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PREFACE -

P reface
This manual describes Soar. version 4. This is the version of Soar currently available (January. 1986) in

Common Lisp. Fmaz-Lisp. Interlisp and Zeta-Lisp.

Soar is an architecture for problem solving and learning, based on heuristic search and chunking. Soar is

embedded in a production-system architecture - a modified version of Ops5 - where all the volatile

short-term information is held in working memory and all the fixed long-term knowledge is encoded as

productions. Chapter I is an overview and introduction to the structure of the Soar architecture. Chapters 2

and 3 describe the nittv-gritt of working-memory representation and production representation in Soar.

Chapter 4 describes the decision scheme that determines the selection of problem spaces. states and operators. .

Chapter 5 gives the details of how subgoals are automatically created and terminated. Chapter 6 describes the

default processing in Soar. that is. the search-control knowledge that comes with Soar. Chapter 7 describes
chunking, the earnming mechanism in Soar. Chapter 8 is a short tutorial that describes how to encode goals.
problem spaces. states, operators. and evaluation functions using the Fight Puzzle as an example. Chapter 9
discusses advanced programming topics. Chapter 10 describes the global variables and top-level functions of
Soar. Chapter I1 lists all of the error and warning messages generated by Soar and includes some hints on
correcting difficult bugs. Chapter 12 describes how to obtain and install Soar for different machines. Chapter : '
13 is a summary of benchmarking runs of Soar on a wide variety of computers. Chapter 14 contains an
annotated bibliography of Soar publications. An appendix lists all of the default productions that come with
Soar. An index is at the end of the manual. This manual does not attempt to substitute for the general " '
scientific d 3criptions of Soarprovided by the publications listed in the bibliography.

Soar is the result of joint development between John Laird, Allen Newell and Paul Rosenbloom. Credit is
due to Paul Rosenbloom and Dan Scales for implementing parts of Soar and Ron Saul for writing the
programs that convert Soar from InterLisp to the other dialects. A note of appreciation is due Lanny Forgy
for creating Ops5. which forms the backbone of the production-system interpreter in the current

implementation of Soar.

I would like to thank Allen Newell. Paul Rosenbloom. Jill Fain. Gregg Yost- Stephen Smoliar. Dan Scales

and David Steier for comments on earlier drafts of this manual.

All suggestions, comments. and questions concerning this manual or Soarshould be directed to

soar@ h.cs.cmu.edu Ior computer net-mail or
John F. Laird, Xerox PARC. 3333 Co.ote Hill Rd.. Palo \lto. CA. 94304.

*-." *"- o.
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INTRODUCTION 3

1. Introduction

NSo is an architecture for general intelligence that has been applied to a variety of tasks: many of the classic

artificial intelligence (A) toy tasks such as the Tower of Hanoi. and the Blocks World: tasks that appear to

involve complex. non-search reasoning, such as syllogisms, the three wise men puzzle. and sequence

extrapolation: and large tasks requiring expert-level knowledge. such as the Ri computer-configuration task.

This chapter provides a hrieto~erviek of the Soar architecture.

In Soar. every task or problem is tormulated as heuristic search in a problem space to achieve a goal. A
problem space consists of a set of states and a set of operators that transform one state into another. Problem

solving is the process of moing from a given initial state in the problem space through intermediate states

generated by operators until a desired stale is reached that is recogni/ed as attaining the goal. For each goal.

there is always a single current problem space. state, and operator. Ihe current problem space. state and

operator. together with the goal. form a context. Goals (and their contexts) can have subgoals (and associated .,*,

contexts), which form a strict goal-subgoal hierarchy. The detailed structure of these objects is described in

Chapter 2.

l'hroughout the search, decisions are made to select between the available problem spaces. states, and

operators. Every problem-solving episode consists of a sequence of such decisions and these decisions

determine the behavior of the system. Problem solving begins with the selection of a problem space for an

existing goal. This is followed by the selection of an initial state. and then an operator to apply to the state.

Once the operator is selected, it is applied to create a new state. The new state can (but need not) then be .,

selected, and the process repeats as a new operator is selected to apply to the selected state. The knowledge

that implements a task - suggests feasible problem spaces, creates initial states, implements operators - is

collectively called task-implementation knowledge. All standard weak methods can be represented as
knowledge to control the selection of problem spaces. states and operators. *he knowledge that controls these

decisions is collectively called search control. Problem solving without search control is quite common.

however the result is an exhaustive search of the problem space.

Figure 1-1 shows a schematic representation of the decision-making process. To bring all available task- " """

implementation and search-control knowledge to bear on making a decision, each decision in'ohes a

monotonic elaboration phase. l)uring the elaboration phase, all directly available knowledge relevant to the

current situation is brought to bear. Kno% ledge that is not directl. available, but can be extracted by search.

can be brought to hear only in suboais. lhe directly iailable knowledge in Soar is represented as

productions. Chapter 3 describes the language tr spccifting productions in Soar. Ihe contexts of the goal

hierarchy and their augmentations ser e as the *orking memory rbr these productions. Ihe information

... . . . • . . . . - . .. • . ,~ ." %



4 SOAR USFR'S MANUAL

added during the elaboration phase can take one of two forms. First, existing objects may have their '5.

descriptions augmented with new or existing objects. For example. a new state can be created that is the *

result of applying the current operator to the current state. Second. data structures called preferences can be

created that assert the worth of an object for a role in a context. Each preference indicates the context in ~

which it is relevant by specifying the goal. problem space and state.

DECISION 1 DECISION 2DECISION 3

Elaboration Deci on 9'

Phnaseulrocureu

Gather
Preferences

- uiescence Replace

igre --- > otext ecsocce

elabraton has reche Pqueences O eprctioseiil ofr ie eiinpoeuei

procdureis dscrbed n deailiChapter 4. S oarfo h letcnet h decision predree.e

theac rfeece todernif the curraiopaent pole intnitosacf satesfad prationfre in alonext hun bhe

chbanged. phfs suce knowedgee s availabe urgtion seaigibh to etrie -a uiqe decision, thcee sc

rnceedsnabgated. thoeveerene manyicases, the dielaailnae noledge.ienc decasin prodcsiona

brcue insb Whn ti ccrs bCauser 4thariabg pfereclest onteth determineanqe unocdntesed

chae ifrnce con text. n pe in h un problem spin aen rtead ouertpo imass cn aise:ul tie
objects. wercubettern thanleach otherawhile ompeing tohchangrca condtet),e no-chngqe (teeabaion hsec
(nocsinglenobe weer. hn a y ofates the dbjecty compbeting owhange, cone) csonflctionor morey

ra ns ufiecencen thsoustn. chageo thilbe coeentes ado rejetio (ameterieauiengoeteehrctede inacudnte ne currsenl in plae).oighsbe ece.Fu tpso masscnaie i

(n igeojc a etrta l fteohrojct optn ocag otx) ofit(w rmr
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Soar creates a suhgoal (and an associated context) to resolve the impasse. Once a subgoal is created, a

* problem space must be selected. tbllowed by an initial state. and then an operator. If an impasse is reached in

any of these decisions. another suhgoal will be created to resol e it. leading to the hierarchy of goals in Soar.

By treating an impasse as a subgoal. the full problem-solv ing power of Soarcan be brought to bear to resolve

the impasse. creating whatever response is appropriate for the particular instance of the impasse. Ihese

subgoals correspond to th- full %anietN of subpoals created in standard AI systems. lhis ability to generate

automatically all subgoals in response to impasses and to open up all aspects of problem-solving behavior to

problem soling when necessar is called universal subgoalng. Chapter 5 gives a complete description ot

subgoal creation and termination in Soar.

\ subgoal terminates when its impasse is resolved. For example, if a tie impasse arose. it will terminate

when sufficient preferences have been created so that a single object dominates the others. When a subgoal

terminates, all augmentations and preferences created in that subgoal that are not connected, directly' or
indirectly, to a prior context are removed from working memory. Those objects that are not removed

constitute the resuhs of the subgoals.

Default knowledge exists in Soar to cope with the impasses, if no additional knowledge is available. For

some impasses this involves rejecting a prior choice in the context: for other impasses this involves searching

for knowledge to resolve the impasse. Any additional non-default knowledge about how to resolve an

impasse dominates the default knowledge and controls the problem solving in the subgoal. [he different

default responses to impasses are described in more detail in Chapter 6.

In addition to general problem solving, Soar also supports a general learning mechanism called chunking.

Chunking occurs as a byproduct of problem solving in goals. Whenever a goal is satisfied, a chunk - a

production - is created that can generate the results of the goal when a similar situation recurs. Ihe chunk's

conditions are based on the working-memory elements that existed prior to the goal that were matched by the

conditions of productions that fired during the processing of the goal. Vhe chunk's actions are the working-

memory elements that were created in the goal that are of potential use in the supergoal. The complete details

of chunking are given in Chapter 7.

Soar is meant to be the underlying architecture tiir an autonomous intelligent agent. Its behaor is

determined by the knowledge it contains. and Ideal% e kshould he able to descrihe and spectv its hehavior in

terms of the knowledge it has tor implementing and controling its hehasior. Howexcr. in this manual, the

viewpoint of the user as programmer is taken. I his k iew is morc cand,ird i programming manuals, hut It Is

not the "true" point of iew tfr Soaras in architecture tor cneral intclhccnce.

IJ
........... . .. .-... .......... ... ..
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DATA RILPRI SI A I ION [\ WORKING MEMORY 7

2. Data Representation in Working Memory

[he production-system aspects of Soar are derived from Ops5, and as such. Soar inherits the basic

representational scheme of working memory and productions provided in Ops5. In this chapter, we start with

a brief review of the representation of working memory in Ops5. pointing out the differences in Soar. Next.

we describe how Soar uses this scheme to represent structures, such as goals, problem spaces. states and %

operators. All information on Ops5 in this and the following chapters is based on the Ops5 User's Manual

(Forgy, 1981).

2.1. Working Memory in Ops5

Working memory in Ops5 is a multi-set of elements, called working-menmo elements. Each working-

memory element consists of a class. followed by a set of attribute-vaiue pairs. Each attribute is prefaced bv a

t. A template for a working-memory element is as follows:

(class tatributei valuel atribute2 value2 ...

For example, a blue block that is called block3, weighs 200 grams. and is on a block called block I could be

represen ted as
(block tname block3 tcolor blue tmass 200 tontop Olockl)

Each working-memory element is represented internally in Ops5 as a single data structure. When a working-

memory element is created (added to working memory) it is assigned a unique integer, called its time-tag.

These time-tags are often displayed by the system in place of the working-memory element when describing

sets of working-memory elements to the user. The function wm prints the working-memory element given a

time-tag (see Section 10.5.6).

2.2. Working Memory in Soar

Working memory in Soar is a set and not a multi-set (a change from Ops5). Ihere is only one copy of a

working-memory element in working memory at a time. If an action of a production tries to add an existing

element to working memory, it has no effect.

In Soar. there are two different types of data representations in working memory: objects, and preferences.
Both of these are realized in the attribute-value representation scheme of Ops5. However. the Ops5 scheme

has certain restrictions that force Soar to represent objects indirectly in another attribute-value scheme on top

of the Ops5 scheme: I1) Soar must be able to reference each individual attribute of an object without

accessing the others: 12) Soar must he able to have multiple values for the same attribute of an object (a

simple representation of sets): 13) muitiple productions must he ible to cre.te different attributes for an

object in parallel: and (4) Soarallows %ariables to match attributes. [ach working-memorv element in Soaris

............ *1 1'! I .~
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an identifier-attribute-value triple (except for preferences which are described later). The class name of the

working-memory element in Soar always ends in -info (or is just info). These working-memory elements are

called augmentations. Each augmentation has three Ops5 attributes: tidentifier. fattribute and tvalue. To JP e

avoid confusion. we will refer to the attributes of an OpsS working-memory elements as fields. So, in the

following example, there are three fields: identifier. attribute and value. The identifier is B0003, the attributes

are name and color and the % alues are block 3 and blue respectively.
(block-info tidentifier 80003 tattribute name tvalue block3)
(block-info tidentifier 80003 tattribute color itvalue blue)

To overcome the redundanc. of this representation scheme. Soarprovides many functions (essentially pre-

and post-processors) that hide the Ops5 reprcscntation by supporting a new notation called SP (for Soar

production). For example, the abovc two working-memory elements would be represented as follows in SP

notation:

(block 80003 tname block3 tcolor blue)

In SP notation, an object begins with a class. However, this class name is the OpsS class without -info (-info

lets the user know when he is dealing with Ops5 working-memory elements instead of SP objects). The SP

class is translated into an Ops5 class using the association list in the global variable *sp-classes*. All classes

not occurring in the list have -info added to them. Using this list. some OpsS classes can be represented by

many SP classes. For example, gc. goal. context, and goal-context are all translated into goal-context-info.

while object is translated into just info. [nitially, there are eleven SP classes that map onto seven OpsSclasses.

, These are pre-defined by the global variable *sp-classes*:
S"((gc . goal-context-info) (goal . goal-context-info)

(context . goal-context-info) (goal-context . goal-context-info)
(problem-space . space-info) (space . space-info)
(state . state-info) (operator . op-info) (desired . desired-info)
(evaluation eval-info) (object info))

Following the class is the identifier (B0003 above). In SP notation, the identifier must not be preceded by

the attribute tidentifier because a working-memory element with attribute tidentifier is assumed to be in

Ops5 format. The identifier should always be a gensymed symbol, such as G0023. Following the identifier

-" are the attribute-value pairs. Each of these pairs is an augmentation. a separate Ops5 working-memory

* element. Thus. no single working-memory element defines all of the features of an object. Instead. the object

takes its definition from the augmentations that contain its identifier.

In Soar. the identifier is just an arbitrary gensym. Ifa meaningful label is desired for an object, it should be

the value of the name attribute. [he tracing facilities will use the atom in the value field of a name

augmentation when displaying information. I his makes the traces much more readable. For example:
(op-info tidentifier S0012 tattribute name tvalue configure-backplane)

* -,* ]

* " .4,
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'This would be printed by the tracing facility as configure-backplane.

2.3. Goal-contexts

Problem solving in Soar is controlled by goal-conwexis. There is a strict goal hierarchy: a subgoal is only

created in response to an impasse in problem solving for an active goal. Each individual context contains four '4.
roles: goal. problem space. state and operator. [he combination of a role and a context defines a unique sot.

The object occupying the goal role in a context is the current goal for that context: the object occupying the-~

problem-space role is the current problem space for that context, and so on. A goal-context is represented in

working memory by three augmentations of the goal identifier, one for each of the non-goal slots. These

augmentations are of class goal-context-info. (In SP format, the class can be goal-context, goal. context or

gc.) The identifier field contains the identifier of the goal, the attribute field contains the appropriate role.

The value field contains the identifier of the object that is current for that slot. The value of a slot is undecided

if no object has been selected for it. There is one and only one goal-context-info working-memory element

for each slot. Only the decision procedure (to be defined later) modifies, adds, or removes these working-

memory elements. Productions cannot create working-memory elements of the goal-context-info class that -"

have attribute problem-space, state or operator.

Below is an example of the working-memory elements that define a goal-context in SP format.
(gc GO001 tproblem-space G0034 tstate G0047 toperator G0033)

This is expanded internally to three working-memory elements.
(goal-context-info tidentifier GO001 tattribute problem-space

tvalue G0034)
(goal-context-info tidentifier GO0001 attribute state tvalue G0047)
(goal-context-info tidentifier G0001 tattribute operator tvalue G0033)

2.4. Preferences

Preferences are a special type of data structure in Soar. A preference is an assertion of the relative or

absolute worth of an object for a context slot. Fach preference is a single working-memory element that is of

class preference (it is a single working-memory element in OpsS notation and also SP notation, and in both its

class is preference). Preferences are created by productions. and they are used by the decision procedure to
.." .%" .

replace an object in a slot. [he processing of preferences by the decision procedure is discussed in Chapter 4.

[he fields of a preference are:

object This is the identifier of the object that the preference Aill affect. (In SP notation, the
tobject preceding the identitier is optional As long As It Is the first field t66lloing the
class.)

- . . - • . .

•.- *. .
- -- - . . . .. - - . . . . . . . .. , - • . _ A . " , .



10 SOAR USERS MANUAL

role This is the name of the role that the object will play in the context: problem-space.
state or operator.

value The value is a relati'e or absolute evaluation of the object in the object field. These
evaluations are only relevant when the goal, problem-space, state and operator fields
correctly match the current context. Two of the values (acceptable and reject)
determine whether an object will be considered. Three of the values (better.
indifferent, and worse) provide a comparison of an object to another object (the
reference object). I he remaining values equate an object to a hypothetical ideal (best.
indifferent, worst). [here is another value, parallel, which permits parallel execution
(see Section 9.2). [he exact semantics of these values are given in Section 4.

reference The identifier that is compared to the object field, only when the value field is
indifferent, better, worse, or parallel.

goal. problem-space. state, and operator
These fields define the relevant context for the preference. A preference is only used
when the current context corresponds to the context defined by these fields. If the
value of one of these fields is not nil. it is compared to the value in the corresponding
slot of a context. If all of the non-nil context fields of the preference match the
identifiers in the corresponding slots of a context, the preference will be used in
determining new values for the context.

The following preference is for an operator (x33) that has been determined to be worse than another

operator (x32). Since the operator field is not specified. it becomes nil and the operator slot is not tested when

determining the relevance of the preference.
(preference tobject x33 trole operator tvalue worse treference x32

tgoal g14 tproblem-space p34 tstate slO)

An object is selected for a role in a context only if there exists an acceptable-preference for that object.

Thus, the acceptable-preferences for previously selected objects provide a partial history of changes to the

context. Below is a short list of some of the information that is accessible via acceptable-preferences.

prior slate The acceptable-preference for the current state contains the prior state in the state
field.

prior operator The acceptable-preference for the current state contains the prior operator in the
operator field. The prior operator is the operator used to create the current state.

result An acceptable-preference for the state role that contains the results of applying the
object in the operator field to the object in the state field (which must not be
undecided). If the operator field is nil or undecided, then it is not a result. but probably
a prior state.

initialstate An acceptable-preference tbr the state role that contains undecided in the state field.
contains the initial states of the problem space.

U flk'\P pg -1 ,.'C
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3. Productions

The operation of Soarconsists of a sequence of decisions with each resulting in a change to the goal-context

stack. A decision consists of the elaboration phase followed by the decision procedure. )uring the .

elaboration phase, all satisfied productions fire in parallel (simulated). [his continues until no more %

productions are satisfied. The decision procedure examines preferences and modifies the context-stack.

Processing continues by returming to the elaboration phase. [he details of the decision procedure are

described in Section 4.

The productions in Soarcan be wntten exactly like Ops5 productions. A production consists of 1) an open

parenthesis. (2) the symbol p. (31 the name of the production ianv svmhol except nil). 4) .i set ofconditions. b.

(5) the symbol -- ). (6) a set of actions, and (7) a close parenthesis. Ihis production tormat is called P (since

these productions all start with P). For example. a very simple P format production is shown helo%.

(p joe-production
(goal-context-info tidentifier <g> tattribute state tvalue <s>)
(state-info tidentifier <s> tattribute hole-shape tvalue x>)
(state-info tidentifier <s> tattribute peg-shape tvalue <> <x>)

(make state-info tidentifier <s> tattribute fits? tvalue no))

Productions can also be written in SP format. which makes them much more concise. For example. the above

production would be written in SP format as follows:

(sp joe-production

(gc <g> tstate <s>)
(state <s> thole-shape <x> tpeg-shape 0> <x>)

(state <s> tfits? no))

3.1. Production Conditions

[he conditions of a P format production are patterns to be matched against the elements in working

memory. F.ach condition is a form for matching a working-memory element. In Soar a condition is a list.

starting with a class name, followed by a set of attribhute-% alue pairs. [he attributes must he constants. while

the class name must be a constant or a variable. the values can he one of a number of patterns. A condition

is satisfied if all of its components (class and fields) can be consistently matched against a working-memory

element. A production is satisfied if all of its conditions are satisfied with a consistent binding for all of the

variables that appear in the conditions. A production invianltatlon is the set of working-memory elements

that satisfy the production.

lo simplify the matching of preferences that are rele%,nt to a context. there is a special case tor matching

conditions that describe pretcrcnccs. . preferctwc is reles ant to a context either if the values in its context

. .. .- ..



12 SOAR USURS MANLAL

fields match the values of the appropriate slots or are nil. Therefore. a preference condition will match a

preference in working memory if the values of the context fields of the working-memory element either

march the values bound to the variables in the preference or are nil (nil fields are not show in working-

memory elements). For example:
(sp x

(gc <g> tproblem-space <p> tstate <s) -
(preference <x> trole operator tvalue acceptable

tgoal <g> tproblem-space <p> tstate <s>)

(action ...

will match
(gc gOO01 tproblem-space pO003 tstate s0050)
(preference o0044 trole operator tvalue acceptable

tproblem-space pO003)

All of the conditions of a production should be linked, via augmentations and preferences. to one of the

goal-context-infos of the production. Augmentations are one-way links, from the thc identifier to the value.

Preferences are one-way links, from the context fields (all must be present or nil) to the object. If all

conditions are not linked. a warning is printed when the production is compiled.

3.1.1. Variables

A variable is a symbol that begins with a (, ends with a > and contains an alphanumeric symbol in between.
For a production to be satisfied, all occurrences of the same variable must match the same symbol or number.

Two different variables can match the same symbol unless there is an explicit test that they are not equal

(using <>).

3.1.2. Disjunctions of constants

If a set of values are contained with the symbols <( and >, the condition will match a working-memory

element with any of those symbols. Variables cannot occur within a disjunction. nor can a disjunction appear
in a negated condition. There must be spaces separating both (< and >> from the symbols in between them.

<( red blue >>

would match either red or blue.

3.1.3. Predicates

There are six predicates that can precede constant or variable: >. <=> (. =, > =.>. For example: < >

<a). 0 means not equal and will match anything except the constant or %ariable immediately following it.

<=> means same type and will match any symbol that is the same type (numeric or s~mbolic) as the constant

or vanable immediately following it. Similarly. is less than. < = is less than or equal. >= is greater than or

\1iPl)X\ \K ISl 1 I \ \R1 ",,, ... . . ?::



PRODUCTIO S 13

equal, and> is greater than.

3.1.4. Conjunction

Io signify conjunctive combinations of tests for a single field, the tests are contained within { and . or a

match to occur, all tests within the brackets must succeed.
{ < 50 > 20 0><x> <y> )

In this example. a match would occur only if the value is less than 50. greater than 20. not equal to the value

of(> in other conditions and equal to (y> in other conditions.

3.1.5. Negated conditions

In addition to the positive tests for elements in %)rking menor. conditions can also test for the absence of
patterns. A condition preceded hy is called a negated condition and will he satisfied only if there does not

exist a working-memory element consistent with its tests and variable bindings. A negated condition can not

include a disjunction. such as < < a b c >. "'

3.2. Production Actions and Functions

If all of the conditions of a production are satisfied (with consistent variable bindings), the actions of the

production will be performed. One significant change from Ops5 is that a variable that appears only in the

action of a production will automatically be bound to a new gensymed symbol (starting with the first letter of

the variable. e.g.. (s> might be bound to s1375). Ihis symbol will be used for all occurrences of the variable

in the action. Fhis convention eliminates the need for most calls to the bind action.

