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INTRODUCTION

/ T T —

/ <
—>Certain uz¢ss of the Global Positioning System (GPS) use the geodetic coordinate system to define
their receiver position. Satellit. positions, computed from either ephemeris or almanac data, are best
stated. however, in terms of Earth-centered, Earth-fixed (ECEF) cartesian coordinates. This presents a
probiem when computing values for a dilution of precisionp'n\posi’t(ion-f‘vthe measure by which the four
satellites most suitable {or range measurements ar; _gi_gtermined. ) \;23 0o

ke S

Before receiving transmissions from GPS satellites and using ther- to determine precise receiver
position, the user must determine which four satellites are in the configuration that will maximize system
accuracy. This is accomplished by computing a lgmutwn of precision)value for all groups of four satellites
that are in view. For GPS users who measure their receiver position in geodetic coordinates, this value
should reflect the use of these coordinates. rather than ECEF cartesian coordinates.

(PSP
P

This report outlines five algorithms, all used in the process of computingﬁ(liluﬁon«;f—precisio? in
nousition. The method to compute satellite position is described assuming the user is using almanac data,
and the dilution of precision in position term is defined in terms of geodetic coordinates. *»/* 1> 4 \

The basic procedure, as outlined by the algoiithms, is as follows

Use almanac data to find satellite position at time (t)

Convert receiver position estimate from geodetic coordinates to ECE.7 cartesian coordinates
Establish whether a satellite is healthy and in view

Compute covariance matrixes for all groups of four satellites that are healthy and in view

Rotate each covariance matrix to be in terms of geodetic coordinates, and cempute a dilution of
precision in position

The group of four sateilites that yields the smallest dilution of precision in position is the group to use
when making range measurements from satellite transmissions.
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Each of the five algorithms details how to acromplisi: one of the tasks previously stated. The it..ns
that are needed as input to the routines are listed and defined first. The <teps and equationc reguired io
produce the desired output follows. The algorithms are presented in a straightfurward manner, and
computer code could be written from them.*

The appendixes provide a more thorough explanation of the equations :nd procedures detziled in tne
five algorithms. The collection of material found in the appendixes should prove to be as usefu! as the
algorithms themselves.* *

.

None of the material in this report is developed for the first time here, but as far as it is known, it has
never been assembled as in this report. The usefulness of havin this inform: {52 combined into one
document was a majcr reason for assembling this report.

PROCEDURES

FINDING SATELLITE POSITION FROM ALMANAC DATA'
The user obtains the followin,, input data from the almanac
ISAT  Satellite tracker number

WNA  Reference week of almanac data

¢ Eccentricity

toa Reference time of almanac data (s)
iy Inclination angle (0.30 semicircles)
5; Correction to inclination (sc)

Q Rate of right ascension (sc/s)

(a, Y2 Square root of semimajor axis length (m)

* These algonthms. or sections of these algorithms, already cxist as code or 1n program-design documentation These were

asscmbled from Reference 1.
* ¢ Ncarly all the derivations collected in the appendixes can be found in oitker Reference t or 2.
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2, Right ascension (sc)
") Ar,ument of perigee (sc)

M Mean anomoly (sc)

0
The user provides the fcllowing input data
t Time at which position is to be known (s)
WN Week number at which position is to be known
Hg WGS-72 value for the Earth's gravitational constant
Qe WGS 72 value for the Earth’s rotation rate
The user receives the following output data
Xg Yo Zg Satellite position

E Eccentric anomoly

Define semimajor axis length, a., mean modon, N, time difference (positive or negative) between t and
toa. At, and a new mean anomoly. M .*

2
% = G
Nl = NO= (ug/ae3 )1/6
At = t+604,800 (W -WNA) - t,
M =E=M, +N, - At

Solve for eccentric anomoly by repeating the next two lines eight times or until tau (7) becomes less thanor
equal to 1 x 107°.

E-esinE-M

-«
||

le9]
1]

M+esinE

* Sec Appendix A far derivations of some of these equations. This routine is part of Reference 1: 1t 1s also contained in
Reference 3.
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Solve for true anomoly, v, corrected radius, r, and corrected inclination i.

