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I INTRODUCTION

Optical wavefronts are aberrated as they propagate through the turbulent

atmosphere. These aberrations limit the performance of large aperture ground,I
based optical systems. Adaptive optical systems, which measure and correct

the atmospherically induced aberrations in real time, can significantly

improve the performance of ground-based, large-aperture optical systems. The

key components of an adaptive optical system are the wavefront sensor, which

measures the aberrations, and the wavefront corrector, (e.g., deformable

mirror) the figure of which is adjusted to compensate for the aberrations

induced by the atmosphere. Since the earliest days of adaptive optics

research there has been debate over whether the desired figure on the

wave front corrector should be implemented with nodal (i.e., local) or modal

(i.e. ,qlobal influence functions. The objective of this paper is to

compare nodal cind modal wdvefront correction.

In the next section a discussion of the attributes of Zernike polynomials

is presented. In the third section we review the concepts of nodal versus

nodal correction. Following that, the analyses used to compare the

performance of nodal and modal wavefront correctors are presented. The

results are presented in section 5 in the form of plots which compare the

perforrmance of the two approaches as a function of various parameters.

We conclude with observations on the feasibility of implementing either E"
nodal or modal correction for cases of interest.

II. ATTRIBUTES OF NODAL AND MODAL CORRECTION '.

From a theoretical aspect, nodal and modal correction are very similiar.

The wavefront error, Oe for either approach can be written as:

-4-



(r )=O( ra(Ir) 1e

where: r is the coordinate in the aperture plane,

0(r) is the abberation to be corrected and,

Oc(r) is the implemented wavefront correction.

To implement a nodal correction, the wavefront to be corrected is -. ..

decomposed using a basis which is determined by the nodal (actuator)

influence function of the wavefront corrector. This decomposition results

in a set of coefficients which correspond to the drive signal required

at the corresponding node to implement the desired correction. The

coefficients are typically chosen to minimize the mean square error between

the aberrated wavefront and the implemented correction.

For modal correction, the wavefront is decomposed into various modes. In

this paper the Zernike polynomials will be used as the basis for the

decomposition. As for the nodal case, the decomposition results in a set

o- coefficients such that each coefficient corresponds to the strength of a

particular node which is contained in the aberrated wavefront. As before,

the coefficients are typically chosen to minimize the mean square error

between the aberrated wavefront and the implemented correction.

Hence, for both nodal and modal correction, the following equation for
2

mean square error averaged over the aperture, 0 , is used to measure how
e

qood the correction is:

2 -> 2 -> ->
<fW( r ) 0 ( r )dr > (2)

e e
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L> L. .p

where: W(r) is a window function which defines the aperture of

the wavefront corrector, and

-> I inside the aperturea
W (ra r and, (3)

._- 0 ~~outside the aperture-..-,-

the < > brackets indicate an ensemble average...,-;..

A mathematical description of a nodal correction is given below:

i =NI.-> .. > •

(r a p ( r r (4)

where: a is the drive signal applied at location r

and, p(r) is the influence function of the

wavefront corrector. (Implicit here is the

assumption that the influence function is the

same for every node, which is generally the "M

case).

Usinq equation (4) in equation (1) and the result in equation (2) gives
2

the residual mean square error for nodal correction, 
Ne

N
2> r> 2 ->

Ne :<fw( ) [ (r)- i
0a rJ a r r dr > (5) • "-

T, error given by equation (5) can be set to any desired level by

sC-le:Ctinti the proper number of nodes. In general, the greater the number

(of rmE- I the lower the residual error will be for a particular W(r)"

-VI
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The relationship between residual error and the number of nodes will be put

on a sound mathematical framework in section 4.
2

The residual mean square error for a modal corrector, IT , is sho n "Me

be low:

m
2 -> -> b) 2 -

)[ 0r) - Z( ) dr > (6)
Me - -

J=1

where: Z (r) is the jth mode Zernike polynomial (defined below) JAMS

and b is th strength of the jth mode.

In general, the greater the number of modes which are corrected, the smaller

the residual error will be. The desired residual error can be achieved by proper

selection of the modes which are implemented in the wavefront corrector. This

relationship will be presented in a mathematical form in section 4.

As shown in equations 5 and 6, the theoretical performance of both nodal

and modal correctors is the same (i.e., any level of residual error can

be obtained if enough nodes or modes are used in the wavefront corrector).

The essence of the debate between the use of nodal or modal correction is

thus the ease with which the desired correction can be implemented.

