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* ABSTRACT ." 
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Molecular dynamics are computed for model atom transfers A + BC'- AB + C
in rare gas solvents at liquid densities. We find that the reaction dynamics can be
understood in terms of a simple picture which consists of three stages: 1) activation of
reactants, 2) barrier crossing, and 3) deactivation of products. The effects seen in
stages 1) and 3) can be largely interpreted in terms of existing models of energy and
phase decay in solution, while the effects seen in stage 2) can be largely interpreted in
terms of gas phase A + BC barrier crossing dynamics. We find that Transition State
Theory is in perfect agreement with the simulations for the 20 and 10 kcal/mol barrier
reactions and is a very good description for a 5 kcal/mol reaction barrier. At low bar-
rier curvature dynamical effects due to the solvent are shown to induce some recross-
ings of the transition state barrier, thus causing rate constants calculated by simple
transition state theory to be slightly too high. A modification of transition state
theory, which considers the effect of the time dependent friction of the solvent on the
dynamics at the transition state, is shown to predict corrections to the rate constants in
very good agreement with the results from the simulations. ' , F A ""
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I. Introduction
The simplest chemical reaction involving the making and breaking of different chemical bonds is

the triatomic atom transfer reaction A + BC -, AB + C. Its experimental and theoretical studyl has
been central to the detailed understanding of gas phase2-7 reactions, contributing for example to the
development of Transition State Theory (TST)t"s - which gives in many cases a clear and accurate pic-
ture of gas phase reaction kinetics - and to the development of Molecular Dynamics (MD) to under-
stand the detailed microscopic motions involved in reactions. While the theoretical understanding of
the microscopic processes of gas phase reactions is now well advanced, the corresponding understand-
ing of the detailed aspects of reactions in liquid solution is still sketchy, in spite of what is arguably the
greater relative importance of solution reactions in chemistry. (For reviews, see Refs. 8,10-15.)

The present work is, to our knowledge, the first full scale molecular dynamics study9 of the A +
BC reaction in solution in which reactive trajectories are computed. We analyze the resulting classical
trajectories to try to answer some important questions about the nature of the A + BC reaction in solu-
tion, including:

1) What is the character of ABC trajectories that lead to reaction, and what is the solvent
influence thereon? We find that these trajectories, except at the barrier top, are quite different in the
solution and gas phases and, away from the barrier, can be characterized in terms of energy transfer and
phase decay characteristics of various (eg. translational, rotational, vibrational) degrees of freedom of -,
the nascent reactant and product species. In addition, the role of the solvent momenta in the reaction
process is examined through solvent momentum perturbation calculations.

2) When is TST valid s -15 in solution? The most apparently vulnerable feature of simple TST is
the assumption that trajectories originating from reactants and achieving activation energy will always
go on directly to form products with no recrossings of the transition state.4 Clearly, this assumption is
in jeopardy if the situation arises in which a strongly-interacting solvent impedes successful barrier
crossing through "collisions" with the reacting complex near the transition state, thereby inducing
recrossings and reducing the rate constant below the TST value. One might term this a dynamic solvent
"cage" effect in the transition state neighborhood. We examine this question in some detail, and
analyze our results in terms of the Grote-Hynes perspective of a time dependent friction16-18 that the
solvent exerts on the reaction coordinate in the neighborhood of the transition state, and its effect on the
rate constant.

Me appealing feature of TST is the simple but intuitive picture it gives for understanding the

nature of reactive barrier passage: an activated complex, in quasi-equilibrium with reactants, proceeds
directly to form products. A critical assumption of TST - the existence of an equilibrium between
reactants and activated complexes - can be realized in a solvent where continual collisions occur with ity Codes
the reacting system, although these same interactions might sometimes cause the no-recrossing

and or
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condition to break down. If a trajectory recrosses the transition state surface then TST will overestimate
the rate constant because it assumes that every crossing of the barrier toward products contributes to the
overall rate. This recrossing effect is accounted for by the so called transmission coefficient g conrec-
don to Transition State Theory. As is well known, the actual rate constant k is thus written in terms of
the simple TST rate constant k737 as

where v adjusts the TST result to correct for the solvent induced recrossings. Some basic ingredients
which determine x are considered in a highly idealized treatment of reactions in solution by Kramers,19

in which the reacting system is modeled as an effective particle of mass IL moving, in the transition
state region, on an inverted parabolic potential of imaginary frequency whose real magnitude is o), and
subject to solvent friction . The latter is defined in terms of the time correlation function of the ran-
dom, force exerted by the solvent on the reaction coordinate,

in which C(t) is given by the fluctuation-dissipation theorem as

= - ( FFQ) , (1.3)

where F is the solvent force on the effective particle of mass gt and () indicates a solvent phase-space
average, ks is Boltzmann's constant and T is the temperature. The Kramers theory emphasizes the key
parameter / cob in the determination of r. If the frictional forces are weak compared to the intrinsic
reaction forces acting on the particle in the barrier region, then COb << 1, C -+ I and k -+ks'. If,
on the other hand, the barrier curvature is very small and the retarding influence of the solvent is large,
then ob >> and c -* (ob,. In this limit the solvent is very effective in inducing recrossings and
the passage from reactants to products over the barrier is essentially diffusion-controlled.

In the latter case, and in regimes approaching it, the reaction rate is affected by the long time
macroscopic friction in the Kramers description. There are, however, important cases for which this
simple picture due to Kramers breaks down. It has been argued by Grote and Hynes' 6 -1s that TST can
in fact be a good approximation, even for strong friction, if the barrier curvature is very sharp. For this
case the reacting system spends so little time on the barrier (on the order of time to;') that the solvent
is unable to respond to, and retard motion across the barrier since there is not enough time for any
effective collisions to occur. The effective solvent friction at the transition state is small because the
short time scale solvent response, given by the early pan of the time dependent friction, (t), is more
important' s than the long-time overall response, .We will see that this is an especially important per-
spective for sharp barriers.

The solvent can also play another important and quite distinct role; dissipating the excess energy
of newly formed products. If energy deactivation of products is achieved a short time after the transi-
tion state is crossed, then it is unlikely that there will remain sufficient energy to recross the barrier:
this helps TST to correctly describe the reaction. Conversely, the lack of sufficiently rapid energy
transfer will lead to barrier recrossing by the energetically "hot" nascent products. In this event, the rate
constant would depend on the rate of energy stabilization of the nascent products by the solvent.

Similar to the role that the solvent plays in the energy deactivation of products is the role it plays
in providing energy for the activation of reactants. It is conceivable, for example, that this activation
might be slow compared to the barrier passage step, so that activation dynamics explicitly enter the
rate. It is also possible that only a small amount of solvent phase space can be effective in the activa-
don of the reactants to form products.

One purpose of this paper is to investigate the validity of Transition State Theory for atom
transfer reactions in monatomic liquids. We simulate reactions using molecular dynamics and explore a
rmge of the system's properties (characterized by ;(t), wb, etc...), discovering both where TST can be
applied successfully and where it breaks down. In addition, we search for a simple picture to understand
the reaction molecular dynamics, and begin the process of investigating the detailed role of the solvent

.......
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in affecting the course of the reaction.
The outline of the paper is as follows. In Sec. I1 we present in detail the computational techniques

used to simulate A + BC trajectories in rare gas solvents. Section II explores the reaction X + X2 in
argon solvent. In Sec. IV we examine the effect of varying the nature of the solvent. Concluding
remarks are given in Sec. V.

IL Computational Techniques

Molecular dynamics techniques have been previously used in several condensed phase reaction
simulations; examples include defect motion in solids,2°, 2 1 isomerization 22 and radical recombina-
tion23 ,24 in solution, transformations in macromolecules, 25, 26 and adsorption on surfaces.2 The solution
phase MD simulation of the A + BC reaction requires special attention to initial sampling and trajectory
techniques which we now discuss.

A. Molecular Dynamics
Molecular dynamics are used to compute time histories of the positions and momenta for all of

the atoms in the system. This is accomplished by numerical integration of the equations governing the
classical motions of particles in a conservative force field, i.e. Hamilton's equations:

= _ . . (2.1)

and

*N= (2.2)

in which pN and rw are the conjugate momentum and position for a system containing N unique parti-
cles, and H is the Hamiltonian for the system. Given a set of position coordinates, re, the force on any
particular atom is computed as the sum of the forces over all pairwise additive interactions, and a 3-
body term is used to describe the internal A + BC interaction (see below). A modified Verlet
algorithm, 28-30 incorporating a time step of 1.0 femtosecond, is used to integrate these equations of
motion, and truncated octahedron periodic boundary conditions31 are used in order to approximate an
infinite liquid. There are 100 rare gas solvent atoms used in the liquid simulations.

These calculations are carried out on a Floating Point Systems AP120B array processor32 attached
to a VAX 11/780 host computer. One thousand time steps require approximately 100 seconds of real
time on the array processor. The calculations presented here required 15 days of array processor time,
and would have required 17 months of VAX 11/780 time if the array processor were not used.

