <t0> tname 0) (tile <t1> tname 1) (tile <t2> tname 2)
(tile <t3> tname 3) (tile <t4> tpame 4) (tile <t5> tname 5)
(tile <t6> tname 6) (tile <t7> tname 7) (tile <t8> tname 8))

The desired state is augmented with tbetter higher. so that evaluations with higher values will be translated
into better-preferences by eval®prefer-higher-evaluation. Notice that the bindings of the desired state share
the same cell and tile structure as the initial state. This allows the goal test to check only the equality of these
augmentations and not the equality of the names of the cells and the tiles. This improves the generality of

chunking, but it is not always possible, especially when the desired and initial states are created at different

times.

VROV PARS ISP 08 N AR e

.

R T R S S e o e N P T PN STl S -,
. . ot e ST e e e e T, et et et et . "o Cte e N R "t -

.
...... SR

Y - ~ e Tl "- Ul .. - - S - -
- - - - - . ¥ . . Y . - . - Y - - - A - - -
PRI R : : TR : AARTAATIY WSS SN P N Sy

Aaii SN AL Al -h A A The *Mia An S S es ey

52 SOAR LSER'S MANUAL

8.7. Monitoring States

Monitoring of states makes traces much easier to read and does not impact chunking when done with no
changes to working memory. However it may require productions that are costly to match because the
complete structure of the state must be matched. Another option is to use the function trace-attributes which
enables automatic tracing (see below and Section 10.4.1). Here is a monitor production for the Eight Puzzle
that will trace a state after it is generated but before it is selected. Tabstop binds its argument (tab>) to the
current tabstop. By using tabto with the current tabstop in a write statement, the monitoring will line up with

the trace. Write is used in the first write command because it does not insert blanks between the atoms it

prints.
_ (sp eight*monitor
- (gc <g> tprobliem-space <p> tstate (s> toperator <o>)
. (problem-space <p> tname eight-puzzie)
: (preference <n> trole state tvalue acceptable
- tproblem-space <p> tstate <s> toperator { <> nil <o> })
. (operator <o> tcell <name))
- (state <n> tbinding <x11> <x12> <x13> <x21> <x22> <x23>
<(x31> <x32> <x33>)
- (binding <x11> tcell <cll1> *tile <oll>)

R (cell <cl1> tname 11) (tile <oll> tname <v11>)
.. (binding <x12> tcell <cl12> ttile <012>)
- (cell <c12> tname 12) (tile <o12> tname <v12>)

(binding <x13> tcell <c13> ttile <013>)
(cell <cl13> tname 13) (tile <o13> *name <v13>)
-. (binding <x21> tcell <c21> ttile <o021>)
(cell <c21> tname 21) (tile <021> tname <v21>)
(binding <x22> tcell <c22> ttile <022>)
(cell <c22> tname 22) (tile <022> tname <v22>)
(binding <x23> tcell <¢23> ttile <023>)
(cell <c23> tname 23) (tile <023> tname <v23>)
(binding <(x31> tcell <c31> ttile <o031>)
(cell <c31> tname 31) (tile <o31> tname <v31>) R
(binding <x32> tcell <c32> ttile <032>) ST
(cell <c32> tname 32) (tile <032> tname <v32>) L
N (binding <x33> tcell <c33> ttile <033>) e
(cell <c33> tname 33) (tile <033> tname <v33>) lli!
-~ --> -~

(tabstop <tab>)
(write2 (crl1f) (tabto <tabd>) <name> "(" <s> ") --> " <nd> (crif))

(writel (tabto <tab>) " -------=----~ " (er1f))
(writel (tabto <tab>) " [" <v11> "|" <v21> "|" <v31> "|" (crif})) ;-?-jj“
(writel (tabto <tab>) " |---{---f-=--[" (crif)) o
(writel (tabto <tab>) " |" <v12> "|" <(v22> "|" <v32> "|" (crif))

. (writel (tabto <tab>) " |---[---]---{" (crif))

: (writel (tabto <tab>) ™ |" <v13> "|" <v23> "|" <v33> "|" (crlf))

- (writel (tabto (tab>) " ------=-----=-- " (cr1f)))

N ENCODING A TASK 53 -,
'y
»:} iy
8.8. Set-up R0
: V'ﬂ.’ :
] . . . v
X Once all the productions and the representations have been defined. a few house-keeping operations need Ny
to be performed. These should be included at the beginning of the file that contains the productions that e
define the task. :‘_:-.:'_-_\
n_'- » X
N ek
. 8.8.1. Multi-attributes Y
To improve the ordering of productions. the function multi-attributes is ealled with a list of those classes '-
that have attributes with more than one occurrence per object and, if known, the number of occurrences. [n j:-ﬁ_':j
this implementation of the Eight Puzzle. states and desired states have multiple bindings. and cells have links S
to other cells. " —
g (multi-attributes ‘'((state binding 9) (desired binding 9) FiTE
g (cell cell 4))) 5
8.8.2. Trace-attributes o
The user can improve the readability of a trace by providing a list of attributes to be traced for different __ ‘
classes. In the Eight Puzzle, the operators do not have distinguishing names, so the only way to obtain a - :
3 meaningful trace of the problem solving is to include the cell of the operator in trace-attributes. The cell of j.':--.'.‘_ R
X the operator contains the position of the tile that is moved into the blank.
(trace-attributes '((operator tile-cell))) o

8.9. Search Control

Besides defining the task (the goal and the problem space), additional search control can be introduced to

N make problem solving more efficient.

8.9.1. Simple Search Control :Q:'.-.

Eight*worst-undo creates a worst-preference for the inverse of the operator that created the current state.

This type of search control is common and many tasks will have productions similar to this one. The key part L _"-j'.j
of the production is the determination of the inverse of an operator. In the Fight Puzzie, the inverse of the - -;:':
prior operator is determined by finding the operator that will move the tile that was moved by the prior .
operator.
ER R
v
Ly
. ~
',-.':\.'
::.'_-.'
Tt
RARRY
VRONPARC N AN A e jowas,
e e s L S L e
P PO A St S Tt I T, T Mg T S i S e ST Vet G e T <. RS

54 SOAR USER'S MANUAL

(sp eight*worst-undo

(gc <g> tproblem-space <p> tstate <s>)

(problem-space <p> tname eight-puzzile)

(state (s> tmoved-tile-binding <mtb>)

(binding <mtb> tcell <cmtb>)

(preference <o> trole operator tvalue acceptable
tproblem-space <p> tstate <s>)

(operator <o> ttile-cell <cmtb>)

-=>

(preference <o> trole operator tvalue worst
tgoal <g> tproblem-space <p> tstate <(s>))

8.9.2. Using State Evaluations

State evaluations are a standard way ot controlling search. A production that computes the evaluation

should look like the following. (Fveryvthing in bold should be left alone. Everything in regular font should be

replaced for the specific task.)

(sp production-name
(gc <g> tproblem-space <(p> tstate { <> {(ss> (s> }
tsuperoperator <so>)
(problem-space <p> tname task-problem-space-name)
(operator <so> tname evaluate-object tevaluation <e>
tsuperstate <ss> tdesired <(d>)
. Conditions that compute the evaluation based on state <s> and
. desired state <d>. <d> will point to the desired state
: defined at the beginning of the task and attached to the
- . desired and desired roles of the top goal.
-=>
(evaluation <e> tnumeric-value your-evaluation}))

The default productions take care of the rest. testing the supergoal and comparing the evaluations (if <d> is
augmented with tbetter higher/lower). A complete evaluation production for Eight Puzzle is below. [t gives
N an evaluation of 1 if the operator that created the state moved a tile into its desired position. A second
production gives an evaluation of -1 if a tile is moved out of position. and a third production gives an

evaluation of 0, if neither of these occur.
(sp eight*eval-state-plus-one
(gc <g> tproblem-space <p> tstate { <> <(ss> <{s> }
tsuperoperator <so>)
(probtem-space <p> tname eight-puzzle)
(operator <so> tname evaluate-object tevaluation <e>
tsuperstate <(ss> tdesired <d>)
(state <s> tmoved-tile-binding <bl>)
; (binding <bl> tcell <cl)> ttite <(vl>)
' (desired <d> tbinding <b2>)
(binding <b2> tcell <cl> rtile <vld)
-=>
(evaluation <e> taumeric-value 1))

- VCSONEARE ISD s e e

[N
vty
. .
D]

's’& 1 1}
AN

v

v s

n
-
-
.
Ly
[
ol
p)

‘ol

ENCODING \ TASK S5 >

C4
e
8.10. Example Trace R
-’:-:-
After loading all of the Eight Puzzic productions into Soar. it is rcady to run. Below is a trace of the AL
problem solving and learning for the Fight Pusrle. Al output is shown in boldface. (The trace of the initial R
: %y
and desired states at the beginnmg was not produced by the program.) All comments are pretaced by a -.: «,'.*
-
semi-colon (). h\\: '
R Nt
(soarload "cight.soar) t
(learn on full-trace) i
(d12)
learn status: on always print full-trace
0 g: g0001
initial state destred state
12 813]| fr1 213
I--=1-=-1---1 f==-1---1---1
| 1] 6] 4] | 81 |4
==l ===1---] == l-=- 1 ===
71 151 | 71615
1 p: p0004 eight-puzzle
2 s: s0005
3 ==>g: g0002 (tie operator undecided)
4 p: p0051 selection
5 s: s0053
6 0: 00056 evaluate-object(move-tile(13))
7 ==>g: g0045 (no-change operator evaluate-object(move-tile(13)))
8 p: p0004 eight-puzzie
9 s: s0005
10 0: 00042 move-tiie(13)
2] 8]3]
R el
116 41
f===1--=1---1
I 17151
11 s: s0058

1 An evaluation of -1 is created tor s0058 because the 7 was
» moved out of its desired position. Lhis evaluation lcads to
: the termination of goal g0045 and will be tollowed by the
. evaluation of another cight-pus/lc operator.

: Since learning is on. a chunk will be butlt, Below is a trace of
. the production being built. This trace 1s produced because of
; full-trace lcarning. _

MRV PV s 0 ANUAR Y sy

T L 2T T VY T
P
Yy
i

,"‘.-"-‘,I'-. P T Ty T e e T T T T e et . _.'*_.-..‘. - e s e R U TR U PO
L.n..d.-) PRI TN ST AT T AT T TRl G Nl G R PR R S R

2,000 ':"
(ST NN
LR

56 SOAR USER'S MANUAL. i

r*v.'-

2

backtracing to determine conditions :t:\

working-memory elements that will become actions: J*k,

(evaluation e0057 tnumeric-value -1) ARy
productions and conditions traced through:

eight®*eval-state-minus-one A

decision~procedure RN

eval®*select-role-operator ;yix‘

(gc g0002 toperator 00056) e

(operator 00056 tname evaluate-object) " f\

(operator 00056 trole operator)

decision-procedure
(operator 00056 tobject 00042)
(operator 00056 tsuperproblem-space p0004)
(operator 00056 tsuperstate s0005)
(operator 00056 tdesired d0003)
(problem-space p0004 tname eight-puzzie)
decision-procedure
eight-create-new-state
decision-procedure
decision-procedure
(state s0005 tblank-binding b0025)
(operator 00042 ttile-cell c0020)
(operator 00042 tname move-tile) chan
(state s0005 tbinding b0019) W
(binding b0019 tcell c0020)
(state s0005 tbinding b0025)
(binding b0025 tcell ¢0026) TR
(binding b0025 ttile t0006) .
(binding b0019 ttile t0013) b
(cell c0020 rcell ¢0026) R,
(desired d0003 tbinding d0035) ~
(binding d0035 tcell c0020) Y
(binding d0035 rtile t0013) IO
(operator 00056 tevaluation e0057) AL
conditions that are tersed out: (binding <bl> ttile <t2>)

R -
R

build:p0086 s
12 0: 00054 evaluate-object(move-tile(22))
...break. '

(last-chunk) =
: Print out the production that was just built. e

r

’

(sp p0086
{(gc <g1> toperator)
(operator trole operator tname evaluate object

Yo
S e e
Ty AR

LA

....
e 3
"l' r

tsuperproblem-space <pl> tobject tsuperstate <sl> L

tdesired <d2> tevaluation <el)) N
(problem-space <pl> tname eight-puzzle) SRS
(state <sl1> tblank-binding <b1> tbinding <b2> PN

thinding { <> <b2> <bl> }) oS
(operator tname move-tile ttile-cell <c1)>) AN
(cell <ci> tcell «¢c2») ST

(binding <b2> tcell <cl> ttile <t1>) >
(binding <bl> rcell <c2>) AN
(desired <d2> tbinding <dl>)

VRN AREC S TAUNE ARY s 1

™ - N o P .
B ARSI P P
e e W A e A et afaalala s

g

F:.'z;;_';

‘AR NN WA T R i B R g Sk D it ul el S A N B S M R e

ENCODING A TASK

(binding <d1> ttile <t1> tcell <c1>)
-->
(evaluation <el> tnumeric-value -1))
nil
(learn trace)

learn status: on always print trace t
: Disable the trace of the production construction,

{run 7 d)

13 ==)g:

14 p: p0004 eight-puzzte

15 s: s0005

16 o: 00044 move-tile(22)
[2181 3]
[==-f--=1-=-1
(IR I I
f==-1--=1---1
7161 5]

17 s: s0065

build:p0087

: This has an evaluation of 1 because the 6 was moved into
. 1ts desired cell.

18 0: 00055 evaluate-object(move-tile(33))

18:42 p0086

. The chunk built for the first subgoal applies and computes an
. evaluation of -1 because the $ tile will be moved out of its desired

. cell by operator 00043,

g0046 (no-change operator evaluate-object(move-tile(22)))

: Once all the evaluations arc computed. preferences are created
: that comparc the different operators based on their evaluations.
. Two of the evaluations are the same. so inditferent preterences
: are created between operators 043 and 00042, Both of these

. are worse than 00044, 5o worse-preferences arc also created.
. Thesc preferences are the results of g0002, the goal with the

; tie impasse.

: Since the problem solving to create the two worse-preferences

. was identical. two identical chunks could have been built.

: The duplication is detected (although it is not always detected)

- and only one production is built. Duplicate chunks arc also built

; becausc of the symmetry in the productions that create the
: indifferent-preterences.

: The productions are refracted so that they do not tire

. on the data that was uscd to create them.

duplicate chunk
build:p0088
duplicate chunk
build:p0090

19 o: 00044 move-tile(22)
‘.‘break‘..

NeRON PARC IS S AN W

e N T S e e

[A153

ol Ank A aguie et en it el el R SR I hdnla BRCRTe SRR S

58 SOAR UCSER'S MANUAL

(last-chunk)

(sp p0090
(gc <g1> tdesired <d3> tstate <sl> tproblem-space <pl>)
(problem-space <pl> tname eight-puzzle)
(state <s1> tblank-binding <b2> tbinding <b2>
tbinding { <> <b2> <bl1> } tbinding { <> <bl> <> <b2> <b3> })
(binding <b2> tcell <c3I>)
(binding <b1> tcell { <> <c3> <cl> } ttile <t2>)
(cell <cl> tcell <c3>)
(desired <d3> tbinding <d1> tbinding { <> <d1> <d2> })
(binding <d1> tcell <cl1> ttile <(t2>)
(binding <b3> tcell { <> <c1> <> <e3> <c2>)
ttile { <> <t2> <t3> })
(cell <c2> tcell <c3>)
(binding <d2> tcell <c2> ttile <t3>)
(preference <02> trole operator tvalue acceptable
tgoal <gl1> tproblem-space <(pl> tstate {(s1>)
(operator <02> tname move-tile ttile-cell <c2>)
(preference trole operator tvalue acceptable
tgoal <g1> tproblem-space <pl> tstate <s1>)
(operator <ol1> tcell <cl>)
-->
(preference <02> trole operator tvalue indifferent treference
tgoal <gl> tproblem-space <pl> tstate <sl1>))

nil

75:(run)

20 s: s0078
| 2] 8] 3]
=== ===~
I 1 | 4|
|-=-1---1---I
| 71615]

21:48 p0090

21:48 p0090

: Chunk p0090 detects that moving the 4 and moving the 6
; are indifferent because they both move a tile out of its

; desired cell. This does not determine the next operator

; S0 a tie impasse is created.