Conceptual one dimensional nodal and modal wavefront correctors dre shown

in figures 2-1 and 2-2. Nodal correction implies a local deforwation of the

surface of the corrector as a result of the application of a d rive signal

modal cr.rrection implies a global deformation of the surface as a result of

-7
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the application of a drive signal The conjecture which is often made is

that the number of drive signals required for a modal corrector could be

less than the number of drive signals required for a nodal corrector. In

the following, we investigate whether, for atmospherically induced aberrations,

it is likely that modal correction will require fewer drive signals than a

nodal corrector.

Figure 2-1. Conceptual Nodal Wavefront Corrector

Figure 2-2. Conceptual Modal Wavefront Corrector

111. PROPERTIES OF ZERNIKE POLYNOIMIALS

Zernike polynomials, or Zernike radial polynomials, are a set of

[ iIlynowial s which are defined on a unit circle. They are a special case of

Jacobi hyperqeometric polynomials which are used to establish a base set i

()f two-dimensional polynomials that can form a polynomial function which

(Jrcduct ()f both a purely radial and purely angular function [1].

The -urely radial function, R(r), describes how the surface changes from



the center to the edge of the circular aperture and the purely angular . --

function, Q(e), describes how the surface changes while moving az1irthally

around the aperture, Since most optical systems have circular apertures,

Zernike pol -iomials provide an effective way of expressing phase

aberration over these apertures.

Zernike polynomials are conveniently expressed in polar coordinates and
m

can be symbolized as R (r) where n is the highest power of r, or radial
n

degree and m is the azimuthal frequency, or angular order for which the

angular function repeats itself. Table 3-1 shows the first 19 Zernike

polynomials expressed in both polar and cartesian coordinate systems [2]. .. -

The polynomials are defined here by [3]: ,

a) Zeven Tn + 1 R (r) F cos(mo) (7)
j n m 0

b) Zodd In + 1' R (r)2 sin(mo)
j n

0
Z = + R (r) m 0 (8)
j n )

(n-in)/ 2 s
m (-1) (n - s)! n-2swhere: R (r) := r (9)
n s! [(n4m)/2 - s]! [(n-m)/2 -s]! r (

s=O

The index j is a mode ordering number and the values of n and m are always

integers which satisfy m < n, and n - m even. Consequently, only

polynomials with certain combinations of n and m exist (see table 3-2) [3].

9.-S.-.-i



nR(r,e9) R (x, y)

R1 r cosO x
() R1 r sie

(3) R2 2x-*2y-1

2
(4 2rZ cos29 X2 -y 2

*(5) Rt2  r 2 sin2e 2xy

(6) Rt3  (3r 2 -2)r cosO 3x 3+3xy 2 -2x

(7) Rt3  (3r2.-2)r sine 3x 2 y-43y 3-2y

0
* (8) R6r 4-6r-4l 6x4+12~ 2 +y-x-y+

3
*(9) R3r 3 cos3e X3 -3xy 2

-3
*(10) R3  r3 sin3r 3z 2y-y 3

2
(11) R4a (4r 2 -3)r 2 cos2e 4x4 -3 2 3 2 4'

(12) R4 (4r 2 -3)r 2 sin29 8x 3y+x 3-6xy

(13) RS (lOr4-12r 2-4-3)r cose 10xs+20x3y 2 -+10Xj'123 12y 2

*(14) RS (l0?'-12r 2 +3)r sine 10x~y+20x y 3+10)yS-12xzy-12y 3+3y

(15) R65  20r 6 -30r +12r 2 -1 20x +60x~y46Ox~y4+2Oy 6-30x
-60x .2y 2 -30y'+12x 2 412y2 - I

(16) R4r cos48 x -6x 2y2 ~y

*(17) R4. r4 sin48 4x y-4xy3

3
(18) RS (Sr 2 -4)r 3 COS2 5xS-l0x 3 y 2 -4x 3 -l~xy"+12xyz

-3
(19) ft5  (5r 2 -4)r 3 sin3 -5! 5S+10X2 y3 +4y 15X~y_1x

Table 3-1

- 10 . .-
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As mentioned earlier, Zernike polynomials are particularily valuable for
* .q % .

their unique properties over a circular aperture. Also, they are extremely

valuable due to their relationship to classical aberrations. Therefore,

they provide a convenient mathematical expression of the aberrating content

in a wavefront using familiar terms (see figures 3-1 through 3-6) [4].

The properties posessed by the Zernike radial polynomials over a circular

aperture are enumerated below [2]:

(1) They are orthogonal over the unit circle.

(2) They are normalized.

m
(3) In the term R (r), if m is even n must be even,

n

and if m is odd n must be odd.

m
(4) The term R (r) contains no power of r less than m

n

(i.e. n >) ).