B. Potential Energy Surface

In explicitly constructing the Hamiltonian in Eqs. (2.1) and (2.2), a potential energy surface is
needed to describe the interactions between all of the atoms in the system. The potential energy surface &Z

used here is intended to represent a liquid-phase rare-gas solvent in which the symmetric A + BC
hypothetical atom transfer reaction, X + X2 -+ X2 + X, occurs. The X atoms are modeled as uncharged
halogen-like atoms with the mass of chlorine 35. We stress that this is a hypothetical model of a sym-
metric atom transfer (The actual interhalogen transfer reactions appear to often involve low barriers and

bound intermediates.3 ).
We choose a surface constructed as a combination of hypo-surfaces representing smaller parts of

the problem. First, the potential energy of the interaction between any atom, i, and any solvent atom, j,
is represented by the Lennard-Jones 6-12 potential

= ' ' (2.3)

in which rv is the distance between the atoms, Ev is the depth of the minimum in the potential and 0,
locates the finite intermolecular distance at which OL(r.) = 0. The values of Eq and a. used for

.I
"° . oII
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various rare gas33 and X-X interactions34. 35 in these calculations are given in Table 1. Table I gives
parameters only for the homonuclear pair interactions. For the heteronuclear interactions the values of
e, and rane calculated using the combining rules

= (ea v) , (2.4)
a, = (oi + a) /2. (2.5)

Table 1. Lennard-Jones Parameters

Atom - Atom 0  e4 r/k,
Isrmaion (X) (Po!) ('K)

He - He 2.57 89.79 10.80
Ar- Ar 3.40 997A8 120.00
Xe -Xe 3.85 2077.20 249.83

X-X (X Ci) 3.12 2868.68 345.02

Second, the potential energy function used for the X-X-X interaction is the 3-body London-
Eyring-Polanyi-Sato (LEPS)5 surface

*ZPS(rr2,r3) = Q0 + Q2 + Q3 - (J + A + A - JJ2 - J23 - JAJ1), (2.6)

in which rl and r2 are the variable bond lengths between the "middle" X atom and the two "outside" X
atoms, r3 is the bond length between the two "outside" X atoms, and Q, and Ji are linear combinations
of the "singlet" and "triplet" diatomic energies:

Q,(r) = ('E + SE,)/2, (2.7)

Old

J Ar) = ('E - 'EjY2 . (2.8)
Here the "singlet" ground state energy is represented as a Morse potential,

loo, -. °"

'Er) = 'D - exp -',.ri - I - 'D,, (2.9)

while the "triplet" diatomic energy is an anti-Morse potential,

3Er) = 3D1 1 + exp P -ri _ d) - D,. (2.10)

The LEPS potential is an analytic form, convenient for use in molecular dynamics simulations,
which displays excellent asymptotic properties, reducing to a diatomic bound Morse potential when one
atom is infinitely separated. In addition, it is highly adaptable, containing 18 non-symmetry adapted
parameters ('D., 'D$9 , 'p, 'r , 'r?, for i - 1,2,3), allowing the simultaneous adjustment of barrier
height and barrier frequency cb (i.e. the magnitude of the imaginary frequency of an inverted parabolic
approximation to the potential at the saddle point for a linear geometry). We report all frequencies, We.
in spectroscopic units, i.e. (w I 2xc) cm-1. Table 2 shows the values of the 18 LEPS parameters used
in these simulations, producing potentials with specific barrier heights and frequencies. In all cases, the "..,
X2 diatomic potential in the limit of the X atom far away is a Morse potential fitted to the C12 diatomic
potential.36 Figure I illustrates potential energy contours for a 20 kcal/mol barrier height and linear
geometry. The coordinate axes are inclined at an angle of 60° rather than 900 since, for the X3 system,
this choice of axes diagonalizes the kinetic energy.1 The equations of motion of the reaction system are

V ~ --
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Table 2. X3 LEPS Potential Parameters

Barrier
Height 20 10 5

(keal/mol)

Barrier
Frequency 419 288 168(cn-')

'ri (A) i - 1,2,3 1.9870 1.9870 1.9870

3, (A) i - 1,2,3 1.9870 1.9870 1.9870
l[ (A-') i - 1,2,3 2.0024 2.0024 2.0024

3p, (A-1) i = 1,2,3 2.0024 2.0024 2.0024

'Di (kcal/mol) i - 1,2,3 57.9740 57.9740 57.9740
3D, (kcal/mol) i = 1,2,3 44.2290 32.3965 27.2053

thus represented by a particle with point mass IL sliding on the potential energy surface.

C. Initial Conditions
The reaction coordinate of X + X2 -- X2 + X in the barrier neighborhood is well defined by the

asymmetric-stretch normal mode coordinate of X-X-X, while the magnitude of the corresponding ima-
ginary normal mode frequency is the barrier frequency, (ob. Other vibrational degrees of freedom for X3
are described by the bend and symmetric-stretch normal modes.

If we attempted to discover a set of reactive trajectories by starting with reactants and solvent in
equilibrium, we would have exhausted the capacity of the fastest available computer long before arriv-
ing at our answer. Therefore we use the technique of Keck37 , 3 8 and Anderson39,A0 to initialize the tra-
jectory from an equilibrium distribution of all variables except the position along the reaction coordi-
nate which is constrained to the transition state surface. We compute the dynamics both forward and
backward in time,9 . 1 thus determining if the trajectory is reactive or unreactive. The precise nature of
this equilibrium distribution on the barrier is highly dependent on the details of the potential energy sur-
face at the barrier top. Here, the initial conditions for X3 are determined by Boltzmann-weighted sam-
pling of positions and momenta in the appropriate degrees of freedom described by the normal modes.
The initial conditions are chosen to optimize the calculation of the ensemble-averaged values of the
properties of interest. An ensemble average, (A), is defined classically as

ff aV"'dp A •"e ~

(A) = djJ.N .A , (2.11)

JJ drNdp' EN".~*TI

where rN is a vector of the N Cartesian coordinates of the system, pA is a vector of the momentum
coordinates conjugate to rN, H(re,pN) is the full system Hamiltonian, k5 is Boltzmann's constant and T

. is the temperature. We select rN and pN from a Boltzmann distribution on the transition state surface. ,
For the case of a solvent interacting weakly with the X3, the transition state can be conveniently defined
as lying along the symmetric stretch and bend coordinates passing through the lowest lying saddle point
on the gas phase LEPS potential surface of X3. We now turn to the details of the initial condition sam-
ping.

. ..-- .- 2"



-6-

1. Hamiltonian Separation
The reaction system coordinates comprise a set of "fast" degrees of freedom, q, associated with

the X3 vibrational normal mode coordinates and the remaining "slow" degrees of freedom, R, charac-
tristic of the solvent translational motion and the rotational and translational motions of X3 . In the
spirit of the familiar Born-Oppenheimer approximation for separation of nuclear and electronic motions,

the Hamiltonian appropriate for our initial sampling is written as
hH(r",pN) = H(q,p,R,P) = HI(q,p;R) + H2(RP;4), (2.12)

in which p and P are momenta pertinent to q and R respectively, HI(q,p;R) is the Hamiltonian for X3
which is parametrically dependent on the solvent coordinates R, and H2(R,P;q) is the Hamiltonian for
the solvent which is parametrically dependent on the average value of the X3 vibrational coordinates, .
If necessary, this formalism may be generalied42 to allow for quantization of the fast variables q.

In the limit of weak coupling between X3 and the solvent, we can ignore the parametric depen-

dence of HI on the liquid coordinates R, and HI reduces to the X3 gas phase Hamiltonian HI(q,p). The
solvent Hamiltonian, H2, is parametrically dependent on 4 which we take as q.q, the coordinates of the
saddle point Thus, in the weak-coupling limit, H becomes

H(q,p,R,P) = HI(qp) + H2(RP;qq). (2.13)

The problems associated with a molecular dynamics evaluation of any ensemble average, such as
Eq. (2.11), are that standard random sampling techniques give a poor sampling of the sensitive variables
q, and many different initial conditions must be sampled for proper convergence. In addition, random
sampling techniques do little to provide physical insight into the regions of phase space which contri-
bute most to the integral and, therefore, are important into the overall "chemistry" of the process. For
example, the lowest lying saddle point on the LEPS potential surface occurs for linear X-X-X. This
may, at first, lead one to believe that the most probable configuration for a reactive trajectory would be
a collinear arrangement of X-X-X, as this requires a minimum of activation energy to cross the barrier.
However a significantly bent configuration is actually the most probable arrangement of X-X-X; this is
due to the entropic effect of more volume in configuration space at bent geometries and compensates
for the increased activation energy required. In fact, the probability for an exactly linear configuration is
zero. We will take this feature into account in what follows.

The distinction between the fast and slow variables in the system, as well as the assumption that
there is weak coupling between the X3 moiety and the solvent, allows us to choose initial conditions for
the X3 fast (i.e. vibrational) coordinates, q, independently of the choice of initial conditions for the
remaining slow variables, R, (i.e. solvent translation, X3 translation and rotation). In addition, classi-
cally, the initial conditions for momentum variables can be selected independently of the position coor-
dinates. We choose an integration scheme which takes advantage of the parametric dependencies in Eq.
(2.13) allowing us to determine initial conditions separately for the X3 and for the solvent, taking the
parametric degrees of freedom into account in an average way. A good approximation to Eq. (2.11)
useful for generating a quadrature scheme thus is

(A dqdp J(q,p)e"' ( " T e' dRdP e A(q,p,R,P) (2.14)

J dqdp J(q,p) e .
-J1yAMT JdRdP e -H2(R .P2.)-

We write the X3 Hamiltonian as

Hl(q,p) = 01(q) + TI(p) (2.15)

and the solvent Hamiltonian as

H2(R,P;qq) = %(R;qq) + T(P), (2.16)

in which O1 (q) is the gas phase potential energy (LEPS) of the X3 reaction system, 0 2 (R;q..) is the sol-
vent potential energy which is parametrically dependent on qq, TI(p) is the vibrational kinetic energy
of X3, T2(P) is the solvent translational kinetic energy plus X3 translational and rotational kinetic
energy, and J(qp) is the Jacobian which is yet to be determined for transformation from Cartesian

•~ - - . •. . . .-.. , .- ....- . . .. ..... ..
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variables to the internal vibrational coordinates, q, of X3. Eq. (2.14) is evaluated using a product qua-

drature in which the q, p, R, and P coordinates are chosen independently: P by a Gaussian random
number generator, R by molecular dynamics, and q and p by product Gauss-Hermite quadrature in the
internal coordinates (see below). Note, however, that the quadrature scheme used provides a formally
exact evaluation of Eq. (2.11) in the limit of an infinite number of trajectories. The approximation used
in generating the quadrature only slows the convergence.

