AD-8168 211	REDUCTIVI DIANIONIO	E DISPROPOR C CARBONYLM T OF CHEMIS	TIONATI ETAL TRY G	LON OF	CARBO RVARD ET AL	N DIOX UNIV C	IDE BY AMBRII	GE TR-4	1/	1
UNCLASSIFIED	N00014-8	3-K-8292					F/G	2/3	NL	
	5.2									
ŀ										
	_									
							_			

MICROCOPY RESOLUTION TESTICHART

OFFICE OF NAVAL RESEARCH Contract NOOO14-83-K-0292 Task No. NR 634-840 TECHNICAL REPORT NO. 4

Reductive Disproportionation of Carbon Dioxide by Dianionic Carbonylmetalates of the Transition Metals

by

Gary R. Lee, John M. Maher, and N. John Cooper Prepared for Publication

in the

Journal of the American Chemical Society

Harvard University Department of Chemistry Cambridge, MA

April 25, 1986

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited

80 6 2036

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
AnA 1682/1	
TITLE (and Subtitie)	S. TYPE OF REPORT & PERIOD COVERED
Reductive Disproportionation of Carbon Dioxide	
by Dianionic Carbonylmetalates of the	Technical Report
Transition Metals	S. PERFORMING ORG. REPORT NUMBER
	B. CONTRACT OR GRANT NUMBER(+)
Cary P. Lee. John M. Maher	
Gary K. Lee, John H. Haner	
and N. John Cooper	N00014-83-K-0292
N Take Cooper	AREA & WORK UNIT NUMBERS
N. John Cooper	
Chemistry Department Nervord University Combridge MA 02138	Task No: NR 634-840
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Dr. Harold E. Guard	4/25/86
Office of Naval Research - Code 413	13. NUMBER OF PAGES
800 North Quincy St., Arlington, VA 22217	30
4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
Office of Naval Research Resident Representative,	
Harvard Univ., Gordon McKay Laboratories	
Room 113, Cambridge, MA 02138	SCHEDULE
5 DISTRIBUTION STATEMENT (of this Report)	
7 DISTRIBUTION STATEMENT (of the obstract entered in Black 20. 11 different from	m Report)
7. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, 11 different from	m Report)
7. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, 11 different from the second se	n Report)
7. DISTRIBUTION STATEMENT (of the aberract entered in Block 20, 11 different from 	m Report)
7. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, 11 different from 8. SUPPLEMENTARY NOTES	n Report)
7. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, 11 different fro 8. SUPPLEMENTARY NOTES Prepared for publication in J. Amer. Chem. Soc.	m Report)
7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different fro 8. SUPPLEMENTARY NOTES Prepared for publication in J. Amer. Chem. Soc. 9. KEY WORDS (Continue on reverse side if necessary and identify by block number)	n Report)
7. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, 11 different from 8. SUPPLEMENTARY NOTES Prepared for publication in J. Amer. Chem. Soc. 9. KEY WORDS (Continue on reverse side if necessary and identify by block number) Carbon dioxide reduction; transition metal; carb	n Report)
7. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, 11 different fro 8. SUPPLEMENTARY NOTES Prepared for publication in J. Amer. Chem. Soc. 9. KEY WORDS (Continue on reverse side 11 necessary and identify by block number) Carbon dioxide reduction; transition metal; carb	m Report)
7. DISTRIBUTION STATEMENT (of the observed entered in Block 20, 11 different from 8. SUPPLEMENTARY NOTES Prepared for publication in J. Amer. Chem. Soc. 9. KEY WORDS (Continue on reverse aids if necessary and identify by block number) Carbon dioxide reduction; transition metal; carb	n Roport) vonylmetalate.
7. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, 11 different from 8. SUPPLEMENTARY NOTES 9. Supplementary notes 9. Key words (Continue on reverse side if necessary and identify by block number) Carbon dioxide reduction; transition metal; carb	n Report)
 DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, 11 different from Supplementary notes Supplementary notes Prepared for publication in J. Amer. Chem. Soc. KEY WORDS (Continue on reverse elde II necessary and identify by block number) Carbon dioxide reduction; transition metal; carb ABSTRACT (Continue on reverse elde II necessary and identify by block number) 	n Report)
 DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, 11 different from SUPPLEMENTARY NOTES Prepared for publication in J. Amer. Chem. Soc. KEY WORDS (Continue on reverse elde 11 necessary and identify by block number) Carbon dioxide reduction; transition metal; carb ABSTRACT (Continue on reverse elde 11 necessary and identify by block number) 	m Report)
7. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, 11 different fro 8. SUPPLEMENTARY NOTES 9. Supplementary notes 9. Key words (Continue on reverse elde 11 necessary and identify by block number) Carbon dioxide reduction; transition metal; carb 0. ABSTRACT (Continue on reverse elde 11 necessary and identify by block number)	n Report)
7. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, 11 different fro 8. SUPPLEMENTARY NOTES 9. Supplementary notes 9. Key words (Continue on reverse side if necessary and identify by block number) Carbon dioxide reduction; transition metal; carb 0. ABSTRACT (Continue on reverse side if necessary and identify by block number)	n Report)
7. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, 11 different fro 8. SUPPLEMENTARY NOTES 9. Supplementary notes 9. Key WORDS (Continue on reverse side if necessary and identify by block number) Carbon dioxide reduction; transition metal; carb 0. ABSTRACT (Continue on reverse side if necessary and identify by block number)	n Report)
7. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, 11 different from 8. SUPPLEMENTARY NOTES Prepared for publication in J. Amer. Chem. Soc. 9. KEY WORDS (Continue on reverse side if necessary and identify by block number) Carbon dioxide reduction; transition metal; carb 0. ABSTRACT (Continue on reverse side if necessary and identify by block number)	n Report)
7. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, 11 different from 8. SUPPLEMENTARY NOTES Prepared for publication in J. Amer. Chem. Soc. 9. KEY WORDS (Continue on reverse side 11 necessary and identify by block number) Carbon dioxide reduction; transition metal; carb 0. ABSTRACT (Continue on reverse elde 11 necessary and identify by block number) (See over)	m Report)

Reveals Second Brances

Varbon dioxide reacts readily with $M_2[M'(CO)_5]$ (M = Li, Na, K, M' = W; M = Abatract: K, M' = Cr, Mo, W) to give the corresponding group 6 hexacarbonyls [M(CO) \hat{s}] and alkali metal carbonates. The reaction of $\text{Liz}[W(CO)_5]$ with excess $\frac{13}{2}CO_2$ at -78pC gives $[W(CO)_{5}^{(13}CO)]$, confirming that the reaction involves reductive disproportionation of CO_2 to CO and $CO_3 \frac{1}{2} \frac{1}{2}$. The group 8 carbonylmetalates $Na_2^{h}[M(CO)_4^{h}]$ (M = Fe, Ru, Os) react with CO₂ to give [M(CO)₅] and carbonate, and Na₂[V(η -C₅H₅)(CO)₃] reacts with CO₂ to give $[V(\frac{1}{C_5}H_5)(CO)_4]$ and carbonate, indicating that reductive disproportionation is a general reaction of dianionic carbonylmetalates with CO2. Careful addition of one equivalent of CO₂ to a solution of Li₂[W(CO)₅] at -789C leads to an intermediate 1:1 adduct with an IR spectrum consistent with formulation as $\text{Li}_2[W(CO)_5(\frac{1}{2}-CO_2)]$. The principal $\frac{13}{L}$ absorption at 223.4 δ of a sample of Li₂[W(CO)₅($\frac{1}{2}$ -1³CO₂)] prepared at -789C exhibits Jw-c = 92 Hz, consistent with the central C being directly bonded to W and sp² hybridized. Oxide scrambling from coordinated CO₂ to coordinated CO at higher temperatures results in complex signals between 205 and 201 & assigned to the carbonyl ligands. Similar signals are observed in $Li_2\{W(CO)_{4-n}(^{13}CO)_n(CO_2)\}$ at -78%C, and the CO₂ carbon of this complex becomes progressively enriched at higher temperatures. Carbon disulfide reacts with Li₂[W(CO)₅] to give the η^1 adduct Li₂[W(CO)₅(η^1 -CS₂)], with ¹³C NMR axial and equatorial carbonyl resonances at 204.8 and 199.7 8. It is proposed that reductive disproportionation of CO_2 by a dianionic carbonylmetalate involves oxide transfer from an η^2 -CO₂ adduct to a second molecule of CO₂ via an intermediate C₂O₄ complex.