Productions create preferences and augmentations of current objects by creating new working-memory

elements. L.ogically, all creations occur in parallel and all satisfied productions fire in parallel, with the ne..

working-memory elements being added during the same production cycle. The only ordering of actions is

between multiple writes and accepts within a single production. Productions cannot remove or modifN

working-memory elements. A production should not create a working-memory element that will lead to a

new instantiation of that same production because this will lead to an infinite loop. A production should onlh

create working-memory elements that are linked - via the identifier for augmentations. and the context fields

for preferences to identifiers bound - to variables in the conditions of the production. If this is not so. a

warning is printed when the production is compiled.

Below are the aalable production s. In the function definitions. arg" means that any number of

arguments (including iero can he given. om blep

Bind arKl arg,2 Binds the value fior arg,) to jri /. Ir!l must be a variable. 4rq" can be a prevuousl.k""

. . . . . . . . .
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bound variable. a constant or an action-fincton such as compute or accept.

(bind ,input> (accept)) 0- '.-

Cal12 Farg* Applies function F to arguments arg*. F and arg* can be variables, bound to
appropriate values. rhis is provided so that the actions of productions can control
some of the top-level user functions such as watch user-select, decide-trace and learn.

(cal12 watch 2) ,_

Halt Stops the execution of Soar.
(halt)

Make Adds to working memory the instantiated pattern that follows it.
(make state-info tidentifier (s> tattribute color

Tvalue blue)

Tabstop argi Binds the current tabstop being used by watch 0 to the ariablc Urg!.
(tabstop <tab>)
(writel (tabto <tab)) <o> lxi)

If <tab> is bound to 3 and o> is bound to 4. the result is:
4 x

* Writel arg* Writes its arguments with blanks in between.
(writel (tabto <tab>) <o> lxl)

If<tab> is bound to 3 and <o> is bound to 4. the result is: -

4 x

Write2 arg* Performs the same function as write except that spaces are not automatically inserted
between atoms.

(write2 (tabto <tab>) <o> lxj)
If<tab> is bound to 3 and <o> is bound to 4. the result is:

4x

Below are the functions that can be called within the actions.

Accept Suspends Soaras it waits for the user to type in an atom. The result is that atom.
(state tidentifier <s> tattribute input

tvalue (accept))

Compute Evaluates arithmetic expressions using the following five operators: + (addition). -
(subtraction), * (multiplication). // (division). and \\ (modulus). Only numbers and
variables bound to numbers can be used in expressions. lhe expressions are evaluated
using standard infix notation. but Lhcre is no operator precedence. [he operators are ."..,

evaluated right to lett. except when o)crridden b. parentheses.

(state tidentifier <s> tattribute sum
tvalue (compute <x> + (y))

(state tidentifier <s> tattribute product-sum
tvalue (compute (<v> + <w>) • (<x> + <y>)))

d -. •.,-. .o
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Crlf A special function that can be called within any of the write actions. It takes no
arguments and forces a new line at its position in the write action.

(writel <x> (crlf) <y>)

Tabto A special function that can be called within any of the write actions. It takes one
argument that is a column number, either a number, or a variable bound to a number.
It modifies the write so that it begins printing at the column given as its argument.

(writel <x> (tabto <col>) <y>)

3.3. SP Format

The SP production format provides a set of mechanisms that allow more concise definitions, and automatic

opumization of Soar productions. SP is a preprocessor. so (1) it does not fundamentally change what can and

cannot be represented in Ops5 productions. and (2) there is no problem with mixing together traditional

productions (in Ops5 format) and SP productions.

SP provides the ahilit) to match a context in either the traditional way or by a single SP condition. A

context such as

(goal-context-info tidentifier <g> tattribute problem-space tvalue <p>)
(goal-context-info tidentifier <g> tattribute state tvalue <s>)

can be given as is or shortened to
(goal-context <g> tproblem-space <p> tstate <s))

SP prov ides the ability to specify the information about an object as either a set of separate conditions or as

a single condition. A set of augmentations about an object such as
(state-info tidentifier <s> tattribute color

tvalue (<< red green >> <1).
(state-info tidentifier <s> tattribute depth tvalue > 10)

-(state-info tidentifier <s> tattribute weight tvalue > 30)
(state-info tidentifier <s> rattribute leg tvalue <legl>)
(state-info tidentifier <s> tattribute leg tvalue <leg2>)
(state-info tidentifier <s> tattribute name)
(state-info 'identifier <s> tattribute << height width >>

tvalue small)

can be given as is or shortened to

(state <s> tcolor (<< red green >> (c>} tdepth > 10 -tweight (0 30
tleg (legi> <leg2> tname t<< height width >> small)

Four aspects are of note. (1) It is possible to mix the two representations within the same production. (2)

..* Whereas the final Ops5 production can not have variable or disjunctive attributes, both are possible for .,,

. attributes in SP. since each augmentation is a separate working-memory element where the SP attribute is

actually a value in the Ops5 representation. (3) Negations usually appear in front of the attribute, but can

appear in front of the whole object if there is only one attribute in the object. 4) If there are multiple values

for an attribute, a separate working-memory element is created for each value, giving a simple set notauon.

\RO\P\t I ' I - \1 'Ik '"
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16 SOAR USERS MANUAL

If the first symbol after the class name is not t, then the condition is assumed to be in SP format. If the first

symbol is a t. then it is assumed that it is in OpsS format. Preferences are always in OpsS format, but the
tobject is optional if the object identifier directly follows the class: so

(preference tobject <s> trole state tvalue acceptable tgoal <g>)

can be shortened to
(goal <g> timpasse <d>)
(preference <s> trole state tvalue acceptable tgoal <g>)

The same format can be used for both conditions and actions. In the actions, the placement of a make at the

front of the object (of either format) is optional. There is a global list (in variable *0ps5..actions*) which is

used to determine whether an action is a primitive action or a make.

The same format can also be used for makes at the top-level of LISP that initialize working memory. For

example
(make space-info tidentifier p tattribute operator tvalue opi)
(make space-info tidentifier p tattribute operator tvalue op2)

can be given as
(smake space p toperator api toperator op2)

SP provides automatic condition ordering to yield more efficient productions. The following two

productions show a single production in its SP form and its ordered P (Ops5) form.
* (sp eight~create-new-state

(gc <g> tproblem-space <p> tstate <s> toperator <o>)
(problem-space <p> tname eight-puzzle)
(state <s> tblank-binding <bi> tbinding <b2>)
(operator <o> tcell <c2>)
(binding <b2> tcell <c2> ttile <t2>)
(binding ObD tcell (cl> ttle <ti>)

(preference <s2> trole state tvalue acceptable

t goal <g> tproblem-space <p> tstate (s> toperator <o>)
(state <s2> tswapped (bi> <b2> tbinding <b3> <b4>

tblank-binding <b4>)
(binding <b3> ttile (t2> tcell (ci>)
(binding <b4> ttile (ti> tcell <c2>))

.1RO~ kR( SI-i41\\L
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(p eight*create-new-state
(goal-context-info tidentifier <g> tattribute problem-space

tvalue <p)

(space-info tidentifier <p> tattribute name tvalue eight-puzzle)

(goal-context-info 'identifier <g> tattribute state tvalue <s>)

(goal-context-info t identifier <g> tattribute operator tvalue <o>)

(state-info tidentifier <s> tattribute blank-binding tvalue <bl>)

(binding-info tidentifier <bi> tattribute cell tvalue <cl>)

(op-info tidentifier <o> tattribute cell 'value <c2>) %

(state-info tidentifier <s> tattribute binding 'value <b2>)

(binding-info tidentifier <b2> tattribute cell tvalue <c2>)

(binding-info tidentifier <bi> tattribute tile tvalue <tl>)

(binding-info tidentifier <b2> 'attribute tile 'value <t2>)

(make preference tobject <s2> trole state tvalue acceptable

tgoal <g> ,problem-space <p> 'state <s> toperator <o>)

(make state-info tidentifier <s2> tattribute swapped tvalue (bi>)

(make state-info tidentifier <s2> tattribute swapped tvalue (b2>)

(make state-info tidentifier <s2> tattribute binding tvalue <b3>)

(make state-info tidentifier <s2> tattribute binding tvalue <b4>)

(make state-info tidentifier <s2> tattribute blank-binding
'value <b4>)

(make binding-info tidentifier <b3> tattribute tile tvalue <t2>)

(make binding-info tidentifier <b3> 'attribute cell 'value (ci>)

(make binding-info tidentifier <b4> tattribute tile tvalue <ti>)

(make binding-info tidentifier <b4> 'attribute cell tvalue c2>))

In addition to ordering conditions. SP also modifies a variable in the role of a goal-context-info if that

%ariable is not used in any other conditions. The modification is to replace the variable, say <v> with {

undecided (v }. This prevents the condition from matching if the role has value undecided.

3.4. Conjunctive Negations

The distributed representation of objects as multiple working-memory elements makes it difficult to test for

the absence of an object with a set of specific features. For example. if the user wants to test if there is not an

object in working memory that has blue toes and a blue nose, the following conditions would not make the

right test.
(sp notreallycold

context tests and other conditions
-(state <y> 'toes blue tnose blue)

Assuming that W.> is unconstrained by the other conditions of the production. these conditions would be

satisfied only if there ire no objects that have blue toes and no objects that have a blue nose, while the desired

behavior is to ha,e them be satisfied only if there are no objects that hae both blue toes and a blue nose.

One olution to this problem requires using three productions. Production p, tests for the co-occurrence of

. .,.V. ..... . . -. . -. . . .- % * . . .. . . . . . . . . . . . . . . . -. . . . -. . . . . . .. . .-. ..--- •" -



18 SOAR USERS MANUAl

positive instances of the negated conditions and produces a single working-memory element that encodes the ,, •

fact that both exist. Production p2 tests for the context when the original production would fire except for the ,

negative conditions and produces a unique symbol. Finally, production p3 tests for the absence of the
encoded working-memory element produced by p I and for the presence of the one generated by p2.

(sp p1
context tests and other conditions
(state <y> Ttoes blue tnose blue)

(state <y> ttoesandnose blue))

(sp p2 "
context tests and other conditions

(state <y> tspecialattribute value))

(sp p3
(state <y> tspecialattribute value)

-(state <y> ttoesandnose blue)

A simpler and more correct solution to this problem awaits a revised implementation of the Ops5 matcher -.

used in Soar.

V! 0U ~ ISiI I1 V~
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4. Decision Procedure ,V-,'.%

The purpose of the decision procedure is to make a change to the goal-context-stack based on the

preferences in working memory. The change is either the replacement of the current alue of one role of an 7 !

existing context, or the creation of a new context because of an impasse.

The decision procedure processes the goal-context-stack from oldest goal to newest goal (ie.. from the

highest supergoal to the lowest suhgoal). Fach role of a context is considered. starting A ith the problem-space

and continuing through the state and operator in order. For a given slot. all preferences relevant to that slot

are collected. A preference is relevant to a slot if all (if its non-nil context fields (goal, problem-space. ste-

and operator) have the same identifiers as the correspomding roles in the c)ntext and the role (ft the

preference is the same as the role otf the slot. L sing these preferences. the different objects competing for a

slot are compared. The decision procedure computes a final-choice for a slot according to the semantics of

acceptability, rejection and the desirabilitv ordering. Ihe semantics of these concepts is given in Figure 4-I.

To determine the final-choice, the set of considered-choices is first determined. [hcse are objects that arc

acceptable (there are relevant acceptable-preferences for them) and are not rejected (there are no relevant

reject-preferences for them). Consider applying the decision procedure to the operator slot given the context

and preferences in Figure 4-2. [his example includes many preferences which may not arise in the normal

course of problem solving, but they help exemplify the details of the decision process.

The objects with relevant acceptable-preferences are o0001, o0002, o0004. These acceptable-preferences

differ in which fields they specify, but all of the specified fields appear in the context. Object o0003 has an

acceptable-preference, but it is not relevant to the current context since it requires that state s0006 be selected.

Even though there is a best-preference for o0003 that is relevant it is not a considered-choice because there is

no relevant acceptable-preference. Although o0004 is acceptable, it is also rejected. so the set of considered-

choices is only oOO01. oOZ. From this set. the dominant, maximal choice must be determined.

Dominance is determined bN the best, better. indifference. worst, and worse-preferences. An object

dominates another if it is better than the other (or the other is worse) and the latter object is not also better

than the former object (which is possible because conflicts are possible). A best object dominates all other

non-best objects. except those that are better than it through a better-preference or worse-preference. A worst

object is dominated by all other non-worst objects. except those that it is better than through a better or worse

preference. [he maximal-choices ire those that are not dominated by an other objects. Consider our

example. oO01 is 'a best object. but o0002 is better than o(Ii01. o0002 hecomes the maximal-choicc because

it directl dominates o000l through a better-preerence. Ire0002 oere not better than o0001, o0001 'would he

V
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% Primitive predicates and functions on objects, x, y. z..
current The object that currently occupies the slot
acceptable(x) x is acceptable
reject(x) x is rejected
(x > y) x is better thany
(x < y) x is worse than y (same as y > x)

* (x - y) x is indifferent to y ... ~
*(x >> y) x dominates y =(x > y) and -'(y > x) '

Reference anchors
indifferent(x) Vy [indifferent(y) -(x - y)]
best(x) Vy [best(y) =*(x - y)] A [-'best(y) A -'(y > x) (x > y)]

*worst(x) Vy [worst(y) =(x - y)] A [-'worst(y) A -'(y < x) -(x < y)]

* Basic properties
Desirability (x > y) is transitive, but gkt complete or antisyminetric
Indifference is an equivalence relationship and substitutes over >

(x > y) and (y -z) implies (x > z)
* Indifference does not~ substitute in acceptable, reject, best. and worst.

acceptable(x) and (x - y) does no.t imply acceptable(y),
reject(x) and (x -y) does not, imply reject(y). etc.

Default assumption
*All preference statements that are not explicitly mentioned and

not implied by transitivity or substitution are not assumed to be true

- Intermediate definitions
considered-choices =(xEobjects I acceptable(x) A -'reject(x)}
maximal(X) =(xEX Vy *-(y >> x))
maximal-choices =maximal(considered-choices)

* empty(X) =-'BxEX
mutually-indifferent(X) =*VX.yEX (X - Y)
random(X) = choose one element of X randomly
select(X) =if currentEX then current else user-select(X)

* Final choice
-empty(maximal -choices) A -'reject(current) f inal-choice(current)
*mutuall l-indif ferent(maximal -choices) A -'empty (maximal -cho ices)

final-choice(select(maximal-choices))

Impasse
empty(maximal -choices) A reject(current) =*rejection- impasse()

S-mutually-indifferent(maximal-choices) impasse(maximal-choices)

Figure 4-1: he semantics ofpreferences.

the maximal-choice. If there were neither the better-preference nor the best-p reference. the maximal-choice

would consist of both objects.

Once the maximal-choice for a slot is computed. the decision procedure determines Ahether there is a final

choice or an impasse for the slot using the rules at the bottomn of Figure 4-1 1 hesc rule,; are mutualk

* exclusive and complete. [he current object acts as a det~ult so that i gi~en slot Aill change oniv if the current

~RO . R -- - --,I.
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(gc gOO01 tproblem-space pO003 tstate sO004 Toperator o0007)

(preference oOO01 trole operator tvalue acceptable
tgoal gOO01 tproblem-space pO003)

(preference o0001 trole operator tvalue best
tgoal gOO01 tproblem-space pO003)

(preference o0002 trole operator tvalue acceptable
tgoal gOO0i tproblem-space pO003 tstate sO004 toperator o0007)

(preference o0002 trole operator tvalue better treference oOO01
tgoal gOO01 tproblem-space pO003 istate sO004 ioperator 00007)

(preference o0003 trole operator ivalue acceptable
igoal gOO01 iproblem-space pO003 tstate sO006)

(preference o0003 trole operator ivalue best
igoal gOO01 iproblem-space pO003 istate sO004)

(preference o0004 irole operator ivalue acceptable
iproblem-space pO003)

(preference o0004 irole operator ivalue reject
igoal gOO0t iproblem-space pO003 istate sO004
toperator undecided)

Figure 4-2: An example goal-context with preferences for operator selection.

object is displaced by another object. Whenever there is no maximal-choice for a slot, the current object is

maintained, unless the current object is rejected. in which case a rejection impasse arises. If the current object

is one of the maximal-choices and it is indifferent to the other maximal-choices (or it is the only maximal-

choice), then the current object is maintained, since indifferent signifies that either object is appropriate. If

the current object is not a maximal-choice, and the maximal-choices are mutually indifferent, the current

object is displaced by one of the maximal-choices. A set of objects are mutually indifferent if all pairs in that

set are indifferent. Two objects are indifferent if either there exists a binary indifferent-preference, there is a

transitive set of binary indifferent-preferences containing both of them, they are both in unary indifferent-

preferences. they are both in best-preferences or they are both in worst-preferences. In the current example.

there is only a single maximal-choice. o0002. which would displace o0007. If all of the maximal-choices are

mutually indifferent, user-select is tested to determine how to select between the objects. This can be either

randomly, deterministically. or by the user. See Section 10.3.7 for more details.

If the current object is to be displaced by the maximal-choice, and there is not a single object (or set of

indifferent objects) that dominates, then either a tie or conflict impasse arises. A conflict impasse arises if the

obiects ha~e conflicting better and worse orcetrenccs. A tie imoasse arises if there are no dominance relations

hetween the maximal-choice obiects. . no-change irmpasses arises ifa context has been processed and none of

the slots has been chanaed. It the current object is not displaced. or If a pre-exisung impasse still cxiss the

decision proccdure then processes the next slot, either in the current context or the next lower context it the

operator slot was just processed. I a new impasse is encountered. all sub9oals are terminated, a new suhgoal

I 0\
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is created and the elaboration phase of the next decision cycle ensues, (A tie or conflict impasse is considered

* to be equivalent to a previous tie or conflict impasse if thc objects involved in the new impasse arc a subset of

those in the existing impasse.)

* With appropriate preferences from the elaboration phase. it is possible for a single object to rcs;ult from the

decision procedure. i.e.. thc maximal-choice set contains exactly one object. or a set of indiffercnt object from

which a single object is chosen as describe in Section 10.3.7. When there is a single object. the changc is

installed, all unconsidered slots of the current context set to undefined, all unconsidered contexts terminated.

and the elaboration phase of the next decision cycle ensues.

\1~~ NO\P-
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5. Subgoals

All subgoals in Soar are created automatically by the architecture when a new impasse arises in the decision
procedure. There are currently four types of impasses. leading to four types of subgoals.

" A tie impasse arises if the preferences for a slot do not distinguish between competing objects.

" A conflict impasse arises if at least two objects have conflicting preferences (such as A is better
than B and B is better than A) for a slot.

" A no-change impasse arises if none of the slots change value during the decision procedure.

" A rejection impasse arises if all objects with acceptable-preferences for a role also have
rejct-preferences.

The first two impasses, tie and conflict. are mulhi-choice impasses, because more than one object remains

following the decision procedure. The last two impasses. no-change and rejection are no-choice impasses.

because there are no objects available from which to choose. The four impasses are mutually exclusive and
exhaustive. .

When a new impasse is detected. Soarcreates a gensymed goal symbol and an associated goal-context which

includes the problem space. state and operator for the goal, as well as a set of augmentations that help define

the goal. Below are the nine goal-context-info augmentations that can be created.

problem-space This contains the identifier of the current problem-space for the goal: undecided.

state This contains the identifier of the current state for the goal: undecided.

operator This contains the identifier of the current operator for the goal: undecided.

impasse This contains the type of impasse: tie. conflict, no-change, rejection.

choices This contains either multiple. for tie and conflict impasses, and none. for no-change
and rejection impasses.

role For multi-choice impasses (tie and conflict), this contains the role that the choices
were competing for (problem-space, state, operator). For no-change impasses. this
contains the role of the last slot that is not undefined (goal. problem-space. state.
operator). For rejection impasses. this contains the role of the slot just above the slot
where the rejection occurred (goal. problem-space. state). Rejection is defined in this
way so that both no-change and rejection impasses have the same role tor a similar
di fficulty.

item If the impasse has multiple choices. each acceptable object for the slot, that was either

tied or conflicted, is included as an individual item augmentton.

. - , Ata s
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supergoal This contains the identifier of the supergoal.

superoperator This contains the identifier of the superoperator. 'his is necessary for the subgoals
that arise from parallel operators so that each subgoal is for a different parallel
superoperator (see Section 9.2).

Here is an example of a goal-context that is created for a tie between three operators: ..

(gc G0012 timpasse tie tchoices multiple trole operator
tsupergoal G0003 Isuperoperator undecided
tproblem-space undecided tstate undecided toperator undecided
titem 00009 titem 00010 titem 00011)

A subgoal terminates when its impasse is eliminated by the addition of preferences that change the results

of the decision procedure for a supergoal. For example. if there is a tie subgoal between two objects. it will

automatically terminate when a new preference is added to working memory that rejects one of the choices.

makes one a best choice, makes one better than another. makes one a worst choice, or makes them both

indifferent. If there is a tie between three objects, the tie will be broken when one of the objects (or a set of

indifferent objects) dominates the others. So the subgoal will terminate if a best-preference is created for one

of the objects. if one object is made better than the other two, and so on.

When a subgoal is terminated, many of the working-memory elements that were created in the subgoal are

automatically removed from working memory. All working-memory elements created in the subgoal (and

those created in its subgoals) that are linked, directly or indirectly, to any supergoal, will be retained. *[he

determination of which working-memory elements to remove is done by a mark-and-sweep garbage-

collection scheme. When a subgoal terminates, all working-memory elements that were created in the ..- ,n

subgoal (and its subgoals) are collected together. All augmentations (but not preferences) whose identifier

appears in one of the working-memory elements that existed prior to the subgoal are saved. This recurs by "

saving those elements whose identifiers appear in a saved element until no additional elements are saved.

Preferences are saved if their context objects (identifiers in the goal. problem space, state, and operator fields)

are nil or existed before the subgoal was created. All working-memory elements that were created in the

subgoal. but not saved, are removed from working memory. All saved elements are considered to have been

created in the supergoal for all future garbage collections. ]' -

.* *, ~*. . * * .* .. . % -** ..-.
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6. Default Search Control

This chapter describes the default knowledge in Soar. This is encoded in a set of S1 productions that are

always loaded in with a task. These productions are listed in Appendix I. The majority of this knowledge

provides default responses to the impasses that can arise during problem solving. Soar provides default

processing for every subgoal that can arise. ibis chapter starts with default knowledge that is applicable in all

subgoals. This is followed by the default responses to the different impasses. which includes the selection

problem space, evaluation subgoals and operator subgoaling.

6.1. Common Search-Control Productions

• default*make-all-operators-acceptable: If the current problem space is augmented with an
operator (the operator is the value of a toperator attribute), make an acceptable-preference for the
operator with the current problem space in the problem space field. and nil in all other context
fields.

* default*no-operator-retry: If there is an acceptable-preference for the current state. create a
reject-preference for the operator in the toperator field using the context fields for goal. problem
space and state from the acceptable-preference for the current state (assuming that the operator is
not undecided or nil). ' ./ i

9 default*backup-if-failed-state: If there is a reject-preference for the current state. make an
acceptable-preference for the state that was used to create it.