21 ==>g: g0C47 (tie operator undecided)
22 p: p0085 selection

This continues until the problem is solved.

'-‘-.." - - . - - - . - - M P f a . -
A A L e e e e e i

e R

rd'_' Pl A S AU g A A 2 i Nl kT Sl e A S AR S YO S 0 DAL Mt 3 Il L S0 S0 B Ahe 0 RS A i a2 At 20 M Sl Biad R B i S W TR U PRV
P
"

.

! PP

ADVANCED TOPICS 59

9. Advanced Topics

9.1. Operator Implementation Goal Tests

[f an operator requires a subgoal to implement it and some test exists to determine if a state is a valid result.
recent work suggests unusual way (o structure the subgoal. The advantage of this scheme is that even if
over-general chunks are learned. they will not screw things up. The disadvantage is that the chunks will often
- return multiple states. In the subgoal for implementing the operator (call it Opl). there should be a
production (call it detect-candidate) that detects that a state is a candidate result. A candidate result is a state
that might be a valid result of the subgoal although the final test has not becn made. It is possible that all
states in the subgoal are candidate results. [t is also possible that the candidate result is not a state in the
subgoal. but only a subobject (or whatcver). The action of detect-candidate 1s to augment the superstate (the
superstate is the state that Op1 is being applicd to) with an object of class result. The result will be augmented

with the operator (Opl) and the candidate result. For example. detect-candidate might be:

(sp detect-candidate

(gc <g> tproblem-space <{p> tstate <s>
tsupergoal <sg> tsuperoperator <so>)

(problem-space <p> tname implement-opl)

(state <s> tcandidate yes) :some test that it is a candidate

(operator <so> tname opl)

(gc <sg> tstate <ss>)

-=>

(state <ss> tresult <r)

(result <r> toperator <{so> tcandidate <s>))

Pl 2 B N

a4 8 A

In most Soar programs, this production would have just created the preference for the state in the
supercontext and the subgoal would terminate. In this scheme. a second production, call it
detect-opl-success, will create the preference. This preference will fire outside the subgoal so that 1t will not

be included in the chunk. For example:
(sp detect-opl-success

(gc <g> tproblem-space <p> tstate <s> toperator <o>)

(problem-space <p> tname xvzzy)

(state (s> tresult <(r>)

(operator <o> tname opl)

(result <r> toperator <o> tcandidate <c>))
. (state <c> tattribute valuc) :some test that it is a valid state
) -=>

(preference <c> trole state tvalue acceptable

tgoal <g> tproblem-space <p> tstate <{s> toperator <0>))

; This producuon will fire whenever a candidate has heen suggested that passes the final test. When chunking
1s used. the chunk will have as its actions all states that were candidates thut no preferences).
Detect-opl-success will select out the correct resuit and create a preterence. 1t the chunk applies incorrecdy.

detect-opl-success will not fire and the subgoal will he used.

NCRUXPARE 0 N ARY e ——

IR L

. . . . P P N . . N B

R N T T P e I . [e RS R S R s e e e T e e e Te T T .- R L. . .
s ® -’ e TR A T P R PO -~ . -y » P NP . R Y o . LR I e g - _ .
A e R IR R R s N N e T e e T e e e e e AT AT SR

~
[l

TR

A

-‘ 7

AK

ERMe B ot S R < Bl e e B ol ahev b el DA SR S aes Ao B~ g\

60 SOAR USER'S MANLUAI

9.2. Operator Parallelism

The parallel-preference allows the user to specify that two or more operators can be performed in paraliel.
In the decision procedure. if the result is a set of operators that are mutually parallel (there exist parallel
preferences between them), the current goal-context-info for the operator role is removed; and new operator
goal-context-infos are created for each of the parallel operators. Whenever a parallel operator is rejected. its
goal-context-info is removed from working memory. ‘he parallel structure is maintained until a new
preference causes a change in a higher-order object or all but one of the parallel operators is rejected. Each
parallel operator is independent and each can cause productions to fire independently of the others. If a
parallel operator does not lead to the creation of a preference that will change the context. a no-change
impasse will arise. To distinguish the subgoals. cach has a tsuperoperator augmentation that contains the
identifier of one of the parallel operators. When the operators have subgoals, they will run in parallel. These
subgoals can also have parallel operators. giving rise to exponential blowups in the number of subgoals being
pursued (making the goal-context-stack reallv a tree). l'he parallelism is only simulated in the present
implementation. All of the parallel operator subgoals are synchronized on the decision cycle. ['he function

pgs will print the parallel structure and make a little more sense of it than the trace (see Section 10.5.2).

I'his simple parailel structure gives AND, OR and hybrid AND-OR parallelism. If all of the operators are
non-monotonic (they all create new states), we have OR parallelism where all of the parallel operators are
racing to succeed first. If two (or more) parallel operators finish on the same decision cycle, there will be two
(or more) acceptable-preferences for the states, and this will lead to a tie impasse if no other preferences are

added. Eventually one of these willed be picked after going into the selection problem space .

If all of the uperators are monotonic and just add information to the current state until enough information
is available to make a new decision, we have AND parallelism. A good example of this is when parallelism is
applied to the evaluate-object operators in the selection problem space (see Section 6.3). [n parallel. all
objects will be evaluated until enough evaluations and preferences are created to break the tie that created the
selection subgoal. If there s a combination of monotonic and non-monotonic operators, we get a hybrid
AND-OR paraliclism. where the monotonic operators augment the current state until a non-monotonic

operator terminales.

Since all paraliel operators are running in the same working memory it 1S possible for them to share
information and to communicate partial results. One wav 1o achieve this 1s 1o have the operators attach partial

results to the state they are applying to and examine the state for informaton created by other operators.

NRON PARC NG

[4

AR el RCA G G g ¢ CHEPU A MR '-mr.'.'.'-?v-'?'."'-v_’-‘.j
¥

TOP-1 EVEL VARIABL ES AND FULNCTIONS 61

10. Top-level Variables and Functions

This chapter consists of the global variables. properties. and functions that are used to control Soar. Some
of these are OpsS commands that have been modified to provide more functionality. The Backup feature of
Ops5 does not work in Saar(but sce pop-goal for a reasonable alternative). The functions names are followed
by a list of their arguments. Arguments in square brackets ([}) are optional. An argument ending in * signifies

that any number of arguments may follow.

10.1. Global Variables

The following global variables are used to control certain aspects of Soar. Many of these are also referred

in sections on functions that they affect. All global variables in Soarbegin and end with an asterisk (*).

chunk-all-paths [f T. then when the exact same subgoal result is produced by two or more
production firings. chunks will be built based on each of the producuon
firings. *Chunk-all-paths® is initially nil.

*chunk-classes® A list of SP class names for which at least one must occur n the conditions
of a chunk for it to be built. This helps eliminate chunks that are overly
general. *Chunk-classes® is initially (problem-space state operator).

*chunk-free-problem-spaces® A list of problem-space names for which chunking should not be used. {f
the current problem space in a subgoal has its name in the list. and the
subgoal is terminated. no chunk will be built for that subgoal.

chunks A list of the names of all of the productions that have been learned.

max-chunk-conditions No production will be built that has a greater number of conditions than
*max-chunk-conditions®. *Max-chunk-conditions® is initially 200.

*max-elaborations® If the elaboration phase runs more that *max-elaborations® then the
elaboration phase is terminated and the decision procedure 1s executed.
The default value of *max-elaborations* is 100.

*max-recurse® The maximum recursive depth that the ordering algonthm will use in
breaking ties between competing conditions. By increasing the depth, the
ordered productions can someumes be more etficient. although loading 1n
the productions will take longer. *Vlax-recurse® is imually 2.

*sp-classes® A list of dotted pairs where the tirst element ot each dotted pair s the SP
class name and the second clement s the P class name. When translating
from SP format. Soar uses *sp-classes® w replace SP classes with P classes.
Users should not have o add pairs o *sp-classes®. ~ince this s done
automaticaily by Soar. The fisst ime a SP class 1s encountered. 1L along
with its name concatenated with -info s added to *sp-classes®. lhe user
should add pairs o *sp-classes® 1 he wants to have more than one SP class

NERONPARC ISE FANCARY (9w

. SR .) R - . -
R - - “ B .o e . .

L e L W T T A WAL L S D
L~ . . BRI PRI PP IS -

LS SR IS BRI B NPEIR I NS e VL DA R PRSI AL WAL SRS VRS I 2 % 3% S

-

lalal

b A A S Rt I i gl R MY AR AT B Mt Tl MY AN AL S T N AN T A A d s il N e D g Y g W At A e dhie Sears

62 SOAR USER'S MANLAL

translated into the samie P class (gc. goal-context. context, and goal all
translate into goal-context-info).

*spo-default-depth® The default depth of objects that spo prints out. The value of
*spo-defauit-depth® is initially 1.

subgoal-tabs If T. watch and pgs will indent during the tracing or printing of the

context stack. If nil. watch and pgs will not indent. but instead will print
the subgoal depth as a number. The value of *subgoal-tabs® is initially T.

waming if T. warnings are printed. |f nil, warnings are not printed. The value of
*warning® is initially T.

watch-free-problem-spaces Contains a list of problem-space names that will not be traced with watch
0. The value of *watch-free-problem-spaces® is initially nil.

10.2. Initialization

10.2.1. Init-soar

While running Sogr. the user may wish to empty working memory and restart a run using the same core

image. The function init-soar empties working memory. It should be called whenever the user wishes to

restart without reloading productions. After it has been called, new productions can be added. either

»

manually or by reading a file. Old productions (including chunks), that haven't been replaced. will still be "
available. :tj::
(init-soar) e

v

(3
1S

«

10.2.2. Restart-soar

While running Soar. the user may wish to replace all of the productions, but still maintain the same Lisp
core image. The restart-soar function is a Sear function that re-initializes the system. removes all productions,

including chunks, empties working memory and resets all global variables to their initial (default) values.
(restart-soar)

10.2.3. init-context id1 id2 id3

The init-context function first calls init-soar to clear working memory. and then creates the context n
working memory. If it is not cailed. the initial context, except tor the goal, is all undecided: (gc g0001
tproblem-space undecided tstate undecided toperator undecided). There are three arguments. The first is the
identifier of the initial problem-space. the second is the idenufier of the imtial state and the third is the

identifier of the initial vperator. The function gensyms a goal dentifier, which is returned as the result.
{(init-context 'problem-spacel 'statel ‘do-eight-puzzle)

XERON PARC [SI-.5 TANLAKY vh

~
..._‘ -‘_.‘-, -_~_,...‘-..._._..-'_-_.._‘ . .o ‘. e .- e e . RS j
FIMRTIL R A R - e S AR - - L > -
PR o ‘.'.'.'.' s - .'.'_.‘.-.- . q'-‘-‘ Y .
AL.\-uAA..‘ A, S 44‘__4_24:_.\"44_‘ Pl e -‘ 1' ‘et -f -:-’-.‘.':._.AA-' JJ-_-’,-" R

TR, g i\h,a.a...‘xns

me‘m"v'ﬁﬁm" v ‘a4 'R R Atk Tl st rad ekt 4 ina A 1 T - g L

i

.
'
i
t
'
X

PR IR A

LEA SN TR L L lath! otk hhs an g i ASerbragin BAARSS, &

TOP-1 EVEL VARIABLES AND FUNCTIONS
10.3. Loading, Running, and Breaking

10.3.1. Soarload file

The soarload function will load in file file. It must be used in place of load on Xerox -machines for files

containing productions, but its use is optional for all other implementations of Sear.
(soarload 'eight.soar)

10.3.2. Multi-attributes L

The mulu-aunbutes funcuon takes a list of two- or three-clement lists as its argument. Fhe first clement of
each sublist is a SP class name, the second element is a SP attribute (not an OpsS attributc. but the attributes
that show up in SP format). and the third (optional) clement is a number. The function declares that the
attrnibute for the SP class will appear multiple times for a given object. This usually happens when an object
has a sct of subobjects. The third argument is the expected number of occurrences of the attnibute tor a 2iven
object of that class. T'he default is 5. When this information is provided. the ordenng algorithm can produce

more efficient P format productions and greatly speed up the execution of a system.

10.3.3. Run N[D]

The run function executes the production system with the current working memory tor the number of
cycles given by N. If D is missing, V gives the number of production cycles to be exccuted. In Soar. during
the elaboration phase, many productions may fire in parallel on the same production cycle. This is one
production cycle. However, the elaboration phase may last many production cvcles, and each cycle is counted
toward the total. Each decision phase is also counted as one production cycle. If D is d (no other values are
legal), then N is the number of decision cycles that are executed before halting. In this case Soar halts just
after the decision procedure of the Nth decision cycle. If N is an object identifier or object name, Soar halts
when an object with that identifier or name is selected as the current value of a role in a context. If Vis a
SP-form working-memory element. Soar halts when that working-memory element is created. [f a run is done
following init-soar. it automatically initializes working memory with all non-goal roles in a goal-context heing

undecided.
(run 100 d)

10.3.4.DN

(1D V) 1s equivalent to (Run N D).

NFRONPARC QST 5 N g avh

et e “ e - e e . NI e e e . S -
e ~'\-' -‘_"‘."‘."'." RN .._'.._' a '-’,\.."-._'--,\ S
LR WS AP W WA, WA

R

PR WRE P PR P WA W R AL, VRS A G S S eSSt ORI SR

e

(. |

S
'v?,\
“3 %y

.y
i
'
L]
20

S

L4
.

«
2Ly

h)

,

’,
»

e em e e s e TR TR TR M CTMTA MK L A Bt e el A Gk A

64 SOAR USER'S VANUAL

10.3.5. Pbreak L

Pbreak allows the user to give a set of names of productions, and break on the production cycle afier they
fire. It has been expanded in Saar (o allow the user to break after an object with a specific name is selected
for a context role. L can either be the name of a production to break after, or it can be a name or identifier of
the object the user wishes to break on. Soar will break following the decision procedure when an object with

that name or identifier is selected as current. If L is nil. all break points are listed.

(pbreak selection evaluate-object)
(pbreak initialize-rl-problem-space reject-worse)

10.3.6. Unpbreak L

Unpbreak removes breaks set by pbreak. To remove a break, use the same argument in unpbreak as was

used in pbreak. If [isnil. all breaks are removed.

(unpbreak nil)
{(unpbreak initialize-rl-problem-space reject-worse)

10.3.7. User-select X

If X is T, then whenever Soar is going to make a choice between indifferent objects, the user will be asked
to make the selection. If X is nil, Soar will make the sclection randomly. If X is ‘first, Soar will always select
the first one tound. This is a deterministic selection. [f X is a list, then the [ist should contain numbers or
atoms. For each selection, the first element of the list is stripped off and used to select an object. Ifitis a
number. it will be used to index into the list of objects to be selected (1 for the first). [f the number is less
than 1. or greater than the total number of choices. the user is asked. If it is a symbol, the objects are
examined, and the first one that has the symbol as a name or the value of a trace-attribute is selected. If the
symbol does not match any of the choices. the user is asked. When cthe list is exhausted, user-select is called
automatically with the value of *default-user-select®. which is initially T. The original value for user-select is

"first.
(user-select t)

Y HONPARC SIS JANE ARy axg

a0 aiite a0 Res LN A iC Wi Sl Al O A S IE Sl An e A et it it A i i R dee e g e £ pna ol sip ot e au MM AR Y s gt el SO0 a0 sath quh AL sl 5.0 2N il w4 oM
oo

TOP-LEVEL VARIABLES AND FUNCTIONS 65

10.4. Tracing

10.4.1. Trace-attributes L

Trace-attributes takes a list of two-element lists as its argument. ‘The first element of each sublist should be
a SP class and the second clement should be a SP auribute. After trace-attributes is calied. a watch trace of
level 0-2 (and PGS) will print out the value of the specified attributes when an object is selected to a context
role. If the valuc is an identifier with a tname attribute. then the name of the identifier is printed. The
tracing is recursive. so that if the value s an identificr that appears in an augmentation with another class in
tracc-attributes, its attributes will be traced, and so on. T'he recursion stops whenever a previously traced
identifier. or onc that has no trace-attributes, is encountered. [race-attributes s initialized with ((goal role)
(goal impassc) (goal superopcerator) (operator instance) (operator object)). The tname attribute is handicd
specially for all classes. so it should not be included in trace-attributes. All calls to trace-attributes mercly add

pairs to the hist.
(trace-attributes '((state backplane) (operator module) {module size))

10.4.2. Watch N

As in OpsS. N is a paramcter that determines the amount of trace information produced by the system.