Accesio	on For			
NTIS DTIC Unanne Justific	CRA&I TAB bunced ation			
By Dist. ibi	ution /	19		
Availability Codes				
Dist	Avait and Specia	d / or al		
A-1				

QUALITY INSPECTED 3

Introduction

Recent interest in the reduction of carbon dioxide to carbon monoxide¹ has led to the recognition of a number of ways in which transition metal complexes can promote or catalyze this reduction. The most important and extensively studied of these is the reverse of the water-gas-shift reaction (eq. 1), a reaction catalyzed by a number of transition metal systems, in which H₂ is the reductant and water is the oxygen sink. There are, however, several other transition metal promoted reductions of CO₂ to CO, which may be conveniently classified in terms of the oxygen acceptor present in the system. Thus oxophilic early transition metals can react with CO₂ to give CO and metal oxides,² and complexes with easily oxidized ligands (such as phosphines and hydrides) can react with CO₂ to give CO and oxidized ligands.³

 $CO_2 + H_2 \longrightarrow CO + H_2O$ (1)

CO

CO32-

(2)

Reactions in which CO_2 acts as its own oxygen sink, to give CO and CO_3^{2-} , form a particularly important class of transition metal promoted reductions of CO_2 , and the critical reaction in such systems (eq. 2) is termed reductive disproportionation.

2e⁻

2CO2

The earliest reported example of the formation of both CO and CO_3^{2-} from the reaction of CO_2 with a transition metal complex involved the reaction of $[Mo(PMe_2Ph)_4(N_2)_2]$ with CO_2 to give a dimer ($[\{Mo(PMe_2Ph)_3(CO)(CO_3)\}_2]$) in which both CO and CO_3^{2-} are coordinated to molybdenum.⁴ Similar reactions involving $[Fe(PMe_3)_4]$ (to give $[Fe(PMe_3)_3(CO)(CO_3)]^5$), $[Mo(PMe_3)_4(N_2)_2]$,⁶ and $[Ni(triphos)(CS_2)]^{3c}$ have been observed, and Floriani has reported a detailed study of reductive disproportionation of CO_2 by $[Ti(\eta-C_5H_5)_2(CO)_2]^2$.

Transition metal complexes which are powerful two electron reductants should be particularly promising substrates for reductive disproportionation of CO_2 , and we have indicated in preliminary communications⁷ that CO_2 does indeed undergo facile reductive disproportionation with dianionic carbonylmetalates. We now wish to report details of those experiments, which indicate that reductive disproportionation is a general reaction of CO_2 with dianionic carbonylmetalates and that the reaction involves

discrete CO₂ adducts containing η^1 -C coordinated CO₂.

Experimental Section

Carrier and the

General. Reactions and manipulations were conducted under N₂ by means of standard Schlenk tube techniques or a Vacuum Atmospheres Dri-lab glovebox. Glassware was oven or flame dried before use. Infra-red spectra were recorded on a Perkin Blmer 457A or 683 spectrometer and calibrated relative to the 1601 cm⁻¹ absorption of polystyrene. ¹³C NMR spectra were recorded on a Bruker WM-300WB spectrometer, and were referenced indirectly to tetramethylsilane by means of the carbonyl resonance at 206.0 δ of an external sample of d⁶-acetone. Mass spectra were recorded on an ABI MS-9 instrument. Aliquots for solution spectra were placed in gas tight demountable cells with NaCl windows. Cells were purged with N₂ for 5-10 min and capped with 5mm rubber septa before being filled, and solution spectra were recorded across the accessible carbonyl stretching region from the solvent cutoff at 1450 cm⁻¹ to 2400 cm⁻¹. Solvents and Reagents. Solvents were freshly distilled under N₂ from an appropriate desiccant (sodium/benzophenone ketyl for tetrahydrofuran (THF), LiAlH4 for pentane, CaH₂ for toluene) and degassed before use. Matheson "bone dry" CO₂ was used as supplied without further purification: many of the anions studied are extremely proton sensitive, forming hydrides in the presence of traces of water, but we have not found water contamination to be a significant problem with this grade of CO₂. Na₂[Fe(CO)₄].1.5dioxane was purchased from Ventron-Alfa and rinsed with THF before use to remove traces of Na[FeH(CO)₄]. Sodium reduction of the corresponding dodecacarbonyls (Strem) in liquid ammonia (dried by distillation from Na) was used to prepare Na₂[Ru(CO)₄] and Na₂[Os(CO)₄] as described in the literature.⁶ Sodium amalgam reduction of [V(η -CsH₅)(CO)₄] (Strem) was used to prepare Na₂[V(η -CsH₅)(CO)₃].THF,⁹ and the solvate was used as prepared without further purification. Naphthalene free solutions of Li⁺ and Na⁺ salts of [W(CO)₅]²⁻, [Mo(CO)₅]²⁻, and [W(CO)₅]²⁻ were prepared by a similar naphthalenide reduction of [M(CO)₅(NMe₅)] substrates, taking advantage of the low solubility of the K⁺ salts to obtain naphthalene free material by adding an equivalent volume of diethyl ether below 0°C to precipitate $K_2[M(CO)_5]$ and then washing the precipitate with ether.

Determination of Carbonate.¹¹ Solid residues were analyzed for carbonate by a procedure in which the carbonate was first extracted into water (typically 10 mL on the scale of these experiments) and the CO_3^{2-} content of the filtered solution was then determined by double titration: total base was determined by titration of a 1 mL aliquot with 0.1 M HCl using methyl orange indicator, and non-carbonate base was determined by titration of a second 1 mL aliquot with HCl using phenolphthalein indicator after precipitation of carbonate with Ba²⁺.

Reaction of Li₂[W(CO)₅] and Na₂[W(CO)₅] with Excess CO₂. A naphthalene free solution of Li₂[W(CO)₅] in THF (from 0.40 g (1.04 mmol) of [W(CO)₅(NMe₃)]) was cooled to -78°C, and dry CO₂ was bubbled into the solution through a stainless steel needle. The characteristic orange of the dianion faded rapidly to a light yellow and a white precipitate began to form. After the solution had warmed to room temperature and settled, the only significant IR absorption of the supernatent in the carbonyl region was the T_{1u} band of [W(CO)₆] at 1975 cm⁻¹. The precipitate was collected by filtration and shown to be Li₂CO₃ (0.056 g, 0.76 mmol \equiv 73%) by comparison (Nujol mull IR) with an authentic sample. The supernatent was concentrated under reduced pressure (taking care that the volatile solid was under vacuum as little as possible) to give an off-white solid from which white crystals of [W(CO)₆] (0.30 g, 0.85 mmol \equiv 82%) were obtained by concentration of an ether extract. The reaction of Na₂[W(CO)₅] with excess CO₂ was carried out in a similar manner.

Reaction of Li₂[W(CO)₅] with Excess ¹³CO₂ at Low Temperature. A naphthalene free solution of Li₂[W(CO)₅] in THF (30 mL) prepared from 0.10 g (0.26 mmol) of [W(CO)₅(NMe₃)] was cooled to -78° C and attached to a vacuum line. The vessel was evacuated (10⁻⁴ torr), and 0.048 g (1.1 mmol) of ¹³CO₂ (93 atomX isotopic purity) was slowly added to the stirred solution. After the solution had been allowed to warm to room temperature, the supernatent was concentrated under reduced pressure to give an

off white solid with a solution IR spectrum (2111 (vw), 1977 (vs), 1949 (s) cm⁻¹) similar to that reported for $[W(CO)_5(^{13}CO)]$.¹²

Reactions of $K_2[M(CO)_5]$ (M = Cr, Mo, W) with Excess CO₂. In a typical procedure, a freshly prepared sample of $K_2[Cr(CO)_5]$ prepared from 0.15 g (0.59 mmol) of $[Cr(CO)_5(NMe_3)]$ was re-suspended in 10 mL of THF at ambient temperature and CO₂ was bubbled through the stirred mixture at 200 mL/min for 2 min. After 5 min the fine yellow precipitate was allowed to settle, the supernatent was collected by filtration, and the insoluble residue was rinsed with 7 mL of THF. IR spectra of the solution showed $[Cr(CO)_5]$ (1980 cm⁻¹) as the only detectable metal carbonyl species. The solution was concentrated under reduced pressure to a volume of ca. 8 mL, then cooled to -78° C for 1 hour. The microcrystalline white $[Cr(CO)_5]$ precipitate was collected by filtration and dried by a series of rapid pump/purge cycles to give 0.06 g of neutral hexacarbonyl (0.27 mmol, 46.3%). The THF-insoluble reaction product was determined titrimetrically to contain 0.40 mmol (\equiv 68%) of carbonate. The reactions of K₂[Mo(CO)₅] and K₂[W(CO)₅] with CO₂ were carried out similarly to give the results tabulated in the Results and Discussion section.

