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1 INTRODUCTION

The central aim of the work of the High Integrity Computing
Section of the Computing Division is to devise means of writing
formal specifications for safety and security critical hardware

and then prove that a particular realisation of this specific-
ation conforms with the top level requirement. In the course of
developing a novel 32 - bit processor, VIPER, (1, 2, 3) the team
has evolved methods of formal specification, design and proof
based on the use of the languages LCF - LSM (4, 5) and ELLA (6).
The language LCF - LSK was invented in the Computer Laboratory
at Cambridge and is outlined in Annex A and ELLA was invented at
RSRE, its main features being summarised in Annex B.

This Memorandum explains some of the techniques which have been
developed, for the design and validation of synchronous logic,
using LCF - LSM and ELLA. By adopting a tutorial style, it is
believed that this paper will enable those who have not been
exposed to the rigours of formal methods to appreciate the
essence of the techniques, without themselves needing to be
specialists in the mathematical disciplines involved. However,
a detailed understanding of the techniques is crucial for those
who will examine the proofs of correspondence between the
various levels of documentation for the VIPER microprocessor and
other high integrity chips which will be developed in future.
Indeed, the need for this Memorandum became apparent when it was
realised that even the first step of the proofs for VIPER (7)
would be difficult to follow unless the reader had some
fundamental guide to the techniques, based on a simple example.

2. TUTORIAL EXAMPLE - INFORMAL SPECIFICATION

The example chosen as the basis for this paper is a six bit
counter holding a value "count" which is either retained at its
present value, loaded with a new value from the external world,
incremented once or incremented twice, depending on the signals
on two control lines, denoted by "func", Figure 1. That is :
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func - 0 Do nothing: "count" unchanged
func - 1 Load "count" from a 6 - bit parallel input, "loadin"
func - 2 Increment "count": ie count :-count + 1
func - 3 Increment "count" twice: ie count :-count + 2

This paper shows how to turn this informal specification into a
formal description, carry out the design process and prove that
the implementation respects the original requirement in every
respect. The process of design is not "top down" but relies instead
on iterations between various levels of documentation, guided by
the knowledge that proofs of correspondence have to be produced
between consecutive levels.

It is acknowledged from the start that the ultimate realisation of
the counter will be viewed as unusual by those skilled in digital
electronics. This is not caused by the proving method. A
deliberately strange design has been produced to illustrate as many
features of the verification process as possible in a single
example.

3 TIMING. SEQUENCE AND FORMAL SPECIFICATION

An issue that must be dealt with in hardware proving is the
V influence of timing in practical electronic circuits and specifying

the effects of delays on the overall functionality of a system. For
the counter used as an example in this Memorandum the problem is
viewed in the following domains;

a. The top level specification, which has no sense of time or
sequence,

b. The "host machine", which has a concept of sequence of
'%.* ~.:operations but no direct relationship with real time or

4. clocks,

c. A high level design which implies underlying clocks and
timing, yet is independent of any specific VLSI technology,

d. A specific realisation, which can be analysed to extract
real timing, typically using the building blocks and CAD
software of a particular VLSI process, eg UK 5000.

At the highest level, the requirement is for a device which
performs some mapping such as

f(count,loadin,func) -> count
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This is a pure function, without any implication of using either
hardware or software for its implementation. Although not
stated yet in formal terms, there is an implication that with
defined initial conditions at time tO, the device will execute
the function f() above and alter the state of the machine,
producing a new value countl at time tl and so on, as shown in
Figure 2. There is no implication to be drawn about the spacing
of these time intervals. Some modes of operation, such as
function 0, "do nothing", may require only one "clock tick" for
completion, whilst "increment" might be performed by serial
addition and use 6 or 7 "clock ticks". This should be compared
with the situation when designing a microprocessor, where the
designer knows at an early stage what each instruction must do
but not the number of clock transitions needed.

Given the assumptions so far, it is possible to devise a formal
specification which describes the state transitions produced between
tO and tl, tl and t2, .. .etc. In LCF - LSM, using the constructs
listed in Annex A, the possible state transitions can be written
down as a single function, as follows;

COUNTER :(word6#word6#word2) -> word6
COUNTER(count,loadin,func) -

LET funcnum - VAL2 func IN
LET value- VAL6 count IN
(funcnum - 0 -> count
funcnum - 1 -> loadin I
funcnum - 2 -> (value - 63 -> WORD6 0 WORD6(value + 1))
funcnum - 3 -> (value - 63 -> WORD6 1 I

value - 62-> WORD6 0 WORD6(value + 2))

The first line is simply the definition of the modes or types
involved, namely an input vector made up of the 6 - bit entities
"count" and "loadin", plus the 2 - bit value of "func" which
defines the operation to be performed. The function COUNTER
delivers the new value of "count" as a single 6 - bit word.

The internal logic of the function has to take account of the 6-bit
word length and ensure that there is no attempt to generate a
representation of an integer greater than 63. This collateral
knowledge of computer arithmetic has been built into the
specification above and the known special cases have been given
their own limbs in the definition. The particular form of the
function above does not impose any constraints on the realisation.
The double increment could be done in a single operation, by serial
addition or by a large number of other conceivable implementations.

Page 3
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4. THE HOST MACHINE

4.1 General description

For any realistic hardware problem it is not sensible to try and
move from a formal requirement directly to a gate level
realisation, although for the simple example used in this paper it
might be feasible. Following the work at Cambridge (5), it is wise
to define a set of simpler functions, which when called in some

defined sequence perform the required overall changes in the
contents of the counter. Gordon has called this intermediate
stepping stone the "host machine" level. Although the phrase is
liable to be misunderstood in computing circles, where it is used
most frequently in the context of "host /target" program
development systems, the nomenclature is retained here for

correlation with other published work on hardware proofs. In this
context the "host machine" is a high level conceptual view of the
counter specified above. By carrying out this first level of
decomposition and expressing the conclusions in the form of a state
transition diagram, Figure 3, it is possible to move to the next
lower level of documentation in LCF - LSM.

The meaning of this state transition diagram is reasonably clear,

if the nodes of Figure 3 are viewed as elementary machines, with
the following informal attributes;

Node 0: A "FETCH machine" which looks at the value of "func" at
the start of the complete counter operation to determine
which internal functions should be invoked.

Node 1: An "INCl machine" which performs a single increment

Node 2: An "INC2 machine" which also performs a single increment
(and which internally uses the same mechanism as INCl).

Node 3: A "LOAD machine" which can overwrite the current contents
of the counter with the value on the "loadin" lines.

The predicates which define the node to node transitions can be
tabulated readily in terms of the values of "func" and a single
Boolean variable "double" which is TRUE when a double increment is

required. The conditions cO..c4, Figure 3 can then be defined as
listed in Table 1. Note that the unlabelled arcs of Figure 3 are
traversed unconditionally.

Table 1 Traversal conditions for host machine

" Predicate I Expresssion

------------------------------ I
I cO I func - 0

cl I func - 1
c2 func - 2 OR func-3 
c3 I NOT double
c4 I double
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Viewed as a finite state machine, the complete host machine is shown
in Figure 4. It should be noted that two additional pieces of state
information are now required; "node" and "double". The element
"node" indicates which node the host is currently in and "double"
was introduced above to define the transition at the output of the
INCI machine. The description of the state of the host machine will
be done in terms of the vector

(count, double, node)

each field of which corresponds to a memory element in the host
machine; in hardware terms a flip - flop or register. Note that in
the correspondence proofs only the element "count" will be involved

* in comparisons, since the top level specification has no concept of
needing "double" or "node". As the design and documentation moves
to progressively lower levels, the vectors needed to describe the
states of the system grow ever longer.