(- e’)l/zsinE/ (1- ecosE)

siny =

cosy = (cosE-e)/ (1- ecasE)
r = a,(l—ecosE)
io= g+ 5

Find the corrected longitude of the ascending node and the position of the satellite in the orbital plane.
(Letu = v+ w)

Q = Q0 At- 8, (At+t,,)
xs =r-cosu=r-[cosycosw — sinvsin wl
y's = resinu=r-[sinycosw+cosvsinwj

Solve for position in the ECEF cartesian frame.

o o e ..

X X'gcos §2 — y'ccosisin 2

Yg = xgsinQ+y Scosicos
—ul ain

2 y'gsini

CONVERTING RECEIVER POSITION FROM GEODETIC COORDINATES TO ECEF CARTESIAN
COORDINATES'

The user inputs the following data
¢, A, h  Geodetic latitude, longitude, and height of receiver

a, Earth's semimajor axis length

(4

e Earth's eccentricity

The user obtains output data in the form of the x. y. and z receiver coordinates (Figure 1).
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) z AXIS
® RECEIVER

EARTH’S SURFACE

—
¢ | y AXIS

x AXIS

FIGURE 1. RECEIVER POSITION

If latitude and longitude are input in degrees, convert to radians.
¢ =¢-n/180
A =A-7/180

Convert to ECEF cartesian coordinates,

- a .

x = ——L —— +h | cos¢cosh
| Vi-e?sin? ¢

y = . S +h cos¢ sin )

2 = - ¢ +h ﬂn¢

DETERMINING SATELLITE QUADRANT AND ESTABLISHING WHETHER A SATELLITE IS
HEALTHY AND IN VIEW'®

The user inputs the following data
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Xg Yoo Zg Satellite position in ECEF cartesian coordinates
X,Y,2 Receiver position in ECEF cartesian coordinates
6cut One cutoff angle for each of the four quadrants

The receiver is used as a reference point to define the quadrants as follows (see Appendix  for
further explanation)

0< quadrant 1 < 90 North-East
90 < quadrant 2 < 180 North-West
180 < quadrant 3 < 270 South-West
270 < quadrant 4 < 360 South-East

Establish the satellite quadrant. and define the vector from the receiver to the satellite. P. by its three

components Py. P, and P,.

Px = Xg— X
Py =ys_y
PZ =77

Define vectors E and N, which with zenith, Z, define a new coordinate system centercd at the receiver.
(Ey, Ey, E;)= (-¥, X, 0) East
(Ny. Ny N;)= (=xy, ~yz, xy + y*) North
Define the magaitudes.
IEl= (B! +Ey? +E2Y?
INT= (N2 + N2+ N2 Y2

Compute satellite position in the new E--N plane.




NSWC TR 85-151

i" E = (-Py y.Py +X,0)
PN = Py -x z,—Py-y-z,Pz-x-y+Pz~y2)
(’1; E ?-N‘)
CzPN) =\ — .+ =
© \ 'El  IN]

Py and PN determine the satellite quadrant.
If Pp =0and PN = 0 (exactly on azimuth, Z) satellite is in quadrant 1

If PE > 0 and PN > 0 satellite is in quadrant 1
If PE < 0 and Py > O satellite ic in quadrant 2
If PE < 0 and Py < O satellite is in quadrant 3
IfP¢ >0and Py < O satellite is in quadrant 4
Establish whether o: not the satellite is in view.
(Py. Py Py )= (Xg = X, ¥g — ¥, 25— 2)
Compute the following, where R is the receiver position vector.
IPI = @ +Py? +P,2 )
IRl = 2 +y2+zz)%
P R =Py "x+Py -+ 4P, 2
The angie between P and the horizon is given by g
If sin B < sin 8, the satellite is out of view

If sin 8> sin ocm the satellite is in view
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COMPUTING THE COVARIANCE MATRIXES FOR ALL GROUPS OF FOUR SATELLITES THAT
ARE HEALTHY AND IN VIEW '

The user inputs the following data
Xg ¥ Zg Satellite positions for four satellites (and tracker number subscript, s)
X,¥,2 Receiver position

For each of the four satellites compute a 4 x 4 matrix M.

First let
Axg = (xg— X)
Ayg = (Yg—Y)
Azs = (2 7)
R = [Ax2+Ay2+4z31%
and
Pl = Axg/ Ry
P2 = Ay,/ R
P3, = Az / Ry
Pa, = 1
Now,
[Pl -PIg  PIg-P2, PI_-P3_ Pl -P4]
P2, -Plg P2 -P2 P2 -P3. P2 -P4,
Mg =
P3 -Plg  P3.-P2 P3.-P3,  P3_-P4,
P4 -Plg P4y P2 P4 -P3, P4 P4,
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Let M; .41 be the sum of the four Mg

4
Miotal = 2 Mg

s=1

The final step in this procedure is to compute the inverse of Mq,;. This is the covariance matrix. In the
next section this is denoted by M~*.