2. Effective LEPS Potential

The integral in the ensemble average Eq. (2.14) over the X3 vibrational degrees of freedom can
now be written as

dqdp J(q,p) e" ('a ~ = dq J(q) C yi [J dp e,''J (2.17)

where we choose q to be the normal coordinates of X3 and choose p independently of q so that J(q,p)
is only a function of q. The gas phase LEPS potential for X3 can be conveniently written as a function
of the X3 valence coordinates r1 , r2, and 0, in which r, and r2 are the bond lengths between the center
atom and the outer two atoms respectively, and 0 < 8 .g is the X-X-X bend angle. introducing these
variables allows us to evaluate the Jacobian, and thus write the integration over internal position coordi-
nates in Eq. (2.17) as

-*I~qkT n2V 4LMP( rSyk&T
J dq 1(q) e  = 8n2V dr, dr2 dO J(rl,r2,O) e

=8R2V drI dr2 A rdrjsin0 e .* ?L ey rT (2.18)

where V is the volume. If we write an "entropy-corrected" potential as

0'(r,r 2,0) = OU 'S(r,r,O) - kT in[J(r1,r2,0)/J(eIrO')] , (2.19)

in which J(rI,,0') removes the dimensionality in In, then Eq. (2.18) becomes

j dq (q) eI(4t sT = J(r,,e,) 8n2V dr, dr2  dO e  (2.20)

Figure 2 shows the shape of the potentials 0'(r,r2 ,O), (20APS(rrp2,9) and the function
-kT In[J(r,,r2,O)/J(I,,Oa)] versus angle 0 for r, = r2 = 2.254 A, r, = r1 , P = r2, 0W = 900 (i.e.,
sin(01) = 1), and LEPS potential parameters defining the 20 kcal/mol barrier (see Table 2). For these
parameters the minimum in energy of '(0) occurs at 0 - 148.50. The use of internal coordinate vari-
ables and the effective potential, 0', has given us some insight into the nature of the most important
position coordinates at the saddle point; we now see, as alluded to above, that the bent configuration of
X3 is actually more probable than the linear configuration of X3 even though the latter is a lower energy
configuration in the LEPS potential. The effective potential "knows" about the entropy effect of having
more bent configuration space available to compensate for the higher activation energy of the bent X3
geometries.

The effective potential, 0'(r,r2,0), is used in the selection of the initial position and momentum
coordinates for X3. Normal modes are determined at the potential energy minimum of 4'(r,r2,O) which,
as can be seen from Fig. 2, is well approximated by a quadratic potential close to the minimum in the
saddle point region. These normal modes may be interpreted geometrically as a bending mode, a sym-
metric stretch mode, and an unstable asymmetric stretch mode which has imaginary frequency and is
used to define the reaction coordinate. Eq. (2.11) is evaluated by selecting values of rl, r2, and 0 using
a Gauss-Hermite quadrature in the normal modes of ', as suggested by Eq. (2.20). The asymmetric
stretch variable is constrained to be zero, thus defining the transition state surface upon which all trajec-
tories start. (It is not even a good idea to evaluate the integral Eq. (2.18) by the above method using the
unmodified potential, OW. due to the fact that the LEPS potential as a function of 0 is poorly
represented by a quadratic potential for which the normal mode analysis is applicable.)

. . '-. .
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As previously noted, the integration over the momentum variables, p in Eq. (2.17), is also per- O-
formed using Gauss-Hermite quadrature in the normal modes, and the momentum quadrature in the
asymmetric stretch is chosen to be even to ensure that there will always be some initial non-zero velo-
city along the reaction coordinate. (Choosing odd quadrature would give at least one initial condition
for which the asymmetric stretch momentum is zero). For every selection of the initial conditions of X3,
the remaining slow position coordinates of the solvent are chosen by constraining the X3 geometry at ¢-'-"
the minimum in 0"(rpr 2,e) while allowing the solvent to equilibrate using molecular dynamics. This
ensures that a significantly different solvent configuration is chosen for each trajectory in the ensemble.
(Using MD in this manner to choose initial position and momentum coordinates for the solvent requires
considerable computational effort.) Finally, the momentum variables of X3, P, are selected by a Gaus-
sian random number generator in a Boltzmann distribution at temperature 298 K.

3. Trajectories

Trajectories are produced, using the fidl Hamiltonian, by propagating both forward and backward
in time from time zero at the initial conditions on the gas phase transition state surface. For trajectories
which turn out to be reactive, propagating in one direction gives the dynamics from the transition state
to products while propagating in the other direction gives the previous time history from reactants to the
transition state. For unreactive trajectories, both forward and backward propagation leave the same
atoms bonded together. One way to double the statistics in the evaluation of Eq. (2.11) without having
to select twice as many solvent configurations is to run two trajectories for each solvent configuration,
one trajectory with initially positive velocity and the other with initially negative velocity in the asym-
metric stretch.

Finally, we have verified for the conditions presented here that there is no recrossing of this sur-
face in the gas phase, so that TST is exact there.

11I. X3 In Argon
In this section we present our results for the special case of the hypothetical reaction of X + X2 in

liquid argon, with X having the mass of chlorine 35. The LEPS parameters are initially chosen to
describe a 20 kcal/mol barrier height, a barrier frequency of 419 cm- 1 and the isolated molecule Cl2
Morse potential 36 (see Table 2). The Lennard-Jones parameters (see Table 1) characterize a weakly-
interacting solvent which consists of 100 argon atoms at a density of 1400 kg m -r (pe = 0.83)
designed to approximate the density of argon when cool enough to liquefy at a pressure of I atmo-
sphere. (The actual molecular dynamics are carried out at 298 K.) Results for this system described in
Sec. A are then analyzed in Sec. B, while the effects of lowering the barrier frequency are considered
in Sec. C.

A. Results

According to simple TST, every trajectory which arrives at the transition barrier goes directly on
to form products. We examine this assumption for the 20 kcal/mol X3 in argon system and observe that
there are no solvent induced barrier recrossings in the 126 trajectories sampled; TST is exact. The rea-
sons for this are described below in Sec. B.

There is, however, a considerable effect of the solvent on the details of the reaction trajectories as
they approach to, and recede from the transition barrier. Figure 3 illustrates how the solvent can perturb
a typical reactive trajectory by comparing the trajectory on the gas phase potential surface and in solu-
tion. The solvent is seen to change the precise course of the trajectory away from the barrier compared WII
to its unperturbed path in the gas phase. This process can be understood in simple terms by examining
the time-dependent exchange of energy between the various active degrees of freedom of X3 and the
solvent. Using Eq. (2.11), the average energy of X3 as a function of time during the reaction is com-
puted for 126 trajectories. After the center of mass motion of X3 is removed, the average total energy of
Xs is partitioned into the modes of X2 vibration, rotation and translation and the translational energy of
the X atom. This partitioning is not uniquely definable in the sense that other definitions are possible,
reflecting the lack of chemical precision in defining reactants and products in the transition barrier
region because of the strong X3 interaction there. We choose to conveniently define the two closest X
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atoms as being "diatomic" X2 and the other atom as being "free". When one atom becomes well
separated from the other two this definition becomes chemically meaningful and the LEPS potential
reduces to just the bound X2 Morse potential. The total "vibrational" energy is then taken to be the
sum of the vibrational kinetic energy of the closest two atoms and the total LEPS potential energy of
all three atoms. (There is, of course, exchange of vibrational energy with the solvent.) Note that the",
zero of the LEPS potential function is taken to be the potential energy of an isolated X2 molecule at its
equilibrium geometry.

Figure 4 shows the average over 126 trajectories, illustrating the time-dependent partitioning of
energy for X3 in argon solvent (solid line) at T - 298 L, and compares this with the average X3 partion-
ing as a function of time in the gas phase (filled circles). Time zero is at the transition barrier. The plot
is symmetrical about time zero as a consequence of the symmetry in the potential function. It is
observed that there is a short period of time before and after the transition barrier, between approxi-
mately -0.05 ps to 0.05 ps, for which the partitioning of energy of the X3 in solution is just like that in
the gas phase, in accord with the representative trajectory shown in Fig. 3. At longer times away from
the transition barrier, relaxation of the X2 translational and rotational energy and the X atom transla-
tional energy in the solvent reduces the average total energy of the X3 system by approximately 17
kcal/mol relative to the initial total energy at the transition barrier. No such decay can occur in the gas
phase where the total X3 energy must of course remain constant. The X and X2 excess translational
energy increases sharply as one falls from the transition barrier, reaching a plateau in the gas phase but
rapidly decaying in solution as energy is transferred to the solvent. These processes have an approxi-
mately 02 ps time scale. Similar effects can be seen in the X2 rotational energy with a time scale of
about 0.2 ps. This rotational energy is small, originating 43 from a) the repulsion of the X from the X2
for bent original configurations, b) bend vibrational motion at the barrier, and c) the original angular
momentum of the X3 at the transition barrier.