Reaction of Na₂[Fe(CO)₄] with Excess CO₂. A suspension of Na₂[Fe(CO)₄].1.5dioxane (0.202 g, 0.58 mmol) in THF (32 mL) was cooled to -78° C and dry CO₂ was bubbled through the stirred solution for 5 min through a stainless steel needle. The tan suspension began to lighten in color during the addition, and the solution became a light yellow when the mixture was warmed to room temperature over 30 min. After the suspension had settled under N₂ for 2h (this also allowed CO₂ to diffuse out of the solution), the IR spectrum of the solution contained two bands corresponding to the A₂" and E' absorptions of [Fe(CO)₅] at 2023 and 1993 cm⁻¹. The absorbance of the 2023 cm⁻¹ band (ϵ = 2910 M⁻¹ cm⁻¹) indicated an effective [Fe(CO)₅] concentration of 1.46 x 10⁻² M (= 82% yield). The solvent was removed from the reaction mixture under reduced pressure, and the pink powder obtained was determined titrimetrically to contain 0.54 mmol (\equiv 93%) carbonate.

Reaction of $Na_2[Ru(CO)_4]$ with Excess CO_2 and Conversion of the Product to

[Ru(CO) $_{4}$ I₂]. Since [Ru(CO)₅] is light sensitive, this experiment was conducted in apparatus wrapped in Al foil. Excess CO₂ was bubbled for 15 min through a suspension of Na₂[Ru(CO)₄] (0.15 g, 0.59 mmol) in THF (20 mL) which had been stirred for 20 min at 4°C. IR spectra (recorded after the suspension had settled for 2 h) contained only two significant absorptions in the carbonyl stretching region at 2038 and 1995 cm⁻¹. These correspond to the A₂" and E' bands of [Ru(CO)₅].¹³ The solution was filtered on to 0.15 g (0.60 mmol) I₂ at 4°C, and the insoluble residue shown to contain 0.36 mmol (\equiv 61%) of carbonate. After 30 min the solution was warmed to room temperature to give a clear, orange-red solution with IR absorptions at 2165 m, 2115 vs, and 2078 ms cm⁻¹ corresponding to those of cis-[Ru(CO)₄I₂].¹³ The solvent was removed under reduced pressure to give a deep orange red solid from which excess I₂ was removed by sublimation at 0.05 torr for 3 h. Extraction with THF (10 mL) yielded 0.20 g (0.43 mmol \equiv 73 %) of [Ru(CO)₄I₂] as a yellow powder.

فتستنقدهم

下の人人人人人のことがいかい

Reaction of Na₂ [Os(CO)₄] with Excess CO₂ and Conversion of the Product to [Os(CO)₄I₂]. Since [Os(CO)₅] is light sensitive, this reaction was carried out in apparatus covered in Al foil. The reaction was carried out in a similar manner to the reaction with Na₂[Ru(CO)₄], starting with a suspension of 0.21 g (0.60 mmol) of Na₂ [Os(CO)₄] in THF. After addition of CO₂ the only carbonyl absorptions in the IR spectrum of the solution were those of [Os(CO)₅] at 2043(vs) and 1987(vs) cm⁻¹. The solution was filtered on to 0.15 g (0.60 mmol) I₂ at 4°C, and the insoluble residue shown to contain 0.56 mmol (\equiv 91%) carbonate as described above. After 30 min at 4°C and 30 min at room temperature the IR spectrum of the iodination reaction contained absorptions at 2171(m), 2097(vs), 2088(sh), and 1987(vs) cm⁻¹ assigned to [Os(CO)₄I₂].¹³ The solvent was removed from the mixture under reduced pressure and the excess I₂ sublimed off at 60°C and 0.05 torr over 30 min. The product was extracted into toluene and precipitated by concentration under vacuum over 2 hours to give 0.20 g (0.37 mmol \equiv 61%) of [Os(CO)₄I₂] (IR) as an orange-yellow powder.

Preparation of Li₂[W(CO)₅(CO₂)]. A Schlenk vessel containing 19 mL of a 0.035 M solution of Li₂[W(CO)₅] (0.665 mmol) in THF at -78° C was evacuated to ca. 0.01 torr

through a high vacuum manifold. Dry CO₂ (0.025 g, 0.57 mmol) was slowly condensed into the vigorously stirred solution over 20 min by repeated filling of the butyl rubber tubing connecting the vessel to a fixed volume reservoir. Solution IR spectra obtained after re-pressurization under N₂ indicated quantitative consumption of the initial dianion, with new ν_{CO} absorptions appearing at 2043 cm⁻¹ (w), 1900 cm⁻¹ (vs), and 1865 cm⁻¹ (s). The formation of small quantities of [W(CO)₆] was indicated by a moderately weak absorption at 1975 cm⁻¹. IR spectra did not indicate the presence of any free CO₂ in these solutions.

Preparation of an NMR Sample of Li₂ [W(CO)₅(¹³CO₂)]. The vacuum line technique described above was used to add ¹³CO₂ (0.022 g, 0.49 mmol) to a Schlenk tube containing a rapidly stirred 0.042 <u>M</u> solution of Li₂ [W(CO)₅] in THF (13.2 mL, 0.55 mmol) at -78°C over 30 min. During the addition the mixture lightened to a clear, golden yellow. Solution IR spectra recorded after re-pressurization of the reaction vessel under N₂ revealed complete consumption of the initial Li₂ [W(CO)₅] together with new ν_{CO} bands at 2042 cm⁻¹ (w), 1898 cm⁻¹ (vs), and 1865 cm⁻¹ (s). A small quantity of [W(CO)₅] was evident (1974 cm⁻¹). An NMR sample was prepared by transferring ca. 4 mL of this solution into a serum capped 10 mm NMR tube maintained at -78°C containing acetone-ds in a sealed 5 mm tube (to provide a locking signal).

Preparation of Li₂[W(CO)₅(CS₂)]. A colorless solution of CS₂ (38.0 μ L, 0.63 mmol) in 3.0 mL of THF was added in three equal portions over 5 min through a cannula to a rapidly stirred 0.043 <u>M</u> solution of Li₂[W(CO)₅] in THF (15.4 mL, 0.66 mmol) at -78°C. The solution immediately turned an intense deep red-purple color, and IR spectra recorded at room temperature exhibited ν_{CO} absorptions at 2054 cm⁻¹ (w), 1912 cm⁻¹ (vs), and 1859 cm⁻¹ (ms).

Preparation of Li₂ [W(CO)_{5-n} (¹³CO)_n] and Na₂ [W(CO)_{5-n} (¹³CO)_n]. A sample of partially ¹³C-labelled [W(CO)₅] was prepared from the reaction of Na₂ [W(CO)₅] with 2.1 equiv ¹³CO₂ and converted into [W(CO)_{5-n} (¹³CO)_n (NMe₃)], and hence into Li₂ [W(CO)_{5-n} (¹³CO)_n] and Na₂ [W(CO)_{5-n} (¹³CO)_n], as previously described.¹⁰ Mass spectra established that the [W(CO)_{5-n} (¹³CO)_n (NMe₃)], and presumably the dianions

prepared from it, was labelled as follows: unlabelled, 41x; 1 X ¹³C, 42x; 2 X ¹³C, 14x; 3 X ¹³C, 2x; 4 X ¹³C, 1x.

Preparation of an NMR sample of Na₂[W(CO)_{5-n}(¹³CO)_n(CS₂)]. Neat CS₂ (32.0 μ L, 0.040 g, 0.53 mmol) was injected into a vigorously stirred 0.045 M solution of largely mono-labelled Na₂[W(CO)_{5-n}(¹³CO)_n] in THF (11.0 mL, 0.50 mmol, see above) at -78°C. The mixture immediately darkened to a translucent deep red-purple, and solution IR spectra recorded after 15 min at -78°C revealed >90% consumption of initial pentacarbonyltungstate together with the appearance of ν co bands at 2051 cm⁻¹ (w), 2044 cm⁻¹ (w), 1961 cm⁻¹ (m), 1912 cm⁻¹ (vs), and 1859 cm⁻¹ (s). An NMR sample was prepared by transferring ca. 4 mL of this solution into a serum capped 10 mm NMR tube maintained at -78°C containing acetone-de in a sealed 5 mm tube (to provide a locking signal). ¹³C NMR (75.47 MHz, 240K) & 204.8 (¹J_{W-C} = 154 Hz), 199.7 (¹J_{W-C} = 128 Hz), with 1:4.5 integrated relative intensities.