Soar expands the available values and expands the different levels of trace information.

-1 No tracing.

0 Object tracing. Changes to a goal-context arc listed. No production or working
memory tracing. The object tracing includes the current decision cycle number. the
role being changed. the identifier of the object, the name and any attributes declared
with trace-attributes (sce above). Objects are indented (3 * the subgoat depth).
Indenting can be turned off by setting the global variable *subgoal-tabs* to nil. When
there is no indenting, the subgoal depth is printed at the beginning of each line.
Subgoals are prefaced by " = =>" so they are easy to pick out.

1 ==>g: g0001 (no-change goal)
2 p: p0003 eight-puzzle
3 s: s0012
4 ==5>g: g0031 (tie operator)
5 p: p0032 selection
6 s: s0033
7 0: 00036 evaluate-object(up)
) Same as 1. ¢xcept no trace of the ume-tags of working-memory elements that match

the conditions of the productions. or are created by productions or are auto-removed.

1 Adds trace of the productions that fire. In Soar, the trace starts with the decision cvcle
number followed by the production cvele number (the number of production cyveles —
where many productons cdn fire 1n parailel on one production cvele — since the last
imt-soar). 'hese numbers are followed by the name of the production that fired.

NEFONPARC IS 2 0N WY ok

- Tt et m L AT
. e
atataer, -

Py

I R A R N R I Sl SR TR P S P ICT e A A e e A K W a L K X a e o A

. L
0
E‘a L

SOAR USER'S MANUAL

When the decision procedure is executed. the role and the name of the selected object
are traced. [f there is an impasse in the decision procedure, the type of impasse and
the name of the newly created subgoal is printed. Following this information is a list
of the data that was matched by the production (given by time-tags) followed by the
data that was created by the production (given by time-tags). These working-memory
elements arc Ops3 working-memory elements and will not be in SP format if printed
out directly using the wm function. For ¢xample:

73:174 decide operator s0415

0: up 1466

74:175 create-newstate 1443 1456 17 1463 1466 23 --> 1467
The first line is a trace of a decision occurring during the 73rd decision cycle. It is the
174th production cycle and operator S0415 (also called up) is selected. 1466 is the
time-tag of the working-memory element for the current operator. On the following
production cycle. production create-newstate fircs using the six working-memory
clements listed to create 1467. On the return from subgoals. the working-memory
clements that were garbage-collected are listed following "<--".

Just like 1. except that the actual working-memory clements added to and removed
from working mcmory are printed.

Prints out the time-tags of the working-memory elements matched by the conditions
of the production and the actual working-memory elements added to and removed
from working memory.

Default = 0.

Example:
(watch 1)

10.4.3. Decide-trace X

If Xis T, decide-trace is enabled. If X is nil, decide-trace is disabled. The default is nil. When decide-trace

is enabled. a trace of the decision procedure is displayed.
(decide-trace nil)

10.4.4. Ptrace X

[f X is a production name, it will be traced whenever it fires. [f X is an SP-form working-memory element.

that working-memory clement is traced when it is created or matched by a firing production. If X is an object

name or idenufier. all working-memory clements that augment that object arc traced when they are created or

matched by a finng production. Tracing of chunks is also controlled by the trace option of learn.
(ptrace create-new-state)

WERONMPARC ISE Y v

T T Ty T —y
r. R A K S A At e Sl i i e il DN e DA S v A M S S A s T vl e ‘A - 2 e 4 R A LA B R DR R Bl Sk A I b S Al b v 4

SN

IOP-LEVEL VARIABL ES AND FUNCTIONS 67

A
<
X

Yo A4

3

"

Ny,

10.4.5. Unptrace

v

A
.
{\'n

- 4T
[N A
.

Removes traces set by ptrace.
(unptrace)

10.5. Displaying Information

10.5.1.CS

‘The cs function produces a listing ot the productions that are in the conflict set. In Soar. these are the
productions that will fire on the next production cvcle. If the next cycle is an claboration phase. the
elaboration productions that will fire are displayed. If the next production cycle is a decision. the aumber of
instantiations of decision*gather-preferences is displayed. Decision*gather-preferences matches all of the
preferences relevant to the context stack. Note: some elaboration productions may be in the conflict set but

not change working memory because the elements they create are atready in working memory.
(cs)

10.5.2. PGS
‘This prints out the goal-context stack. indented at each subgoal. followed by the deciston cycle number. If
subgoal-tabs is nil, the indentation will be replaced by numbered depth counts. For parallel operators, the
goal stack is printed out depth-first. with a space between the end of one parailcl operator’s subgoal tree and
the beginning of the next parallel operator. This is a great function for finding out where you are in probiem
solving.
(pgs)

10.5.3.SPR X~

'he spr function is the generic SP printer for all types of objects. [t takes any number of arguments which

can be tme-tags. object identifiers. partial descriptions or production names. [t then prints the associated

working memory elements or productions appropriately. (f no argument is given, it calls pgs.
{spr (operator tname evaluate-object))

10.5.4. PPWM X'

Without any arguments, ppwm prints out all of working memory. Arguments lo ppwm provide a partial
description of working-memory clements in P-format: a class and attribute-value pairs. 'hese arguments act
as a filter. so that only those working-memory clements that match are printed. In the example. the second

call will print out unly acceptable-preterences for goals.

(ppwm)
(ppwm preference trole goal tvalue acceptable)

NERON PARC 51 .3 JANUARY %6

- Tt -“;5L\l\.\ T

e ® N . N .
o "- - ‘.. ’.o "‘- -~ ~.- "' - .~ .‘- ~ -"' n.
RS W WP GRS PP YO PRI o', YRR A S R

e T e e T e e e e N
L e WLt e R PCERIC LSNP TS
LS S P NP A S AR TR TG WS S IS S

. 3 e . - -
AR ’ RN e e e e e e
B A S S AR T & C AT N S AT A AR T, Y

G St N A b D i B M B e S At o T Sl Al e 4 S-Sl B S TS A it) AR g

68 SOAR USFR'S MANUAI

10.5.5. SPPWM X'

‘The sppwm tunction is an SP version of ppwm. Its input is a partial description of an object in SP format.

It finds all objects matching that description and prints them in SP format.
(sppwm operator tname evaluate-object)

10.5.6. WM N’

The wm function takes any number of time-tags as its argument, and prints out the working-memory
clements with those time-tags. The time-tags of working-memory objects are listed when they are created

during watch 1 and 2.
(wm 45 54)

10.5.7.SWM N’

The swm function takes any number of time-tags as its argument. and prints out the objects with the
identifiers of working-memory clements with those time-tags. The time-tags of working memory objects are

listed when they are created during watch | and 2.
(swm 45 54)

10.5.8. PO

‘The po function will print out the augmentations of the object with identifier / (it only accepts one
argument at a time). This will print out preferences and augmentations where the object is in the identifier

field. It will not print out your own weird data structures if identifier is not in the identificr field.
(po S0003)

10.5.9. SPO I [D]

‘The spo function is an expanded SP version of po. It prints out the augmentations of the identifiers in SP
format. It does not print out preferences. It has an optional final argument: depth. If depth is given, spo will
print out a depth-first cxpansion of the objects and subobjects to depth D. [t will only print the
augmentations of each object once. The default depth (for when no second argument 1s provided) is held in

global variable *spo-default-depth®. which is iniviallv 1.
(spo S0003 2)

NERONPARE N PAONT RN e

AR A AR LALI AL A A% T AT R Sty e S Sl Fad el Al Al il i A A At A N ' S A b SRR ol AP A AN AR e S St b Bk dh A 26 A S AR RS AdoRs Re

FOP-EEVEL VARIABIES AND FUNCTHONS 69

10.5.10. SPOP " [D]

The spop function will print out the preterences ot the identfiers in SP format. 1t does not print out
augmentations. It has an optional final argument: D. If D is given, spo will print out a depth-first expansion
ui the preferences of objects in the context fields ot preferences of cach object once. The default depth (for

when no second argument is provided) s held in global variable *spo-default-depth®, which is initially 1.
(spop S0003 2)

10.5.11.PM P

The pm tunction prints out production £ 1n P format.
(pm eight*create-new-state)

10.5.12.SPM P’

‘The spm tunction prints out production £ in SP format.
(spm eight*create-new-state)

10.5.13. Matches P’

The matches function lists the time-tags tor all of the working-memory elements that match the conditions

of production P. It also prints all of the partial instantiations ot production P (with time-tags).
(matches eight*create-new-state)

10.5.14. Smatches P’

I'he smatches function takes the name of a production as its argument (unquoted). [t prints out the most
complete match for the production given the current working memory (as time-tags) followed by a listing of
the production with a pointer to the condition where the match failed. Each condition in the production. 1s
prefaced by the number of partial instantiations active at that point. This function subsumes most of the

interesting aspects of matches.
(smatches eight*create-new-state)

10.5.15. Back-trace [/] [G]

'he back-trace function lists all the productions used in goal G to produce the working-memory elements
described by /. It also prints out the working-memory clements that were matched by those productions that
would be included in a chunk if 1t were to be built with 7 as tts actions. I (715 not provided. the most recent

subgoal 1s used. [can be either a time-tag of 4 working-memory element. an ohject denufier n which case

all augmentations ot the object are used). or a SP pattern that includes at least one attribute (in which case ail

NERONEARE ST - JANE AR e

Ve g
LU ML A

T

t

«

[t ot
DAL RIS

jof)
e a0 o

PSS of &

D
‘s % e

Lt Y'Y

70 SOAR USER'S MANUAI

working-memory elements matching the SP pattern are used). [f / is not included. back-trace will use the

actions for goal G (if there are no actions at this time. nothing will be printed).

Beginning with the working-memory clements described by /. the productions that created / are found.
their names are printed. and the working-memory elements that matched their conditions are collected. 1f the
working-memory element was created in a subgoal. the working-memory clements that would be used as
conditions for a chunk for that subgoal arc collected. and the identifier of the subgoal is printed. Printing
tfrom then on is indented until all the collected working-memory clements have been processed. 1t a working-
memory element is the same as a working-memory clement that has alreadv been processed. it is ignored. fa
collected working-memory element was created before (. it is printed because it will be the basis of a
condition in a chunk built for . [f a collected working-memory clement was created by another production
firing in the subgoal, or by a subgoal, or by the decision procedure. then the process recurses. (f a collected
working-memory ciement was created by the decision procedure (cither a context slot or a goal augmentation)
decision-procedure is printed and the working-memory clement associated with that creation act 1s bhack-

traced (sce Section 7.1 for more information).

(back-trace 00034)
(back-trace (evaluation e0021 tnumeric-value -1) g0032)

10.5.16. P1 P[N]

The pi function prints out the working-memory elements that form the Nth partial instantiation for

production P. If N is missing, the first partial instantiation is listed.
(pi eight*®*create-new-state)

10.5.17. Print-stats

The print-stats function lists a summary of statistics for the runs of Soar since start-up or the last call to
init-soar. Most of the statistics concern a set of events, such as production firings, decision cycles, etc. The

total number of each type of event is given. along with the number of events per second.

o Number of productions: 'The is the total number of productions in the system, including all chunks
built during problem solving.

o Number of nodes. with sharing/without sharing: The first number is the number of nodes actually
used in the network. The second number is the number of nodes that would be required if there

were no sharing.

o Flapsed nme: On a Vax or D-machine, this is CPU time. On the 3600 this is clapsed real-ume
while running.

o Number of decision cycles: This is the total number of deciston cycles.

NERON PARC ST 2 0ANE AR oA

»
""". , ". .' ‘ .

o

“lt“ ol

U
Y
’ TOP-1 VEL VARIABLIES AND FUNCTIONS 71
a o Number of production cycles: "This is the total number of production cycles that were exceute.d.
: which include the number of decision cycles and claboration cycles. This is not the total numb.r
q of production firings, since claborations fire i paralicl, .
- ® Number of elaboration cycles per decision cycle: I is the average number of claboration cycles t{,\‘:
. . - . « - \ .‘
, cxecuted during a decision cycle. This is computed by computing the towal number ot claboration SRR
b cycles (production cycles - decision cycles) and dividing by the number of decision cvcles. t::f
, N
) i . . . ,) . al
: o Number of production firings: ‘This is the total number of productions that were fired. Fach :
decision cycle is counted as one and only one production firing. SRR
. ® Number of elaboration productions firing in paralicl: T'his is computed by dividing the number off _; {:_
claboration production firings (total production firings - decision ¢ycles) by the number of -
claboration cycles. S
2 o Number of actions: "This is the total number of actions. This includes all additions and deletons
A from working memory.
. e Working memory size: 'This gives the average. total, and current number of working-memon
3 clements.
k. o Token memory size: This gives the average. total, and current number of tokens used to represent
- the working-memory elements in the RETE network. When this number is large. the system
5 tends to slow down. .
" Below is an example from running the Fight Puzzic. X
: {print-stats) _?}?;
- o
3 Run Statistics kA
| 69 Productions (1034 // 3329 Nodes) N

21 Seconds Elapsed
22 Decision Cycles (1.047619 per sec.)
47 Prod Cycles (2.238095 per sec.)

(1.136364 € cycles/ D cycle)
112 Prod Firings (5.333334 per sec.)
) (3.6 Elab. prod. in parallel)

498 RHS Actions (23.71429 Per Sec.)

3 191 Mean working memory size (260 Maximum 222 Current)
419 Mean token memory size (651 Maximum 521 Current)

P]

10.6. Changing Working Memory and Production Memory

10.6.1. Make

‘The make function adds to working-memory the P-format working-memory clement that tollows it tn the

function call.
(make state-info tidentifier S4404 tattribute name tvalue cleveland)

NP RONEPARC 18 - s\ Ay Lk
A M et T et ar et matam ma e e .
. > 0. . B S . R) - » . R T T M
O P R L T L NN LI U !
WO IR L I ,'.‘T.I_ - f.\{.. f}f. el n‘}.'_'f.f-‘- PO I :.

R e S N A Tl dt S N G i e L S LA arth el i MDAl o oo 2 Db e S oA S SRS Sttt Siat et S i i Sl A A A S
e p) iy NS Nl A S A ML S . BRI A NEME SRS SRR SRS .

-~

72 SOAR USFR'SMANUAL

10.6.2. Smake N ANA
Q. .\ -
The smake function adds to working-memory the SP-format working-memory elernents that follow it in the :::"3:"_ »

function call. Sy
(smake state S4404 tname cleveland) e
-.\~‘¥

«

r

10.6.3. Sremove N

The sremove function removes from working memory the element with time-tag N. This can be used only
at the top-level to remove working-memory elements and can not be included in production actions. In most
Ops5 implementations, this is just remove, however to avoid confusion with some Lisp commands, we call it

sremove.
{sremove 45)

10.6.4. Pop-goal [X']

The pop-goal function removes the goal X, all its subgoals, and all working-memory elements created in it
or its subgoals. No chunks are created when the goal is popped. If X is not specified. the last subgoal created
is popped. [t takes any number of subgoals as arguments, and will pop all of themn, however. this is only
useful when parallelism is being used. This function allows a limited form of back up in Sear. After pop-goal
has been executed, Saaris in an elaboration phase, and unless the user adds productions or working-memory

elements. Soar will create a new subgoal in the next decision that is just like the one that was popped
(pop-goal g0043)

10.6.5.P i
The p function creates a P format production. If this replaces a previously created production (same name, RS

different body) the old production is excised and the name of the excised production is printed.
(p eight®*create-new-state elaborate
(goal-context-info tidentifier <(g> tattribute state tvalue <s>)
(goal-context-info tidentifier <g> tattribute operator
tvalue <0d)

(op-info tidentifier <o> tattribute name tvalue up)
-=>
(make state-info tidentifier <n> tattribute name tvalue down))

10.6.6.SP ... e
.‘:\':\

T'he sp function creates a SP format production. [f this replaces a previously created production (same I
e

name,. different body) the old production is excised and the name of the excised production is printed.