4.2 Formal definition

From the top level specification and the state transition
diagram, it is possible to design the nodes of Figure 3. The
steps in deducing the LCF - LSM definitions can be followed from
the text on the opposite page;

a. Definition of the vector "major" that defines the state
of the host machine.

b. Auxiliary functions are created, such as the arithmetic
function ADDi, which will be used in a number of places in the
subsequent text.

c. The functionality of each node of Figure 3 is defined, ie the
functions FETCH, LOAD, INCl and INC2. The need for repeated
definition of the "enumerated type" (fetchnode I inclnode I
inc2node I loadnode), to name the nodes may seem unreasonable
but is enforced by the absence of any concept of "global
values" in LCF - LSM.

..

d. The function NEXT is defined to express all single host
machine transitions, eg hOl to h02 in Figure 2.

For single transitions, this is an adequate description of the host
but to define the behaviour in the presence of time varying signals
from the outside world, it is necessary to compose a number of
successive calls of the function NEXT, as described in Section 7.
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MAJOR : (word6#bool#word2)

ADDI :word6 -> word6
ADDl(x) -
LET xval - (VAL6 x) IN (xval -63 ->(WORD6 0) IWORD6(xval + 1))

FETCH :(word6#bool~word6#word2) -> major
FETCH(count, double, loadin, func)-
LET twice - (EL 0 (BITS2 func)) IN
LET funcnun - VAL2 func IN
LET fetchnode - WORD2 0 IN
LET incinode - WORD2 1 IN
LET loadnode - WORD2 3 IN
(funcnum - 0 ->(count, twice, fetchnode)
funcnum - 1 ->(count, twice, loadnode)

(count, twice, incinode) (funcnum -2 or 3)

LOAD: (word6#bool#word6#word2) -> major
LOAD(count, double, loadin, func)
LET twice - (EL 0 (BITS2 func)) IN
LET fetchnode - WORD2 0 IN
(loadin, twice, fetchnode)

INCi: (word6#bool#word6#word2) -> major
INCl(count, double, loadin, func) -
LET twice - (EL 0 (BITS2 func)) IN
LET fetchnode - WORD2 0 IN

*0* LET inc2node - WORD2 2 IN
(double ->((ADDl count), twice, inc2node) I (double increment)

((ADD1 count), twice, fetchnode) (single increment)

INC2: (word6#bool#word6#word2) -> major
INC2(count, double, loadin, func)
LET twice - (EL 0 (BITS2 func)) IN
LET fetchnode - WORD2 0 IN
((ADDI count), twice, fetchnode)

NEXT :i(majorwword6#word2) -> major

NEXT((count, double, node), loadin, func)
LET nodenun - VAL2 node IN
(nodenui - 0 ->(FETCH count double loadin func)
nodenui - 1 ->(INCl count double loadin func)

nodenu2 - 2 ->(INC2 count double loadin func)
nodenun - 3 ->(LOAD count double loadin func)

a.. Page 6



5. HIGH LEVEL DESIGN

5.1 Description using LCF -LSM

The next, creative step in the process is to produce a block diagram
which implements the host machine, preferably without constraining
the ultimate gate level design to a specific technology. However,
in practice, a gate level design is sketched using the building
blocks of the chosen VLSI design system and this is abstracted to
produce the block diagram. Whilst this is essentially a technology
dependent design, experience with VIPL.R has shown that the resulting
block diagram can provide the basis for gate level designs in
different VLSI technologies. Note from the above description that
this paper does not describe a "top down" method of design but a
combination of a number of levels of thought, guided by the overall
knowledge that formal proofs have to be generated between the
various levels.

The high level design for the counter is shown in Figure 5. As can
be seen from the facing page, the LGF - LSM description of this
design is simple, the internal building blocks being merged in the
function COUNTLOGIC to conform with the connectivity of Figure 5.
This function describes one "clock tick" only and therefore is
directly analogous to NEXT for the host machine. Note the latches
on the output lines, which create the global feedback of the finite
state machine of Figure 4. The formal mathematics remains in the
world of nested function calls and it follows that these
synchronously clocked latches must exist in the realisation of the

A circuit.
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MULTIPLEX :(word6#word6#bool) -> word6
MULTIPLEX(incout, loadin, mplxsel) -

(mplxsel -> incout I loadin)

INCLOGIC :(word6#bool) -> word6
INCLOGIC(count, noinc) -

LET countval - VAL6 count IN
(noinc -> count I

(countval - 63 -> WORD6 0 WORD6 (countval + 1))
)

MPLXCON :word2 -> bool (multiplexer control)
MPLXCON(node) - (NOT(VAL2 node - 3))

INCCON :word2 -> bool
INCCON(node) - (VAL2 node - 0) (increment control)

NEXTNODE :(word2#word2#bool) -> word2 (transition to next node)
NEXTNODE(node, func, double) -

LET funcnum - VAL2 func IN
LET nodenum - VAL2 node IN
LET fetchnode - WORD2 0 IN
LET inclnode - WORD2 1 IN
LET inc2node - WORD2 2 IN
LET loadnode - WORD2 3 IN
(nodenum - 0 -> (funcnum - 0 -> fetchnode I

funcnum - 1 -> loadnode I inclnode

nodenum - I -> (double -> inc2node I fetchnode) I
, fetchnode (nodenum - 2 or 3)

COUNTLOGIC :(major#word6#word2) -> major
a, COUNTLOGIC((count, double, node), loadin, func) -

LET twice - (EL 0 (BITS2 func)) IN
" ((MULTIPLEX (INCLOGIC count (INCCON node)) loadin (MPLXCON node)),

twice,

(NEXTNODE node func double) I'~)

Note
COUNTLOGIC will be compared with the function NEXT, page 6, when

establishing that the high level design conforms to the requirements

for the host machine.

P'
a,4
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5.2 Description using ELLA

This is the point at which the transition to ELLA is made. To
simplify this transition, the LCF - LSM describing the high level
design of Figure 5 is coded in ELLA, using the library defined in
Reference (8). This library interprets the LCF - LSM primitive
functions, such as BITS2, VAL6 and so on as ELLA functions. The
resulting ELLA description of the high level design is shown on the

--. next four pages. Note that lexically the ELLA text for each block

is almost identical to the LCF - LSM given on page 8.

The crucial concept which is introduced in this ELLA text is
the definition of a Boolean as (T I F I X I I) where 'X'

- represents "don't know" and 'I' represents "illegal". The
concept of "not knowing" the value of a signal does not exist

in LCF - LSM and this is one of the primary reasons why the
extra descriptive power of ELLA is essential, the nearer the
designer moves to the electronic circuit level. Attempts to
work at circuit level using two-level (T I F) Boolean variables
tend to lack credibility, because real logic does settle into

non - deterministic states when power is switched on and there
are many points in hardware design and proving where the sense
of a signal is irrelevant and the 'X' in the ELLA text stands

for "don't care".

The complete list of ELLA types and functions used in this
-V. paper is given below. The reader does not need to know the

internal details of the functions to understand the subsequent
-definitions of the high level design, the circuit description

or the method of proof described in Section 9.