Preparation of Li₂ [W(CO)_{5-n} (¹³CO)_n (CO₂)]. Dry ¹²CO₂ (10.5 mL, 0.43 mmol) was slowly injected into a Schlenk vessel containing a vigorously stirred 0.034 <u>M</u> solution of Li₂ [W(CO)_{5-n} (¹³CO)_n] in THF (14.1 mL, 0.48 mmol) at -78°C by means of a mechanically driven polypropylene syringe. IR spectra of the homogeneous solution revealed essentially quantitative consumption of Li₂ [W(CO)₅] and contained new ν_{CO} absorptions at 2037 cm⁻¹ (vw), 1900 cm⁻¹ (vs), and 1866 cm⁻¹ (s). The presence of a small quantity of [W(CO)₆] was also indicated by a band at 1974 cm⁻¹. An NMR sample was prepared by transferring ca. 4 mL of this solution into a serum capped 10 mm NMR tube maintained at -78°C containing acetone-ds in a sealed 5 mm tube (to provide a locking signal).

Reaction of Na₂ [V(η -C₅H₅)(CO)₃] with Excess CO₂. A yellow suspension of Na₂ [V(η -C₅H₅)(CO)₃].THF (0.245 g, 0.77 mmol) in THF (15 mL) turned olive green and then deep red-brown when gaseous CO₂ was bubbled through the suspension for 5 min at room temperature. The IR spectrum of the cloudy solution obtained after brief removal of excess CO₂ under vacuum contained two major absorptions at 2034(s) and 1921(vs) cm⁻¹ identical to those of an authentic sample of [V(η -C₅H₅)(CO)₄] in THF, together

with unassigned very weak absorptions at 1854 and 1820 cm⁻¹. The mixture was gradually concentrated under reduced pressure at room temperature until a free flowing amorphous solid formed. Orange-yellow crystals of $[V(\eta-C_5H_5)(CO)_4]$ (IR and ¹H NMR; 0.12 g, 0.51 mmol $\equiv 67\%$) were obtained from this material by concentration of a pentane (3 X 20 mL) extract under reduced pressure. The pentane-insoluble residue was analyzed for carbonate as described above (0.43 mmol $\equiv 57\%$). The suspension obtained from a separate experiment in which some of the same batch of Na₂[V(η -C₅H₅)(CO)₃].THF (0.136 g) was treated with excess CO₂ in THF was allowed to sit for 2 weeks. The drop of mercury formed was mechanically separated and weighed (0.044 g), and this weight was used to calculate that the yield of [V(η -C₅H₅)(CO)₄] and carbonate in the original experiment corresponded to yields of 96% and 84% respectively. NAMES OF A DESCRIPTION OF A DESCRIPTION

Results and Discussion

Reactions of Carbonylmetalates with Excess Carbon Dioxide. When carbon dioxide is bubbled through solutions of $\text{Li}_2[W(CO)_5]$ in THF a rapid reaction occurs, as evidenced by bleaching of the characteristic orange of $[W(CO)_5]^{2-}$ and precipitation of a white solid. The only observable carbonyl containing product was $[W(CO)_6]$ (IR), which could be isolated in 82% yield. The ether insoluble material was shown to be Li_2CO_3 (74%) by comparison of its IR spectrum with that of an authentic sample, suggesting that the reaction involved reductive disproportionation of CO_2 (eq. 2) to give one equivalent of carbonate and one equivalent of CO coordinated to tungsten (Eq. 3).

 $\operatorname{Li}_{2}[\mathbb{W}(\operatorname{CO})_{5}] + 2\operatorname{CO}_{2} \longrightarrow [\mathbb{W}(\operatorname{CO})_{6}] + \operatorname{Li}_{2}\operatorname{CO}_{3} \qquad (3)$

The stoichiometry of the reaction indicates that one of the carbonyls of the product $[W(CO)_6]$ must be derived from the added CO₂, and this has been confirmed by carrying out the reaction at -78°C with 93% labelled ¹³CO₂. The hexacarbonyl obtained was 90% $[W(CO)_5(^{13}CO)]$ and 10% unlabelled $[W(CO)_6]$ with only traces of $[W(CO)_4(^{13}CO)_2]$,¹⁴ as established by analysis of the envelope of the parent ion peak in the mass spectrum of the material using the iterative method outlined previously.^{7b}

The generality of the reductive disproportionation of CO₂ by carbonylmetalates

was established by examining the reaction of CO₂ with a number of other dianionic carbonylmetalates, including the Na⁺ and K⁺ salts of $[W(CO)_5]^{2-}$, the K⁺ salts of the pentacarbonyl dianions of the other group 6 metals, and the Na⁺ salts of the tetracarbonyl dianions of the group 8 metals. The results of these reactions are summarized in Table I. _

Visual evidence for the progress of reductive disproportionation is less obvious in the case of the group 8 carbonylmetalates than in the case of the group 6 carbonylmetalates since Na₂[Fe(CO)₄], Na₂[Ru(CO)₄], and Na₂[Os(CO)₄] have only limited solubility in THF and the sodium carbonate formed is also insoluble in THF. The reactions were, however, readily monitored by IR, which indicated, in the case of all three metals, that the carbonylmetalates had been converted into the corresponding pentacarbonyls within thirty minutes at room temperature after treatment of suspensions of the salts in THF with carbon dioxide. It is, however, probable that the reactions proceed at significant rates even at low temperatures: when CO₂ was bubbled through a suspension of Na₂[Fe(CO)₄] in THF at -78° C, for example, there was a distinct lightening of the color of the solution during the addition.

IR spectra suggested that the reaction of CO_2 with the group 8 carbonylmetalates is very clean, but quantification of pentacarbonyl formation was hampered by handling problems for all the metals: $[Fe(CO)_5]$ is a volatile liquid, while $[Ru(CO)_5]$ and $[Os(CO)_5]$ are not only volatile but also both thermally and photochemically unstable with respect to the corresponding dodecacarbonyls. The yield of $[Fe(CO)_5]$ was determined by absorption mode IR spectroscopy based on an experimentally determined extinction coefficient for the A_2 " absorption in THF. This procedure was complicated by the presence of CO_2 dissolved in the THF, but outgassing of the solution for two h under N₂ allowed determination of the yield as 82 ± 10 %.

Minimum yields of the unstable pentacarbonyls of Ru and Os were determined by chemical derivitization. Calderazzo and L'Eplattenier have reported that reaction of $[Ru(CO)_5]$ with I₂ results in high yield conversion to the relatively involatile and stable di-iodide $[Ru(CO)_4 I_2]$.¹³ Treatment with I₂ of the filtered solution obtained

from the reaction of CO_2 with Na₂[Ru(CO)₄] led to isolation of a 73% yield of this di-iodide, establishing a minimum yield of 73% for the reductive disproportionation reaction. It has been indicated¹³ that the analogous reaction of $[Os(CO)_5]$ with I₂ does not proceed as cleanly as the Ru reaction, and we did indeed observe a lower (61%) yield of $[Os(CO)_4 I_2]$ when the $[Os(CO)_5]$ solution formed by reaction of CO_2 with Na₂[Os(CO)₄] was treated with I₂. This establishes a minimum yield of 61% for the reductive disproportionation reaction in the Os system, but it seems probable that the true yield is higher, particularly since the carbonate yield was 92%. 1555555321 1456655551

Mull IR spectra of the THF insoluble materials from the reactions between CO_2 and the carbonylmetalates of the group 6 and group 8 metals indicated that they were primarily Na₂CO₃, and this was confirmed and the yields quantified (Table I) by application of a titrimetric procedure (recommended by Vögel for the determination of carbonate in the presence of hydroxide or bicarbonate¹¹). This involved initial determination of the total base followed by redetermination of the base content after precipitation of the carbonate with Ba^{2+} .¹⁵

There is no reason why reductive disproportionation of CO₂ should be limited to simple carbonylmetalates, and we have indeed observed a similar reaction with the dianionic complex Na₂[V(η -C₅H₅)(CO)₃].THF⁹ (Table I). Although the solvate is insoluble in THF, a suspension reacted readily with added CO₂ to give a solution in which [V(η -C₅H₅)(CO)₄] was the only significant carbonyl containing product observable by IR. The [V(η -C₅H₅)(CO)₄] could be isolated following extraction with pentane, but quantification was complicated by mercury contamination of the starting dianion. The isolated [V(η -C₅H₅)(CO)₄] corresponded to a minimum yield of 67%, but correction for the mercury contamination (see Experimental) indicated that the true yield was ca. 96%. Minimum and corrected yields of carbonate as determined titrimetrically were 57 and 84% respectively.