CERONPARC IS "aNi wRy ek

TS e . e B . N N N . -, - . SRR
LY fte T e At e ca e . PR C L et ANt Tt T et et T Tt Tt et et e Tt Tt At L
AV TG W A RS WAL TN LR AL TR SRR R TV S TR R T 0 TN R S ER YV E T TSI AT

. .

e
w4
\:.‘1’?

TOP-1 IVEL VARIABL IS AND FUNCTIONS 73
e
a..\]

(sp eight®*create-new-state .;-.*

{(gc <g> tstate <s> toperator <o>) RN
(operator <o> tname up) AN,

-->
(state <n> tname down))

10.6.7. Excise P

‘The excise function removes production £ from production memory. If 4 production is excised, a " #” is

displayed.
(excise eight®*create-new-state)

Y W

10.7. Chunking

10.7.1. Learn [A']

¥ W W

This function 1s called to modify or examine a number of flags that control chunking. The arguments are
not evaluated. 1t no arguments are included. all of the flags arc displayed. Below is the list of argument pairs,

the first one (underlined) is the default.

Ll e

o never/on/off
On turns lcarning on. off turns learning off. Never turns learning oft and learning can not be used
hefore nit-soar is called. If learning is off, but not never, it can be turncd on (and off) at anytime i
during a run. With never, Saar does not maintain the extra information required by the learning
mechanism. Never runs about 8% faster than off, which runs about 25% taster than on. These
figurcs depend upon the complexity of the objects in working memory and the frequency of
subgoal creation and termination.

Lt ety

o always/bottom-up
With always, productions are built whenever a subgoal terminates. With bottom-up, productions
arc only built for terminal subgoals (subgoals that do not have any subgoals).

T ——

o pript/noprint/full-print
With print. production names arc printed as they are crcated. With nopriat, nothing is printed.

s With full-print. the tull production is printed when it is created. g f"- 3

p

p

r e trace/untrace/full-trace

: With trace. every time a production is chunked. it 1s added to a list. When a production on that
hist tires. it is traced at Watch level 1. With full-trace. the building of the production 1s also traced.

! (learn on bottom-up full-print)

p

)

b

)

4

p

4

b

]

CERON AR ST o AN ARY Juag

_-

74 SOAR USER'S MANUAL

10.7.2. Last-chunk

This will print, in SP format, the last production created by the chunking mechanism.
(Vast-chunk)

10.7.3. Excise-chunks

This will excise all productions that have been chunked since starting up Soar (either through starting Soar
or calling restart-soar). The names of all chunked productions are held in *chunks®. The function uses

*chunks® to remove the chunked productions and then sets *chunks® to nil.
(excise-chunks)

10.7.4. List-chunks

This will print all productions with names in *chunks* (whenever a chunk is created. it is automatically

added to *chunks®) in SP format. The chunks are listed in the order they were created.
(list-chunks)

OXOXPARC S 7 TaN vt uee

-.- e, - -'-_... . P “ . - s

’ . - .. - . . - - ‘a T ~ - ‘ - N N - \ N
..... N AL A . : coele o . Cerevely
f:L:’} " 1'-!'_'#\"‘ <, 1“1'.:1-(SANTIPIFIS P PPN .t'.i'\.m.L .-L.L.g_d_J_.A Y .LLA AR, ..a.u.a.\.; A L_,A AN

..
ot sl o

Ll e A e Bt Ll e a bl i Bt o St R S AN U ".".'."_E'.WL““TT“W“T“T'?’TW‘V'F{
PR
»

- *.}'
ALY

FRRORS. WARNINGS. AND RFCOVERY HINTS 75

11.Errors, Warnings, and Recovery Hints

11.1.Errors

e [Hlegal production name: The name ot the production was a list.
o lllegal production type: The type of the production was neither missing. nor elaborate nor decide.

e No -->"in production: -->' was not found in the production. This usually ariscs when there is an
extra) in the condition elements.

e Attempt to negate a compound object: A negation was placed before an SP object that had more
than one attribute. This will create a separate working-memory element for cach attribute which
1 not always the desired effect (sce Section 3.4). If that is the desired etfect. place a negation

hetore cach attnbute.

e Didn't find terminator: A termmnator (eicher >> or }) to match a previously encountered << or
was missing trom a condition ot the production.

o Missing >>: A << is missing a closing >>.

e Missing }: A { is missing a closing }.

e Didn't find a t when expected: \ - was not followed by a t.
o Atomic conditions are not allowed: A condition must be a list.

o Non-numeric constant after numeric predicate.

o Wrong context for }: A } can occur only following a {.

o Unrecognized symbol.

o Not a legal function name.

o Condition is too long: 'T'he condition has too many fields. This should never happen.

o Tab must be a2 number: \ unknown P-format ficid name was encountered.

11.2. Warnings
Miscellaneous

o |llegal multi-attribute value: A multi-attnbute can only have a range between 0 and 100,

o kFxceeded *mav-elaborations®. Proceeding to decision procedure.

Production syntax

VROY v N Y R

Dl S R Nl e A

LIPS

76 SOAR USFR'S MANLALI

o lllegal index after ¢.

o Constant identifier field in: An identifier ficld of an augmentation in a condition must be a
variable.

o Identifier field not constant or variable in: An identifier ficld of an augmentation in an action
must be a constant or vanable.

o Constant object field in: An object ficld of a preference in a condition must not be a constant.

e Object field not constant or variable in: An object field of a preference in an action must be a
constant or variable.

o Condition not linked to previous conditions: The conditions of a production must all be linked to
the goal-contexts. ctther through augmentations or preferences.

Actions

o Atomic Action: Actions must be hists.
o [llegal Action.

o Unconnected actions in production: All variables in the actions of a production must either
appear in the conditions or be linked to the conditions through other actions.

o [llegal decide in production type: lThe decide action can only be used in productions of type
decide.

o [llegal make in production type: The make action can only be used in productions of type
elaborate.

o lllegal remove in Soar production: The remove action can not be used in productions.
o [llegal modify in Sear production: The modify action can not be used in productions.
e \rguments missing from make action.

o Wrong number of arguments for Tabstop.

o [llegal argument for Tabstop.

e Cannot be called at top level: C\LL2.

o TABSTOP can not he called at the top level.
o Write cannot be called at the top level.

e Write: nothing to print.

o Writel cannot be called at the top level.

NERONPARE N

At at e et
- i ST

e . Py .
R NP NS IS PO

R o

- IS
- .
w L Te 2t e ta

PR

£ e v
A R
P
Al. s
'.l"h

FRRORS. WARNINGS. AND REFCOVERY HINTS

o Writel: nothing to print.

o Write2: nothing to print.

o Write2 cannot be called at the top level.
o (S)PPW M does not take variables.

o Cannot he called at top level: BINI).

o Bind: Wrong number of arguments to.
o Bind: illegal argument.

o (RLF: Does not take arguments.

[

o RJUST: Wrong number of arguments.

N
.

o RJUST: llegal value for field width.
o TABTO: Wrong number of arguments.
o TABTO: lllegal column number.
Chunking
o No chunk was built because there were no actions.
e No chunk was built because *max-chunk-conditions® was exceeded.

o No chunk was built because no conditions had a class in *chunk-classes®.

ORONY PARC N L AN ARY ek

- . - PR .
LR R I L IR S L ST S RIS TS JUC TN U RN e T T e e
\’l-':l_' ORI ST AL P L T R N R PR RN

11.3. Recovery Hints

Symptom

A Soar rule won't load;
it just sits there

While loading in rules,
Lisp tries to evaluate
a condition.

Two goals are generated
followed by a message
that Soar must
terminate.

Many of the productions
just loaded do not fire
when they should.

Soar uses up the *max-

elaborations® number of
elaboration cycles.

A rule matches, but is

not in the conflict set.

There is an unexpected
tie between the new
next state and the
initial state.

There is an unexpected
tie between the new
next state and the
state after the initial
state.

SOAR LSEFR'S MANUAI

Probable cause

Certain syntax errors

send the loader into an
infinite loop; other times
the loader just balks.

There is an extra close
parenthesis.

There are no non-default
productions.

The initialization
production did not fire.

Load was used in Interlisp.

A rule may be producing a
wm 2lement which enables
the rule to match in a new
way, and then produce a new
wm element, etc.

The rule is prevented from
firing by refractory
inhibition.

The preference for the
initial state included
just the goatl and problem
space: thus it applies
regardless of the state.

The preferences from the

supergoal are interfering
with the subgoal.

RO AL

Try reloading the
rule: also check for
syntax errors, such as
missing spaces inside
curly brackets.

Remove the extra
parenthesis.

1. Load in productions

2. Make sure it tests
{(gc <g> -tsupergoal)

Reload using Soarload.

Modify the rule so
that none of its
conditions will match
any of its actions.

A good (but not
perfect) indicator of
refractory inhibition
is when (pi) does not
print any wm elements,
but just returns a
number one greater
than the number of
conditions in the rule

Add tstate undecided
to the preference
for the 1nitial
state.

Make state preferences
sensitive to the goal.

PR R A

il v,

rY S ‘.

I I
LS

s

!

LY
ey

[N

R AR .l_

w

. LA
R
PR AN

et

te

INSTALLING SOAR 79

12. Installing Soar

All files for Soar are available on h.cs.cmu.edu in account /usr/soar. Each Lisp dialect has a separate
directory that contains all of the files necessary to run Soar. Common Lisp=csoar, Franz-Lisp= fsoar,

Interlisp=isoar. and Zeta-Lisp= rsoar. Fach of these directories include the following files:

read.me A file that describes how to run this dialect of Sear and an index of all the files in this
directory.

default.soar The default productions.

etght.soar The Eight Puzzle productions.

soar.load A load file that will load in all files necessary to run Soar cxcept the user files. (This is

not necessary for Franz-Lisp.)

To obtain the files via the ARPA-net. send mail either to soar@h.cs.cmu.edu or John Laird, Xerox PARC.
3333 Covote Hill Road. Palo Alto. CA. 94304. The information needed to F1P the files will be sent to vou.
The current method is to login to h.cs.cmu.edu under account ftpguest with password cmunix. However. this

procedure is only temporary and may not be supported for very long.

In all systems, the first step in executing Sear is cither loading in files (3600. D-machines. and Suns),
executing a core image (Franz-Lisp). or executing Lisp with a suspend file (Common Lisp on a Vax).
Following this, the default productions and then the task productions should be loaded. I[n the Interlisp
version, soarload should be used in place of load when loading Soar files. At the top-level all systems use the
same commands like run, watch, ppwm and print-stats. In the Symbolics 3600. Tl Explorer. and Xerox
D-machine implementations. hitting any character while Soar is running will cause it to break at the next

production cycle.

CORONPARL oy TANT AR ik

AR S AN M s A ISR e Sl b el AT A AR 4 §
N

"
srd
l.‘

]
N
.
A
-

v, 3
R4

L

3, by AT
Lo

"

1%

80 SOAR LSER'S MANUAI

ENCRENCN RS |

"
-
-
o
.

—

<

AR R N A e O Y A AT

' At A A A AT A I S A S AN e a2 S nte Y e A (/S e iacal

PERFORMANCT COMPARISON 81

Q)

13. Performance Comparison

low is a comparison of the time required to solve a simple problem in the Eight Puzzle on different Lisp
systems in Version 4. release 1. Without learning for the Eight Puzzle it took 143 decisions. 346 production
cycles. 660 production firings and 3117 right-hand side actions. All runs were done with a freshly created
virtual memory. All times are in seconds. |'he systems are listed in order of increasing elapsed time. No
system specific optimizations were used cxcept that the Franz-Lisp runs were done with debugging
information disabled (although Soar was developed under Inmterlisp so it is more tuned for the Xerox
machines). Global vanables were declared in all systems. None of the additional declarations that are
available in Common Lisp to enhance efficiency were used. The Sun (run on December 18. 1985) and IBM
R'IPC (run on January 24. 1986) runs used preliminary compilers. All entries of ?? mean that cither the

statistic was unavailable or not recorded at the time of the run.

Machine Sottware Physical Elapsed 3600 CPU GC L.oad
Memory Time Ratg lime [lime Lactor

Xerox 1132 Interlisp 8 Mbytes 127 1.08 127 off

Symbolics 3600 Zeta-Lisp 4 Mbytes 137 1.0 137 off

Xerox 1132 Interlisp 8 Mbytes 149 92 131 18

Symbolics 3600 Zera-Lisp 4 Mbytes 153 90 137 16

Sun 3 Common Lisp 8 Mbytes 176 78 171 none

IBM RTPC Common Lisp 4 Mbytes 210 65 210 ” ~1

Vax 785-Unix Franz-Lisp 8 Mbytes 215 .64 182 none

T1 Explorer Common Lisp 8 Mbytes 228 60 228 none

TI Explorer Zeta-Lisp 8 Mbytes 230 .60 230 none

Xerox 1186 Interlisp 3.5 Mbytes 348 .39 348 off

Vax 780-Unix Franz-Lisp 4 Mbytes 365 38 298 ” ~1

Xerox 1109 Interlisp 3.5 Mbytes 397 35 397 off

Xerox 1186 Interlisp 3.5 Mbytes 409 33 366 43

Xerox 1109 Interlisp 3.5 Mbytes 445 31 402 43

Vax 785-Unix Franz-Lisp 8 Mbyvtes 170 29 182 ” ~3

Dec-2060 Common Lisp 8 Mbytes 660 21 196 ” n

Vax 750-Unix Franz-Lisp 4 Mbyvtes 676 20 495 " 1

I'he fraction following the clapsed time is the clapsed time for the given machine divided by the clapsed time
of the 3600. The performance of these svstems may be different for other programs and even for other tasks
in Soar that have different runtume characterisucs than the Fight Puzzle. The Eight Puzzie task is CPU
intensive. spending most of 1ts time matching productions working memory using a modified version of the
Ops5 Rete matcher. This uses simple symbolic computations, such as equality tests. function calls. application
of functions (apply). and list mampulation. there 18 no pumber-crunching ot integers or reals. .\ trace ot the
problem solving is printed to the terminal or console. hut that 15 nut 4 sigmificant factor m any of the runs.
Yhere 15 no 1ife input or output and all ot the systems had enough memaory so there was no within-process

swapping.

- . "
g Eal Y

T T R IR T .
IR BN
Aadnl s

- - N v " - “ "o
e e R T S A, A R R AU R
R AP LA T 0, Vi U DUV U IR Ty VO PR, W 18 05 Y PYY

R N S T
e falaladal Balaladadeatom oo o

[O AL R d bl e e Akt At e At tan etk DU S S S A AR At AR BABARADA MM Coute SO aise SE S SRSl

“w
.
.

82 SOAR USER'S MANUAL

VAR W

a

-

All of the single-user workstations had sufficient virtual memory so that garbage collection was unnecessary.

LIRS

This is onc of the biggest weaknesses of this benchmark because different types of garbage collectors are used
by the different systems, with different overheads. For very long runs. garbage collection can become an
important factor in performance. The Xecrox machines have reference garbage collectors while the 3600 has
an cphemeral garbage collector. both which are used incrementally (they do not wait for memory to get low
before they run), so runs with their garbage collectors cnabled were included. The clapsed time for the Xerox
machines with their garbage collectors disabled is less than their CPUI times using garbage collection because

the CPU time includes some of the overhead associated with garbage collection (such as updating reference

counts).

ll'TYVT”V'.-Tm .
FE R T I LV SN

CERONPARC IS 0t Y ke

R I S T Ca e e R TR e N T e
PRI ST I RN S AP IR DICII A W AT LSRN S Svt D SN RO G T U S S YA S gL 5 S G

SOAR BIRL IOGRAPHY 83

14. Soar Bibliography

Overview

Laird. J. E.. Newell. A., & Rosenbloom, P. S. Sear: An Architecture for General Intelligence. 1986. In
preparation.
This is a comprehensive scientific description of Soar(Soar 4) and the major research results.

Laird. J. E.. Newell. A., & Rosenbloom. P. S. Propusal for Research on Sear. An Architecture tor General
Intelligence and l_carning. 1985.

