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ABSTRACT 

The Cramer-Rao inequality is used to determine a lower bound on the variance with which 
a sinusoidal frequency can be estimated in the presence of Gaussian white noise. A 
parametric study has elucidated the influence of number of samples (N), sampling 
frequency (1/A), phase (</>), and signal-to-noise ratio (SNR) on the Cramer-Rao bound. A 
closed form expression for the asymptotic level to which the Cramer-Rao bound decays is 
characterized and, for low frequencies, the bound is determined analytically and 
graphically. The form of the Cramer-Rao bound is linked to resolution in the sampling 
problem. Identification of trade-offs characterizing the sensitivity of the bound and 
parameters associated with it are discussed. 
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CRAM£R-RAO BOUND ANALYSIS FOR FREQUENCY 
ESTIMATION OF SINUSOIDS IN NOISE 

I.    INTRODUCTION 

A problem of interest is estimation of the frequency of a sinusoidal oscillation from noisy 
sampled data. The particular emphasis in this report is on the case in which only a fraction of a 
cycle is sampled. It is hoped that the guidance achieved in solving this problem could be applied 
to the more complex problem of motion other than a pure sinusoid. The approach here is to use 
the Cramer-Rao bound as a calculation tool. The Cramer-Rao bound is a lower bound on the 
variance in parameter estimation in the case when the estimator is unbiased. 

The problem of frequency estimation for single and multiple complex sinusoids in noise has 
received attention in the literature [1,2] for the case of frequency large compared with the 
reciprocal of the measurement interval (1/NA). A maximum likelihood method for frequency 
estimation of real sinusoids in noise, with improved computation efficiency, has already been 
presented [3]. Of interest to the problem of determination of frequencies is the case in which the 
observation period NA (N = number of samples, A = sampling interval) is short compared with 
the oscillation period. In this case a good signal-to-noise ratio (SNR) can compensate for the 
short measurement interval. 

Examination of the Cramer-Rao bound follows its derivation from the original problem of 
sampling a sine wave. A frequency independent form for the Cramer-Rao bound is presented 
which is accurate for frequencies between those designated by the Nyquist criterion. The 
frequency dependence of the bound at low frequencies, for initial phases of 0 and 7r/2, is 
obtained. Finally, the family of Cramer-Rao bound curves parameterized by N and A is reduced 
to a single operating curve from which trade-offs involving NA and SNR, as well as an 
expression for the bound for low frequencies, are determined. 



II.    DERIVATION OF THE CRAMER-RAO BOUND 

The general problem of estimation of a sinusoidal frequency in Gaussian white noise derives 
from taking N samples of the system separated by successive sampling intervals A 

Yi^Si + W;       ,       Sj = A sin (27rfAi + 0) (i = 1 . . . N) (1) 

where A, f, and 4> are oscillation amplitude, frequency, and phase. The measurement errors Wj 
are Gaussian and independently distributed with zero mean and variance a^. Since the 
(Yj    S;) = Wj are therefore also Gaussian, the probability density function for these terms can be 
represented: 

I 
P(Y/S)=     (27r)N/2aN    eXP 

N 

--   X (yi - s.)2/^ 
i=l 

(2) 

The Cramer-Rao inequality is a lower bound on the variance in parameter estimation and is 
derived from the Fisher information matrix [4, 5], This matrix can be expressed as follows: 

d In P(Y/S)\ 2 

da where a = (3) 

In P(Y/S) 
as 

is the log likelihood function which can be discerned from the above density function 

N 
lnP(Y/S) = -l/2   X  (Yi'Si)2/4 (4) 

1=1 

ignoring the constant terms. The derivative of the log likelihood function with respect to the 
parameters of the sinusoid, 

a - 
A 
f 1 

d In P(Y/S) 

IS 

N 

da 
dS. 1 

S (Y' - Si) "d^   -2T i=l 
(5) 

Squaring this expression and taking its expectation results in: 

d In P(Y/S) 
da 

N      N 

X   2 
i=i j=i 

(Yj ~ St) (Yj - Sj)       dS;      dSj 

da da (6) 



E[(Yj - Sj) (Y: - S:)] = 0 except at i = j where it equals a^. 

Thus E 
d In P(Y/S) 

where 
dSj 
da 

da 

N 

X 
i=l 

dS: dsT 
da        da 

(7) 

<9A 

3f 
<9S; 

and each element (jk) of the resulting Fisher information matrix 

N 
B equals   ^ 

1 dS{       c?Sj 

i=l 'R 
da.       <9ak 

It is the inverse of B which yields the Cramer-Rao bound on estimation of the ay The 
Cramer-Rao bound can be stated as 

Var (aJ - aJ) ^ BU 

where a-, is an unbiased estimate of a; and Bii is the jth diagonal element of the inverse of B. 