Formation of a CO_2 Adduct from the Reaction of Li₂[W(CO)₅] with One Equivalent of CO₂. While it is not thermodynamically unreasonable that strongly reducing dianionic carbonylmetalates should promote reductive disproportionation of CO₂, the facility

of the reaction under mild conditions represents a dramatic kinetic activation of CO_2 . Determining the mechanism of the reaction is essential to understanding this activation, and we accordingly investigated possible intermediates in the reaction in some detail using Li₂[W(CO)₅] as a model substrate.

The gradual addition of one equivalent¹⁶ of CO_2 to a stirred solution of $Li_{2}\{W(CO)_{5}\}$ in THF at -78°C led to slight lightening of the orange-brown color without the formation of any of the Li₂CO₃ precipitate characteristic of the reductive disproportionation reaction. Infrared spectra of the solution indicated that the $Li_{2}[W(CO)_{5}]$ had been completely consumed and that a new species had been formed with a characteristic spectrum (Figure 1 (a)) consisting of three bands at 2043 (w), 1900 (vs), and 1865 (s) cm⁻¹. A small quantity of $[W(CO)_6]$ was also produced in the course of the reaction, but this could be minimized by adding the gas in small aliquots from a fixed volume reservoir on a high vacuum line over a period of 45 min. Alternatively, CO₂ could be delivered by means of a mechanically driven polypropylene syringe, with the rate of addition gradually reduced over time. In each case, best results were obtained when the THF solution was vigorously shaken or stirred to minimize local excesses of CO₂. Rapid transfer of an equivalent of CO₂ into THF solutions of $Li_2[W(CO)_5]$ led to the production of substantial [W(CO)_6] production and incomplete consumption of the monomeric dianion, presumably because the intermediate reacts almost as rapidly with CO_2 as does $Li_2[W(CO)_5]$.¹⁷

The stoichiometry of the reaction with one equivalent of CO_2 indicates that the new species may be formulated as a simple 1:1 CO_2 adduct (eq. 4).¹⁸ The CO_2 adduct is relatively stable once it has been formed, and IR spectra of a solution maintained at $O^{\circ}C$ for 40 h gave no indication of decomposition.

 CO_2 (1 equiv)

Spectroscopic Evidence for Formulation of Li₂[W(CO)₅(CO₂)] as an η^2 -C Complex of CO₂. The limited number of known discrete, well characterized complexes of CO₂ with

transition metals¹ led to extensive attempts to isolate the adduct. Isolation by concentration of THF solutions at low temperatures, by precipitation from concentrated solutions by addition of pentane or diethyl ether, and by counterion exchange with $[Ph_3PNPPh_3]^+$ ($[PPN]^+$: introduced as [PPN]Cl) were all unsuccessful, and $[W(CO)_6]$ was the only identifiable organometallic product formed. Addition of the cryptand Kryptofix 2.2.1 (4,7,13,16,21-pentaoxa-1,10-diazabicyclo[8.8.5]tricosane) to a solution of the adduct at $-78^{\circ}C$ resulted in formation of an orange precipitate, but this decomposed rapidly to $[W(CO)_6]$ at higher temperatures.

The failure to isolate the CO₂ adduct focussed attention on solution IR and ¹³C NMR studies of samples prepared in situ. Solution infrared spectra (Figure 1 (a)) support formulation as a [W(CO)₅L] complex with effective C₄ symmetry, suggesting that the adduct is the η^1 -C complex Li₂[W(CO)₅(η^1 -CO₂)]: [W(CO)₅L] complexes typically exhibit three bands, corresponding to the A₁ stretching mode of the equatorial carbonyls (weakly active, generally above 2000 cm⁻¹), the E stretch of the equatorial carbonyls, (usually very strong) and the A₁ stretch of the axial carbonyl (usually strong, and lower in energy than the equatorial E band). Such an assignment excellently describes the spectrum of Li₂[W(CO)₅C(O)₂)],¹⁹ which is strikingly similar, for example, to that of [K.crypt2:2:2][W(CO)₅C(0)OCH₃],²² which should have a similar degree of back donation to the carbonyl ligands.

Formation of a complex in which the CO_2 acts as an η^1 Lewis acid ligand to the 18-electron $[W(CO)_5]^{2-}$ dianion is consistent with the tendency of low valent carbonyl complexes of tungsten to obey the 18-electron rule, and with the η^1 -C coordination found by Floriani in $[Co(n-Pr-salen)K(CO_2)THF]$, the only structurally characterized complex of CO₂ with an anionic transition metal complex.²⁰

Although ¹³C NMR studies of Li₂[W(CO)₅(CO₂)] are more difficult to interpret, they are consistent with formulation as an η^1 -C complex of CO₂. Low temperature spectra of a sample freshly prepared from ¹³CO₂ contained a major resonance at 223.4 δ with ¹⁸³W satellites corresponding to a W-C coupling constant of 92 Hz, together with a minor peak at 221.8 δ (Jw-c = 90 Hz). The chemical shift of the major resonance is well

downfield from that of free CO₂ (132.2 δ^{23}), and is similar to that of the carbenoid carbon in, for example, [Cr(CO)₅C(OBt)₂] (206.6 δ^{24}), as anticipated for an η^1 -C coordinated CO₂. The chemical shift could also, however, arise from an η^2 -C,O bound CO₂ given the shifts observed for established η^2 -C,O complexes of CO₂ such as [(η^5 -C₅H₄CH₃)₂Nb(CH₂SiMe₃)(CO₂)] (220.5 δ^{25}) and [Mo(CO₂)₂(PMe₃)₄] (206.1 δ^6). The 92 Hz coupling constant is more informative than the chemical shift of the major resonance, and strongly suggests an sp^2 hybridized carbon bonded to tungsten. Tungsten-carbon coupling constants tend to increase with the order of the W-C bond,²⁶ probably because of the increasing s-character of the bond as the hybridization at carbon changes. Comparison with Schrock's data for high valent tungsten complexes²⁶ suggests that the coupling constant for Li₂[W(CO)₅(CO₂)] is on the borderline between that of an sp^2 C and an sp^3 C, but comparison with the more closely related data base reported in Table II places the value in exactly the range expected for an sp^2 C in a low valent carbonyl complex.

Interpretation of 13 C NMR studies of Li₂[W(CO)₅(CO₂)] was complicated by solution ion pairing, and by the dramatic activation (established by previous mass spectral studies^{7b}) of the CO₂ ligand in Li₂[W(CO)₅(CO₂)] with respect to oxide transfer from coordinated CO₂ to coordinated CO. When an NMR sample of Li₂[W(CO)₅(13 CO₂)] was warmed to 240 K a complicated series of peaks in the 205-201 δ region, present as weak peaks in the fresh sample, grew rapidly in intensity.²⁷ These peaks most probably arise from the cis and trans carbonyls of Li₂[W(CO)₅(CO₂)] which are being progressively labelled by oxide transfer reactions of the type shown in eq 5. Consistent with this interpretation, the changes in the spectrum of labelled Li₂[W(CO)₅(CO₂)] were not reversed by cooling the sample back to 200 K, and IR spectra of the solution recorded before and after the scrambling reaction were identical and virtually the same as those of unlabelled Li₂[W(CO)₅(CO₂)]. The correlation reported by Buchner and Schenk between Cotton-Kraihanzel CO force constants and carbonyl ¹³C chemical shifts for a series of octahedral [W(CO)₅L] complexes²⁸ was used to predict a chemical shift of 203 δ for the equatorial carbonyls of Li₂[W(CO)₅(CO₂)] from the

solution IR data, in good agreement with observation.

The surprising complexity of the 205-201 δ signals probably indicates that Li₂[W(CO)₅(CO₂)] exists in solution as a mixture of ion pairs which equilibrate slowly on the NMR time scale. In medium polarity solvents carbonylmetalates with alkali metal counterions characteristically ion pair,²⁹ and the existence of several types of ion pairs in THF solutions of Li₂[W(CO)₅(CO₂)] would be consistent with the non-Lorenztian line shape of the IR absorption assigned to the equatorial carbonyls, which is probably a composite band. The weak resonance at 221.8 δ in freshly prepared Li₂[W(CO)₅(¹³CO₂)] is probably also a consequence of ion pairing and can be assigned to the CO₂ resonance of a minor ion pair.

The assignment of the 205-201 δ signals to the carbonyl ligands (despite their surprising complexity) was supported by the spectrum of a sample prepared from partially ¹³C labelled Li₂[W(CO)_{5-n}(¹³CO)_n] and unlabelled CO₂. As expected, freshly prepared solutions of this material maintained at -78°C did not exhibit any ¹³C signals attributable to the CO₂, but did exhibit a complicated series of peaks in the 205-201 δ region. These closely resembled the signals in this region in a sample of Li₂[W(CO)₅(¹³CO₂)] which had been allowed to warm to 240 K, consistent with assignment of the signals in both samples to carbonyl ligands in different ion pairs of the CO₂ complex.