'€.'€Page 9
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5.2.1 Types used

The following types are supported, with the indicated values: -

a) bool ( t f I i x)
This is used as the type for boolean signals, and has values: -
't' - true, 'f' - false, 'i' - an illegal or indeterminate
signal, 'x' - an irrelevant signal used as an input during
testing.

b) word(n)
This is a row of {n) 'bool's, the least significant being element
0, and the most significant being element (n-l).

c) num - number/0, number/l etc and illegalnum
This is the set of positive integers, plus 'illegalnum' which is
used to indicate an illegal or indeterminate value, such as would
be obtained by trying to interpret a 'word(n)' as a number if one
of the bits was 'i' or 'x'.

d) result - ( ok I xxxbadspec I xxxwrongxxx )
*. This is a type used as the result of comparing the specification

of a function with its implementation. The value 'ok' is self
explanatory, 'xxxbadspec' is delivered if the function
specification has delivered an unexpected value ('i' or
'illegalnum'), and 'xxxwrongxxx' is delivered if the
implementation delivers either a different value from the
specification or an illegal value (indicating that the
implementation depends upon some input it is not meant to).

5.2.2 Functions used

a) AND: (bool,bool) -> bool
This function provides an 'AND' function between two 'bool's.
This function is defined such that if both inputs are 't' the
result is 't' or if either input is 'f' the result is 'f' (as
would be expected) but if one input is 't' and the other is
unknown ('i' or 'x') then the result is indeterminate, 'i'

: b) OR: (bool,bool) -> bool
This provides an 'OR' function similar to the 'AND' above.

c) NOT: bool -> bool
This provides an 'NOT' function similar to the 'AND' above.

Page 10



44

.4

d) EQUIV: (bool,bool) -> bool
This provides an function similar to the 'AND' above which
indicates when two 'bool's are equivalent.

e) EQUAL: (num,num) -> bool
This function compares two 'num's for numerical equality. It
should be noted that any 'num' compared with 'illegalnum' gives
an indeterminate result.

f) PLUS: (num,num) -> num
Numerical addition. Note that 'illegalnum' plus anything is
'illegalnum'

g) DIVIDE: (num,num) -> num
Numerical division, similar to 'PLUS'. DIVIDE(a, b) equals the 4.

integer division of 'a' by 'b'. Anything divided by zero gives
'illegalnum'.

h) REMAINDER: (num,num) -> num
REMAINDER(a, b) is the numerical remainder left after the integer
division of 'a' by 'b'.

i) COMPBOOL: (bool,bool) -> result
This function compares two 'bool's and delivers a 'result'. Note
that the order of the inputs is (specification, implementation).

j) COMPNUM: (num,num) -> result
As COMPBOOL, but comparing two 'num's.

k) COMPJOIN: (result,result) -> result
This provides the equivalent of an 'AND' function for 'result's.
That is COMPJOIN(ok, ok) delivers 'ok', but all other inputs give
either 'xxxbadspec' or 'xxxwrongxxx'.

1) TESTCOUNT: bool -> num
This function delivers a sequence of 'num' starting at
'number/O'. The input parameter has no effect on the delivered
value, and is only there because ELLA does not allow a function
with a NULL input list.

m) TESTWORD: num -> [14]bool
This function converts a number into a row of 14 'bool's and is
used with TESTCOUNT to generate a sequence of 'bool' rows.

Page 11



The following functions exist as instantiations for different values
of (n) and can be compared with the primitives of LCF - LSM listed
in Annex A. For example, the LCF - LSM primitive 'WORD6' becomes the

V ELLA 'WORD~n)' with (n) equal to 6.

n) WORD(n): num -> word(n)
This function converts a 'num' to a 'word(n)'. If the number is
too big to be represented by (n) bits (ie greater than 2**n - 1)
or is 'illegalnum' then the result is '[n]i'. It is comparable
with the LCF - LSM functions WORDI, WORD2 ......

o) VAL(n): word{n) -> num

This function converts a 'word(n)' to a 'num'. If the 'word(n)'
contains any unknown bits ('x' or 'i') then the result is
'illegalnum'. This mimics the LCF - LSM functions VALI, VAL2,...

p) EL(n): (num,word(n)) -> bool
This function delivers the indicated element of the 'word(n)' and
is equivalent to the LCF - LSM functions (EL num (BITSn wordn))

q) COMPWORD(n): (word(n),word(n)) -> result
As for COMPBOOL, but comparing two 'word(n)'s, which is the same
as '-' defined between two values of type 'wordn' in LCF - LSM.

On the following two pages the translations of the LCF - LSM
descriptions of the blocks of the counter (page 8) are given,
converted into ELLA using the library functions described above.
This enables subsequent comparison with the gate level description in
ELLA to be carried out.

Page 12
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\**c.f. LCF - LSM functions on page 10**\

FN MULTIPLEX - (vord6: incout loadin, bool: mplxsel) -> word6:
CASE mplxsel OF t: incout, f: loadin ELSE [611 ESAC.

FN INCLOGIC - (word6: count, bool: noinc) -> word6:
BEGIN LET countval - VAL6 count.

OUTPUT CASE noinc OF
t: count,
f: CASE EQUAL(countval, number/63) OF

t: WORD6 nuznber/O,
f: WORD6( PLUS (countval, number/i))

ELSE [6]1
ESAC

ELSE [6]1
ESAC

END.

FN MPLXCON -(word2: node) -> bool:
NOT(EQUAL(VAL2 node, nuniber/3)).

FN INCCON - (word2: node) -> bool: EQUAL(VAL2 node, number/0).

FN NEXTNODE - (word2: node func, bool: double) ->word2:

BEGIN LET funcnum - VAL2 func.
LET nodenum - VAL2 node.
LET fetchnode - WORD2 number/O.
LET Inclnode - WORD2 number/i.

1LET inc2node - WORD2 number/2.
LET loadnode - WORD2 nurnber/3.

OUTPUT CASE nodenum OF
number/O: CASE funcnum OF

number/O: fetchnode,
number/i: loadnode,

4 number/2: incinode,
number/3: incinode
ELSE [2]1

ESAC,
number/i: CASE double OF

V t: inc2node,
V f: fetchnode

ELSE [2]1
ESAC,

number/2: fetchnode,
nuniber/3: fetchnode
ELSE [2]1
ESAC

END.
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! **** cf. LCF-LSM function COUNTLOGIC, page 8 ****

FN COUNTLOGIC - (word6: count, bool: double, word2: node,
word6: loadin, word2: func)-> (word6,bool,word2):

(MULTIPLEX( INCLOGIC(count, INCCON(node)), loadin, MPLXCON(node)),
EL2(number/0, func),
NEXTNODE(node, func, double)

Whilst not required for verification, the complete counter
circuit can be modelled using the ELLA simulator as follows;

FN COUNTER - (word6: loadin, word2: func) -> (word6, bool, word2):
BEGIN FN DELBOOL - (bool) -> bool: DELAY(il).

FN DELWORD2 - (word2) -> word2: DEAY([2]f,l).
FN DELWORD6 - (word6) -> word6: DELAY([6]i,l).
MAKE DELWORD6: count, DELWORD2: node, DELBOOL: double.
LET cl - COUNTLOGIC(count, double, node, loadin, func).
JOIN el[l] -> count,

cl[2) -> double,

cl[3] -> node.
OUTPUT cl

END.

