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1. INTRODUCTION

Scientists at the David Taylor Naval Ship Research and Development Center

(DTNSRDC) are currently developing and evaluating a new procedure for

measuring the release rate of organotin from antifouling paint. As part of

this procedure, a panel painted with organotin antifouling paint is placed in

a test tank filled with water. The release rate of organotin is determined by

measuring the increasing concentration in the water, and plotting it against

time. The slope of this line as determined by linear regression provides ar

estimate of the organotin release rate.

When sampling of the test tank is completed, the painted panel is removed

and kept in a separate holding tank for subsequent release-rate determin-

ations. In this way, leaching rate can be accurately evaluated and studied

over an extended period of time. When not in use, the test tank is cleaned

and flushed in order to prepare it for subsequent usagp.

Under the current sampling scheme, samples are extracted at six equally

spaced points in time after placing the panel in the test tank. Three samples

are taken at each sampling time, and five replicate measurements (i.e.,

subsamples) are made of each sample. However, because of saturation

limitations, sampling must be completed before the tin concentration in t-e

test tank reaches 50 ppb.

The objectives of this Desmatics technical report are to:

(1) develop a statistical model which describes the sampling procedure,

(2) pr,' ent a method for estimating the release rate and obtaining
corresponding confidence intervals,

(3) discuss the ,imum number of subsamples which should be made and the

optimum sampling times,



and (4) compare the current procedure against several different procedures

which have been proposed.

Section 2 presents a proposed statistical model which describes the

sampling process. Sections 3 and 4 present methods for estimating the release

rate and constructing associated confidence intervals. Section 5 summarizes

an analysis of some preliminary release-rate data. Section 6 discusses

general sampling strategy, and Section 7 provides a discussion of two proposed

ASTM sampling methods.
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2. A STATISTICAL MODEL

It is postulated that the increas in tin concentration in the test tank

over time can be adequately described by a linear response function with a

subsampling component. Thus, the proposed model is as follows:

Y. 0 +$t + FE.. -2 ... v 21
ik :' 1t i i ijk i, . (2.1)

where

Yijk is the measured tin concentration of the kth subsample made from the
jth sample taken at time t.,

Cij is the error associated with the jth sample taken at time ti,

and 6ij k is the error associated with the kth subsample made from the jth
sample taken at time ti.

The intercept and slope of the regression line are represented by the

parameters 30 and U, respectively. The slope parameter 3.R represents the

organotin release rate and indicates the change in the average tin

concentration per unit increase in time. The parameter 30 is the Y intercept

of the regression line and indicates the value of the regression function at

t=O. An intercept term is included in the model to account for possible trace

quantities of tin which may not have been completely purged during cleaning

and flushing of the test tank prior to testing.

It is important to note that the proposed model has two error components:

i and 6 ijk  The error component rij represents observed differences between

samples (i.e., extracts) and is assumed to be normally distributed with mean

zero and variance 02. The error component 6 reprezients observed d"f-ijk

3



ferences between subsample determinations made on each sample and is assumed

to be normally distributed with mean zero and variance a2. A final key
2

assumption is that all error terms are assumed to be statistically independent

of each other.

In the current DTNSRDC sampling procedure v=6, m=3, and n=5. The six

sampling times have generally corresponded to either five to thirty minutes in

five minute intervals or ten to sixty minutes in ten minute intervals. Other

sampling intervals, however, cannot be ruled out as DTNSRDC continues with its

experimentation.

[4
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3. ESTIMATION OF 2 AND

To make a valid statistical analysis of ;he propos u model, the mv sample

averages (as determined by averaging the measured tin concentrations of the n

subsamples made from each sample) are regressed against time. Define Z.. as

follows:

Z . = (Yij1 + Y .."." + YiJn )/n.-i = ij ij2 '

Thus,

v m v 2Y 7 (ti-)

I [(ti-t) 1 Zj/m 3 (3.-t
i=1 j=l 1

5.

v r,^
:nc 20 = C 3 3 Z /mv) - 1 (3.2)

i=i j=1 iJ

where t = t +t2 +...+t v)/v. It must be empiasized that equations (3.1) and

(3.2) are appropriate only when the sampling is "balanced", that is, when m

samples are taken at each of v sampling times, and n subsample determinations

are made of each sample.