Facile oxide transfer from coordinated CO_2 to coordinated CO in solutions of Li₂[W(CO)₅(CO₂)] was confirmed by the change in the ¹³C spectrum when the sample of Li₂[W(CO)_{5-n}(¹³CO)_n(CO₂)] was warmed to 270 K: resonances appeared corresponding to the 223.4 and 221.8 & absorptions of freshly prepared Li₂[W(CO)₅(¹³CO₂)], indicating gradual enrichment of the carbon of the coordinated CO₂.

Formation and Spectral Characteristics of the Model η^1 -Heteroallene Complex Li₂[W(CO)₅(CS₂)]. The problems which the facile oxide scrambling characteristic of

Li₂ [W(CO)₅ (CO₂)] added to spectral characterization led us to investigate the reaction of CS₂ with Li₂ [W(CO)₅], in search of a model heteroallene adduct which would not be subject to such complications. The addition of one equivalent of CS₂ to a THF solution of Li₂ [W(CO)₅] at -78°C produced an intensely deep red-purple solution, and IR spectra showed that the CS₂ and the pentacarbonyl dianion had both been consumed. The ν_{CO} absorptions of the product are similar to those of Li₂ [W(CO)₅ (CO₂)] (Figure 1 (b)), and indicate the formation of the 1:1 adduct Li₂ [W(CO)₅ (CS₂)],³⁰ with C4 ν symmetry and absorptions at 2054 (w, equatorial A₁), 1912 (vs, equatorial B), and 1859 (ms, axial A₁) cm⁻¹. Solvent absorptions precluded the observation of the asymmetric ν_{CSS} stretching mode absorption. An anionic CS₂ complex has been previously reported by Ellis from the reaction of $K[(\eta^5-C_5H_5)Fe(CO)_2]$ with CS₂, but this species could not be isolated from THF solution,³¹ and no η^1 -CS₂ complexes with alkali metal counterions have been structurally characterized to date. The closest model for this coordination mode is probably $[C1(Ph_3P)_2Pt(\mu-CS_2)Pt(PPh_3)_2][BF_4] \cdot 0.2CH_2Cl_2$, in which the CS₂ ligand is η^1-C coordinated to one Pt center.³²

The most encouraging feature of the IR spectra of Li₂[W(CO)₅(CS₂)] and Na₂[W(CO)₅(CS₂)] (which can be prepared similarly and has a spectrum identical to that of the Li⁺ salt) is the essentially Lorentzian lineshape of the carbonyl absorptions. This suggests that, although the complexes are almost certainly ion paired in THF, ion pairing probably involves interaction with sulfur rather than with carbonyl sites as in Li₂[W(CO)₅(CO₂)]. Consistent with this, the species formed by reaction of CS₂ with partially labelled Na₂[W(CO)_{5-n}(¹³CO)_n(CS₂)] gave the simple ¹³C spectrum expected for a [W(CO)₅L] complex (see Table II for comparative data), with two distinct carbonyl resonances with appropriate intensities at 204.8 and 199.7 δ which can be assigned to the axial and equatorial carbonyls of Na₂[W(CO)_{5-n}(¹³CO)_nCS₂]. Since the IR spectra of Li₂[W(CO)₅(CO₂)] and Li₂[W(CO)₅(CS₂)] are very similar except for the evidence for ion pairing with the equatorial carbonyls of the former, the straightforward ¹³C spectrum of [W(CO)₅(CS₂)]²⁻ strongly supports the interpretation

advanced above of the ¹³C spectra of the CO₂ complex.

The Mechanism of the Reductive Disproportionation Reaction. The intermediacy of $\text{Li}_2[W(CO)_5(CO_2)]$ in the reductive disproportionation of CO_2 by $\text{Li}_2[W(CO)_5]$ was confirmed by the addition of further CO_2 to a sample of the CO_2 adduct to give $[W(CO)_5]$ and CO_3^{2-} , but the details of this reaction are unclear.

The CO₂ adduct could give $[W(CO)_6]$ by direct expulsion of an oxide ion, scavenged by excess CO₂ to give carbonate. Oxide is, however, an exceedingly poor leaving group, and it would be difficult within this mechanism to account for the marked decrease in the stability of Li₂ [$W(CO)_5(CO_2)$] in the presence of excess CO₂. It seems more probable that excess CO₂ plays an active role in the reductive disproportionation by coordinating to the nucleophilic oxygen atoms of the CO₂ in Li₂ [$W(CO)_5(CO_2)$] to give a C₂O₄ complex (Scheme I) which could eliminate carbonate directly.

Although no experimental evidence has been obtained for a second intermediate in the reductive disproportionation reaction, the precedent from the work of Herskovitz for the formation of a 2:1 CO₂ adduct containing a C₂O₄ ligand does make this an attractive hypothesis. He reported³³ that the neutral iridium (I) complex $[IrCl(C_8H_4)(PMe_3)_3]$ reacts with CO₂ to give an iridium (III) species $[IrCl(PMe_3)_3(C_2O_4)]$ containing a C₂O₄ ligand derived from CO₂. The relative stability of this complex, which contrasts markedly with the reactivity of the proposed 2:1 adduct in the tungsten system, probably arises from two factors: (a) the lability of the cyclo-octene ligand in the iridium system opens a coordination site through which the C₂O₄ unit can act as bis-chelate ligand; (b) carbonate loss from the neutral iridium complex would involve marked charge separation.

The applicability of the mechanism in Scheme I to the reaction of CO_2 with other pentacarbonyl dianions of the group 6 metals is supported by the observation of an intermediate 1:1 adduct in the reaction of CO_2 with Li₂[Cr(CO)₅], with very similar IR characteristics to those of Li₂[W(CO)₅(CO₂)]. Na₂[W(CO)₅] reacts with CO₂ in THF at -78°C to give a mixture of Na₂[W(CO)₅], [W(CO)₆] and a new species with a principal C=O stretching absorption at 1890 cm⁻¹. This is probably

Na₂[W(CO)₅(CO₂)], but the complex could not be obtained as cleanly as Li₂[W(CO)₅(CO₂)]. No intermediate species could be detected in the reductive disproportionation of CO₂ by K₂[W(CO)₅], and the stability of intermediate M₂[W(CO)₅(CO₂)] salts would appear to increase in the sequence K⁺ < Na⁺ < Li⁺.

A mechanism similar to that in Scheme I probably applies to reductive disproportionation of CO₂ by all the dianionic carbonylmetalates which we have studied, but mechanistic investigations of the reactions with the tetracarbonyl dianions of the group 8 metals and with Na₂[V(η -C₅H₅)(CO)₃] were limited by the heterogeneous nature of these reactions.

Reactions of Li₂ [W(CO)₅ (CO₂)] with Blectrophiles. The reactivity of the oxygen atoms in Li₂ [W(CO)₅ (CO₂)] towards the mild CO₂ electrophile suggested that characterization of Li₂ [W(CO)₅ (CO₂)] could be completed, and conversion of the CO₂ ligand into an organic derivative initiated, by electrophilic derivatization of the anion. This strategy has been successfully used to convert [$\{Fe(\tau-C_5H_5)(CO)_2(CO_2)\}_2Mg\}$ into a metalloester,³⁴ but we have not discovered conditions under which it can be applied to Li₂ [W(CO)₅ (CO₂)]. [W(CO)₆] was the principal product of the reaction of Li₂ [W(CO)₅ (CO₂)] with a variety of electrophiles, including CF₃CO₂H,³⁵ Me₃SiOSO₂CF₃, [Ti($\tau-C_5H_5$)₂Cl₂] and {CH₂OSO₂C₆H₄CH₃}. The mechanism of the titanocene dichloride reaction is unclear, but the others presumably involve formation of intermediate anionic metalloesters which lose alkoxide ions faster than they react with further electrophile, even in the intramolecular case of bistriflate ethylene (eq. 6).³⁷

Conclusions

Reductive disproportionation of carbon dioxide to carbonate and coordinated carbon monoxide is a general reaction of dianionic carbonylmetalates, including the pentacarbonyl dianions of the group 6 metals, the tetracarbonyl dianions of the group 8 metals, and Na₂ [V(η -C₅H₅)(CO)₃].

The reaction can provide synthetically valuable routes to the corresponding neutral carbonyls. This is particularly true for $[Ru(CO)_5]$ and $[Os(CO)_5]$, which are unstable with respect to the corresponding dodecacarbonyls and which are currently prepared by high pressure carbonylations of Ru or Os precursors at 160 to $290^{\circ}C.^{13,39}$ Reaction of CO_2 with Na₂[Ru(CO)₄] or Na₂[Os(CO)₄] provides a low pressure alternative which has marked advantages for small scale or exploratory work. Reductive disproportionation is also convenient for the preparation of samples of either group 8 pentacarbonyls or group 6 hexacarbonyls partially labelled with ¹³C or ¹⁸O.

