
DA IS17 91 MULTILEVEL SECURE FRONT END FOR D T A COMMUNICATIO S(U) V 2

I MR 96NVAL POSTGRADUATE SCHOOL MONTEREY CA P J CORBETT

UNCLRSSIFIED F/G 17/2 ML

mhhlllllllEEEI
Elhllllllllllu
EIIIIIIIIIIIIu

IIIIIIIIIIIIIu

*1. .,v.

III25

63

mN.<

' NAVAL POSTGRADUATE SCHOOL
Monterey, California

I DTIC
ELECTE.

* MAY 29 V86(

- A THESIS

MULTILEVEL SECURE FRONT END

FOR DATA COMMUNICATIONSV

by

Philip J. Corbett

March 1986

* Thesis Advisor: Uno R. Kodres *5

Approved for public release; distribution is unlimited

p.

4
I

4.

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFTED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

EApproved for public release;
2b. DECL$SIFICATION /DOWNGRADING SCHEDULE distribution is unlimited %

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S) %

6a. NAME OF PERFORMING ORGANIZATION |6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If appl~iable)

Naval Postgraduate School Code 62 Naval Postgraduate School
6C. ADDRESS (Ot, Sta, and ZIP Code) 7b. ADDRESS(City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

Ba NAME OF FUNDING ISPONSORING I b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if appli able)

Sc ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

ri rLE (Include Security Classficatforl)

MULTILEVEL SECURE FRONT END FOR DATA COMMUNICATIONS
* PERSONAL AUTHOR(S)Corbett, Philip,. J. --

3a TYPE OF REPORT 1 3b TIME COVERED 14DATE OF REPORT (Year, Month, Day) IS PAGE COUNT
Master's Thesis FROM TO 1986 March 113

*6 SUPPLEMENTARY NOTATION

COSATI COD(S 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

ELD GROUP SUB-GROUP Multilevel Security, Information Security,
Trusted Computer System, Communication Security,

, I Gemini Computers
ABSTRACT (Continue on reverse if necessary and identify by block number)

This thesis demonstrates the feasibility of using a multilevel secure
computer system to augment traditional security measures used to safeguard
sensitive information in an office to office communication environment. A
multilevel secure communication interface can be used for high speed
transmission of a wide variety of computerized information, from text files,
to large volumes of bulk data including computer program listings. Such a
sys-tem signizicantiy reduces the delays associated with traditional
transmission techniques such as couriers, and registered mail. The ability
to encrypt all external communicat-ions provides additional security. By
automating message processing functions, providing secure storage devices,
and restricting access to sensitive information, the multilevel secure
communication interface can greatly improve overall system security.

'0 D S"PtUTIONAVAILABILITY OF ABSTRACT 1. ABSTRACT SECURITY CLASSIFICATION .

4)CLASSIFIED/UNLIMITED 0 SAME AS RPT OTIC USERS UJNICLAS SIFIED
.'23 .AME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Are Code) 122c OFFICE YMBOL ".

7no R. Kodres 408-646-2!97 Code 52Kr

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF -HS PAGE
All other editions are obsolete

1 1----

Approved for public release; distribution is unlimited.

Multilevel Secure Front End
for Data Communications

by

Philip J. Corbett
Lieutenant, United States Nay

B. S. , U. S. Naval Academy, 197

Submitted in partial fulfillment of the
requirements for the degree of

MAST R OF SCIENCE IN. ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1986

Author:

App roved by:
Uno R. Kodres, Thesis Advisor

Mitchell L. Cotton, second Reader

Department of Electrical and Cmbter Engineering

~o hn N. Dyer,
Dean of Science and Engineering

2 *.

ABSTRACT

This thesis demonstrates the feasibility of using a

multilevel secure computer system to augment traditional

security measures used to safeguard sensitive information in
an office to office communication environment. A multilevel

secure communication interface can be used for high speed

transmission of a wide variety of computerized information,

from text files, to large volumes of bulk data including

computer program listings. Such a system significantly

reduces the delays associated with traditional transmission

techniques such as couriers, and registered mail. The

ability to encrypt all external communications provides

additional security. By automating message processing func-

tions, providing secure storage devices, and restricting

access to sensitive information, the multilevel secure
communication interface can greatly improve overall system

security.

Acc-'-on For-

DTiC r ,'],e
Uxir.rt., :. . ' L-i

JuSI.

Av.: - .v ,;o e '

.- °

I im + _ n.-Q s

THESIS DISCLAIMER

The reader is cautioned that computer programs developed

in the research may not have been exercised for all cases of

interest. While every effort has been made, within the time

available, to ensure that the programs are free of computa-

tional and logic errors, they cannot be considered vali-

dated. Any application of these programs without additional

verification is at the risk of the user.

Some terms used in this thesis are registered trademarks

of commercial products. Rather than attempt to cite each

occurance of a trademark, all trademarks appearing in this

thesis will be listed below, following the firm holding the

trademark:

1. Gemini Computers Inc., Monterey, California

Gemini Trusted Multiple Microcomputer Base

GEMSOS

2. Digital Research, Pacific Grove, California

Pascal MT+

CP/M-86

3. INTEL Corporation, Santa Clara, California

INTEL

Multibus

APX-286

4.

i~i4

4, . .

TABLE OF CONTENTS

I. INTRODUCTION 8

A. PROBLEM STATEMENT 8

B. PROPOSED SOLUTION 10

C. THESIS FORMAT 11

II. BACKGROUND ; 13

A. MULTILEVEL SECURE COMPUTING SYSTEMS 13

1. Trusted Computer System Requirements . 13

2. Secure Communication Methods 15

3. Network Security Threats17

4. Data Encryption 20

5. Summary..................27

B. GEMINI TRUSTED MULTIPLE MICROCOMPUTER BASE . 28

1. Description of Gemini System
Components 28....

2. Gemini Resource Management Overview . 30

3. Gemini Secure Operating System(GEMSOS)
Architecture 31

4. Summary 34

III. SYSTEM DESIGN 37

A. DESIGN ISSUES 37

1. Objectives 37

2. Design Constraints39

3. Summary of Design Decisions40

B. SYSTEM IMPLEMENTATION 43

1. Hardware Components 43

2. Application Program Format46 P

C. SYSTEM SOFTWARE DESIGN47

1. Application Segment Development 47

2. Process Synchronization51

5 .

- -- - - r -r -F r . ' .7 . - .' :,- . - ..- . rj- rr- . . '.r." -
*

D. DESIGN SUMMARY 52

IV. DISCUSSION OF RESULTS 53

A. SYSTEM OPERATION 53

B. SYSTEM TESTING 54

1. General Comments54 V
2. System Security Testing56

3. Encryption Testing58

V. CONCLUSIONS 61

APPENDIX A: TERMINAL UTILITY PROGRAM LISTING63

APPENDIX B: SYSTEM MANAGER PROGRAM LISTING 79

LIST OF REFERENCES 110

INITIAL DISTRIBUTION LIST 112

.6 .,*'-

.- .

LIST OF FIGURES

1.1 Sample Project Office Organization 9

2.1 Simplified System Design 18

2.2 ECB mode of DES encryption 22

2.3 CBC mode of DES encryption 23

2.4 CFB mode of DES encryption 24

2.5 ISO Interconnection Reference Model 26

2.6 Compromise and Integrity Properties 33

2.7 Single and Multilevel Device Properties 35

3.1 Final System Design 41

3.2 Process Block Diagram With Covert Channel.. 42 ."
'

3.3 Process Diagram Eliminating Covert Channels 44

3.4 Final Hardware Diagram 45

3.5 DCE to DTE Convertor 46

3.6 Terminal Utility Flow Diagram 49

3.7 System Manager Flow Diagram51

.o

7 :.::.::

VW J-,- J. NI-V. RYo L. - v - ' W ' - -

r.

I. INTRODUCTION

A. PROBLEM STATEMENT

This thesis investigates the use of a multilevel secure

computer system as a secure front end for data communica-

tions in a small scale network environment. The specific
application of the proposed system would be to protect

incoming and outgoing messages from unauthorized access, as

well as to ensure secure internal routing of classified

information.

An example of the type of environment in which the

system would be utilized is shown in Figure 1.1 This

structure is similar to that found in many project offices

within the Department of Defense. Communications within a

project cover a wide range of classifications, and include
both military and civilian installations. Recent highly
publicized security violations have underlined the need to

make sure that communications channels both internal and

external are properly protected. Currently, this protection

is provided by a variety of physical and electronic means.

Among these techniques are:

1) hardware encryption devices

2) secure teletype """

3) secure radio communications
4) couriers

5) message scramblers

6) secure modems

Each method has specific strengths and weaknesses that

can be exploited by a potential adversary. By far the most

difficult problems with existing methods are to control 0W

access to the physical devices, and monitor internal distri-

bution of received information. Access control is the

responsibility of the security manager, however even in a M

8

: . .', .•- . .". '........." .;".. '. " "i/,"" f f' ~ .2 <

iI

Project
Manager

development suppotn construction fle
/test sites con ractor sites assets

Figure 1. 1 Sample Project Office Organization.

small project the problem can become unmanageable. This is

especially true due to the recent proliferation of computer-

ized processing systems throughout the Department of Defense

(DOD) and commercial industry.

This research was performed in conjunction with the
Naval Postgraduate School's AEGIS Modeling Group. This

group is sponsored by the AEGIS Combat System Project Office

to conduct research in the area of combat system develop-

ment. The AEGIS project is made up of many field activities

which include both military and civilian personnel. All

activities receive, transmit, and are required to store

classified information. Included in this information are

messages, official correspondence, and computer programs

related to AEGIS Combat System development. These documents

are currently processed by the traditional methods discussed

9

i I..

previously. The process is slow, and often reduces the

amount of time an activity has to respond to an urgent

problem. In addition to the external delays, once a docu-

ment is received, it must go through internal security

processing before it is delivered to the ultimate

destination. %

B. PROPOSED SOLUTION

This thesis proposes inserting a multilevel secure

computer system as the trusted project communications inter-

face and traffic manager. The trusted computer system

[Ref. 11 would receive all incoming traffic, determine its

classification, and notify the destination that it has an

incoming message. If the destination did not have suffi-

cient clearance to display the message, it would not be

delivered. When transmitting data, the system would ensure

that the transmission device is of the appropriate classifi-

cation, and that the data is properly encrypted. By auto-

mating message handling and record keeping functions

associated with the transmission of classified data, the

transmission delay can be significantly reduced. The use of

a trusted computer system in this capacity would also allow

greater flexibility in establishing security policies. Each

classification level can be further broken into several

smaller groups in which access is based on a user's 'need to

know' information of a particular type. This technique

would enhance overall security by further restricting access

within each security level.

The Department of Defense is currently evaluating

several systems for approval to operate in this capacity.

The Gemini Trusted Multiple Computer Base is the trusted

computer system used in this research. A model for a secure

communication system was developed which allows single level

remote terminal users located at different sites, to commu-

nicate through a multilevel communication process created by A

10

the Gemini system. The Gemini trusted computer system is

still undergoing development which imposed some restrictions

on the scope of the communications system which was devel-

oped. These restrictions did not however, prevent demon-

strating the feasibility of using a trusted computer system

in this application environment.

Although primary concern is in protecting classified

data, interception of large quantities of unclassified (for

official use only) data can also be damaging. Documents

which are by themselves unclassified, can be analyzed along

with other intercepted information to produce a classified

result. For this reason, all external communications

throughout the model secure communication system are

encrypted.

C. THESIS FORMAT

This thesis is composed of five chapters which are

designed to provide the reader background information

concerning multilevel security concepts, and then discuss

the design of a model for the type of secure communication

system discussed above.

Chapter I provides introductory information concerning

the problem addressed in this research as well as the

proposed solution.

Chapter II contains a discussion of multilevel security

concepts. It explains the various types of security, and

discusses the current Department of Defense (DOD) require-

ments for each type. General security methods are presented

as well as methods used to attack secure systems. Data

encryption methods are discussed, and a strategy for

providing maximum data protection using the Gemini system's

data encryption device is developed. The remainder of the

chapter is devoted to explain Gemini system architecture,

and discuss how it creates a multilevel secure environment.

.

Chapter III discusses actual Gemini system operation.

The design of a model secure communication system is
presented with a discussion of system constraints imposed by _

hardware and software limitations.
Chapter IV discusses system implementation and testing.

Test results are used to demonstrate the system's ability to

act as a secure front end for data communications between

remote data terminals.
Chapter V brings together system test results to make a

series of observations concerning the feasibility of

utilizing a trusted computer system, such as the Gemini, as

a multilevel secure front end for data communications..