Note that the ELLA 'DELAY' function used above provide a one cycle
delay for a particular signal. Hence in the above example they

" provide the memory implied in the counter finite state machine,
Figure 4.
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6. CIRCUIT DESCRIPTION

The final circuit is shown in Figure 6. The correspondence
* between groups of gates and the building blocks of Figure 5 is

shown also and it should be noted that one gate belongs to
two building blocks, to avoid the need to generate the signal
(nO NAND ni) twice. Generating this design from the block
diagram of Figure 5 is a human, creative activity.

Description of the circuit diagram of Figure 6 in ELLA is
straightforward, using NAND gates, NOR gates, inverters and
latches. The complete text is given on the next page. Having done
this coding, the ELLA simulator (6) can be used to model the design
to gain confidence independently of the formal proofs. If the
simulation reveals undesirable or unexpected characteristics this
implies either that the proofs will show an inconsistency or that
the top level specification does not reflect the true operational
requirement. In the latter case the specification will have to be
amended and the implementation repeated.

That completes the description of the "forward" design process.
The rest of this paper is devoted to the "backward" validation
techniques needed to check conformity between the following
layers of documentation:

a. The top level specification, in LCF - LSM

b. The host machine definition, in LCF - LSM

c. The high level design, expressed as a block diagram, in
LCF - LSM and ELLA

d. The circuit diagram, described in ELLA.

The three sets of proofs are described in Sections 7,8 and 9,
respectively.
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The following is the description of the counter circuit, Figure
6, expressed in ELLA. Note that the circuit primitives (NAND

,~q ,jgates etc) are described in terms of library functions, Section
5, whilst the circuit is described using these circuit primitives
only.

\** Circuit elements required for implementation **

NFN INV - (bool:a) ->bool: NOT a.

FNNR bo:ab)bo:NTaO )

FN NORD2 - (bool: a b) ->bool: NOT(a ORD b).

FN NAND2 - (bool: a b) - bool: NOT(a AND b).D )

FN NAND3 - (bool: a b c) - bool: NOT(a AND b AND c).D )

FN XNOR - (bool: a b) ->bool: EQUIV(a, b).

\**The circuit description, note that the specification**\
\**functions INCCON,MPLXCON and NEXTNODE are combined**\
\**into a single function**\

FN MPLEXCIRC - (word6: incout loadin, bool: mplxsel) -> word6:
BEGIN FN BITSEL - (bool: lbit lsel incbit incsei) -> '-ool:

NAND2(NAND2(lbit, lsel), NAND2(incbit, incsel)).
LET mplxselbar - INV mplxsel.

OUTPUT (INT k-l. .6]BITSEL(loadin[k] ,mplxselbar, incout[k] ,mplxsel)
END.

FN INCGIRC - (word6: count, bool: noinc) -> word6:
BEGIN LET noincbar - INV noinc.

LE- icl - XNOR(count~l], noinc).
LEZ ic2 - XNOR(count[2] ,NAND2(noincbar, count[lj)).
LET ic3 - XNOR(count[3],NAND3(noincbar,count~l],count[21)).
LET carry4bar - NAND4(noincbar,count[l] ,count[2] ,count[3]).
LET ic4 - XNOR(count[4l, carry4bar).
LET carry4 - INV carry4bar.

* LET ic5 - XNOR(count[5],NAND2(carry4, count[4])).
LET ic6 - XNOR(count[6],NAND3(carry4, count[4], count[5])).
OUTPUT(icl, ic2, ic3, ic4, ic5, ic6)

END.

FN CONTROLCIR - (word2: node func, bool: double) -

(bool ,bool ,word2):
BEGIN LET inccon - NOR2(nodell], node[21).

LET mplxcon - NAND2(nodeflj, node[2]).
LET common - NAND3(inccon, INV func[2], func~l]).
LET nextnodel - NAND2(common, NAND2(inccon, func[2])).
LET nextnode2 -

NAND2(common, NAND3(double,node[l],INV node[2])).
ON OUTPUT (inccon, mplxcon, (nextnodel, nextnode2))
% END.
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7. CORRESPONDENCE BETWEEN SPECIFICATION AND HOST MACHINE

7.1 Technique

The first link in the chain of proofs is to establish that the
host machine defined on page 6 conforms to the top level
specification on page 3. The steps in the proofs are;

a. Generation of a "spanning tree", which shows all possible
paths through the state transition diagram.

b. Elementary algebraic substitutions in the functions for the
host machine to derive one partial function for each branch of
this tree.

c. Matching substitutions in the top-level specification to
produce a partial specification.

c. Comparison of the value of "count" delivered by these skeleton
descriptions to check that the host implies the specification.

7.2 Generation of spanning tree

To break the proof down into easily managed cases, the spanning
p.> tree is derived, to illustrate all possible "walks" from the

"fetch" node around the state transition diagram, Figure 2. The
resulting tree for the host machine is shown in Figure 7. For such
a simple example, the spanning tree can be obtained by inspection
but formally the evaluation of the tree is done using the
connectivity matrix;

To node

AFrom node 0Il 1 0 1

Standard algorithms exist for deriving the spanning tree from this
matrix (9). Consider any branch of this tree, for example, branch

* C. To follow this route it must be true that to travel from node 0
to node 1 the condition on exit from node 0 must be, ((func-2) OR
(func-3)). Equally, if the next transition is to be to node 0, the
predicate (NOT double) must be TRUE on exit from node 1. To create
the overall predicate for this path to be traversed a notation is
needed which expresses the time varying nature of the various
signals, which determine the values of "func" and "double".
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7.3 Sequences of signals

Reference to Figure 2 will show that a notation is required for
the values of the various signals at times tOO,tOl... in the
host machine. In formal terms, the successive values are defined
as a sequence of signals, represented in LCF - LSM using list
constructors, Annex A, to form types such as "wordn list", ie a
sequence of n - bit values. For this example, let;

loadinsigs - loadinO0, loadin0l, loadin2 ........
funcsigs - funcOO , funcOl , func02 ......

where the formal mode of both "loadinsigs" and "funcsigs" is
"word6 list". Note from Figure 2 that the points at which the
members of these sequences are assumed to exist may not be spaced
evenly in real time. All that is required at this level of the
proof is that the sequences can be assumed to exist and that the
selection of the nth elements of both "loadinsigs" "funcsigs" will
produce a pair of inputs which are stable and coexist at the same
instant in the real world.

7.4 "Hoisting" of exit conditions

Consider the conditions under which path C is executed. The first
function application in the host machine will be a call of NEXT,
which internally causes a call of FETCH. If path C is to be
followed this must result in the exit condition ((func-2) OR
(func-3)). By inspection of the description of the host machine
on page 6 this means that the application of the zero elements of
the sequences "loadinsigs" and "funcsigs" to the function FETCH
must deliver the result (count, twice, inclnode). In words, the
requirement for this to be true are as follows;

"FOR ALL
possible values of 'count' resulting from the last operation

AND both possible current values of 'double' (just before fetch)
AND any sequence of 'loadin' signals
AND any sequence of 'func' signals
SUCH THAT the high order bit of the first value of 'func' is set

(func-2 OR func- 3), ie condition c2 in Table 1 is TRUE
FETCH delivers (count, twice, inclnode)".