Let Zij : 0 + 31ti, and define

2 v m 2
s = E (Z ij-Zij ) /(mv-2). (3.3)

i=1 j:1

An estimate of the variance of 3. is given by

A v2 .
Var(2; 1) s2/[m x (t.-t) J(3.4)

i=1

_l5



An estimate of the variance of 3 0is given by

r-2 7

2a3 21-+ v (3.5)
Var(3 0 s Imy m F t?)

6



4. CONFIDENCE IN7ERVALS FOR32 AND

A 1O001-,ai)% confidence interval. for is given by

3+ k,, VZ Vr C (4.1)

where k adenotes the upper 100(1-cx/2) percentage point of Student's t

distribution with (mv-2) degrees of freedom. A 1OC'(1-a)% confidence interval

for 2 is obtained in the same manner as that for 3,0

Note that when m=3 samples are extracted at each of v=6 sampling times,

the factor k OCspecified in (4.1) has mv-2=16 degrees of freedom associated

with it.

7
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5. ANALYSIS OF SOME P)SLMXAiY DATA

DTNSRDC supplied Desmatics with some preliminary release-rate measurement

data from a series of ten tests (i.e., measurement sessions) involving three

different organotin antifouling paints. Desmatics was requested by DTNSRDC

not to disclose the actual names of these paints. Accordingly, for the sake

of discussion, these paints will be referred to as paints A, B, and C. Data

from two tests was supplied for paint A and four each for paints B and C.

5.1 Constancy of Variance

Under the model described in Section 2, the estimator for 3. defined in

equation (3.1) is unbiased and has the smallest variance of any unbiased

estimator. One of the features of that m.;ei is that the variance is constant

across samples. If the variance is not constant, 31 is still unbiased but is

no longer the minimum variance unbiased estimator.

It is not unusual when measuring concentrations to find that the variance

of the observations is an increasing function of the true concentration. in

such cases it is often possible to obtain a better estimate of the slope by

first transforming (e.g., taking logarithms) the observations to stabilize the

variance. In order to determine whether it would be appropriate to use a

transformation for this data set, the mean and standard deviation of the five

subsamples from each sample were calculated. (Note: The standard deviation

is on the same scale as the mean and is generally more useful for this type of

investigation.) Table i lists the correlations between these two statistics

across samples for each of the ten tests. Also given are tiie corresponding

3
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results obtained using the mean and standard deviatLon of the three sample

averages at each time.

From Table 1, it is clear tihat there is no consistent relationship

between the mean and standard deviation for eitiaer the subsamples or the

sample averages; hence, there is no indication of a need to transform the

variables in order to stabilize the variances.

5.2 Estimates of 20 and

Desmatics statistically analyzed the data to obtain estimates of , and
U

I as well as estimates of their associated standard errors. The results are

summarized in Table 2. Also included in this table are values of A,, which is

defined as

k Va'r( . (5.1)

where ko =1.746. The quantity A1 represents the ratio of the half-wiGth of a
.91

90% confidence interval for 3. to 1'.1 A test is currently considered

"successful" if the release-rate is preaicted to within twenty percent at

least ninety percent of the time. Thus, a successful test would be indicated

if A.<20%. As can be seen from an examination of Table 2, A1 is less than or

IIP. equal to 20% in only four of the ten tests.

9



Subsamples Sample Average3

Paint Date of Test Number Correlation Number Correlation

A 4-4 13 -. 186 6 .027

A 4-11 17 .168 6 .772

B 4-11 18 -. 149 6 -.504

B 4-14 16 -.262 5 -.521

B 4-15 18 .653 6 .759

B 4-16 18 .543 6 -.303

C 4-10 13 .472 6 -.057

C 4-14 18 .050 6 .318

C 4-16 18 -. 129 6 .045

* C 4-24 17 .560 6 .740

Average 17.6 .172 5.9 .128

Table 1: Correlations between tne and standard
deviation of (1) the five subsamples from each
sample and (2) the sample averages at each time.

'0



Paint Date of Test 'V(3) ,. VrC) A~

A 4-4 24.3 3.15 .53) .031 26.7%
A 4-11 8.6 1.60 .51 .040 '13.7%

B 4-11 8.3 1.9 1.01. .072 .4
B 4-14 7 - L 1.47 .56 .072 22.4%
3 4-15 8.5 %.49 .66 .07'7 20.4'/%
B 4-16 3.3 1.59 .40 .062 35.8%

C 4-10 0 2.24 .63 C', D7 15.-8 A
C 4-1), 2.7 1.82 .21 *0 Lj7 39.1%
C 4-16 5.5 0.78 .19q .0210 18.4%
C 4-24 .4 1.06 .18 .028 27.2%

Notes: (a) Units for 3 0and 3 are ppb and ppb/mi.n, respectively;

(b . 9 Var( 1 )3/1 ;1

(c) Paints A and C had the followir,6 s ,mpling times:
10, 20, 30, 40, 50, and 60 minutes;

(d) Paint B had the followin~, 3ample times:
5, 10, 15, 20, 25, and 30 minutes;

(e) All tests used mi=3 samples and n=5 subsamples.