The matrix B to be inverted is symmetric and is shown explicitly below: 

B,, = 2     —2~ (sin (27rfAi + <«r 
i=l      CTR 

N j 2 
B22 =  X     ~X" (27rAiA cos (27rfAi + 0)) 

i=l       CTR 

N , 2 
B33= X   ~^r <A cos (27rfAi + <*>)) 

i=l        CTR 
(8) 

N 
B12 = B2, =   ^     ~^~~ (27rAiA sin (2rrfAi + </>) cos (27rfAi + <f>)) 

i=l       aR 

N 1 
B13 " B31 "   X     —2~ (A sin (27rfAi + <t>) cos (27rfAi + 0)) 

i=l       CTR 

N j 2 
B23 = B32 =   X      ~^T (27rAi (A c°S (27rfAi + </>)) ) 

i=l       aR 



Rather than working with the Cramer-Rao bound in terms of variance, the root mean 
square error in frequency estimation, (B22)'/2, will be used here whenever the Cramer-Rao bound 
is referred to subsequently. (B11)1/2 and (B33)'/2 are the Cramer-Rao bounds for estimation of 
amplitude and phase, respectively. (A/OR) is the square root of the signal-to-noise ratio (vSNR) 
and is taken to be equal to 1 everywhere except in Section VI. 



III.    NUMERICAL RESULTS: PHASE (<£) = 0 

One of the first characteristics of the Cramer-Rao bound with which to be concerned is its 
behavior at the Nyquist frequency l/A = 2f. This corresponds to the case in which the sinusoidal 
frequency is sampled exactly at its nodes. Since frequency estimation is then impossible, the 
Cramer-Rao bound is infinite. For f = k/2A (where k = 1, 2 . . . ) the infinity repeats for higher 
frequencies. Figure I shows the behavior of the Cramer-Rao bound for the sampling parameters 
N = 16, A = 0.008. The Cramer-Rao bound (B22)1 2 is computed from (8) and is singular at 
I = 1  2A = 62.5 and all multiples. 
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Figure I.    Nyquist intervals of Cramer-Rao bound. ,V= 16. A  - 0.008. <J = 0. 

The following figure exhibits the Cramer-Rao bound behavior for frequencies much less than 
the Nyquist frequency. The Cramer-Rao bound (B22)1 2 computed from (8) is plotted in Figure 2. 
taking N = 16, 32, 64, 128, 256 and 512 successive samples separated in time by a constant 
interval of A = 0.008 s. It is immediately obvious that the Cramer-Rao bound decreases when N, 
the number of samples taken, increases. The break point between the monotonic and oscillatory 
parts of each curve occurs at f= I  2NA which is at increasingly lower frequency as N becomes 
greater.  The third trend is that the Cramer-Rao bound decays to an asymptotic level as frequency 
increases. VSNR has been taken to be I here, however, it is implicit from Equations (8) for B22 

that the Cramer-Rao bound shown in Figures 1 and 2 should be divided by vSNR in the more 
general case. 
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Figure 2.    Cramer-Rao bound for frequency estimation. S  =0.008. 4> = 0. 

Figure 3 exhibits the Cramer-Rao bound for NA= 1. The family of curves consists of the 
cases in which N = 16, 32, 64, 128, 256 and 512 are matched with A  = 0.0625, 0.0313, 0.0156, 
0.0078, 0.0039, and 0.002 respectively. The break point is now at approximately 
1 = 1 /2NA =* 0.5 Hz for all six curves. For the portions of curves shown in Figure 3, the 
oscillatory parts of the bounds are identical except for an offset in asymptotic level. 

On account of the Nyquist criterion, for which sampling is only at nodes of a sinusoid, 
infinities repeat for f = 1  2A « (k = 1, 2 . . .). For the case in Figure 2 these infinities repeated at 
the same frequency for all curves. Each of the curves in Figure 3, however, has its own period 
imposed by the Nyquist criterion as A is different for each. Thus the N = 16 curve in Figure 3 
will give rise to a singularity at f = 8, the N = 32 curve at f«* 16, and so on. Our primary 
interest, however, is in the low frequency portions of these curves. 
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IV.    DERIVATION OF THE ASYMPTOTIC 
CRAMER-RAO BOUND (<t> = 0) 

The analytical problem is to simplify the summations which form the terms of the Fisher 
information matrix. It is of interest to examine the case in which trigonometric oscillatory terms 
in the Fisher information matrix, which depend on frequency, are summed [6]: 

B33 = N/2 

B,2 = B2| = 0 

(9) 

It has been observed that the asymptotic levels of the Cramer-Rao bound (B22)'/2, in the 
periodically decaying region between frequencies designated by the Nyquist criterion, can be 
calculated according to (9) as functions of N and A. 