6.2. Default Knowledge for Impasses

6.2.1. Multi-choice impasses

If a subgoal is created for a tie or conflict impasse, an acceptable-preference and a worst-preference are

created for the seleciion problem space. The selection problem space is used by default for all tie and conflict

impasses. See Section 6.3 for more information. As backup to the selection problem space. there are

additional productions that apply if a multi-choice impasse is followed by a no-choice impasse for the goal.

which would arise if the selection space was rejected. If the impasse was a tie, worst-preferences are created

for the items that tied by default*problem-space-tie. default*state-tie, and default*operator-tie. If the impasse

was a conflict, reject-preferences are created for the items that conflicted by default problem-space-conflict.

default*state-conflict. and default*"perator-confiet.
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6.2.2. No-choice impasses - goal RE
The impasses where tchoices is none and trole is goal are used as a signal that no progress was possible for

the next higher impasse. That is. only when there is no knowledge about how to eliminate an impasse (no

acceptable problem spaces are suggested. or they are all rejected) do these impasses arise. Such an impasse %

leads to the rejection of the last defined object in the super-context. If there is a no-choice impasse for the top

goal. default*goal-no-choices halts Soar

6.2.3. No-choice impasses - problem space, state and operator

If no problem space is selected to handle one of these subgoals (signalled by the creation of a no-choice

impasse for the goal). this implies that there is no knowledge a% ailable to resolve the no-choice impasse. [he

default response is to reject the lowest object in the goal-context that is not undecided. [his has the effect of

allowing another choice to replace the reIected choice so that another path can be attempted. or of further

rejecting a higher-choice if the rejected object was the onl% candidate for its slot. Fhis is implemented by

productions default*problem-space-no-choices default*state-no-choices. and default*operator-no-choices. -

6.2.4. No-change impasses -operator

If a no-change subgoal is created for the operator role. there are three possible reasons: (1) the conditions

of the operator were not satisfied: (2) the operator is incompletely specified (needs to be instantiated) (3) the

operator is too complex to be performed by productions and must be implemented in a subgoal in its own

problem space. For the first option. the appropriate response is to use the same problem space and search for

a state where the operator will apply (operator subgoaling). For the others, task-specific problem spaces must

be available to perform the necessary computations. Because task-specific knowledge is required for the last

two cases, we assume that the first is the default action: that is. an acceptable-preference and a worst-

preference are created for the super-problem-space. These will be overridden by any acceptable-preferences

for other problem spaces. See Section 6.5 for more details. If operator subgoaling fails, and all problem

spaces for the subgoal are rejected. default*operator-no-choices will then reject the operator that led to the

impasse.

6.3. Selection Problem Space

Whenever a multi-choice impasse is encountered. an acceptable-preference is made for the icleu,,

problem space. [here is also a worst-preference created for it. so that any user pronded problem spa.c Ai l

be selected in its place. Both of these are created h% select*selection-space. [ he states ot the ,eleoion

problem space may have evaluations of the tieing objects as .iugmefntations, An ininul. empt, staie is rcatcd

by select*create-state. There is one operator prouided with the ,election space: evaluate-ohject 7 .

~........................... . - . ..... ...... . .. ......-.-.-....
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6.3. 1. The evaluate-object operator

Evaluate-object is meant to create evaluations for the ticing or conflicting objects so that preferences can be

created by comparing the evaluations of the different objects. Production eval*select-evaluate creates an

operator instance for each object that is an titem augmentation of the goal. These operators are named

evaluate-object. When thev are created. acceptable and indifferent-preferences are also created for them. so

that there will be no tie between them (however. by using the user-select function. the user can choose which

evaluate-object operator to apply first). [he user can also have e~aluate-object operators applied in parallel

by loading in production eval*parallel-evaluate %% hich resides in default.soar. but is currently commented out.

See Section 9.2 fbr more on parallelism.

Each e aluate-object operator is created with the tblloA ing three augmcntations.

o tstate: the current state of the selection subgoal.

* tname: evaluate-object.

0 tobject: the identifier of the object to be evaluated.

Once an evaluate-object operator is selected as the current operator, it is augmented w ith further information.

This information is only necessary if the operator is going to be applied, therefore it is more efficient to

generate it only if the operator is selected.

* trole: the role in the context for which the object is tied or conflicted (problem-space, state. or
operator).

o tevaluation: the identifier of an newly created object that will hold the evaluation. This is
described in more detail in Section 6.3.2.

e tdesired: the desired of the supergoal (the one in which the impasse arose). The desired of a goal
contains the identifier of an object that describes the desired state of the goal.

e tsupergoal: the identifier of the supergoal.

* tsuperproblem-space: the identifier of the problem space selected in the supergoal.

* tsuperstate the identifier ot the state selected in the supergoal.

I hse .tugmcntolns pro ide eas access to information required for computing evaluations.

6.3.2. Evaluation objects 6

V, menuioned .ihoe i ne% hlect of class evaluation is created when an evaluate-object operator is

-,elected. It has, the Olso% ini, tuvicnt itton,

L 0?oject. the dcntitier (4 the tied or ntlicted ohject to be evaluated.

L

L

I......... .I
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" tstate: the current state of the multi-choice subgoal.

Fo tdesired: th eie ftesupergoal (the one in which the impasse arosc). [he desired of a goal

Theevauaton bjct s ued o hldthe0aliatoncomputed h thc operator. I-or two-player games (such

-Ta-Te)th ealatonca asohod heside of the player to mo'e. See Section637frmr

Currently. there is default knowledge for two t~pcs of evaluations: numeric and symbolic. [hey are
distinguished h'v thc augmentation that is aiddcd to the e~.aluation object when they are computcd. Numeric
evaluations.,uha anme between I and 10. are added as augmentations of the tnumeric-value attribute.

For xamle.if n caludonis omptedto hc 10. it might appear in working memory as:
(evauaton 0004tobect00044 tstate S0034 tdesi,'ed E3330

topeato 0555 numeric-value 10)

Symoli evluaion. sch s scces.failure, win, lose, or draw are added as augmentations of the

tsymoli-vaueatribte.Forexample. the same evaluation as above with success would be:e
(evauaton E004tobject 00044 Tstate S0034 tdesired E3330

topeator05555 1symbolic-value success)

* 6.3.3. Applying the evaluate-object operator

*A specific intneof evaluate-object can, but often will not have any productions that directly implement

it. [he production eval~apply-evaluate will apply. but only to fujlly instantiate the operator. TIherefore, an

operator no-change impasse will arise, and a subgoal will be created to compute the evaluation. T'his is

discussed in Section 6.4. Once subgoals have been used to compute e~aluations. chunks that have been huilt

from the subgoals can directly compute the evaluations. Users are free ito create their own productions~ that

directly compute evaluations.

6.3.4. Terminating the evaluate-object operator

Evaluate-objCet is terminated by production evalreject-eialuate-finished. whic h detects if the currcn!

evaluate-object operator is augmented with an c~aluation object that has an e~aluation with either a

tnumeric-value or tSVMholiC-ValUe augmentation. In eitther case, i reject-pre ference is created for the

evaluate-object operator. If the c~aluation does noc lead to the termination ot'the inulti-choice 1411110,1. the

reject- prefecrence will lead to the selection of another C'aIluatC-0hjeCt operatOr )r the toilure Of the problemn

* space.

' ~ 'P I
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6.3.5. Comparing numeric evaluations .

Once evaluations are created for tieing objects. they can b2 compared and preferences can be created that

break the impasse. For numeric evaluations (evaluations with a tnumeric-value augmentation) users can write

their own productions to compare the evaluations. If the objects being evaluated are operators (almost always .--

the case) Soar proutdes some help. If the object in the tdesired augmentation of the supergoal (which is

usually the desired state) is of class evaluation and is augmented with tbetter higher or tbetter lower '

(depending on whether a higher or lower evaluation is better), then productions eval*prefer-higher-evaluation

- and eval*prefer-lower-evaluation detect the appropriate tbetter augmentations and create preferences when

one evaluation is numerically greater than another. Production eval*equal-eval-indifferent-preference creates
indifferent-preferences for objects that ha~e e~aluations that are numerically equal. independent of a tbetter

augmentation.

6.3.6. Comparing symbolic evaluations

If an evaluation has Tsymbolic-value success. production eval*success-becomes-best creates a best-

preference for the object that was being evaluated. This should break the tie and allow problem solving to

continue. An evaluation should be marked with tsymbolic-value success only if it is known to be on the path

to the goal. either because the goal was reached when evaluating the object or because an intermediate state

was achieved that was known from prior experience (i.e.. chunks) to be on the path to the goal. We will see in

Section 6.4 that Soar has productions that will propagate success up a subgoal hierarchy when it is

appropriate.

If an evaluation has tsymbolic-value failure production eval*failure-becomes-worst creates a worst-

preference for the object that was being evaluated. This may or may not break the tie and allow problem

solving to continue. An evaluation should be marked with tsymbolic-value failure only if it is known not to

be on a path to the goal.

6.3.7. Evaluations for two-player games

For two-player games, there are additional productions that process symbolic values win. lose, and draw.

Ihese depend on the state having two augmentations: tside and toside. [he value of the side augmentation

should be a symbol, number or identifier that represents the player that is to move next in the current state.

I he %alue of the toside (other side) augmentation should represent the pla er that just moved. Ihe %alues of

win. lose. or draw are in relation to the player that just mo~ed. that is. the one that is in toside. Iheretore.
when an caluation object is augmented with a symbohc alue of win. lose. or draw. the eCaluation must also

be augmented with tside which contains the %alue from Toside in the state. If the state Is LIugmented with
twin. flose. or tdra%. as described in Section 6.4.3. then production eval*move-side-to-cal will copy the side
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correctly. Once an evaluation of win. lose. or draw has been created, it is translated into a preference by

evalinning-values. eval*%inning-valuesZ. evalflosing-values. eial*losing-values2 and eval*draw-values. A

win for the side on move or a lose for the side that just mo\ed becomes a best-preference. a lose for the side

on move or a win for the side that just mo ed becomes a worst-preference. and a draw becomes an indifferent-

preference.

6.4. Evaluation Subgoal

If an evaluate-object operator has been selected and no productions create evaluation %alues for it. an

operator no-change impasse will arise and a subgoal %ill he created. In this subgoal. the context that led to

the tie will be re-established and the ticing ohject that is an augmentation of the cvaluatc-ohject operator will

be selected. This allows the problem solv ing to continue so that an evaluation of the success of that object can

be made. For different types of objecLs. different amounts of the context have to be re-established. Ihe

production oval*select-role-problem-space is used for tied problem spaces. and it augments the current goal

with the old desired and makes an acceptable-preference for the problem space attached to the evaluatc- ' -

object operator in the object augmentation. The production eval*%clect-role-state is used tor tied states. It
augments the goal with the desired-state description (tdesired). creates an acceptable-preferince tor the

super-super-problem-space 1which is in the super-problem-space augmentation of the evaluate-object

operator) and creates acceptable and best-preferences for the state in the object augmentation of the evaluate-

object operator. Similarly. eval*select-role-operator re-establishes the old desired-state. problem space and

state and then creates an acceptable-preferences for the operator in the object augmentation of the evaluate-

object operator. The production evaI*reject-non-slot-operator rejects all of the other operators that compete

for the operator slot. This is necessary because new operator instantiations may be created in the subgoal that

will compete (and possibly receive best-preferences) for the operator slot. Following this, problem solving is .-

expected to continue until an evaluation is produced (of course, there may be many subgoals along the way to -. - .

an evaluation). Once the evaluation is produced. the evaluate-object operator is rejected as described aboe.

6.4.1. Default evaluations

In four cases, the evaluations can be determined based on preferences created in the subgoals and not on

any features of the states or operators.

- 1. If an operator is being evaluated and that operator is rejected tbr the initial state of the cvaluation
subgoal. production eval*failure-if-reject-evaling-operator %ill augment the cvalh-ation with

" tsvmbolic-value failure. -a'

2. If an operator is being evaluated and the state that is created from applying that operator to the
initial state of the evaluation subgoal is rejected. production esal*failure-if-reject-state AfH
augment the evaluation with tsymholic-value failure.

- .
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3. If an object is being evaluated below a selection problem space. there can be a tie impasse with a
second selection problem space in the search for an evaluation. If during the problem solving in
the second selection problem space an evaluation of tsymbolic-value success is produced relative
to the same desired state as the original object, evalpass-back-success will assign an evaluation of
tsymbolic-value success to that original objcct.

4. If an operator is being evaluated beloh a selection problem space for a two-player game. there can
be a tic impasse with a second selection problem space in the search for an evaluation. If during
the problem solving in the second selection problem space an evaluation of tsymbolic-value win is
produced for the same side as the original operator. eval*pass-back-win and eval*pass-hack-*in2
will augment its c~aluation *ith Tsymbolic-talue %in.

6.4.2. Computing numeric evaluations

Numeric evaluations can be computed by a single production, a set of productions. or a suhgoal. All of

these methods must create the right augmentation of the correct object so that the rest of the productions can

use it to terminate the evaluate-object operator and create preferences for the tieing objects h. comparing

evaluations. [he correct action is to augment the evaluation object (which is the value of the tevaluation

augmentation of the evaluate-object operator) with tnumeric-value number. For example. our production . ..-.

would contain at least the following:

(sp your-production-name
(gc <g> tproblem-space <p> tstate ( > <ss> <s> }

tsuperoperator <so)
(problem-space <p> tname your-task-problem-space-name)
(operator <so> tname evaluate-object tevaluation <e>

tsuperstate <ss>)
conditions that match features of state <s>

(evaluation <e> tnumeric-value your-evaluation))

Numeric evaluations are useful when features of a state correspond to the distance from the state to the goal

and can be mapped onto either the integer or the real numbers. The value computed for each state can then

be compared to the value computed for another state and a preference can be created based on the ordering

of the numeric values. Complex combinations of numbers for a numeric evaluation of a state is possible using

the compute action. For example. your-evaluation could be the addition of two other numbers: (compute

<num > + <num2> ). See Section 3.2 fora further description of compute.

6.4.3. Computing symbolic evaluations

[he same approach that was used in numeric evaluations can also be used in symbolic evaluations, except

that the correct augmentation for the evaluation object is tsymbolic-value instead of tnumeric-ialue. .

simpler approach is also available so that the user does not have to even deal with evaluation objects. Instead

of augmenting the evaluation object. the user can augment the current state of the subgoal Aith one of the

following five attributes: tsuccess. tfailure. twin. tdraw. tlose. rhe value of these itigmentations must he the

......................................................
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tdesired augmentation of the goal. A default production then converts these state augmentations to the

corresponding symbolic-valuc augmentations for the evaluation object. F-or example. use a production like

the following:
(sp your-r roduction-name

(gc <g> tproblem-space <p> tstate <s> tdesired <desired>)conditions__ that detemt subgoal success. __

(state <s> tsuccess <desired)))

" The production involved in the conversion is: eval*state-to-symbolic-evaluation.

"." 6.4.4. Detecting success and failure •-

Ifa state for the top goal in Soaris marked with tsuceess, twin. or tlose, one of the following productions

will cause Soar to halt: evaleteet-success, eval*detect-win. eval*detect-lose. If a state for the top goal in

Soar is marked with tfailure. it will be rejected by eval*detect-failure.

6.5. Operator Subgoaling

If an operator has been selected but cannot be applied to the current state. a useful strategy is to create a

*-. subgoal to ind a state where the operator can be applied. rhis strategy is called operator subgoaling (also "-

-" precondition satisfaction) and is a common Al technique dating back to GPS. In Soar, operator subgoaling is

appropriate when an operator has been selected and a no-change impasse arises. In such a situation.

acceptable and worst-preferences are created for the super-problem-space for the subgoal by
opsub*try-operator-subgoaling If no other problem spaces are suggested for the goal. the problem space of

the supergoal will be selected, allowing a search to be performed in the same problem space as the supergoal.

but with a new goal - applying the currently selected operator. The presumption is that the selected operator

could not apply to the current state, so another state must be found. The default productions are adequate to

implement operator suhgoaling. so that no additional productions must be added by the user.

Once the super-problcm-space has been selected, the goal is named operator-subgoal and augmented with

the superoperator as its tdesired by opsub*go-for-it. This establishes a convention that when the desired

augmentauon of a goal is an operator, then the object of the goal is to achieve a state in which the operator

can be applied. Opsub*go-for-it also creates an acceptable-preference for the superstate. Once the superstate

=- is selected, a reject-preference is created for the superoperator with the initial state in the state context field.

by opsuh reject-opsuboperator. since it is known that it will not apply to it. Other operators must he .%%

.aailable to create a new state. For every state created 60llowing the initial state, a best-preference is created

for the superoperator by opsub*select-opsuhoperator to tr% Out the operator that led to the subgoal. If it
generates a new state without going into another subgoal. an accepthle-preterence tor that state is created

" " ... .............-.. ...

. " " " ... ' ... ' '- .' . -' '-"- -" '.".' '- " ( " " ..-.. .- '"""... .".. . . . . . . . . . . .-.. . . . . .'.-.. ., . L: : -, ,.



I[At I I SIARCI I C0N I ROI 33

that will be appropriate to the supercontext by opsubdetect-direct-opsuh-success or

opsuhdctect-indirect-opsub-success. Ihis will terminate the subgoal. If the operator leads to another subgoal.Iit is rejected by opsubreject-douhle-op-suh.

IO P
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7. Chunking

Learning in Soar is based on building productions that permanently cache the processing done in a subgoal.

The actions of the production are based on the working-memory elements that are the results of the subgoal.

The conditions of the productions are based on the working-memory elements that were present when the %

subgoal was created and then used in the subgoal to create the results.

A number of factors determine whether or not a chunk is created when a subgoal is terminated. A chunk is

built unless one of the following conditions is true:

1. Learning is off.

2. The chunk would have no actions. (This attempts to guarantee that a chunk is not built for asubgoal that produces no results. Such a situation can arise when a supergoal terminates without i '''

the termination of all intermediate subgoals.)

3.The name of the current problem space of the subgoal is in *chunk- tree-problem-spaces*.
(*Chunk-free-problem-spaces* lets the user control which problem spaces should not be chunked.
It is initially empty, so that all problem spaces will be chunked. One strategy is only to learn
search-control knowledge by including all task problem spaces in *chunk-free-problem-spaces*.)

4. None of the conditions of the chunk have a class in *chunk-classes*. *Chunk-classes* is set
initially to (problem-space state operator). This prevents the creation of chunks that do not test
any of the objects that existed before the subgoal was created. These chunks are usually very
overgeneral.

5. Learning is bottom-up and a chunk was built for a subgoal of the current subgoal (possibly not the
immediate subgoal).

6. The chunk is a duplicate of a chunk that is being built at the same time. The detection of
duplicate chunks is done at a syntactic level, so sometimes chunks that are semantically equivalent
to prev ious chunks will be built.

- .. -..

7.1. Determining Conditions and Actions

The determination of the conditions and actions of a chunk-production depends on the creation and

reference of working-memory elements in a subgoal. rhis information is maintained automatically b% Soar

for each working-memory element in every goal. When a production fires, a irace of the production - the

working-memory elements matched by its conditions and created by its actions - is saved on the

production-trace prcpert of the appropriate goal. ['he appropriate goal is the most recentl. created goal
(lowest in the subgoal hierarchy) that occurs in the working-memory elements matched by he production.

Only productions that actually add something to working memory have their traces saved. lherefore.

productions that just monitor the state (have only write statements) will not affect the learning. If a

0.

%' ,.
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production tries to add working-memory elements that already exist, it will not affect the learning (although

see *chunk-all-paths* for an alternative).

Chunking is complicated by the fact that context slots and subgoal augmentations are created by the

architecture and not by productions. If these structures are tested. there are no associated conditions.

Iherefore. Soar associates with them those working-memory elements that are responsible for their creation.

Below is the list of goal-context augmentations and their associated pseudo-conditions.
Problem space. state, or operator roles. The acceptable-preference for the object in the role. The

other preferences are not included in the production trace.

9 Item (for tie and conflict impasses). The acceptable-preference for the object in the item.

* Superoperator. The goal-context-info for the operator of the supergoal.

e Impasse rejection. All the reject-preterences that led to the impasse.

e Impasse no-change. Ihe goal-context-info for the next slot. with undecided as the value. (This is
not used for operator no-change, since there is no next role.)

* Choices none. If this is a rejection impasse. all the reject-preferences that led to the impasse. If
. this is a no-change impasse

Negated ,,onditions of *,roductions that fire in a subgoal are included in a trace as follows. When a --

production fires, its negated conditions are fully instantiated with the appropriate values for its variables r

based on the rest of the data that matched the production's positive conditions. If the identifier used to

instantiate the identifier field of the condition was created before the subgoal, then the instantiated negated

condition is added to the trace (as a negated condition): otherwise it is ignored.

I'he actions of the chunk for a subgoal are taken to be those working-memory elements created in the

subgoal (or its subgoals) that are accessible from the supergoal. An augmentation is accessible if its identifier

existed before the subgoal was created or is in another result. A preference is accessible if all of its non-nil

context objects (goal. problem space. state and operator) existed before the subgoal was created or is in

another result. Once the total set of results is determined, it is split into subgroups such that no two

subgroups share objects that were created in the subgoal. Ihese results are logically separate and can he

generated in the future by separate productions

Once the actions of a chunk have been determined, a dependency analysis of the production traces is used

to determine exactly those working-memory elements that existed prior to the creation of the subgoal that

were tested in creating the actions. Not ,ll working-memory elements tested in a SUhgoal become conditions

in a chunk, only those responsible for the actions. SpeciticallM. those productions, that created non-acceptable-

'I I(\, ,'\i4 , .'," J\\, 1j .,r _ b -
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preferences will usually not be included (unless the preferences are results of the subgoal) in the dependency ,iii

analysis because they contribute only to the decision scheme. For the decision scheme, only acceptable-

preferences are saved in production traces.1

7.2. Replacing Identifiers with Variables

The working-memory elements that are used to create the conditions and actions have the identifiers of

specific objects in their identifier fields. When building productions. all object identifiers are replaced by

variables. All occurrences of an identifier are replaced with the same variable. This sometimes leads to a

slightly overspecific chunk (two objects that did not have to be the same in the subgoal, but just happened to .,

be the same. must be the same for the chunk to apply). - s-u-

7.3. Removing Extraneous Conditions

Soar removes conditions where the identifier in the value field does not occur in any other condition or

action of the production. This process recurs, so that a long linked-list of conditions (connected by value and

identifier attributes) will be removed if the final one in the list has a value that is unique to that condition.

These conditions provide little or no constraint on the match and greatly increase the number of

instantiations.

7.4. Splitting Chunks Based on Duplicate Conditions

Following the removal of unnecessary conditions, it is possible that many conditions will match exactly the

same working-memory elements. This is most serious when substructures are copied from one state to

another. To eliminate these duplicate conditions (which cause combinatorial processing in the matcher), the

production is split into multiple productions. Two (or more) conditions are duplicates if they are exactly the

same except that they differ in the ivalue field. In addition, the identifiers in both of those fields must not be

referenced by any other condition and must be referenced by actions. It is assumed that these conditions are

used for copying structures and do not really test an important aspect. One of these conditions is saved along

with the actions that share the identifier in its Tvalue field. All of the other duplicate conditions and the

actions that share the identifiers of their tvalue field are eliminated. More than one set of duplicates can

occur for a single production. and a list is maintained of the representative condition and actions for each set

of duplicates.