The energy in the separated diatomic X2 vibration decays in approximately 0.25 ps to about 3 Re),
where o) is the ground state angular vibration frequency, 560 cm- , of X2 = C12, thus making the pro-
duct diatomic vibrationally "hot" for a comparatively long period even in solution. This feature is
shown by Fig. 4 to be identical in both phases and thus is governed exclusively by the LEPS potential
of the reaction system. One expects there to be residual vibrational energy in part because the X-X
bonds at the transition barrier are slightly longer than the equilibrium X2 bond length. This excess
vibrational energy does not relax significantly into the argon solvent in a 1.0 ps interval (Fig. 4), but
rather over a time period measuring hundreds of picoseconds. This was verified by integrating one typ-
ical trajectory out to 250 ps and observing that the vibrational energy decays over this time period to
about half of its "initial" value of 3 Uw.

For this system, the reaction outcome is determined on a very short time scale. The characteristic
time scale for the reaction fate to be decided is less than 0.1 ps and the reaction per se is essentially
finished after the rotational and translational energy is dissipated to the solvent. We explore this aspect
further by considering the space and time dimensions within which the reaction probability is sensitive
to solvent momentum perturbation using a method suggested by Andersen.29 An ensemble of eighty
reactive trajectories with the 20 kcal/mol barrier in argon solvent is selected, and the trajectories are
interrupted at some time, T, before crossing the barrier; all solvent molecules outside a sphere of a
given radius measured from the center of mass of X3 are given random momenta selected from a
Boltzmann distribution while keeping all position coordinates the same. Note that the momenta of the
reactive trajectories is not necessarily Boltzmann. The ability of such a solvent momentum perturbed
trajectory to cross the barrier is a measure of the solvent momentum "sphere of influence" in time and
space upon the reaction. Figure 5 shows a 3D plot of the probability of successful reaction versus both
the time, -, between momentum perturbation and original trajectory barrier crossing, and the radius of
the spatial sphere outside which the solvent momentum is perturbed. We find, as one might intuitively
expect, that for a constant spatial radius, the probability of reaction decreases for increasing time while,
for constant time, the probability of reaction increases for increasing radius. If all of the solvent
molecules' momenta are perturbed (i.e. for radius set equal to zero) at time r, then it is seen that for 'r
> 0.14 ps the solvent is able to divert all trajectories away from reaction. Note that this 100% diversion
time is on the same time scale as the fastest energy relaxation process, i.e. translational energy relaxa-
tion; this is also as one would expect on the basis of Fig. 4. The perturbation in solvent momenta must
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"Sh"S evolve by translation into a perturbation in solvent positions before the force imparted to the X3 by the
solvent is altered, and thus finally the motion of the X3 over the barrier can be deflected.

B. Discussion and Analysis

1. Recrssinp"
We observe no solvent induced recrossings for 126 trajectories with the X3 system in argon with

the 20 kcal/mol barrier. This can be easily understood qualitatively by realizing that the characteristic
time scale16 Is on a barrier of frequency cob - 419 cm- is on the order of (Ob)' - 0.01 ps. On this
sharp energy barrier, the fate of the trajectory is decided very quickly (- 0.01 ps) and there is essen-
tially no time for the solvent to influence the outcome of the reaction through any effective collisions
with the X3. This idea of the solvent motion and its effect on the reaction dynamics can be expressed
more quantitatively by relating the time dependent solvent friction acting on the reaction coordinate16.17

to the transmission coefficient ic

k (3.1)

The time dependent friction, (t), is given by the time correlation function of the fluctuating forces on
the reaction coordinate

( ) = l / F F ( ) ,(3 2 )

in which F is the force acting on the reaction coordinate with effective mass I and (kB7) - l . This
friction, plotted in Fig 6, is computed by freezing the X3 coordinates with a bent X-X-X geometry
corresponding to the minimum in potential energy of the effective potential, 4'(r,r2,O) (see Sec. 11 and
Fig. 2), on the transition barrier, and measuring the time correlation function of the fluctuating solvent
forces resolved onto the reaction coordinate.17 The time dependent friction is also computed for the X3
species in the linear geometry on the transition barrier and is illustrated in Fig. 7. This friction is simi-
lar to that for the bent geometry, which demonstrates that the bend angle of X-X-X at the transition
state does not significantly affect the nature of the time dependent friction. Because of the very fast
passage over the barrier, the effective friction acting on the reaction coordinate is not the full time
integrated friction ; given by Eq. (1.2), but is rather closer to the "instantaneous friction" felt by the
reaction system. A convenient approximate measure of this is the value of the friction at time zero

=0) = (P/jt) (F2 ) 2 wO, (3.3)

which we describe in terms of an initial frictional frequency, (. In contrast, the full friction, , would
be important for long time scale (e.g., diffusion controlled) processes. In Fig. 6 we see that the solvent
friction for argon acting on the bent X3 system falls off in an approximately "Gaussian" manner with a
characteristic time T - 0.19 ps from its initially weak (o = 35 cm- 1) value; in particular, a) is small
compared to the barrier frequency, wb, value of 419 cm l. Since (o; / Ob << 1 we would expect, 1618 as
we indeed observe in the dynamics, that there are no solvent induced recrossings (in 126 trajectories),
that Kc is very close to one, and thus that TST is valid. This result will also hold for the linear
geometry for which the initial value of the friction and the short time "Gaussian" decay is the same as
for the friction of the bent geometry (see Fig. 7). (However, the time decay of the friction is slightly
longer for the linear geometry than for the bent geometry. Thus, for the short time scale barrier cross-
ing, the linear and bent X3 system experiences the same friction, but for longer time scale processes, the
linea system would have slightly more friction than the bent system.)

The time dependent friction on the reaction coordinate is explicitly incorporated into the general-
ized Langevin equation theory of Grote and Hynes 16 18 for rate processes. Here, ic is calculated as

IC = O / o,, (3.4)

in which A, is termed the reactive frequency and is a measure of the solvent response to the reactive
motion across a barrier of frequency wb. It is determined from the self-consistent equation

, 'b (3.5)

o°" I
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which involves the barrier frequency, w, and the Laplace transform frequency component of the time
dependent friction

CO, dt e-Y (t) (3.6)

at the reactive frequency ,. For very small friction Eqs. (3.4) and (3.5) give X7  
0ob and K- = 1. Also,

for sharp barriers, it can be shown16 -15 that X, = wb and, again, c = 1. If we consider stronger friction
or more rounded barriers, then it is expected that x will decrease and that there will be barrier recross-
ings. With a Gaussian approximation to the decay time behavior of r(t) (Fig. 6),

= wl '-') (3.7)

and use of Eqs. (3.4), (3.5) and (3.6), x can be simply determined as a function of barrier frequency tmb
for various values of C and the results are shown in Fig. 8. The calculation for argon with cob - 419
car, O = 35 cn - 1, and the relaxation time c = 0.19 ps, given by fitting Eq. (3.7) to the data in Fig. 6,
gives x - 1.0, in agreement with the results from the molecular dynamics computation.

These results emphasize that it is the solvent response at the reactive frequency which determines
how effective the solvent is in hindering the reaction progress over the barrier. The friction felt by the
reaction system during the time period (Wob).l is likely much smaller than the long time friction C. Thus,
it is not surprising that the 20 kcallmol barrier reaction of X3 in argon solvent, which spends little time
on the barrier, exhibits very few recrossings and ic = 1. Fig. 8 also shows that for smaller values of Wb,
K is predicted to eventually decrease, and simple TST to ultimately fail. We explore the effect of -

lowering the barrier frequency, wh, in Sec. C and will see that, for lower barrier frequencies, the effect
of the solvent friction increases and some recrossings are observed.

2. Energy Relaxation

The observed basic patterns of energy relaxation in Fig. 4 are what we intuitively expect,
' nts = qrr << Ew, and can largely be understood in terms of existing models of energy and phase
decay. 4 7 Vibrational energy relaxation by the solvent is much slower than translational and rotational
energy decay and this is understood by considering that the effective friction at the oscillator frequency,

(os) - (t), (3.8)

estimated by a Landau-Teller type expression is very small due to the high X2 oscillator frequency of
approximately 560 cn -'. The "d" subscript emphasizes that the time dependent friction here refers to
the correlation of the solvent forces on the diatomic fragment.

Since the remaining 3 Xo vibrational energy in the nascent product X2 decays only slowly and
the corresponding amount in the nascent reactant X2 is only acquired slowly, a natural question arises:
Is vibrational activation up to Ev = 3 to of the reactants the rate limiting step? If so then the rate con-
stant, k, will depend upon the dynamics of vibrational activation by the solvent. The answer is no. This
can be explained with the aid of the Stable States Picture of reactions.10 , 

18,48 For a symmetric reaction
the influence of the vibrational activation up to energy Ev is

k +(3.9)
I1+ 20k' 1.I1%

in which the influence of the solvent on the barrier passage is justifiably ignored and kv is the vibra-
tional activation rate constant up to Ev. The structure of kv is

=v kyZye-O, (3.10)

where Zv refers to the details of the vibrational activation process, e.g., Landau-Teller type transitions.
Clearly vibrational activation dynamics are only rate limiting if they represent the slow step: kv << knm.
But since Ev is approximately 5 kcal/mol while the activation energy is 20 kcal/mol, we instead have
AT - e"  << kv. Thus the barrier passage is rate limiting, k -+ k'3 and the dynamics of vibrational
energy transfer to and from the solvent play no role in the reaction rate. (The relative unimportance of
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vibrational energy transfer in atom transfer as opposed to isomerizations has been discussed I° else-
where). Not only must the X2 be properly vibrationally excited, but also the liquid must be in a part of
phase space where it can translationally (and rotationally) thrust the X atom and the X2 molecule
together with sufficient energy to reach the barrier top. The TST rate constant reflects the equilibrium
probability of all of these events occurring simultaneously.