Table 2. Summary of Data Analysis.
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5.3 Tests for Model Goodness of Fit

The model in Section 2 assumes a linear relationship between organotin

concentration and time (that is, a constant release rate is assumed). Since

multiple samples were taken at each time, it is po3sible to test whether this

assumed model adequately describes the data. This is done by estimating the

concentrations separately at each time, using the overall average of the

sample averages. If the linear model is adequate, the differences between the

individual sample averages and the regression line should not be significantly

larger than the differences between those values and the overall averages at

each time.

The error sum of squares for the regression model may be split into two

components: pure error and lack of fit. if the lacK of fit component is

large relative to the pure error component, model inadequacy would be

indicated. Table 3 gives the values of the goodness of fit test statistics

for each of the ten test runs. Values close to one indicate a good fit while

values much larger than one indicate the need for a different model.

The p-values in the table are the smallest significance levels at which

the hypothesis of no lack of fit would be rejected. A p-value less than .05

is usually considered sufficient evidence to reject a null hypothesis.

Half of the test runs show significant lack of fit of the linear model

(at the .05 significance level). Desmatics therefore examined the data plots

for each of these runs. No clear evidence of a curvilinear relationship was

visible. Therefore, it appears that the linear trend model is adequate

~12



Paint Date of Test Test Statis-tic p-value

A 4-4 2.02 .156

A 4-11 2.86 .075

B 4-11 3.98 .028

B 4-14 0.46 .764

B 4-15 3.44 .043

B 4-16 1.88 .178

C 4-10 4.65 .017

C 4-14 2.87 .070

C 4-16 3.42 .044

C 4-24 8.47 .002

Table 3. Goodness of Fit Tests for the Ten Test Runs.

41
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but that the error structure is not. in fact, the saraple averages at any

given time tend to be closer together than they would be if they were

independently distributed about the regression line. This suggests the need

for an additional error term in the model whicn affects all samples at a given

time in the sate way. In other words, there is most likely some degree of

correlation between samples taken at the same tim;e, perhaps because of

gradient effects at the location in the test tank wnere samples are extracted.

If so, this correlation should probably be taken i,,O account. Desmatics

recommends that additional data be analyzed in oruer to more fully evaluate

the situation. If, however, it is determined that an additional error term

should be incorporated into model (2.1), some important consequences would be

as follows:

(1) The estimator defined in (3.1) woulc, still be valid but the
degrees of freedom associated with 3 confidence interval, see

(4.1), would decrease from (mv-2) to (v-2);

(2) The estimate of the variance of 3, given in (3.4) would no longer

apply. Preliminary indications are trat the revised estimate would

increase the standard error of by nearly 30% over those values

given in Table 2;

(3) The combination of fewer degrees of freecdom and larger standard error
would increase Ao by about 60% over those values given in Table 2.

This is an important issue which DeLmatics plans to discuss with DTNSRDC

scientists and study more closely once more data becomes available. Some

alternatives DTNSiiDC may wish to consider are:

(1) avoid taking consecutive samples so close togetner,

(2) collect samplfr at a different location in the test tank,

or (3) sample sevral locations in tie test tanK ana ten combine the

samples into a single composite saipic.

14
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5.4 Regression Through the Origin

if there are no trace quantities of tin in the test tank at the beginning

of a run, then the regression line should go through the origin. if, on the

other hand, such traces uo exist, forcing the line through the origin will

result in a biased estimate of the slope.

in order to determine the effects on the estimated slope of forcing the

regression line to go through the origin, Desmatics performed these

regressions and compared th.e results to those obtained from the full model.

The estimated slopes for the two models are given in Table 4 along with tne

percent increase which results from removing the intercept from the model.

Obviously, the change in the estimated slope can be Grastic.