COMPUTING A DILUTION OF PRECISION IN POSITION FROM THE COVARIANCE MATRIX
IN TERMS OF LATITUDE AND LONGITUDE *

The user inputs the following data
M-! Covariance matrix

¢ A\ h Geodetic receiver position

g
;
¢
E
:
:
E
?
i
3

e Eccentricity
Semimajor axis length
X,¥.2 Cartesian receiver position
The user receives the following data
DOP SAh Dilution of precision in position, reflecting iatitude, longitude, and height
DOP 5 Dilution of precision in position, reflecting latitude and longitude

Let M™! be written as follows
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M was generated from variables in the ECEF cartesian (x. y. z) coordinate system. For users measuring
position in this coordinate system, geometric dilution of precision is computed by

GDOP =TrM™'] = m,+tm,,tmy,+tm,,

The procedure described following these notes yields a dilution of precision suitable for users measuring
position in the geodetic (9, A, h) coordinate systein. Two dilution of precision equations are defined; one
for users always at nearly constant height (DOPM ), and one for users whose height varies (DOP S\ h).

Form a new matrix by “rotating” the upper left 3x3 matrix in M into the geodetic coordinate system.
Equivalently, multiply the upper left 3x3 matrix in M~ by the following matrix of partials

ERN
ox oy oz

n o a
ox ay oz

o an
Lax oy az__|

The following procedure shows the equations for the partials in the above matrix. Appendix D details how
they are derived.

Compute the range in the x—y plane and the radius of curvature.
R =Vxisy2

i a2
ag(l e) +h

{i— e? sin? ¢] 7

RADC

Comp.ite partials of geodetic latitude.

_6_¢_ _ —COsAsing a_¢_ —sin X sin ¢ 0¢p _ cos¢

ox RADC oy RADC 0z RADC

Compute partials of longitude.

oA _ —sinA oA COs A oA
- = = — ~— = 2010

ox R oy R 0z

10




-

NSWC TR 85-151

Compute partials of height.

—— = COSACOSQ o sin A cos ¢ oh = si
ax 3y >z sin ¢
Dilution of precision.
09, 0dm 00m ) ) . ) .
11 21 31 12 22 32

DOP A = - + + + + +

¢ ax ay a7 ax 3y az

oh oh oh

DOP =  DOP + ™ + M52 ¥ MY

¢Ah 2) ax ay 97
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APPENDIX A
USING ALMANAC DATA TO COMPUTE SATELLITE POSITION

A-1
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ORBITAL
\ PATH

/ PERICEE

N

ASCENDING

GREENWICH
NODEC

MERIDIAN

FIGURE A-1.

i = INCLINATION
w = ARGUMENT OF PERIGEE
§! = LONGITUDE OF ASCENDING
NODE

CLASSICAL ORBITAL ELEMENTS

When computing satellite position from almanac data. first find the values of the sine and cosine of the

true 3"0mcly,‘\"
cos v = (cos E — e)/(1 — e cos E)
and
-sin E/(1 — e cos E)

siny = 1 —e?

True anomoly is the angle shown in Figure A-2.

A-1R. R, Bate. D. D. Mueller. and J. E. White, Fundamentals of 4srodvnamics (New York- Dover Publicatons, Inc.. 1971,

pp- 183-187.

A-3
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’ CIRCLE v = TRUE ANOMO;.;’MOLY
E = ECCENTRIC A
ELLIPSE f = FOCUS

I a = SEMIMAJOK AXIS
= SEMIMINGR AXIS
\ e = ECCENTRICITY

¢ ~ ac

\
vy UE l"{\i"\ﬁ

f
e—— ¢ —]

——p X

FIGURE A-2. TRUE ANOMOLY

Note two things

1. For any ellipse, like the one in Figure A-2 the focus is positioned such that

b2 = a2 — Cz

b2 - 32 _ ezaz
and

b = a(i-e?y:

2. Given two points with the same x coordinate, one on the circle and one on the ellipse as drawn
in Figure A-3, the ratio of y compcnents is

Yellipe _ P

Y circle a
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Y' CIRCLE «I=
¥ ELLIPSE=

FIGURE A-3. ELLIPSE INSCRIBED WITHIN A CIRCLE

This can be seen from the equations for an ellipse and a circle. For a circle

x2 y?
—_— -
a? a2

For an ellipse

x2 y?
— + —
a? b2

Using Figure A-4

: = a/. X2
1 and  Yeircle = AV 1o —

a2

. = x? -
‘ and Yopipse™ V- —

a2

, solve for r, then solve for true anomoly.