For Figures 2 and 3 this region of frequencies falls to the right of the first break point 
where f > 1/2NA. This is equivalent to the condition that half the period T/2 is exceeded by the 
observation interval NA. The Cramer-Rao bound can be approximated from (9) for frequencies 
to the right of the break points where the bound levels off, however, to only as far as 1/2NA less 
than the first f = 1/2A Nyquist infinity. Subsequently, the Cramer-Rao bound can be obtained in 
this manner for respective frequencies in the higher order Nyquist periods. 

Solving for (B22)'/2, the asymptotic form for the Cramer-Rao bound for frequencies in the 
periodically decaying region is obtained: 

Substituting for N and A, it is found that the values of this expression equal almost precisely the 
frequency independent asymptotic levels for the Cramer-Rao bounds which are shown partially in 
Figures 2 and 3. In the following table (Table I) are values of (B22)'/2 which were computed 
from (9) alongside those derived from the full Fisher information matrix (8). 

Substitution of the sine and cosine series representations for small arguments into 
Equations (8) {<$> - 0) has also been achieved. This has determined that the asymptotic frequency 
dependence of the Cramer-Rao bound at low frequencies is proportional to 1/f2 for <f> - 0. 



TABLE 1 

Calculated Asymptotic Cramer -Rao Bound 

N A 
(B22}1/2 

from (9) from (10) 

16 0.008 1.61 1.55 

32 0.008 0.55 0.54 

64 0.008 0.19 0.19 

128 0.008 0.068 0.068 

256 0.008 0.024 0.024 

512 0.008 0.008 0.008 

16 0.0625 0.206 0.199 

32 0.0313 0.141 0.138 

64 0.0156 0.099 0.098 

128 0.0078 0.070 0.069 

256 0.0039 0.049 0.049 

512 0.002 0.034 0.034 



V.    NUMERICAL RESULTS FOR NON-ZERO PHASE 

Figure 4 depicts the Cramer-Rao bound as a function of frequency when 0 = 0, n-/4, n/2 
and 37T/4 for the case in which N = 64 and A = 0.008. The bound was computed from the full 
Fisher information matrix (8). It can be discerned that the oscillations decay so that 
asympotically the curves all approach a single Cramer-Rao bound level equal to that for 0 = 0, 
N = 64, A = 0.008 (Figure 2). The frequency dependence of the bound at low frequencies, for 
0 = 77-/2, is determined to be 1/f. For frequencies less tha 0.2 Hz, the asymptotic behavior of the 
Cramer-Rao bounds for 0 - 0 and 0 = 7r/2 form an envelope about all of the phases shown in 
Figure 4. 

Figure 5 departs from Figure 3 by only a small amount for f > 1. Figure 3 was obtained 
with 0 = 0. The former is created by taking the Cramer-Rao bound [computed from 
Equations (8)] with the phase which yields the highest Crame'r-Rao bound out of 100 phases 
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Figure 4.    Cramer- Rao bound for frequency estimation. N = 64, A = 0.008. 
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equally spaced between 0 and n. The behavior of the Cramer-Rao bound for worst case phase 
has already been shown in [2], however, this is for the case of a constant sampling interval A 

and large frequency. 

NA is constrained to be equal to 1 for both Figures 3 and 5. The break point between the 
monotonic and periodic segments in the family of curves in Figure 5 occurs at approximately 
f = l/NA, while for Figure 3 is at approximately 1/2NA. The lower break point for the case of 
</> = 0 is equal to the first null in sin Nw/sin w, where w = 7r/N, and w = 27rfA, which is exactly 

f= I/2NA. 
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VI.    NORMALIZATION OF THE CRAMER-RAO BOUND: 
TRADE-OFFS INVOLVING NA AND SNR 

One conclusion which can be drawn from Figures 2 and 3 in the previous section is that the 
width of the main lobe of the Cramer-Rao bound curves is the parameter I/2NA. This can be 
identified with the resolution of the estimation process. The greater the observation interval NA, 
the smaller will be the resolution <5f = 1/2NA. This trend can be likened to that of a square wave 
and its Fourier transform. The wider the square wave is, the smaller the width to the first null of 
its Fourier transform will be. 