From these lists, productions will be created. The first production built does everything the subgoal did ;--.

except for processing the duplicates. [his production does not contain iny of the conditions or actions that

'rhis may lead to overgeneral chunks. We are currentlv re-examininv this design choice and rnaN modtit iun the tuture

. . . ..... .
V '" .

?-. - . . - . . -: . , : : : : : : : : " : . : - : - : -: , , . -% . . . , , , : , , . . . . , , , . , . . . .. . - . . : : . . : . . . . : . ' . : : " , . ' : ' : ' : ' :



38 SOAR LSER'S MA\L.-l.

were duplicates. Additional productions are built for each set of duplicates. The conditions of these

productions contain:(l)all oft the conditions of the first production: (2) all actions of the first production (so it

won't fire until after the first and can bind to all identifier's created in the first production): and (3) the one

instance of a duplicate condition saved away. The actions of the production are only those actions that were

saved with the duplicate condition. Therefore. tor one subgoal. many productions may be built.

7.5. Ordering Conditions

'he efficiencv of the Rcte matcher used in Soar is heavil. dependent on the order of the conditions in the

productions. lherefore. Soar orders the conditions in an attempt to make the matching process more

efficient. rhe ordering algorithm is implemented by trying to determine, at each stage. which eligible

condition. if placed next. will have the fewest number of instantiatons when the production is used. I'he

details of the orderirg algorithm are given in the Soar ['echnical Manual.

7.6. Making Different Variables Distinct

When variables were assigned to conditions. all identical identifiers were replaced by the same variable.

However. the resulting production could match the same identifier to different variables, so that the semantics

of the productions are incorrect. Since variables in Ops5 do not have to match distinct identifiers. Soar

explicitly modifies the production so that no two variables can match the same identifier. Soar also

automatically modifies any goal-context-info with attribute tproblem-space. tstate. or toperator that has a

variable in its value field that does not appear in any other condition (but does appear in an action). rhe

modification is to replace the variable, say <p>. with 0 <>undecided (p> 1.

7.7. Refractory Inhibition of Chunks

When a production is built as a part of a chunk, it may be able to fire immediately on those working-

memory elements that were used to create it. If the actions of the production include the creation of new

objects. the production will immediately fire and create another object, in addition to the object that was the

original result of the subgoal. To avoid this. each production that is built during chunking is refracted so that

it will not fire on the working-memory elements used to create it. This does not prevent a newly learned

production from firing on other working-memory elements that are present.

7.8. Over-generalization

Chunking in Soarcan lead to over-generalization in three wavs. First. when there is special-case knowledge

that is not used in solving a subgoal. [his knowledge is encoded in productions tor which most hut not all of

the conditions were satisfied during a problem-solving episode. I hose that were not satisfied either tested fotr ...
; 5;l,
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the absence of something that is available in the subgoal (using a negated condition) or for the presence of

something missing in the subgoal. "lhe chunk that is built for the subgoal may be over-general because it does

not include the inverses of these conditions. During a later episode, when all of the conditions of a special-

case production would be satisfied in a subgoal, the chunk learned in the first trial bypasses the subgoal. If

,. the special-case production would lead to a different result for the goal. the chunk is over-general and " "

*i produces an incorrect result.

Overly general chunks can also be learned when there are negated conditions of productions in a subgoal

that test for the absence of a working-memory element that would be created in the subgoal. If the creation of-

°* that working-memory element was directly related to the existence of a working-memory clement that existed

before the subgoal, then the test for the absence of the working-memory element local to the subgoal should

be replaced by a test for the absence of the working-memory element that existed before the subgoal.

Chunking is currently unable to perform such an analysis and include tests for the absence of working-

memory elements unless they are explicitly made in a production. This inability can lead to overly general

chunks.

When determining the conditions of a chunk .ia the dependency analysis, the conditions of productions

that created non-acceptable preferences are included only if they were results of the subgoal, or the results

were produced based on them. They are not included if the preferences only influenced the decisions during

the problem solving. The theory is that these productions influence the efficiency of the search, but do not

change its validity. That is the theory, but in practice. problem spaces can be implemented that depend on

productions that create non-acceptable preferences. Instead of applying all tests for success (the goal test) to
each state in the problem space, it is possible to move some of the goal test to productions that reject

intermediate state (or operators) that do not satisfy some of the goal constraints. 'his allows the final goal test

to be much simpler, since any state it tests is guaranteed to satisfy some of the constraints already. In these

cases, the productions created by chunking are overly general because they do not include all the conditions

they should since only the final goal test is included in the chunk, and not the implicit tests made during the

search that guaranteed that a valid state was always chosen.

.?.
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8. Encoding a Task
This chapter describes how to represent goals. problem spaces. states, operators and search control for a

task. [he Fight Puzzle will serve as an example. All of the productions will be in SP format, and these
productions will actually perform the task. 1The productions will be given in lower-case, which is appropriate

for all systems except Iatedaisp.

* 8. 1. Problem Space Decomposition

* lhc first step in encoding a task in Sowr is to decompose it into a set of problem spaces. This is a difficult

step and corresponds to structuring the task. However, only a single problem space is necessary to represent

and solve the Fight Puzzle. Ibis problem space consists of states that have differemnt configurations of eight

numbered tiles in a 3x3 frame and operators that move tiles adjacent to the blank space into the blank space.

In contrast. RI-Saar has a hierarchy of up to ten different problem spaces. Such a hierarchy arises when the

operators of one problem space require a second problem space for their implementation. The operators ot

the high-level problem spaces are not implemented directly by productions, but instead are implemented by

* other operators in other problem spaces. At some point the hierarchy bottoms out, and the operators are

implemented directly by productions.

* As of yet, there are no hard and fast rules for decomposing a problem into multiple problem spaces. It is

never necessary to decompose a task into separate problem spaces because every hierarchy of problem spaces

can be represented as a single problem space, with search-control knowledge that simulates the control

achieved through decomposition into separate problem spaces. With decomposition, it is often possible to

* represent a task as a set of problem spaces with little or no search control. Problem space decomposition is

possible when different aspects of the state of the task can be modified independently of other parts of the.

state, or when different sets of operators are selected together. independently of other operators. The sets of

operators that act independently can then be grouped into separate problem spaces. These problem spaces are

then selected in response to no-change impasses for a high-level operator that represents the problem solving

that will occur in the subgoal.

8.2. States

* As in a standard programming language, the next step in designing and implementing a task is deciding on
a representation of the data being manipulated. In Soar, this involves defining the representation of the states

of the problem spaces. Given the available attribute-value scheme. many different representations are

possible for a given task. One structural restriction is that all substructure of a state must be linked to the

*state, either directly (through a single augmentation). or indirectl (through a chain of augmentations). Fhe

\1., .0 ,\4 ' V... . -(v
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augmentations then form a directed lattice. where the identifier of the state is the root.

The representation of the states has a large impact on the efficiency and the generality of problem solving

* and learning. From our experience. cefficiency and generality is maXiMiied if the implementations of~

* operators and search control are able to test and creatc only those aspects of the problem that are necessary to .

* performn the required functions. [here are two general rules tor implementing this principle.

1. Every piece of information that is relevant to thc problem solving should be represented
explicitly, either as an object. as the augmentation of an object. or in the structure of a set of
augmentations. [his removes the need for complex condition predicates that can detect implicit ~

- ~information, such as comparing two absolute positions given in a coordinate system and detecting - C
* that they are adjacent. If a piece of information is not represented explicitly, the testing or

creation ot that information will in' ol~c testing or creating other intormatio n. (it' o)nly the
* absolute positions arc explicitly represented, the absolute positions Must be tested to determine
* adjacency.

2. Dynamic and static information should be represented separately. minimizing the amount of
information that is dynamic. D~ynamic information Idata that can he changed by operators) should
be represented by augmentations of the state. If the static information is tied directly to the state,
it must be explicitly copied from state to state. When possible. static information (data that is not

* changed by operators) should be represented by augmentations of dynamic information. By
* making this separation, the static information is unchanged by operator application. minimizing '

* the amount of processing requi red to apply an operator. If the static information is tied directly to
the state, it must be explicitly copied from state to state.

* Let's apply these two principles to the Fight Puzzle. In this example. there is only a single problem space.

When there are multiple problem spaces that share the same data structures, the application of these rules is

more problematic because information that is static in one problem space may be dynamic in another.

* In determining an appropriate representation, the operators of a problem space must be considered because

they determine what information is necessary to solve the problem and whether the information is dynamic or

static. Consider the Eight Puzzle, which consists of a 3x3 frame with eight tiles, labelled 1-8. and a blank

space. [he nine positions that contain the tiles are called cells. Mhe operators of the problem space move a

tile in a cell adjacent to the blank space into the cell with the blank. A problem is to start at some initial

* configuration and, through a series of tie movements, obtain some desired configuration. Figure 8-0 contains

an example initial and desired state.

To derive a representation that obeys both of the representational rules, we first determine the information

that is used in solving the prohlem and therefore must be explicitly represented. I wo types of knowledge are .,..,

a necessary part of problem solving: 11) operator- impleme ntation knowledge. and (2) goal-test knowledge.

Each of these test ditferent aspects of the state. Be-low is a list of the information required to implement the

**~~~~~**.**~~ V (Y%,.~. M R(.*-. (S .\. . p . . . .
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Initial State Desired State

2 3 1 1 2 3

8 4 8 4

7 6 5 7 6 5

Figure 8-1: Fight Puzle initial and desired states.

task.

- 1. The relati¢e position- of the ties and the blank. Ihese are needed to determine if a tile is next to
the blank so that the tile can be mo% ed: operator-implementation know ledge.

2 The absolute positions or the tiles and the blank. Ihese are needed to determine if the tiles are in
the same cells as those in the desired state: goal-test knowledge.

3. The numbers on the tiles. I hese are needed to determine if the tiles are in the same position as .
those in the desired state: goal-test knowledge.

The next issue is to minimize the amount of dynamic data that must be modified when an operator applies.

When an operator is applied, it changes neither the tile, nor the cell that it occupied. All it changes is the

relationship between the tile and two cells on the board (the cell where It was and the cell that it now

occupies). We can reify that relationship and represent it as an object. Once the relationship is an object, the

operators need only manipulate the relationship and not the other objects. Let's call the relationship a

binding, since it represents a binding of the tile to a specific cell. Therefore, a state consists of a set of nine

bindings one for each of the tile and cell combinations. Each binding has an augmentation for a tile and a cell.

Each tile is augmented with the number on it, while each cell is augmented with its absolute position. To

represent the relative positions of the cells (so that the relative position of the tiles can be determined), the

cells are also augmented with their adjacent cells. All the dynamic infirmation is encoded as bindings, while

all of the static information is encoded in the tile and cell objects. The operators will only manipulate

bindings, and never modify the tile or cell objects. To improve the efficiency of some of the matches, the state

is also augmented directly with the binding for the blank (tblank-binding) and the binding o" the tile that was

just moved (tinovedl-tile-binding). Below are a set of actions that create a state in this format.

d*- a7 Z.' "i'cc- ,.-.. ".,
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(state <s> tblank-binding <bb5> tbinding (bbO> <bbl> <bb2> <bb3>
<bb4> <bb5> <bb6> (bb7> <bb8> tblank (c23>)

(binding <bbO> rcel1 <cll> ttile <t2>)
(cell <cll> tname 11 tcell <c12> tcell <c21>)
(tile (t2> tname 2)

(binding <bbl> tcell <c12> ttile <ti>)
(cell <c12> tname 12 tcell <cli> tcell <c13> tcell <c22>)
(tile <tl> tname 1)
(binding <bb2> tcell <c13> Ttile t7>)
(cell <c13> tname 13 tcell <c12> tcell <c23>)
(tile <t7> tname 7)

In addition to the two rules stated earlier, there are three special cases of them that should be kept in min",

when creating state representations.

1. A constant can he tested in two different ways by the productions used in solving a problem.
First, a production may test that a constant is a specific value in which case the constant would
appear in the conditions of the production. In this case. the problem solking is dependent on that
specific value, and any chunk built to summarize the problem solv ing would correctly contain that
constant. In the second case. a production may test if two ditferent objects have the same constant
(an equality test). [his test is performed by matching both constants by the same variable. In this
case. the problem solv ing is independent of the specific values of the constants. being dependent
only on the fact that the are equal (or not equal). A chunk would nevertheless include the
specific constants because the constant is being functionally overloaded, with its specific value.
and its equality relation to other constants. The solution to this problem is to have indirect
pointers to constants when they will be used in equality tests. In our example. the tile numbers
were not contained in the binding augmentations of the state but were represented indirectly in

.4
the tile objects. The tile-object identifiers can then be compared for equality, without referencing
the exact values of the tile names. One useful convention is that constants should appear as values
only in tname augmentations. All other augmentations should be the identifier of another object
that has a further description.

2. All functionally independent uses of a concept should be represented as separate objects. )o not
overload an attribute or %alue with many different uses. Fach use should be represented
separately. For example. if the state contains the description of an algebra problem, it might have
the concept left used in two different contexts, to represent expressions on the left side of equals
sign and to represent terms on the left side of another operator such as plus. Ihese two lefts are
functionally independent. However. if both of these are tested in a problem solving episode. the
resulting chunks will contain tests making them dependent. [hat is, any tests concerning the sides
of the equation will be dependent on tests of sides of the operator. [his arises because chunking
assumes that if the same identifier is used in multiple places in this case. the identifier of the
object named left), then a chunk must test that it is the same. even though in this example it did
not have to be the same.

.:.-.,

3. If a disjunction is used in .i condition of a production. sav tir the names of two problem spaces
(such as (( problem-space-one problem-space-two >>). a chunk that included a firing of that
production would include a test tir onh o.ne of (he two names, not huth. I ,hi% ould mn.ike tie
chunk less general thin iiecessir'. I o ,i i .(his prol cm. rcit\ (he disltincithi 1 And create amother
augmentation for both problem spaces ind then test twt that euimncntation. I his is exactlv the ..e.
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reason that there is a tchoices augmentation for goals. Many productions used to test for
timpasse (( tie conflict )) or timpasse (( no-change rejection >) and the chunks built for the V,.-
subgoals would be over-specific. B- adding the tchoices augmentation. a single augmentation can
be tested that embodies the disjunction: and the disjunction is then included in the chunks.

8.3. Operator Creation

Once a representation for the states has been designed. the problem-space operators should be defined. For

a given problem. many different sets of operators may be possible for essentally the same problem space. For

the Eight Puzzle. there could be twenty-four operators,. one for each possible movement from each cell to an

adjacent cell. In such an implementation. all operators could be made acceptable for each state and then all of

those that cannot apply because the blank is not in the appropnate place %ould be rejected. A convention in

Soar is that if a problem space is augmented with an operator Isuch as (problem-space p0003 toperator

00002)). an acceptable-preference for that operator will automatically be made so that the operator will be

considered for e'ery state in the problem space (by production default*make-al-operators-acceptable).

Alternatively. only those operators that are applicable to a state could be made acceptable. which we will

describe in our example below. Another implementation could have four operators, one for each direction

that tiles can be moved into the blank, up. down, left. and right. Those operators that do not apply to a state

(because no tile exists that can be moved in that direction) could be rejected.

In our implementation of the Eight Puzzle, there is a single general operator. which moves a tile adjacent to
the blank into the blank. For a given state, instantiations of this operator are created for each of the adjacent

tiles. To create the operator instantiations requires a single production. shown below. Each operator has

three fields: tname contains the name of the operator. which is always move-tile: iblank-cell for the cell that

i¢ contains the blank: and ttile-cell for the cell that contains the tile that will be moved into the cell with the

blank. At the same time that an operator is created, an acceptable-preference is created. so that the operator

can be selected to be the current operator for the context containing the eight-puzzle problem space and the

state with which the operator was instantiated. Since operators are created only if they can apply, no

. additional production is required to reject inapplicable operators.
(sp eight*acceptable

(gc <g> tproblem-space <p> tstate <s>)
(problem-space <p> tname eight-puzzle)
(state <s> tblank-binding <blank>)
(binding <blank> Tcell <cl>)
(cell <cl tcell <c2>)

-(preference trole operator tvalue acceptable
tgoal <g> tproblem-space <p> tstate <s>) .

(operator <o> tname move-tile 'tile-cell <c2> tblank-cell <ci>)
(preference <o> trole operator 'value acceptable

'goal <g> tproblem-space p, rstate (s>)).

V €\~~ \ '~
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8.4. Operator Application

An operator of a problem space is applied when it is selected by the decision procedure. i.e., when its

identifier replaces the existing symbol in the role of an operator. I'hat is. whate~er happens while a given

identifier occupies an operator role comprises the attempt to apply that operator. Selecting in operator and

* installing its identifier in the operator role produces a contcxt in which productions associated with the

operator can execute (they contain a condition that tests that the operator is selected). Operator productions -

are just elaboration productions. used for operator application rather than for search control.

* When a nonmonotonic operator (an operator that modifies the current state) is successfully applied, it must

create a preference for the new state it creates. T'hat preference includes the current goal. problem space. state

and operator. [lased on this preference. the new state can he selected: and the operator will not he re-applied

to the state I default~no-operator- retry will reject the operator). If the operator is monotonic (only adds

information to the state) or fails to apply. it should create a new preference for the current state, which then

leads to the operators rejection (bv derault*nooperatorrctrv).

To apply an instantiated operator in the F-ight Puzzle requires the two productions shown below. When the

* identifier of a move-tile operator is selected as an operator in the eight-puzzle problem space, production

* eightcreate-new-state will apply and create a new state with the moved tile and the blank in their new

positions. It detects that there is an operator in the operator role and matches the hinding (<hi)) for the

* blank tile (<ti>) and its cell ((ci>). It also matches the cell that is connected to <ci> via the operator (<c2>) '

and matches the tile in that cell (0t2>). The actions of the production are to create a new state symbol ((s2).

a preference for that state (with the current context in its context fields). and then swap the bindings of cell

* <ci> and <c2>. It marks in the state the bindings that were swapped (tswapped) and the bindings that were

just created, distinguishing the old and new positions of the moved tile (thblank- binding. tmoved-tile-hinding).

* 1'heselatter augmentations will be used by search control.
(sp eightcreate-new-state

(gc <g> tproblem-space (p> tstate (s> toperator <o>)
(problem-space (p) tniame eight-puzzle)
(state <s> Tbinding (bi> tbinding <b2> Tblank-binding (bi>)
(binding (bi> ttile <ti> tcell <ci>)
(binding <b2> ttile <t2> tcell <c2>)
(operator (0> tname move-tile tblank-cell (c11 ttile-cell <c2>)

(preference <s2> trole state tvalue acceptable ,

Tgoal <g> tproblem-space <p> tstate <s> toperator <o>) -

(state "s2> tswapped <bi> tswapped ,b2> tblank-binding <b3>
t moved-tile-binding <b4> tbinding <b3> tbinding <b4>)

(binding <b3> ttile <t2> tcell <cD)
(binding <b4> rtile (t1 rcell <c2>))

A~ second production. eightcopy- unchanged. copies over all of the hindings that did not ha'.e to he -swapped.

................ !,R 1 . .
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It applies after the previous production by testing for the creation of the preference for the new state (created

by eight*create-new-state). The test of the preference must include tests that the state and operator are not

equal to nil. because even though (s> and <o> were pre% iously bound in the first conditions, the preference

will match if its context fields match exactly or match nil (so that it is easy to match those preferences that are

relevant to a context).
(sp eight*copy-unchanged

(gc <g> tproblem-space <p> tstate <s> 1toperator <o>)
(problem-space <p> tname eight-puzzle)
(preference <n> trole state tvalue acceptable

tproblem-space <p> tstate ( <> nil (s>}
toperator ( > nil <o>))

(state <s> tbinding <b>)
(operator <o> tname move-tile)
(state <n> -tswapped <b>)

(state <n> tbinding <b>))
This production and the previous one are typical of the types of productions used to implement simple

operators in Soar. One production makes the changes and creates a new state, while another (or possibly

others) copies those aspects of the state unaffected by the operator. This shows how to implement an operator

that changes or adds new augmentations to a state. If an operator is to delete some aspect of a state. the

productions that implement it should create a new state and copy only those augmentations that are to be

retained.

8.5. Goal Detection

All subgoals are terminated by the architecture, which detects the resolution of an impasse through the

creation of new preferences. So, in one sense, goal detection is done automatically. However. for many

subgoals (and usually the top-level goal), the decision to create a preference that resolves the impasse becomes

equivalent to a goal test. In addition, when an evaluation subgoal is used. it is useful to be able to signify that

a state created in the subgoal will achieve a higher-level goal. lherefore, there is default knowledge in Soar

that detects when a state is augmented with success or failure with respect to a given desired state. Ihese rules

create the appropriate preferences if it is a subgoal. or terminates problem solving if it is in the top-level goal

(see Section 6.4).

In detecting that a state achievn.; a goal, the actual test can be represented either explicitly or implicitly.

Sometimes the desired stat-s are represented explicitly as an augmentation of the goal. I his augmentation

would usually be created after the problem space has been selected. Alternatively. the desired states may not

be explicitly represented: and instead there may be a production, a set of productions, or an operator that

recognize when a given state satisfies the goal without comparing it to an explicit description. [here can be

any level of explicit or implicit representation in between where parts of the desired state are explicitly

-===== =m=-
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represented, and parts of the goal test are embedded in productions. However, the satisfaction of a goal

should be detected by a test of a state (including its augmentations) and the information tied to the goal. If

other information is tested (such as aspects of the problem space or the operator), then that information

belongs either in the goal or in the state. Whenever the goal is augmented with additional information to be

used in the goal test. it should be encoded as an object that is the value of the tdesired augmentation of the

* jm goal. h_'.

Although Soar allows the detection of desired states through recognition by a production (without

comparison to an explicitly represented desired state), it is not the recommended practice because it leads to

the learning of overly specific chunks. 'he production that tests for the desired state must include conditions

that test for the actual %alues of the constants in the state. In the Eight Puzzle this would mean testing that a

specific cell had a specific tile. Any chunk built to summarize the subgoal in which the test applied would be

specific to the exact desired state. Instead. a comparison can be done between an explicitly represented

desired state and the current state. In this case. only the equality of the identifiers that are augmented with

the constants need be tested, and not the constants themselves. 2  [he resulting chunk is sensitive to the

relative values of the desired state and the states in the problem space and not the exact %alues of the constants

in the state.

For the Eight Puzzle. the desired state is explicitly represented in working memory as a state. The desired

state (Kd)) is in tdesired augmentations of the goal. The following production detects that the desired state

has been achieved.