In predicate calculus the universal quantifier "FOR ALL" can
.% precede any list of variables and is represented in this paper by

an exclamation mark (!). The qualifier "SUCH THAT" precedes the
defining predicate and is typed as a full stop (.). This means
that the long winded statement above can be written out formally
by substitution in FETCH, page 6, yielding;

!count double loadinsigs funcsigs.(func- 2 OR func-3) ->

(FETCH count double (EL 0 loadinsigs) (EL 0 funcsigs)) ->
d (count, (EL 0 (BITS2 (EL 0 funcsigs))), inclnode)
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There are several points to note about this expression;

,- a. The exit condition has been "hoisted" into the defining

predicate and become an entry condition, expressed in terms of
the state of the system before FETCH is invoked.

b. The use of (EL 0 ...) to extract the first member of a sequence
of signals.

c. The use of (EL 0 (BITS2 (EL 0 ...... ))) to extract the least

significant bit of the first element in "funcsigs" in order to
determine the value of "twice."

Now repeat the exercise for node I on branch C of the spanning tree,
calling the function INCI with the second signals in the sequences
"loadinsigs" and "funcsigs" as parameters, to create the exit
conditions such that the collateral delivered is;

((ADDl count), twice, fetchnode)

However, this is the state created when "double" on input to INCI is
FALSE (ie c3 - TRUE, Table 1). Therefore in dealing with this
second function call there is no need to "hoist" exit conditions
into the predicate qualifying the call of INCI. Remembering that

* the predicate c2 - (func - 2 OR func - 3) is definitive for this
path already, the defining predicate for this second function
application must be the intersection (c2 AND c3) In formal terms;

!count double loadinsigs funcsigs.(c2 AND c3) ->

(INCl count F (EL 1 loadinsigs) (EL I funcsigs)) ->

((ADDI count, (EL 0 (BITS2 (EL 1 funcsigs))), fetchnode)

The direct substitution "double - F" can be made in the call of INCI
by virtue of c3. Notice that the value of "twice" delivered depends
on the second signal in the sequence "funcsigs" The proofs should
establish that this new value is irrelevant.

All that remains to describe path C in the spanning tree precisely
is the composition of the calls of FETCH followed by INCl, which
involves two steps;

a. The "hoisting" of the entry condition for the call of INCI,
W(NOT double) backwards so that it becomes an entry condition for

the initial call of FETCH, and

b. Substitution of the outputs from FETCH as inputs of INCl.
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Carrying out both steps gives a partial function for the host
machine, HOST'C, with the following definition;

!count double loadinsigs funcsigs.(c2 AND c3) ->
HOST'C(count, double, loadinsigs, funcsigs) -
((ADDl count), (EL 0 (BITS2 (EL 1 funcsigs))), fetchnode)

The composite entry condition for (c2 AND c3) in terms of the
V'

9  universally quantified inputs is;

(c2 AND c3) - (EL 1 (BITS2 (EL 0 funcsigs))) - T AND
, (EL 0 (BITS2 (EL 0 funcsigs))) - F

This can be recognised in integer form as (funcO0 - 2), which is
the value expected from the top level specification for the
single increment operation.

Although these operations have been explained in exhaustive
detail for tutorial purposes, the steps become largely automatic
once a number of proofs have been completed. Given the partial
function for HOST'C, comparison with the corresponding partial
specification should yield one limb of the proof that the host
machine conforms with the requirement in the top level
specification, as given in the next section.

7.5 Proof for limb C

The analysis in 7.4 has shown that path C can be defined uniquely
by the expression;

!count double loadinsigs funcsigs.(c2 AND c3) ->
((ADDI count), (EL 0 (EL 1 funcsigs)), fetchnode)

The algebra from this point is elementary. Expand ADDI, down to
the underlying primitive LCF - LSM functions giving;

!count double loadinsigs funcsigs.(c2 AND c3) ->

((VAL6 count)-63 -> (WORD6 0,(EL 0 (EL 1 funcsigs)),fetchnode)I
(WORD6((VAL6 count) + 1),(EL 0 (EL 1 funcsigs)),fetchnode))

Now apply the same compound predicate to the specification on
page 3 to from a partial specification;

!count loadin func.(c2 AND c3) ->

COUNTER'C(count, loadin, func) -
((VAL6 count)-63 -> (WORD6 0 I WORD6((VAL6 count)+l))

By comparison of the underlined expressions for the value to be
delivered it is clear that the host machine obeys the specifi-
cation for the single increment mode of the counter.
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By using the same technique for branches A, B and D of the spanning
tree, the complete proof of correspondence between the host machine
and the top level specification can be produced. The details are
given in Annex C. It should be noted that although the example
presented in this Section involved only a single comparison of host
and specification functions, some proofs of this kind have to be
split into internal cases. Branch D of the spanning tree for this
example has three such internal cases and some of the VIPER proofs
involve 6 internal limbs, to cope with various combinations of
predicates. The issue of applying automatic theorem provers to
this work is discussed later.

*.. ~.8 CORRESPONDENCE BETWEEN HOST MACHINE AND HIGH LEVEL DESIGN

8.1 Technique

This is a different type of proof. Whereas the proofs from the
host machine back to the specification required the derivation
of partial functions on paths through the state transition
diagram, this is not needed at the next level. The correctness

of the high level electronic design must be established by
showing that the function COUNTLOGIC on page 12 provides
exactly the same functionality as the host machine function
NEXT, (page 6) in all circumstances. A brief study of NEXT,

. with its case limbs corresponding to each node of the state
transition diagram, shows that the best strategy for this proof
is to take a node at a time.

As in Section 7, the proof for one node is explained in detail
in this Section, with the remaining details being given in
Annex D. As the level of the proofs moves towards the gate
level design of the counter, the details become ever more
repetitive and tedious. However, it is vital to persevere with
the algebra, because errors can occur at any level of the doc-
umentation.
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8.2 Proof for node 0

Note that the formal mode of the function NEXT for the host machine
is identical to that for COUNTLOGIC in the description of the high
level design. This means that precise equality can be established
between the two levels. (In the VIPER proofs the state vector for
the high level design is longer and has more detail than that for
the host machine and therefore the proofs are by implication, as in
Section 7).

By substituting node - 0 in the function NEXT for the host
machine it is easy to show that,

NEXT(count, double, #00, loadin, func) -
(FETCH count double loadin func)

Expand FETCH,

NEXT(count, double, #00, loadin func) -
LET twice - (EL 0 (BITS2 func)) IN
LET funcnum - VAL2 func IN
LET fetchnode - WORD2 0 IN
LET inclnode - WORD2 1 IN
LET loadnode - WORD2 3 IN
(funcnum - 0 -> (count, twice, fetchnode) I
funcnum - I -> (count, twice, loadnode) I
funcnum - 2 -> (count, twice, inclnode) I

(count, twice, inclnode)) (H.0)

Now form the corresponding function for the high level design,

*-'2 COUNTLOGIC(count, double, #00, loadin, func)
LET twice - (EL 0 (BITS2 func)) IN
((MULTIPLEXER (INCLOGIC count (INCCON #00)) loadin
(MPLXCON #00)), twice, (NEXTNODE #00 func double))

But (INCCON #00) - T, (MPLXCON #00) - T and (INCLOGIC count
T) - count and therefore,

COUNTLOGIC(count, double, #00, loadin, func)
LET twice - (EL 0 (BITS2 func)) IN
(count, twice, (NEXTNODE #00 func double)) (D.0)

Comparing equations (H.0) and (D.0), it remains to be shown that
the expressions for the next node to be visited are the same. By

% expansion of NEXTNODE, and comparison of the underlined elements in
equations (H.0) and (D.0) it can be proved that the high level
design reproduces the behaviour of node 0 in the host machine.
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~ * Annex D gives details of the proofs for nodes 1, 2 and 3. From

this it can be deduced that the high level electronic design
illustrated in Figure 6 is a valid way of implementing the host
machine. At this stage in the proofs the first three layers
of documents have been related, ie high level design -> host
machine -> top level specification. The proof that the gate
level design agrees with the high level design remains to be
done.

