APPLICATION OF FINITE ELEMENT CODE Q3DFLO-81 TO TURBOMACHINERY FLOW FIELDS (U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA H D SCHULZ ET AL. SEP 84 NPS67-84-005 UNCLASSIFIED
APPLICATION OF FINITE ELEMENT CODE Q3DFLO-81
TO TURBOMACHINERY FLOW FIELDS

H. D. SCHULZ
F. NEUHOFF
CH. HIRSCH
R. P. SHREEVE
SEPTEMBER 1984

Interim Report for Period 1 October 1983-September 1984

Approved for public release, distribution unlimited

Prepared for:
Naval Air Systems Command
Washington DC 20361
The work in this report results directly from the appointment of Dr. Ir. Charles Hirsch, who is Professor and Head of the Department of Fluid Mechanics at Vrije Universiteit, Brussel, Belgium, as the Naval Air Systems Command Visiting Research Professor in Aeronautics during FY84. This appointment, under the cognizance of Dr. G. Heiche (Air 03D), was funded by the Naval Air Systems Command Air-Breathing Propulsion Research Program.

Professor Hirsch read his finite element computer program Q3DFLO-81 into the NPS IBM 370 system and subsequently instructed Turbopropulsion Laboratory students and researchers in its use.

The results herein are collected from applications of the code in several independent, but technically related, research programs. In particular, a program to examine controlled-diffusion blading designs for compressor cascades is acknowledged. Support for this exploratory development program was provided by Naval Air Systems Command under the cognizance of G. Derderian (AIR310E).

Appreciation is expressed to Professor Hirsch for the use of his code and for his contributions to the research programs.

Reproduction of all or part of this report is authorized.

This report was prepared by:

H. D. SCHULZ
EXOTECH, Inc.
1091 S. Bascom Avenue, Ste 337
Campbell, CA 95008

F. NEUHOFF
EXOTECH, Inc.
1091 S. Bascom Avenue, Ste 337
Campbell, CA 95008

R. P. SHREEVE
Professor of Aeronautics

Reviewed by:

M. F. PLATZER, Chairman
Department of Aeronautics

Released by:

JOHN N. D'YER
Dean of Science and Engineering
APPLICATION OF FINITE ELEMENT CODE Q3DFLO-81 TO TURBOMACHINERY FLOW FIELDS

Through-flow and blade-to-blade calculations were made in association with a number of experimental research activities at the Turbopropulsion Laboratory, Naval Postgraduate School. The Q3DFLO-81 code was operated on an IBM 370-3033 mainframe computer. The flow through a single stage axial research compressor was computed and compared with both probe survey and stage performance map measurements. Swirling flow produced by a vaned out-flow generator for a radial diffuser test facility was calculated for both large low-speed and small-scale high-speed versions of the device. Flow through a two-dimensional compressor cascade of "controlled-diffusion" blade shapes was calculated and the results compared with experimental data, and with predictions obtained using the NASA code QSONIC.
ABSTRACT

Through-flow and blade-to-blade calculations were made in association with a number of experimental research activities at the Turbopropulsion Laboratory, Naval Postgraduate School. The Q3DFLO-81 code was operated on an IBM 370-3033 mainframe computer. The flow through a single stage transonic axial research compressor was computed and compared with both probe survey and stage performance map measurements. Swirling flow produced by a vaned out-flow generator for a radial diffuser test facility was calculated for both large low-speed and small-scale high-speed versions of the device. Flow through a two-dimensional compressor cascade of "controlled-diffusion" blade shapes was calculated and the results compared with experimental data, and with predictions obtained using the NASA code QSONIC.
TABLE OF CONTENTS

I. INTRODUCTION .. 1

II. THROUGH FLOW CALCULATION 3
 A. Axial Compressor .. 3
 B. Low Speed CDTD ... 6
 C. High Speed CDTD ... 7

III. BLADE TO BLADE CALCULATION 8
 A. NASA Controlled Diffusion Blades 9
 B. Comparison With Finite Volume Code QSONIC 11