- his a.sumes that it is possible to coordinate the states and the desired rte in "he proticm ,pacc ,o that the% share the ame
identifiers for the constants t his is not alays possiole

V• .. -
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(sp eight*detect-goal
(gc <g> tproblem-space <p> tstate <s> tdesired <d>)
(space <p> tname eight-puzzle)
(state <s> tbinding <xli> <x12> <x13> <x21> <x22> <x23>

<x3i> <x32> <x33>)
(binding <xii> tcell <c11> ttile <o1l>)
(binding <x12> tcell <c12> ttile <o12>)
(binding <x13> tcell <c13> ttile <o13>)
(binding <x2i> tcell <c21> ttile <o21>)
(binding <x22> tcell <c22> ttile <o22>)
(binding <x23> tcell <c23> ttile <023>)
(binding <x31> tcell <c31> ttile <31>)
(binding <x32> tcell <c32> ttile <032>)
(binding <x33> tcell <c33> ttile <o33>)
(cell <cli> tname 11) (cell <c12> tname 12)
(cell <c13> tname 13) (cell <c21> trname 21)
(cell (c22> tname 22) (cell (c23> tname 23)
(cell <c31> tname 31) (cell <c32> tname 32)
(cell <c33> "name 33)
(desired <d> tbinding <dll> <d12> <d13> <d21> <d22> <d23>

<d31> <d32> <d33>)
(binding <di1> tcell <ctl> "tile <ol>)
(binding <d12> tcell <c12> ttile <o12>) - -

(binding <d13> tcell <c13> ttile <o13>)
(binding <d21> tcell <c21> ttile <o21>)
(binding <d22> tcell <c22> ttile <022>)
(binding <d23> tcell <c23> ttile <023>)
(binding <d3i> tcell <c31> ttile <o31>)
(binding <d32> tcell <c32> ttile <032>)
(binding <d33> ecell <c33> ttile <033>)

(state <s> tsuccess <d>))

The action is to augment the state with tsuccess and the value of tdesired. By including the desired. this

guarantees that only those goals that share the same desired state will be terminated. Default productions

handle tsuccess, so that if a top-goal is detected in a subgoal (and labeled with tsuccess), evaluations and

selection subgoals are handled correctly. See Section 6.4 for more information on evaluations.

In this example, the test was performed with a single, very large production. Other options are possible: (1)

test each of the bindings of a state independently in parallel. and then combine the results of those tests: or (2)

test the initial state and then incrementally update the comparison based on the changes made to the state.

For many problems. the generality of chunks learned b. Soar is maximized if the goal test is done

incrementally. An incremental goal test involves keeping track of the differences between a state and ne"

desired state. When a new state is created. its differences are computed based on the differences in the state it

was created from and any changes to the prior state that here necessar, to create the new state. When there

are no differences between a state and the desired state, the goal is achieved. Vhis impromes the generality of

'"% I
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the conditions of a chunk built for the goal because the detection of goal achievement is based only on the "'""

parts of a state that changed, and not on the complete state. When non-incremental goal tests are used. the

complete state must be tested, not just the aspects that changed. Not all goals can be tested incrementally,

although any goal that has a conjunction of conditions can be. In the Eight Puzzle, the position of each tile in

its desired cell can be detected independently and an incremental goal test can be used. When the initial state

is selected, it is augmented with a difference that is the number of tiles that are out of place. Whenever a new

state is created, its difference would be computed modifying the difference of its prior state to reflect the

changes in the new state (a tile is moved into or out of its desired cell). ' ,

8.6. Initialization

In addition to defining the operator Nelection, operator application and goal detection rules, working

memory must be initialized to an appropriate goal, problem space and initial state. so that problem solving

can begin. Following a call to init-soar, working memory is empty. When Soar starts with an empty working

memory. a context is created that has all of the slots set to undecided. This context does not ha~e a supergoal.

One way to get a task started (as in eight*start below), is to use a production that detects a goal without a

supergoal, and creates a preference for a new problem space, in this case. one named eight-puzzle. Since the

variable (p> only appears in the action, it will be bound to a newly generated symbol, starting with the first

letter of the variable (something like P0034). The second occurrence of<p> (in the preference) will use this

same symbol. The goal is augmented with a name that can be tested by later productions.
(sp eight*start eg-ul

(gc <g> tproblem-space undecided -tsupergoal)

(gc <g> timpasse none tname solve-eight-puzzle)
(problem-space <p> trname eight-puzzle) :..
(preference <p> trole problem-space tvalue acceptable

tgoal <g>)) '.:"

The preference created to select a problem space is only sensitive to the current goal.

Another type of initialization is available using the init-context function, which allows the user to set the

values of the top context (see Section 10.2.3).

Production eight*initial-desired-states creates the initial and desired state as well as a preference for the
initial state. The acceptable-preference for the initial state (s>) has undecided in the statc field So that this

state will be selected only at the beginning of problem solving. If the state field were unspecified (or nil). the

acceptable-preference would make the state a candidate at all times during problem sok ing in goal <g> and ""

problem space <p). since a preference is used whenever all of its non-nil context tield match the roles of a

context.

\FRO\P\R( ISI V\\' R -
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(sp eightinitial-desired-states
(gc <g> tproblem-space <p> 'state undecided

tname solve-eight-puzzle)
(problem-space <p> 'niame eight-puzzle)

(gc <g> 'desired Wd)
(preference <s> 'role state 'value acceptableA

tgoal <g> 'problem-space <p> 'state undecided)
(state <s> tbinding (bbO> (bbl> (bb2> (bb3>

(bb4> (bb5> (bb6> (bb7> (bb8> 'blank-binding (bb5>)
(binding (bbO> 'cell <clID 'tile <t2>)
(binding (bbl> tcell (c12> ttile (ti>)
(binding <bb2> 'cell (c13> 'tile <t7>)
(binding <bb3> 'cell (c21> 'tile <t8>)
(binding <bb4> 'cell <c22> ttile <t6>)
(binding (bb5> 'cell (c23> 'tile <tO>)
(binding (bb6> 'cell <c31) ttile <t3>)
(binding (bb7> tcell <c32> 'tile <t4>)
(binding (bb8> 'cell <c33> ttile Qt5>)
(desired <d> 'binding (dO) (dl> <d2> <d3> <d4>

<d5> <d6> <d7> <d8>)
(evaluation <d> tbetter higher)
(binding <dl> tcell (cll> 'tile (ti>)
(binding <d2> tcell (c12> 'tile <t8>)
(binding <d3> tcell (c13> ttile <t7>)
(binding <d8> 'cell (c21> 'tile <t2>)
(binding (dO> tcell <c22> 'tile (tO>)
(binding (d4> 'cell <c23> ttile <t6>)
(binding <d7> 'cell (c31> ttile <t3>)
(binding <d6> tcell <c32> ttile <t4>) .

(binding <d5> tcell <c33> ttile <t5>)
(cell (clI) tname 11 'cell <c12> 'cell (c21>)
(cell (cl2) 'name 12 tcell <clI> 'cell <cl3> 'cell <c22>)
(cell (c13> 'name 13 'cell <c12> 'cell <c23>)
(cell <c2l) 'name 21 'cell <clI) 'cell <c31) 'cell <c22>)
(cell <c22> 'name 22 'cell <c2l> 'cell (c12> 'cell <c23> tcell <c32>)
(cell <c23> tname 23 'cell <c22> 'cell <c33> 'cell (c13>)
(cell (c3l> tname 31 'cell <c32> 'cell (c21>) .,

(cell <c32> 'name 32 'cell <c31> 'cell <c22> 'cell <c33>)
(cell <c33> 'niame 33 'cell <c32> 'cell <c23>)
(tile <tO) 'name 0) (tile (ti> 'name 1) (tile <t2> trname 2)
(tile <t3> 'name 3) (tile Qt4> 'name 4) (tile <t5> tname 5)
(tile <t6> tname 6) (tile <t7> 'name 7) (tile (t8> 'name 8))

The desired state is augmented with 'better higher. so that evaluations with higher values will be translated

into better-p references by evalprefer-higher-evaluation. Notice that the bindings of the desired state share

* the same cell and tile structure as the initial state. This allows the goal test to check only the equality of these

* augmentations and not the equality of the names of the cells and the tiles. [his improves the generality of

0 chunking, but it is not always possible, especially when the desired and initial states are created at different

times.

O*
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* 8.7. Monitoring States

* Monitoring of states makes traces much easier to read and does not impact chunking when done with no

* changes to working memory. However it may require productions that are costly to match because the

complete structure of the State must he matched. Another option is to use the function trace- attributes which

enables autEomatiC tracing (see below and Section 10.4.1). Here is a monitor production for the Eight Puzzle -

that will trace a state after it is generated but before it is selected. rabstop binds its argument ((tab>) to the%

* current tabstop. By using tabto with the current tabstop in a write statement, the monitoring will line up with

* the trace. Write? is used in the first write command because it does not insert blanks between the atoms it

pnnts.
(sp eight monitor

(gc <g> tproblem-space (p> tstate <s> toperator <o>)
(problem-space (p> tname eight-puzzle)
(preference (n> trole state tvalue acceptable

tproblem-space (p> tstate <s> toperator ( 0> nil (0> }
(operator <o> tcell (name>)
(state <n> tbinding (xll> <x12> (x13> (x21> <x22> <x23>

(x31) <x32> (x33>)
(binding (xli> tcell (cli> ttile <oil>)
(cell (cii> rname 11) (tile <oil> tname (vii>)
(binding (xi2> tcell (c12> ttile (012>)
(cell (cl2> tname 12) (tile <o12> tname (v12>)
(binding (x13> tcell <c13> ttile (013>)
(cell (c13> tname 13) (tile <013> tname (v13>)
(binding (x21> tcell (c21> ttile (021>)
(cell (c2i> Tname 21) (tile <021> tname (v2>)
(binding <x22> tcell <c22> ttile (022>)
(cell <c22> tname 22) (tile <o22> tname <v22>)
(binding <x23> tcell <c23> ttile (023>)
(cell <c23> tname 23) (tile <o23> tname (v23)
(binding (x31) tcell <c31> ttile 0o3D)
(cell <c01> tname 31) (tile (031> tname <(v3 I>)
(binding <x32> tcell <c32> ttile <o32>)
(cell <c32> tname 32) (tile <o32> tname <v32>)
(binding <x33> tcell (c33> ttile (033>)

(cell <c33> tname 33) (tile <o33> tname <v33>)

(tabstop (tab>)
(write2 (crlf) (tabto (tab>) (name> "(" <s> <)-- n> (crif))
(writel (tabto (tab)) "----------- (crlf))
(writel (tabto (tab>) " (vii> <~ v21> "I" 1> "3 ' (crlf))
(writel (tabto (tab>) "----I ----- I" (crlf))
(writel (tabto (tab)) " <vl2> (v22> "I" (v32> I"(crlf))
(writel (tabto (tab>) I----I-I (crlf))
(writel (tabto <tab)) " vl3> <v23> "I(v33> " (crlf))
(writel (tabto <tab>)'--------------(crlf)))

P 0' i f'l \P
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8.8. Set-up

Once all the productions and the representations have been defined, a few house-keeping operations need

to be performed. Ihese should be included at the beginning of the file that contains the productions that

define the task.
--.

8.8.1. Multi-attributes

To improve the ordering of productions. the function multi-attributes is called with a list of those classes

that have attributes with more than one occurrence per object and, if known, the number of occurrences. In

this implementation of the Eight Puzzle. states and desired states have multiple bindings, and cells have links

to other cells.
(multi-attributes '((state binding 9) (desired binding 9)

(cell cell 4)))

8.8.2. Trace-attributes

The user can improve the readability of a trace by providing a list of attributes to be traced for different

classes. In the Eight Puzzle, the operators do not have distinguishing names, so the only way to obtain a

meaningful trace of the problem solving is to include the cell of the operator in trace-attributes. The cell of

the operator contains the position of the tile that is moved into the blank.
(trace-attributes '((operator tile-cell)))

8.9. Search Control

Besides defining the task (the goal and the problem space), additional search control can be introduced to

make problem solving more efficient.

8.9.1. Simple Search Control

Eight*worst-undo creates a worst-preference for the inverse of the operator that created the current state.

This type of search control is common and many tasks will have productions similar to this one. The key part

of the production is the determination of the inverse of an operator. In the Eight Puzzle, the inverse of the

prior operator is determined by finding the operator that will move the tile that was moved by the prior

operator.

,-.5,.--.5.-..
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(sp eightworst-undo
* (gc <g> tproblem-space <p> tstate <s>)

(problem-space <p> tname eight-puzzle)r
(state <s> tmoved-tile-binding (mtb>)
(binding <mtb> Tcell <cmtb>)
(preference <o> trole operator tvalue acceptable

tproblem-space <p> tstate <s>)
* (operator <o> ttile-cell <cmtb>)

(preference <o> trole operator tvalue worst
tgoal <g> 1problem-space <p> tstate <s>))

8.9.2. Using State Evaluations

State evaluations are a standard wa of controlling search. A production that computes the evaluation

should look like the following. (E~erything in bold should be left alone. Everything in regular font should be

K replaced for the specific task.)
(sp production -name

(gc (g> ?problem-space (p> tstate o 0 ss> (5>}
tsuperoperator <so>)

(problem-space <p> tname task -problem -space- name)
(operator (so> tname evaluate-object tevaluation <e>

tsuperstate <ss> tdesired (d>)
Conditions that Compute the evaluation based on state <s> and
desired state <dV. <d0 will point to the desired state
defined at the beginning of the task and attached to the
desired and desired roles of the top goal.

(evaluation <e> tnumeric-value your-evaluation))

The default productions take care of the rest. testing the supergoal and comparing the evaluations (if <0> is

augmented with thetter higher/lower). A complete evaluation production for Eight Puzzle is below. It gives

an evaluation of I if the operator that created the state moved a tile into its desired position. A second

production gives an evaluation of -1 if a tile is moved out of position. and a third production gives an

evaluation of 0, if' neither of these occur.
(sp eighteval-state-plus-one

(gc <g> tproblem-space (p> tstate 0 ( <ss> (s>}

tsuperoperator (so>)
(problem-space <p> tname eight-puzzle)
(operator <so> tnaune evaluate-object tevaluation (e>

tsuperstate (Ss) tdesired <d>)
(state <s> tmoved-tile-binding (bi>)
(binding <bi> tcell (ci> ttile (vi)
(desired <d> tbinding <b2>)
(binding <b2> tcell (ci> ttile (vi>)

(evaluation <e> tnumeric-value 1))
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8.10. Example Trace d

After loading all of thc Fight Pu/I~c productions into Voar. it is ready to run. Below is a trace of the%

problem solving and learning for the F-ight Puiike. All output is shown in boldface. (The trace of the initial

and desired states at the beginning *as not produced h% the program.) 'Ml comments arc prefaced by a

semi-colon (C).
(soarload'eieht.soar)
(learn on full-trace)
(d 12)
learn status: on always print full-trace
0 g: gOGol

initial state desired state

211614 181 21 3

I p: p0004 eight-puzzle
*2 s: S0005

3 ==>g: g0002 (tie operator undecided)
4 p: p0051 selection
5 s: s0053
6 o: o0056 evaluate-object(move-tile( 13))
7 =Og: g0045 (no-change operator evaluate-object(move-tile(13)))
8 p: p0004 eight-puzzle
9 s: s0005
10 o: o0042 move-t'ile( 13)

I---- --------I

I---- ---- -----

11 s: s0058
*An evaluation of -I is created tor s0058 because the 7 was
*moved out of its desired poiin I his e'alution leads to
*the termination of goal g(M)45 and will be tollowed hy the
evaluation of another eight-puii I operator.

: Since learning is on. a chunk will he built. Below isa trace of
*the production being built. ['his trace is produced because of
f ull-trace learning.

%, l.-
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backtracing to determine conditions

Bworking-memory elements that will become actions:
(evaluation 60057 tnumeric-value -1)
productions and conditions traced through:

(g O operator otueoblm-pae 00
(operator o0056 tsperevatate-ob0005)
(operator o0056 tdred operato)

decision-procedure

(steat r s0056 Tbl-nin o002)
(operator o0056 ttileelole-pc c0020)

(operator o0056 tnaeie mo-il)
(polmsae sQOO0 tndinght-puzzle
(bci inrdin ure9tcl c0

(state s0005 tbln-inding b0025 )
(bindingr b002 tiel el c0 20)
(bindingr o002 ttile movetile
(stt 0 binding b009til 01)

(cellin c0020 tcell c0020)
( sired d000 tbinin b00 25)N'
(binding 0025 tcell c0026)
(biinding5 bi25 t0013)O06

(operator o0056 tevaluation e0057)
conditions that are tersed out: (binding (bi> ttile <t2>)

build: p0086
12 o: o0054 evaluate-object(move-tile(22))
***reak **

(last-chunk)
Print out the production that was just built.

(sp p0086
(gc (gi> toperator <01>)
(operator (ol) trole operator tname evaluate object

tsuperproblem-space (p1> tobject <01> tsuperstate (si>
tdesired (d2> Tevaluation <el>)

(problem-space (p1) tname eight-puzzle)
(state (sI> tblank-binding (bi> tbinding <b2>

tbinding f 0 <b2> b1)>
(operator <o1) tname move-tile ttile-cell (ci>)
(cell c, tcell .c2>)
(binding <b2> tcell <ci> ttile (tl>)
(binding <bi> tcell <c2>) %
(desired <d2> tbinding <di>)

.............................
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(binding (dl> ttile (ti> tcell (ci>)

nl(evaluation (el> tnumeric-value -1))

(learn trace)

learn status: on always print trace t
lsable thc trace ofthe production coflstflktio.

(run 7d)

13 ==>g: g0046 (no-change operator evaluate-object(move-tile(22))) %04
14 p: p0004 eight-puzzle
15 s: s0005
16 o: o0044 move-tile(22)

---- I---- -----

17 s: s0065
build: p0087

This has an evaluation ot 1 because the 6 was moved into
its desired cell.

18 o: o0055 evaluate-object(move-tile(33))
18:42 p0086

Iechunk built for the first subgoal applies and computes an
evaluation of A because the 5Stile will he moved out of its desired
cell by operator o0043. -.

Once all the evaluations are computed. preferences are created
that compare the different operators based on their evaluations.
Iwo of the evaluations arc the same. so indifferent preferences

are created between operator% NX043 and o0042. Both of these
are worse than o0044. so) worse-prefecrnces are also created.
These preferences are the results of g0002, the goal with the
tie impasse.
Since the problem solving to create the two worse-preferences
was identical, two identical chunks could have been built.
T'he duplication is detected (although it is not always detected)
and only one production is built. D~uplicate chunks are also built
because of the symmetry in the productions that create the
indifferent-preferences. 9

Fhe productions are refracted so that they do nlot tire
on the data that was used to create them.

duplicate chunk
build:p0088 .

dupl icate chunk
build: p0090

19 o: o0044 move-tile(22)
*break*
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(last-chunk)

(sp p0090
(gc (gi> tdesired <d3> tstate (si> tproblem-space (p1>)
(problem-space (p1> tname eight-puzzle)
(state (si> tblank-binding <b2> Tbinding <b2>

(binding <b2> tcell <c3>)
(binding (bi> tcell {(> 0(c3> (ci> ) ttile <t2>)
(cell (ci> tcell <c3>)
(desired <d3> tbinding (di> tbinding ( 0> (dl> <d2> }
(binding <dl> tcell <ci) ttile <t2>)
(binding <b3> tcell ( 0> (cl> 0> <c3> <c2>)

ttile ( 0> <t2> <t3> }
(cell <c2> tcell <c3>)
(binding <d2> tcell <c2> ttile <t3>)
(preference <o2> trole operator tvalue acceptable

tgoal (gi> tproblem-space (p1> tstate (si>)
(operator (o2> tname move-tile ttile-cell <c2>)
(preference (01> trole operator tvalue acceptable

tgoal (gi> tproblem-space (p1> tstate (si>)
(operator (01> tell <ci>)

(preference (o2> trole operator tvalue indifferent treference (01>
tgoal <91> tproblem-space (p1> tstate (51>))

nil
75:( run)

20 s: s0078

1716151
21:48--p---0

21:48 p0090
Chunk p0090 dtcsta oigtc4admvn h
aren indiferetecuse theyt mogte 4an moile oth 6it
dresindede. behise oes noth eemne te ext oerator
dsied impass 'Iis crea te mn tenxoeao
21 a=g 04 tieipseicrae oeao.udcdd

*22 p=>: g0047 setioneao ndcdd

This continues until the problem is solvcd.

-2.* .7
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9. Advanced Topics

9.1. Operator Implementation Goal Tests

If an operator requires a subgoal it implement it and some test exists to determine if a state is a valid result.

recent work suggests unusual %ay to structure the subgoal. Fhe advantage of this scheme is that even if

over-general chunks are learned. they will not screw things up. The disadvantage is that the chunks will often

return multiple states. In the subgoal for implementing the operator (call it Opi), there should be a

production (call it detect-candidate) that detects that a ,tate is a candidate result. A candidate result is a state

that might be a valid result of the subgoal although the final test has not been made. It is possible that all

states in the subgoal are candidate results. It is also possible that the candidate result is not a state in the

subgoal. but only a subobject (or whatever). The action of detect-candidate is to augment the superstate (the

superstate is the state that OpI is being applied to) with an object of class result. The result will be augmented

with the operator (Opl) and the candidate result. For example. detect-candidate might be:
(sp detect-candidate

(gc <g> tproblem-space <p> tstate <s>
tsupergoal <sg> tsuperoperator <so>)

(problem-space <p> tname implement-opl)
(state <s> Tcandidate yes) :some test that it is a candidate
(operator <so> tname opi)
(gc <sg> tstate <ss>)
(state <ss> tresult <r>)

(result <r> toperator <so> tcandidate <s>))

In most Soar programs, this production would have just created the preference for the state in the

supercontext and the subgoal would terminate. In this scheme, a second production, call it

detect-opi-success. will create the preference. Ibis preference will fire outside the subgoal so that it will not

be included in the chunk. For example:
(sp detect-opi-success

(gc <g> tproblem-space <p> tstate <s> toperator <o>)
(problem-space <p> tname xyzzy)
(state (s> tresult <r>)
(operator <o> tname opi)
(result <r> toperator <o> tcandidate (c>))
(state <c> tattribute value) :some test that it is a valid state

(preference <c> trole state tvalue acceptable

tgoal <g> tproblem-space <p> tstate <s> toperator <o>))

Ibis production will fire whenever a candidate has been suggested that passes the final test. When chunking

is used, the chunk will have as its actions all ,tatcs that were candidates (but no pretrences). ..,,-.

l)etect-opl-success will select out the correct result and creatc a preference. If the chunk applies inorrectl.

detect-opl-success will not fire and the subgoal will be used.

" \ k~ ~~~UX, P \1,4 ,.•0-f1€ ' .. -.
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9.2. Operator Parallelism

The parallel-preference allows the user to specify that two or more operators can be performed in parallel.

In the decision procedure, if the result is a set of operators that are mutually parallel (there exist parallel

preferences between them), the current goal-context-info for the operator role is removed: and new operator

goal-context-infos are created for each of the parallel operators. Whenever a parallel operator is rejected, its

goal-context-info is removed from working memory. The parallel structure is maintained until a new

preference causes a change in a higher-order object or all but one of the parallel operators is rejected. Each

parallel operator is independent and each can cause productions to fire independently of the others. If a

parallel operator does not lead to the creation of a preference that will change the context, a no-change

impasse will arise. Fo distinguish the subgoals. each has a tsuperoperator augmentation that contains the

identifier of one of the parallel operators. When the operators have subgoals, they will run in parallel. These

subgoals can also have parallel operators. giving rise to exponential blowups in the number of subgoals being

pursued (making the goal-context-stack really a tree). I he parallelism is only simulated in the present

implementation. All of the parallel operator subgoals are synchronized on the decision cycle. [he function

pgs will print the parallel structure and make a little more sense of it than the trace (see Section 10.5.2).