This proposal provides a description of the rescarch approach, a review of the principal research results. a

survey of related research. and propnsed research for the period 1985-1988.

Major Components

Problem Spaces R

Newell. A. Reasoning, problem solving and decision processes: The proniem space as a tundamental category. -‘_ﬁj.:.‘_:
[n R. Nickerson (Ed.), Attention and Performance } 111. Hillsdale. N.J.: Fribaum. 1980. (Also available o
as CMU CSD Technical Report, Aug 79).

This paper lays out the foundations behind the use of problem spaces for all goal-onented behavor.

Universal Weak Method

Laird, J. F., and Newell. A. A Universal Weak Method (1'ech. Rep. #83-141). Carnegie-Mellon University
Computer Science Department. June 1983.

Discusses the weak methods. the problem-space hypothesis. Soarl, what a universal weak method is. a

particular universal weak method. and a demonstration of it involving the use of many methods on many

tasks in Soarl. (Soarl differs significantly from the version of Soardescribed in this manual.)

Laird. J. E., and Newell. A. A universal weak method: Summary of results. In Proceedings of the Eighth
1JCAl 1983.

A summary of the longer universal weak method paper.

Universal Subgoaling

Laird, J. E. Universal Subgoaling. Doctoral dissertauon. Carnegic-Mellon University, 1983. (Available as
Carnegie-Mellon University Computer Science Tech. Rep. #84-129).

Discusses the concept of universal subgoaling. updates the umversal weak method to use universal

subgoaling, presents Soar2 and some demonstrations of 1t.(Sear2 differs significantly from the version of Soar o

described in this manual.) AR

Chunking PO

Rosenbloom. P. S.. and Newell. A. [he chunking of goal hierarchies: A generalized model of practice. [n
R. S. Michalski. J. G. Carbonell. & T. M. Mitchell tEds). Machine [earming: An Arnficial Intelligence
Approach. Volume 1. 1.os Altos. C\: Morgan Kauimann Publishers. Inc.. 1986.

Fhis paper lays out the foundations for goal-based chunking (in the context ot the Xaps3 architecture).

Laird. J. E.. Rosenbloom. P. S.. & Newell. A, Towards chunking a5 a 2eneral learning mechamism. In

RON VR IR ik

PR e T e e T o

- s .. .I N h.-.- Y ~.' - - - . - - - - - - - . . » - - . 0 N - - T . -
AR R T g R LRI U IR T Y S AU S L R L AP 2 ety Mt te Tt LT, TR T L P N -
pIP AT A TS SRS S e AN N el EEIRISF RIS B PSR LI SO A ARSI P (L DR At amataY Sta A Y a

it ot et M ISR i S SRCI AR A g AR ol Bl Yt A A A 4 S0 e e Bt A e T f ek T Tk o B A AT i

84 SOAR LSER'S MANLAL ,
Proceedings of AAAL-84, National Conference on Artificial Intelligence. American Association for k:.':-.
Artificial Intelligence. 1984. Available in Two Sear Studies. (Tech. Rep. #85-110). Carnegic-Mellon c
University Computer Science Department, January 1985. t

This paper presents the first results from implementing chunking in Soar. strategy acquisition, normal =

practice speed-ups. within-trial transfer, across-task transfer, and knowledge acquisition. =

TS

L
A4 -’.'f LA

r
r
.

o

'
——-

Rosenbloom, P. S.. Laird. J. E.. Newell, A., Golding. A.. Unruh, A. Current research on learning in Soar. [n
Proceedings of the Third International Machine I earning Workshop, 1985, Skytop, PA.

This paper reviews the state of rescarch on chunking in Soar as of July, 1985. [t includes short discussions of

work on analogy and generalization. simple abstraction planning, macro-vperator acquisition, and problem

space creation.

Iy
s *x

[aird. J. E.. Rosenbloom. i". S.. & Newell. A. Chunking in Soar: The anatomy of a general learning
mechanism. In Machine I.earning, 1986 1(1) 11-44.

This puper presents the details of chunking in Sear. It includes a demonstration of chunking based on Korf’s

Macro Problem Solver.

Manuals

Laird. J. E. Soar User's Manual. Version 4. 1986,
The manual is the main reference tor using Soar 4.

Laird. J. E. Soar Technical Manual. 1985. In preparation.
The manual is the main reference for the Sear software.

Forgy. C. L. OpsS Manual. Computer Science Department, Carnegie-Mellon University. 1981.
Soaris implemented on top of Ops3. and thus inherits many aspects of it.

Applications

Rosenbloom, P. S.. Laird, J. E., McDemott. J.. Newell, A., & Orciuch, E. R1-Soar: An experiment in
knowledge-intensive programming in a probiem-solving architecture. In /EEF Transactions on Pattern

i Analysis and Machine Intelligence, 1985 7(5) 561-569. This also appeared in Proceedings of the IEEE

- Workshop on Principles of Knowledge- Based Systems. IEEE Computer Society, 1984. Available in Two
Soar Studies. (Tech. Rep. #85-110). Carnegie-Mellon University Computer Science Department.
January 1985.

‘This paper presents the first attempt at expert systems in Soar. a partial reimplementation of R1. [t shows

how problem solving and expertise can be integrated. and how chunking can acquire expertise from problem

solving.

. ‘g'.

NPRON PARE ISE TANE ARY Taen

e e e S T L e e G e e

. S e e e
AR AN AR B

DEFAULT SFARCH-CONTROI PRODUCTIONS

Appendix |
Default Search-Control Productions

Below arc the default productions in default.soar.
(comment ****®* common search-control productions *®®***)

(comment a!l operator augmentations of the probiem space have
acceptable-preferences created for them)

(sp default®*make-all-operators-acceptable
(gc <g> rtproblem-space <p>)
(probliem-space <(p> toperator <x>)
-{preference <x> trole operator tvalue acceptable tproblem-space <p>)
-=>
(preference <x> trole operator tvalue acceptable
tproblem-space <p>))

(comment if an operator has just been applied to a state. which is
detected by using the preference created for that state,
reject the operator for that state so it will not be reapplied
in the future)

(sp default®*no-operator-retry

(gc <g> tproblem-space <p> tstate {s2>)

(preference tobject <s2> trole state tvalue acceptable
rgoal <g> tproblem-space <(p> tstate <s>
toperator { <> undecided <> nil <o> })

-->

(preference <o> trole operator tvalue reject

tgoal <g> tproblem-space <p> tstate <s>))

(comment if there is a reject-preference for the current state,
make an acceptable-preference for the prior state so problem
solving can backup)

(sp default®backup-if-failed-state

(gc <g> tproblem-space <p> tstate <s))

(preference <s> trole state tvalue reject
tgoal <g> tproblem-space <p>)

(preference <s> trole state tvalue acceptable
tgoal <g> tprobiem-space <p> tstate { <> undecided <> nil <n> }
toperator <> undecided)

-=>

{(preference (n> trole state tvalue acceptable

tgoal <g> tproblem-space <p> tstate <s>))

AERON PRy

»

N

el

IS
£y 4 Y
AP

N

- . -

~

MY

ML

Pt el e\

s a a s a s 8

86 SOAR USER'S MANLAL

(comment *®****® dgfault knowliedge for tie impasses ******)

(comment if the problem space for handling the subgoal fails,
signified by the choices none impasse below it,
make a worst-preference for each tied object)

(sp default*problem-space-tie
(gc <g3> trole goal tchoices none tsupergoal <g2>)
(gc <g2> trole problem-space timpasse tie tsupergoal <gl>
titem <{p>)
-->
(preference <p> 7role problem-space tvalue worst
tgoal <gl1>))

(sp defauit®state-tie
(gc <g3> trole goal tchoices none tsupergoal <g2>)
(9c <g2> trole state timpasse tie tsupergoal <gl> titem <(s>)
(gc <gl1> tproblem-space <p>)
-->
(preference <s> trole state tvalue worst
rgoal <gl>))

(sp default®operator-tie
{gc <g3> trole goal rchoices none tsupergoal <g2>)
(gc <g2> trole operator timpasse tie tsupergoal <gl> titem <o>)
(gc <g1> tproblem-space <p> tstate ¢(s>)
-->
(preference <o> trole problem-space tvalue worst
tgoal <gl> tproblem-space <p>))

(comment ****** conflict impasses ******)

(comment if the problem space for handling the subgoal fails,
signified by the choices none impasse below it.
make a reject-preference for each conflicted object)

(sp default®problem-space-conflict
(gc <g3> trole goal tchoices none tsupergoal <g2-)
(gc <g2> trole problem-space timpasse conflict rsupergoal <(gl>
titem <p>)
-->
(preference <p> rrole problem-space ftvalue reject
tgoal <gl>))

(sp default®state-conflict
(gc <g3> trole goal tchoicas none rtsupergoal <g2’)
(gc <g2> trole state timpasse conflict
rsupergoal <gl> titem <s>)
{gc <g1> tproblem-space <p>)
-=>
(preference <s> trole state tvalue reject
tgoal <(gl> tproblem-space <p>))

(sp default®*operator-conflict

(gc <g3> trole goal rtchoicas none tsupergoal <g2>)

(gc <g2> trole operator timpasse conflict tsupergoal <gli>
ritem <07

(gc <gl> tproblem-space (p> tstate <s>)

-->

(preference <o» trole operator tvalue reject

rgoal <gl. *problem-space ‘p»> tstate -s.))

N RON ARG IST 5 AN aR

AR
T & N B U T e g

a s B £ £

)
o«

DEFAULT SEARCH-CONTROI. PRODUCTIONS 87

(comment ®****** po-choice impasses ®®°°e¢)

(comment if no problem spaces are availadble for the top goal,
terminate the problem solving session with halt)

(sp default®goal-no-choices
(9c <g3> trole goal tchoices none tsupergoal <g2>)
-{(gc <g2> tsupergoal)
-=>
(writel (crlif) "no problem space can be selected for top goal.")
(writel (crif) "soar must terminate.")
(halt))

(comment if no states are available for a problem space.
and there is no problem space to find more.
reject that problem space)

(sp default®problem-space-no-choices
(gc <g3> trole goal tchoices none Tsupergoal “g2>)
(gc <g2> trole problem-space tchoices none tsupergoal <gt>)
{gc <g1> tproblem-space <p>)
-->
(preference <p> trole problem-space *value reject *goal <gld>))

(comment if no operators are available for a state,
and there is no problem space to find more.
reject that state)

(sp default®state-no-choices
(gc <g3> trole goal rchoices none tsupergoal <(g2>)
(gc <g2> trole state tchoices none tsupergoal <gl>)
(gc <g1> rproblem-space <p> tstate <s>)
-->
(preference <s> trole state tvalue reject
tgoal <gl> tprodblem-space <p>))

(comment if no changes for an operator,
and there is no problem space to find more,
reject that operator)

{sp default®operator-no-choices
(gc <g3> trole goal tchoices none tsupergoal <92>)
(gc <g2> trole operator timpasse no-change tsupergoal <g1>)
(gc <g1> tproblem-space <p> tstate (s> toperator <o>)
-=>
(preference <o> trole operator tvalue reject
tgoal <g1> tproblem-space <p> tstate <s>))

TONPARG IND v v e

st e N . PP . R R -

. B e S B T T T TR TR T S SRR PR W S
SR I AR Yo I o AP Y o VRIS PRI PSS T S TSR S ST PP AP P A AT

SOAR USKFR'S MANUAI

oL
o

N N

(comment %®seesssssssss sglgction problem space ***osesssssssres)

R
P A

P
PN A

(comment use the selection problem space for all choice multiple
impasses. make it worst so that any other will dominate)

(sp select®*selection-space elaborate
(gc <g> tchoices multiple)
-=>
(preference <p> trole problem-space tvalue acceptable tgoal <g>)
{preference <(p> *tr>le problem-space tvalue worst tgoal <g>)
(problem-space <p> tname selection))

(comment the state of the selecticn problem space is empty)

(sp select®create-state
(gc <g> tproblem-space <(p> tstate undecided)
(space <p> tname selaction)
-
(preference <s> trole state tvalue acceptable
rgoal <g> rproblem-space <p> tstate undecided))

v wan
KA <)
K S
e
RIS
.
A S

]

(comment seessesessscss gyalyate-object operator *ePesesssssencae))

(comment create an evaluate-object operator for each tying item
in selection problem space. These are all indifferent
so there will be no tie between them.)

(sp aval®select-evaluate
(gc <g> tproblem-space <(p> tstate (s> tsupergoal <g2> titem <x>)
(problem-space <p> rtname selection)
==
(operator <o> tstate <s> tname evaluate-object tobject <x>)
(preference <o> trole operator rvalue indifferent
tgoal <g> tproblem-space <p> tstate <s>)
(preference <o> trole operator tvalue acceptable
tgoal <g> tproblem-space <{p> tstate <s>)}

(comment for parallel evaluation
remove this comment if you want parallel evaluation of
the alternatives.

(sp eval®parallel-evaluate
(gc <g> tproblem-space ¢p> tstate <s> trole operator tsupergoal <g2>)
(problem-space <p> tname selection)
(preference trole operator tvalue acceptable
tgoal <g, tproblem-space <p> tstate <s>)
(preference <02> trole operator tvalue acceptable
tgoal <g> tproblem-space <p> tstate <s>)
(operator <ol»> tobject <y>)
(operator <02> robject (<> <y> <x> })
-=>
(preference trole operator tvalue paralie!
tgoal <g> tproblem-space <(p> rstate <s»> treferaence <02>)))

TON PARL

DEFAULT SEARCH-CONTROI. PRODUCTIONS

(comment create evaluation once the eval operator is selected)

(sp eval®apply-evaluate

(gc <g> tproblem-space (p> rstate <(s> -roperator <o>
trole <role> tsupergoal <(g2>)

(problem-space <p> tname selection)

(gc <g2> tproblem-space <p2> tstate <s2> tdesired <d>)

(operator <o> tname evaluate-object trobject <x>)

-->

(state <(s> tevaluation <>}

(evaluation <e> tobject <x> tstate (s> toperator (o> tdesired <d>)

(operator <o> trole <role> tevaluation <e> tdesired <d>
tsupergoal <g2> tsuperproblem-space <(p2> tsuperstate <s2>))

(comment reject evaluate-object after it finished in selection space)

(sp eval®reject-evaluate-finished
(gc <g> tproblem-space <(p> tstate (s> roperator <o>)
(problem-space <p> tname selection)
(operator <o> tname evaiuate-object revaluation <e>)
(evaluation <e> t << numeric-value symbolic-value >>)
-->
(preference <o» trole operator tvalue reject tgoal <g»>

tproblem-space <p> tstate <s>))

NMERON PR N s oy v ey

89

Il..l'..;
‘2% % Y
C IS

LK
-~

’
’

s
”
(w’\

1

R

A CIA MO O S0 O A b eI S A T A LS A A Bt "= BN S S S S N e S A A o S i A i g
R

I

90 SOAR USER'S MANLAL -

(comment if two objects have equal evaluations they are indifferent)

(sp eval®equal-eval-indifferent-preference
(gc <g> tproblem-space <p> rstate (s> trole (role> tsupargoal <g2>)
(probliem-space <p> tname selection)
(state ¢s> tevaluation <el> tevaluation { <> <el> <g2> })
(gc <g2> tproblem-space <p2> tstate <s2> tdesired <d>)
(evaluation <e1> tobject <x> tnumeric-value <v> tdesired <d>)
(evaluation <e2> tobject <y> tnumeric-value <v> tdesired <d>)
-~>
(preference <x> trole <role> tvalue indifferent treference <y>
tgoal <g2> tproblem-space <p2> tstate <s2>))

(comment generate operator preferences based on their evaluations and info
as to whether higher or lower evaluations are better.)

(sp eval®prefer-higher-evaluation
{(gc <g> tproblem-space <(p> tstate <(s> trole <(role, tsupergoal 7g2-)
(problem-spacs <p> tname selection)
(gc <g2> tproblem-space <p2> tstate <s2> tdesired <d>)
(state <s> tevaluation <el> tevaluation { <> <el, <e2> })

(evaluation
(evaluation
(evaiuation
-~
(preference
tgoal

<d> tbetter higher)
<e1> tobject tnumeric-value <v> tdesired <d>)
<a2> tobject <o2> tnumeric-value < <v> tdesired <d»)

<02> trole <role> tvalue worse treference
<g2> tproblem-space <p2> tstate <s2>))

.