.5-
ON

12

.1o

U' PS,

"12

II.~~ ..-QRUN

A. MULTILEVEL SECURE COMPUTING SYSTEMS

1. Trusted C System Reauirements

There are many documents which attempt to lay down

requirements for trusted computer systems. They have been

generated at all levels of the government, and in some cases

are in conflict with each other. In 1983 an attempt was

made within the Department of Defense (DOD) to bring

together these documents as well as other information

concerning trusted computer systems. The goal was to come

up with a single source document which would define guide-

lines which could be used to develop and test new systems.

The document which resulted from this research is entitled

the "DOD Trusted Computer System Evaluation Criteria," more

commonly referred to as the 'Orange Book'. [Ref. 11.

Published in 1983, it contains definitions and information

essential to understanding trusted computer systems. The

Orange Book goes into extensive detail concerning the imple-

mentation of automated data processing (ADP) security

systems. This thesis will primarily be concerned with the

major issues involved in using a trusted computer system,

and will not deal with actual implementation details. As

described in [Ref. 1] there are two types of security policy

to be considered. The first is mandatory security which is

defined as:

"Security policies defined for systems that are used

to process classified or other specifically categorized

sensitive information must include provisions for the

enforcement of mandatory access control rules. That is,

they must include a set of rules for controlling access .40
based directly on a comparison of the individual's clearance

or authorization for the information and the classification

13

4H

or sensitivity designation of the information being sought,

and indirectly on considerations of physical and other envi-

ronmental factors of control. The mandatory access control

rules must accurately reflect the laws, regulations, and

general policies from which they are derived." [Ref. 1: p.

721

As the name implies, mandatory security policy is a

a strict limitation of access based on access level which is

determined by the user's security clearance. This policy
..

1

can not be changed and represents the foundation for the
second type of security policy. Discretionary security

policy is a subset of mandatory security policy which repre-

sents a further restriction of access to information based

on a user s need-to-know' the information. The control

objective for discretionary security is:

"Security policies that are defined for systems that

are used to process classified or other sensitive informa-

tion must include provisions for the enforcement of discre-

tionary access control rules. That is, they must include a

consistent set of rules for controlling and limiting access

based on identified individuals who have been determined to

have a need-to-know for the information." [Ref. 1: p. 73]

This type of security is a definite asset in a
research and development environment. In particular, when

developing combat system software, a project manager may

have teams developing several modules simultaneously on the

same system. Although the modules may be of the same clas-

sification level, the manager may want to limit each team's

access to the module on which they are working. This would

be accomplished by establishing a discretionary security
policy.

Traditional attacks on security systems have1

- involved compromise of keywords which would allow

unauthorized access to a system. This threat can largely be ;

14

eliminated by physical means: changing keywords, multilevel

identification, and restricting access to the system. A

more subtle attack, and potentially more dangerous threat is

the establishment of a covert channel in the system. A

covert channel is defined as "any communications channel

that can be exploited by a process to transfer information

in a manner that violates the system security policy."

[Ref. 1: p. 79] In a multilevel computer system the presence

of a covert channel can be exploited to gain unauthorized

access to information without alerting security mechanisms.

Covert channels will be discussed further in Chapter III as

a design consideration for the multilevel secure communica-

tions system.

One of the most difficult tasks in developing

trusted computer systems is determining test criteria to

* evaluate their performance. As the security level is

increased, the test criteria become more stringent and

* detailed. When operating in a network environment, the

problem is made even more difficult by requiring communica-

tions security between the trusted computer systems as well.

This thesis is primarily concerned with this portion of the -'

security problem. The Department of Defense is in the

process of preparing a document which will detail evaluation .,

criteria for trusted computer networks [Ref. 2].

2. Secure Communication Methods

As described by Voydock and Kent in [Ref. 31, there

are two basic types of communications security. These are

link-oriented and end to end security measures. Selection

of a type of security measure for a particular application

is dependent on the complexity of the network, as well as

the vulnerability of the system to attack.

Link oriented measures treat each link in the commu-

nications chain from source to destination as a separate '.4

security problem. Each node is responsible for encrypting

.'.s

15 .2....

-"S " ""' """ ". '-"."- ' % ' ' ' .-,.,,..,. - . . , ""' .

information passing through it, and for transmitting the

information on the appropriate link. Encrypting with a

different key at each node provides added security in that,

compromise of one link does not necessarily mean that other

links will also be compromised. This type of system does

have several serious drawbacks [Ref. 4: p. 144]. First, in -

order to encrypt using a different keyword at each node

means maintaining a large keylist. Changing keywords can be

very costly. Second, since each link is encrypted indepen-

dently there must be physical security at each node.

Finally, in addition to physical security at the nodes,
hardware and software components must be certified to . .

process the security level of information passing through
the node. .-

The second type of security measure is end to end

protection. End to end security treats the network as a

secure medium in which protocol data units (PDUs) are trans-

ported [Ref. 4: p. 145]. Since each link is not encrypted

independently, interception of the message stream at an

intermediate node will not necessarily compromise the infor-

mation. In addition to being a great deal less expensive to

implement, end to end encryption has several other advan-
tages [Ref. 4: p.145]. Because there is no additional -'

encryption at intermediate nodes there is no need for phys-

ical security at the nodes. Users or host computer systems

can independently decide whether or not to use the security

measures, further reducing the cost. Finally, end to end

encryption can be used in both packet switched and packet .
broadcast network environments, whereas link oriented

security measures are more difficult to adapt in a packet

broadcast system [Ref. 5: p. 213].

Figure 2.1 is a simplified diagram of the type of
communications system this thesis is proposing. The system

is relatively small scale with a limited number of users.

16

The communication network consists of modem-like telecommu-

nications. Link oriented security measures are much too

complex for this type of application. They would also S

provide no significant advantage over end to end measures.

End to end security measures were chosen for this design to

ease implementation and trouble-shooting. In this applica-

tion the host computers are assumed to be trusted computer

systems. The host is being used in a secure front end

configuration therefore the end to end security measures

will only be used to connect the hosts. This simplifies the

problem by limiting the number of hardware and software

interfaces involved in the end to end encryption path.
3' Network Security Thre-t

Before developing a trusted computer network, it is

necessary to understand how an intruder could try to exploit

system weaknesses. Voydock and Kent [Ref. 4] divide the

methods of attack into three categories. These categories

are:

1) unauthorized release of information

2) unauthorized modification of information

3) unauthorized denial of use of resources

The first type of attack is passive while the second

and third require active involvement by a potential

intruder. In passive attacks an intruder places himself in

a communication path and monitors traffic flowing over the

links. Even with the information encrypted the intruder can

still gain knowledge about the types of information being -"

transmitted, and the destinations to which it is sent. By

examining the message length and transmission frequency the

intruder gains additional information. One form of this

attack uses a 'Trojan horse' program to establish a covert

channel and alter message characteristics which would

passively divert copies of information to the intruder

[Ref. 61.

17

S..'

" L".9 -9 -' *' '- - - , " ". "."""-, V ''- "- ." .- ". " " ,".. ,- . - --. .

site A site B

host host
trusted encraDted trusted
computer da a computer r.
system system

A B

multipl multipl
user user

terminals terminals

Figure 2.1 Simplified System Design.

Active attacks involve more risk to the intruder,

however, they can yield much more damaging results. These

attacks are normally directed at the protocol data units

(PDUs). Once access is gained to the PDU chain the stream

is modified in a manner dependent on the objective of the
intruder. The category of active attacks can further be .

subdivided into three basic techniques [Ref. 7]:

1) message stream modification

2) denial of message service
3) spurious association initiation

18

I'44

Message stream modification attacks seek to alter

the authenticity, integrity, and/or ordering of the PDUs

[Ref. 4: p.1421. In attacking authenticity the source or
destination of a PDU is altered causing information to be

misdirected. This is similar to the passive attack. The

intent is to disrupt communication more than to passively

obtain information. Attacks on message integrity involve

the data portion of the PDU. Modifying or deleting informa-

tion can cause transmitted data to be misrepresented.

Finally, changing the order of the PDUs can make the message

unintelligible to the user trying to receive it.

The second type of active attack, denial of message

service, can take two forms. The first type is complete

denial in which a communications channel is blocked allowing

no PDUs to pass. In the second form all PDUs are delayed

making it impossible to decode the incoming message. These

attacks are difficult to detect, particularly if they are

put into effect between messages so that the user has no

indication that communications have been interrupted.

Spurious association initiation, the third type of

attack, is a form of jamming. In this attack a previous . -

recording of communications between two authorized users is

played back to confuse the receiver into thinking it is

receiving legitimate PDUs.

After examining the methods of attacking secure

networks, a plan to counter these threats needs to be devel-

oped. Voydock and Kent [Ref. 3] point out that there are

limitations on the ability to detect and prevent these types

of attacks. They say that "Although message stream modifi-

cation, denial of service, and spurious association initia-

tion attacks can not be prevented, they can be reliably

detected. Conversely, release of message contents and

traffic analysis attacks usually can not be detected but

they can be effectively prevented." Given these

19

* % -. . - . . . -. -. . . -- . .. + . - . ° .. "

- ++ .. -u.->+ .:- - - ..., . : .+.-,-..,, . --+.- . .- .-.-., + + . -+ --. -...--:,+ .. . + .+.::

limitations, they present five goals for providing communi-

cations security: [Ref. 4: p. 143] cn t
1) prevention of release of message contents

2) prevention of traffic analysis

3) detection of message stream modification

4) detection of denial of message service

5) detection of spurious association initiation

Referring to Figure 2.1 it can be seen that in the
system proposed by this thesis, there are two general areas

in which an attack could occur. The first is within the
host computer system. In this application the host is the

Gemini Trusted Multiple Microcomputer Base. The second

possible area is the communications network itself.

Communications on these links need to be encrypted in a

manner that will provide the maximum possible protection for

the encryption method chosen. The remainder of this chapter

will discuss how data encryption, and Gemini system features
can be used to achieve the desired security goals.

4.Data Enr~i

Data encryption is fundamental to a secure communi-
cations network. The methods available vary widely as do

the security levels for which they are approved. Approval

is based on the computational power, and the amount of time

required to break the code. A cipher that cannot be proven

to resist all attacks is considered 'computationally secure'

if the computational cost involved in breaking it exceeds
the value of the information gained [Ref. 8]. Recent tech-

nological advances have produced computer chips which reli- -
ably encrypt data with a high degree of security. The

relatively low cost and high speed of these devices make
them e;:cellent choices for secure network applications. The

major problem to date has been getting them approved for
transport of DOD classified data. Two major encryption

methods are the Data Encryption Standard (DES) [Ref. 9], and

20

..I

the Public Key systems [Ref. 81. The Gemini system used in

this research utilizes DES as it's encryption method, and

therefore it will be the only method discussed.

The Data Encryption Standard (DES) is the National

Bureau of Standards (NBS) cryptographic protection standard 4
[Ref. 101. It is widely used for the protection of commer-

cial data. It has come under attack from several sources

[Ref. 10: p. 1711. Because of these alleged weaknesses DES

is not currently authorized for transmission of DOD classi-

fied data. Despite its problems DES remains a highly secure

and reliable method of encryption for official documentation

which would otherwise be transmitted in unencrypted form.

As discussed in Chapter I, interception of large volumes of

unclassified data can often lead to unintended compromise of

classified information. The remainder of this section will -,

discuss characteristics of DES encryption and techniques

which can be used to maximize the protection of transmitted

data.

There are four modes that the DES can operate in.

They are: the Electronic Code Book (ECB) mode, the Cipher

Block Chaining (CBC) mode, the Cipher Feedback (CFB) mode,

and the Output Feedback (OFB) mode [Ref. 111.

a. Electronic Code Book (ECB) Mode'

Figure 2.2 shows how a DES device operates in

this mode. ECB is the simplest of the DES modes however, it

is also the most vulnerable to attack. This is because

identical blocks of cleartext code will always produce iden-

tical ciphertexts until the encryption key is changed. This

method is not recommended for transmitting messages which

contain repetition of data forms such as English text

messages [Ref. 10: p.1781. Since identical blocks yield

identical ciphertexts, by observing over a period of time an

intruder would eventually be able to determine the cleartext

message.

21,

21

.2o%

.5'."

?%

CLEAREXT

E ncipihu * 64 Bit Block$

CIPHERTEXT Rec"Sw

I i I I 171

CLEARTEXT I

Figure 2. 2 ECB mode of DES encryption.

b. Cipher Block Chaining (CBC) Mode

Figure 2.3 shows how the CBC mode operates. CBC '.4"

is a block encryption method which overcomes the pattern

recognition problems of ECB mode by using the ciphertext of

each preceding block as an input to encrypt the next block.