IV. CONCLUSION .. 13

FIGURES .. 14
REFERENCES ... 37
DISTRIBUTION LIST ... 38
LIST OF FIGURES

1. Transonic compressor cross-section 14
2. Compressor computational mesh 15
3. Absolute flow angle vs. % distance from hub 16
4. Axial velocity vs. % distance from hub 16
5. Radial velocity vs. % distance from hub 17
6. Absolute Mach Number vs. % distance from hub 17
7. Absolute total pressure vs. % distance from hub 18
8. Absolute total temperature vs. % distance from hub 18
9. Incidence angle vs. % distance from hub 19
10. Deviation angle vs. % distance from hub 19
11. Loss coefficient vs. % distance from hub 20
12. Static pressure vs. % distance from hub 20
13. Absolute tangential velocity vs. % distance from hub 21
14. Absolute total velocity vs. % distance from hub 21
15. Relative Mach Number vs. % distance from hub 22
16. Relative flow angle vs. % distance from hub 22
17. Calculated and measured compressor performance maps at 60%, and 70% design speed 23
18. Calculated compressor performance map 24
19. CDTD test section cross section 25
20. Spanwise distribution of flow properties as a function of flow station 26
21. Boundary layer development as a function of flow station 27
22. Comparison of predicted and measured flow angles 27
23. High speed CDTD streamlines 28
24. High speed CDTD flow properties 29
25. NASA CD blade profile .. 30
26. NASA CD blade finite element mesh 31
27. Plot of streamlines through the cascade 32
28. Predicted and measured surface pressures 33
29. AVDR vs. air inlet angle ... 34
30. AVDR vs. static pressure rise coefficient 35
31. Comparison of Q3DFLO-81 and QSONIC 36
LIST OF TABLES

1. TABLE I - CD COMPRESSOR CASCADE PARAMETERS. 37
2. TABLE II - CD BLADE COORDINATES. 37
I. INTRODUCTION

Attempts to model the complex three-dimensional flow in turbomachines have resulted in the development of various quasi three-dimensional numerical techniques.

Most methods follow the work of Wu (Ref. 1), wherein the fully 3D flow is resolved into a succession of 2D-calculations. The flow is solved on meridional surfaces (S2), and blade to blade surfaces (S1). In general, the intersection of an S1 surface and an S2 surface is a twisting line with three dimensional variations. The interaction of the two families of surfaces can be quite complicated. However, if an axisymmetric assumption is made, the S2 surfaces will become identical to the meridional plane. An important drawback in this method is the lack of knowledge on the degree of approximation which is made by assuming axisymmetry.

The program used in the present study, therefore, follows another approach where the S2-surface calculation is replaced by the calculation of the flow in the true meridional section (R-Z plane), based on the solution of exact pitch averaged equations. The numerical method used to solve the equations in the meridional and blade to blade plane is the finite element method. An interconnection of the meshes allows for a consistent interaction to be defined in the calculation.

Q3DFLO-81 is only valid in the absence of backflow and hence does not handle separation regions or secondary flow. The calculations are based on the existence of an inviscid core flow, but accommodates empirical input with regard to loss levels, slip factors and axial-velocity-density ratio (AVDR), or superimposes a two dimensional boundary layer calculation. The program is
described in References 2 and 3. The procedure to run the code on the Naval Postgraduate School (NPS) computer is given in Reference 4. The present report describes the application of this code to various turbomachinery flow fields. Results from applying the through-flow calculation to a transonic axial compressor and to a novel radial cascade are given in Section 2. In Section 3 results from the blade to blade calculations applied to a controlled diffusion compressor stator section are compared with measurements taken in a linear cascade and with the results from the finite difference code QSONIC. The conclusions drawn from these applications are given in Section 4.
II. THROUGH FLOW CALCULATION

A. Axial Compressor

A single stage, small diameter (11 inches) high speed axial flow compressor, of in house design, was investigated (Fig. 1). Test data from radial surveys at different axial locations and overall machine performance at various stage conditions were compared with results of corresponding computer runs. Furthermore, a compressor performance map for machine speeds higher than those already tested was calculated to estimate the machine conditions at higher speeds. Figure 2 shows the calculation mesh for the compressor. Thirteen streamlines run from three rotor tip chord lengths upstream of the rotor leading edge to about 2 rotor tip chord lengths downstream of the rotor trailing edge. Station lines 5, 8 and 13 are placed axially in a way that they coincide with probe traverse locations. The rotor leading edge corresponds to station 9, trailing edge to station 12, and the stator leading edge is located at station 15, with its trailing edge at station 18. Rotor and stator geometry input is limited to blade inlet and outlet angles, maximum relative blade thickness, solidity, chord length and leading edge radius. These quantities have to be given for a number of blade cuts at different radii. They must also be parallel to the centerline. This made a recalculation of the blade profile coordinates necessary, since in the original design they were specified on conical surfaces. The cross-section of stage inlet and outlet up and downstream of the regime shown in Fig. 2 is constant and cylindrical. A small fillet at the tip of the rotor spinner was incorporated in the geometry input to eliminate the blunt stagnation point singular condition. Using the mesh shown in Fig. 2, calculations were performed in which input quantities (besides the geometry) were taken from a
compressor test run. This test run provided results from three radial surveys at locations corresponding to calculation stations 5, 8 and 13. These stations serve to evaluate flow into and out of the rotor. Stator outlet measurements were not available. Figures 3 through 16 show comparisons of measured and calculated radial distributions. In Fig. 3 fair to good agreement is shown for the absolute flow angle. The axial velocity component (Fig. 4) does not agree too well for the lower portion (40%) of the channel height at station 5. The change in geometry used in the calculation is probably the cause for this variation.