A-S
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e
Pl \
{ 1w
- e

FIGURE A-4. TRUE ANOMOLY

x-+Py‘
b -
{c —acosE}? +{ -) -asin EJ?
a
ale? — 2alecosE+ a? cos? E+b? sin® E
a? [e? = Jecos E+cos? E+ (1 - e?)sin? E]

a? [e? — 2ecosE - c?sin? E+ 1]

Use the expression (1 —~ecosE)P = 1~ 2ecosE+e?cos’ E

r?

SO

and

a? [e2+ (1 —ecosEY — ¢? cos? E - ¢?sin? E}

a? (1 - ecosEY

a(l-ecosEF)
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Finally
. X
cosy = —sm¢=—r—
(C—- acosE) CosE - ¢
cosy = — =
a(l - ecosE) ]l -ecosE
. Py bsink
siny = cos¢p=— =
T r
siny = \/l—cz~sinE
l1-ecosE

Using Figure A-S. define satellite position in the orbital plane.

ORBITAL

Yo = TRUE ANOMOLY PATH & PLANE
w = ARGUMENT OF PERIGEE ODD

FIGURE A-S. SATELLITE POSITION IN THE ORBITAL PLANE

Define a coordinate system in the orbital plane where the x/ axis lies alorg the ascending node, and the
v/ axis is perpendicular to the x” axis with the origin at the focus. See Figure A-5.
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Let
uy = v0+ w
so that
Iy, = r'cosuy = 1/ COs v, €Os w — I’ sin vy sin w

7 o [ /el
Ty r/sin up =1’ sin v, €os w + 1’ sin w Cos v,
Recall that

¥ = a(l—-ecosE)

The corrected longitude of tne ascending node is illustrated by Figure A-6.

GREENWICH

EQUATOR

FIGURE A-6. CORRECTED LONGITUDE OF THE ASCENDING NODE

A-8
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£, = Imtial right ascension, measured from Greenwich at the beginning of the week, to the
ascending node att .

£ = Rate of right ascension, the rate of orbital-plane drift around a fixed Earth

C an an o il g of J

Qe = Earth’s rotation rate

t = Time ac which satellite position is to be known
tog = Time of almanac data
2 = Longitude of ascending node

From Figure A-6, § is given by

Q = Qo+ -t5)- Qe (1= t5,)
S = Qo"'s.2 t- toa)"ﬁe -t
and where
ty = t-ty,+ 604,800 - (#of weeks between tand t,,)

Q = QO+S'2, 'tk'ﬂe (ty + to3)

Figure A-7 illustrates the conversion from position in the orbital plane to position in ECEF cartesian

coordinates.
Iy = ryscosy - Iy, COS iy sin Qy
fy = Ix/ sin £ + Ty/COS ik cos Qk

Ty = ry/, sin lk

where r , and ry, are the orbital plane coordinates. as defined previously.

A-9
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e adi ]

-

Iy/COS ﬂk y ’,/'
______ A Iy/cos ik sin ﬂk

FIGURE A-7. ORBITAL PLANE AND ECEF CARTESIAN COORDINATES

A-10
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APPENDIX B
CONVERTING GEODETIC COORDINATES TO ECEF CARTESIAN COORDINATES

B-1
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Before converting geodetic coordinates to ECEF cartesian coordinates.®! note two things

1. As seen in Figure B-1, for any ellipse, the focus is positioned such that

b2 = a? —¢?
b? = a? — ela?
where
e =¢c/a
and
b =a(l-ey?