Given that the high level design can be represented equally
well in ELLA, as described in Section 5, the last step in the
proofs can be done using ELLA itself. Admittedly, there should
be a formal proof that the LCF - LSM and ELLA descriptions of
the high level design are mathematically identical, but this
cannot be attempted until the constructs of ELLA have been
described in first order logic in a more systematic way. For
the moment, the reader will have to accept that the writing of
the LCF - LSM primitive functions in ELLA gives a sound

* interface, although not proven mathematically.
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9 CORRESPONDENCE BETWEEN THE HIGH LEVEL DESIGN AND CIRCUIT
DESCRIPTION

9.1 Technique

The method used to prove the circuit description agrees with the
high level design is known as "intelligent exhaustion" and is
described in Reference (8). Essentially, the method involves
comparing the results delivered by the 'high level' specification
functions (as detailed in Section 5) and the equivalent 'circuit
description' functions (as detailed in Section 6), for all input
states. This circuit consists of three blocks, and so the proof of
correspondence is also in three parts.

As an example, Section 9.2 shows the testing necessary to prove that
.% .4one of these blocks, namely the multiplexer circuit MPLEXCIRC,

agrees with the 'high level' multiplexer function MULTIPLEX. If
simple exhaustive testing was used in this case, with 13 inputs to
these functions, a total of 8192 separate tests would need to be
performed to prove their correspondence. However, from the
specification of the multiplex (MULTIPLEX) it is known that if one
considers a single bit of the output, then that should depend solely
upon the state of the equivalent bit in the selected input. That is
all inputs apart from the 'select' line and the appropriate bit of
the selected input word should have no effect on the output.

The method of intelligent exhaustion allows the multiplexer to be
tested in precisely this way. For each output bit, tests are made
to ensure that which ever input word is selected, both an input bit
- t and input bit - f, gives the correct output. That is four tests
are needed for each output bit, or a total of 24 tests. All the
inputs regarded as being irrelevant are given the value 'x'. Should
the circuit design be wrong, so that under some circumstance an
output bit depends upon an input bit that was thought to be
irrelevant, this will be detected by the function delivering an
indeterminate value 'i' instead of the expected value. This will of
course cause the comparison to fail.

It should be noted that all these tests have been run and produce
the correct values for the multiplexer. All the corresponding
proofs by "intelligent exhaustion" for the other building blocks
were successful and it is concluded that the gate level circuit
agrees precisely with the higher level block diagram.
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9.2 Testing the MULTIPLEX logic

In order to test the multiplexer, without using the 'method of

intelligent exhaustion', all 8192 inputs states would have to be
examined. Using this method, the same effect is achieved with just
24 tests. Tests 0 to 3 examine bit 0 of the multiplexer. The four
tests are as follows: -

testO: 'loadin' bit 0 - f, 'mplxsel' - f, all other inputs - x

testl: 'loadin' bit 0 - t, 'mplxsel' - f, all other inputs - x
test2: 'incout' bit 0 - f, 'mplxsel' - t, all other inputs - x
test3: 'incout' bit 0 - t, 'mplxsel' - t, all other inputs - x

That is, tests 0 and I ensure that when 'loadin' is selected, an
input of f or t gives the correct result, whilst tests 2 and 3 do
the same for 'inccon'. As only bit 0 is being tested 'EL6' is used
in RUNTESTS to pick the appropriate output from the two 'word(6)'s.
Tests 4 to 7 repeat the process for bit 1 etc.

FN TESTVECTORS - (bool: dummy) -> (num, (word6, word6, bool)):
BEGIN LET testnumber - REMAINDER(TESTCOUNT dummy, test/24). \0..23\

LET testbits - CASE REMAINDER(testnumber, test/4) OF

test/O: (f,f), test/l: (t,f),

test/2: (f,t), test/3: (t,t)
ESAC.

LET bitnum - DIVIDE(testnumber, test/4).
LET ip - CASE bitnum OF

test/O: (testbits[l], x, x, x, x, x),
test/l: (x, testbits[l], x, x, x, x),
test/2: (x, x, testbits[l], x, x, x),
test/3: (x, x, x, testbits[l], x, x),
test/4: (x, x, x, x, testbits[l], x),
test/5: (x, x, x, x, x, testbits[l])

ESAC.
LET ipl - CASE testbits[2] OF f: [6]x, t: ip ESAC.
LET ip2 - CASE testbits[2] OF f: ip, t: [6]x ESAC.
OUTPUT (bitnum, ( ipl, ip2, testbits[2]))

END.

FN RUNTESTS - (bool: dummy) -> restype:
BEGIN LET vector - TESTVECTORS dummy.

LET spec - EL6( vector[l], MULTIPLEX vector[2]).

LET calc - EL6( vector[l], MPLEXCIRC vector[2)).
LET compare - COMPBOOL(spec, calc).
OUTPUT (vector[l], spec, calc, compare)

END.

All the tests using this ELLA text gave correct answers and thereby
multiplexer circuit represented by the function MPLEXCIRC is known
to be a correct implementation of the higher level function
MULTIPLEX.
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10. CONCLUSIONS

By combining Gordon's work on LCF - LSM with Pygott's novel work
using ELLA a formal method has been created for the specification,
design and validation of complex digital circuits. This work is
based on the use of first order logic and the techniques are
suitable for synchronous circuits only. The change of language,
from LCF - LSM to ELLA, is straightforward and should prove
acceptable to designers. Se far, all the proofs of correspondence
at the higher levels, in LCF - LSM, have been done by hand, without
automated assistance. The next phase of the research will involve
investigations into the use of automated aids to assist in
verification.

This whole topic has increasing importance in the VLSI industry.
Although the RSRE work is motivated mainly by the need to produce
safe chips for use in safety critical situations, the introduction
of the disciplines described in this paper into VLSI design
procedures could prevent costly iterations in the designs of more
widely applicable devices.
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ANNEX A. LCF - LSM

The material in this Annex is a very brief digest of that presented
by Gordon in Reference 5 and contains enough detail to enable the
text of Section 3 to be read and understood.

The form of LCF-LSM in use at Cambridge has the following built-in
types;

T, F Values of type 'bool'

0, 1, 2 ...... Numbers of type 'num'

bl..bn Words of type 'wordn', elements being 0 or 1

[] Empty list of type '* list', where * is any other type

Certain built-in operators are provided, with associated axioms;

- equality between values *#* -> bool
+ addition on values of type num num#num -> num

OR disjunction bool#bool -> bool
AND conjunction bool#bool -> bool
XOR exclusive OR bool#bool -> bool

This paper makes use of a further group of functions supported by
rules to permit simplification during subsequent theorem proving.

NOT negation bool -> bool
CONS list constructor * -> * list-> * list
HD head of list * list -> *
TL tail of list * list -> * list
EL n th element of list num -> * list -> *

SEG sublist of a list (num#num) -> * list -> * list
V number denoted by a bit list bool list-> num

Both EL and SEG use words numbered from 0 at the least significant
end, as employed throughout the main text of this paper, i.e.