In the following figures, comparisons are shown only for calculation stations 8 and 13 and the corresponding test results, since the main purpose of the investigation was to evaluate the compressor rotor. The radial velocity component (Fig. 5) seems to have rather large discrepancies for station 8 (rotor inlet), especially in the hub region. If, however, the radial velocity component is converted to flow pitch angle, the difference shown represents an error of no more than four degrees. In Fig. 6 the absolute flow Mach number for rotor inlet and outlet are compared. The discrepancies in the tip areas, also apparent in Figures 3 and 4, are the result of a measurement error due to a casewall effect on the probes used.

For the evaluation of the rotor performance, total pressure (Fig. 7) and total temperature (Fig. 8) at the inlet and outlet were observed. The total pressure distribution measured is constant over the blade span. A distinct increase of the outlet total temperature was calculated in the tip region. Variations in total temperature measurements are known to reflect changes in ambient conditions. Thus a temperature differential calculated between rotor inlet and outlet would not show the variations of those in Fig. 8. Further
evaluating the stage flow, Figures 9 through 11 show incidence angle, deviation angle and loss distributions, hub to tip. Again, for the rotor a comparison between measurement and calculation is given. The discrepancies in rotor incidence angle at the hub and tip are rather large while the stator shows good agreement near the tip and qualitative agreement along the span (Fig. 9). The rotor deviation angle also shows disagreement near hub and tip. The stator deviation angles predicted by the program appear to be fairly large, especially in the tip region. No test data are available for comparison, but the magnitudes used in the design of the blading were similar to those in Fig. 10. Figures 12 through 16 show distributions of other flow quantities calculated for the same axial positions.

For the compressor stage, the performance was carefully measured for the full throttle range at 60% and 70% of design speed. The program calculates the overall stage performance data. In Fig. 17, calculated and measured compressor performance are compared. The agreement in the total pressure ratio is quite good. Two efficiencies calculated by the program are shown. The total efficiency takes the casewall boundary layer and the losses associated with it into account, while the adiabatic efficiency excludes case wall effects. The discrepancy between measured and calculated total efficiency is quite large and has yet to be explained.

In order to estimate the compressor performance for higher speeds, calculations were carried out for 80, 90 and 100% of design speed for a variety of flow rates. Uncertainties in the efficiency calculation were accepted. In Fig. 18, the predicted performance map is shown. It can be observed, that the efficiency curves drop off more drastically for higher flow
rates at high speeds. This is typical for high speed compressors. The calculated pressure ratio of 1.715 at 100% design speed is considerably higher than the value expected in the design process (1.5-1.6), and the referred flow rate of 19.7 lbs/sec is somewhat lower than the design value of 21.24 lbs/sec. However, this is the first attempt to predict the performance of the compressor hardware, as built, and the differences may well be explained by an error which was built in to the rotor blade setting angles (Ref 5).

B. Low Speed CDTD

A large scale subsonic radial cascade wind tunnel has been designed at the Turbopropulsion Laboratory (TPL) at NPS to investigate flow phenomena in and the performance of radial diffusers (Ref. 6). Various approaches to analyze the aerodynamic operating conditions and the flow at the test section inlet of the Centrifugal Diffuser Test Device (CDTD) have been conducted (Ref. 7).