FIGURE B-1. ELLIPSE

B-1R. R. Bate. D. D Mueller. and 1 F Whaite. Fundamentals of Astrodvnamics (Sew York  Dover Publications., Inc.. 197D,
pp 94-98

B-3
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2. For a point on a circle and a point on an inscribed ellipse with the same x component, as seen in
Figure B-2, the ratio or y components is

Yellipse _ °
Yzircle a
y
! 3
. Y CIRCLE
: Y ELLIPSE = \\
o,
M
¢
&
"
1 X
‘
]
d FiGURE B-2. ELLIPSE INSCRIBED WITHIN A CIRCLE

. From Figure B-3 and the notes on the previous page

3, cosf

: P;

and

b
e /' - .
: Pj = (a )acSInﬁ=ac V1] ¢ csing
¢ 4
Ly
: where these are to be redefined in terms of ¢, not 3.
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i = AXIS FROM EARTH'S CENTER
THROUGH THE NORTH POLE
i = AXIS IN EQUATORIAL PLANE Ny
THROUGH LONGITUDE OF P
2, = SEMIMAJOR AXIS
b, = SEMIMINOR AXIS
¢ = GEODETIC LATITUDE
8 = GEOCENTRIC LATITUDE
t =TANGENT TO EARTH'S 3 b
SURFACE AT P
n = NORMAL TO T, FORMS
GEODETIC LATITUDE

it

LR

FIGURE B-3. CROSS SECTION OF EARTH INSCRIBED WITHIN A CIRCLE

L di di
The slope of t is 3—’ and the slope of fi is — El =tan ¢
1 J

so differentiating Pi and Pj yields

dpP; 3¢ sinf tan sin ¢

de ap/ 1 — ¢ -cosp l -e* cos¢

Now find cos 8 and sin 8 in terms of ¢ .

Let

B-S
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so that and

A B

2 B —_—
/A2+ BZ o8 /Az + Bl
V1-¢€ -sing cos ¢

g

sinf = cosf = PO —
Vv 1-elsin?¢ /1< e?sin? ¢
arqd
a, cos ¢ 2, (1 —e?)sing

i T i-eany k Ji-etsnto

Let P/ be a height h above the Earth’s surface. as in Figure '3-4. From this. it is seen that the coordinates
of P’ in the i-j frame are

3.
P, = \/——— +h | cos¢
LV I-¢esin?g a
[ a1 - e?) 7
pJ = pmt— +h sin ¢
L.V 1 -e?sin?g .

Now place the i-j frame onto an x-v-z frame. with the ) and z axes coinciding as in Figure B-5. The
ECFEF cartesian coordinates are

Py Pi cos A

— +h COS G COs A

a4
1]

v P, sin) = \/———"—'— +h | cosgsinA
L - e?sin? o .

P7 = P| = — +h sin ¢

B-6
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FIGURE B-4. ILLUSTRATION OF HEIGHT

PI

vq‘ -

FIGURE B-5. ECEF CARTESIAN COORDINATES

B-7
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APPENDIX C
DETERMINING SATELLITE QUADRANT AND WHETHER THE SATELLITE IS IN VIEW

N,

»
4%

A

g% u.ll'

.w
A%

R
’A
£

.'ig
s

ol

.
LA AR

t 4
-

. 9
¥
'A‘

C-1
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Figure C-1 shows the Earth's northern hemisphere and the ECEF cartesian coordinate system. Receiver
position is given by R; satellite positios it given by S. (These data are necessary to determine the satellite
quadrant and whether the satellite is in view !

F-3-%

Mp

GREENWICH
MERIDIAN

=l
v}

FIGURE C-1. NORTHERN HEMISPHERE AND ECEF CARTESIAN COORDINATES

A
Let k be the unit vector along the z axis. Define a new cartesian system, with its origin at the receiver, by
taking the following cross products.

hoat 4
xiL

E=k X

=
]
=i
x
mi

'
44

N}
"
x

z|

C-IS. 1 Meverhoft. GESAR Formulatton and Softwure Workig Papers, NSWC. Dahlgren. Virgima, Jan 982
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Eis tangent to the Earth’s surface at the receiver and points eastward.

N is nearly tangent to the surface at the receiver and points northward. If the Earth were a true sphere, N
would be exactly tangent at the receiver.

Zis perpendicular to E and N. and points toward the zenith.