EL i [tn... tO] -> ti
SEC (i,j) [tn... tO) -> [tj... ti]

with obvious need for exception handling in the tools if the bounds

are violated.
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%ANNEX B ELLA: A brief introduction to its syntax

This annex will outline those features of ELLA used in this paper.
It contains more detail than could be included in the body of the
paper, but is not intended to be a complete description of the
syntax.

All ELLA programs consist of type declarations and functions only.
There are no global variables or constants in ELLA. Also, ELLA has

* . no in-built data types, hence all data types to be used must be
declared explicitly.

B.1 Primitive data types

Two sorts of primitive data types can be declared; enumeration and
integer types. The declaration of an enumeration type consists of

Vthe type name, such as "bool", and a list of the values it may have,
such as "t" "f" "x" and "i". That is: -

TYPE bool - NEW( t I f I xi).
.-

Note the order of the values in the declaration is irrelevant.

Integer types consist of the type name, such as "countint"', a prefix
name, such as "count" and the range of values that integers of this
type may have, such as 0 to 10. That is:

TYPE countint - NEW count/(O..10).

Objects of type "countint" can have the values "count/O" "count/l"
etc to "count/lO". The prefix "count" distinguishes integers of
type "countint" from integers of any other type (which would have a
different prefix).

B.2 Compound data types

Compound data types are collections of primitive data types or other
compound data types. They are of two forms; rows and structures. A
row is a collection of identical data types. For example, "(t, f,
t)" is a row of three "bool"s, the type of this object can be
expressed as either "(bool, bool, bool)", or "[3]bool". Structures
are collections of different data types, such as "(t, count/0, (t,
f))". The type of this object is "(bool, countint, [2]bool)".

Both rows and structures are indexed in the same way. If the above
example of a structure was called "struct", then "struct[l]" would
be the first element of the structure, that is the "bool" with value
"t". Similarly, "struct[2]" is the "countint" with value "count/0",
and "struct[3]" is the "[2]bool" with value "(t, f)". This row can
be indexed in the same manner, such that "struct[3][l]" is a "bool"
with value "t", and "struct[3][2]" is a "bool" with value "f".
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B.3 Functions

Functions in ELLA are similar to mathematical functions, in that
they deliver a value and can only operate upon those values passed
to the function when it is used. That is, there are no global
variables.

A function consists of a heading and a body. The heading describes
the types of the objects that the function will operate upon,
together with their local names (ie the names by which the
parameters are known within the function body) and the type of the
object delivered by the function. For example, consider a function
called "TIMEOUTS", which is to operate on two objects of type
"bool", and one object of type "[3]bool" and is to deliver a
structure with "bool" and "[3]bool" elements. The names, within
this function, of the objects to be operated upon are "reset" "inc"
and "current". That is the function heading is: -

FN TIMEOUTS - (bool: reset inc, [3]bool: current) -> (bool,[3]bool):

A function body consists of either a single 'expression' (qv), or
"BEGIN" followed by a number of 'statement's (qv) "OUTPUT" followed
by an expression and "END.". The value delivered by the function in
the first case is the value of the expression, and in the second is

* the value of the expression between "OUTPUT" and "END.". The type
of the delivered value must be the same as that indicated in the
function heading.

B.4 Expressions

There are four types of ELLA expression. All of them have the
property that they deliver a value. They are; simple, function

calls, CASE and ARITH.

a) Simple expressions

These are structures composed of explicit data values, names
local to the function containing the expression, or other
expressions. Explicit values are those values declared as being
a particular data type, such "t" or "count/4" in section 1.
Local names are the values associated with the parameters named

. in the function heading or the value associated with a named
expression (see LET section 5). Note that a single value can
also be a simple expression. For example:

t, mnc, (reset, mnc, (t,t,t)) are simple expressions.
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b) Function calls

An expression can be the result delivered by applying a function
to a particular set of values. The values operated upon can be
any sort of expression including simple expressions (ie explicit
values or local names). Given a function called OR that operates
on two "bool"s and delivers a "bool", the OR of "a" and "b"
(where "a" and "b" are local named values of type "bool") is
given "OR(a, b)".

There are two exceptions to this rule. If the function has a
single parameter, the brackets are not needed. So "NOT(a)" can
be written as "NOT a". If the function has two parameters, it
can be placed between the values it is to operate upon. So
"OR(a, b)" can be written as "a OR b". Similarly "a OR b OR c OR
d" is the same as "OR(OR(OR(a, b), c), d)".

c) CASE expressions

The structure of a CASE expression is: -

CASE expression OF (value: expression) ELSE expression ESAC

Where (...) means repeated any number of times.

The first expression is evaluated and the resulting value is
compared with the 'value' component of the 'value: expression'
pairs. If these are equal, the value delivered by the CASE
expression is the value of the 'expression' component. If none
of the 'values' are equal to the evaluated value, the value of
the expression between ELSE and ESAC is delivered. If it is
known that the 'value: expression' pairs cover all possible
values the "ELSE expression" term may be omitted.

d) ARITH expressions

If a function is required to perform arithmetic operations on
integer types, and deliver an integer type result, the body of
the function may be a single ARITH expression. The required
arithmetic operation may be expressed in an ALGOL like manner
using the operators "+", "-", "*", "%" etc. Note that "%" is
used for integer division as "/" is already part of the name of
each ELLA integer. Condition clauses may be formed using an
IF..THEN..ELSE..Fl construct.
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B.5 Statements

There are three types of statement that may form the body of a

function. Note that when a number of expressions of the same

type is required, the statement indicator (LET MAKE or JOIN) is
only required once. So that, "LET a - t, b - f." is the same as
"LET a - t. LET b - f.".

a) LET
The LET statement allows a name to be associated with the value
of an expression. So that "LET aorb - a OR b." means that "aorb"
is now a recognised local name associated with the value of the

expression "a OR b".

b) MAKE and JOIN
In all the above examples, local names must have been declared as
the parameter of a function or a LET statement, before they could
be used in an expression. Without some means of overcoming this
restriction it would be impossible to model circuits with
feedback (and hence memory). Consider a pair of cross coupled

VNAND gates,Figure 8. The description of this circuit as: -

FN RSLATCH - (bool: a b) -> bool:
BEGIN LET nandl - NAND(a, nand2),

nand2 - NAND(b, nandl).
OUTPUT nandl

END.

is illegal, as "nand2" is used in an expression before it is
declared. MAKE allows a name to be associated with the output of
a particular call of a function before the inputs to that
function are available. JOIN allows the required inputs to a
function named by MAKE to be connected after they have been
declared. Hence, a legal version of the same function would be:

FN RSLATCH - (bool: a b) -> bool:
BEGIN MAKE NAND: nand2.

LET nandl - NAND(a, nand2).
JOIN (b, nandl) -> nand2.
OUTPUT nandl

END.

B.6 DELAY

A special expression, "DELAY", exists which is used to create
functions which will act to delay a signal for a number of
'clock ticks'. It is used as:

FN DELAYANY - (anytype) -> anytype: DELAY(value, integer).