In the case of Li₂[W(CO)₅] it has been established that reductive disproportionation proceeds through a 1:1 adduct, and solution IR and ¹³C NMR spectra suggest formulation of the adduct as Li₂[W(CO)₅(η^1 -CO₂)] and also suggest that this exists in solution as a mixture of ion pairs. The complex contains an η^1 -C coordinated CO₂, and the increase in nucleophilicity resulting from the associated transfer of negative charge on to the oxygen atoms is probably responsible for the kinetic facility of subsequent reaction with a second molecule of CO₂, for the facile transfer of oxide from coordinated CO₂ to coordinated CO, and for the ready loss of oxide in reactions with other electrophiles. There is spectroscopic evidence for similar η^1 -C adducts between CO₂ and Li₂[Cr(CO)₅] and Na₂[W(CO)₅], and CS₂ forms a relatively stable η^1 -C adduct with Li₂[W(CO)₅].

The failure to obtain clean CO_2 adducts except with Li⁺ salts of the pentacarbonyl dianions of the group 6 metals probably reflects the importance of the "supported" coordination mode in these systems. Floriani has previously reported that coordination of CO_2 to an anionic transition metal can be counterion sensitive, and has established in the case of K⁺ salt of a Co complex that complexation involves binding of the alkali metal counterion to the basic oxygens of the CO_2 .²⁰ Similar supporting interactions are probably at least as important for the dianionic complexes $[M(CO)_5(CO_2)]^{2-}$, and although we do not have direct evidence, the existence of a supported coordination mode is indicated by the counterion dependence of the stability

of $[W(CO)_5(CO_2)]^{2-}$. This parallels the counterion stability reported by Floriani for M'[(R-salen)Co(CO_2)]^{20}, and is consistent with tighter binding of the more polarizing cations to the basic oxygens of the bound CO_2.

Acknowledgement. This work was supported in part by the Office of Naval Research.

(1) (a) Eisenberg, R.; Hendriksen, D. E. <u>Adv. Catal.</u> 1979, <u>28</u>, 79. (b)
Darensbourg, D. J.; Kudaroski, R. A. <u>Adv. Organomet. Chem.</u> 1983, <u>22</u>, 129.
(c) Sneedon, R. P. A. In "Comprehensive Organometallic Chemistry"; Wilkinson,
G.; Stone, F. G. A.; Abel, E. W., Ed.; Pergamon Press: Oxford, 1982, Vol. 8,
Chapter 50.4.

IXXXXXXX

- (2) Fachinetti, G.; Floriani, C.; Chiesi-Villa, A.; Guastini, C.;
 <u>J. Am. Chem. Soc.</u> 1979, <u>101</u>, 1767.
- (3) (a) Ito, T.; Yamamoto, A. J. Chem. Soc., Dalton Trans. 1975, 1398. (b) Aresta, M.; Nobile, C. F. <u>Inorg. Chim. Acta</u> 1977, 24, L49. (c) Bianchini, C.; Mealli, C.; Meli, A.; Sabat, M. <u>Inorg. Chem.</u> 1984, 23, 2731. (d) Bianchini, C.; Meli, A. <u>J. Am. Chem. Soc.</u> 1984, 106, 2698. (e) Francis, B. R.; Green, M. L. H.; Luong-thi, T.; Moser, G. A. <u>J. Chem. Soc., Dalton Trans</u>. 1976, 1339. (f) Green, M. L. H.; MacKenzie, R. E.; Poland, J. S. <u>J. Chem. Soc., Dalton Trans</u>. 1976, 1993. (g) Green, M. L. H.; Luong-thi, T.; Moser, G. A.; Packer, I.; Pettit, F.; Roe, D. M. <u>J. Chem. Soc., Dalton Trans</u>. 1976, 1988.
- (4) Chatt, J.; Kubota, M.; Leigh, G. J.; March, T. C.; Mason, R.; Yarrow, D. J.
 <u>J. Chem. Soc., Chem. Comm.</u> 1974, 1033.
- (5) Karsch, H. H.; <u>Chem. Ber.</u> 1977, <u>110</u>, 2213.

- (6) (a) Carmona, E.; Gonzalez, F.; Poveda, M. L.; Marin, J. M. <u>J. Am. Chem. Soc.</u> 1983, <u>105</u>, 3365. (b) Alvarez, R.; Carmona, E.; Poveda, M. L.; Sanchez-Delgado, R. <u>J. Am. Chem. Soc.</u> 1984, <u>106</u>, 2731.
- (7) (a) Maher, J. M.; Cooper, N. J. J. Am. Chem. Soc. 1980, 102, 7604. (b)
 Maher, J. M.; Lee, G. R.; Cooper, N. J. J. Am. Chem. Soc. 1982, 104,
 6797.
- (8) Carter, W. J.; Kelland, J. W.; Okrasinski, S. J.; Warner, K. E.; Norton,
 J. R. <u>Inorg. Chem.</u> 1982, <u>21</u>, 3955.
- (9) Kinney, R. J.; Jones, W. D.; Bergman, R. G.; <u>J. Am.</u> <u>Chem. Soc.</u> 1978, <u>100</u>, 7902.
- (10) Maher, J. M.; Beatty, R. P.; Cooper, N. J. <u>Organometallics</u> 1985, <u>4</u>, 1354.

- Bassett, J.; Denney, R. C.; Jeffery, G. H.; Mendham, J. "Vogel's Textbook of Quantitative Inorganic Analysis", 4th ed.; Longman: London, 1978; pp. 309-311.
- (12) Haas, H.; Sheline, R. K. <u>J. Chem. Phys.</u> 1967, <u>47</u>, 2996.
- (13) Calderazzo, F.; L'Eplattenier, F. <u>Inorg. Chem.</u> 1967, <u>6</u>, 1220.
- (14) As previously reported^{7b} the isotopic labelling of the hexacarbonyl is much more complex if the reaction is carried out under conditions under which the intermediate CO₂ complex is allowed to warm significantly above -78°C. This promotes extensive scrambling of oxide between the coordinated CO₂ and coordinated CO.
- (15) This proceedure also eliminates the possibility that oxalates formed a significant portion of the precipitated solids.
- (16) Based on the quantity of $[M(CO)_5(NMe_3)]$ from which the Li₂ $[W(CO)_5]$ was prepared by naphthalenide reduction¹⁰ on the assumption of an 85 % yield in the reduction.
- (17) Similar results were obtained when CO_2 was sublimed onto the frozen surface of the Li₂[W(CO)₅] solution at -196°C and the resulting mixture permitted to thaw at -78°C.
- (18) There was also no IR evidence for the presence of unreacted CO₂ under these conditions.
- (19) The failure to see an absorption above the solvent cut-off at 1450 cm⁻¹ which can be assigned to the the assymetric mode of the coordinated CO₂ does not invalidate these assignments. The frequency of this absorption in monoanionic π^1 -CO₂ complexes of cobalt depends markedly on the counterion and the alkyl substitution on the salen ligand, ranging from 1680 to below 1600 cm⁻¹,²⁰ and the additional back-donation expected in a dianionic complex could easily shift the absorption below 1450 cm⁻¹. We have even observed examples of monoanionic π^1 -CO₂ complexes in which this absorption is below 1450 cm⁻¹.²¹