The process is started by applying an initialization vector

to the first block of data to be encrypted. Incomplete

blocks are padded as additional protection against pattern -'-

recognition attacks.

c. Cipher Feedback(CFB) Mode

Figure 2.4 shows the CFB mode of operation. CFB

mode is a stream encryption technique in which a key stream

is generated, then combined with plain text to produce a

ciphertext. The ciphertext is then fed back as an input to

the key stream generation process. Stream ciphers are in

general slower than block ciphers [Ref. 4: p. 151], and are

not used when large throughputs are required.

22

---. '-V'.

r - - -- -- -- -- --
~ -- r

-i
r

-
r r

- -: -r- - - - 7r-

,, r r *.4

I Block Ile
rCLEARTIXT I.

I Key- Key Key DES
I IE.OCephe) t c 0h

I 9{! 9 I

KDyEDS- K':--. DES

!' -t _ _

, --,

t
T

-- F~ I' 4O1'
":

.. e, t K e y = D E S-K.y

,,
C n,,D e i e [D eD n .., In t

Receiver

Figure 2.3 CBC mode of DES encryption.

d. Output Feedback (OFB) Mode

The OFB mode is also a stream encryption method.

* In this method the key stream is completely independent of

the plaintext and ciphertext streams. This eliminates the

problem of error propagation and would seem to be a definite

advantage. However, some degree of error propagation is

23

if, 7.

U., ,

Syndtwortned 64 bit

1ohs" rgister snow" peuvt
- Im ,I vau lue %

+ Iroin IVI

I' II I - L, l l '"I

II sI . ,

I ' III I I II I '"

"- I I "

DES

Figure 2. 4 CFB mode of DES encryption."..

required to detect message modification at-acks 'Ref. 4:,,
p.1491. As a result, OFB mode is not normally used in

secure network environments. This mode is not implemented..i

on the Gemini system's hardware encryption device because it ;-,
is not self synchronizing.

, The communication system being developed in this

thesis can best be implemented using the CBC mode of DESer i

encryption. As discussed in Chapter I the system must be,--.
capable of quickly handling large volumes of data (large

throughput), as well as official correspondance. Specific

steps can be takeno en this the CBC mode against the
types of attack presented earlier in this chapter.

The first method of attack was to force unau- "4"

thorized release of message contents. There are severalways to prevent release of message contents using CBC mode-of"DES