-'r’-"v .'v &y
ff"g et

P S i 1
e
e

(sp eval®prefer-lower-evaluation
(gc <g> tproblem-space <p> tstate <s> trole <role> tsupergoal <g2>)
(problem-space <p> tname selection;
(gc <g2> tproblem-space <p2> tstate <s2> tdesired <d>)
(state <s> tevaluation <@l> tevaluation { <> <el) <e2> })

(evaluation
(evaluation
(evaluation
-->
(preference
tgoal

<d> tbetter lower)
<el> tobject tnumeric-value <v> tdesired <d>)
<e2> tobject <02> tnumeric-value » <v> trtdesired <d>)

(02> trole operator tvalue worse traference
<g2> tproblem-space <p2> tstate <s2>))

NEPRFOOPARE N N X

LY et

eIy
! ‘....’2-'

SUFLS

-
-

PP PP Ne) FAFNT TR el A AP AR

DEFAULT SEARCH-CONTROI PRODUCTIONS

(comment ****** productions for the evaluation subgoal ***ss*)

(comment copy down the desired and create the appropriate context,

given the role of the object being evaluated)

(sp eval®*select-role-problem-space

(gc <g> tproblem-space undecided tsupergoal <g2> tsuperoperator <02>)
(gc <g2> troperator <(o02>)

(operator <o02> tname evaluate-object trole problem-space tobject <p> tdesired <d>)

-->
{gc <g> tdesired <d>)
(preference <p> trole problem-space tvalue acceptable rgoal <g>))

(sp eval®*select-role-state

(gc <g> tprobiem-space undecided fsupergoal <g2> tsuperoperator <o02>)
(gc <g2> toperator <o02>)
(operator <02> tname evaluate-object trole state tobject <s>
tsuperproblem-space <p> tdesired <d>)
-->
(gc <g> tdesired <d>)
(preference <p> trole problem-space tvalue acceptable tgoal <g>)
(preference <s> trole state tvalue acceptable
tgoal <g> tproblem-space <p> tstate undecided)
(prefarence <s> trole state rvalue best
tgoal <g> tproblem-space <(p> tstate undec:ded))

(sp eval®select-role-operator

(gc <g> tproblem-space undecided tsupergoal (g2> tsuperoperator <o02>)
{gc <g2> roperator <o02>)
(operator <02> tname evaluate-object trole operator tobject <o>
tsuperproblem-space <p> tsuperstate <s> *desired <d>)
-->
(gc <g> tdesired <d>)
(preference <p> trole problem-space *value acceptable tgoal <g>)
(preference <s> trole state tvalue acceptable
rgoal <g> tproblem-space <p> tstate undecided)
(preference <o> trole operator tvalue acceptabie
tgoal <g> tproblem-space <p> tstate <s>))

(comment reject those operators that are not being evaluated in this subgoal)

(sp eval®reject-non-slot-operator

(gc <g> tproblem-space <p> tstate <(s> tsupergoal <g2> tsuperoperator <o2>)
(operator <o02> tname evaluate-object troie operator tobject <o>
tsuparstate <s>)
(preference { <> <o> <03> } trole operator tvaiue acceptable
tgoal <g> tproblem-space <p> tstate <s>)
--
(preference <o03> trole operator tvalue reject
tgoal <g> tproblem-space <p> tstate <s>))

NPROXYPARE ISE - aNs ke e

.t PN

T - . - - . - -
R LSRR ST e
e Bndom a e e 2 a s Sat e (e Ve et e

9l

R R AT
YN N
ANAXARAN - (LR

 {

.
Y

‘l
A

4

)

._ _
R)
AN

e
PSR

¥

.

.«Y_'
.

"';.s .: .'. .
"' -.‘ ..

.
’
LIS

.
. »
v

v e,
" vty e

’ ,
S S

f' v
%

SRR |

AD-A169 005 SORR USER’S MANUAL (U> XEROX PﬁLO ALTO RESERRCH CEITER 2/2
CA INTELLIGENT SVSTE!IS LAB J E LAIRD 31 JAN 86 ISL-15
N90914-82-C-006

UNCLASSIFIED F/G 5/10

3

o W® S D, Bat 0ot Sat Gom D 0"

MAARSAE AR TS Y.

N

U R W Ay W e AR NN P NAR KX RN AR TA KK PR XX

.,

"b'."lJ‘_-.‘ZtJ

T

Ry o X

A G A
T.H.aw..w 4
- ﬁ “

(T P TTTEYe PTT

i

- o

e ¥ T %Y

2 ey % %2 ce—e W L

29
15
16

Hi2s fle g

MICROC

TR TR IRy oY g R0
MRS

92 SOAR USER'S MANUAL

(comment give symbol-value failure to an operator that has been rejected
during evaluation and did not create a new state and reject the eval-operator)

T T ———

(sp eval*failure-if-reject-evaling-operator
(gc <g> tproblem-space <p> tstate (s> toperator <o>
rtsupergoal <g2> tsuperoperator <o02>)
(gc <g2> tproblem-space <p2> tstate <s2>)
(operator <o02> tname evaluate-object trole operator
tobject <o> tsuperstate <s> tevaluation <e2>)
(prefarence <o> trole operator tvalue reject
tgoal <g> tproblem-space <p> tstate <s> toperator <o>)
-(preference trole state tvalue acceptable
rgoal <g> tproblem-space <p> tstate <s> roperator <o>)

Lo i e o

-->
(evaluation <e2> tsymbolic-value failure})

(comment give symbol-value failure to an operator
that produces a state that gets rejected in the subgoal)

(sp eval®*failure-if-reject-state
(gc <g> tproblem-space <p> rstate <s>
rsupergoal <g2> tsuperoperator <o2>)
{gc <g2> tproblem-space <(p2> tstate <(s2>)
(operator <02> tname evaluate-object tevaluation <e2))
(preference (s> trole state tvalue reject
tgoal <g> tproblem-space <p>)
-
(evaluation <e2> tsymbolic-value failure))

(comment if an operator leads to success and it is being
tried out in a subgoal to evaluate another operator.
give that second operator a success evaluation also)

{sp eval®*pass-back-success
(gc <g> tproblem-space <p> tstate (s> toperator <o> tsupergoal <(g2>)
(problem-space <p> tname selection)
(operator <o> tname evaluate-object rtevaluation <el> rdesired <eb>)
(evalyation <el> tsymbolic-value success)
(gc <g2> tsuperoperator <o0d>)
(operator <03> tname evaluate-object tevaluation <e2> tdesired <eb>)
-->
{evaluation <e2> tsymbolic-value success))

NERON DARC ST DS JaNE vEY s

Bl

ol SR ACA AT C AT A A CABASILL i

DEFAULT SFARCH-CONTROL. PRODUCTIONS

(comment if an operator is evaluated to be lose or failure for

the same desired as the supergoal,
create a worst-preference for it)

(sp eval®*failure-becomes-worst

(gc <g> tproblem-space <p> tstate <s> toperator <o> tsupergoal <g2>)

{(problem-space <p> tname selection)

(gc <g2> tproblem-space <p2> tstate <s2> rdesired <d»>)

(operator <o> tname evaluate-object tevaluation <el> tdesired <d>
trole <role> tobject)

(evaluation <el> tsymbolic-value << lose failure >>)

-->

(preference trole opecrator tvalue worst
tgoal <g2> tproblem-space <p2> tstate <s2>))

(comment if an operator is evaluated to be success for

the same desired as the supergoal,
create a best-preference for it)

(sp eval®success-becomes-best

(gc <g> tproblem-space <p> tstate <{s> toperator (o> tsupergoal <g2>)
{(problem-space <p> tname selection)
(gc <g2> tproblem-space <p2> tstate <s2> tdesired <d>)
(operator <o> tname evaluate-object tevaluation <el>
tdesired <d> tobject trole <role>)
(evaluation <el> rsymbolic-value success)
-=>
(prefaerence trole <role> tvalue best
tgoal <g2> tproblem-space <p2> tstate <s2>)})

NRONPARE N - TN @y vk

IR I e et e -, . e .,
o ~ . D I A - , Y ..t .
oy _-.d",_- PSRRI oo ';"-;'."- 0

s TSI ey wY LA B A S A T Sl A3 Sk Sl A kGl

N e e e e .l . -
. o - . o et .- - . - - - - . - . .
LNl S S AL S AT, “J_f")g.‘h"_fl-L‘L.L‘L'~.;A..A:‘j_'.k.‘j

LA A Rl Sl aal Suf i g A YT TATAYNS

93

. -~ - .. -- ‘. o '.. .]
cuh e e .

. -
-

NS

Tea 4 K

2

‘NS

Telale

0 v
Tave e’ o

.- ‘. (R I

-

HeaWL W ‘g B e i o Rt L pte f e gty Ple. Vo

94 SOAR USER'S MANLAL

(comment convert state augmentations into evalustions)

(sp eval®state-to-symbolic-evaluation
(gc <g> tproblem-space <p> rstate <s> tsuperoperator <so>)
(operator <so> tname evaluate-object
tevaluation <e> tdesirad <eb>)
(state <s> r{ << success failure win draw lose } <svalue> } <eb>)
-=>
(evaluation <e> tsymbolic-value <svaiuve>))

(comment handle state augmentations dealing with goal
termination for the top-level goal)

&

(sp eval*detect-success
(gc <g> tstate <s> tname <name> tdesired <eb> -rsupergoal)
(state <s> tsuccess <eb>)
-->
(writel (crif) "goal™ <name> "achieved”)
(hatt))

e T e
Lo 4
e
. 'ty

»
e

.
s, 2

(sp eval®detect-win
(gc <g> tstate <s> tname <{name> -tsupergoal tdesired <(eb>)
(state (s> twin <eb>)
-->
(writel (crif) "game” <(name> "won”)
(halt))

(sp eval®detect-failure
{(gc <g> tstate <s> tname <name> -tsupergoal tdesired <eb>)
(state <s> tfailure <eb)>)
-=>
(preference <s> trole state tvalue reject
tgoal <g> tproblem-space <p>))

(sp eval®detect-lose
(gc <g> tstate <s> tname <name> -tsupergoal rdesired (eb>)
(state <s> tlose <eb>)
-->
(writel (crif) "game™ <name> “lost”)
(hait))

~
-~

NPFONPARC IS 3N

DEFAULT SEARCH-CONTROL PRODUCTIONS 95

e

(comment two player games - win side oside lose)

(sp eval®*move-side-to-eval
(gc <g> tstate <s> tsuperoperator <so>)
(state <s> roside <side> t << lose win >>)
(operator <so> tname evaluate-object tevaluation <e>)
-=>
i (evaluation <e> tside <side>))

(sp eval®winning-values
(gc <g> rproblem-space <p> rtstate <(s> rsupergoal <gl> toperator <o>)
(problem-space <p> tname selection)
(gc <g1> tproblem-space <pl> rstate <(si>)
{state <(s1> tside <side>)
S (operator <o> tname evaluate-object tevaluation <e> tobject trole <role>)
- (evaluation <e> tsymbolic-value win tside (side>)
- -->
3 (preference trole <role> tvalue best
! tgoal <gl1> tproblem-space <pl> rstate <(sl1>))
.
bu

(sp eval®winning-values2
(gc <g> tproblem-space <p> tstate (s> rsupergoal <gl> toperator <o>)
(problem-space <p> tname selection)
(gc <gl> tproblem-space <pl> rtstate <sl>)
(state <s1> roside <side>)
(operator <o> tname evaluate-object tevaluation <e> tobject trole <role>)
(evaluation <e> tsymbolic-value lose tside <side>)
- -=>
(preference trole <role> tvalue best
tgoal <gl1> tproblem-space <pl> tstate <s1>))

(sp eval®draw-values
(9c <g> rprobliem-space <p> rstate (s> tsupergoal <g1> toperator <o>)
{(problem-space <p> tname selection)
(gc <gl> rtproblem-space <pl> tstate <sl>)
(operator <o> tname evaluate-object tevaluation <(e> tobject rrole <role>)
(evaluation <e> tsymbolic-value draw)
. -->
(preference trole <role> tvalue indifferent
tgoal <gl1> tproblem-space <pl> rstate <s1>))

B
[

)
M)

VRONPARC ST s ANl v o

9% SOAR USER'S MANUAL

(sp eval®losing-values
(gc <g> rproblem-space <p> tstate (s> tsupergoal <gl> toperator <o>)
(problem-space <p> tname selection)
(gc <g1> tproblem-space <pl> rstate <sl>)
(state <sl1> roside <side>)
(operator <o> tnsme evaluate-object tevaluation <e> tobject trole <role>)
(evaluation <o> tsymbolic-value win tside (side>)
-->
(preference trole <role> tvalue worst
tgoal <g1> tproblem-space <pi> tstate <sl>})

(sp eval®losing-values2
(gc <g> tprodblem-space <p> tstate <(s> tsupergoal <gl1> toperator <o>)
(problem-space <p> tname salection)
(gc <g1> tproblem-space <pl> tstate <sl>)
(state <sl> tside <side>)
(operator <o> tname evaluate-object tevaluation <e> tobject trole <role>)
(evaluation <e> tsymbolic-value lose tside <(side>)
-->
(preference trole <role> tvalue worst
tgoal <g1> tproblem-space <pl> rstate <sl>))

& \’ﬁ}
7
R

[

(4

s 7/

)

(sp eval®pass-back-win
(gc <g> rproblem-space <p> tstate <s> tsupergoal <g2> toperator <0»>)
{(problem-space <p> tname selection)
(operator <o> tname evaluate-object revaluation <el> rdesired <(eb>)
(evaluation <el> rtsymbolic-value win tside (side>)
(gc <g2> tsuperoperator <o3>)
(operator <03> tname evaluate-object taevaluation <e2> trdesired <eb>
tsuperstate <s4>)
(state <(s&> toside <side>)
-=>
{evaluation <(e2> tsymbolic-value win tside <(side>))

L ¢

Ca,

»

2)) ;o)
2 ¥ 'l
LS "f

Ay 1y ¢
A .
e L

ey
s

-

(sp eval®pass-back-win2
(gc <g> tproblem-space <p> tstate <s> tsupergoal <g2> toperator <o>)
(problem-space <p> tname selection)
(operator <o> tname evaluate-object tevaluation <el> tdesired <ebd>)
(evaluation <e1)> tsymbolic-value lose tside <side>)
(gc <g2> tsuperoperator <od>)
(operator <o3> tname evaluate-object tevaluation <e2> tdesired <eb>
tsuperstate <s4>)
(state <(s4> tside <side>)
-->
(evaluation <e2> tsymbolic-value win tside <side>))

NFPRON PARC IS S AN vy e

DEFAULT SEARCH-CONTROI. PRODUCTIONS

(Cm't 0800002000908V opﬂ‘ltor subgoa]"ng 9PeOOSOS 00980088
there are two ways to do operator subgoal
just pass down most recent operator, or pass down all of them
this implementation passes down just the super operator as the
desired - uncomment opsub®go-for-it2 if you want all supergoals
to be included)

(comment make the super-problem space the default
when there is a no-change for the operator)

(sp opsub®try-operator-subgoaling
(gc <g> rimpasse no-change trole operator
tproblem-space undecided tsupergoal <g2>)
(gc <g2> rproblem-space <(p2>)
-=>
(preference (p2> tgoal <g> trole problem-space tvalue acceptable)
(preference (p2> tgoal <g> trole problem-space ftvalue worst))

(comment if the superproblem-space is selected as the
current problem space then operator subgoaling
is being used so select the superstate -
the superoperator becomes the desired)

(sp opsub®go-for-it
(gc <g> tproblem-space <p> tstate undecided
rimpasse no-change rrole operator tsupergoal <g2>)
{(gc <g2> tproblem-space <p> tstate <{s> roperator <o>)
-->
(gc <g> tname operator-subgoal tdesired <o>)
(preference <(s> trole state tvalue acceptable
tgoal <g> tproblem-space <p> tstate undecided))

s 2 IEB
'l " l',
I'-’"/
o7 -

%l' l'

" ate”