As described above, Zernike polynomials possess several properties which

make them ideally suited for describing the aberrations present in an optical

system. From (1), one of their most important properties is that they form

an orthogonal set of polynomials over a normalized circular aperture. This

implies that each term is independent from all others. Consequently, varying

one term in the series will not effect the values of the other terms. This

characteristic is extremely important in the process of correcting an

atmospherically induced aberrated wavefront in an adaptive optical system.

Lastly, each term of the set of Zernike polynomials can be related to another

set of deformations of the lowest order called the Seidal aberrations [2].

12
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Figures 3-1 through 3-5 shows the first five lower order Zernike . '

polynomials which represent classical aberrations. Figure 3-6 shows a

higher order polynomial. L

ZERNIKE POLYNOMIALS

FIGURES WITH COEFFICIENTS

Figure Name Figure Name

3-1) a. Tilt 3-4) a. Coma
b. b.

3-2) Defocus 3-5) Spherical

3-3) a. Astigmatism 3-6) 151st Zernike -
b. Polynomial

Table 3-3

IV. MODAL TO NODAL COMPARISION

In this section we compare the number of drive siginals required for the

nodal and modal methods to implement a wavefront correction which equally

compensates for atmospherically induced wavefront deformations.

The equation for the mean square residual error of the wavefront using

nodal correction is defined here by [5]:

2 5/3 2
=a (d/r 0 ) [rad ] (10)

Ne

2
where: U is the mean square residual error of the wavefront.

Ne

a is a constant which depends on the wavefront corrector
(.141 < a < .34)

- 19
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d is the spacing between actuators in the wavefront corrector,
and

r. is the phase coherence length of the atmosphere.

The equation for the residual error of the wavefront using modal

correction is defined here by [3]:

2 13" 2 5/-3 2
=.2944J (Dir. [rad ](1

Me

2
where: O is the mean square residual error of the wavefront.

Me

J is the number of modes.

D is the diameter of the aperture.

ro is the phase coherence length of the atmosphere.

The two methods of wavefront correction were compared to one another by

plotting various parameters of the two equations. The series of four graphs

developed for the comparison will be discussed here. The analysis and results

of this graphical comparison will be presented in the next section.

OBSERVATIONS FROM GRAPH 4-1

The first qraph (qraph 4-1) is a plot of the mean square residual error
2

for modal correction versus the number of modes (J). (O was calculated
Me

from equation (11) for values of D/r, shown.

This iraph shows the number of modes (J) necessary to achieve a given

mean square residual error. For each of the four cases of D/r = 10, 20, 50,

and 100, the plots are exponential and show that as the nurber of modes (J)

- 2C -- ,1 --;.



2 . .

increases, the residual error squared (7" ) decreases and conversely, J
2 Me

decreases as O" increases. Therefore, the greater the number of modes
Me

corrected, the less the wavefront error will be. W

Further observation shows that as the ratio of the diameter of the - -

aperture to the phase coherence length of the atmosphere (D/ro ) increases, I W

the number of modes (J) necessary to obtain an acceptably small wavefront

error rapidly increases. Consequently, in order to achieve the image quality

desired in an optical system, the number of mode corrections necessary may

be very high for the D/ro of useful systems.

OBSERVATIONS FROM GRAPH 4-2 ,-

The second graph (graph 4-2) is a plot of the mean square residual error

for nodal correction versus the actuator spacing divided by the phase
2

coherence length of the atmosphere (d/r ). 9 was calculated from equation
Ne

10 for a = 0.2,0.4, and 1.0 at values of d/ro 0.2, 0.5, 1.0, and 2.0.

Each of the 3 plots contains 4 data points.

Each of the three plots is exponential in shape and indicates that as

dir increases, the residual error of the wavefront also increases. In

addition, analysis of the three plots indicates that as the parameter (a) I- I- -
2

increases, the larger 07 becomes for a given value of d/r. This observation
Ne

follows from the nodal equation (1) seeing that the term (a) acts as a

multiplication factor.

Further observation of the 3 plots suggests that the implementation

-21--
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Mean square residual error as a function of the number of modes -

* ~5.~ . :

x 3. D 1o so -

* Wi 100-4

E+Oi E+02 E+03E+4 E+05E+6
J VALUES

Graph 4-1

Residual error squared as a function of the spacing between thle
actuators in the wavefront corrector divided by the phase 4
coherence length of the atmosphere
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0 3
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of a nodal wavefront corrector in a compensated imaging system can achieve ,-. .
2

an acceptable mean square wavefront error of 0.6 rad , for a relatively large

d/r (equal to approximately 2.0) and a value of the parameter (e) equal to 0.2.