The vectors E, N, and Z define the four quadrants, as shown in Figure C-2. The view is down along the Z
axis. Let & and 1l be unit vectors in the east and north directions. Thus, satellite position relative to the

P Y

receiver. P. is given in this system by

Fcnz = Iﬁlcosﬁ‘c‘ﬂﬁlcosaﬁ
- -— -L.-.L A — _;._L A
Penz = H’ILP Ele + !PILP _Ttlln
IPIIE] IPIINI
- D oA B OOA
Penz =P_.te+P_‘hn
TR IN{
N
[ ) 0%
QUADRANT QUADRANT
¥ I

I

—
-+ E
>

11

EQUATOR

QUADRANT QUADRANT
v

FIGURE C-2. ILLUSTRATION OF QUADRANTS
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Define
Penz = PR PN)

By examining Pp and Py (with predetermined boundary conditions), the quadrant in which the satellite
is located can be determined. Each quadrant has a certain predetermined cutoff angle, § cut+ Mmeasured
from the horizon. If the angle between the hcrizon and the vector from the receiver to the satellite is less

than ecut' the receiver is deemed to be out of view.

To determine whether the satellite is in view, find B, as illustrated in Figure C-3, and see if it is less than
or greater than 6 ..

YA
A
- = P
0nb 5 Onb
P Q
S B
i Vd
N TO
y HORIZON

FIGURE C-3. TWO VIEWS OF SATELLITE POSITION

C-5
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Where ﬁ and f; are both known

. R-P
sinf= cosa = —
IRIIP]
If
sinf < sing,  the satellite is out of view.
If

sin 8 > sin ., the satellite is in view.

C-6
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AYPENDIX D
DIFFERENTIATING EXPRESSIONS FOR LATITUDE, LONGITUDE, AND HEIGHT
WITH RESPECTTO X,Y,AND Z

D-1
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Finding expressions for geodetic latitude. longitude. and height; and differentiating them with respect to
x. y. and z requires finding an expression for tan ¢.Y"'

As shown in Appendix B

" (I—cz)ae -]
z = +h_j s.ingbi

L\/l—e: sir:2c1>l

and as shown in Appendin E

1 - el

Using Figures D21, D-2. and the refations that tollow . tind expressions for 9% .9 ana ¥ .
ox 9y 0z

CIRCLE 3, =SEMIMAIJOR AXIS
= HEIGHT ABOVE EARTH'S
ELLIPSE SURFACE

=

(EARTH) T T ¢, = GEODETIC LATITUDE
>, | # =GEOCENTRIC LATITUDE
z
|
' 2
i

FIGURE D-1. GEODETIC AND GEOCENTRIC LATITUDES

DS | NMewthott GESAR Farmulation und Sottware Workirg Papers. NSWC, Dahlgren. Virginia, Jan 1983,
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Az’cos ¢, =hsin (9, - ¢,)
¢,

FIGURE D-2. HEIGHT AND GEODETIC AND GEOCENTRIC LATITUDES

tang, 2 1 z- Az 1
tan¢l = = - = .
1-e? R (1-¢?) R (1 -e?)
and
hsin @, - ¢,)
Az’ = —————— = hsin ¢, - h tan ¢, cosg,
cos ¢,
Az’ =hsin¢,—h-('-e2)si'n¢l
Az’ =e? +hesing,
so
z Az’ a, sin ¢, hsin¢, h e? sin ¢,
tang = - = + -

R(l1-¢%) R (1 -¢?) R\/!—ezsinchl R(1-¢?) R(l -e?)

sin ¢l
h

e = |,
1
l_\/l—ezsiﬂ’cpl R

D-4
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Note that an equivalent expression is

3, ¢* sin ¢,
YA
tang = - + —
R Ry 1 -¢?sin®g
From this expression, %é— . a—o- and % can be found as shown on the following pages.
X 98y 9z

The above equation for latitude has the problem of containing ¢,. on both sides. To find a numerical value

. .1 .
for ¢,. when z.e,aand R = {x* + y')/’ are known, first estimate ¢ . by

¢, = tan”! (é)

Insert this into the right hand side. reevaluate tan ¢,. and repeat until negligible change occurs between
iterations.

ao,
Find —
an

Use the following

3c
R = Jx*+yd = /——— +h | cosg,
Vil elsinio

X 3 . ¢ sin ©, CON O, do
— (')=-- — (1 c:smzo') P = - —
3

-~ - Jw
o\ (1 e sm'olb/‘ dr

Factor 1/R out of the expression for tan ¢, . and solve from there

a. ¢ sin O'

~

. +
R R\/ 1 ‘_.: .Sm: 0’

3, ce° SIno,

tang, = - 7+ Vam
R , )