encryption. Control of encryption keys and their use are

hoiedreo m e c

* nrpin oto of encr.ptin keysand heiruse ar

~~~~~~~~~~~~~............... . .. . ......--..-.... :........ ,.....,2....-.". ... .,



.p.,

very important in preventing attacks of this type. One

technique is to encrypt the PDU contents using one key, and

encrypt the network protocol address information using

another [Ref. 4: p.1531. This provides a sort of 'two man

control' over the transmitted message. To prevent pattern

recognition attacks, the operator must ensure that each

message starts with a unique prefix. Since each ciphertext

depends on the encryption of the previous block, this will

ensure that each message produces a unique ciphertext. This

can be accomplished by employing a communication protocol .- -

which generates a unique message identifier, or by changing

the CBC initialization vector for each message and transmit-

ting it with the message.

The second method of attack is through traffic

analysis. End to end security measures are more susceptible

to traffic analysis attack than link oriented measures

[Ref. 4: p. 1571. As discussed earlier in this chapter,

link oriented security measures were not feasible for this

application. As a result, the task will be to minimize the

susceptibility of the end to end system to this type of

attack. Figure 2.5 shows the ISO reference model of open

system interconnection. Voydock and Kent [Ref. 31 show that

encryption below the transport layer does not provide

significant additional cryptographic protection. Encryption

at this level also provides the maximum reasonable degree of

protection against traffic analysis attacks. By encrypting

the source and destination information the intruder is

limited in his analysis to the host computer level. Even

then, the attacker can only examine the quantity, frequency,

and lengths between the hosts while protecting the identity

of the source and destination of the information.

Countermeasures used to detect message stream

modification attacks are related to the communication

protocol employed by the system. A wide variety of

25

* .-. - - .-. j . -.



,'o

layer

7 application

6 presentation

5 session

4 transport

3 network

2 data link

1 physical

Figure 2.5 ISO Interconnection Reference Model.

protocols are currently in use throughout DOD and commercial

industry. Because any secure communications network will

most likely adapt an existing protocol, no optimal protocol

will be proposed. The system will make use of existing

Gemini system features to ensure message authenticity and

integrity. If a communications protocol was found to have

insufficient protection against message stream modification

attack, it could be then be strengthened by adding

26

2*. * ' ' ' 6 "..* *'-*** *.' .



additional transmission verification features to the

transport layer.

Detection of denial of message service attacks

involves verifying that the communications channel between

the two hosts is open. This is best accomplished in an

encryption environment by exchanging request-response PDUs

[Ref. 4: p. 1651 at random intervals. Failure to respond to

this PDU indicates that a denial of service attack may be in

progress. This technique obviously slows down the system.

By selecting an appropriate frequency for the checks based

on the types of messages being exchanged, the effects of

this slow down can be minimized.

Spurious association initiation attacks can be

detected using the same method used to counter denial of

message service attacks. By sending the request-response

PDUs at random intervals, 'play-back' attacks can be reli-

ably detected. Another method, using periodic intervals,

would be to send a time verification in the request-response

PDU. -

5. Summary

The secure communications network proposed in this

thesis has two major areas of vulnerability: the host

computer system (Gemini system), and the communications

network. End to end security measures were chosen between

host computer systems because of the relatively small size

of the network, and for ease of implementation. DES encryp-

tion was selected for network encryption because it is

widely used, and is readily available as the Gemini system's
data encryption device. Although this method is not author-
ized for transmission of classified data it could be

combined with another approved encryption method to trans-

port classified information. This technique is called

layered encryption [Ref. 121, and will be further discussed *.

in Chapter III. The CBC mode of DES encryption was selected

27

.. *.- .N .. *i

~~.................. ......................... •



to best meet the needs of this application. The cQmmunica-

tions network can further be strengthened against attack by

taking the following steps:

1) Change encryption keys as often as is feasible taking
into accouht the expense involved, and the threat
environment in which the system operates.

2) Encrypt data PDUs and address information with sepa-
rate keys if possible.

3) Ensure each message starts with a unique message iden-
tifier to hamper pattern recognition attacks.

4) Encryt data in the transport layer to provide maximum
cryp ologic protection.

5) -Use request-response PDUs, exchanged at random inter-
vals to verify that communications channels are open.

These features have been incorporated in system

design to the maximum degree possible. The next section

will discuss the Gemini Trusted Multiple Microcomputer

System, and how it provides security at the host computer

level.

B. GEMINI TRUSTED MULTIPLE MICROCOMPUTER BASE

1. Description Components

The Gemini Trusted Multiple Microcomputer Base is
one of many systems currently being evaluated by the

Department of Defense Computer Security Center for certifi-

cation to operate at the B3 [Ref. 11 level of classifica-

tion. Until recently lack of evaluation criteria, as well

as microprocessor technology made construction of such

systems impractical. The foundation on which all trusted

computer systems are developed is the security kernel.

While operation of the security kernel will be discussed in

general terms, details concerning kernel construction are

beyond the scope of this research. The Gemini system

employs the latest technology in both hardware and software

engineering. Some of it's major features are [Ref. 13]:

1) The capability to operate up to eight Intel APX-286
microcomputers in parallel. This provides tremendous
processing power, while communicating through shared
memory increases throughput.

28

. . . . .. . . . . . . . . . . . . . . . . . . . . . . .



[V .z-XVT U V W "' L -

2) The Gemini system is extremely flexible with regard toII
the ty es of peripheral devices which may be connected
to ti Multibus. These include fixed hard disk,
removable disk and high density floppy diskette
drives, as well as non-volatile memory devices. A
maximum of eight devices may be attached to each
RS-232 I/O interface board.

3) With its multiple microcomputers, the Gemini system .
supports a variety of multiprocessing and multipro-
gramming applications. Processes can be p1pelined tosingle processor, or distributed in parallel amongseveral processors.

4) Other features include a NBS DES chip encryption
device real time clock, and non-volatile memory to
protect passwords and encryption keys.

The Naval Postgraduate School (NPS) version of the
Gemini system is a subset of the full delivery system. This

system has one APX-286 microcomputer, (2) 1.2 Mbyte floppy

disk drives, and one RS-232 interface board (max. 8 ports).

The NPS system does have other specific limitations which

will be discussed in Chapter III.

The Gemini system also provides a self-hosting envi-

ronment for software development [Ref. 13: p. 41. This

allows users to develop applications software. The original

intent of this thesis was to generate application software

using the Janus/Ada computer language. The Janus/Ada pnvi-

ronment was not available in time to support the research,

and as a result Pascal MT+ was used instead. Pascal MT+

programs must be modified to run with the Gemini Secure

Operating System (GEMSOS). Not all Pascal MT+ constructs

are supported in the GEMSOS environment. The majority of

modifications occur in the input/output area. Because

communications to and from devices require special formats,

a utility library is provided with the system containing

routines which put calling arguments in the proper format

for use in GEMSOS. These special features will be discussed

in more detail later in this chapter.

A major source of attraction for the Gemini system

is its tremendous potential for future growth. Its ability

to handle a variety of hardware configurations is especially

29

.**.*.* ..-...



valuable in DOD applications where a trusted computer system

may be required to communicate with systems using different

protocols and hardware interfaces. When utilized as

proposed by this thesis as a secure front-end for data

communications, the Gemini system could potentially communi-

cate simultaneously with a variety of secure communication

devices using different I/O ports.
2. Gemini ResourceManagement Oeve

The Gemini Secure Operating System (GEMSOS) kernel

is logically divided into three management areas. These r
are: segment management, process management, and device

management. Management functions are invoked by initiating

a GEMSOS service call [Ref. 13: p. 5]. The formats for

calling arguments are found in the GEMSOS interface

libraries provided with the Pascal MT+ compiler.

a. Segment Management

All data utilized in the GEMSOS environment is

contained in segments. The applications programmer is

mainly concerned with code segments, stack segments, and

data segments. Bootstrap and kernel segments normally do

not change when developing basic applications software on

the NPS system. There are eight segment management func-

tions. A discussion of how to initiate these service calls

is contained in (Ref. 14: pp. 13-78]. Segments can also be

managed in groups. Secondary storage devices are repre- -'

sented by volumes which can be identified as separate enti-

ties to a calling process. Volumes and individual segments

can be brought into the address space of the calling process

by using resource management service calls.

b. Process Management

The NPS Gemini system currently has only one

processor, however through process management functions it

is able to support a full range of multiprogramming and

multiprocessing applications. Each process is identified by *

30

' / " "" -" " " "" " : : " . .. ....... ........ ..... . .. I I



code, stack, and data segments which uniquely identify the

process. Once created the process can be synchronized to

run simultaneously with other processes using one of two

methods. Eventcounts and sequencers were selected over

other possible techniques because they are particularly well

adapted to operation in a secure environment [Ref. 13: p.

61. All segments created in an applications program are

assigned an eventcount and sequencer automatically. Process

management calls to these devices allow the programmer to

coordinate process functioning while maintaining access

security.

c. Device Management

The third management area is device management.

The Gemini approach to device management is to minimize the

size of the security kernel code by reassigning device

management functions to application level code whenever

possible [Ref. 13: p. 81. This has two effects. Reducing

the size of the kernel makes verification easier, however it

also makes writing I/o applications software more difficult.

Traditional input and output files are replaced by segments

which can be read from or written into. Devices are

attached and detached to allow them to be used by more than

one calling process. Process synchronization primitives are

used to control access to the segments made available to an

attached device. The I/O device controller is treated as a

process, which is then synchronized with the available

segments eventcounts or sequencers to perform the required

device management functions. Additional information

concerning Gemini resource management functions is contained

in [Ref. 13: pp. 5-111.

3. Gemini Secure Operating System(GEMSOS) Architecture

The Gemini system uses four hierarchical rings to

implement its security structure. Ring 0 provides the most

security, while ring 3 is least secure. It can support both

31

K -' : 'zc '' '')'-:.2 '.: ' - " -.- ) . ,.... . .. . .. - ---. . . _ _ _.



discretionary and nondiscretionary policies. The nondiscre-

tionary or mandatory policy is controlled in ring 0. This

policy cannot be modified. Ring 1 is used to control the

discretionary or 'need to know' policy, supervise the use of

the data encryption device, and support any other security

functions not contained in the mandatory policy. Rings 2

and 3 are available to the programmer for use in developing

applications software.

The security mechanism which coordinates inter-ring
communications involves the control of access to subjects

and objects. A subject is a process which is allowed to

operate over a specific domain within the system. An object

is a specific piece of information which is assigned a
security label. All access between subjects and objects is-

controlled by the GEMSOS security kernel located.in ring 0.

Approval is based on a comparison of the security labels of

the two entities trying to gain access.

Security labels are used to identify the access

class of all subjects and objects. The access class is

further broken into a compromise (observe) level, and an
integrity (modify) level. Compromise and integrity protec-

tion are based on strict properties which must be observed

in order for access to be granted. Figure 2.6 is taken from

[Ref. 13: pp. 16,17], and contains a simplified statement of
these properties. Domination as stated in these properties

means that the level of the access component is greater than

or equal to the entity it is trying to observe or modify.

Compromise protection property 1 is a traditional
security policy. It states that in order to observe infor-

mation, you must have a clearance equal to or greater than ?

the information you want to observe. The second property is

more subtle. This property prevents, for example, a secret

user from modifying a file which could then be observed by a

confidential user. This property is especially important in

32

V i 1



Compromise Properties:

1) If a subject has "observe" access to an object,
tne compromise access component of the sub ect must
dominate the compromise access component of the
object.

2) If a subject has "modify" access to'an object,
the compromise access component of the object must
dominate the compromise access component of the
subject.

Integrity Properties:

1) If a subject has "modify" access to an object
then the integrity access component of the subject
dominates-the integrity access component of the
object.

2) If a subject has "observe" access to an object
then the in egrity access component of the ob ect
dominates the integrity access component of the
subject.

rA

Figure 2.6 Compromise and Integrity Properties.

prevention of 'Trojan horse' type attacks [Ref. 6]. The

integrity protection properties are similar to the compro-

mise properties except that they refer to the ability to

modify information. Property 1 states that in order to

modify a confidential document you must have at least a

confidential integrity level. The second integrity property

prevents, for example, secret users from observing (and

possibly being influenced by) information which could be

modified by someone with a lower integrity level.

33



In addition to the access class integrity described

above, the Gemini system also employs ring integrity. Ring

integrity means that subjects at a certain level can only

access objects of the same, or a higher ring number. This

policy reinforces the hierarchical structure of the GEMSOS

rings.

These compromise and integrity properties are

further complicated by the fact that the Gemini system is a

multilevel system. This means that bpth users and resources

may have clearance to access a range of security levels.

Multilevel subjects are potentially very dangerous because

within their range of operation they are not subject to the

second compromise and integrity protection properties

[Ref. 13: p. 20]. It is up to the applications programmer

to ensure that he does not create subjects which will allow

violation of these properties. This is especially important

when interfacing with devices. Figure 2.7 is taken from

[Ref. 13: pp. 21,22], and represents a summary of the

security properties of single and multilevel devices.

Device access levels refer to the physical security ,,

of the environment in which the device is going to operate.

This is separate from the security level of the process

which is attempting to communicate using the device. For

example, a terminal located in an unsecure room with an

unclassified device access level, cannot receive information

from a secret process. The term single level device implies

that the maximum and minimum access classes for the device

are the same. In multilevel devices they are different, and

represent the range over which the device is allowed to

operate.

4. Summary

The Gemini Trusted Multiple Microcomputer Base is an

extremely capable computer system which combines

state of the art technology with a high degree of

34

• ..



'1

Single level devices-

1) To receive ("read") information:

process maximum compromise >= device minimum compromise
device maximum integrity >= process minimum integrity

.2) To send ("write") information:
device maximum compromise >= process minimum compromise
process minimum integrity >= device minimum integrity

Multilevel devices-

1) To receive ("read") information:
process maximum compromise >= device maximum compromise
device minimum integrity >= process minimum integrity

2) To send ("write") information:
device minimum compromise >= process minimum compromise
process maximum integrity >= device maximum integrity

I

Figure 2.7 Single and Multilevel Device Properties.

flexibility to be able to handle a variety of possible

applications. Its multiple processor and multiprogramming

configurations are valuable assets when functioning as a

secure front-end for data communications as proposed by this

thesis. By being able to simultaneously handle devices with

different protocol requirements and security levels, the

Gemini system operating in this mode could potentially elim-

inate the need for separate stations for each secure commu-

nication device.

Key to developing a trusted computer system applica-

tion is the ability to develop a sound, secure resource

35

-. -. ...-.. °% -' ' ' ' '.'.- -j. ., , -. ,.- -%* . .- . .. . . .. ..-..- ,- -- .-. -- . . .- ,. -- .. .



management strategy. This strategy must adhere to the

system's mandatory security policy, and avoid misapplication

of resource management functions which could make the system

vulnerable to a covert channel attack.

Chapter II introduced trusted computer system

concepts, and provided necessary background information

concerning the Gemini system. Chapter III will discuss

Gemini system operation, and the creation of an application

program which will allow the system to function as a multi-

level secure front-end for data communications.

36

- - .- ..-.... . . .



III. SYSEM DESIGN

A. DESIGN ISSUES

1. Obiecti

The primary objective of this design was to develop

a simple communications system which would demonstrate how

the Gemini Trusted Multiple Microcomputer Base could be

effectively utilized as a secure front end for data communi-

cations. There were three major phases in developing the

system design: !
1) Establish two way communications between users at

remote terminals using the Gemini system as an
external communications interface.

2) Use the Data ciphering Processor (DCP) [Ref. 14: p.
571 to provde end to end encryption of externalcommunica~lons.

3) Demonstrate the use of Gemini security mechanisms to

prevent unauthorized access to classified information.

In order to create a realistic communications link

it was necessary to simulate having two separate trusted

computer systems communicating with each other. This was

accomplished by having the Gemini system communicate with
itself using separate I/O ports. By routing the incoming

and outgoing traffic from each port to separate processes,

the two computer environment was simulated. The system is

operated by a system security manager who is located at a

data terminal. The system security manager is responsible

for:

1) System start-up and initialization.

2) Assigning access levels for user terminals.

3) Control of communications at the external ports.

4) Insertion of cryptographic keywords.
5) Routing of incoming traffic to the appropriate

terminals.
Each user terminal is assumed to be located in an

area which provides appropriate physical security for the

.37

"46 iii

I - -F ' " " - " " " > ":" " "; ' " " " """" ' ' ","-" ". ,. .'' . . ' ..... ; " " .. ' '



' 1'
access level of the terminal. Each can enter messages to be

sent, transmit messages, and display incoming messages

provided the terminal at which they are located has the

proper access level.
To accomplish the second objective, the data '.

ciphering processor (DCP) was used as discussed in Chapter

II. The entire outgoing message, including address informa-

tion, is encrypted to provide maximum protection. This

technique is valid for this specific application because of

the small size of the network, and the limited quantity of

information being exchanged. It may not be appropriate in

larger scale applications involving larger networks such as

the Defense Data Network (DDN). Communications are assumed

to be established between the two sites using some form of

modem-like telecommunications device. In this design, the

RS-232 external communications ports were directly connected

by an interface cable. Since all incoming traffic must pass
through the trusted computer first, it is up to the Gemini

system to decipher the address information, determine the

access class, and route the message to the proper incoming

message buffer.
" Additional security could be provided by encrypting '

the data a second time prior to transmission using another

method. This technique is called layered encryption

*. [Ref. 12: p. 159). The second method could be an authorized

*" DOD hardware encryption device, a secure teletype, a message

scrambler, or an interface to a secure network such as the

Defense Data Network (DDN). The Gemini system would format

" outgoing messages, and route them to the proper device.

. The final goal, to test security of information and
access, was demonstrated using a series of specific configu-

q-

rations and data sets to exercise security mechanisms.

* These tests are meant to demonstrate, rather than prove that

information security and integrity are preserved. They are

38



in no way intended to be exhaustive, however will allow for

a series of observations to be made concerning overall

system security.

2. Detgic Constraints

The hardware and software limitations of the Naval

Postgraduate School (NPS) Gemini system limited the scope of

system design. The NPS system has eight ports available for

attachment of I/O devices. This would appear to allow for

at least four user terminals in addition to the two communi-

cations ports and system security manager terminal. This is

not the case due to a limitation on the number of process

local device slots(8) which identify the I/O devices. The

serial read and serial write devices must have separate

process local device numbers assigned. Therefore two
process local device numbers are required to attach a

terminal as a read/write device. This situation is further

complicated by the requirement that the read encryption,

write encryption, read decryption, and write decryption

devices must be attached separately also. Device management

was a major factor in determining ultimate system

configuration.

Software development constraints were generated by

the environment in which this type of system would be

utilized. An assumption was made that when acting as a
secure front end, the system would most likely be adapted to

an existing computerized processing system. There are a

wide variety of such systems currently in use both within

the Department of Defense (DOD) and commercial industry.
Each system has specific built in physical and software

security attributes. For this reason, no effort was made to

provide security between the trusted computer system and the
remote data terminals. These lines are assumed to be

secure, as are the locations in which the terminals are
utilized. In order to provide overall system security,

39 U" "

. .. . . . .... \*.*.......



these security measures would have to be verified prior to

installation of the trusted computer system at a particular

activity. Another assumption was that the system could

potentially communicate by a variety of means including;

secure teletype, secure landline, Autodin, or DDN. For this

reason, no specific communications protocol was adopted. A

source and destination header was placed at the start of

each message along with initialization information for the

data encryption device. This header could be further modi-

fied to allow the message to be transmitted over a partic-

ular communications network. The simplified source and

destination header will be sufficient for purposes of this

research.

3. Summary 2f Desin Decisions

Figure 3.1 shows a block diagram of the final system

design. Due to the process local device slot limitations

discussed in the preceding section, only two user terminals

were used. To provide additional flexibility, the access

class of each terminal can be set and changed by the system

security manager. All communications leaving the external

communications ports are encrypted using the Data Encryption

Standard (DES) operating in Cipher Block Chaining (CBC)

mode. Communications between the trusted computer system

and the remote data terminals are not encrypted, however are

assumed to travel in a physically secure environment.

System operation is controlled by the system security

manager. User terminals can send messages to and receive

messages from the trusted computer system, however they must

rely on the system security manager to actually transmit the

messages.

At first glance it appears to be a relatively simple

task to create a single process which would allow messages

to be exchanged between users. Figure 3.2 shows an example

of how a process like this would operate, and why the design

40



-~ - - .. - VWU,

encrypted data

excomm excomm
port port
A B

Gemini Trusted
Computer System

.. A

remote user remote user
terminal terminal

A B

Figure 3.1 Final System Design.

would not work. The problem is caused by the multilevel

nature of the communications process. In order to handle

messages with different access classes, it must be a multi-

level process. Attaching the single level terminals

directly to a multilevel process creates the potential for a

41

%* .•



covert channel [Ref. 1: P. 791 which could be exploited to
gain unauthorized access to classified information. "1

encrypted
communications

excomm excomm
port port

multilevel
communications

process

/- N

multilevel

environment
I I .-

covert
channel I 1

remote user remote user
terminal terminal

A B

Figure 3.2 Process Block Diagram With Covert Channel.

42
V-

.,

.. - .. . ..-. ". ,".d. . , . . . . . . . ,% " ,% % -. ,4- . '. . . -



To eliminate this problem, it is necessary for the

system security manager to create a single level process for

each user terminal attached. Figure 3.3 eliminates the

covert channel problem by providing a single level process

buffer to protect information. Even if an attacker was to

cause information of a higher level to be misrouted by the . 1
multilevel process, it would still be protected from compro-

mise by the single level process which interfaces directly

with the user terminal.

This design creates another problem. That is, the

need for synchronization among the processes. Interprocess

communications are synchronized by using eventcounts

(Ref. 15: p. 201. Although the system simulates two sepa-

rate trusted computer systems, only one multilevel communi-

cations process was used to simplify the synchronization

problem. Since the communications processes would be iden-

tical this limitation did not adversely impact system

design. -.

B. SYSTEM IMPLEMENTATION
1. Hardware Components. '''i

As discussed in the preceding section, the number of

data terminals used in the system was limited by the number

of process local device slots available. Figure 3.4 shows

the final system hardware design. Terminal 0 is used by the

system security manager to initiate and coordinate communi-
cations via the external communications interface. Two

remote user terminals are also connected as read/write

devices. They represent the users at the two sites which

are exchanging information. The external communications

interface consists of a special cable which allows one of

the ports to function as a data communication equipment port

(DCE) while the other functions as a data terminal equipment

(DTE) port. All of the Gemini ports are initially config-

ured as DCE ports. In order to communicate computer to

m
43:~i



encrypted
communications

excomm excomm
port port

A B

multilevel
communications

process

multilevel
environment i*

single level single level
term utility term utilityprocess process

single level
environment

remote user remote user
terminal terminal

A B

note: The single level terminal processes buffer
information traveling to and from user terminals 

V

preventing the covert channel problem.

Figure 3.3 Process Diagram Eliminating Covert Channels.

44



computer required the use of a special DCE to DTE convertor

cable (Ref. 14: p. 511. Figure 3.5 shows how the convertor

cable is constructed. Gemini ports 3 and 4 were not used in

this application.

Gemini
Trusted
Computer
System

Sdata ' ''
terminal .pO ,..,

p30P

p4 p2 converto

data,.
terminal n prmina

data -

p2 external communication port 2
p3- not used
p4- not used
pS- remote terminal user 1
p6- remote terminal user 2
p7- printer

Figure 3.4 Final. Hardware Diagram.

45

%7

p2-................tion.ort
remote. . * te rlusr............-..



DCE/DTE
converter

F pin pin2 2
3 3

to 4 4 to
external 5 5 external
communication 6 6 communication
port 1 7 7 port 2

S2 20---..

Figure 3.5 DCE to DTE Convertor.

2. Apicai Proara Format

Preparing programs to run in the Gemini Secure

Operating System (GEMSOS) environment is significantly more

complicated than running the Pascal MT+ programs in a non- ,.

secure environment. In order to be accepted by the system

they must first be put into a specific format which can be

recognized by the Gemini Secure Operating System (GEMSOS),

to gain access to the security kernel. There are several

software tools which can greatly speed up the process of

preparing a program to be run in the secure environment.

The fact that a program compiles successfully does not

necessarily mean that it will run in the GEMSOS environment.

Following Pascal MT+ compilation, the program is linked to

the appropriate modules using a file named, 'applica-

tionname. KMD' [Ref. 16]. This file contains a formatted

46

-........



list of the modules the application segment needs to be

linked with. The result of the linking process is a file

named 'applicationname.CMD' which still has no security

classification assigned. To assign security classification,

and prepare the program to execute in the secure environ-

ment, a secure volume must be created by running the oper-

ating system generation (SYSGEN) program.

Executing the SYSGEN program includes the applica-

tion program into a segment structure which is then trans-

formed into a "bootable system segment structure on

formatted volumes." [Ref. 17: p. 11 Detailed procedures for

using the SYSGEN program are contained in [Ref. 17: pp.

8-18]. The key to proper use of the SYSGEN program is iden-

tifying the segment structure in which the application

segment is going to be placed. The segment structure

includes the boot-strap, kernel, application code, and data

segments. The easiest way to identify this segment struc-

ture is to include it in a submit file named 'applica-

tionname. SSB.' For basic application programs, the segment

structure does not change. Use of the submit (.SSB) file
eliminates the need to enter the segment structure interac-

tively each time the operating system generation program is

run. Use of the SYSGEN submit mode is further explained in

[Ref. 17: pp. 13-18].

C. SYSTEM SOFTWARE DESIGN

Application software for this system was developed

using modular programming construction techniques. This
allowed for independent testing of each module prior to its

inclusion in the main program. This technique was espe-

cially useful because trouble-shooting GEMSOS related Ring 0

service calls was particularly difficult. Figure 3.3 shows

the three processes which were developed as application code
segments. They are:

1) multilevel system manager process

47

1 -") - " -- ' " . ', V - . , . -. ." . .-. . . . . -- - . . . ... - . .,"



2) terminal A single level terminal utility process
3) terminal B single level terminal utility process

Each process was developed as an independent appli-

cation code segment. The terminal utility segments are

almost identical, however must remain separate entities

because they represent different systems. In addition, they

are assigned different physical ports and can also be

assigned different access levels.

a. Terminal Utility Segments

As discussed earlier in this chapter the user

terminals can input, transmit, and display messages. Each

terminal is a single level device capable of sending and

receiving messages of the same level. Figure 3.6 shows a

flow diagram for the terminal utility application segment.

The actual code for the Pascal MT+ program which implements

this flow diagram is contained in Appendix A. This program

is activated when the terminal process is created by the

system manager process.

All messages input and received at the terminal

are stored in a specially designated message buffer segment.

Access to this segment is shared by the user terminal and

the system manager process. Each terminal has its own

message buffer segment, and cannot access the other's

segment without going through the system manager process.

When the user has completed his message transactions, he

initiates a logoff procedure.

The logoff procedure deletes the terminal

process and returns the resources allocated to the process

to the system manager process which created it. These

include memory space, process local segment numbers, and any

attached devices.

b. System Manager Segment

The system manager segment controls system

configuration, data encryption, and communications through

48



-. - .'~ ~ .-..--start

displaylay
errorr

entg
mode?

input display Xmit, logof f

T outbuf Finbuf outbuf delete

process

enter dis~ay oend

Figure 3.6 Terminal Utility Flow Diagram.

49



the external communications ports. Figure 3.7 shows a flow

diagram of how this segment is constructed. A detailed

source listing of the Pascal MT+ code implementation is

contained in Appendix B. .4

Creation of a child process requires completion

of four record structures. Each record structure has

several entries. Each entry is completed in a specific

order which builds to the 'create-process' resource manage-

ment call. Detailed instructions for process crea ion and

record entry format are found in [Ref. 14: p. 28]. Segment

and process management are the most difficult concepts for
someone unfamiliar with secure computer systems to grasp.

The procedure developed in this segment could be used as a

model for process creation in other programs. The specific

entries may vary, however the physical structure of the

procedure is general enough to fit a variety of

applications.

The system security manager located at terminal

0 has direct control over system assets. To provide this
control, the system manager has the option of specifying

(within predefined limits) how the system will operate.
These parameters are entered when the system is initialized.

They are interactively entered into a system operator record

from which they can be drawn when required by other proce-
dures. Parameters which do not need to be directly

controlled by the system manager are fixed and cannot be

directly accessed.

c. Program Documentation

Each module in the application segments has a

header describing its purpose and general operation. Since

this is the first research effort using the Gemini system,

the intent was to provide clear programs which could be used

as a basis for future research. In some cases this meant

sacrificing efficiency in order to provide better clarity.

50



startInu
system

parameters

comm test
crypto testl

crat

error secritaflnomn
4 messageocetio

Figur 3.7Systm Maaer FwDarm-
Tli

51ai

srce read