Finally, it is conceivable that the approximately 17 kcal/mol of energy rapidly transferred to the
solvent in the reaction could have resulted in a local "heating" effect, in which translationally energized
solvent atoms quickly reactivate the incipient products to recross the barrier. This does not occur;
instead the excess energy is rapidly transferred to the other solvent atoms outward from the site of the
reaction.

3. Simple Model for Reaction

A simple 3-stage picture for this reaction, as shown in Fig. 9 emerges in light of the above obser-
vations: activation of reactants in stage 1, barrier crossing in stage 2, and deactivation of products in
stage 3. In the first stage the dynamical role of the solvent is to furnish activation energy to the reac-
tants and properly phase their motion in a fashion analogous to the way it absorbs the excess energy
and dephases the products formed in stage 3. There are three time scales for energy exchange with the
solvent in the first and third stages corresponding to vibrational, rotational and translational energy
exchange. In addition to solvent induced energy activation and relaxation ('i), the reaction also requires
the proper phasing among relative translational, rotational and vibrational motions (2). The second
stage includes formation from the energized reacting species of the activated complex and barrier cross-
ing. Here, for cob >> ait, the reaction proceeds over the barrier top largely unimpeded by the solvent,
and recrossings are not observed. In Fig. 4 one can see that the partitioning in the liquid and gas phases
is essentially the same for a time period of about -0.05 ps to 0.05 ps. In this period the weakly-
interacting solvent simply does not have enough time to interfere with the reaction progress, and there
is essentially unimpeded gas phase dynamics for the crossing over the barrier. This statement holds
even though, as shown in Fig. 3, for longer times before and after the transition barrier the reaction in
the liquid phase bears little resemblance to a gas phase reaction. As soon as the incipient products are
formed in stage 3 they rapidly transfer translational and rotational energy back to the solvent, and are
thus energetically prohibited from recrossing the barrier. The opposite situation, whereby the solvent
transfers additional energy to the products after they are formed, is not observed because, as discussed
in Sec. 1]].B.2, the energy of the products is high compared to kBT and the more probable event is
energy deactivation. Thus, we find TST to be an excellent description for this reaction.

We now examine the effect on the dynamics and the rate constant of lowering the barrier fre-
quency.

C. Variation of Barrier

In Sec. I.A we found that TST is appropriately and successfully applied in the region -0.05 ps to
0.05 ps during which time the barrier is crossed and the fate of each trajectory is decided. We find, as
predicted,16, 18 that TST is valid for the case of a sharp barrier and a weakly-interacting solvent. But if
the barrier frequency is lowered sufficiently, then the characteristic time, (obiy', on the barrier may
become sufficiently long that the solvent has time to induce recrossings (see Fig. 8); then it is predicted
that TST should fail to some extent (c < 1)

Since we are concerned with the solvent's ability to disrupt motion across the barrier and the sub-
sequent breakdown of TST, we will consider the effect of changing the barrier frequency, wob, as
motivated above. A simple modification of the LEPS potential parameters 3D,, i - 1,2,3 (see Table 2),
allows the simultaneous adjustment of the barrier height and barrier frequency, while preserving the
asymptotic characteristics. The barrier height has no direct bearing on the dynamical influence of the
solvent although it will affect the probability of formation of the activated complex (and hence the rate

constant) through the Boltzmann weighting e where E* is the barrier height. All other things being
equal, a lower barrier height will result in a lower barrier frequr icy. We select two additional barrier
heights of 10 kcal/mol and 5 kcal/mol with corresponding barrier frequencies 288 cm - 1 and 168 cm-1,
as shown in Table 2.

* .
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Trajectories are run on the above potential energy surfaces in argon solvent. While no recross-
ings occur for the 10 kcal/mol barrier, some recrossings are observed for the 5 kcal/mol barrier. A bar-
rier crossing is counted each time that the value of the asymmetric stretch reaction coordinate changes
sign during the course of the trajectory, beginning with an initial crossing toward either the product side
or the reactant side. Crossing statistics for ensembles of trajectories are presented for the 20, 10 and 5
kcal/mol barriers in Tables 3a, 3b and 3c respectively. The statistics in the tables are determined by
computing trajectories initialized at the transition barrier with either positive (toward products) or nega-
tive (toward reactants) momentum in the asymmetric stretch reaction coordinate. The table shows that
some recrossings occur for the lowest barrier reaction.

Table 3 (a). Barrier Crossings for 20 kcal/mol X3 Barrier in Argon

Initial and Final States of TrajectoriesNumber of Crossings i.
Reactant - Reactant Reactant -Produ Product - Reactant Product - Product

1 0 126 126 0

Table 3 (b). Barrier Crossings for 10 kcal/mol X3 Barrier in Argon

Initial and Final States of Trajectories
Number of Crossings

Reactant - Reactant Reactant - Product Product - Reactant Product - Product

0 32 32 0

Table 3 (c). Barrier Crossings for S kcal/mol X3 Barrier in Argon

Initial and Final States of Trajectories
Number of Crossings ______

Reactant - Reactant Reactant - Product Product - Reactant Product - Product

1 0 27 26 0
2 5 0 0 4
3 0 0 2 0

Thus, Table 3c indicates that while 27 trajectories with initially positive momentum directly
formed products, 5 trajectories recrossed quickly to form reactants. Similar features are displayed for
trajectories with initially negative momentum. However, the crossing patterns in the table report only
the number of trajectories for a particular number of crossings and give little indication of the relative
probabilities for those trajectories determined by the quadrature discussed in Section II.C. One estimate
of the importance of these probabilities is to compute the average number of crossings with proper
weightings using Eq. (2.11) for only those trajectories which react. For the 20 kcallmol, 10 kcal/mol
and 3 kcal/mol barriers the average number of crossings is 1.00, 1.00 and 1.03 respectively. A better
estimate for the recrossing influence on the rate constant is the transmission coefficient .

The effect of the recrossings is to make TST an overestimate of the rate constant, and the correc-
tion to the TST rate constant is given by ic: 1. We will determine the correction r, rather than the rate
constant k itself, as the latter requires a knowledge of the free energy of activation due to solvent .".

effects, i.e. the potential of mean force, which is a computationally intensive calculation using MD.
4 9 -5 1

Furthermore, ic is a direct measurement of the dynamical influence of the solvent in affecting the rate

N.'..-.!
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constant.
1. Expression for x

According to the Stable States Picture of reactions4" the rate constant, k, can be expressed by the
correlation function formula

= idt ( ji*(t ), (3.11)

in which j is the flux counted positive from reactants across the transition barrier at time zero and j*(t)
is the flux counted negative toward products at a later time t. The asterisk indicates that the dynamics
of the trajectory must be followed only long enough that either a stable reactant or product is formed
(this typically occurs in our reaction system in much less than 1.0 ps) and ( )R denotes an average over
the equilibrium distribution, normalized by the reactant partition function Qt. The time integral adds up
all the reactive flux into stable products so that the more reactive trajectories there are, the larger is the
correlation and the larger is the rate constant k. The expression for k in Eq. (3.11) is equivalently writ-
ten upon integration as1 o

k = lin ( j e[x(t)]), (3.12)

where the limit means we follow trajectories only long enough in time to determine whether they form
stable products or reactants, O[x(t)] is a step function which equals one on the product side and zero on
the reactant side and 4 t) is the asymmetric stretch reaction coordinate as a function of time such that x
is zero at the transition barrier for t - 0. We now describe various calculational forms of Eq. (3.12) ,
which are convenient for calculating the transmission coefficient ic and closely related to the observed
crossing patterns displayed in Table 3.

In simple TST, the rate constant can be calculated by assuming that every trajectory at the transi-
tion barrier which has initial positive flux toward products will always end up as products, while such

trajectories with initial negative flux toward reactants will always go to reactants. Only those trajectories
which form products contribute to the simple TST rate constant, and there are never any recrossings.
Thus, in calculating k0 , we need to consider only those trajectories which have initially positive flux,
j., and there is no need to follow dynamics for any time past zero because the fate of all trajectories is
decided by sign of their initial momenta. The flux j is given by the velocity across the transition bar-
rier, (p/$g) 8(x), where p is momentum, ;L is the reduced mass along the reaction coordinate of the X3
species, 8(x) is the delta function of position along the reaction coordinate with x = 0 at the barrier, and
the TST rate constant is4,6, 20, 21. 39 ,52

O r = ( j.), .'.'

= (1gp) 8(x) eI[x(t)] ), ..

(3.13)

in which t indicates that we need to consider only the initial conditions at the transition barrier, and
O(p) is a step function which is one for positive momenta at the transition barrier and zero for negative
momenta.