- 3
v I et snt o

B
©
n
]

D-$
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Differentiate

do x a, e? sin 0, 1 a, e* sin’ $, cos¢
1

sec’@,— = -1 %+ /—_ +—
dx R? 1 —e?sin? ¢ R (1 - e? sin? ¢ )3/:

a, e? cos ¢1 dél

y —_——
\/l—e2 sin ¢ dx

d¢ X ] 3
2 1 —_—
seC ¢l — = - tan¢| + — —_— . e? COS¢‘
dx R* R 1-e?sin? ¢
e? sin? o, do
—_— + l __!
I — e? sin? ¢, dx
Re’cosg, a, 1 39,
~xtan g, = R? sec? ¢, - — —
\/l ~ e? sin’ ¢ - e?sin? @, ax
a, ? cos* ¢, a,
~xtan ¢, = F + h - F + h
1 - e* sin? o, cos? ¢, 1 - e? sin? ¢,
e cos® ¢, 1 do,
] f: - ag -
I -esin? ¢ i1 -elsino | dx
2 3o
-xtan¢, = \/———— + h \/———-—— + h
1 — e? sin? ¢, 1 -~ e? sin? 0,
a, ¢ cos? ¢, . 1 do,

\/I - e?sin? ¢, I - e?sin® ¢ dx




| saiuaniend
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a, a, e? cos? ¢,
-xtan ¢, = \/—————_‘— +h /———'— e —
| —e?sin? ¢, 1 —e?sin? ¢, 1 —e?sin? ¢
d¢I
+h{—
dx
3, 3, ] - e?

-xtan¢,

]
ﬁ
QN
g l
o |
-+
b=

\/1 ~elsin?g | 1-esin?g

d¢l
+h | —
dx
a,
Since x =RcosA andR = — +h | cos¢,
Vi e?sin? ¢,
and letting the radius of curvature be
(1 e?a,
RADC = \/———— + h
1 - e? sin? 0,
It follows that
-xtan¢ = -Rcos A tan ¢,
R )
-Rcoshtang, = - RADC - %
cos ¢, ax
26 —cas A sin 0,
ax RADC

D-7
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- 39,
4 Similarly, for — , the last steps are
g 3y
-ytamg = -RsinAtan ¢,
R a¢|
-Rsintang, = - RADC —
p cos ¢, oy
o
é
: sy
i 3y RADC
v
Y s
1 Now find —., (let¢=9¢,)

oz

as before, but R= = —————— 4 h | cos¢
AR VAR

is now constant

Differentiate
09 1 oz a, -¢? sin? g cos ¢ 20 a el coso 3
=on * w |a B S L)
3 z R baz (1— et sin? ¢)’/2 32 m -
; ao 1 B aC ez cos o ez Sinz ¢ aé
, - \/‘ —etsin? ¢ | (1-elsin? @) 9z
: ! 3 ¢l coso 1 %
o wen s g 1 e d
L I-etsintg (1-esintg) I

D-8
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a, cos ¢ 30 a, e? cos ¢ 1
]l -e?sin? g cos? ¢ 07 \/l—e2 sin? ¢ (1 - e? sin? ¢)
a, 26 20 a, e cos? ¢ 1
————— — +h — =cos¢ + —_— .
V 1-e?sin? ¢ 92 0z \/l—ez sin’ ¢ (1 — e?sin? ¢)
a, e? cos? ¢ 30 30
] - ——— — 4+ h — = coso
V1-etsin?g l-¢tanie |9 87
(1--¢)a, ] )
S +h | — =cos¢
LV1i-etdnio (1- ¢?sin® @) 97
9o cos o
Thus — =
9z RAD(C

witere again RADC is the radius of curvature

(1 ¢ a,
RADC = 3 + h
(1 et an:O)/:

) N ) | IA
Fnd —, —,and —
ax Jy 97

Since K and the angle A swept out by R are in the x-y plane.

)Y
- = 0
97
a\ A
Now find -— and —
ax Jy
X . ) )
cosN = - = (x-3,'® “:"\.:)‘f: = (Vi)
R

D-9
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After differentiating:

)\ 1 3
—sinkA — = - —(1+y2x"2) /2 (2x3y?)
ox 2

N . _
—sinA — = (l1+y? x"):‘/2 (.’(2)3/2 y?
ox

A -3
—sinA — = (x?+y?) /2 y?
ox

oA y?
—sinA — = —
ax R3

oA R v? v

9x y R} R?

aA sin A

ax R

Similarly
sin A =

P .