15



Paint Date increase

A 4-4 .53 1.09 106%

A 4-11 .51 .70 37%

B 4-11 1.01 1.-39 38%

B 4-14 .56 .88 57%

B 4-15 .66 1.05 59%

B 4-16 .40 .56 40%,1

C 4-10 .63 .64 2%

C 4-14 .21 .28 33%

C 4-16 .19g .32 68%

C 4-24 .18 .19 6%

Table 4: Comparison of Estimated Slopes F~rom Regr~essions
With and Without t.;ce Interce pt Terms. K. is the
Estimate From the Model With an intercc,)tk While
3* is the Corresponding Estimate Wi th No

Intercept Fitted.



6. SAMPLING STRATEGY

It can be shown that the variance of the slope estimate is given by

v )2
Var( ) = (n&+ 2 )/nm Z (tz-t) (6.1)

i=I

where G2 and 2 are the two variance components introduced in Section 2. An2

estimate for Var(N) was, of course, given earlier in equation (3.4).,i
Examination of equation (6.1) leads to the following conclusions:

(a) An increase in n or m (or both) will reduce the variance of t,,e slope
estimate 61;

(b) An increase in m (the number of samples at each sampling time) will
have more of an effect than an increase in n (the number of
subsamples made for each sample) in reducing Vat(1)

(c) if either ,1 or G. (or botho can be made smaller,
Var(3 ) can be maoe smaller. 7Tis could be accomplisned by
extracting more homogeneous samples or by improving the measurement
technique;

S-2
(d) An increase in X (ti-t) will reduce Var(.). This

i = iI

could be accomplished by udicious selection of te sampling times.

6.1 Estimates of the Variance Components K and a

In order to compare alternative sampling strategies, estimates of the

variance components o ano c are needed. Desmatics obtained estimates of1 2
these components of variance from an analysis of the preliminary data provided

by DTNSRDC. These estimates are summarized in Table 5. The pooled estimates

of a'ad&ae44b 2 an . 20(pof o and o' are 4.44(ppb) and 4.20(ppb)2 , respectively. Taus, the variation

among 3ubsamples is roughly equivalent to the variation among samples taken at

17



Paint Date of Test L

A 4-4 25.49* 9.94*
A 11-11 3.29 6.39

B 4-11 3.10 3.61
B 4-14 6.49 4.37
B 4-15 4.16 3.14
B 4-16 6.57 3.20

C 4-10 7.94 5.70
C 4-14 7.23 2.82
C 4-16 0.46 4.33

VC 4-24 0.69 4.03

POOLED AVERAGE 4.44 4.20

*Not included in Calculation of Pooled Average

1 = v'4-.44 = 2. 11ppb

2= v/4.20 = 2.05ppb

Table 5. Estimates of the Variance Components k)" and c2.1 2



the same imes.

6.2 Five Versus Three Subsa: ile

it has been proposed that the DTNSRDC sampling procedure be changed so

that only three subsample determinations be made from each sample instead of

five. It is clear that the use of three subsamples will result in a loss of

precision. The problem, then, is to estimate the precision of the proposed

strategy involving n=3 subsamples to the current strategy involving n=5

subsamples.

in general, if t1,e precision of a "new" sampling strategy relative to an

"old" sampling strategy is desired, one calculates (in percent) the relative

precision (RP) of new to old as

N 1 0 i  
(6.2)

where VN and V are variance estimates corresponding to the new and old

strategies, respectively.

An R? (of new to old) of 100' indicates that the two sampling schemes are

equally precise in estimating . An RP less (greater) than 100% indicates

that the new scheme is more (loss) precise in CLztimating than the old

scheme is.

Assuming that (1) the new design would involve n=3 subsamples per sample

and m=3 samples per sampling time, (2) the old design would involve n=5

subsamples per sample and m=3 samples per sampling time, and (3) the estimates

of , and ) (as given in Table 5) would remain unchanged, the RP of new to
2

old would be approximately 105%. Thus, the sampling procedure inv iving three

19



subsamples is only 5% less precise than the procedure involving five

subsamples. This loss of precision is offset, of course, by a reduction in

sampling costs.

A practical interpretation of the RP (of new to old) wnere the total

number of samples (i.e., mv) is equal is that it expresses the width of a

confidence interval for P3. based on the new sampling procedure relative to the

corresponding interval width based on the old sampling procedure.