In the presence of recrossings, the actual rate constant, Eq. (3.12), is conveniently split into two
parts representing contributions from the trajectories with initially positive momentum and those with
initially negative momentum as

k=( j O[t)] )=( j. 0[x(t)] ) + ( j- e[x(t)] )j w k. + k-, (3.14)

in which j. represents the initially positive flux while j- is the initially negative flux across the transition
baTier, both determined by the magnitude and direction of the initial velocities along the asymmetric
stretch reaction coordinate at the transition barrier. We have three methods of applying Eq. (3.14) to
the calculation of the transmission coefficient for the rate constant using MD. -:

Method I is to sample trajectories which always have initially positive velocities at the transition
barrier at time zero. This focuses, as does TST, on those trajectories initially headed toward products

.............................. ......................... . .
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from reactants. For the contribution k. the fate of the trajectories is determined by computing the
dynamics forward in time. For the contribution k_. we imagine time reversing the velocities of all par-
ticles in the reaction system. This time reversal converts j. to -j, in the k- contribution to k in Eq.
(3.14) as well as changing the sign of t in ( j- 0[x(:)] )R. Thus k- is given by

(j e0(:)) )i = - ( j e[4-:)it. (3.15)
The step function 0[x(-a)] indicates that the trajectories must originate from the products side in the

asymptotic past. Thus, the total rate constant is given in terms of initial positive velocity trajectories by

k = ( j + 0( t)] ), - ( j+ O[x(-t)] ), (3.16) WE

and the transmission coefficient x is

k - (= , 94]- ( + -] (3.17) ),R

Figure 10 illustrates the three predominant types of crossings observed (Table 3): (a) is a direct,
successful reactant -+ product transition with no recrossing; (b) is a single recrossing, reactant -+ pro-
duct -+ reactant, after the transition barrier is initially crossed in the forward direction, and (c) is a sin-
gle recrossing, product --+ reactant -+ product, in which the recrossing occurs prior to a reactant -+ pro-
duct crossing at t - 0. The equilibrium distribution on the transition barrier is determined by the algo-
rithm for sampling the initial conditions using Eq. (2.11), in which the unnormalized probability
wi = • (q-P-a.Y. and the initial velocities vi along the asymmetric stretch, are determined for each tra-
jectory i in the ensemble average. Thus, for N trajectories in the ensemble average, x is computed as

£ w, Ivi I Q,

= N (3.18)
v'wi l I

. i

where + indicates all trajectories have initially positive velocity across the transition barrier, and the
value of Q, depends on the initial and final states of the trajectory i,

+1 f Reactant - Product (3.19)

0 =f Reactant Reactant or Product -- Product (3.19)
-1 if Product -+ Reactant

As described in Sec. Il.C.2 before a particular trajectory is computed, the X3 coordinates are con-
strained while solvent coordinates are randomized by integrating the solvent dynamics out to many
picoseconds. This ensures that a significantly different solvent configuration is chosen for each trajec-
tory in the ensemble. Using MD in this manner to choose initial position and momentum coordinates
for the solvent requires considerable computational effort. One way to double the statistics in the deter-
mination of ic without having to select twice as many solvent configurations is to run two trajectories
for each solvent configuration, one trajectory with initially positive velocity and the other with initially
negative velocity in the asymmetric stretch. This is method 2 for calculating xc, in which the trajec-
tories ae sampled with both positive and negative initial asymmetric stretch velocities and time reversal
is applied to all trajectories in order to compute the dynamics and determine the initial and final states.
The negative flux initial conditions are chosen from the positive flux initial conditions by just changing
the sign of the velocities of the X3 while keeping all position coordinates and the solvent's velocities
unchanged. Thus, the total number of sampled trajectories is twice that in method I and there is an
aqual number of sampled trajectories from both the positive and negative flux initial conditions with
coirespond ig equal weights, wI, and equal but opposite velocities, vi, for X3-. Since the reaction is sym-
metric with respect to reactants and products, the definition of reactants and products is a matter of con-
vention for a given trajectory. In method 2, as in method 1, we want to sample all trajectories which
we headed initially towards reactants, so the definition of reactants and products will depend on
whether the flux is positive or negative. In method 2, all positive flux initial conditions (also used in
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method 1) are defined as beading toward products, while all of the negative flux initial conditions are

also counted as heading toward products for the TST prediction (only for method 2). This gives i as

S=jiwuIv ]' I wi Iv, I Q, - Iwa Iv, I Qi (320)

where ± indicates all trajectories with either positive or negative flux, + indicates trajectories with posi-

tive flux only and - indicates trajectories with negative flux only. Eq. (3.20) can be shown to follow
directly from Eq. (3.19).

Finally, in method 3, we use the positive and negative flux distributions as described in method 2
but keep the definition of reactants and products the same for both the positive and negative flux initial
conditions. This convention corresponds to the definition of reactants and products in Table 3. Thus, all
positive flux initial conditions are headed toward products, and all negative flux initial conditions are
headed toward reactants. Only knowledge of the final outcome of the reaction and the magnitude and
direction of the initial flux is required to compute the transmission coefficient. Trajectories which end
up as products contribute either positively or negatively to the rate constant according to whether their
initial flux is positive or negative. This leads to the expression

Wi = w Iv I wi Ivi I Q's - wi Ivi I Q'i (3.21)

where

1 if Product
0 if Reactant . (3.22)

This last formula is the direct implementation of Eq. (3.14) when divided by k. It is also
related to that developed by Chandler53 and employed in isomerization studies.54 It differs in that tra-
jectories here are simply followed until stable reactants or products are formed, rather than until certain
correlations plateau in time.53, 54

All three methods will give the same answer in the limit of an infinite number of sampled trajec-
tories, but methods 2 and 3 are ways to maximize the available computer time by doubling the number
of sampled trajectories without having to recompute a new set of initial solvent configurations.
Methods 2 and 3 require only a small additional amount of computer time compared to method 1.

2. Results for iK

For the 5 kcal/mol barrier with a barrier frequency of 168 cn -1 , x is computed from an ensemble
of 64 MD trajectories and using methods 1, 2 and 3 as 0.91, 0.92 and 0.91 respectively. Using Eq.
(3.4) and a Gaussian approximation to the time dependent friction for argon given by Eq. (3.7) with x -
0.19 ps, x is determined from Grote-Hynes theory as 0.98 for the 5 kcal/mol barrier. For the 10
kcal/mol barrier (and the 20 kcal/mol barrier), both MD and Grote-Hynes theory predict x to be one.
These calculations are compared in Table 6. The agreement in the full MD and time dependent friction
methods of calculating x is excellent, and both methods give the lowest value of ic for the lowest bar-
rier frequency.

It is clearly very interesting to go to lower barriers with lower cob values, and we have examined
a 2.6 kcal/mol barrier which has a barrier frequency of cob - 20 cm- 1. However, for this barrier we find
multiple recrossings in the gas phase. These apparently arise from intramolecular energy flow between
the reaction coordinate and coupled non-reactive modes.55 The longer time spent on the barrier, (cob)-'
- 0.3 ps, may allow such coupling effects to develop. These isolated molec Ae dynamics must be under-
stood before the solvent influence on the reaction can be properly characterized, and this topic is left for
future research. Nonetheless it is worth stressing this observation as a cautionary example of the possi-
ble unphysical character of low-barrier, one-dimensional reaction studies which ignore other internal
degrees of freedom.

........................................-
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3. Energy Relaxation
The energy decay patterns for X3 in argon for the 10 kcal/mol and 5 kcal/mol barriers are similar

to those for the 20 kcal/mol barrier in Fig. 4 but are scaled down in magnitude in proportion to the bar-
rier heights. The energy decay patterns are presented for the 5 kcal/mol barrier in Fig. 11. An interest-
ing new feature is the transient rise in solution of the potential energy plus diatomic vibrational kinetic ,
energy of X2 above the gas phase value. We have traced this to a certain "cage" effect in which the
high density argon solvent temporarily holds the diatomic fragment in a region of finite X3 potential
energy-

IV. Variation of Solvent
In Sec. 1fl above, calculations of energy decay, solvent momentum sphere of influence, recross-

ings, and ic were presented for the reaction X + X2 in argon solvent. In this section we briefly explore
the corresponding results in helium and xenon solvents. These represent "light" and "heavy" molecule
solvents when viewed on the mass scale of X - Cl.

The solvent systems consist of 100 atoms at densities of 147 kg m -3 (pC3 = 0.36) and 3520 kg
M -3 (pxr = 0.80) for helium and xenon respectively, designed to represent the density of these solvents
at a temperature cool enough to liquefy at a pressure of 1 atmosphere. The actual molecular dynamics
are computed for a temperature of 298 K.

A. Energy Relaxation

The patterns for energy relaxation are shown in Figs. 12 and 13 for the 20 kcal/mol energy bar-
rier in helium and xenon respectively. The corresponding results for argon are shown in Fig. 4. The
translational and rotational energy decay times are faster in argon and xenon solvents and slower in
helium solvent. Helium, with a small mass, should be less effective in exchanging these types of
energy through collisions with X and X2, and indeed energy decay to and from translational and rota-
tional motion is relatively slow. Xenon, with a large mass, is similar to argon in its ability to dissipate
the excess translational and rotational energy. These patterns are not unexpected. Although this is not
shown in the figure, only helium begins to relax vibrational energy in less than 10 ps. This is in rough
accord with a Landau-Teller picture in which high frequency force components arising from rapid
helium motions are important. ..-

As with argon, the energy decay patterns for lower barrier heights are similar to those for the 20
kcal/mol barrier but scaled down in magnitude. The energy relaxations for the 5 kcal/mol barrier in
helium and xenon solvents are illustrated in Figs. 14 and 15 respectively. The cage effect discussed in
Sec. IV.C.3 for the ransient excess of X3 potential plus diatomic vibrational kinetic energy for the 5
kcal/mol barrier in argon appears again in Fig. 15 for the high-density, heavy solvent xenon, but is
absent in Fig. 14 for the lower density, light solvent helium.

Finally, the solvent momentum sphere-of-influence for the 20 kcal/mol barrier in helium solvent
is shown in Fig. 16. The momentum effect on the reaction by helium solvent is lower in magnitude
than for argon in Fig 5.