Q3DFLO-81 accepts cylindrical inlet flow planes and was applied to the CDTD geometry. Figure 19 shows a plot of streamlines and a cross section of the axisymmetric flow channel between the inlet "swirl vane cylinder" (station 1) and diffuser-vane leading edge (station 18). The flow is introduced almost tangentially along the inlet plane at a radius of 19 inches, and then passes outward through an angular contraction to the test section inlet at a radius of 25 inches. The flow however, does not follow the physical contour of the wall (see Fig. 19) and separates in the corners between station 4 and station 6. The corner shape of the flow channel had to be approximated by a smooth contour in order for the code to operate.

Q3DFLO-81 accommodates a very versatile post processor and delivers printouts and plots of the calculated flow properties at every required flow
station. Figure 20 shows plots of spanwise distribution of axial velocity, Mach number, static pressure and flow angle for the different flow stations shown in Fig. 19.

The plots represent the inviscid solution of the core flow, considering a blockage factor determined by the end wall boundary layer calculations for hub and tip. It can be seen that the influence of the strong curvature in the contraction region (stations 7-15) has almost decayed at the test section inlet (station 18), and the flow properties are almost evenly distributed over the span. Figure 21 shows a boundary layer thickness of 20% at the test section. The boundary layer also experiences a strong acceleration in the contraction region. The velocities in the boundary layers are smaller, and more nearly tangential. Figure 22 is a comparison of predicted and measured spanwise flow angle distribution. The solid line represents the predicted flow angle for the inviscid solution as in Fig. 19. The circle indicates the calculated boundary layer thickness and the maximum angle at hub and tip. The triangles are data acquired by the first author (Ref 7). The plot shows good agreement of predicted and measured flow angles. The deviation in the mass averaged measured and calculated flow angles is only 0.5%.

C. High Speed CDTD

One of the main objectives of the low speed cascade was to examine the design concepts with a view to applying them to the design of a transonic device; the high speed CDTD.

Q3DFLO-81 is capable of calculating transonic flow in a meridional through flow calculation as long as the meridional velocity remains subsonic. A high speed cascade has been proposed with a nearly tangential Mach number of 1.48 and a total pressure of 1.6 bar at the inlet plane. The geometry of the
flow channel is qualitatively similar to that of the low speed cascade. The dimensions are smaller to reduce the massflow required to obtain higher velocities and the curvatures are reduced to avoid flow separation. Figure 23 shows the flow channel geometry which was analyzed. Station 1 is at a radius of 10 inches. Station 12 is at a radius of 12 inches.

The results obtained by applying Q3DFLO-81 to the high speed CDTD are shown in Fig 24. Shown are results for the inviscid core flow, including spanwise distributions of static pressure, Mach number, flow angle and meridional velocity. Even though the Mach number of the overall velocity was always supersonic, the meridional velocity remained subsonic. Consequently, shocks should not appear in the flow into the test section.
III. BLADE TO BLADE CALCULATION

The blade to blade calculation of the code Q3DFLO-81 is used in the quasi-3D calculation for turbomachinery blade rows as described in Section 2.1 or for isolated blade-to-blade calculations. The application to linear cascades will be described in this section.

A. NASA Controlled Diffusion Blade

A numerical optimization technique to design a controlled diffusion blade shape was developed by NASA (Ref. 8). It allows analytical design of airfoils which are shock free at transonic Mach numbers and avoids suction surface boundary layer separation for the range of inlet conditions necessary for stable compressor operation.

The on- and off- design performance of one design of such blades have been measured in a subsonic linear wind tunnel. The facility is described in detail in Ref 9. The tests conducted with a controlled diffusion blading section designed for a compressor stator at mid-span are described in Ref. 10. Cascade configuration parameters are given in Table I. Table II presents the coordinates of the test blades.