Consequently, if the old procedure yields, for example, a confidence interval

with width equal to W, then one can expect that the new procedure would yield

an interval (of similar confidence) of width (RP)W. It should be noted that

if the total number of samples (mv) is not equal in the two schemes, the

statistical factor k , see (4.1), used in confidence interval construction

would not be the same in the two sche ,,cs; therefure this factor would be an

additional consideration in comparing confidence interval widths. it is

clear, however, that reducing the number of subsamples from n=5 to n=3 should

have a relatively minor effect on the precision of V

6.3 Optimum Number of Subsamples

Let C. denote the cost of taking a sample (i.e., extract) and C2 denote

the cost of making a subsample determination. Then the total cost of sampling

for a balanced strategy is v(mC +mnC 2). Ideally, the optimum number of

subsamples would be that value of n which minimizes the vuriance of . subject

to a fixed cost. Accordingly, it is easy to show that the optimum value of n

is given by

20



n(optimal)/ (6

From Table 5, ;
2 =4.44 and 324.20, so that

n(optimal): (.97)/C./C2 . (6.4)

As an illustration of this result, suppose it costs four times as much to

prepare a sample than it does to make a single subsample determination (i.e.,

C 1=4C 2), then

n(optimal) z .97(2) = 1.94

or n=2 if rounded.

'6.4 Optimum Sampling Times

Examination of equation (6.1) indicates that the optimum sampling times
V2

t, t2, ..., tv are those times which would maximize X (ti-t)2. This

suggests that only two sampling times be used (i.e., v=2), and that these

times be separated as much as possible. For example, the initial sampling

time (t1 ) might correspond to the time elapsed to reach a measurable tin

concentration in the test tank; the final time (t 2 ) would be the time elapsed

for the tin concentration to reach 50 ppb. If a total of eighteen samples are

to be extracted, this implies that nine samples would be taken at each of the

two sampling times (i.e., v=2 and m=9). Although such a sampling scheme

provides the smallest variance for the slope among all schemes involving

eighteen samples (i.e., mv:13), it should be emphasized that this scheme is of

no use at all if one desires to be able to check possible lack of fit of the

2 1



regression line.

In the preliminary data analyzed by Desmatic, sampling was done

according to either the scheme jm=3, n=5, and t=5,30(5)A or jm=3, n=5, and

t=i0,60(10)1. Consider, then, the four alternative schemes presented in Table

6. in this table, estimates of the variance of for each scheme were

obtained via equation (6.1) and using the estimates of a! and
I

02 provided in Table 5. Accordingly, the RP sci;eme A' to A (or of scheme 3'

to B) is 68%. Schemes A' and B' therefore offer a 32j gain in precision when

compared to their counterparts A and B. Each of the four schemes requires

eighteen samples and five subsamples per sample.

if the four schemes in Table 6 are modified so tinat only n=3 subsample

determinations are made per sample instead of n=5, the RP of scheme A' to A

(or scheme B' to B) still works out to about 68%.

Another situation of interest arises when sampling is done over a thirty

minute period (e.g., scheme A), but sampling actually could nave been extended

over a sixty minute period (e.g., scheme B). in such a situation, the RP of

the latter scheme to the former is 50%. Thus, scheme 3 offers a 50% gain in

precision when compared to scheme A. This latter statement holus whether n=5

or n=3 subsamples per sample are used in each scheme. Thus, it is very

advantageous to sample the test tank for as long as possible (i.e., up until

the tin concentration in the test tank reaches 50 ppb).

22



Scheme v m n Sampling Times ('mm) 2 arX.

A 6 3 5 5,10,15,20,25,30 ~ 4S7.5 L4.023xiO-

3 6 3 5 10,20,30,40O,50,60 1750 1.006x!104

A' 2 9 5 5,30 312.5 1.877X!0-3

1~BI 2 9 5 10,60 1250.0 0.469xl10 3

7able 6. F~our Alternative Sampling Sct.er.es: Eaclh Soneme
-p.'.Requires Eigbteen Samples and Five

Subsamples Per Sample.

23
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4 cons idering two alternative rrap.!.ng seimes for relcase-rate dcterrirnation.

In the fiLrstL (ASTM Methou Vi), only on-e scample witn- tinree suboample

dete rminat ions is used to deterno~ i rele2ase rate. in the second method

(AS7M Method J/2), two samples, each with three sulosam, ple determinations, are

used. Neither of these methods provide an, empirical estimate of the precision

of 2';thus, confidence intervals cannot be obtained unu;er these schemes.

7.1 AXSTM Method #/

.LnQ A67M method based on only one sample has several disaovantages.