In Figure 6, the Cramer-Rao bound af normalized by the resolution Sf = 1/2NA is plotted 
against the frequency normalized by Sf. This is achieved for N = 16, 32, 64, 128, 256, and 512, for 
A = 0.008 in each case. These are the same parameters as were used for the unnormalized case in 
Figure 2. The curves of the family which results all break at the same f/Sf and are separated by a 
constant multiple for all f/Sf. 
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Figure 6.    Normalized Cramer-Rao bound for frequency estimation. <t> = 0 
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It was shown in Equation (10) of Section IV that the asymptotic Crame'r-Rao bound is on 
the order of 1/N3/2A. Thus the normalized Cramer-Rao bound of/Sf is on the order of l/\/N. 
Another piece of information we can extract from scaling the Cramer-Rao bound is that the 
family of curves in Figure 6 can be collapsed to one of \/N af/6f versus f/5f. This is shown in 
Figure 7 where for numerical convenience another scaling factor y/l/64 has been included. The 
family of curves is thus represented by the single relationship of vN/64 Of/Sf versus f/Sf. 

From Figure 7 it can be observed that, in the low frequency region where f< 1/2NA, the 
slope of the curve is approximately -2, for 0 = 0. 
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This relation represents the dependence of the Cramer-Rao bound on frequency, for low 
frequencies mapped onto the limb of the curve which lies to the left of the break point. 

The following examples are designed to exemplify the trade-offs of NA and SNR which can 
be determined using Figure 7. 

Example 1:    Given f = 2 Hz, Sf = 1 Hz, and SNR = 1, what are N and A such 
that the Cramer-Rao bound Of equals 0.1? 

For f/<5f= 2, it is shown in Figure 8 that vN/64 of/5f equals approximately 0.2. Since 
a(ld{ = 0.1, N can be solved for and is found to be 256. It is also known that 5f = 1/2NA = 1 Hz, 
so with N = 256, A need be no larger than 0.002. 
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Figure 8.    Fully normalized Cramer-Rao bound (example I. 2). 

For the second example, SNR is for the first time a variable parameter and is no longer set 
equal to 1. It can be discerned from Equation set (8) that (B22)'/2, the Cramer-Rao bound, will 
be proportional to l/A/oR or 1/vSNR. 
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Example 2:    Using Figure 7, the problem here is to determine what SNR ratio is necessary 
so that af = 0.2 Hz when f = 2 Hz, N = 16, and A = 0.01. 

It is known that 5f = 1/2NA = 1/0.32 Hz so that f/5f = 0.64. The design point for which VSNR 
will be determined is, for N= 16, at \/l6/64 af/5f. When af= 0.2 Hz and 5f = 1/0.32 Hz, this 
point falls at 0.032 on the vertical axis of Figure 8. However, the actual point on the axis to 
which f/6f = 0.64 corresponds is approximately 0.3. Therefore a VSNR ratio of *" 10 is required 
to reduce the normalized and scaled value of the Cramer-Rao bound from "* 0.3 to 0.032. 
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VII.    SUMMARY AND CONCLUSIONS 

The influences of number of samples, sampling frequency, phase, and signal-to-noise ratio on 
the Cramer-Rao bound for frequency estimation of sine waves in Gaussian white noise have been 
studied. A closed form expression for the asymptotic Cramer-Rao bound has been derived which 
exhibits a 1/N3/2A dependence. The Cramer-Rao bound normalized by the resolution and scaled 
by vN, where N is the number of samples, reduces the family of curves parameterized by N and 
A to a single operating curve. Examples of trade-offs involving NA and SNR ratio are 
determined by this composite relationship among the parameters. 

As long as the measurement interval NA is at least a half cycle of the sine wave, the 
Cramer-Rao bound is close to being independent of frequency; however, in the instance of worst 
case phase the measurement interval must cover an entire cycle. In the low frequency region 
where NA is less than half a cycle, the bound on Of varies as 1/f2 for phase 0 = 0, and 1/f for 
phase <j> = 77-/2. For example, if the frequency is 0.1 Hz, the value of af will be at most 25 times 
larger than for a frequency of 0.5 Hz, with the same parameters N, A. If the signal-to-noise is 
sufficiently high, it is still possible to obtain accurate frequency estimates even in this low 
frequency region. 
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