I his simple parallel structure gives AND, OR and hybrid AND-OR parallelism. If all of the operators are

non-monotonic (they' all create new states), we have OR parallelism where all of the parallel operators are

racing to succeed first. If two (or more) parallel operators finish on the same decision cycle, there will be two

" (or more) acceptable-preferences for the states, and this will lead to a tie impasse if no other preferences are

added. Fkentuall one of these willed be picked after going into the selection problem space.

If all of the operators are monotonic and just add information to the current state until enough information

is available to make a new decision, we have AND parallelism. A good example of this is when parallelism is

applied to the evaluate-object operators in the selection problem space (see Section 6.3). In parallel. all

objects will be evaluated until enough evaluations and preferences are created to break the tie that created the

selection subgoal. If there is a combination of monotonic and non-monotonic operators, we get a hybrid

AND-OR parallelism. where the monotonic operators augment the current state until a non-monotonic

operator terminates. - -,

Since all parallel operators are running in the same working memory it is possihle for them to share

information and to communicate partial results. One way to achie~e this is to have the operators attach parmi.l

results to the state they are applying to and examine the state for information created b. other operators.

U.I. i
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10. Top-level Variables and Functions

his chapter consists of the global variables. properties. and functions that are used to control Soar Some

of these are Ops5 commands that have been modified to provide more functionality. The Backup feature of ,.7% '%x
OpsS does not work in Soar(but see pop-goal for a reasonable alternative). The functions names are followed

by a list of their arguments. Arguments in square brackets df) are optional. An argument ending in signifies

that any number of arguments may follow.

10.1. Global Variables
[he following global variables are used to control certain aspects of Soar. Many of these are also referred to

in sections on functions that they affect. All global variables in Soar begin and end with an asterisk (*).

chunk-all-paths* if'[. then when the exact same subgoal result is produced by two or more
production firings. chunks will be built based on each of the production
firings. *Chunk-all-paths* is initially ail.

•chunk-classes* A list of SP class names for which at least one must occur in the conditions
of a chunk for it to be built. This helps eliminate chunks that are overl.
general. *Chunk-classes* is initially (problem-space state operator).

•chunk-free-problem-spaces* A list of problem-space names for which chunking should not be used. If
the current problem space in a subgoal has its name in the list, and the
subgoal is terminated, no chunk will be built for that subgoal.

*chunks* A list of the names of all of the productions that have been learned. , ,,5 ,

•max-chunk-conditions* No production will be built that has a greater number of conditions than
•max-chunk-conditions*. *Max-chunk-conditions* is initially 200.

r max-elaborations* If the elaboration phase runs more that *max-elaborations* then the
elaboration phase is terminated and the decision procedure is executed.
The default value of max-elaborations* is 100.

•max-recurse* T'he maximum recursite depth that the ordenng algorithm will use in
breaking ties between competing conditions. B1. increasing the depth, the
ordered productions can sometimes be more efficient. although loading in
the productions will take longer. *Nlax-recurse* is initially 2.

*sp-classes* A list of dotted pairs where the first element ofeach dotted pair is the SP

class name and the second element is the P Jass name. When translating
from SP format. Soar u.es *Osp-classes* to replace SP classes %ith P classes.
Users should not hjoc to tdd pairs to *sp-classes*. ,ince this is doneI automaticaily h% Soar. I he first time a SP class is encountered. iL along
with its name concatenated % ith -info i, idded to *sp-classes*. Ihe user
should add pairs to *sp-classes* if he wants to have more than one SP class

\iRO\P\Rk 1,i ,1\\L WR .,-.
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translated into the same P class (gc. goal-context. context, and goal all
translate into goal-context-info).

*spo-default-depth* The default depth of objects that spo prints out. The value of
*spo-default-depth* is initially 1.

*subgoal-tabs* If T. watch and pgs will indent during the tracing or printing of the
context stack. If nil. watch and pgs will not indent, but instead will print
the subgoal depth as a number. The value of *subgoal-tabs* is initially T.

" *warning* If T. warnings are printed. If nil, warnings are not printed. The %alue of
*warning* is initially T.

*watch- free-problem-spaces* Contains a list of problem-space names that will not be traced with watch
0. The value of *watch-free-problem-spaces* is initially nil.

10.2. Initialization

10.2.1. Init-soar

While running Soar. the user may wish to empty working memory and restart a run using the same core

image. The function init-soar empties working memory. It should be called whenever the user wishes to

restart without reloading productions. After it has been called, new productions can be added, either

manually or by reading a file. Old productions (including chunks), that havent been replaced. will still be

available.
(init-soar)

10.2.2. Restart-soar

While running Soar, the user may wish to replace all of the productions, but still maintain the same Lisp

core image. The restart-soar function is a Soar function that re-initializes the system. removes all productions.

including chunks, empties working memory and resets all global variables to their initial (default) values.
(restart-soar)

" 10.2.3. Init-context idl id2 id3

The intt-context function first calls init-soar to clear working memory. and then creates the context in

* working memory. If it is not called. the initial context, except for the goal, is all undecided: (gc gOO01

tproblem-space undecided tstate undecided toperator undecided). [here are three arguments. The first is the

identifier of the initial problem-space. the second is the identifier of the initial state and the third is the

identifier of the initial operator. [he function gensyms a goal identifier, which is returned as the result.
(init-context 'problem-spacel 'statel 'do-eight-puzzle)

\1 40 \ .. ,. ,,-.. 1\\ \r%
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10.3. Loading, Running, and Breaking
'P.

10.3.1. Soarload file

The soarload function will load in file file. It must be used in place of load on Xerox 1)-machines for files

containing productions. but its use is optional for all other implementations of Soar.
(soarload 'eight.soar)

10.3.2. Multi-attributes L

Ihe muhi-attributes funcijon takes a list of two- or three-element lists as iLs argument. I he first element ol

each sublist is a SP class name, the second element is a SP attribute (not an Ops5 attribute. but the attributes

that show up in SP format), and the third (optional) element is a number. Ihe funcuon declares that the

r attribute for the SP class will appear multiple times fbr a given object. This usuall happens lien an object

has a set of subobjects. [he third argument is the expected number of occurrences (i the attribute for a gvixen

object ot that class. [ he default is S. When this information is provided, the ordering algorithm can produce

more efficient P format productions and greatly speed up the execution oea system. ,.

10.3.3. Run N[D]

The run function executes the production system with the current working memory tbr the number of

cycles given by N. If D is missing, N gives the number of production cycles to be executed. In Soar. during

the elaboration phase, many productions may fire in parallel on the same production cycle. This is one

production cycle. However, the elaboration phase may last many production cycles, and each cycle is counted

toward the total. Each decision phase is also counted as one production cycle. If D is d (no other values are

legal), then N is the number of decision cycles that are executed before halting. In this case Soar halts just

after the decision procedure of the Nth decision cycle. If N is an object identifier or object name, Soar halts

when an object with that identifier or name is selected as the current value of a role in a context. If N is a

SP-form working-memory element. Soarhalts when that working-memory element is created. If a run is done

following init-soar, it automatically initializes working memory with all non-goal roles in a goal-context being

undecided.
(run 100 d)

10.3.4. 0 N

(I) ,A) is equivalent to (Run N D).

. . . . . . . ." '°
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10.3.5. Pbreak L

Pbreak allows the user to give a set of names of productions, and break on the production cycle after they

fire. It has been expanded in Soar to allow the user to break after an object with a specific name is selected

for a context role. L can either be the name of a production to break after, or it can be a name or identifier of

the object the user wishes to break on. Soar will break following the decision procedure when an object with . ,

that name or identifier is selected as current. If L is nil. all break points are listed.
(pbreak selection evaluate-object)
(pbreak initialize-rl-problem-space reject-worse)

10.3.6. Unpbreak L

Unpbreak removes breaks set by pbreak. To remove a break, use the same argument in unpbreak as was

used in pbreak. If 1. is nil, all breaks are removed.
(unpbreak nil)
(unpbreak initialize-rl-problem-space reject-worse)(unpbreak n-l).. ..

10.3.7. User-select X

If X is T, then whenever Soar is going to make a choice between indifferent objects, the user will be asked

to make the selection. If X is nil. Soar will make the selection randomly. If X is 'first, Soar will always select

the first one found. This is a deterministic selection. If X is a list, then the list should contain numbers or ,

atoms. For each selection, the first element of the list is stripped off and used to select an object. If it is a

number, it will be used to index into the list of objects to be selected (1 for the first). If the number is less

than 1. or greater than the total number of choices, the user is asked. If it is a symbol, the objects are

examined, and the first one that has the symbol as a name or the value of a trace-attribute is selected. If the. -

symbol does not match any of the choices, the user is asked. When the list is exhausted, user-select is called

automatically with the value of *default-user-select*. which is initiall T. The original value for user-select is

'first.
(user-select t)

\I RhO\ N'\R( ISJ 5 1 \\i ,Y - -
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10.4. Tracing

10.4.1. Trace-attributes L

Trace-attributes takes a list of two-element lists as its argument. The first element of each sublist should be

a SP class and the second element should be a SP attribute. After trace-attributes is called, a watch trace of

level 0-2 (and PGS) will print out the value of the specified attributes when an object is selected to a context

role. If the value is an identifier with a Tname attribute, then the name of the identifier is printed. 'lle

tracing is recursive, so that if the value is an identifier that appears in an augmentation with another class in

trace-attributes, its attributes will be traced, and so on. The recursion stops whenever a previously traced

identifier, or one that has no trace-attributes, is encountered. I race-attributes is initialized with ((goal role)

(goal impasse) (goal superoperator) (operator instance) (operator object)). 'he tname attribute is handled

specially for all classes, so it should not be included in tracC-attrihutes. All calls to trace-attributes merely add

pairs to the list.
(trace-attributes '((state backplane) (operator module) (module size))

10.4.2. Watch N

As in OpsS. N is a parameter that determines the amount of trace information pr,,xuced by the system.

Soarexpands the available values and expands the different levels of trace information.

-1 No tracing.

0 Object tracing. Changes to a goal-context are listed. No production or working
memory tracing. fThe object tracing includes the current decision cycle number. the
role being changed. the identifier of the object, the name and any attributes declared
with trace-attributes (see above). Objects are indented (3 * the subgoal depth).
Indenting can be turned off by setting the global variable *subgoal-tabs* to nil. When
there is no indenting, the subgoal depth is printed at the beginning of each line.
Subgoals are prefaced by = = >" so they are easy to pick out.

1 ==>g: g0001 (no-change goal)
2 p: pO003 eight-puzzle
3 s: s0012
4 ==>g: g0031 (tie operator)
5 p: p0032 selection
6 s: s0033
7 0: 00036 evaluate-object(up)

.5 Same as 1. except no trace of the time-tags of working-memory elements that match
the conditions of the productions, or are created by productions or are auto-removed.

Adds trace of the productions that fire. In Soar. the trace starts with the decision cycle
number lbllo~ed h% the production cycle number (the number of producton cycles -
where mans productions can fire in parallel on one production cycle - Nince the last
int-soar). Ihese numbers ire followed h, (he name otf the production that fired.

\1~~~% F0 PP 1: \



66 SOAR USER'S MANUA1.

When the decision procedure is executed. the role and the name of the selected object % %
are traced. If there is an impasse in the decision procedure. the type of impasse and ".
the name of the newly created subgoal is printed. Following this information is a list
of the data that was matched by the production (given by time-tags) followed by the
data that was created by the production (given by time-tags). These working-memory
elements are Ops5 working-memory elements and will not be in SP format if printed
out directly using the %m function. For example:

73:174 decide operator s0415
o: up 1466

74:175 create-newstate 1443 1456 17 1463 1466 23 --> 1467

The first line is a trace of a decision occurring during the 73rd decision cycle. It is the
174th production cycle and operator S0415 (also called up) is selected. 1466 is the
time-tag of the working-memory element for the current operator. On the following
production cycle, production create-newstate fires using the six working-memory
elements listed to create 1467. On the return from subgoals. the working-memory
elements that were garbage-collected are listed following "--".

1.5 Just like 1. except that the actual horking-memory elements added to and removed
from working memory are printed.

Prints out the time-tags of the working-memory elements matched by the conditions
of the production and the actual working-memory elements added to and removed
from working memory.

Default = 0.

Example:
(watch 1)

10.4.3. Decide-trace X

If X is T, decide-trace is enabled. If X is nil, decide-trace is disabled. The default is nil. When decide-trace

is enabled. a trace of the decision procedure is displayed.
(decide-trace nil)

10.4.4. Ptrace X

If X is a production name, it will be traced whenever it fires. If V is an SP-form working-memory element.

that working-memory element is traced when it is created or matched by a firing production. If , is an object

name or identifier. all working-memory elements that augment that object are traced when they are created or
matched by a firing production. lracing of chunks is also controlled by the trace option of learn. -.-

(ptrace create-new-state)

P N . .' .. . . . . . . .. . . . . . . . .
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10.4.5. Unptrace 'V

Removes traces set by ptrace.
(unptrace)

10.5. Displaying Information

10.5.1. CS

The cs hunction produces a listing of the productions that are in the contlict set. In Soar. these are the

productions that will fire on the next production cycle. If the next cycle is an elaboration phase. the

elaboration productions that will tire are displayed. If the next production cycle is a decision. the number of

instantiations of decision*gather-preferences is displayed. Decision*gather-preferences matches all of the

preferences relevant to the context stack. Note: some elaboration productions may be in the conflict set but

not change working memory because the elements they create are already in working memory.
(cs)

10.5.2. PGS

This prints out the goal-context stack, indented at each subgoal. followed by the decision cycle number. If
*subgoal-tabs* is nil, the indentation will be replaced by numbered depth counts. For parallel operators, the

goal stack is printed out depth-first. with a space between the end of one parallel operator's subgoal tree and . -

the beginning of the next parallel operator. This is a great function for finding out where you are in problem

solving.
(pgs) -

10.5.3. SPR X

[he spr function is the generic SP printer for all types of objects. It takes any number of arguments which

can be time-tags, object identifiers. partial descriptions or production names. It then prints the associated

working memory elements or productions appropriately. If no argument is given. it calls pgs.
(spr (operator tname evaluate-object))

10.5.4. PPWM X

Without any arguments, ppwm prints out all of working memory. Arguments to pp%&m provide a partial

description of working-memory elements in P-format: a class and attribute-value pairs. I hese arguments act

as a filter. so that only those working-memory elements that match are printed. In the example. the second

call will print out only acceptable-preferences for goals.
(ppwm)
(ppwm preference trole goal tvalue acceptable)

\1 RO\ PAR. h .. I \\t. \k, 'if
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10.5.5. SPPWM X

The sppwm function is an SP version of ppwm. Its input is a partial description of an object in SP format.

It finds all objects matching that description and prints them in SP format.
(sppwm operator tname evaluate-object)

10.5.6. WM N"

The wm function takes any number of time-tags as its argument, and prints out the working-memory

elements with those time-tags. The time-tags of working-memory objects are listed when they are created

during watch I and 2. -

(wm 45 54)

10.5.7 SWIM N

The swm functon takes any number of time-tags as its argument. and prints out the objects with the

identifiers of working-memory elements with those time-tags. Ihe time-tags of working memory objects are

listed when they are created during 'atch I and 2.
(swm 45 54)

10.5.8. PO I

The po function will print out the augmentations of the object with identifier I (it only accepts one-

argument at a time). This will print out preferences and augmentations where the object is in the identifier

field. It will not print out your own weird data structures if identifier is not in the identifier field.
(po S0003)

10.5.9. SPO I. [0]

'The spo function is an expanded SP version of po. It pnnts out the augmentations of the identifiers in SP
format. It does not print out preferences. It has an optional final argument: depth. If depth is given, spo will
print out a depth-first expansion of the objects and subobjects to depth . It will only print the

augmentations of each object once. [he default depth (for when no second argument is provided) is held in

global variable *spo-default-depth*. which is iniuallv 1.
(spo S0003 2)

1 ,,1 - W
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10.5.10. SPOP I. [D]

Fhe spop function %ill print out the preterences of the identifiers in SP format. It does not print out

augmentations. It has in optional final argument: D. If 0 is given, spo will print out a depth-first expansion

t" the preferences of obJects in the context fields of preferences of each object once. Fhe detault depth (for

when no second argument is pro% ided) is held in global ariable *spo-default-depth*. which is initially 1.
(spop S0003 2)

10.5.11. PM P

[he pm function prints out production P in P format.
(pm eight'create-new-state)

10.512. SPM P

l'he spin function prints out production P in SP format.
(spm eight'create-new-state)

10.5.13. Matches P.

[he matches function lists the time-tags for all of the working-memory elements that match the conditions

of production P. It also prints all of the partial instantiations of production P(with time-tags). .-

(matches eight'create-new-state)

10.5.14. Smatches P

Ihe smatches function takes the name of a production as its argument (unquoted). It prints out the most

complete match for the production given the current working memory (as time-tags) followed by a listing of

the production with a pointer to the condition where the match failed. Each condition in the production. is

prefaced by the number of partial instantiations active at that point. This function subsumes most of the

interesting aspects of matches.
(smatches eight*create-new-state)

10.5.15. Back-trace [/4 [G]

Fhe back-trace function lists all the productions used in goal G to produce the working-memory elements

described by 1. It also prints out the working-memory elements that were matched by those productions that

would be included in a chunk if it were to be huilt with I as its actions. If G is not prosided. the most recent

subgoal is used. I can he eithcr a time-tag ofi working-rnemor, element. in ohject identifier (in which case
all augmentations of the obiject ire used), or a SP pattern that indudes at least tne attribute (in w hich case all

V .W1\.
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working-memory elements matching the SP pattern are used). If! is not included, back-trace will use the

actions for goal G(if there are no actions at this time. nothing will be printed).

Beginning with the working-memory elements described by 1. the productions that created / are found.

their names are printed, and the working-memory elements that matched their conditions are collected. If the

working-memory element was created in a subgoal. the working-memory elements that would he used as

conditions for a chunk for that subgoal are collected, and the identifier of the subgoal is printed. Printing

. from then on is indented until all the collected working-memory elements have been processed. If a working-

memory element is the same as a working-memory element that has already been processed. it is ignored. If a

- collected working-memory element was created before G. it is printed because it will be the basis of a

condition in a chunk built for G. If a collected working-memory element was created by another production

firing in the subgoal, or by a subgoal, or by the decision procedure. then the process recurses. If a collected

working-memory element was created by the decision procedure (either a context slot or a goal augmentation)

decision-procedure is printed and the working-memory clement associated with that creation act is back- --

traced (see Section 7.1 for more information).
(back-trace o0034)
(back-trace (evaluation e0021 tnumeric-value -1) g0032)

10.16. PI[P I[AI

1he pi function prints out the working-memory elements that form the Nth partial instantiation for

production P. If N is missing, the first partial instantiation is listed.
(pi eight*create-new-state)

10.5.17. Print-stats

The print-stats function lists a summary of statistics for the runs of Soar since start-up or the last call to

init-soar. Most of the statistics concern a set of events, such as production firings, decision cycles, etc. Ihe

total number of each type of event is given, along with the number of events per second.

* Number of productions: The is the total number of productions in the system, including all chunks
built during problem solving.

* Number of node. with 5haring/wilhout sharing: The first number is the number or nodes actuall"
used in the network. The second number is the number of nodes that would be required if there
were no sharing.

* Elapsed time: On a Vax or D-machine. this is CPU time. On the 3600 this is elapsed real-time .

while running. ".'"

* Number o/dectsion cycles: This is the total number of decision c clcs.

-, ! - . -
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* Number oj'production c*cles: This is the total number of production cycles that were ext.ute.J.
which include the number of decision cycles and elaboration cycles. Ihis is not the total num, r p ,
of production firings, since elaborations fire in parallel.

- * ,Vumber oj elaboration cycles per decision cycle: this is the average number of elaboration t. ycles
executed during a decision cycle. bis is computed by computing the total number of elaoration.
cycles (production cycles- decision cyclcs) and dividing hy the numhcr of decision c~cles. *.,

* Vumber of production firings' This is the total number of productions that were fired. tAch
decision cycle is counted as one and only one production firing.

* Numher oielaboratton prodluctionsfiring in parallel: Ihis is computed by dividing the number of
elaboration production firings (total production firings - decision c cles) h% the number of
elaboration cycles.

9 * Number oiactons: This is the total number of actions. Ihis includes all additions and deletions
from working memory.

* ltorkitng memory size: This gives the average, total, and current number of working-mcmor'
elements.

o Token memory size: This gives the average, total. and current number of tokens used to represent
the working-memory elements in the RHIF network. When this number is large. the system
tends to slow down.

Below is an example from running the Fight Puzzle.
(print-stats)

Run Statistics
69 Productions (1034 // 3329 Nodes)

21 Seconds Elapsed
22 Decision Cycles (1.047619 per sec.)
47 Prod Cycles (2.238095 per sec.)

(1.136364 E cycles/ D cycle)
112 Prod Firings (5.333334 per sec.)

(3.6 Elab. prod. in parallel)
498 RHS Actions (23.71429 Per Sec.)
191 Mean working memory size (260 Maximum 222 Current)
419 Mean token memory size (651 Maximum 521 Current)

10.6. Changing Working Memory and Production Memory

10.6.1. Make

Ihe make function adds to working-memory the P-tormat working-memory element that t'ollows it in the

f'unction call.
(make state-info tidentifier S4404 tattribute name tvalue cleveland)

V1?\.1R INI~

. . . . . . . . . . . . .. . . . . . . . . . ... ... ,- - - - - - - -

-- f:- d .. ":-Y: :J A : *...



72 SOAR USER'S MANUAl.

10.6.2. Smake

I' The smake function adds to working-memory the SP-format working-memory elements that follow it in the

function call.
(smake state S4404 tname cleveland)

10.6.3. S remove N

The sremove function removes from working memory the element with time-tag N. This can be used only

*: at the top-level to remove working-memory elements and can not be included in production actions. In most
Ops5 implementations, this is just remove, however to avoid confusion with some LLs commands, we call it '.--:.-

sremove.
(sremove 45)

10.6.4. Pop-goal [X.-

The pop-goal function removes the goal X. all its subgoals, and all working-memory elements created in it

or its subgoals. No chunks are created when the goal is popped. If Xis not specified, the last subgoal created

is popped. It takes any number of subgoals as arguments, and will pop all of them. however, this is only

useful when parallelism is being used. This function allows a limited form of back up in Soar. After pop-goal

has been executed. Soar is in an elaboration phase, and unless the user adds productions or working-memory

elements. Soar will create a new subgoal in the next decision that is just like the one that was popped
(pop-goal g0043)

10.6.5. P

The p function creates a P format production. If this replaces a previously created production (same name,

different body) the old production is excised and the name of the excised production is printed.
(p eight'create-new-state elaborate

(goal-context-info tidentifier <g> tattribute state tvalue <s>)
(goal-context-info tidentifier <g> tattribute operator

tvalue <o>)
(op-info tidentifier <o> tattribute name tvalue up)

(make state-info tidentifier <n> tattribute name tvalue down))

10.6.6. SP

Ihe sp function creates a SP format production. If this replaces a previously created production (same

name. different body) the old producuon is excised and the name or the excised producuon is printed.

-..-..