B. Recrossings
Trajectories are analyzed for recrossing patterns and the results for the 20, 10 and 5 kcal/mol

energy barriers in helium and xenon solvents are presented in tables 4a, 4b, 4c, 5a, 5b, and 5c. There
are no recrossings observed for the 20 kcal/mol and 10 kcal/mol barriers in any of the three solvents.
Also note that there are no recrossings observed on any of the barriers in the absence of solvent (i.e. in
the gas phase). The average number of crossings is computed for the 5 kcal/mol barrier in helium and
xenon as 1.00 and 1.01, respectively. This average includes the relative weights of the trajectories.

In Sec. 11 we used the idea of the time dependent solvent friction acting on the reaction coordi-
ame and found that, for the 20 kcal/mol barrier, the initial frictional frequency to in argon solvent is _

much weaker than the frequency associated with the forces driving the reaction down the barrier, that
recrossing re accordingly rare, and that the transmission coefficient K = 1. For the low, 5 kcal/mol
barrier height and frequency, some recrsings are observed and K decreases slightly. The two

... A.. .



18-

Table 4 (a). Barrier Crossings for 20 kcal/mol X3 Barrier In Helium '

Initial and Final States of Trajectories
Number of Crossings

Reactant - Reactant Reactant - Product Product - Reactant Product - Product , •

0 32 32 0

Table 4 (b). Barrier Crossings for 10 kcal/mol X3 Barrier in Helium

Initial and Final States of Trajectories ..-
Number of Crossings

Reactant - Reactant Reactant - Product Product - Reactant Product - Product

0 32 32 0

Table 4 (c). Barrier Crossings for 5 kcallmol X 3 Barrier in Helium

Initial and Final States of Trajectories
Number of Crossings

Reactant - Reactant Reactant - Product Product - Reactant Product - Product

1 0 30 31 0
2 1 0 0 2

additional solvents helium and xenon have a time dependent friction which differs from argcn, as illus-
trated in Figs. 6 and 7. Helium has a weaker friction than argon with initial frequency w; = 15 cm - 1, -.

and a short decay time T of about 0.06 ps, while the xenon friction is stronger with o; = 40 cm -1 and
decay time r of 0.36 ps. We observe that recrossings in these solvents (see Tables 4 and 5) for he low
barrier of 5 kcal/mol are similar to what is seen for the low barrier height in argon (see Table 3).
There are however, compared to argon, fewer recrossings in helium but more recrossings in xenon. This
is in accord with the calculation that there is less short time solvent friction for helium and greater short
time friction for xenon in comparison to argon. None of the solvents presents a great enough friction
on the reaction coordinate to induce recrossings for barrier heights of 10 and 20 kcal/mol, as summar-
ized in Table 6.

Using methods 1, 2 and 3 as described in Sec. I1, K is computed for 64 trajectories on the 5
kcal/mol barrier in helium as 0.96, 0.97 and 0.98, respectively, while K for 252 trajectories on the 5
kcal/mol reaction in xenon is 0.91, 0.91, and 0.92. As seen here and in Table 6, rc decreases for lower
barrier heights and for stronger solvent time dependent frictions. This is compared with Grote-Hynes
(GH) theory, Eqs. (3.4) - (3.6), for computing , when we use a Gaussian approximation to the time
dependent friction. For helium with a 5 kcal/mol barrier, barrier frequency cob = 168 cm -1 and r - 0.06
ps, GH theory gives Kc as 0.99, while for xenon, with t - 0.36 ps, K is predicted to be 0.95. A com-
parison of Kc computed from MD and OH theory is presented for all of the barrier heights and solvents
in Table 6. The estimated error in the values of Kc from MD for the 5 kcal/mol barrier is ±0.03. The
values for v from GH theory compare within 0.05 of the values determined by molecular dynamics
simulation and the trend for Kc to decrease with decreasing barrier frequency and increasing initial sol-
vent frequency are the same for both OH theory and MD.

The 5 kcal/mol reaction in xenon is an interesting one with which to calculate the predictions of
Kramers Theory.19 Since the xenon time dependent friction is of significant magnitude and fairly long

-1
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Table S (a). Barrier Crossings for 20 kcal/mol X3 Barrier in Xenon

Number of Csings Initial and Final States of Trajectories

Reactant - Reactant Reactant - Product Product -Reactant Product - Product

0 126 126 0

Table S (b). Barrier Crossings for 10 kcal/mol X3 Barrier in Xenon

Initial and Final States of TrajectoriesNumber of Crossings"i .-

Reactant - Reactant Reactant - Product Product - Reactant Product - Product

1 0 32 32 0

Table S (c). Barrier Crossings for S kcal/mol X3 Barrier in Xenon

Initial and Final States of Trajectories
Number of Crossings

Reactant - Reactant Reactant - Product Product - Reactant Product - Product

1 0 72 74 0
2 19 0 0 21
3 0 31 21 0
4 7 0 0 4
5 0 1 2 0

lifetime, (Figs. 6 and 7), the friction constant

OA dt (FF(t)) , (4.1)

is considerable. We numerically estimate from Figs. 6 and 7 that 105 cm - ' for the bent X3
configuration and = 198 cm - 1 for the linear configuration. Then the Kramers transmission
coefficients 19

c= 4 + ( f20ob)2 - (r203b) (4.2)

are 0.74 and 0.59 for the bent and linear configurations. These are noticeably less than the MD results
and the Grote-Hynes prediction, emphasizing again the importance of the short time scale solvent
dynamics for the reaction problem.

This short time aspect can be finally stressed by completely ignoring the time dependence of the
friction. Then to,) in Eq. (3.5) reduces to o/ , and we obtain the short time, nonadiabatic prediction
of GH theory 6 s1 "

= 1- (41 to.), (4.3)

solely in terms of the barrier frequency and the initial time dependent friction value. Equation (4.3)
agrees to within 0.01 with the Gaussian friction GH K values listed in Table 6 and is thus in very good
agreement with the MD K values.

1. Id'

- ... . ... '
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Table 6. Transmission Coefficients for Various Barriers and Solvents

Barier Barrier X Average Number of

eight Frequency Solvent(Molecular Dynamics) (Grote-Hynes Theory) Barrier Crossings
(kcal/mol) (cm - )

He 1.00 1.00 1.00

20 419 Ar 1.00 1.00 1.00

Xe 1.00 0.99 1.00

He 1.00 1.00 1.00

10 288 Ar 1.00 0.99 1.00

Xe 1.00 0.98 1.00

He 0.97 0.99 1.00

5 168 Ar 0.91 0.98 1.03

Xe 0.91 0.95 1.01

Finally, the three solvents, helium, argon and xenon, display weak coupling with the reaction
coordinate. This is reflected in the lack of recrossings observed for the higher barriers and relatively few
recrossings on the lowest barrier. A more strongly interacting solvent, which has a larger initial value of
the friction, o, would be expected to decrease ic. One way to increase the solvent-solute coupling
strength is to modify the value of the X3-solvent Lennard-Jones parameter, e#. When the value of E,,
for argon-X interactions is multiplied by a factor of 128 we find that the dynamics with the 20 kcal/mol
are not significantly different than the dynamics for the unchanged solvent. The rate of energy exchange
with this modified solvent is much faster, but the transition barrier dynamics are the same; there are no
recrossings, and Kc is one. If the solvent interaction parameters are modified in this manner the solvent
becomes very "sticky" and stays roughly locked in a particular configuration. This slows down the sol-
vent motion significantly, and barrier passage occurs for a solvent configuration which is essentially
fixed. However, even for this major increase in the solvent-solute coupling strength, the dynamics on
the barrier are still roughly approximated by gas phase barrier dynamics. Unfortunately, the "sticky"
character of the solvent prevented us from obtaining reliably equilibrated transition barrier initial condi-
tions sufficient to pursue this case quantitatively.

V. Conclusions
Molecular dynamics have been computed for the hypothetical reaction of X + X2 -- X2 + X (the

mass of X set to chlorine) in three different liquid density inert gas solvents, He, Ar, and Xe. We find
that this reaction can be largely understood in terms of a simple model of 3 epochs: a) build up of the
reactant energy and phase relationships needed for activation, b) barrier crossing, and c) decay of
energy and phase of products. Epochs a) and c) can largely be understood in terms of existing models
i.E phase and energy decay while b) can largely be understood in terms of gas phase A + BC barrier
crossing dynamics, even for the lowest barriers we have examined.

We find no solvent induced recrossings and thus no deviation from TST for reactions with higher
barriers and barrier frequencies. A very small deviation from gas phase barrier crossing dynamics and"-"

thus a slight breakdown of TST due to recrossings of the barrier is found upon lowering the barrier

'a.
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frequency; the characteristic time spent at the top of the barrier becomes longer and somewhat more
comparable to the time scale for solvent motion, and the effect of friction by the solvent on the reaction
coordinate increases. The model of time dependent friction acting on the reaction coordinate is shown
to be useful in understanding and quantitatively predicting the role of the solvent in affecting the IL
dynamics of barrier crossing and therefore the rate constant.

Three methods for computing the transmission coefficient from molecular dynamics have been
presented and the computed results compared to the predictions of the Grote-Hynes equations in which
the initial time dependent friction is approximated by a Gaussian. The molecular dynamics and Grote-
Hynes theory give values for the transmission coefficient, Y, which compare within 0.05 and give the
same trends of decreasing x with increasing solvent friction and decreasing barrier frequency.