- - ) /1 S

COSA — = (x¢ + )r’ ) 2 . x?
oy

aA b
v R?

aA cos A

oy R
éh odh oh
Find S _.and —_—
avx  dv 97

D-10




and RADC =
Start with

h = ————
V 1-edsin?g

and differentiate

dh

ox

ah

ox

oh

ax

dh

ox

oh

ax

oh

9X

dh

NSWC TR 85-151

2. Y —cos A sin ¢
UseR = . ———————— 4+ h |cos¢ — & —————— x = RcosA
V 1-e?sin? ¢ ax RADC
(1-¢?)a,
(1-e?sin? ¢)/2+ h
—de R
cos ¢
-3, + elsingcos¢ 3¢ X 1 Rsing d¢
—_— = . + ——
(1-¢? sin’¢>)3/2 ox R cos¢ cos! ¢ Ox
a, - €2 sin? ¢ cos ¢ cos A cos \ 2 sin? ¢ cos A
+ - —_—— ¢ h | ———
RADC - (1 - e?sin? ¢} /2 cosg V1 etsint RADC - cos¢
- .3
cos A a, ¢* sin? ¢ cos? ¢ 3 sIn® 9 | hsin? ¢
. e — _ + 1
2 an? ay/2
cos¢ | RADC - (1 - ¢?sin’ ¢) \/l_e: sin? ¢ RADC RADC
- - n
cos A sin? @ 3 e cos? ¢
-1 1]1-h }j+1
cos¢ | RADC | \/l ersintg | - e? dn? @) 3
cos A sm? ¢ € Da, ]
-h }+ 1
cos ¢ i RADC i \/1_ e? sin? ¢ (1 - e ¢n‘¢) -J
cos A sin® ¢
—— — + RADC + |
cos ¢ RADC
COSACOs ¢

ox
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oh
Similarly — = sinAcos¢
oy
oh
Now find -a—- . where as before
z
~3 R o0 cos ¢
h = \/— + and _— =
1-e?sintgp OS¢ 0z RADC
So
; oh -3,¢esingcos¢ 03¢ Rsing a¢
'y ——— = r—— * —re—
: az (1 - e? sin? ¢)3f" oz cost ¢ 9z
oh —a, -€? sin¢ cos? ¢ % 1 sin ¢
¢ —_ = 3 + + h
: az RADC - (1 - €? sin? ¢) /2 Vi-etsinto RADC
ah sin ¢ aq e? cos? ¢
: o - T — | o —————— |4+t
ah sin ¢ (1-e*)a, i sin ¢
— = — . = . RADC
oz RADC Vi-etsintg (-elsin’o) RADC
and finally
oh
—_— = sin o
9z
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APPENDIX E
THE RELATIONSHIP BETWEEN GEODETIC AND GEOCENTRIC LATITUDE

E-1
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The relationship between geodetic and geocentric latitude E! s shown in Figure E-1. Assuming that the

Earth has the shape of an ellipsoid, show that

tan ¢2
tang, = X
(1 —¢e?)
;
3, = SEMIMAJOR AXIS
I ¢, = GEODETIC LATITUDE
¢, = GEOCENTRIC LATITUDE
T = TANGENT TO ELLIPSE (EARTH)
AND PERPENDICULAR TOT
be = SEMIMINOR AXIS
2 be T
1y i

FIGURE E-1. RELATIONSHIP BETWEEN GEODETIC AND GEOCENTRIC LATITUDES

As shown in Appendix A, where the x components are the same, the y components of a point on a circle
and a point on an inscribed ellipse have the following ratio

b

Yellipse

Ycircle a

E-IR. R Bate. D. D. Mueller. and J & White, Fundumentals of Asirodvnamics (New York  Dover Publications. Inc.. 1971).
pp 99”7

E-3
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where b = a /1-—e?

Thus, the angles 9, and ¢, are related by

tang, = /1—-e? tan ¢,
ax

o oy -
The slope of tangent vector t is —, and the slope of its normal r is — —
ox ay

From Figure E-1

be
X = 2,08 P, y=;—-- aesimla3
e

Thus

ax 3 sin ¢, tan ¢,

tang, = —— = =
ay 3%V i-elcosp, V1-e?

and

tan ¢,

|

E-4
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