- (20) (a) Fachⁱnetti, G.; Floriani, C.; Zanazzi, P. F. <u>J. Am. Chem. Soc.</u> 1978, <u>100</u>,
 7405. (b) Gambarotta, S.; Arena, F.; Floriani, C.; Zanazzi, P. F. <u>J. Am</u>.
 <u>Chem. Soc</u>. 1982, <u>104</u>, 5082.
- (21) Lee, G. R.; Cooper, N. J. <u>Organometallics</u> 1985, <u>4</u>, 794.
- (22) IR (THF, ν_c only) 2050 (w), 1905 (s), and 1865 (m) cm⁻¹: Darensbourg, D. J.;
 Gray, R. L.; Ovalles, C.; Pala, M. J. Mol. Cat. 1985, 29, 285.
- Levy, G. C.; Nelson, G. L. "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists"; Wiley-Interscience: New York, 1972; p. 133.
- (24) Fischer, E. O.; Scherzer, K.; Kreissl, F. R. <u>J. Organomet. Chem.</u> 1976, <u>118</u>,
 C33.
- (25) Bristow, G. S.; Hitchcock, P. B.; Lappert, M. F. J. Chem. Soc., Chem. Comm. 1981, 1145.
- (26) Schrock, R. R. presonal communication. The data in the following references indicate ranges of 60 to 120 Hz for single bonds, 120 to 190 Hz for double bonds, and above 190 Hz for triple bonds: (a) Clark, D. N.; Shrock, R. R.; J. Am. Chem. Soc. 1978, 100, 6774; (b) Pedersen, S. F.; Shrock, R. R.; J. Am. Chem. Soc. 1982, 104, 7483; (c) Fernstein-Jaffe, I.; Gibson, D.; Lippard, S. J.; Shrock, R. R.; Spool, A.; J. Am. Chem. Soc. 1984, 106, 6305; (d) Wengrovius, J. H.; Shrock, R. R.; Organometallics 1982, 1, 148; (e) Holmes, S. J.; Clark, D. N.; Turner, H. W.; Shrock, R. R.; J. Am. Chem. Soc. 1982, 104, 6322; (f) Sharp, P. R.; Holmes, S. J.; Shrock, R. R.; Churchill, M. R.; Wasserman, H. J.; J. Am. Chem. Soc. 1981, 103, 965.
- (27) The ${}^{13}CO_2$ resonance and the 201 to 205 δ resonances also shifted downfield by 0.2 to 1.7 δ when the sample was warmed to 240 K, but these changes were fully reversible on cooling the sample.
- (28) Buchner, W., Schenk, W. A. <u>Inorg. Chem.</u> 1984, <u>23</u>, 132.
- (29) (a) Horwitz, C. P.; Shriver, D. F. <u>Adv. Organomet. Chem.</u> 1984, <u>23</u>, 219.
 (b) Darensbourg, M. Y. <u>Prog. Inorg. Chem.</u> 1985, <u>33</u>, 221.

(30) This adduct is indefinitely stable at -78° C, and stable for hours at room temperature. It does slowly decompose in the presence of excess CS₂, but the reaction gives intractable purple solids rather than the [W(CO)₅(CS)] anticipated if CS₂ underwent a reductive disproportionation reaction with dianionic carbonylmetalates analogous to that observed with CO₂. 155565551 NO266551

- (31) Ellis, J. E.; Fennell, R. W.; Flom, E. A. <u>Inorg. Chem.</u> 1976, <u>15</u>, 2031.
- (32) Lisy, J. M.; Dobryzinski, E. D.; Angelici, R. J.; Clardy, J.
 <u>J. Am. Chem. Soc.</u> 1975, <u>97</u>, 656.
- (33) Herskovitz, T.; Guggenberger, L. J. <u>J. Am. Chem. Soc.</u> (1976), 98, 1615.
- (34) Forschner, T.; Menard, K.; Cutler, A. J. Chem. Soc., Chem. Comm. 1984, 121.
- (35) Significant quantities of $[W(CO)_5H]^-$ were also produced in this reaction (13C NMR of the product obtained by reaction of CF₃CO₂H with a ¹³C enriched sample of Li₂[W(CO)₅(CO₂)]), as would be anticipated from the established conversion of $[W(CO)_6]$ to $[W(CO)_5H]^-$ by treatment with OH^{-.36}
- (36) (a) Darensbourg, D. J.; Rokicki, A. <u>Organometallics</u> 1982, <u>1</u>, 1685.
 (b) Darensbourg, D. J.; Rokicki, A. <u>ACS Symp. Ser.</u> 1981, <u>152</u>, 107.
 (c) Darensbourg, D. J.; Baldwin, B. J.; Froelich, J. A. <u>J. Am</u>. <u>Chem</u>. <u>Soc</u>. 1980, <u>102</u>, 4688.
- (37) The formation of an unstable anionic metalloester from the reaction of an alkoxide with $[W(CO)_6]$ has been reported,³⁸ and alkoxide loss is analogous to reversible OH- loss from the corresponding metallocarboxylic acid.³⁶
- (38) Darensbourg, D. J.; Gray, R. L.; Ovalles, C.; Pala, M. J. Mol. Cat. 1985, 29, 285.
- Rushman, P.; van Buuren, G. N.; Shiralian, M.; Pomeroy, R. K. <u>Organometallics</u> 1983, <u>2</u>, 693.

Figure 1. Solution infrared spectra in the CEO stretching region of heteroallene adducts of Li₂[W(CO)₅] in THF: (a) Li₂[W(CO)₅(CO₂)] (Peak marked * from [W(CO)₆]. Note scale change at 2000 cm⁻¹); (b) Li₂[W(CO)₅(CS₂)].

al possional technication for

UNICATION

Scheme I. Mechanism proposed for the reductive disproportionation of CO_2 by Li₂[W(CO)₅].

Table I. Yields for the Reductive Disproportionation of CO₂ by Dianionic Carbonylmetalates

M'2 [MLn]	Initial Product (IR)	Isolated Product	Isolated Yield (%)	Yield <u>M'2CO3 (%)</u>
Li ₂ [W(CO) ₅]	[W(CO) ₆]	[W(CO)6]	82	74 <u>a</u>
Na ₂ [W(CO) ₅]	[W(CO)6]	[W(CO) ₆]	83	- <u>b</u>
K ₂ [W(CO) ₅]	[W(CO) ₆]	[W(CO) ₆]	48	78 <u>-</u>
K ₂ [Cr(CO) ₅]	[Cr(CO)6]	[Cr(CO)6]	46	68 <u>~</u>
K ₂ [Mo(CO) ₅]	[Mo(CO) ₆]	[Mo(CO) ₆]	42	73 <u>-</u>
Na ₂ [Fe(CO) ₄]	[Fe (CO) ₅]	Not isolated	82 <u>+</u> 10 <u>d</u>	94 <u></u>
Na ₂ [Ru(CO) ₄]	[Ru (CO) ₅]	<u>cis</u> -[Ru(CO)4 I2] 73	61 <u>-</u>
$Na_2[Os(CO)_4]$	[Os (C0) ₅]	<u>cis</u> -[0s(CO) ₄ I ₂] 61	92 <u>-</u>
Na ₂ [V(η -C ₅ H ₅ (CO) ₂])- $[V(\eta - C_5 H_5) - (CO)_4]$	$[V(\eta - C_5 H_5)(CO)]$	a] 67 (96) <u>e</u>	57(84) <u>-</u> ,

- Isolated yield.
- b Not determined.

アンドレージングは、アンシンシング

- <u>c</u> Titrimetric yield.
- ₫ Infrared yield.
- After correction for Hg contamination of the starting dianion.

e

Complex	8 COeg	<u>ð COax</u>	<u>8 C</u> L	<u>T (K)</u>
[W(CO)5C(OMe)Ph]	197.2	203.4	321.7	298
	(128)	(116)	(111)	
$[W(CO)_5C(Ph)_2]$	196.8	213.7	356.5	240
	(129)	(105)	(96)	
[W(CO)sC(p−CsH₄OMe)Ph]	197.2	211.7	346.3	240
	(129)	(107)	(89)	
NEta[W(CO)sC(O)Me]	204.1	208.1	275.9	298
	(128)	(137)	(76)	
NRta [W(CO)5CH2]	207.0	208.2	-34.6	298
	(126)	(149)	(44)	200

Table II. ¹³C NMR Data for Carbon Ligands Directly Bound to Tungsten in $[W(CO)_5L]$ Complexes (¹Jw-c Values in Hz in Parentheses) 10000 10000000 100000

AND ADDRESS IN CONTRACTOR

Contraction of the

and a second

Versesso

.

Sch ane

i interes

DL/413/83/01 GEN/413-2

A STATE OF A

J

5 51 5 5 5 5 5 S

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	No. Copies		No. Copies
Office of Naval Research Attn: Code 413 800 N. Quincy Street Arlington, Virginia 22217	2	Dr. David Young Code 334 NORDA NSTL, Mississippi 39529	·1
Dr. Bernard Douda Naval Weapons Support Center Code 5042 Crane, Indiana 47522	1	Naval Weapons Center Attn: Dr. Ron Atkins Chemistry Division China Lake, California 93555	1
Commander, Naval Air Systems Command Attn: Code 310C (H. Rosenwasser) Washington, D.C. 20360	1	Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, D.C. 20380	1
Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko Port Hueneme, California 93401	1	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 12211 Research Triangle Park, NC 2770	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	r 12	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 1911	1 2
DTNSRDC Attn: Dr. G. Bosmajian Applied Chemistry Division Annapolis, Maryland 21401	1	Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232	1
Dr. William Tolles Superintendent Chemistry Division, Code 6100 Naval Research Laboratory	1		

Naval Research Laboratory Washington, D.C. 20375