~~~~~t xmit.* ~ * ~ *


2. Process Synchronization

Process synchronization was accomplished using the ,".

eventcount of the message buffer segments of each terminal

process created by the multilevel system manager. By

advancing the proper stack eventcount the terminal process

alerts the system manager that it is ready to begin message

processing. The terminal advances the the outgoing message

buffer segment eventcount to notify the system manager

process when it desires to transmit a message or when it has

completed processing. When a terminal process indicates

that it desires to transmit a message, the system manager

transmits the message, and then unblocks the other terminal

process to display the incoming message by advancing its

incoming message buffer eventcount. This process can be

continued indefinitely. The actual implementation of this

sequencing is further explained in the applications code

segment listings contained in Appendices A. and B.

D. DESIGN SUMMARY

This chapter has discussed the system design process in

terms of its objectives and limitations. Hardware limita-

tions of the NPS Gemini system limited the sccpe of the

system design, but did not prevent achieving desired design

goals. The resulting hardware and software configuration

was implemented using modular construction techniques which

greatly reduced the number of software errors.

The resulting system utilizes the Gemini as a two-way

communications interface, and message processing facility.

All communications are protected to the maximum extent

possible using the Data Encryption Standard (DES) algorithm

in the cipher block chaining (CBC) mode. Terminal processes

are assigned single level access which eliminates the covert

channel problem and prevents the user from gaining unauthor-

ized access to classified information.

52

IV. DISCUSSION 2E RESULTS

A. SYSTEM OPERATION

The model communication system developed in this thesis

to demonstrate the feasibility of using a trusted computer

system as a secure front end for data communications met or

exceeded all design goals. Messages were passed between two

remote terminals in a manner that ensured security from

unauthorized access at both source and destination. Data

encryption was utilized to maximize the security of the

transmitted data. Finally, by varying the access class of

the terminal processes it was possible to demonstrate the

system's ability to detect and respond to security viola-

tions. Flexibility in determining system configuration

allows modification of system parameters to meet a variety

of test requirements.

System operation is initiated and controlled by the

system manager. The multilevel system manager process

creates the single level terminal processes at an access

level predetermined by the system manager. Once initialized

a remote terminal may only display and enter messages which

are of the access level at which the terminal process was

created. It is important to note that the user does not

assign the classification of the outgoing message. Message

classification is assigned by the system manager according

to the access level of the terminal sending the message.

This is done to prevent a user from downgrading a classified

message to send to an unclassified user at another terminal.

All security checks are therefore performed within the .

system manager process. For test purposes, the terminal

access levels in this system are manually entered by the

system manager. If the project manager did not want to

leave this choice up to the system manager, the access level

53

.........................
..................................... °

information could be hidden in a file that he does not have

access too. Once it is started, the system operates inde-

pendently. This eliminates the possibility of a corrupt

system manager from manually misrouting information stored

in the message buffers. I

One potential problem was the possibility that an

unclassified user could enter classified information in an
unclassified message and transmit it to an accomplice who

had tapped into the external communications line. To help

prevent this, the outgoing message is encrypted using keys

which are inserted by the system manager. Possible compro-
mise of the key could further be prevented by having the key

entered by someone other than the system manager. The goal

of this process was to develop a system in which no one

person would be in possesion of enough information to

misroute, and potentially compromise classified information.

There are a wide variety of possible system configurations.

Selection of a particular configuration would have to be "$-

based on a detailed study of the activity, and its associ-

ated security requirements.

B. SYSTEM TESTING

1. General Comments 1

The process of debugging and running applications

programs proved to be much more time consuming than had been
originally anticipated. Three factors contributed to this

problem. They were:

1) unfamiliarity with multilevel security concepts

2) difficulty in transforming Pascal MT+ programs to code
compatible with the trusted computer operating system

3) time delays required to prepare modified programs to
be tested in the secure environment.

As with any new area of study, multilevel security .

has its own terms and concepts which must be thoroughly

understood prior to attempting to use the trusted computer

system. As discussed in Chapter II, the manner in which the

54

Gemini system manages resources is very different from

traditional non-secure systems. The interaction of the

process, segment, and device management functions is key to

understanding overall system operation.

The second problem concerned identifying Pascal MT+

instructions which were not recognized by the trusted

computer operating system. A program which compiles without

error, may not necessarily run in the secure environment.

An example of this would be a program which contains the

Pascal command 'read' or 'write'. These are legitimate

commands which would compile without error. The problem

arises when the secure operating system encounters the

command. Trying to read or write to a file is not allowed

in the Gemini Secure Operating System (GEMSOS). The file in ,.

this case would have to be redefined as a segment to which

the process has access. The data would then be passed to

and from the segment by using a pointer to the desired loca-

tion. The best way to overcome this problem is to start

with very simple programs which test specific functions and

gradually build to larger more capable programs.

The final difficulty had to do with the amount of

time that was required to take a program which had been

compiled and prepare it to be tested in the secure environ-

ment. As discussed in Chapter III, in order to prepare a

program to run in the secure environment, a secure volume

containing the program segment must be created by running

the operating system generation (SYSGEN) program. Once the

secure volume is created, the system is reinitialized using

the secure application program volume. When a problem is

encountered in the execution of the program, the system will

either execute an interrupt trap halt and indicate the

processor's register contents at the time of the interrupt,

or in some cases will halt completely. In either case, the

error must be corrected before the system will be able to

55

progress any further in the program. Once the desired

correction has been made, the preparation process must be

repeated to test the modified program. For the programs

developed in this application, the preparation process took

from between four and seven minutes for each program. The

use of modular programming techniques is vital when program- V*

ming in this environment to minimize the time delays associ-

ated with program execution and testing.

As future versions of the Gemini system become 126.

available, it is expected that the effects of these problems

will be significantly reduced. Expanded system libraries,

and an improved application development environment will

make the process of writing programs which can be run in the

GEMSOS environment simpler and less time consuming.

2. System Securitv Tes"

The system security test phase was designed to

demonstrate particular security features of the model commu-

nications system. It was not intended to prove that the

security of the system that was developed could not be

violated. One of the major results noted was the fact that

no matter how secure a system is, it can still be violated

by generating application programs which misroute informa-

tion obtained through the security kernel. For example, if

a corrupt system manager is allowed to modify the encryption

key, he could potentially insert a key which had also been

passed to someone who is monitoring system external communi-

cations. This would allow him to decrypt the outgoing

message and compromise any information contained in it.

Another example would be if the user was allowed to specify

the classification of his outgoing message. This would

allow a corrupt user to improperly downgrade information and

send it to an unauthorized destination. Tight restrictions

imposed by the project manager are required to limit access

to the application code segment and prevent these types of

problems.