Q3DFLO-81 was used to calculate the blade surface pressure distributions to compare with measurements. Figure 25 shows the blade shape and Fig. 26 shows a typical finite element mesh for the blade to blade calculation. In order to avoid the sharp increase in velocity, due to the potential flow effect around a thick trailing edge, the trailing edge radius was removed. The inviscid flow in fact does not see the trailing edge radius due to the viscous behavior and thus the geometry should be modeled in this way. The strong curvature at the leading edge of the blade also caused peaks in velocity, as the inviscid flow negotiates the large curvature from stagnation point to suction surface. To calculate such a leading edge shape, the mesh
has to be much finer around the leading edge than Q3DFLO-81 is able to produce (due to a restriction in the number of mesh points). The leading edge, therefore, also had to be adapted to this situation. The remainder of the flow field should be reliable since the occurrence of velocity peaks seldom invalidates more than a few grid points in their vicinity. Particularly with these compressor blade geometries, the adverse pressure gradient tends to discourage the velocity variation from propagating very far or reflecting off the downstream boundaries. The influence of the flow at 5\% of chord downstream of the leading edge, and 5\% of chord upstream of the trailing edge is only 0.1\%, therefore the calculation is accurate for 90\% of the chord. Figure 27 is a plot of streamlines which shows that the flow tangency condition is very well satisfied along the blade surface and no flow separation is encountered. Figure 28 is a comparison of predicted and measured pressure coefficients along the blade surface for different inlet air angles. Very good agreement is achieved for high inlet angles (38.9°, 42.9°, 45.9°). The two smaller values at the suction side between 60\% and 80\% chord are errors in the measurements, probably due to plugged pressure taps. For smaller inlet air angles (24.4°, 28.0°, 32.95°) the measured values are slightly smaller than those predicted by Q3DFLO-81. The highest deviations are noticed at 32.95° incidence. Figure 29 is a plot of the measured AVDR versus inlet air angle. It is noted that the AVDR does not depend simply on the static pressure rise as is shown in Fig. 30. The AVDR in the tests reported in Ref. 10 was determined by measuring and integrating mass flux distributions at midspan upstream and downstream of the blade row. The technique is described in detail in Ref. 11. In the present calculations the AVDR was assumed to be constant from the measuring plane upstream of the blade.
row to the leading edge, and from the trailing edge to the downstream measuring plane, and to have a linear distribution along the chord. The AVDR is input to Q3DFLO-81 to account for quasi-3D-effects. The assumed distribution of the AVDR along the chord of the blade might not be sufficiently representative of the experimental conditions and this could be responsible for the observed deviations.

B. Comparison with Finite Volume Code QSONIC

QSONIC is a FORTRAN computer code developed by NASA and is described in detail in Ref. 12. It is capable of calculating the flow field about a cascade of arbitrary 2-D airfoils and approximating the three-dimensional flow in turbomachinery blade row by correcting for streamtube convergence (AVDR) and radius change in the through flow direction. The program uses a conservative solution of the full potential equation combined with the finite volume method on a body-fitted periodic mesh. It is capable of calculating through weak shocks (peak relative Mach number less than 1.4) by introducing an artificial density in the transonic regions. The code has been adapted to the NPS computer (Ref. 13) and was used for comparison with Q3DFLO-81.

Q3DFLO-81 and QSONIC are both inviscid codes and solve the potential flow equations. In the Mach number range of the linear cascade (the Mach number of the flow at the inlet to the blade row is 0.25), they were expected to give basically the same results. Figure 31 compares the results of both codes with measurements from Ref. 10. They are in good agreement and show the same limitations for the calculation of the flow around the leading and trailing edges.

Even though grid generator and flow solution runs can be separated while operating QSONIC, it requires 12 minutes CPU time for the flow solution
while Q3DFLO-81 requires only eight seconds. For applications at low Mach numbers Q3DFLO-81 is much faster for the same degree of accuracy. It also provides a convenient post-processor which produces plots of mesh, blade shape and the calculated results. QSONIC should be used for Mach numbers on the blade surface from 1.0 to 1.4.
IV. CONCLUSIONS

The experience of applying the computational code O3DFLO-81 to several turbomachinery flow problems allowed the following conclusions to be drawn:

1. Despite the apparent complexity of the geometry, the application of the code to the transonic compressor stage was straightforward. The mesh was simple and resulted in very modest CPU times.

2. In the compressor stage analysis, the inlet flow to the rotor was very well predicted. Flow incidence angles were computed well except near the hub. Deviation angles from the rotor were within 3° of the measured values with the largest departures near hub and tip. The computed rotor losses agreed qualitatively with measured distributions but were smaller in magnitude. The stage efficiency was computed to be lower than the measured values, suggesting an inconsistency which must yet be explained.

3. Application of the code to the swirling flow generation within a centrifugal diffuser test device (CDTD) required only that minor geometrical approximations be introduced. Inlet and outlet boundary conditions were within the capability of the existing code.

4. In the low speed CDTD, the computed spanwise distribution of flow properties at the outlet did not agree with the measured values suggesting the importance of viscous effects. The mass-averaged outlet flow properties agreed quite well.

5. The code was applied with apparent success to calculate transonic swirling flow within a high-speed CDTD, and could therefore be used to design a suitable channel shape.