. . . . . . . .- ,.. .. . . . . . . . . . . . .
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(sp eightocreate-new-state
(9c <g> 'state <s> toperator <o>)
(operator <o) tname up)

(state <n> tname down))%

10.6.7. Excise P

[he excise fuinction removes production P) from production memory. If a production is excised. a #.is

displayed.
(exc ise e ightcreate-new-state)

10.7. Chunking

10.7.1. Learn [A*]

T his function is called to mo)difv or examine a number of flags that control chunking. Mhe arguments are 'A i.

not evaluated. If no arguments are included. all of the flags are displayed. Beclow is the list of argument pairs.

the first one (underlined) is the default.

0 nevcr/on/off
On turns learning on. off turns learning off. Never turns learning off' and learning can not be used
befo~re iflit-sa)rf is called. If learning is off, but not never, it can be turned on (and off) at anytime
during a run. With never. Soar does not maintain the extra information required by the learning
mechanism. Never runs about 8% faster than off, which runs about 25% faster than on. Mews
figures depend up~on the complexity of the objects in working memory and the frequency of'
suhgoal creation and termination.

*AI.5/bottom-u
With always, productions are built whenever a subgoal terminates. With bottom-up. productions
.ire only built for terminal subgoals (subgoals that do not have any subgoals).

* gxinrJ/noprint/rfull- print
With print, production names are printed as they arc created. With noprint. nothing is printed.
With full-print, the fuill production is printed when it is created.

* tL=/untrace/full-trace
With trace, every time a production is chunked. it is added to a list. When a production on that
list fires, it is traced at Watch level 1. With full-trace. the building of the production is also traced.

(learn on bottom-up full-print)

P0\:' , h i
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10.7.2. Last-chunk%
J,'

This will print, in SP formnat, the last production created by the chunking mechanism.
(last-chunk)

10.7.3. Excise-chunks ~ ' ~

This will excise all productions that have been chunked since starting up Soar(eicher through starting Soar

or calling restart-soar). The names of' all chunked productions are held in *chunks*. Trhe function uses

*chunks* to remove the chunked productions and then sets *chunks* to nil.
(excise-chunks)

10.7.4. List-chunks

This will print all productions with names in *chunks* (whenever a chunk is created, it is automaticalI

added to *chunks*) in SP format. The chunks are listed in the order they were created.
(1list-chunks)

L Z~~~~ eI. _'':t- ,
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* 11. Errors, Warnings, and Recovery Hints

11.1. Errors
* *e Illegal production name I he name of the production Wa~ a list.

o Illegal production type. T he type ot'the production has neither missing. nor elaborate nor decide.

e No *-->Y in production: '-->' was not found in the production. This usually arises when (here is an
extra ')' in the condition elements.

* Attempt to negate a compound object: A negaition was placed before an SP object that had more
than one attribute. Ibis will create a separate working-memory element for each attribute which
is not alwa~s the desired effect (see Section 3.4). If that is the desired effect, place a negation __

hefore each attrihute.

* D~idn't ind terminator: A terminator (either >> or ~)to match a pre% i()usly encountered << orI
was missing from a condition ot the production.

o Missing>X: A << is missing a closing >X.

9 Missing 1: A I is missing a closing ~

* Didn't find a t when expected: k - was not followed hy a t.

*~ A tomic conditions are not allowed: A condition must be a list.

* Non-numeric constant after numeric predicate.

* * Wrong context for 1: A Ican occur only following a

* . Unrecognized symbol.

* Not a legal function name.

* Condition is too long: The condition has too manY fields. T[his should never happen.

* * I'ab must be a number: \unknown P-format field name was encountered.

11.2. Warnings

Miscellaneous

*Illegal multi-attribute va.lue: A multi-attribute can only have a range between 0 and IMX.

E ~xceeded *ma\-elaborations*. Proceeding to decision procedure.

Production syntax

V }~O I '. 1 h
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" Illegal index after t.

" Constant identifier field in: An identifier field of an augmentation in a condition must be a
variable.

" Identifier field not constant or variable in: An identifier field of an augmentation in an action
must be a constant or variable.

* Constant object field in: An object field of a preference in a condition must not be a constant.

• Object field not constant or variable in: An object field of a preference in an action must be a
constant or variable.

* Condition not linked to previous conditions: The conditions of a production must all be linked to
the goal-contexts. either through augmentations or preferences.

Actions

9 Atomic Action: Actions must be lists.

o Illegal Action.

9 Unconnected actions in production: All variables in the actions of a production must either
appear in the conditions or be linked to the conditions through other actions.

* Illegal decide in production type: he decide action can only be used in productions of type
decide.

* Illegal make in production type: The make action can only be used in productions of type
elaborate.

* Illegal remove in Soar production: The remove action can not be used in productions.

. Illegal modify in Soar production: The modify action can not be used in productions.

o Arguments missing from make action.

o Wrong number of arguments for Tabstop.

*- o Illegal argument for I'abstop.

o Cannot be called at top level: C k1.12.

o T %kSTOP can not be called at the top level.

o Write cannot be called at the top level.

o N rite: nothing to print. ,

e Writel cannot be called at the top level.

* * * * * * *r*'* - ". .I
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* Write I: nothing to print.I I
* W'rite!: nothing to print. ___

low

* W'rite2 cannot he called at the top level.

e (S)PlPWNI does not take variables.

e Cannot be called at top level: BINI1).T.M.

* Bind: Wrong nunmber of arguments to.

* Bind: illegal argument.

* CR11F: D~oes not take arguments.

o RJUSi': Wrong number of arguments.

e RJILST: Illegal value for ield width.

* TA B'O: Wrong number of arguments.

* IAB'lO: Illegal column number.

Chunking

* No chunk was built because there were no actions.

o No chunk was built because *max-ch unk-condit ions* was exceeded.

* No chunk %as built because no conditions had a class in *chunk-classes*.

. .... .. .. .. .. . . . . . . . . . .
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11.3. Recovery Hints .

Symptom Probable cause Remedy

4 Soar rule won't load; Certain syntax errors Try reloading the
it just sits there send the loader into an rule: also check for

infinite loop; other times syntax errors, such as %
the loader just balks. missing spaces inside

curly brackets.

While loading in rules, There is an extra close Remove the extra
Lisp tries to evaluate parenthesis. parenthesis.
a condition.

Two goals are generated 1. There are no non-default 1. Load in productions
followed by a message productions.
that Soar must 2. The initialization 2. Make sure it tests
terminate, production did not fire. (gc <g> -tsupergoal)

Many of the productions Load was used in Interlisp. Reload using Soarload.
just loaded do not fire
when they should.

Soar uses up the *max- A rule may be producing a Modify the rule so
elaborations* number of wm element which enables that none of its
elaboration cycles, the rule to match in a new conditions will match

way, and then produce a new any of its actions.
wm element, etc.

A rule matches, but is The rule is prevented from A good (but not
not in the conflict set. firing by refractory perfect) indicator of

inhibition, refractory inhibition
is when (pi) does not
print any wm elements,
but just returns a
number one greater
than the number of
conditions in the rule

There is an unexpected The preference for the Add tstate undecided
tie between the new initial state included to the preference
next state and the just the goal and problem for the initial
initial state. space: thus it applies state.

regardless of the state.

There is an unexpected The preferences from the Make state preferences

tie between the new supergoal are interfering sensitive to the goal.
next state and the with the subgoal.
state after the initial
state. -'

..................
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12. Installing Soar

All files for Soar are available on h.cs.cmu.edu in account /usr/soar. Each Lisp dialect has a separate

directory that contains all of the files necessary to run Soar. Common Lisp=csoar. Franz-Lisp=fsoar.

Inter/isp= isoar, and Zeta-Lisp= /soar. Each of these directories include the following files:

read.me A tile that describes how to run this dialect of Soarand an index of all the files in this
directory.

default.soar The default productions.

eight.soar The Eight Puzzle productions.

soar.load A load file that will load in all files necessary to run Soarexcept the user files. l'his is
not necessary for Franz-Lisp.)

'To obtain the files via the ARPA-net. send mail either to soar@h.cs.cmu.edu or John Laird, Xerox PARC.

3333 Coyote Hill Road, Palo Alto. CA. 94304. The information needed to VIP the files will be sent to ou.

The current method is to login to h.cs.cmu.edu under account ftpguest with password cmunix. However. this

procedure is only temporary and may not be supported for very long.

In all systems, the first step in executing Soar is either loading in files (3600, 1)-machines. and Suns),

executing a core image (Fmnz-Lisp). or executing Lisp with a suspend file (Common Lisp on a Vax).

Following this, the default productions and then the task productions should be loaded. In the Inter.isp

version, soarload should be used in place of load when loading Soar files. At the top-level all systems use the

same commands like run, watch, ppwm and print-stats. In the Symbolics 3600, TI Explorer, and Xerox

D-machine implementations, hitting any character while Soar is running will cause it to break at the next

production cycle.

a ...:..°
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13. Performance Comparison

Below is a comparison of the time required to solve a simple problem in the Eight Puzzle on different Lisp
systems in Version 4, release 1. Without learning for the Fight Puz/le it took 143 decisions. 346 production-"-"

cycles, 660 production firings and 3117 right-hand side actions. All runs were done with a freshly created

irtual memory. All Limes are in seconds. I he sstems are listed in order of increasing elapsed time. No

system specific optimizatons were used except that the Franz-Lisp runs were done with debugging

information disabled (although Soar was developed under Intedisp so it is more tuned for the Xerox

matchines). Global variables were declared in all systems. None of the additional declarations that are

available in Common Lisp to enhance efficiency were used. The Sun (run on l)ecember 18, 1985) and IBM

R]IPC (run on January 24. 1986) runs used preliminary compilers. All entries of ?? mean that either the

statistic was unavailable or not recorded at the time of the run.

Machine Software Physical Elapse 3600 CPU GC Load
Memory I ime Ratio l ime ime "-"""

Xerox 1132 Interlisp 8 Mbytes 127 1.08 127 off
Symbolics 3600 Zeta-Lisp 4 Mbytes 137 1.0 137 off
Xerox 1132 Interlisp 8 Mbytes 149 .92 131 18
Symbolics 3600 Zeta-Lisp 4 Mbytes 153 .90 137 16
Sun 3 Common Lisp 8 Mbytes 176 .78 171 none
IBM RTPC Common Lisp 4 Mbytes 210 .65 210 ?? ~
Vax 785-Unix Franz-Lisp 8 Mbytes 215 .64 182 none
TI Explorer Common Lisp 8 Mbytes 228 .60 228 none
TI Explorer Zeta-Lisp 8 Mbytes 230 .60 230 none
Xerox 1186 Interlisp 3.5 Mbytes 348 .39 348 off
Vax 780-Unix Franz-Lisp 4 Mbvtes 365 .38 298 ?? - I
Xerox 1109 Interlisp 3.5 Mbytes 397 .35 397 off
Xerox 1186 Interlisp 3.5 Mbytes 409 .33 366 43
Xerox 1109 Interlisp 3.5 Mbytes 445 .31 402 43
Vax 785-Unix Franz-Lisp 8 Mbytes 470 .29 182 .? -3
Dec-2060 Common Lisp 8 Mbytes 660 .21 196 ? ",,
Vax 750-Unix Franz-Lisp 4 Mbytes 676 .20 495 .?

ihe fraction following the elapsed time is the elapsed time for the given machine divided by the elapsed time

of the 3600. [he performance of these systems may be different for other programs and even for other tasks

in Soar that have different runtime charactensucs than the Fight Puzzle. [he Fight Puzzle task is CPU

intensive, spending most of its time matching productions to working memory using a modified version of the

Ops5 Rote matcher. Ihis uses simple s~mholic computations. such as equality tests, function calls, application
of functions tapply), and list manipulation. I here is no numher-crunching of integers or reals. A trace of the

problem solving is printed to the terminal or console, hut that is not a Nienificant factor in any of the runs.

I here is no rile input or output and all of the svstems had enough memory ,o there %as no within-proxess
swapping.

2..
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All of the single-user workstations had sufficient virtual memory so that garbage collection was unnecessary.

This is one of the biggest weaknesses of this benchmark because different types of garbage collectors are used

by the different systems. with different overheads. For %ery long runs. garbage collection can become an

important factor in performance. The Xerox machines hase reference garbage collectors while the 3600 has

an ephemeral garbage collector, both which are used incrementally (they do not wait tr memory to get low

before they run), so runs with their garbage collectors enabled were included. The elapsed time for the Xerox

machines with their garbage collectors disabled is less than their CPLI times using garbage collection because
the CPU time includes some of the overhead associated with garbage collection (such as updating reference

counts).

1 0

4~i
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14. Soar Bibliography Z
Overview

Laird. J. F. Newell, A. & Rosenbloom, P. S. Soar. An Architecture for General Intelligence. 1986. In
p reparation.

* This is a comprehensive scientifc description of Soar Soar 4) and the major research results.

Laird. 1. E.. Newell. A.. & Rosenbloom. P. S. Proposil for Research on Soar An A\rchitecture for General
Intelligence and I-earning. 1985.

Ibis proposal provides a description of the research approach. a review of the principal research results. a
* survey of related research, and proposed research for the period 1985-1988.

Major Components

Problem Spaces
* Newell, A. Reasoning, problem solving and decision processes: Ihe pr(;nlcm space as a fundamental category.

In R. Nickerson (Ed.). Allenion and Pertrmnanc(' Il11. Hillsdale. N.Frlhaum. 1980. i(Also available
as CMU CSI) Technical Report, Aug 79).

This paper lays out the foundations behind the use of problem spaces for all goal-oriented beha% ior. Vs

Universal Weak Method
Laird. J. V-., and Newell. A. A Universal Weak Method (Tech. Rep. #83-141). Carnegie-Mellon L niersity

Computer Science D~epartment. June 1983.
* IDiscusses the weak methods, the problem-space hypothesis. Soari, what a universal weak method is. a

particular universal weak method, and a demonstration of it involving the use of many methods on many
tasks in Soar]. (Soarl differs significantly from the % ersion of Soar described in this manual.)

[Laird. J. F.. and Newell. A. A universal weak method: Summary of results. In Proceedings of ihe Eighth
IJCAI. 1983.

A summary of the longer universal weak method paper.

* Universal Subgoaling
Laird, J. F. Universal Subgoaling. Doctoral dissertation. Carnegie-Mellon University, 1983. (Available as

Carnegie-Mellon University Computer Science lech. Rep. #84-129).
Discusses the concept of universl subgoaling. updates the universal weak method to use universal
suhgoaling, presents Soar:2 and some demonstrations of it.( Soar2 differs significantly from the version of Soar
described in this manual.)

Chunking
Rosenbloom. P. S.. and Newell. A. [he chunking of goal hierarchies: A generalized model of practice. In

R. S. Michalski. J. G. Carhonell. & 1'. M. M itchell iI-d. 1s. IJchine I earning: 4In 4rulicial Intelligence C.
.lpproa-h. VOlurne /I. los Altos. CA: Morgan KAirnann Publishers. Inc.. 1986.

Fhis paper lays out the foundduOnS tor goal-based ChUnking ( in the context of the Xapsi architecture).

Laird. J. K.. Rosenbloom. P. S.. & Newell. N. I owards chunking as a acneral learning mechanism. In

I P G P Ile '-
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Proceedings of AAAI-84. National Conference on Artificial Intelligence. American Association for-'r

Artificial Intelligence, 1984. Availahle in Two ,Soar Studies. (lech. Rep. #85-110). Carnegie-Mellon
University Computer Science Department, January 1985.

Ibis paper presents the first results from implementing chunking in Soar strategy acquisition, normal
practice speed-ups. within-trial transfer, across-task transfer, and know ledge acquisition.

Rosenbloom, P. S.. Laird, J. E.. Newell. A., Golding. A.. Unruh, A. Current research on learning in Soar. In
Proceedings of the Third Internutional iachine learning Workshop. 1985, Skytop. PA.

Ihis paper reviews the state of research on chunking in Soar as of July. 1985. It includes short discussions of
work on analogy and generalization, simple abstraction planning, macro-operator acquisition. and problem
space creation.

Laird. 1. E.. Rosenbloom. '. S., & Newell. A. Chunking in Soar: [he anatomy of a general learning
mechanism. In Machine l.earning, 1986 10) 11-44.

This p.,per presents the details of chunking in Soar. It includes a demonstration of chunking based on Korrs
" Macro Problem Solver.

Manuals

Laird, J. F. Soar User's lanual. Vcrsion 4. 1986.
The manual is the main reference for using Soar 4.

Laird. J. E. Soar Technical Manual. 1985. In preparation.
The manual is the main reference for the Soarsoftware.

Forgy, C. L. Ops5 Manual. Computer Science Department, Carnegie-Mellon University. 1981.
Soar is implemented on top of OpsS. and thus inherits many aspects of it.

Applications

Rosenbloom. P. S.. L.aird, J. E.. Mcl)ermott. J.. Newell, A., & Orciuch, F. RI-Soar: An experiment in
knowledge-intensive programming in a problem-solving architecture. In IEEE Transactions on Pattern
Analysis and Machine Intelligence. 1985 715) 561-569. This also appeared in Proceedings of the IEEE
Workshop on Principles of Knowledge- Based Systems. IEEE Computer Society, 1984. Available in Two
Soar Studies. (Tech. Rep. #85-110). Carnegie-Mellon University Computer Science Department,
January 1985.

This paper presents the first attempt at expert systems in Soar, a partial reimplementation of RI. It shows
how problem solving and expertise can be integrated, and how chunking can acquire expertise from problem
solving.

I " \R1 1Y. R
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Appendix I
Default Search-Control Productions

Below are the default productions in default.soar.

(comment 0000** conmmon search-control productions ) "A

(comment all operator augmentations of the problem space have
acceptable-preferences created for them)

(sp defaulttmake-all-operators-acceptable
(gc <g> 'problem-space <p>)
(problem-space <p> toperator <x>)

-(preference <x> trole operator 'value acceptable tproblem-space <p>)

(preference <x> trole operator 'value acceptable
tproblem-space <p>))

(comment if an operator has just been applied to a state, which is

detected by using the preference created for that state.,-
reject the operator for that state so it will not be reapplied
in the future)

(sp default'no-operator-retry
(gc <g> tproblem-space <p> 'state <s2>)
(preference tobject <s2> ,role state 'value acceptable

'goal <g> ,problem-space <p> ,state <s>
toperator ( <> undecided () nil <o> )

(preference <o> trole operator tvalue reject
'goal <g> 'problem-space <p> 'state <s>))

(comment if there is a reject-preference for the current state.
make an acceptable-preference for the prior state so problem

solving can backup)

(sp default~backup-if-failed-state
(gc <g> tproblem-space <p> 'state <s>)
(preference <s> trole state 'value reject

'goal <g> ,problem-space <p>)
(preference <s> trole state 'value acceptable

,goal <g> 'problem-space <p> 'state ( <> undecided 0) nil <n> }
'operator <> undecided)

(preference Cn> 'role state 'value acceptable
'goal <g> 'problem-space <p> 'state <s))

. . . .... . . . . . .

O. - 4( -1 \H
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(comment 0000 default knowledge for tie impasses

(comment if the problem space for handling the subgoal fails.
signified by the choices none impasse below it.
make a worst-preference for each tied object)

(sp defaultproblem-space-tie
(gc (93> trole goal tchoices none tsupergoal <gZ>)

* (gc <g2) trole problem-space rimpasse tie tsupergoal (g1l
litem <p>)

(preference <p> role problem-space tvalue worst
itgoal (gi>))

* (sp defaultstate-tie
(gc (g3) trole goal tchoices none tsupergoal <gZ>)
(gc <g2> Trole state timpasse tie tsupergoal (gl> 'item (s>)

- (gc (gi) tproblem-space <p>)

(preference (s.> trole state tvalue worst
rgoal (gi>))

(sp defaultoperator-tie
* (gc (93> trole goal tchoices none tsupergoal <gZ)I
* (gc <g2> trole operator timpasse tie tsupergoal (qI) titem (0>)

(gc (gi> tproblem-space <p> tstate es>)

* (preference (o> Trole problem-space rvalue worst
tgoal (gi> tproblem-space <p>))

(comm~ent conflict impasses

(commnent if the problem space for handling the subgoal fails.
signified by the choices none impasse below it.
make a reject-preference for each confl icted object)

* (sp defaultproblem-space-conflict
* (gc <g3> trole goal tchoices none tsuperqoal q2.))
* (gc <g2> Trole problem-space timpasse conflict tsuperqoal (gi)

titem <p>)

(preference <p> trole problem-space tvalue reject
tgoal (gi>))

(sp defaultstate-conflict
(gc <g3> Trole goal tchoices none tsupergoal <g2))
(gc (g2) trole state timpasse conflict

tsupergoal (gDi) item (s>)
* (gc <91> 'problem-space <p>)

(preference i's> trole state tvalue reject
tgoal (gl> Tproblem-space <p>))

* (sp defaultoperator-confl1ict
(gc <g3> trole goal tchoices none Tsupergoal <g2))

* (gc (gZ> trole operator 'impasse conflict tsuperqoal (gi>
titem eo)

(gc (gi> tproblem-space <p> tstate 's>)

(preference <o> trole operator rvalue reject
rgoal (gl, tproblem-space p. rstate s,))

V~~~~ I,) R "
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(comment *000no-choice impasses 0000)

(commnent if no problem spaces are available for the top goal. %R

terminate the problem solving session with halt)

(sp defaultgoal-no-choices
(gc (g3) trole goal tchoices none tsupergoal (g2>)

-(gc <g2> tsupergoal)

(writel (crlf) -no problem space can be selected for top goal.")
(writel (crlf) "soar must terminate.")
(halt))

(commvent if no states are available for a problem space.
and there is no problem space to find more.
reject that problem space;

(sp defaultproblem-space-no-choicos
(gc <g3> trole goal tchoices none tsupergoal 'g2>)

* (gc <g2> trole problem-space rchoices none tsupergoal (91>)
* (gc (g1> tproblem-space p>)

* (preference <p> trole problem-space value reject Tgoal <gt))

(commient if no operators are available for a state.
and there is no problem space to find more.
reject that state)

(sp defaultstate-no-choiceS
* (gc <g3> trole goal 'choices none tsupergoal (g2>)
* (gc <g2) 'role state 'choices none tsupergoal <91>)

(gc (gi> tproblem-space <p> tstate (s>)

(preference <s> trole state tvalue reject
tgoal <gi) tproblem-space (p))

(conmment if no changes for an operator.
and there is no problem space to find more.
reject that operator)

(sp defaultoperator-no-choices
* (gc <g3) trole goal tchoices none tsupergoal (g2>)

(gc (g2> trole operator timpasse no-change Tsupergoal <gi>)

*(gc <91> tproblem-space <p> 'state <s> toperator <o>)

(preference <o> 'role operator 'value reject
'goal <g1> 'problem-space <p., tstate <s>))
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(commient selection problem space * S ').

(coemment use the selection problem space for all choice multiple
impasses. make it worst so that any other will dominate)

(sp selectselect ion-space elaborate
(gc (g> tchoices multiple)

(preference <p> trole problem-space tvalue acceptable Tgoal <g>)
(preference <p> tr,'le problem-space tvalue worst tgoal <g>) .. ~i
(problem-space <p> tname selection))

(conmment the state of the selection problem space is empty)

(sp selectcreate-state
(gc <g> problem-space (p) tstate undecided)
(space <p> tname selection)

* (preference <s> troll state tvalue acceptable
tgoal <g> i-problem-space <p> tstate undecided))

(commient $00*0000 evaluate-object operator rS***S*Se.)