OBSERVATIONS FROM GRAPH 4-3

The third graph (graph 4-3) is a plot of (d/r o ) verses the number of
2 2 2

modes (J) for the case where (U = 0" . 0 was calculated from equation
Me Ne Ne

2
10, for a = 0.2 and d/r o = 0.2 to 2.0 in 0.2 increments. (T was thenNe -:

substituted into equation 11 with Dir = 10, 20, 50, and 100 to calculate ...

the corresponding value of J. Consequently, each of the 4 plots contains

10 data points. The d/r scale is linear from 0.2 to 2.2 and the J scale

is logarithmic from 1 to 1,000,000. Graph 3 provides a comparison betwee- -

the performance of modal-to-nodal wavefront correctors.

On the x axis is the number of modes (J) which was derived from the"I

modal equation and on the y axis is (d/r ) which was derived from the nodal --

equation (10). Graph 4-3 contains 4 plots, for D/r = 10, 20, 50, and 100,

which are exponential in shape. From the four curves, it is observed that

the greater the number of modes (J), the smaller dlr must be to provide -- --

the same performance of the wavefront corrector. For a residual error of

the wavefront specified by a given value of d/r o , the greater D/r. becomes, L
2

the greater the number of modes necessary to achieve this -1
e

Using the relationship it

2
N = ( D/d ) (12)

where: N is equal to the number of nodes. -
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A direct comparison can be made between the number of nodes (N) to the number

of modes (J) necessary to achieve a given residual error of the wavefront.

Solving (12) for d gives:

* ,- .-,* -

d = D/ TN (13)

Using (13) in (10) gives : -
5/3

Ne = a (14)Ne ro /

-5/6 5/3
= a N (D/ro ) (15)

Equating (15) and (11) gives:

-5/6 5/3 - T/2 5/3
a N (D/ro ) .2944 J (D/ro ) (16)

solving for N and simplifing gives:

6/5 1.04
N = 4.338 a J (17)

A plot of this function is shown in graph 4-4. -

Using the above we can finally compare the feasibility of using nodal

verses modal correction for atmospheric turbulence. To make the comparison we

use a hypothetical adaptive optical system which has a diameter, D, of 2

meters. We assume, based on measurements, an atmospheric coherence length, ro

of 10 cm. Based on measured data, a reasonable value for the parameter (a) is
2 2

0.2. We select 0 = 0.561 rad as a reasonable residual wavefront error.
Ne

2
Using the above values for D, ro ,0 and a in (15) gives an N of 116.

Ne
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The spacing between the actuators in the wavefront corrector
divided by the phase coherence length of the atmosphere as a
function of the number of modes

2.2

S-0j

+04 DE,05 0

JJ VAUE

Graph 4-3

The number of nodes as a function of the number of modes

0

z 9 .1 POW0.1

J MODES

Graph 4-4
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Substituting this value of N into (17) gives 151 for a value of J. A plot °.

of this Zernike polynomial is shown in figure 3-6. It would appear that

many actuators would be required to implement this mode. The data from the

comparison done on graph 4-3 is shown in table 4-1.

NUMBER OF NODES TO NUMBER OF MODES COMPARISON

D,° D/ ror

10 20 50 100
d / r ° _ " --_ _"

N 2,239 10,036 63,673 258,453
.2

J 2,600 11 ,000 65,000 250,000

N 107 386 2,239 10,036
1.0

J 140 480 2,600 11,000

N 25 107 606 2,239
2.0 L

J 35 140 740 2,600

Table 4-1

From table 4-1 it can be seen that the number of nodes (N) increases for a

given d/ro and larger values of D/r. . This was also the case for the number of

modes J as was stated earlier. Overall, the number of modes is approximately

the same as the number of nodes for producing a particular residual error

of the wavefront for all combinations of d/r. and D/r. Consequently, an

atmospheric modal wavefront corrector will require more actuators than a nodal

corrector to compensate for a heavily aberrated wavefront in a large aperture
ground-based optical system, since each mode will require several actuators.
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V. CONCLUSION -

In theory modal correction systems are simpler to implement than nodal ";.."

correction systems. For very low mode aberrations, (e.g. ,tilt,focus) modal

corrections show that this simplification can be realized. However, for.' . - t-

large aperature, visible wavelength, adaptive optical imaging systems the

number of modes which are required to be corrected becomes very high. __- _

Implementation of each of these modes with only a few actuators does not seem.,,

practical. Therefore, for such systems, nodal wavefront correctors are the

wavefront corrector of choice.
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