First, and most seriously, tnis methoG "iplicitly assumes that the regression

line extends through the origin. *reuata tnlsspresented in S2ction ,

however, strongly in-;icated the n~eed for a rio..zero Ln'tercedt. As noted

previously, the prim~iry consequence of neglecting tile :Lnitial organotin

concentration is that the slope estimate will be blased. (A imore complete

discussion of this meth-od is provided below.) Second, an empirical estimate

of the precision of the .lope estimate -cannot be obtained with this method.

i~n order to examine some statistical properties of this methiod, let Z.,

z "anc Z' dernote the measured t~n concentrati.on, of tine tinrue subsample

determinations Tjade from a single saimple taKen at time t. Define

Z=(Zz +Z + )/3, and thus

23i
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It is not difficult to show that the expected value of . is

? +3 /t. Thus the estimate 1 defined in (7.1) is oiased by an amount ,-/t.*-1 O "0

Further, the relative bias is given by 21 (ta ), whicrh can be rather

substantial. Examine, for example, the data presented in Tables 2 and 4.

The mean square error of 3 can be shown to be

Var + (bias)2 =L / 2 (7.2)

1 2 "40 j/

However, since the bias term cannot effectively be ignored, the mean square

error is of no real intrinsic interest. in conclusion, it is Desmatics'

opinion that ASTM Method #1 is not a viable sampling procedure to follow.

7.2 ASTM Method #2

The ASTM method based on two samples has the aGvantage of providing an

unbiased estimate of "l., but still has the disadvantage of not providing an
4I

empirical estimate of the precision of Nevertheless, the perormance of

this method can still be evaluated using equation (6.1). in this method, v=2,
V 2 2

m=1, and n=3. Note thiat for v=2, X (ti-t) =(t 2-t1) /2. Thus
i=',

Var(S I) 2 2 (1.3

Substituting the estimates 32=4.46 and 2=4.20 into (7.3) yields
1 2

Var( 11.681(t 2-, ) (7.4)

For ti:5 minutes and t2-30 minutes, this gives Var(" .0187; for t.:i0

minutes and t =60 minutes, this gives Var(S) .0047.
2
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Table 7 summarizes all the sampling strategies involving n=3 subsamples

considered heretofore. Schemes C ana 0' correspond to the ASTM method #2 over

60 and 30 minutes sampling periods, respectively. Scneme A corresponds to the

DTNSRDC sampling scheme in which m=3 samples are taken at each of six sampling

times given by t=i0,60(10) minutes. Scheme A' is the 30 minute counterpart of

Scheme A. The RP of scheme C to scheme A (or scheme C' to scheme A') is 205%.

Thus, the standard error of *-;. unaer scheme C(C') wou.d be approximately twice

as large as that which would be obtaineG under scheme AA'). It was mentioned

previously, of course, that scheme C or C' provides insufficient data to

obtain confidence intervals.

In scheme B, m=9 samples are taken at each of the two sampling times 10

-and 60 minutes. in scheme B', m=9 samples are taken at each of the two times

* 5 and 30 minutes. A quick calculation will show that the RP of scheme C to

scheme B (or scheme C' to B') is 300%. Thus, in this case, the standard error

of 3I under scheme C(C') would be approximately three times larger than that

which woulo be obtained under scheme 3(B').

7.3 Modified ASTM Method #2

Suppose that ASTM Method #2 is modified so that additional samples are

collected at the two sampling times. It has already been indicated (section

6.4) that taking m=9 samples at each of two times is about 32% more precise

than the DTNSRDC scheme of taking m=3 samples at each of six equally spaced

times (i.e., schemes A or A' in Table 7). The breakpoint for 100% relative

precision of a scheme involving two sampling times (t=10 cad t=60 minutes) to
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Scheme v m n Sampling Time-s (mi) Var( 1

A 6 3 3 10,20,30,'40,50,60 1.'112xl10 3

B 2 9 3 10,60 O.519x10-

C 2 1 3 10,60 4.672xl10 3

A' 6 3 3 5,10,15,20,25,30 4.450xlO-3

B' 2 9 3 5,30 2.076x10-3

C' 2 1 3 5,30 18.683x10-3

Table 7. Six Alternative Sampling Schemes. Each
Requires n=3 Subsarnples Per Sample.
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scheme A is m:4.2 samples. That is, collecting four samples at each of two

(endpoint) times should yield approximately the same stancard error for $. as

would collecting three samples at each of six equally spaced times, wihere in

both schemes n=3 subsamples are made from each sample. However, to obtain 90%

confidence intervals for 3 of approximately equal width, then m=5 samples

should be collected at the two sampling times. This latter scheme requires

ten samples compared to the eighteen samples whicn scheme A requires.
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