* (commient create an evaluate-object operator for each tying item
in selection problem space. These are all indifferent
so there will be no tie between them.)

(sp evalwselect-evaluate
(gc <g> tproblem-space (p> Tstate <s> tsupergoal <g2> titem <x>)
(problem-space <p> ?name selection)

(operator (o> tstate <s> tname evaluate-object Tobject <x>)
(preference <o> trole operator rvalue indifferent

tgoal <g> tproblem-space <p> tstate <s>)
* (preference o> trole operator tvalue acceptable

tgoal g9> tproblem-space <p) Tstate (<)s>

(commTent for parallel evaluation
remove this commaent if you want parallel evaluation of

* the alternatives.

(sp evalparal lel-evaluate
(gc <g> tproblem-space (p) tstate (s> trole operator tsupergoal (g2))

* (problem-space <p.> 1maie selection)
* (preference (01> Prole operator tvalue acceptable

tgoal <g., tproblem-space <p> tstate <s>)
* (preference (o2) trole operator tvalue acceptable

tgoal <g> tproblem-space ep> istate (s>)
(operator <01> iobject Ky>)
(operator <o2> robject ( 0) <y> <x> }

* (preference <0!> trole operator ivalue parallel
ingoal <g> rproblem-space Kp) istate (S) treference <02>)))

. . . . .
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(commbent create evaluation once the oval operator is selected)

(sp evaloapply-evaluate
(gc <g> tproblem-space <p> tstate <s> toperator (0>

trole <role> tsupergoal <g2>)
(problem-space <p> tname selection)
(gc <g2> tproblein-space <p2> tstate <s2> tdesired <V>)
(operator (o> tnagne evaluate-object tobject <x))

(state <s> tevaluation <e>)
(evaluation <e> tobject <x> tstate <s> toperator (0) tdesired <d>)e
(operator (o) ?role (role> tevaluation (e) tdesired <d>

tsupergoal <g2> tsuperprobleen-space <p2> tsuperstate <s2>))

(coumment reject evaluate-object after it finished in selection space)

(sp evalreject-evaluate-inisied
(gc <g> tproblem-space <p> tstate (s.> toperator (o>)
(problem-space <p> tname selection)

* (operator <o> ',name evaluate-object Tevaluation <e>)
* (evaluation <e> T << numeric-value symbolic-value )>)

(preference (0o> trole operator ,value reject f~oal <g>
tproblem-space <p> tstate <S>))

Pk)\ 1",
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(commnent if two objects have equal evaluations they are indifferent)

4 (sp evalequal-eval-lndlfferent-preference
4 (gc <g> 'problem-space <p> tstate <s> trole (role) 'supergoal <g2>)

(problem-space <p> 'name selection)
(state (s> 'evaluation <el) tevaluation ( (> <el) <ea)})-
(gc <g2> tproblem-space (p2) 'state <s2> 'desired <d>)
(evaluation <ei) tobject (<) Tnumeric-value <v0 Tdeslred <d)
(evaluation <e2> tobject <y) 'numeric-value <v) 'desired <dV)

(preference <x> 'role (role> 'value indifferent 'reference <y
'goal (g2> 'problem-space <p2) 'state <s2>))

(commnent generate operator preferences based on their evaluations and info
as to whether higher or lower evaluations are better.)

* (sp evalprefer-higher-evaluation
(gc <g> tproblem-space <p> tstate <s0 'role <role,, tsupergoal /g2,)
(problem-space <p> 'name selection)

* (gc (gZ> 'problem-space (p2> 'state <s2) 'desired <d)
(state (5> "evaluation (el> 'evaluation ( e1 <e2>}
(evaluation (V> 'better higher)

*(evaluation <el> 'object (01> 'numeric-value <v> 'desired <d>)
(evaluation <e2> tobject (o2> '-numeric-value < -'v) 'desired <d.>)

(preference (o2) trole <role> 'value worse treference (01>
'goal <g2> 'problem-space (p2> 'state <s2>))

(sp evalprefer- lower-evaluation
(9c (g> 'problem-space <p> 'state s5) 'role (role) tsupergoal <g2>)

* (problem-space <p> 'name selection;
(gc <g2> 'problem-space (p2> 'state <s2> 'desired <V)
(state (5> 'evaluation (el> 'evaluation { <> (el> ee2 )
(evaluation <d> 'better lower)-
(evaluation <e1> tobject (01> 'numeric-value <v, tdesired <d0)
(evaluation <e2> tobject (02> 'numeric-value K v> 'desired <d>)

(preference (o2> trole operator 'value worse treference (01>
'goal (g2> tproblem-space (p2> 'state <s2>))
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* (conment 0000 produictions for the evaluation subgoal

(conunent copy down the desired and create the appropriate context. I

given the role of the object being evaluated)%

(Sp eval select-role-problem- space
(gc <g> tproblem-space undecided tsupergoal (gZ) tsuperoperator (o2>)
(gc <g2> toperator (o2>)
(operator (o2> tname evaluate-object trole problem-space tobject <p> tdesired (d>)

(gc <g> tdesired <d>)
(preference <p> trole problem-space tvalue acceptable tgoal (g>))

- (sp evalselect-role-state
(gc <g> tproblem-space undecided tsupergoal <g2> tsuperoperator (o2>)
(gc <g2> toperator <o2>))

* (operator <o2> 'name evaluate-object 'role state tobject <s>
tsuperproblem-space p> 'desired <d>)

(gc <g> 'desired <d>)
(preference (p> 'role problem-space 'value acceptable tgoal (g>)
(preference <s> trole state 'value acceptable

tgoal (g> 'problem-space <p) 'state undecided)
(preference <s> 'role state 'value best

'goal g> 'problem-space <p> 'state undecided))

(sp evalselect-role-operator
* (gc <g> 'problem-space undecided 'supergoal <gZ> tsuperoperator (o2>)
* (gc <g2> toperator (02>)
* (operator <o2> iname evaluate-object trole operator 'object <o>

tsuperproblem-space ep> tsuperstate <s> desired (d>)

-g <g> 'desired <d>)
(preference <p> 'rrole problem-space tvalue acceptable tgoal <g>)

*(preference (s> trole stata 'value acceptable
Tgoal <g> tproblem-space <p> 'state undecided)

* (preference <o> trole operator 'value acceptable
'goal <g> 'problem-space <P>~ tstate (s>))

- (Comment reject those operators that are not being evaluated in this subgoal)

- (sp evalreject-non-slot-operator
*(gc <g) tproblem-space <p> ?state <s> tsupergoal <g2> tsuperoperator (o2>)
* (operator (o2> 'name evaluate-object 'role operator tobject <o>

'rsuperstate <s>)
* (preference ( <> (o> (03> ) 'role operator 'value acceptable

'goal <g> tproblem-space <p> tstate <s>)

* (preference <o3) trole operator tvalue reject

'goal <g> 'problem-space <p> 'state (s>))

40\ P~k
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(coeinent give symbol-value failure to an operator that has been rejected
during evaluation and did not create a new state and reject the oval-operator)

(sp ovalefailure-lf-reject-evaling-operator
(gc <g) 'problem-space <p> tstate <s) toperator (o>

1-supergoal (92> 'superoperator (02>)
(gc <g2> tproblem-space <p2> 'state (32>)
(operator (o2> 'name evaluate-object 'role operator

tobject (W Psuperstate <s> tevaluation (2>))
(preference (o> trole operator 'value reject

tgoal (g> tproblem-space <p) 'state Ks> toperator (o>)

-(preference trole state Pvalue acceptable
tgoal (9> 'problem-space <p> tstate <s> 'operator <0>)

(evaluation (e2) 'symbolic-value failure))

(commnent give symbol-value failure to an operator
that produces a state that gets rejected in the subgoal)

(sp evalfailure-if-reject-state
(gc <g> tproblem-space <p> 'state (s)

tsupergoal <g2> tsuperoperator (o2>)
(gc <g2> tproblem-space (p2> 'state <s2>)
(operator <o2>~ tname evaluate-object 'evaluation <e2))
(preference <s> trole state tvalue reject

'goal (9> 'problem-space <p>)

(evaluation <e2> tsymbol ic-value failure)) N

(commuent if an operator leads to success and it is being
tried out in a subgoal to evaluate another operator.
give that second operator a success evaluation also)

(sp evalpass-back-success
* (gc <g> 'problem-space <p> tstate <s> toperator (0> tsupergoal <g2>)
* (problem-space <p> tname selection)

(operator <o) tname evaluate-object tevaluation <91> tdosired (eb)
* (evaluation <91> 'symbolic-value success)
* (gc <g2) tsuperoperator <03>)

(operator (03> tname evaluate-object tevaluation (e2> tdesired <eb>)

(evaluation (e2> 'symbolic-value success))

%.5
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(comment if an operator is evaluated to be lose or failure for
the same desired as the supergoal.
create a worst-preference for it)

(sp evalfailure-becomues-worst
(gc <g> iproblem-space <p> tstate (s> toperator <o> tsupergoal <92>)
(problem-space <p> tname selection)

* (gc <g2) tproblem-space <p2> tstate <s2) ?desired <d>)
* (operator (0> tnamne evaluate-object tevaluatlon (el> tdesired <d> .

trole (role> tobject <01>)
(evaluation (el> tsymbolic-value << lose failure >>)

(preference (at) trole operator tvalue worst
trgoal <g2> tproblem-space (p2> tstate CsZ>))

(comment if an operator is evaluated to be success for
the same desired as the supergoal.
create a best-preference for it)

(sp evalsuccess-becomes-best
(9c <g> tproblem-space <p> tstate <s> toperator <o> tsupergoal <g2))
(problem-space (p) 'name selection)
(gc <g2> ?problem-space (p2> ?state <s2> ?desired <dV)
(operator (o> 'name evaluate-object tevaluatlon (el>

tdesired Ad> robject (01> trole (role>)
(evaluation <el> tsymbolic-value success)

* (preference (01> trole (role> tvalue best
?goal <g2) tproblem-space <p2) tstate <s2>))

9%
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(coment convert state augmentations into evaluations)

(sp *val*state-to-symbollc-eveluation(gc (g> tproblem-spaco <p> tstae (s> tsuperoperator <So>)

(operator (so> tname evaluate-object
tevaluation <v0 tdesired <.b))

(state (s> t( << success failure win draw lose ) <svalue> } (eo>

(evaluation <9> tsymbolic-value <svalue>))

(conment handle state augmentations dealing with goal
termination for the top-level goal)

(sp eval~detect-success
(gc (g> tstate <s> tname <name. tdesired <eb) -'supergoal)
(state <0> tsuccess <eb>)

(writel (crlf) "goal" <name> "achieved") "
(halt))

. (sp evalwdetect-win
(gc <g> tstate <s, tname <name> -tsupergoal tdesired <eb>) .-,.

* . (state (s> twin <b>) *.

(writel (crif) "game" <name> *won")
(halt))

(sp eval'detect-failure
(gc <g> tstate <s> tname <name> -tsupergoal tdesired <eb>) -
(state <s> ffailure <eb>)

(preference <s> trole state tvalue reject
tgoal <g> tproblem-space <p>))

(sp evaldetect-lose
(gc <g> tstate <s> tname <name> -tsupergoal tdesired <eb>) ..

(state <s> tlose <eb>)
S-- ,m< e"_

(halt))

• ". ..
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(coamment two player games - win side aside lose)

(sp evalmove-side-to-eval
(gc (g) 'state <s> 'superoperator <so))
(state <s) toside (side) t << lose win))
(operator <so) 'name evaluate-object tevaluat ion <e))

(evaluation (e) 'side <side>)))

(sp eval~winnlng-values
(gc <g> 'problem-space <p> tstate <s) Tsupergoal (gi> toperator <o))
(problem-space <p> 'name selection)
(gc <gi> 'problem-space <p1) 'state (si)
(state (sI) 'side <Side>)
(operator <o> tname evaluate-object 'evaluation <0> Tobject (01> trole <role))

* (evaluation <0> 'symbolic-value win tside <side>) -

(preference (01> 'role <.role) tvalue best
,-goal (gi> 'problem-space (p1> 'state (si)))

- (sp eval~winning-values2
* (gc <g> tproblem-space <p> 'state (s> tsupergoal <gi> 'operator (o>)
* (problem-space <p> tname selection)

(gc (q1) 'problem-space <p1) 'state <sI)
(state <sI> 'aside (side>)
(operator (a> 'name evaluate-object 'evaluation <e> 'object (ol> 'role <role>)
(evaluation <e> 'symbolic-value lose 'side (side)

(preference (01> trole (role> ?value best
'goal <gDi> problem-space (p1> 'state :sl>))

(sp evaldraw-values
(gc <g> 'problem-space <p> 'state <s> 'supergoal (gi) 'operator (o>)
(problem-space <p> 'name selection)
(gc (gl> tproblem-space (p1> 'state (SI)4
(operator (o> 'name evaluate-object 'evaluation (e> 'object (01> 'role <role>)
(evaluation <e> 'symbolic-value draw)

(preference (01> 'role (role> 'value indifferent
'goal (gi> 'problem-space (p1> 'state (51>))

do
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(sp *valolosing-values
(gc (g> tproblem-space <P> 'state (S) tsupergoal (gi> toperator <o>)
(problem-space (p> tname selection)
(gc <gi> tproblem-space (p1> 'state <ib))
(state <sI) 'oside (side>)

* (operator (a> 'ntame evaluate-object 'evaluation (9> tobject <01> 'role (role>))
(evaluation (0 Psymbol ic-value win tside (side>) %

.1 (preference (01) 'role <role) tvalue worst
* 'goal (gi> tproblem-space (p1> 'state (51>))

(sp evallosing-values2
(gc <g> Pproblem-space <p> 'state <s> tsupergoal (g1) 'operator <o))
(problem-space <p) Tname selection)
(gc (gi> tproblem-Space (p1> 'state (51>) N

(state <sI> 'side <Side>)%
(operator (0 tfname evaluate-object 'evaluation <9> tobject <01> trole (role>)

* (evaluation we tsymbolic-value lose 'side (side>)

(preference (01> 'role (role> 'value worst
'goal <gi> 'problem-space (p1> 'state (Si>))

(sp evalspass-back-win
- (gc <g> 'problem-space <p> 'state <s> tsupergoal qg2) toperator (o>)

* (problem-space <p> 'name selection)
(operator <o> tname evaluate-object tevaluation (<lD 'desired (eb>)
(evaluation (el> 'symbolic-value win 'side (side>)

* (gc <g2> 'superoperator <o3>)
* (operator (o3> 'name evaluate-object 'evaluation <02) 'desired <eb>

'superstate <s4>)
(state <W> toside (side>)

(evaluation (02> 'symbolic-value win 'side (side>))

* (sp evalopass-back-winZ
* (gc <g> 'problem-space <p> 'state <s> 'supergoal <g2> 'operator <o>)

(problem-space <p> tname selection)
(operator <o> 'name evaluate-object 'evaluation <9D> 'desired (eb>)
(evaluation (el) 'symbolic-value lose 'side (side))
(gc <g2> Psuperoperator (o3>)
(operator (03> 'name evaluate-object 'evaluation (e2> 'desired (eb>

'superstate <s4>)
(state <s4) 'side (side>)

* (evaluation <e2> 'symbolic-value win 'side (side>))

-p7
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(comment operator subgoaling 000000
there are two ways to do operator subgoal
just pass down most recent operator, or pass down all of them
this implementation passes down just the super operator as the
desired - uncoulment opsubgo-for-it2 if you want all supergoals
to be included)

(comment make the super-problem space the default
when there is a no-change for the operator)

(sp opsubtry-operator-subgoal ing
(gc (g> timpasse no-change trole operator

tproblem-space undecided tsupergoal <g2>)
* (gc <g2) tproblem-space <p2>)

*(preference <p2> 'goal <g> 'role problem-space tvalue acceptable)
(preference <p2> tgoal <g> trole problem-space 'value worst))

(comment if the superprobleM-sPaCe is selected as the
current problem space then operator subgoal ing
is being used so select the superstate-
the superoperator becomes the desired)

(sp opsubgo-for-it
(gc <g) 'problem-space <p> 'state undecided

timpasse no-change trole operator I'supergoal <g2>)
(gc <92> 'problem-space <p> 'state <s) 'operator (0>)

(9c <9> 'name operator-subgoal tdesired <o>) -*-

(preference <s> 'role state tvalue acceptable -*%

'goal <g> 'problem-space <p> 'state undecided))

* ~(comment pass down all super operator subgoals as well t*'
(sp opsubsgo-for-it2

* (gc (g> 'problem-space (p) 'state undecided
'impasse no-change 'role operator tsupergoal <g2>)

19c <g2> tproblem-space (p> 'state <s> 'desired <o>)r

(gc (g) 'pdesired <o)))

(comment don't select the operator for the initial state th~at we are *-.*-
subgoaling on)

* (sp opsubsreject-opsub*operator
(gc <9> 'name operator-subgoal 'rproblem-space <p> tstate <s) 'desired <o))
(preference <s) 'role state 'value acceptable

'goal (g) 'problem-space <p> 'state undecided)

* (preference <o> trole operator tvalue reject
'goal <g> tproblem-space <p> 'state <s>))

R, U-*.%.4
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(corn select superoperator for all new states)

(sp opsubsoloct-opsuboperator
(gc (gi> 'name operator-subgoal 'problem-space <p> tstate (s> 'desired Wa)

(preference w0 'role operator 'value acceptable
* 'goal <91> 'problem-space <p> tstate <s>)

* (preference w0 trole operator 'value best
tgoal (gi> tproblem-space <p> 'state <S>))

(comment if superoperator applied to a state then success
we make a preference for the state it created)

(sp opsubuuetect-ulrect-opsuu-success
* (gc (gO> 'problem-space <p> state (s) toperator <o.>

'supergoal <gi> tname operator-subgoal)
(gc (gi> tproblem-space <p> tstate <s2> toperator co>)
(preference (ns> trole state tvalue acceptable

'goal <gO> tproblem-space <p> 'state <s> Toperator <o))

(preference (ns) trole state tvalue acceptable
'goal (gi> iproblem-space <p> tstate <s2> +Operator (o>))

(commuent if there is an evaluation subgoal within
an operator subgoal and the operator being
subgoaled on is applied - success)

(sp opsubdetect-indirect-opsub-success
(gc (gi> tname operator-subgoal 'supergoal <g2))

* (gc (g2> 'problem-space <p> 'state <s2> 'operator (o.))
(gc <gO> 'problem-space <p> 'state (s) 'operator <o.>

'desired (0 'superoperator <so>)
(operator <so.> 'name evaluate-object)
(preference (ns> 'role state ?value acceptable

'goal <90> 'problem-space (p> 'state (s> 'operator (0)

(state <s.> 'success <o>))

(commnent if the operator being subgoaled on is the current
operator and a no-change subgoal is created for it
then reject it in the subgoal)

* (sp opsubreject-double-op-sub
* (gc <gi> 'name operator-subgoal 'desired (V)

(gc ( 0 <gi) >(93> ) 'name operator-subgoal)
(gc <g3> 'supergoal <g4>)
(gc <g4> 'problem-space <p> 'state (s) 'operator <o>)
-(gc 'supergoal (g3>)

(preference (o> 'role operator tvalue reject
'rgoal (g4> 'problem-space <p.> 'state <s.>))

V P o ;-Rt IS! \V



SUM1MARY 0O- l-L\cTo%S AN\D VARIABLES 9

Summay ofAppendix 11
Sum aryofFunctions and Variables

4chsrnk-alt-patb Controls multiple chunks from different paths:. nit
Ichuak-classesO SP classes that must appear in a chunk for it to be built: Mtoe

Ochunk-free-premne spacesO Names of problem space not to chunk: 1)
*%buU& Names of chunks built: 0)
0%8ax-chank-comdtions The maximum number of conditions allowed in a chunk:20
sinax-elaboratioes The maximum number of elaboration cxcles before a decision: 100
*sex-recurseo Depth of look ahead used bv ordenng scheme: 2
sp-classes* Association list of SP and P classes: ugc. goal-contex t- info)

*spo-defitult-depth Default depth that spo prints: I
Osaibal-labs* [fT. Watch 0 trace will tab in subl!aali: F
4arnine If nil. warnings will not be prnted: r
*%ac-free-problem-spacesP List of problem space names not to trace: 0

back-trace Print out those conditions and productions that lead to the action: (back -trace 00034)
Cs Print the conflict set: icsl
d Run N decision cycles: (d 5)
decude-trace Frace the decision procedure. t or nil: (decide-trace nil)
excise Remove a production from production memory: (excise eightcreate-sltate)
excise-chunks Excise all chunks: (excise-chunksi
ini-context Initialize the top context: (Iia-contex I p1 I s 01)
mnit-soar Clear out working memory I nit-soar)
last-chunk Print out most recently built chunk in SP format: I last-chunk)
learn Control chunking: (learn off alwavs print)
list-chunks Pnint out chunks in SP format: (list-chunk)

*Make Add element to working memory: I(make state-info tidentifier s02
matches Show all working-memory elements that match a production: (matches eightcreate-statei

*MulIu-attributes Declare some attributes of some classes to be sets: I(multi-attributes ((state binding 4M1
* p Define a production: I p eightcreate-state (goul -context -info tidenu fier <0 --

*pbreak Break after production fires or context change:(pbreak evaluate-object eightcreatc-statc)
pi Print the Nth partial instantiation of a production: (pi eightcreate-state 1)
pgs Print the goal-context stack: (pgs)
Pull Print production in P format: I(pm eightcreate-state) '.

PO Print all augmentations of object: tpo 00033)
pop-goal Terminate all goal and its subgoals: (pop-goal gOO4S) *

ppwm Prettypoint working-mem ory elements: ippwmn state-infoi
print-stats Print statistics from a run: ipnint-itatsi ,v

pirace Trace a production. object or working-memory element: (ptrace eightcreatesitwu
restart-soar Clear out production memory and working memory: I(restart-soar)

*run Run N productions cycles: (run 100)
smake Add element in SP formrat to working memory: (smake state 902 'a" 3)
smuatches Display part of production that matches: isnatches eightcreate-stw)
soarload Load in productions. especially for D-machmnes: (soarload 'default. soar)
SIR Define a production in SP format: (sp eightcreawessate (gc <S)
spa Print production in SP format: (spin eight create-state)
SPO Print all augmentattons of objects in SP format to given deph: ipo(10003 2)
spop Print all preferences of objects in SP format to given depth: I spop 00003 2)
spr Print in SP format of whatever is eiven as an argument: (spr 0000)
SPPWM Prettyprint working-memory elements in SP format: (ppwm state-in foi

* isremove Remove working-memory element with given time-tag: (iremove 33) :'
sWIN SP pnint the object in the identifier field of the element with the time-tag: tswm 454)
trace-attributes Will tr-ace the atrbutes of the classes: itrace-attributes (i(operator module))))
unpbreak Remove a breakpoint. nil remove% all breaks: Iunpbreak ;election P
unptrace Removes all traces set by ptrace: tuunptracel
user-select Change how indifferent-prefercnce% are handled. Tu'st. nil = random. T =user. (3selection 1)
watch Control tracing. -1. 0. 5.1. 15. '_1higher =more i: i watch 0)
win Pnint working- memory elements -Aith gisen time- tags: twmn 4 34 4551
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Index

*chunk-all-paths* 61
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