6. The prediction of the code in blade-to-blade calculations agreed well with measurements made in a linear subsonic cascade. Leading and trailing edges of the blades had to be modified to avoid non-physical velocity peaks, but the influences of the modifications were negligible 5% chord downstream of the leading edge and 5% chord upstream of the trailing edge.

7. Excellent agreement was obtained with the blade-to-blade predictions of NASA's code OSONIC at a test Mach number of 0.2. However, the O3DFLO-81 code required 8 seconds of CPU time compared to 12 minutes for OSONIC.

Overall, the experience of the individual investigators was that the code could be applied successfully with limited guidance from the code's author. The post processor package was extremely valuable, and was implemented without difficulty on the NPS computer.
Figure 1. Transonic compressor cross-section.
Figure 2. Compressor computational mesh
Figure 3. Absolute flow angle vs. distance from hub.

Figure 4. Axial velocity vs. distance from hub.
Figure 5. Radial velocity vs. % distance from hub.

Figure 6. Absolute Mach Number vs. % distance from hub.
Figure 7. Absolute total pressure vs. % distance from hub.

Figure 8. Absolute total temperature vs. % distance from hub.
Figure 9. Incidence angle vs. 3 distance from hub.

Figure 10. Deviation angle vs. 3 distance from hub.
Figure 11. Loss coefficient vs. % distance from hub.

Figure 12. Static pressure vs. % distance from hub.
Figure 13. Absolute tangential velocity vs. % distance from hub.

Figure 14. Absolute total velocity vs. % distance from hub.
Figure 15. Relative Mach Number vs.
% distance from hub.

Figure 16. Relative flow angle vs.
% distance from hub.
Figure 17. Calculated and measured compressor performance maps at 60° and 70° design speed.
Figure 18. Calculated compressor performance map. (Broken line identifies peak efficiency conditions)
Figure 19. CDTD test section cross-section.
Figure 20. Spanwise distribution of flow properties as a function of flow station.
Figure 21. Boundary layer development as a function of flow station.

Figure 22. Comparison of predicted and measured flow angles.
Figure 23. High speed CDTD streamlines.
Figure 24. High speed CDTD flow properties.
Figure 25. NASA CD blade profile.
Figure 26. NASA CD blade finite element mesh.
Figure 27. Plot of streamlines through the cascade.
Figure 28. Predicted and measured surface pressures.
Figure 29. AVDR vs. air inlet angle.
Figure 30. AVDR vs. static pressure rise coefficient
Figure 31. Comparison of Q3DFLO-81 and QSONIC.
TABLE I - CD COMpressor CASCADE PARAMETERS

<table>
<thead>
<tr>
<th>Blade type</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of blades</td>
<td>20</td>
</tr>
<tr>
<td>Spacing (inches)</td>
<td>3.0</td>
</tr>
<tr>
<td>Solidity</td>
<td>1.67</td>
</tr>
<tr>
<td>Thickness (% chord)</td>
<td>7.0</td>
</tr>
<tr>
<td>Stagger angle</td>
<td>14.27</td>
</tr>
</tbody>
</table>