(comment pass down all super operator subgoals as well
(sp opsub®go-for-it2
(gc <g> tproblem-space <p> rstate undecided
timpasse no-change trole operator tsupergoal <g2>)
‘gc <g2> tproblem-space <p> tstate <s> tdesired <o))
-=>
(gc <g> tdesired <0>)))

(comment don't select the operator for the initial state that we are
subgoating on)

(sp opsub®*reject-opsub®operator
(gc <g> tname operator-subgoal tproblem-space <p> tstate <s> tdesired <o>)
(preference <s> trole state tvalue acceptable
tgoal <g> tproblem-space <p> tstate undecided)
-=>
(preference <o> trole operator tvalue reject
rgoal <g> tproblem-space <p> tstate <s>))

AVE VAW SR

A gl e o~ v o T L h Aafite e Mty piy i AL Ak Nal Al Sul el

98 SOAR USER'S MANUAL

(comment select superoperator for all new states)

(sp opsub®select-opsub®operator
(gc <g1> tname operator-subgoal rproblem-space <p> tstate (s> rdesired <o>)
-->
(preference <o> trole operator tvalue acceptable
tgoal <g1> tproblem-space <p> tstate <s>)
(preference <o> trole operator tvalue best
tgoal <g1> tproblem-space <p> tstate <s>))

(comment if superoperator applied to a state then success
we make a preference for the state it created)

(sp opsub*detect-direct-opsub-success
{(gc <g0> tproblem-space <p> tstate {s> toperator <o>
tsupergoal <gl> fname operator-subgoal)

(gc <g1> tproblem-space <p> tstate (s2> toperator <o>)
(preference <ns> trole state tvalue acceptable

tgoal <g0> tproblem-space <p> tstate <s> roperator <o’}
-=>
(preference <ns> trole state tvalue acceptable

tgoal <g1> tproblem-space <p> tstate <s2> *operator <o0>))

(comment if there is an evaluation subgoal within
an operator subgoal and the operator being
subgoaled on is applied - success)

(sp opsub®detect-indirect-opsub-success
{(gc <gl> tname operator-subgoal tsupergoa) <g2>)
(gc <g2> tproblem-space <p> tstate {s2> toperator <o>)
(gc <g0> rproblem-space <p> tstate <s> roperator <o>
tdesired <o> tsuperoperator <so>)
{operator <so> tname evaluate-object)
(preference <ns> trole state rvalue acceptable
tgoal <g0> rproblem-space <p> tstate <s> toperator <o>)
-->
(state <s> tsuccess <0>))

(comment if the operator being subgoaled on is the current
operator and a no-change subgoal is created for it
then reject it in the subgoal)

(sp opsub®*reject-double-op-sub
(gc <g1> tname operator-subgoal rdesired <o>)
(gc { <> <g1> <g3> } tname operator-subgoal)
{(gc <g3> tsupergoal <g4>)
(gc <g4> tproblem-space <p> tstate <s> toperator <o>)
-(gc tsupergoal <g3>)
-->
(preference <o> trole operator tvalue reject
tgoal <g4> tproblem-space <p> rstate <s>})

NERON SORC IS T AN e

e ey

W W TN T NI TN TR TR TET IR

Schusk-all-paths®

*chunk-classes®

Schunk-free-problem-spaces®

Schunks®

*max-chunk-conditions®
*max-elshoratioas®

*max-recurse®
*sp-classes®

Sspo-default-depth®

*subgoal-1abs®
Swarning®

Swatch-free-problem-spaces®

back-trace

cs

d

decide-trace
excise
excise-chunks
nit-context
nit-soar
last-chunk
learn
list-chunks
make
matches
multi-attributes

]

pbreak

pi

pgs

pm

po
pop-goal
ppwm
print-stats
ptrace
restart-soar
ren

smake
smatches
soarload
sp

spm

spo

spop

spr

sppwm
sremove
swm
trace-attributes
unpbreak
unptrace
user-select
watch

wm

iy

Pt it

Appendix Il
Summary of Functions and Variables

NLRON Pk

N -

SUMMARY OF FUNCTIONS AND VARIABLES

Controls multiple chunks from different paths: nil
SP classes that must appear in a chunk for it to be built: {state)
Names of problem space not to chunk: ()

Names of chunks built: ()
The maximum number of conditions aliowed in a chunk: 200

The maximum number of claboration cicles before a decision: 100
Depth of look ahead used by ordenny scheme: 2

Association list of SP and P classes: (1gc . goal-context-info))
Default depth that spo prints: |
If T. Watch 0 trace will tab in subgoals: [
{f nil, warnings will not be pnnted: T

List of problem space names not to trace: ()

)

Print out those conditions and productions that lead to the action: (back-trace 00034)
Pnint the conflict set: (cs)
Run A decision cycles: (d §)
Trace the deaision procedure. t of ail: {decide-Lrace ml)

Remove a production from production memory: (excise eight®create-siate)
Exase all chunks: (excise-chunks)
Initialize the top context: (imt-context ‘pl 'sl ‘ol)

Clear out working memory: tinit-soar)

Print out most recently built chunk in SP format: (last-chunk)
Conurol chunking: (learn off always pnnt)
Pnnt out chunks in SP format: (list-chunk)
Add element to working memory: (make state-info ridentifier s02 .)

Show all working-memory elements that match a producuon: (matches eight*create-siate’
Declare some attnibutes of some classes (o be sets: (multi-attributes ‘({state binding 9)))
Define a production: (p eight*create-state (goal-context-info nidenufier <>
Break after production fires or context change:(pbreak evaluate-object eight®create-state)
Print the Nrh partial instantiation ol a production: (pi exight®crcate-state 3)

Print the goal-context stack: (pgs)
Print production in P format: (pm eight®create-state)
Print all augmentations of object: {po G0033)
Terminate all goal and its subgoals: (pop-goal g0045)

Prettypnnt working-memory elements: (ppwm state-info)

Print statistics from a run: (pnnt-stats)

Trace a production. object or working-memory element: (ptrace eight®create-state)
Clear out production memory and working memory: (restan-soar)

Run N productions cycles: (run 100)
Add element in SP format to working memory: (smake state s02 tav 3)

Dusplay part of production that maiches: ismatches eight®create-state)

Load in productions. especially for D-machines: (soarload ‘default soar)

Define a production in SP format: (sp eight®create-state (gc<g> .})

Print production in SP format: (spm eight*create-state)

Print ail augmentations of objects in SP format to given depth: {spo G0003 2)

Pnint all preferences of objects 1n SP format to given depth: ispop G003 2)

Pnnt in SP format of whatever is ¢iven as an argument: {spr O003)

Prettypnint working-memory elements in SP format: (ppwm siate-info)

Remove working-memory element with given time-wag: {sremave 13

SP pnint the object in the identifier ficld of the element with the ume-tag: (swm 454)
Will trace the attnbutes of the classes: (trace-attnbutes ((operator module))
Remove a breakpoint. nil removes all breaks: (unpbreak selection)

Removes all traces set by ptrace: ¢unptrace)
Change how indifferent-preferences are handled. first. nil = random. T =user. (3 selection 1)
Control tracing, -1.0. 5, 1. 1 5. 2 thugher = morey: (watch 0)

Pnnt working-memory elements #1th given ume-tags: (wm 434 455)

)

99

/
.f\.h-l f&-o-f --4-.‘\&
OO

N

<
]
z.
<
>
v
x
=
v
o
o
2

.11-‘.. - o e\ .“I.‘»ct.;\..bv [n.....ﬁ._ Ve e T -...Z...-..-.o.. .< .\.\.\-\\.l- AR R -........... -.. P, F A .,‘..,-. AR

RON AR

INDEX 101

Index

chunk-all-paths® 61
. *chunk-classes* 35. 61
\ *chunk-free-problem-spaces® 3S. 6]
s *chunks® 61,74
. *max-chunk-conditions® 61
' *max-elaborations® 61
*max-recurse® 6}
*opsS-actions® 16
. *sp-classes® 8. bl
*spo-default-depth® 62. 68 69
*subgoai-tabs® 62.65. 67
*tracep-hist® 66
*warning® 62
*watch-{rec-problem-spaces® 62

LI

%
:
)
by

s

: <
. « R
) W 45
<= 12
o1
<> undeaded 17. 38

= 12

> 12
>= 12
» 12

rattnbute 8
tbetter 29. 51, 54
rdesired 27. 28, 29, 30. 48. 49
X tdraw 32
. tevaiuation 27, 31
tfailure 32
tidenufier 8
tlose 32
3 tname 27.44
g taumenc-value 28,31
tobject 27
toperator 28
trole 27
rstate 27,28
tsuccess 32.49
tsupergoal 27
A tsuperproblem-space 27
: rsuperstate 7
tsymbolic-vafue 8. 31
rsymbolic-value farlure 29. 30
N rsvmbolic-value success 29 31
tsymbolic-value win 1l R
rvalue 3 hOR
rwin 32 :1'

\ceept 14 B
\cceplable-preference 10 2§ \\
Always 73
Attnbute 3 e

= NEPFONVPARE ST 8 OANLARY | Sn

SOAR LSER'S MANLAI

Augmentations 8

Back-trace 69
Best-preference 29
Bind 13

Bottom-up 73
Bottom-up chunking 3$

Call2 W4

Candidate results 59
Chunk conditions 35
Chunking 35

Class 7

Common Lisp 79
Compute 14,31
Conflict 23
Conflict impasse 22
Conllict impasses 25
Conjunctions 13
Conjunctive negations 17
Crif 1§

CS 67

D 63
Decide 11
Decide-trace 66

Decision 11

Dectsion procedure 1. 19
Decision®gather-preferences 67
Default*backup-if-failed-state 25, 85
Default*goal-no-choices 26 87

Default®make-all-operators-acceptable 25. 45, 85
Default®nc-operator-retry 25. 85
Default*operator-conflict 25. 86
Defauit®*operator-no-choices 26. 87
Defauit®*operator-tic 25, 86
Default*problem-spar=-conflict 25, 86
Default*problem-sgace-no-choices 26. 87
Default®problem-space-ue 25. 86
Default*state-conflict 25. 86
Default®state-no-choices 26, 87
Default®state-tie 25. 86

Default soar 27.79

Desired 23

Desited state 48

Detect-candidate 59

Detect-opl-success 59

Drsjunction 12,45

Draw 28

Duplicate conditions 37

Fight Puzzle 41
Eight®acceptable 45
Fight®copy-unchanged 47
Eight®create-new-state 46
Eight*detect-success 48
Fight®¢val-state-plus-one 54
Eight*iniual-desired-states 50
Eght*stant S0
Eight*worst-undo 53

NEROY PARC ISE- - TN

.

aTave o a & L

INDEX

Eightsoar 79

Elaborate 11

Elaborate-once 11

Elaboraton !l

trrors 75

Fval*apply-evaluate 28.89
Eval*detect-fallure 32, %4
Eval*detect-lose 32. 94
Fval®detect-success 32. 94
Fval*detect-win 32,94
Fval*draw-values 30.95
Eval®equal-eval-indifferent-preference 29.90
Eval*failure-becomes-worst 29. 9%
F:val*failure-if-reject-evaling-operator 30.92
Fval®failure-if-reject-state 30. 92
Fval*losing-values 30.96
Fval®losing-values? 30. 96
Eval®move-side-to-eval 30. 95
Fvai*parallel-evaluate 27 88
Fval*pass-back-success 31 92
Fval®pass-back-win 31.96
Fvai®pass-back-win2 31. 96
Fval®prefer-higher-evaluauon 29. S1. 9
I'val®prefer-lower-evaluation 29. 90
Eval®reject-evaluate-finished 28, 89
Eval®reject-non-slot-operator 30. 91
Eval®seleci-evaluate 27.88
Eval®seiect-role-operator 30. 91
Evai®select-role-problem-space 3,91
Evai®select-role-state 30.91
Eval®state-to-symbolic-evaluauon 32,94
Eval®success-becomes-best 29. 93
Eval*winnming-values 30.95
Eval*winming-values? 30. 95
Evaluate-object 26, 27. 28. 30
Evaluauon 27, 30. 54

Fxase 73

Exase-chunks 74

Extraneous conditions 37

Failure 28
Fields 8
Franz-lusp 79

Garbage collection 24

Goal detecion 47

Goal terminauon 24
Goal-context 9.62. 63
Goal-context-info 8.9.23.38. 60
Goal-context-stack 19, 22, 60

Hesemuedu 79
Halt 14
Help 78
Hins "8

[dentifier 8
Impasse 23

Info 8
Init-context 50. 62

NCORONPAREC N

14

SOAR USER'S MANL AL

Im-soar §0.62. 63
Inal state 10
Interhsp 79

ltem 23

last-chunk 74
lecarn 73
bist-chunks 74
Tose 28

Make 14.71

Mutches 69

Monitonng states 52
Monotonic operator 46
Mulu-attnibutes 53,63
Multi-choice impasses 25

Name 8

Negated conditons 13,17, 36
Never 73

No-change 13

No-change impasse 60
No-change impasses 26
No-choice impasses 26
Non-monotonic operator 46
Nopnnt 7}

Nots 38

Numenc cvaluation 28, 31

Object 7.8

ofn 73

On 73

Operator apphication 46
Operator crcauon 45
Operator implementation 59

Operator wnstanuation 26 .
Operator subgoaling 26, 32
OpsS 7.15

Opsub®detect-direct-opsub-success 33, 98
Opsub®detect-indirect-opsub-success 3. 98
Opsub*go-for-n 32,97

Opsub®go-for-nd 97
Opsub®reject-double-op-sub 33 98
Opsub®reject-opsub®operator 32, 97
Opsub®select-opsub®operator V2. 98
Opsub®try-operator-subgoaling 12,97
Ordenng conditions 38
Over-generalizanon 38

P LT

Parallel operators 10,27 o)
Parallel-preference 60
Pbreak w4

PGS o0 65 67

Pt 70

PM 69

PO o8

Pop-goal 77

PPWM w7
Preference 7.9 19

LORON PR

INE o8 TN s e

A.. - kN _--‘~-..
LY '.J' o, W

A Y

PO

RSB £] KR

INDEX 105

Print 73

Print-stats 70

Pnor operator 10

Pror state 10

Production 11
Production actions 13
Production conditions 11l
Production functions {3
Production instantiation 11
Ptrace 66

Readme 79
Reference 10
Refractory inhibition 38
Reject-preference 25
Rejecuon 23
Rejection impasses 26
. Restart-soar 62
" Rete network 38
. Role 9. 10,23
Run 63

Search control 25, 53
Select®create-state 26, 88
Select®selection-space 26, 88
. Selection problem space 25. 26
' Smake 15.72
) Smatches 69
" Soar load 79
Soarload 63
SP 8.11,15.72
SPM 69
SPO 68
SPOP 69
SPPWM 68
SPR 67
Sremove 72
States 41
- Subgoal creation 23
. Subgaals 23
Success 28
Supergoal 24
Superoperator 4. 60
SWM 68
Symbolic evaluauon 28, 31
Syvmbolics 3600 79

, Tabstop 14.52

b Tabto 15.52
Tic-Tac-Toe 28

Tie 23.31

Tie impasse 22

l'e impasses 25
Time-tags 7 65 68.69
Trace 66. 100
Trace-atinbutes 33 65
Tracing SS
I'wo-player games 8. 29

; Undecided 9

NERONVPARC 03 % AN ARY war ey |

SOAR USER'S MANL Al

Unpbreak 64

Unptrace 67

Untrace 100

27.64

User-select

Value 8

Vanables 12,37

O

g
|3
~ S
E
[l o
€ ¢
w EE
T a € E
B.bonw.oeﬂ.
mh.;.nl mm
EEe>35%
222222

Worst-preicrence 29

14

Wnte!
Wnie) 14582

g Fe % Ty T e

Xerox D-machmes 63

9

/ew-lsp

.
Lense

b

» s.-.. LR

PR
PR AN

AR A

N

NON P

1985/10/11

Xerox PARC/J.S. Brown

Dr. Phillip L. Ackerman
University of Minnesota
Department of Psychology
Minneapolis, MN 5545

Personnel Analysis Division,
AF/MPXA

5C360, The Pentagon

Washington, DC 20330

Air Force Human Resources Lab
AFHRL/MPD
Brooks AFB, TX 78235

AFOSR,

Life Sciences Directorate
Bolling Air Force Base
Washington, DC 20332

Dr. Robert Ahlers

Code N711

Human Factors Laboratory
NAVTRAEQUIPCEN

Orlando, FL 32813

Or. Ed Aiken
Navy Personnel R&D Center
San Diego, CA 92152

Dr. James Anderson

Brown University

Center for Neural Science
Providence, RI 02912

Dr. John R. Anderson
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Or. Nancy S. Anderson
Department of Psychology
University of Maryland
College Park, MD 20742

Dr. Steve Andriole
Perceptronics, Inc.
21111 Erwin Street
Woodland Hills, CA 91367-3713

Technical Director, ARI
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Alan Baddeley
Medical Research Council
Applied Psychology Unit
15 Chaucer Road
Cambridge CB2 2EF
ENGLAND

Dr. Patricia Bag?ett
University of Colorado
Department of Psychology
Box 345

Boulder, CO 80309

Dr. Gautam Biswas

Department of Computer Science
University of South Carolina
Columbia, SC 29208

Dr. John Black

Yale Universitg

Box 11A, Yale Station
New Haven, CT 06520

Arthur S. Blaiwes

Code N711

Naval Training Equipment Center
Orlando, FL 32813

Dr. Jeff Bonar

Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Dr. Gordon H. Bower
Department of Psychology
Stanford University
Stanford, CA 94306

Dr. Robert Breaux
Code N-095R
NAVTRAEQUIPCEN
Orlando, FL 32813

Dr. John S. Brown

XEROX Palo Alto Research
Center ’

3333 Coyote Road

Palo Alto, CA 94304

Dr. Bruce Buchanan
Computer Science Department
Stanford University
Stanford, CA 943056

P2 27 Fss

1985/10/11

Xerox PARC/J.S. Brown

Dr. Jaime Carbonell
Carnegie-Mellon University
Department of Psgchology
Pittsburgh, PA 15213

Dr. Pat Carpenter
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Chair, Department of
Computer Science
College of Arts and Sciences
Catholic University of
Sciences
America
Washington, DC 20064

Dr. Fred Chan?