56

The Gemini system used in this research does not

currently support the attachment of classified serial I/O

ports. This means that the system does not identify the

eight ports in terms of a specific access level. Future

versions will be able to identify each port with a specific

access class. This will prevent an unclassified user from

transmitting data through an unclassified port. User termi-

nals will also be attached at a predefined level to prevent
the system manager from creating a classified terminal

process at an unclassified port.

Security testing consisted of two major areas.

First, communications were established between users having p

the same access level. Messages were passed between the two

terminals via the multilevel communication process.

Initially a multilevel (min-unclass, max-confidential)
system manager was created to coordinate communications

between two unclassified users. As discussed above, the
Gemini system does not currently support secure serial I/O

which necessitated manually entering the access level of

each of the terminal processes. Once the secure serial I/O
capability is available, the system manager would not have

to specify the classification of data going to and from the

remote user terminals because it is already specified by the

system classification of the port to which the terminal is

attached. Following unclassified testing, confidential

messages were exchanged between the simulated confidential

user terminals.

The second task was to test the system's ability to
detect and respond to a security violation. To accomplish

this, the user terminals were assigned different access

levels. When messages were sent between the terminals, the

system recognized the security violation and issued the

appropriate error message back to the originator. In this

case the security check consisted of a comparison of the

57

incoming message header, with the system manager defined

destination access level. The error message interrupts the

normal sequential passing of messages, to inform the origi-

nator that the destination of his message did not have the

proper access level to receive it.

Although only one communication process was used to

create both terminal processes, the terminals operate inde-

pendently to simulate being located at two different activi-

ties. They send and receive messages from different

physical ports, and communicate to each other using
different external communication ports. Inter-process

synchronization was accomplished by allowing only one

terminal to send a message at a time. Once a terminal's

message transmission was complete, control was passed to the

other terminal to allow it to display the incoming message,

and send its outgoing message. This technique was chosen to

facilitate testing, and is not the only method which could

have been used. Depending on the particular application, a

timed polling scheme with all terminals operating simultane-

ously may be appropriate.
3.EcytoTestin..

All data passed between the external communications

ports was encrypted using the Data Encryption Standard (DES)
algorithm operating in the cipher block chaining (CBC) mode.

Data encryption was enhanced by using the techniques

discussed in Chapter II. The objective was to create a
unique ciphertext for each transmitted message, regardless

of whether the actual text of the message was the same.

This was accomplished by providing the data encryption

device with a unique initialization vector for each message.

This system uses the transmission time of the message as the

initialization vector. In an actual system, this would need

to be modified by a random offset to prevent someone moni-
toring the outgoing traffic from gaining access to the

58

-7...

initialization vector. Another way to do this would be to

use a sequential message number which had been randomly

modified as the initialization vector. As long as the

initialization vector is unique, no two messages will have

the same ciphertext.

To test the data encryption device using the data

encryption techniques discussed above, a series of test

messages were generated. These messages were used to test .

specific features of the data encryption process. The

system manager application program was modified to display

the ciphertext of each encrypted block. Identical messages

were transmitted to compare the resulting ciphertexts. As

expected, the resulting ciphertexts were not the same.

Error propagation was also tested by inserting errors in the

received ciphertext prior to decryption. The errors

appeared in the decrypted text however were confined to the

block of data in which the error was introduced.

Another area of concern was that encrypting the

outgoing message adversely effect system operation. As

discussed in Chapter II, there are two basic encryption

methods. They are the methods which utilize feedback to
provide added security such as the cipher block chaining

(CBC) method, and those which do not, such as the electronic

code book (ECB) method. In the Gemini system, use of a

feedback mode requires that the encryption and decryption

devices be reattached with the new feedback key for each

block of data processed. This slow-down could degrade

impact system performance where large messages are required

to be transmitted at high speeds. A decision would have to

be made whether to sacrifice some security by using the ECB

mode in order to gain speed. This potential problem is

largely overcome in the Gemini system by the speed of the

Intel APX-286 microprocessor. When test strings were used

to provide continuous output on the external communications

59

....................................

ports, no noticeable slow-down was observed when using the

A CEC (feedback) mode.

60I

1.o .

V. CN

In this thesis a model secure communications system was
developed to demonstrate the feasibility of using a multi-

level secure computer system as a secure front end for data

communications in an office to office communication environ-

ment. The Gemini Trusted Multiple Microcomputer Base used

in this research proved to be an extremely flexible system,

easily capable of providing a high speed data communication

interface. The following observations concern the use of a

multilevel secure computer system in this capacity:

1) The major advantages of a multilevel secure front end
are the reduction in the message transmission delay
due to internal and external processing requirements,
and the additional flexibility it provides in devel- L
oping a discretionary security policy. Each security
classification can be broken into several 'need to
know classes which further restrict access to infor-
mation, and provide additional security.

2) By developing secure application software which auto-
mates internal message routing, and security record
keeping requirements which are currently done manu-
ally, a significant reduction in the manhours required
to process and store sensitive information can be
realized.

3) A major problem in developing application software is
the dif iculty encountered in generating programs to
run in the secure environment. There is currently no
way of taking existing software for a particular
system, and directly adapting it to run in a secure
environment.

4) Electronic transmission of sensitive information in an
encrypted format, reduces the delay associated with
traditional transmission techniques. Information
which can not be readily converted to a form which
could be transmitted electronically, would still be
transmitted via conventional routes.

5) Data encryption can be used to greatly increase the
protection of transmitted data without adversely
effecting system performance. Although not currently
approved for transmission of Department of Defense
DOD) classified data, the Data Encryption Standard
DES) algorithm when used in cipher block chaining
(CBC mode .as discussed in Chapter II provides the
maximum protection. By multiprocessing the DES
encryption process with a DOD approved method the
system can be used for transmission of classified
data.

6) By directly controlling the access of remote users to
external communication devices, the security manager

61

can have positive control over all incoming and
outgoing messaies. The security manager defines the
access Yevel o each device, preventing unauthorized
transmission of classified data, and ensuring that
incoming traffic is routed in a secure manner.

7) The multilevel secure computer system can interface
directly with a wide variety of communication equiip-
ment, however, incompatible devices would still-have
to be monitored separately. It is important to note
that, the use of a multilevel secure computer system
does not necessarily reduce the phsical securit
requirements. Physical devices must s illibe provide
rotection consistent with the classification level of

?he information they process.

As the number of computerized processing systems with
external communications capabilities grows, the need to have

a trusted secure interface between system users and external

communications devices becomes increasingly important. Use

*" of a multilevel secure computer system as a secure front end

interface can greatly enhance overall system security.

Functioning as both an external communications interface and

internal traffic manager, the trusted computer system ,.' '

provides the project manager with centralized control over

access and distribution of sensitive information.

62

*4•~- -- - .- * .* - * ..--- *.

APPENDIX

TERMINAL UTILITY PROGRAM LISTING

The terminal utility program is compiled and prepared

for execution in almost the same manner as the system

manager application program discussed in Appendix A. By

modifying certain parameters which are identified in the

program listing, the system manager can specify the physical

port and terminal number of the remote terminal process.

Once copied to the bootable disk which includes the oper-

ating system generation (SYSGEN) program, the tl-util.cmd

and t2-util.cmd files are automatically entered in the

secure volume created using the sysmgr. ssb file. To enter

additional terminals, the sysmgr. ssb file would have to be

modified to specify the entry number of the new terminal

utility program. A listing of the tl-util.kmd file which is

used to create the tl-util.cmd file is included following

the terminal utility source code listing.

63

.... '

-' *. .- ' -17 7- 7. '.9 V' J .-

program name: tlutil.txt

date: 18 feb 86

author: P. J. Corbett Lt./USN

for: AEGIS Modelling Group

advisor: Prof. Kodrps

purpose: This program is initiated when a terminal
rocess is created by the system manager process
sysmgr.txt). It allows the terminal operator to enter

and send messages via the sysmgr process, as well Ps dis-
play incoming messages. Message specifications and
terminal access level are determined by the sysrrgr process
and passed to the terminal process in its rlprocess_def
record. Other system constants are provided in the
mgr-typ.zli and mgr-con.zli files. I-icorinp and outgoin .
buffers are used to store messages. Eventcounts for these
segments are used to synchroni-ze syste communicatiors..

module tl _util;

cons t

{ system constant include files }
{)i gat e-co.n.zli} .'-

g a t e- c o . -

{$i rl-con,.zli}
{ i mgr-con.zli}

t vhys dev = ;{ physical port to w ich}
terrrnum= { terminal is attached

type

{ common type include files

(z.- 4

{$i gate-typ.zli}

f$I lit-typ.zli}

jlibrar procedure include files

{ i io-zlil

01i gate.zlil

{$I seg-rgr.zli}

n~rcc namne: inputjtmess

purpose: This procedure allows the operator
to Input a -ressaee into the outgoing message buffer.
Characters are Input into 2 byte Ilocks so that they
will be cor'patible with the data encryption device.
The character '$' is used to indicate the end cfO the
message. The intial block is reservedI fer the
address header. ?Aorrrat of the header is -As follows:

tlkC1]1 - source
1,_ [11 r21 destinatioyi

blkr[11 [3-51 : message number
blk[i1 FC-1 : classif icatiocn
blk[11 r7-01 : numbCer of blor'ks In nsu;

Source,destination, ard nur'ber of tlocks arp en~tered
ii this procedure. Remaining entries are filled in
by the sysrrgr process prior to trans~rissior .

--

pro-edure input re ss c orin bfInteger
var buf -stat :toolean);

.4 var
mess rec: buf rec;

* blk-cnt: string;
teTTpptr,input.ptr: pointer;
charn: char; 4
j,j,k&,success:mflteger;
count: integer;
proc.suc: boclean;

begin {input tess}

{create pcirter to start of input buffer

inDUt ptr:=lib _rk_pntr(ldt _tatle,corn _ buf 1);

temvptr:=input.ptr;

* clr screen(proc suc);

putlnfwdev, 'enter message to te transmitted');
putln(w (1evI enter a to indicate end of rrsg ,';
putulrw-dev, ')

{initialize rmsg block counter

{ egir chara-ter entry loop }
while(charir 0> "?) and

(j <(> rress _tuf size+1) do be ir

{block 1 is eddr, block 2 is s3trt of nsg

I =i+~1;
f eain loop to read 9 char for each blocK
f or j := 1 to E do tezin

if charin <> ' ' thea begin

getchar(r dev ,charin);

mress rec.Flockrij [ji: ciarir;

pj-a ~ ~ ~ ~ ~ A W-7 kl vr ,-r~~u~w - uJ J~L .~ ~ ~ WLTu W V. - 11~ TI wr '-9 RV - 797 717 W

{echo character input
putchar(wdev,charin);

end else

f if charin='I' then Dad the remain-
ing entries with *'$' -to avoid sending
an incomplete block
mess rec block [l] fJ1 :

end; {for}

end; {whilel

{insert sentinel at end of buffer in case input
buffer size was exceeded
mess rec. block rres s_buf si ze] [P1:'J

{count keels track of number of blocks inputI
c ou nt : =i;

{fillin address block source dest and nurn Ilk}
rmess rec numrblk:=count;
mress rec.tlock[11 [1]: term nurr;

putln(w-dev, -

putln(w lev, 'enter destinatlon terrinal nurrter',;
getcharTrdev,mress rec.blockftj p2]);
putchar(w dev ,m'ess rec .lockt1 i[21);

putln(wdev,')

binascii(court,3,blkcnt,'Oe);

for i:= 1 to 2 do

mess rec.tlcck'1i6: blk cnt[ij;

f lace mess rec in outgoing message buffer to
await transmission)
movefmessrec, temrp jtr ,sizeof (mess rec));

tuf _stat:=true;

putln(wdev,'mressage input comnplete');

C?

end; finput_mess}

-- - - - - -- - - - - -- - - - - - -- - --- - - - - - -

proc name: xmrit-mess

purpose: This procedure alerts the sysrmgr
process that the operator desires to transirit the
message stored in the outgoing message buffer. This
is done by advancing the outbuf eventccurt. The
sysmgr process notifies the terminal process that
the message has beer, sent by advancing the irbuf
eventccunt.

--- }

procedure imit-mess(inbuf -slot:integeroutbufslot:integer;
var intuf evc:integer;
var xrritbuf-stat:toolea~n);

var

success :in teger;

legin {xmit _n'essl

{notify sysmgr, msg ready to xrrit}
advance(outtuf slot success';
show err('outtuf advance errcr',Success;

{await sysrgr xmrit com~plete notification~
await(intuf slot,in'bufevc+1,successN;
show _err('await inbuf error',suacress,; &

intuf evc:=intuf evc-1;

putln(w-dv,'r~essage transmission complete');

xrmit-buf _stat:=false;

end; {xmit ress}

JJ
proc name: disprness

purpose: This procedure displays the
message stored in the incoming buffer segment. It
is similar in structure to input-mess.