TABLE II - CD BLADE COORDINATES

<table>
<thead>
<tr>
<th>X-COORD.</th>
<th>Y-PRESS.</th>
<th>Y-SUCT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.045</td>
<td>0.045</td>
</tr>
<tr>
<td>0.022</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>0.057</td>
<td>0.044</td>
<td>0.196</td>
</tr>
<tr>
<td>0.222</td>
<td>0.101</td>
<td>0.307</td>
</tr>
<tr>
<td>0.444</td>
<td>0.155</td>
<td>0.403</td>
</tr>
<tr>
<td>0.666</td>
<td>0.207</td>
<td>0.561</td>
</tr>
<tr>
<td>0.888</td>
<td>0.255</td>
<td>0.621</td>
</tr>
<tr>
<td>1.110</td>
<td>0.299</td>
<td>0.663</td>
</tr>
<tr>
<td>1.332</td>
<td>0.330</td>
<td>0.691</td>
</tr>
<tr>
<td>1.554</td>
<td>0.350</td>
<td>0.705</td>
</tr>
<tr>
<td>1.776</td>
<td>0.359</td>
<td>0.708</td>
</tr>
<tr>
<td>1.998</td>
<td>0.359</td>
<td>0.701</td>
</tr>
<tr>
<td>2.220</td>
<td>0.342</td>
<td>0.681</td>
</tr>
<tr>
<td>2.442</td>
<td>0.331</td>
<td>0.650</td>
</tr>
<tr>
<td>2.664</td>
<td>0.317</td>
<td>0.610</td>
</tr>
<tr>
<td>2.886</td>
<td>0.301</td>
<td>0.563</td>
</tr>
<tr>
<td>3.108</td>
<td>0.281</td>
<td>0.510</td>
</tr>
<tr>
<td>3.330</td>
<td>0.257</td>
<td>0.453</td>
</tr>
<tr>
<td>3.552</td>
<td>0.227</td>
<td>0.493</td>
</tr>
<tr>
<td>3.774</td>
<td>0.191</td>
<td>0.332</td>
</tr>
<tr>
<td>3.996</td>
<td>0.146</td>
<td>0.270</td>
</tr>
<tr>
<td>4.218</td>
<td>0.089</td>
<td>0.208</td>
</tr>
<tr>
<td>4.440</td>
<td>0.019</td>
<td>0.145</td>
</tr>
<tr>
<td>4.662</td>
<td>0.004</td>
<td>0.122</td>
</tr>
<tr>
<td>4.884</td>
<td>0.062</td>
<td>0.062</td>
</tr>
<tr>
<td>4.925</td>
<td>0.062</td>
<td>0.062</td>
</tr>
<tr>
<td>4.964</td>
<td>0.062</td>
<td>0.062</td>
</tr>
<tr>
<td>5.010</td>
<td>0.062</td>
<td>0.062</td>
</tr>
</tbody>
</table>
REFERENCES

REFERENCES

INITIAL DISTRIBUTION LIST

1. Commander
 Naval Air Systems Command
 Washington, DC 20361
 Attention: Code AIR 310 1
 Code AIR 310E 1
 Code AIR 320D 1
 Code AIR 530 1
 Code AIR 536 1
 Code AIR 00D 14
 Code AIR 03D 1

2. Office of Naval Research
 800 N. Quincy Street
 Arlington, VA 22217
 Attention: Dr. A. D. Wood 1
 Dr. M. K. Ellingsworth 1

3. Commanding Officer
 Naval Air Propulsion Center
 Trenton, NJ 08628
 Attention: G. Mangano, PE-31 1

4. Commanding Officer
 Naval Air Development Center
 Warminster, PA 19112
 Attention: AVTD 1

5. Library
 Army Aviation Material Laboratories
 Department of the Army
 Fort Eustis, VA 23604 1

6. Dr. Arthur J. Wennerstrom
 AFWAL/POTX
 Wright-Patterson AFB
 Dayton, OH 45433 1

7. Air Force Office of Scientific Research
 AFOSR/NA
 Bolling Air Force Base
 Washington, DC 20332
 Attention: Mr. James Wilson 1
<table>
<thead>
<tr>
<th>Library Number</th>
<th>Library Name</th>
<th>Address Details</th>
</tr>
</thead>
</table>
| 8 | National Aeronautics & Space Administration | Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135
Attention: Chief, Internal Fluid Mechanics Division
Library |
| 9 | Library | General Electric Company
Aircraft Engine Technology Division
DTO Mail Drop H43
Cincinnati, OH 45215 |
| 10 | Library | Pratt & Whitney Aircraft Group
Post Office Box 2691
West Palm Beach, FL 33402 |
| 11 | Library | Pratt-Whitney Aircraft Group
East Hartford, CT 06108 |
| 12 | Library | Curtis Wright Corporation
Woodridge, NJ 07075 |
| 13 | Library | AVCO/Lycoming
550 S. Main Street
Stratford, CT 06497 |
| 14 | Library | Teledyne CAE, Turbine Engines
1330 Laskey Road
Toledo, OH 43612 |
| 15 | Library | Williams International
P. O. Box 200
Walled Lake, MI 48088 |
| 16 | Library | Detroit Diesel Allison Division G.M.C.
P. O. Box 894
Indianapolis, IN 46202 |
| 17 | Library | Garrett Turbine Engine Company
111 S. 34th Street
P. O. Box 5217
Phoenix, AZ 85010 |
8. Professor J. P. Gostelow
 School of Mechanical Engineering
 The New South Wales Institute of Technology
 New South Wales
 AUSTRALIA

19. Dr. G. J. Walker
 Civil and Mechanical Engineering
 Department
 The University of Tasmania
 Box 252C
 GPO Hobart, Tasmania 7110
 AUSTRALIA