We have discussed the very low reaction barrier (2.6 kcallmol) case in only a cursory fashion
here, due to the apparent involvement of intramolecular energy flow features in the isolated gas phase
reaction, thereby clouding the role of the solvent. We hope to analyze this interesting case in detail in
the future. Other interesting possibilities for future study include strongly interacting solvents involving,
for example, hydrogen bonding to the reaction system.5 6, 57

We have studied here only the symmetric reaction case. There are new dynamical aspects present

in asymmetric reactions; for example, the role of reactant vibrational excitation in accelerating reac-
tions.7 It will be interesting to examine whether these features survive in solution. Our present results
are already highly suggestive in this regard.

A major finding of this work is that TST typically provides an excellent description for the rates
of simple atom transfers in weakly interacting solvents, This means, for example, that one can with
confidence use the methods of modem equilibrium statistical mechanics to compute solution rate con-
stants using TST for such reactions. In this connection it should also be stressed that in addition to the
dynamical effects discussed here, within the TST description there can be important equilibrium solvent
effects on atom transfer free energy barriers and thus on rate constants.5 s The present work suggests
that when these are accounted for, one might reliably predict, for example, the pressure variation of a
simple atom transfer rate from gas to liquid phase densities in inert rare gas solvents. .
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Figure Captions

Figure 1. Potential energy LEPS surface contour plot as a function of the AB and BC bond lengths. r,
and r2, for a linear Srangement of X3 with a barrier height of 20 kcal/mol, md with a barrier frequency
of wb - 4 19 cmr - . The saddle point is indicated by a solid circle. The contour lines are labeled in units
of kcal/mol. Note that the zero of the LEPS potential function is taken to be the potential energy of an
isolated X2 molecule at its equilibrium geometry.

Figure 2. Effective potential 0'(0), 0tis(0) and the function -kT ln[J(O)Ir2]r as a function of 0 for
the 20 kcal/mol barrier of X3 in which r, and r2 are held constant at 2.254 A.

Figure 3. Trajectory plots of X3 on the 20 kcal/mol LEPS potential surface for the reaction in both
liquid xenon (dashed line) and the gas phase (solid circles) with identical initial conditions chosen at
time zero on the transition state surface, demonstrating the solvent effect on the details of the dynamics
away from the transition barrier. The saddle point of the potential is indicated by a single solid circle.

Figure 4. Plot of the average energy versus time for the reaction X + X2 -+ X2 + X with the 20
kcal/mol energy barrier, for an ensemble of 126 reacting trajectories. Time zero is when the X3 is first

released at the saddle point. The solid lines show the average energy for the reaction in liquid argon
solvent while the dots indicate the average energy for reaction in the absence of solvent (gas phase).
The translational energy arises from and decays to the solvent in 0.2 ps, rotational in about 0.2 ps and,
although the figure does not show this, vibrational energy ir > 250 p. Notice how translational and
rotational energies are dumped into ABC potential energy to climb the steep barrier, and then dumped
back into translation and rotation. The vibrational energy of the X2 before and after barrier passage is
approximately 3 ft where to is the 560 cm' ground state vibrational angular frequency of X2. Note
that the average energies in the different modes for the gas and liquid phase reactions are approximately
the same during the time period -0.05 ps to 0.05 ps during which the gas and liquid phase reaction tra-

jectories are similar.

Figure S. Solvent momentum sphere of influence on reaction with 20 kcal/mol barrier in argon solvent.
For a chosen ensemble of 80 trajectories which react, the trajectories are carried back the period in time
before the barrier crossing given on the horizontal axis. While holding all coordinates constant, all sol-
vent atoms outside a sphere of radius measured from the center of mass of the X3 atoms are random-
ized with a Boltzmann distribution in velocities. The trajectories are then allowed to resume. The pro-
bability on the vertical scale measures the fraction of trajectories which still lead to reaction. This gives
a measure of the time and space scale over which solvent momenta play a role in the reaction.

Figure 6. Solvent friction on the reaction coordinate for the X3 in a bent geometry (defined by the
minimum in the effective potential, 0', in Fig. 2) as function of time for the three inert solvents helium,
argon and xenon, normalized by the value of the friction at time zero. The initial decay in the time
dependent friction is approximated by a Gaussian Eq. (3.7) with values for r of 0.06 ps, 0.19 ps, and
0.36 ps for He, Ar and Xe respectively, determined by numerically calculating the curvature of the time
dependent friction at * - 0. The initial frictional frequencies, o);, for the three solvents are 15 cm 35
cm "1 and 40 cm -' for He, Ar and Xe respectively.
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Figure 7. Solvent friction an the linear geometry reaction coordinate as function of time far the three
inert solvents helium, argon and xenon, normalized by the value of the friction at time zero. The initial
frictional frequencies for the three solvents as well as the initial decay in the dependent friction are
essentially the same as for the bent case in Fig. 6. The time dependent friction for the linear geometry,
however, has a longer time decay than that for the bent geometry shown in Fig. 6.

Figure 8. The value of the transmission coefficient, , from Grote-Hynes theory as a function of barrier I
frequency, mb. in the solvents helium, argon, and xenon. The initial decay in the the time dependent
frictions for these solvents (see Fig. 6) can be approximated by Gaussians Eq. (3.7), with values for ? of
0.06 ps, 0.19 ps, and 0.36 ps for He, Ar and Xe respectively. The Gaussian approximation is good for
barrier frequencies greater than S0 cm -f where the time spent on the barrier is short, but poor for bar-
rier frequencies less than 50 cm - 1 since the longer time friction becomes more important as the charac-
teristic time spent on the barrier increases. For the reaction systems described in this work, the short

r time Gaussian approximation is adequate.

Figure 9. Illustration of the simple 3-stage picture to explain the essential features of the dynamics of
A + BC reactions in rare gas solvents. The picture consists of three stages. Stage I is energy and phase
arisal in reactants, stage 2 is approximately gas phase barrier crossing, while stage 3 is energy and
phase decay of products in the solvent.

Figure 10. Schematic illustration of some predominant recrossing patterns observed in the MD simula-
tion of A + BC reaction dynamics on low barriers in solution. The dividing line represents the transition
barrier dividing surface between reactants on the left and products on the right, while the arrows indi-
cate the direction of the trajectories for initially positive momentum: (a) is a direct, successful reactant
-+ product transition with no recrossing; in TST, all initially forward trajectories are of this type; (b) is
a single recrossing, reactant -+ product --+ reactant, after the transition barrier is crossed in the forward
direction, and (c) is a single recrossing, product -, reactant - product, in which the recrossing occurs
prior to a reactant -+ product crossing.

Figure 11. Plot of the average energy versus time for the reaction X + X2 -+ X2 + X with the 5
kcal/mol energy barrier, for an ensemble of 64 trajectories. Time zero is when the X3 is first released at
the saddle point. The solid lines show the average energy for the reaction in liquid argon solvent while
the dots indicate the average energy for a reaction in the absence of solvent (gas phase). The transla- %

tional and rotational energies arise from and decay to the solvent in approximately 0.5 ps, and, although
the figure does not show this, the vibrational energy arises and decays in > 250 ps.

Figure 12. Plot of the average energy versus time for the reaction X + X2 -. X2 + X with the 20
kcal/mol energy barrier, for an ensemble of 64 reacting trajectories. Time zero is when the X3 is first
released at the saddle point. The solid lines show the average energy for the reaction in liquid helium
solvent while the dots indicate the average energy for a reaction in the absence of solvent (gas phase).
The translational and rotational energy arises from and decays to the solvent over a time scale measur-
ing longer than 1.0 ps, and, although the scale of the figure does not show it, vibrational energy starts to
decay appreciably in less than 10 ps.

Figure 13. Plot of the average energy versus time for the reaction X + X2 - X2 + X with the 20.-zo
kcal/mol energy barrier, for an ensemble of 252 trajectories. Time zero is when the X3 is first released
at the saddle point. The solid lines show the average energy for the reaction in liquid xenon solvent
while the dots indicate the average energy for a reaction in the absence of solvent (gas phase). The

_ ". .'t . ". .*:.'. .'.'. -.. ' .. ,'..'...........*.-.* -' ", ...- -, I, ".. .' .- ,.-...; ,.. - -'- : , - ., "-'
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translational energy arises from and decays to the solvent in 0.15 ps, and, although the figure does not

show this, vibrational energy starts to decay in > 100 ps.

Figure 14. Plot of the average energy versus time for the reaction X + X2 -+ X2 + X with the 5
kcal/mol energy barrier, for an ensemble of 64 trajectories. Time zero is when the X3 is first released at
the saddle point. The solid lines show the average energy for the reaction in liquid helium solvent
while the dots indicate the average energy for a reaction in the absence of solvent (gas phase). The
rMnslational and rotational energy arises from and decays to the solvent over a time scale measuring
longer than 1.0 ps, and, although the figure does not show this, vibrational starts to transform in less
than 10ps.

Figure IS. Plot of the average energy of versus time for the reaction X + X2 -+ X2 + X with the 5 '

kcal/mol energy barrier, for an ensemble of 252 trajectories. Time zero is when the X3 is first released
at the saddle point. T'he soid lines show the average energy for the reaction in liquid xenon solvent
while the dots indicate the average energy for a reaction in the absence of solvent (gas phase). The

translational energy arises from and decays to the solvent in 0.15 ps, and, although the figure does not
show this, vibrational energy starts to transform in > 100 ps.

Figure 16. Solvent momentum sphere of influence on reaction with the 20 kcal/mol barrier in helium
solvent. For details, see the caption of Fig. 5.
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