--

procedure dispmess(comnbuf:integer;
var rec buf stat:boolean);

var

disp rec:buf rec;

dispptr:lointer;
d char:char;
i ,J integer;
procsuc: boolean;

begin {disp mess}

{ create pointer to incoming message buffer segment}

dispptr:= lit mkpntr(ldttable,con_buf,l);

clr screen(proc suc);

putln(w dev,'begin display of received message');

{ place contents of incoming message buffer into
disp rec '
rrove(disptr ,disprec,sizeof(disprec));

{ check incoming message for error message which
is indicatei by a source of "' }

{ if no error message then begin display }
if disprec.blockfl [1 0 '0'" then begin

putstr(w dav, 'message from terminal')
,utchar(w dev d is prec. loc[] [k); 1],2
Dutln(w dev,' ;
putln(w-dev,'resseae follows -- ');

* putln(w dev, ,;

.

{output inbuf contents to terminal}
while (dechar 0> ':'') and

(i e> mess buf size+l) do begin

f or j.:= 1 to 8 do begin

if d-char 0 '$' then begin

putchar(wdev,disprec.block(i] a)
d char:=disp-rec.blockrij EiB

end; {if}

end; {for}

end; {wbile}

end else begin

putln(wdev,rnessage from' system manager"!;
Dutln(w dev,'security violation');
putln(w dev,'imrproper dest access');
putln(wdlev,'messa~e not delivered');r

end; Tif}

Futlr(w-dev, 'end cf message');

rec _buf _stat-=false;

end; {disD-ressl

?0

--------- -u--------------------
proc name: logoff

purpose: This procedure disables the term U
and makes the resources assigned tc the terminal
process available. No new terminal process is
created to replace it.

-- I

procedure logoff(init:r1_process def);

var
suc ,success: integer; :

begin {logoffi

put'ln(w dev,'terrminating child segrrents');
{to reiEitiall ze a terminal process at this termr,

process segments would have to.1be terminated prior

putln(wdev,'self deleting child proce ss now');
putln(w dev,'terminal off-line');

detach(w dev);
detach (rdev, ;

self-delete(irit.initialseg[stack-offset],success);

if (success 0' no error) then begin
attach(tp hys dev , wdevjfalse,suc);
attach(t pktys'lIev,r lev,true,siuc);

end;show-errT'child self delete error ',sc- ss)

end; {logoffi

71

4 ---------------------- --------------
proc name: show-err

purpose: This procedure is called to
display the success code of the resource mngmnt
call if it is other than zero. If the success code
indicates no-error then no message is output.

procedure show err'str:string; code:integer);

begin {shcw-errl

if code 0' no error then begin
putstF(w_dev,strfl
putstr(wdev,'')
putdec(w dev code);
pu tln (w cev ,

end;
end; {show-errl

{-------- ----------------------------

proc name: clr screen

purpose: Clears display screen.

-- 1

procedure clrscreen(proc-suc:boolean)j

var

i :ir teger;

begin {clr-screer.}

for i:= 1 to 25 do
putln(wdev,')

end; {clrscreen'l

?Z .

proc name: main4

purpose: This procedure provides a mrode
selection menu for the terminal operator. It moni-
tors buffer status and calls the appropriate proc
deperdent on the mode selectior entry.

procedure main(var init :rlprocess-def);

va r
success : nte~er;

segnur:in teger;
mr.ode: char;
xmit tufstat,rec buf _stat:bcolean; 4

temrp strstring[El11;,
i ,leiel : integer;
inbuf evc: integer;
stk evc:intever;
sysstart: toolean;

te-ir {rvain!

{inlItia li ze terminal process parariete'rs
imrit tuf stat:=false;
mn od e =,e';

{sys start~false for twerrrinal 1 onl-,, all
other ter-rinals shculd have sysstart=tr~ej
sys start: =false;
intufevr:=O;

fattach terminal as read/write oevice}
attact(tphys dev,w -ev,fase,suc- ess);
attech(t thys dev,r dev,true,sucress);
show errr attach term read device error',success);

putln(w dev, 'terrial active terrm 'ium'fer')
putcharTwdev,term nmim);
putlr(wdev,'

{ stack eventcount is advanced to notify

sysmgr that terminal is activated }
advance(init.initial seg{stackoffset] ,success);
show err('stack advance error',success);

{ loop until operator enters 'e' to indicate logoff }
while mode > 'e' do begin

{ inbuf evc is used to have the terminal wait after
transmitting a message until a reply is received
from the dest term. It is initially advanced for
terminal 1 to start the system and then is advanced
upon receipt of an incoming message }
await(init.initial seg[inbuf offset] ,inbuf evc+l,success);
show err('await incoming message",success);

intuf -evc :=inbuf -eve-l; ..

{ sys start is used to avoid the 'display incoming

message' prompt at terminal 1 when the system is

started. Once the system is operating it will
always be true)
if sys start= true then teginh

rec buf stat:=true;
putln(w-dev, "display incoming message');

end; fif}

sysstart :=true;

{ inner loop is used to indicate that a
message has been sent and alert the operator
that the terminal is waiting for a reply
while mode <> 'x' do begin

{ help menu consists of a display of term
access level, and a display of ossible
modes }

putstr(w dev,'terminal compromise level');
level= init.root access.copromisel];

case level of

0: putln(w dev, 'unclassifid' ';;
2: putln(w dev, 'confidential');

74

..

4: putln(v dev,'secret');
6: putli(w-dev,'top secret');

end; fcase}

putln(v dev,'enter mode desired');
putln(w-dev, 'i= input message');
putln(w dev,'d= display received message');
putln(w-dev,,'x= transmit message');
putln(v dov,'e= locoff');
putln(w dev,' ');
putstr(-Wdev,'enter mode here');

getchar(r dev,mode);

if mrode= 't' then begin

if xmit buf stat= false then begin

{enter message to be stored in
* outgoing message luffer}
*input mess(init.initial seg~cutbnif offset],

xmi t buf stat);

end else begin

putlr(w-dev, nessage waiting to be xmit');

end;

end else if rode= 'd' then begin

if rec _buf _stat= true then teegir

putln(wdev,'erterirT display module'); O

I display contents of inocrring
ressage tuffer
disD-rress(init initial-see(Intuf _off set],

rectbuf stat);

end else begin

putln(w dev, 'icorirpg buffer emrty''
end;

'~~L V-' VV W. 91 P. 7 v ' --. ~ IL-

end else if mode= 'x' then begin

if xm~it buf stat= true then begin

putln(wdev,'sending message to be xmit');
xmit mess(init.initial seg[inbufoffsetl ,

init.initialsegroutbuf offset],
Inbufevc ,xmitbufstatY;

end else begin

putln(wdev, 'outgoing buffer empty');

er.d

end else if rrode='e' th.en begin

putln(wdev,'lcgoff process initiated');
logoff(init);

end else

-utln(w _dev 'm-ode entry error try again');

Send of Inner loot-exit after mrsg xmrit}
end; {while}

putln~w dev,'waiting for incoming traffic');
{reset mode selectior value}

end; {while}

putln(w dev,'end of terminal 1. process');
detach(W dev);
detach(rdev);

{infinite loop to avoid crash}

while true do;

end; {main}

modend.

* 77

program name: t#-util.kmd
author: P.J. Corbett, Lt., USN 4.

date: 28 Feb 86
purpose: This program is used when linting the

terminal utility program after it has been successfully
compiled. It eliminates the need to enter the names of
the modules the program is to be linked with each time
a new versioni cf the program is compiled.

note: the actval t#-util.kmd file contains only
one line. Any additional information will cause an
error when the pascal MT linker is called. To adapt this
file for a specific terminal the '#' in the program name
is changed to the terminal number, tl-util, t2-util etc..

!; b~: t#-utll=b: rl-iri t.,b: t#-util ,b:rlllb/s,b :cc/s,pasl ib./s/p :a -

.

SYSTEM MANAGER PROGRAM LISTING

The source code for the system manager application

program (sysmgr.txt) is written in Pascal MT+. With the

exception of the mgr-typ.zli and mgr-con.zli files, all

included files are library utility programs which were

delivered with version 1.3 of the Gemini operating system.

Information concerning how to invoke library functions is
contained in [Ref. 141. Once the text file is compiled, the

required modules are linked together by using the sysmgr.kmd
submit file with the Pascal MT+ linker. A listing of this

file is provided immediately following the source code

listing. Upon completion of the linking process, the

resulting sysmgr.cmd file must be prepared to run in the

Gemini Secure Operating System (GEMSOS) environment. This

is accomplished by transferring the sysmgr.cmd file to the
bootable disk which contains the operating system generation

(SYSGEN) program. Procedures for running the sysgen program

are contained in [Ref. 17]. A listing of the submit file

sysmgr. ssb which contains the application segment hierarchy

used in the system generation process is included at the end

of this appendix. Once a secure volume is created on the

disk, the Gemini system is reinitialized using the secure

volume. This begins execution of the system manager appli-

cation segment.

79

74

F F

program name- sysrngr.txt

date: 16 feb 86

author! P. J. Corbett Lt./IJSN

for: AEGIS Modeling Group

advisor: Prof. KodresN.

purpose: This program is initialized as a multi-
level process which allows the sysmgr to corfigure and
operate a multi terminal communication system. It relies
on information contained in the mrgr-con.zli and mer-tip.zli
files as well as interactive inputs to determine config-
uration parameters. OCe initialization is complete, the
system runs independently allowing remote terminal users
to trarsmit messages via the multilevel secure frort end
process.

rnolule sysmngr;

{constant include files

corst

{Ji mrgr-coi.zli}I
{Bi gate-non.z-lil
{$t rt-con.zli}

ftype Inplude files}
typ~e

{$i gate-typ.zl i}
f{y$i rlp-t~.p.zli I

I $1 st-typ. zll I

f~i rr,,r-ty p. z 1i}

{litrary include

{"-i io.zlil
f{ri gate.zlil}

s~ seg-mrrr. zl
i cc.zli} l'

proc name: parm input

purpose: This procedure allows theS
sysmgr to input system parameters necessary to test
system operation.

--- }
procedure parm input(var sysrec:sysmgr rec;

proc suc:boolea-fl

varPe

temp str:string;
temnD char:char;
temp-int :integer;
i :integer;

begin iparm irDut} ow

putln(w dev,'*begin entering system parameters');

vutln(w dev, 'enter physical port 1. for external c omr')
.etci'arTr dev,temp char);
putchar(w dev,temp char);

sys rec corrm pcrt [11:=ord(temp char)1-48;
puitln(w-dev, I)

;utln(w dev,'enter physical port 2 for eiternal comm');
ge tcha r Tr dev , t emp _c har);
pu tl1n 'w _d ev ,t ernpca)

sys rec.com'm port[21:=ord(tempchar)-4S;'.
putfln(w dev," ')

sys rec .ch size:=400;

putln(wdev, 'child size is');

eI

putdec(w dev Sys rec.ch size);
putIn (wEev,')

putln(w dev,'buffer size is 100 bytes');

sysrec.b _ size:=10
putln(wdev,'')

putln(w dev,'enter terminal access level');
putln(w dev,'unclass=O');
putln'vd ev,'conf=2');
putln(w dev,'secret=4');
putln(w-dev, 'ts=6')

putln(wdev,'entry must be within sysmgr access range');

for i:= 1 to nuir-tern do begin

putstr(w dev,'terminal');
putdec(w dev,i)';
putstr(w dev, access level is');

getchar(r rev, temp char);
putchar(w dev,temp char);
temint :=ord(tempchar)-48;

{fill access class record with en.ter ed class P
fillchar(sysrec.ch acce-ss[il, sizeof(access _class),

putl'i(wdev,')

end; Tfor"

putlkwdev, 'enter 8 character crypto key (no echo) ;

for i*= 1 to 9 do be-in

getrhar(rdev,tempchar);
s~s rec.keyri]:=ord(ternPchar)-4_8;

end; {fcr},

putln~wdev,'crypto key inserted'); a-

{ fixed rararneters I-.
{rode segment entry numbers

P 24'

1*p *,

sysrec .chld ent [i):=6;
sys rec .chld-ent t2I:=7; M

putln(w dev,'parameter entry complete');
end; {parminput)

f ---------------------------------------

proc name: sysconfig

purpose: This procedure configures the external
communication ports identified in pam input for port tc
port communications with flow control. They are attached
to read and write sequentially P bytes at a timre to be
compatible with the data encryption device.