This defines a function, DELAYANY, that delays a signal of type
'anytype' for 'integer' clock ticks. The parameter 'value' gives
the initial value of the output of DELAYANY.
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ANNEX C DETAILS OF CORRESPONDENCE BETWEEN HOST MACHINE AND
SPECIFICATION

PROOF LIMB A

!count double loadinsigs funcsigs.cO ->
HOST'A(count, double, loadinsigs, funcsigs) -

(FETCH count double (EL 0 loadinsigs) $00)

Substituting in FETCH,
!count double loadinsigs funcsigs.cO -> (count, F, fetchnode)

(HA.1)

The corresponding partial function from the specification is;

!count loadin func.cO -> count (SA.I)

Therefore the specification is satisfied.

PROOF LIMB B

HOST:
!count double loadinsigs funcsigs.cl ->
HOST'B(count double loadinsigs funcsigs) -

LET loadnode - WORD2 3 IN
LET majorl - (count, T, loadnode) IN
(LOAD count T (EL 1 loadinsigs) (EL 1 funcsigs))

Finally for the host, expand the function LOAD, giving the result;

!count double loadinsigs funcsigs.cl ->
((EL 1 loadinsigs),(EL 0 (BITS2 (EL 1 funcsigs))),fetchnode) (HB.I)

where the underlined element is the new value of "count." Now
create the corresponding partial specification, by substituting
the predicate cl in the function COUNTER on page 3. Elementary

algebra gives;

!count loadin func.cl ->

COUNTER'B(count,loadin,func) - loadin (SB.A)

Comparing the underlined values of "count" in equations (HB.l) and
tV (SB.l),it is clear that the host machine implies the specification,

Notice that the specific value of "loadin" used is the second in
the sequence, at time tOl.

PROOF LIMB C

This has been proved already, in Section 7.5
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PROOF LIMB D

This is harder, since a proof is required that the two single
increment operations in the host machine produce the correct
numerical results. The proof is split into three cases,
corresponding to entry conditions,

1. VAL6 count - 63
2. VAL6 count - 62
3. VAL6 count < 62

PROOF LIMB DI (VAL6 count - 63)

By successive substitution,

!double loadinsigs funcsigs.(c2 AND c4 AND count - #111111) ->

((WORD6 1), (EL 0 (EL 2 funcsigs)), fetchnode) (HD.1)

From the specification,

!loadin func.(c2 AND c4 AND count - #111111) ->

(WORD6 1) (SD.I)

Case I is thereby proven.

PROOF LIMB D2

By the same substitutions as case Dl, with "count" - 62;

!double loadinsigs funcsigs.(c2 AND c4 AND count - #111110) ->

((WORD6 0), (EL 0 (EL 2 funcsigs), fetchnode) (HD.2)

Whilst the specification delivers,

a...' !loadin func.(c2 AND c4 AND count - #111110) ->

(WORD6 0) (SD.2)

Case 2 is proven.
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PROOF LIMB D3

Expanding down to and including the underlying ADDI functions,

!count double loadinsigs funcsigs.(c2 AND c4 AND
NOT (count - #111111) AND NOT (count - #111110)) ->
(WORD6(VAL6(WORD6(VAL6 count + 1)) + 1),

"~ (EL 0 (BITS2 (EL 2 funcsigs))), fetchnode)

The relatively complicated expression for "count" can be simp-

lified using an LCF - LSM axiom for integers < 64;

!w.(w < 64) -> VAL6(WORD6 w) - w (AX.l)

Therefore,

!count double loadinsigs funcsigs.(c2 AND c4 AND
NOT (count - #111111) AND NOT (count - #111110)) ->
(WORD6(((VAL6 count) + 1) + 1), (EL 0 (BITS2(EL 2 funcsigs))),
fetchnode) (HD.3)

For comparison, the specification requires,

!count loadin func.(c2 AND c4 AND NOT (count - #111111) AND
NOT (count - #111110)) ->
(WORD6((VAL6 count) + 2)) (SD.3)

By equality in the world of integers, ie the LCF - LSM mode "num,
the two expressions for "count" are identical and therefore
correspondence between the host machine and the specificstion has
been established for the double increment operation.

''p

V
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ANNEX D CORRESPONDENCE BETWEEN HIGH LEVEL DESIGN AND HOST

MACHINE

PROOF LIMB OFETCH NODE

This has been documented already, in Section 7.

PROOF LIMB 1, INCI NODE

The host machine provides,

NEXT(count, double, #01, loadin, func)
(INCl count double loadin #01)

Expanding INCI,

NEXT(count, double, #01, loadin, func)
LET twice - (EL 0 (BITS2 func)) IN
LET fetchnode - WORD2 0 IN
LET inc2node - WORD2 2 IN
(double -> ((ADDl count), twice, inc2node) I

((ADDI count), twice, fetchnode)) (H.1)

Where,
(ADDI count) - ((VAL6 count) - 63 -> WORD6 0 I

WORD6((VAL6 count) + 1))

For the implementation,

COUNTLOGIC(count, double, #01, loadin, func)
LET twice - (EL 0 (BITS2 func)) IN
((MULTIPLEXER (INCLOGIC count (INCCON #01)) loadin

(MPLXCON #01)) twice (NEXTNODE #01 func double))

In this node, (INCCON #01) - F, (MPLXCON #01) - T and

(INCLOGIC count F) - ((VAL6 count) - 63 -> WORD6 0

WORD6((VAL6 count) + 1))

(NEXTNODE #01 func double) - (double -> inc2node I fetchnode)

Hence,
COUNTLOGIC(count, double, #01, loadin, func)
(((VAL6 count - 63) -> WORD6 0 I WORD6((VAL6 count) + 1))),

- twice, (double -> inc2node I fetchnode)) (D.1)

' 'Since (H.1) and (D.1) are identical, this case is proved.
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PROOF LIMB 2, INC2 NODE

The host machine provides,

NEXT(count, double, #10, loadin, func)
(INC2 count double loadin func)

Expand INC2,

NEXT(count, double, #10, loadin, func)-
LET twice - (EL 0 (BITS2 func)) IN
((ADDI count), twice, fetchnode) (H.2)

From the description of the implementation,

COUNTLOGIC(count, double, #10, loadin, func) -

LET twice - (EL 0 (BITS2 func)) In

LET fetchnode - WORD2 0 IN
((MULTIPLEXER (INCLOGIC count F) loadin T), twice, fetchnode)

(D.2)
But is was shown in PROOF I that,

(ADDl count) - (MULTIPLEXER (INCLOGIC count F) loadin T)

Therefore, equations (H.2) and (D.2) are identical and the

high level design is correct for this node.

PROOF LIMB 3, LOAD NODE

The load operation in the host machine is represented as,

NEXT(count, double, #11, loadin, func) -

(LOAD count double loadin func)

Expansion of LOAD gives,

NEXT(count, double, #11, loadin, func) -

LET twice - (EL 0 (BITS2 func)) IN
LET fetchnode - WORD2 0 IN
(loadin, twice, fetchnode) (H.3)

By simple substitution in the function COUNTLOGIC,
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COUNTLOGIC(count, double, #11, loadin, func) -
LET twice - (EL 0 (BITS2 func)) IN
LET fetchnode - WORD2 0 IN
((MULTIPLEXER (INCLOGIC count F) loadin F), twice, fetchnode)

(D.3)

The value delivered is (loadin, twice, fetchnode) and therefore
the implementation and host machine agree for LOAD.

All four limbs of the high level design to host machine proof
have now been completed and by virtue of the contents of Annex
C and Annex D the chain of proof, block diagram -> host ->

specification has been established.
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