Navy Personnel R&D Center
Code 51

San Diego, CA 92152

Dr. Eugene Charniak

Brown University

Computer Science Department
Providence, RI 02912

Dr. Michelene Chi
Learning R & D Center
University of Pittsburgh
3939 O0'Hara Street
Pittsburgh, PA 15213

Mr. Raymond E. Christal
AFHRL/MOE
Brooks AFB, TX 78236

Dr. Yee-Yeen Chu
Perceptronics, Inc.

21111 Erwin Street

Woodland Hills, CA 91367-3713

Dr. William Clancey
Computer Science Department
Stanford University
Stanford, CA 94306

Dr. Allan M. Collins

Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

Dr. Stan]e% Collyer

Office of Naval Technology
Code 222

800 N. Quincy Street
Arlington, VA 22217-5000

Dr. Natalie Dehn
Department of Computer and
Information Science
University of Oregon

Eugene, OR 9740

Dr. R. K. Dismukes
Associate Director for Life

AFOSR
Bolling AFB
Washington, DC 20332

Defense Technical
Information Center
Cameron Station, Bldg 5
Alexandria, VA 22314

Attn: TC
(12 Copies)

ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

Dr. K. Anders Ericsson
University of Colorado
Department of Psgchology
Boulder, CO 8030

Dr. Pat Federico
Code 611

NPRDC

San Diego, CA 92152

Dr. Jerome A. Feldman
Universitg of Rochester
Computer Science Department
Rochester, NY 14627

Dr. Paul Feltovich

Southern I1linois University
School of Medicine

Medical Education Department
P.0. Box 3926

Springfield, IL 62708

iy v o m e agey e R RS e =

1985/10/11

Xercx PARC/J.S. Brown

Mr. Wallace Feurzeig
tducational Technology
Bolt Beranek & Newman
10 Moulton St.
Cambridge, MA 02238

Dr. Craig I. Fields
ARPA

1400 Wilson Blvd,
Arlington, VA 22209

Or. Gerhard Fischer

University of Colorado
Department of Computer Science
Boulder, CO 80309

Dr. Kenneth D. Forbus
University of Illinois
Department of Computer Science
1304 West Springfield Avenue
Urbana, IL 61801

Dr. Carl H. Frederiksen
McGill University

3700 McTavish Street
Montreal, Quebec H3A 1Y2
CANADA

Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

Dr. R. Edward Geiselman
Department of Psychology
University of California
Los Angeles, CA 90024.

Dr. Michael Genesereth
Stanford University
Computer Science Department
Stanford, CA 94305

Dr. Dedre Gentner
University of Illinois
Department of Psychology
603 E. Daniel St,
Champaign, IL 61820

Chair, Department of
Computer Science
George Mason University

Fairfax, VA 22030

.................

Or. Robert Glaser
Learning Research

& Development Center
University of Pittsburgh
3939 0'Hara Street
Pittsburgh, PA 15260

Or. Joseph Goguen

Computer Science Laboratory
SRI International

333 Ravenswood Avenue

Menlo Park, CA 94025

Dr. Sherrie Gott
AFHRL/MODJ
Brooks AFB, TX 782356

Dr. Richard H. Granger
Department of Computer Science
University of California, Irvine
Irvine, CA 92717

Dr. Wayne Gray

Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Or. Bert Green

Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21218

Dr. James G. Greeno
University of California
Berkeley, CA 94720.

Chair, Department of
Computer and Information

Sgstems

The George Washington
Universitg

Washington, DC 20052

Dr. Henry M. Halff
Halff Resources, Inc.
4918 33rd Road, North
Arlington, VA 22207

Dr. Barbara Hayes-Roth
Department of Computer Science
Stanford University

Stanford, CA 95305

.....

oooooo

N OV e

T XA

"

RAGAAAr . -

2 7
* o

1
»

a8, 0,

1985/710/11

Or. Frederick Hayes-Roth
Teknowledge

525 University Ave.

Palo Alto, CA 94301

Dr. Geoffrey Hinton
Computer Science Department
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. Jim Hollan
Intelligent Systems Group
Institute for

Cognitive Science (C-015)
ucsD
La Jolla, CA 92093

Dr. John Holland
University of Michigan
2313 East Engineerin
Ann Arbor, M 4810

Dr. Keith Holyoak
University of Michigan
Human Performance Center
330 Packard Road

Ann Arbor, MI 48109

DOr. Earl Hunt

Department of Psychology
University of Washington
Seattle, WA 981056

Dr. Ed Hutchins
Intelligent Systems Group
Institute for

Cognitive Science (C-015)
ucspD
La Jolla, CA 92093

Dr. Dillon Inouye
WICAT Education Institute
Provo, UT 84057

Dr. Marcel Just
Carnegie-Mellon University
Department of Psychology
Schenley Park

Pittsburgh, PA 15213

Xerox PARC/J.S. Brown

Dr. Thomas Kehler
TEKNOWLEDGE

526 University Avenue
Palo Alto, CA 94301

Dr. Dennis Kibler
University of California
Department of Information

and Computer Science
Irvine, CA 92717

Dr. David Kieras

University of Michigan
Technical Communication
College of Engineering

1223 E. Engineering Building
Ann Arbor, MI 48108

Dr. Janet L. Kolodner

Georgia Institute of Technology

School of Information
& Computer Science
Atlanta, GA 30332

Dr. Kenneth Kotovsky

Department of Psychology

Community College of
Allegheny County

800 Allegheny Avenue

Pittsburgh, PA 15233

Dr. Benjamin Kuipers
Department of Mathematics
Tufts Universit

Medford, MA 02155

Dr. Pat Langleg
University of California
Department of Information

and Computer Science
Irvine, CA 92717

Dr. Ji11 Larkin
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Dr. Robert Lawler
Information Sciences, FRL
GTL Laboratories, Inc.

40 Sylvan Road

Waltham, MA 02254

e 8 & A

1985710711

Xerox PARC/J.S. Brown

Dr. Paul E. Lehner

PAR Technology Corp.
7926 Jones Branch Drive
Suite 170

McLean, VA 22102

Dr. Alan M. Lesgold
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Dr. Clayton Lewis
University of Colorado

- Department of Computer Science

Campus Box 430
Boulder, CO 80309

Science and Technology Division
Library of Congress
Washington, DC 20540

Dr. Don Lyon
P. 0. Box 44
Higley, AZ 85236

Dr. Sandra P. Marshall
Dept. of Psychology

San Diego State University
San Diego, CA 92182

Dr. Manton M. Matthews
Department of Computer Science
University of South Carolina
Columbia, SC 29208

Dr. Kathleen McKeown

Columbia University

Department of Computer Science
New York, NY 10027

Dr. Al Meyrowitz

Office of Naval Research
Code 1133

800 N. Quincy

Arlington, VA 22217-5000

Dr. Ryszard S. Michalski
University of Illinois
Department of Computer Science
1304 West Springfield Avenue
Urbana, IL 61801

Prof. D. Michie

The Turing Institute

36 North Hanover Street
Glasgow G1 2AD, Scotland
UNITED KINGDOM

Dr. George A. Miller
Department of Psychology
Green Hall

Princeton University
Princeton, NJ 08540

Dr. William Montague
NPRDC Code 13
San Diego, CA 92152

Dr. Tom Moran

Xerox PARC

3333 Coyote Hill Road
Palo Alto, CA 94304

Chair, Department of
Computer Science
Morgan State University

Baltimore, MD 21239

Or. Allen Munro

Behavioral Techno]ogg
Laboratories - U

1845 S. Elena Ave., 4th Floor

Redondo Beach, CA 90277

Chair, Department of
Computer Science

U.S. Naval Academy

Annapolis, MD 21402

Dr. David Navon

Institute for Cognitive Science
University of California

La Jolla, CA 92093

Dr. Allen Newell
Department of Psachology
Carnegie-Mellon University
Schenley Park

Pittsburgh, PA 15213

Dr. T. Niblett

The Turing Institute

36 North Hanover Street
Glasgqow G1 2AD, Scotland
UNITED KINGDOM

el
S
s(<_

r' 'y
o

z-,,
2T

oy

f?ﬁﬁ?.;f<

-

e

1985/10/11

Xernx PARC/J.S. Brown

Dr. Donald A. Norman

Institute for Cognitive Science
University of California

La Jolla, CA 92093

Librarg. NPRDC
Code P201L
San Diego, CA 92152

Commandina Officer,

Naval Research Laboratory
Code 2627

Washington, DC 20390

Dr. Stellan Ohlsson
Learning R & D Center
University of Pittsburgh
3939 0O0'Hara Street
Pittsburgh, PA 15213

Office of Naval Research,
Code 1133

800 N. Quincy Street

Arlington, VA 22217-5000

Office of Naval Research,
Code 1142

800 N. Quincy St.

Arlington, VA 22217-5000

Office of Naval Research,
Code 1142PT

800 N. Quincy Street

Arlington, VA 22217-5000

(6 Copies)

Dr. Nancy Pennington .
Universitg of Chicago
Graduate School of Business
1101 E. 58th St.

Chicago, IL 60637

Department of Operations Research,
Naval Postgraduate School
Monterey, CA 93940

Department of Computer Science,
Naval Postgraduate School
Monterey, CA 93940

Dr. Martha Polson
Department of Psychology
Campus Box 346

University of Colorado
Boulder, CO 80309

Dr. Peter Polson
University of Colorado
Department of Psychology
Boulder, CO 80309

Dr. Steven E. Poltrock
MCC

9430 Research Blvd.
Echelon Bldg #1
Austin, TX 78759-6509

Dr. Harry E. Pople
Universitg of Pittsburgh
Decision Systems Laboratory
1360 Scaife Hall
Pittsburgh, PA 15261

Dr. Joseph Psotka

ATTN: PERI-1C

Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

Dr. Lynne Reder

Department of Psychology
Carne?ie-Mellon University
Schenley Park

Pittsburgh, PA 15213

Dr. James A. Reggia
University of Maryland
School of Medicine
Department of Neurology
22 South Greene Stree
Baltimore, MD 21201

Dr. Fred Reif

Physics Department
University of California
Berkeley, CA 94720

Dr. Lauren Resnick
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

1985/10/11

Xerox PARC/J.S. Brown

Dr. Mary S. Riley

Program in Cognitive Science

Center for Human Information
Processing

University of California

La Jolla, CA 92093

Dr. William B. Rouse

Georgia Institute of Technology

School of Industrial & Systems
Engineerin

Atlanta, GA 30332

Dr. David Rumelhart

Center for Human
Information Processing

Univ. of California

La Jolila, CA 92093

Dr. Roger Schank

Yale University

Computer Science Department
P.0. Box 2158

New Haven, CT 06520

Dr. Walter Schneider

Learning R&D Center
University of Pittsburgh
3939 0'Hara Street
Pittsburgh, PA 15280

Dr. Judah L. Schwartz
MIT

20C-120

Cambridge, MA 02139

Dr. Michael G. Shafto
ONR Code 1142PT

800 N. Quincy Street
Arlington, VA 22217-5000

Dr. Sylvia A. S. Shafto
National Institute of Education
1200 19th Street

Mail Stop 1806

Washington, DC 20208

Dr. T. B. Sheridan
a??t. of Mechanical Engineering
Cambridge, MA 02139

Dr. Ted Shortliffe
Computer Science Department
Stanford University
Stanford, CA 94305

Dr. Randall Shumaker

Naval Research Laboratory
Code 7510

4555 Overlook Avenue, S.W.
Washington, DC 20375-5000

Dr. Herbert A. Simon
Department of PSﬂchology
Carnegie-Mellon University
Schenley Park

Pittsburgh, PA 15213

Dr. Derek Sleeman

Stanford University
School of Education
Stanford, CA 94305

Dr. Edward E. Smith

Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

Dr. E1liot Soloway

Yale University

Computer Science Department
P.0. Box 2158

New Haven, CT 06520

James J. Staszewski
Research Associate
Carnegie-Mellon University
Department of Psychology
Schenley Park

Pittsburgh, PA 15213

Dr. Albert Stevens

Bolt Beranek & Newman, Inc.
10 Moulton St.

Cambridge, MA 02238

Dr. Paul J. Sticha

Senior Staff Scientist
Training Research Division
HumRRO

1100 S. Washington
Alexandria, VA 22314

C S .

1985710711

Xerox PARC/J.S. Brown

Or. Patrick Suppes

Stanford University

Institute for Mathematical
Studies in the Social Sciences

Stanford, CA 94305

Or. John Tangney
AFOSR/NL
Bolling AFB, DC 20332

Dr. Kikumi Tatsuoka

CERL

252 Engineering Research
Laboratory

Urbana, IL 61801

Or. Perry W. Thorndyke

FMC Corporation

Central Engineering Labs
1185 Coleman Avenue, Box 580
Santa Clara, CA 95052

Dr. Douglas Towne
Behavioral Technology Labs
1845 S. Elena Ave.

Redondo Beach, CA 90277

Chair, Department of
Computer Science
Towson State University

Towson, MD 21204

Chair, Department of
Computer Science
University of Maryland,
Baltimore County

Baltimore, MD 21228

Chair, Department of
Computer Science

University of Maryland,
College Park

College Park, MD 20742

Dr. Kurt Van Lehn
Xerox PARC

3333 Coyote Hill Road
Palo Alto, CA 94304

At R S At L
e T T .
s % OR £ N, LGOS CLPS T CNOT R KL OO

Dr. Keith T. Wescourt

FMC Corporation

Central Enginsering Labs
1185 Coleman Ave., Box 580
Santa Clara, CA 95052

Dr. Barbara White

Bolt Beranek & Newman, Inc.
10 Moulton Street
Cambridge, MA 02238

Dr. Wallace Wulfeck, III
Navy Personngl R&D Center
San Diego, CA 92152

Dr. Masoud Yazdani

Dept. of Computer Science
University of Exeter
Exeter EX4 4QL

Devon, ENGLAND

Mr. Carl York

System Development Foundation
181 Lytton Avenue

Suite 210

Palo Alto, CA 94301

Dr. Michael J. Zyda

Naval Postgraduate School
Code 52CK

Monterey, CA 93943

#5772 e

()
L4

—_
.

N

N
X