20. Professor F. A. E. Breugelmans
 Institut von Karman de la Dynamique des Fluides
 72 Chausee de Waterloo
 1640 Rhode-St. Genese
 BELGIUM

21. Professor Ch. Hirsch
 Vrije Universiteit Brussel
 Pleinlaan 2
 1050 Brussels
 BELGIUM

22. Director
 Gas Turbine Establishment
 P. O. Box 305
 Jiangyou County
 Sichuan Province
 CHINA

23. Professor C. H. Wu
 P. O. Box 2706
 Beijing 100080
 CHINA

24. Director, Whittle Laboratory
 Department of Engineering
 Cambridge University
 ENGLAND

25. Professor Jacques Chauvin
 Universite d'Aix-Marseille
 1 Rue Honorat
 Marseille
 FRANCE
26. Mr. Jean Fabri
ONERA
29, Ave. de la Division Leclerc
92 Chatillon
FRANCE

27. Professor D. Adler
Technion Israel Institute of Technology
Department of Mechanical Engineering
Haifa 32000
ISRAEL

28. Dr. P. A. Paranjpe
Head, Propulsion Division
National Aeronautics Laboratory
Post Bag 1700
Bangalore - 17
INDIA

29. Dr. W. Schlachter
Brown, Boveri Company Ltd.
Dept. T-T
P. O. Box CH-5401 Baden
SWITZERLAND

30. Professor Leonhard Fottner
Department of Aeronautics and Astronautics
German Armed Forces University
Hochschule des Bundeswehr
Werner Heisenbergweg 39
8014 Neubiberg near Munich
WEST GERMANY

31. Professor Dr. Ing. Heinz E. Gallus
Lehrstuhl und Institut fuer Strahlantiebe
und Turbourbeitmsmashinen
Rhein.-Westf. Techn. Hochschule Aachen
Templergraben 55
5100 Aachen
WEST GERMANY

32. Dr. Ing. Hans-J. Heinemann
DFVLR-AVA
Bunsenstrasse 10
3400 Geottingen
WEST GERMANY

33. Dr. H. Weyer
DFVLR
Linder Hohe
505 Porz-Wahn
WEST GERMANY
34. Dr. Robert P. Dring
United Technologies Research Center
East Hartford, CT 06108

35. Chairman
Aeronautics and Astronautics Department
31-265 Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

36. Dr. B. Lakshminarayana
Professor of Aerospace Engineering
The Pennsylvania State University
233 Hammond Building
University Park, Pennsylvania 16802

37. Mr. R. A. Langworthy
Army Aviation Material Laboratories
Department of the Army
Fort Eustis, VA 23604

38. Professor Gordon C. Oates
Department of Aeronautics and Astronautics
University of Washington
Seattle, Washington 98105

39. Mechanical Engineering Department
Virginia Polytechnic Institute and
State University
Blacksburg, VA 24061
Attn: Professor W. O'Brian
Professor H. Moses

40. Professor T. H. Okiishi
Professor of Mechanical Engineering
208 Mechanical Engineering Building
Iowa State University
Ames, Iowa 50011

41. Dr. Fernando Sisto
Professor and Head of Mechanical Engineering Department
Stevens Institute of Technology
Castle Point
Hoboken, NJ 07030

42. Dr. Leroy H. Smith, Jr.
Manager, Compressor and Fan Technology Operation
General Electric Company
Aircraft Engine Technology Division
DTO Mail Drop H43
Cincinnati, OH 45215
43. Dr. W. Tabakoff
 Professor, Department of Aerospace Engineering
 University of Cincinnati
 Cincinnati, OH 45221

44. Mr. P. Tramm
 Manager, Research Labs
 Detroit Diesel Allison Division
 General Motors
 P. O. Box 894
 Indianapolis, IN 46206

45. Mr. P. F. Yaggy
 Director
 U. S. Army Aeronautical Research Laboratory
 Ames Research Center
 Moffett Field, CA 94035

46. Library
 Code 1424
 Naval Postgraduate School
 Monterey, CA 93943

47. Office of Research Administration
 Code 012
 Naval Postgraduate School
 Monterey, CA 93943

48. Defense Technical Information Center
 Cameron Station
 Alexandria, VA 22314

49. Naval Postgraduate School
 Monterey, CA 93943
 Attn: Professor M. F. Platzer (67PL)
 Turbopropulsion Laboratory (67SF)
END
Dtic
7-86