--- 1

procedure sysconfig' send port: integer;
recv port: integer;
Var conf ig suc:boolean);

var

rddev,wr dev: dev nare;
rdpam~wparm: devparm-rec;

success: integer;

begin {sys..config

configsuc:= false;

putln(w dev,'configure transmvit and receive ports');

{attach xmit and recv ports for comrputer to computer
corrmunicaticns I

{ ill-in attach device calling arrurnents}

Ireceiver should be attached first
rd _dev.namne:= sior;
ri _dev.nur,:= rervport;

rdpirrm.sicr.mri:= 504d; {device rrode e-tries
rdparmr..s i cr .r-r2:= $02e;
rd-parr. s ior .io _rrde:= rts _oflow;

..2Dam~sir~rrx:=P;

*w

. 7

rdparrr.sior.delim active:= false;

attachdevice(rd-dev,recvslt,rd arm,success) ;
show err(" receiver attach error',success);

{ attach transmitter }
wr dev.nare:= siow;
wr dev.num:= sendport;
wr_-dev.d type:= io;

wr parm.siow.1mrl:= $04d; { device mode entries }
wrparm. si ow.rrr2 := 407e;

wr parrr.siow.iomode:= asrt none;

attach device(wr dev,xmit_ slt,wr par,success);
show err('transmitter attach error',success);

putln(wdev,'comm devices attached');

{ xmit ard recv attached computer to computer no flow
control }

config suc:= true;

erd; {sys _config}

--
prcc name: comm_tst

purpose: This procedure checks communications iI
loth directions by transmitting a test strin of date. Once
communications have teen checked the comm devices are
detached.

.-A-

Lrocedure commtst(init: rl_processdef;
send_port: integer;
recv -ort: integer;
var comm _tst _suc: bcolean)

~r a r

chari-,charout: array [1-S1 of char;
wr-class,rq_c ass: accessclass;
i, suc'ess : in teger;
size: irteger;

F .

* - ~ -- *' ' '

- .- -7.h yAN~r Y w ~ - . ~ .

begin {comm tst

comm-tst-suc:= false;

pDutln(w-dev,'begin comm test');

{transmitter access _class for commr test
wr _ class.cornpromise:=- init.rescurces.mdX clIass corrprorrise;
wr-class.kntegrity:= init.resources.min-class.integrity;

putstr(w-dev,'outgoing string is '

* for i:= 1 to P do tegin

putchar(wdev,charout il);

endI; If or}

write _sequential(xmitslt,addr(charout)',P,wrolass,success;l
showe er r 'write sequential error',suc'-,ess;

read sequertial(recv slt,addr(c-harin),size,wrclass,success);
sh ow err('read seque -tial err or',success)

fcr i:= 1 to 8 do

putchar(wdev,charin[il);

putln(wdev, '

*detach device(xrit slt,success);
show err('transmnitter detach Prror',success);

detdch devlce(recv slt success);
shcw eFr('rec~iver detach',success ;

putli(,ddev, 'comrr test complete');

-corrtst suc.: true;

end;*, ccmtr-tst}

-- a.

proc name: att crypto

purpose: This procedure uses four process local
device slots to attach the required encryption and
decryption devices. Crypto key and feedback key are pro-
vided in the procedure call. Devices are attached using
the cipher block chaining (CBC) mode.

--- }

procedure att crypto(cry key: bufS;
cry fbkey: bufa;
var attcrypto suc: boclean);

va r

rendev,wendev,rdedev,wdedev: dev _name;
reanparm,wenparm,wdeparm,rdeparm: levparmrec;

4? success: integer;

begin { att _crypto }

att-crypto-suc:= false;

{ attach read encryption device }

rendev.name:= icp ren;
rendev.nu_':= 0;
rendev.d _type:= io;

renparm.ren.blk size:= 8; tytes per blk }

attach device(re-dev,ren_slt,ren_ arm,success"-; J;
show err('attach ren device error',success);

{ attach write Pncryptior device }

wendev.name:= dc; wen;
wendev.num:= 0;
wendev.d_tyje= io;

wenpar. wen .,ode:= i; { 1 for CBC -mc}
wenparn.wer..-.ey:= cry_ke ;,
wen par .wen.fb ke":= cryfbkey;

'S

attach device(wendev,wenslt ,wen parm,success);

show-err('attach wen device error ,success);

jattach read decryption device

rdedev.narre:= dcprde;
rdedev.nuim:= 1;
rdedev.dtype:= to;

rpar'.rde.mode:= 1;{ 1 fcr '?C mocde
rde_parrn-rde.key:= cry key;
rdeparim.rde.fbkey:= cry ftkey;
rdeparmn.rde.blk-size:= e; .

attach device(rdedev,rde slt,rde_ arm,success);
show err('attach rde device error success);

Sattach write decryption device}

wdedev.rarre:= dcp wde;
wdedev.num:= i-;
wdedev.dtype:= to;

{wde-parm is blank record

attach device(wdedev,wde slt ,wdeparr",success)
show err('attach wde device error',success);

att-crypto su ,:= true;

en~d; f attcrypto}

proc name: crypto-tst

purpose* This procedure verifies that the
encryrpt ion and decryption devices are working projerly.
A test strirp, is encrypted then decrypted u sirg test
keys. 'Results are output to the sysrr~r termnral. 'Aen
complete ell date -iphering devices are detacned.

--

procedure c7rypto tst(init: rl-processdef;

crypto-tst-suc: boolean);

V.

encr~ptir,encryptout,decryptout: array [1..81. of char;
wr -class,rd_class: access-class;
size: integer;
i: integer;
success: integer;
proc-suc: booleen;

begin I cryptotst

cryptotstsuc:= false;

putln(w dev,'begin crypto device test');

wr-class.compromise!=init.resources.max-class.comnpromise;
wr-class.integrity:=init .resources.min dlass.integrity;

putstr(w_dev,?crypto test strir. is')

for i:= 1 to 8 do tegin

encryptinril :=''
putchar(w-dev,encryptinril);

end; ffor!
putln(w _dev,

{write test string to encryption device
write sequertial(wen _ slt,addr(ercryptin),S-,wr class,

success);
sh~vierr('wen siow error',success);

{read encrypted string
read sequential (ren _ slt,2ddr(encryrptout),size,rd class,

success);
show err(reza sicr error',success);

pntstr(w _dev, 'encrypted string is '

for i:= 1 to 8 do

Putchar(w-dev,encryptout(il);

rut In(w-dev, N ~1

* {write encrypted string to decryption idevice}

* 8E

write sequential(wde slt,addr(encryptout) ,8,wrclass,
success);

show err('wde siow error',success);

{read decrypted string}
read sequen t4 al(rde~slt,addr(decryptout),size,rd.class,

success);
show-err('rde sier error',success);

putstr(w dev,'decrypted string is '
for i:= 1 to E do

putchar (wdev decrypt out [i3

putln(w dev,'')
putln(wdev,'crypto test complete');

{detach encryption/decryption devices}
det-crypt o(proc-suc);

crypto tst suc:= true;

end; {cryptotst

prcc namre: termproccreate

purpo-se: This procedure creates a single level
child process for a user terminal nsing the parameters
spec f iel bty the sysrngr in parrr input. The child process
code segrent is a terminal utility ;rogramr which attaches
the child process at the desired ph~'sical port. Four seg-
mrents are passed to the child process. The stack segment
contains the (-h init:rl process def record. T-he two
cormor message Euf f er segment s rinbuf and outbtuf) are used
to pass messages between the parent and child processes.
Finallj a rode segrrent is reqiiired for all child processes.
Process local segmrent numbers as well as pointers to the
rrPSS~ge buffer segrrents are passed tack to the main pro-
cedure when the child process has teen created.

--

AqI

procedure terriproc create(init: rltprocess def;
chparm: sysmgr rec;
chid -num: integer;
var stk slot:ch _array;
var out~uf -slot: ch -array;
var inbuf-slot: ch-array;
var cut ptr: pointer;
var inptr: pointer;
term' create suc: boolean);

var

::h Me segnum: ch-array;
pbsegnum: charray;

chid entry: integer;

c~h i'iit: rl processdef;
ch addrjrec: rl-addr array;
ch-regrec: rlregrecord;
ch res rec: ri res record;
ch-seg-list: seg array;.

stkinitptr: -rlprocess-def;
stk ptr: var _pointer;
ivntuf _ptr,outbufptr: array [l..nurn-terrrl of pointer;

seo rngr bytes- integer;

stzrksize,cLd _ size, buf size: integer;
*stk evc val: ch _array;

size, success: integert
i,j: integer;
class:access _class;

begin ftern iproc create

terrT create snc:=false;

{iniltiali~e -hild parameters
chld .size:= chparm.ch size;
tu f -size:= ch -parrr .t _size;

J:= chid _n um
chld entry:= ch pamcl et rj;

_pa,. r .chl*d-er

create, makeknown, and swapin as alpropriate, child
* segments

* { makeknown terminal utility code segment located at child
entry number specified in sysmdr.ssb file
segmake~rnown.(init .in-itial seg Lroot -ffset] ,chldentry,

cli cde segrnurj,r e,size,class,success1.
show err(' akeknown rhild entry off root error',Success);

7reit avd trakeknown child process base}
segzcreate(init.initialsegkfodeoffset,chldnum,e,success);
show err('create process base for child error',success);

seg makeknown(init.initial sep~cod eof fse t] , ch ldnurr,
pb sg nu','[j],r w,size,cless,success);

sh,1w errt I 'ake no~n chih d rocess base. error',success',,

' dleter-!'Ine required size for stack. it must te large
enough required information for child initialization. This
expression was adipted from the pro-tst.zpa process
creation demonstration program

seg mgr lytes:: sizeof(stack header!+sizeof(kst header)+
(sizeof(ksteintry)*init .nurn kstT;

stack sie:ri stack_ size+vect size+segnrgrbtytes;

T oreate, makelknown, and swapin child stack segmrent r
seg_create(.pt segnum[j],O,stack size-i,success);
show err('create child stack err-r',success);

se,-mrakeknown(pt seg numfjJ,"?,stk slot~j],r w,size,
class,success)'

show err('makeknown child stack error',suc-cess);

swalpinsegren t stkslot [j3sur!cess
show _err('swapir child stack error',success);

s tack eventcount is used to notify sysrrgr that the
terminal process is activated. It is also used as an
entry in the ch init record }
rpad -evc(stk sl~t~jl,stk evc val[jl,suco-ess);
show err(%'read stack evc error',success);

91

'%F ripITW. "P

{create message buffers}

{outgoing message buffer
segcreate(pb seg num[j] ,i,buf size,success);
show-err('create outbuf error',success);

se-g makekn owi(;pb seg num [il, ~out buf slotf[j],
rw,size,class,success);

show err('outbuf m.akeknown error',success); A

swapin segiment(outtuf slctU] ,success);
5how err('outbuf swapin error',success);

{incoming message buffer
seg create(pb seg n-um[jl ,2,buf size,success);
sho;Werr('creit inbu errsu-cess);

segmakeknowr'pbsegnum[j] ,2,inbuf slot[j],
rw,size,class,succiss),

show.,err(inbuf mraieknown error'.,success);

swapinsegrrent(intuf slot[j],success);
show err('inbuf swapin error' ,success);

{fillin ch_ seg list

{cli seg list determines order in which segm1ents are passed
to the child proce "ss I-
ch seg list (stack _offset] := stk _si.t [ii;
ch siep list[code _offset] :=ch cde _seg nurr~j];
ch seg list [root offsetl :=in t .initial se, (rcct-offsetl;
ch _seg_ list~outbuf offset]:= outbuf sl'-'trjI.
ch-seglist [intuf_ offset] := inuf _slot [JJ;

{fillin child iniit re.,ord

IL oh in it record is placed on stack for use by child
process when created}

* ohhinit .cpu:= init.cpu;
ch init.num kst:.= init.nun kst;
ch init.root access:=init.root access;
oh_ init.s-seg:= stack cffset;
ch init.s-_seo _event:= stk evc _valcil;
{priority is irrortant inY multirrocessing with a single

processor to ensure proper synchronization}
* ch init.resourfes.j-riority:= init.resources .priority-l1

lib _integer to _b?4(chld size,ch init.resourcs.remory;;q
rh irit.rescurc~s.processes:= 2;7

92

ch inittresources. segmen t s 90;
1 mmI class and max class determine the access level of
the cifild process. -Since the terminal process is single
level, they are the same. Levels are specified by the
sysmgr during the parm input initialization. I

4 ~chjinit.resources.nin..class:= ch...par.ch..accessrjB;
ch -init.resources.rrax-class:= chpermr.ch-access[j3;
ch init.sp2:= qi;
ch-init .ring num:= 1;

{create stack pointeri

{stack pointer is offset to start of ri process def
stk ptr.seg:= lit rk sel(ldt tatle,stk sot[j],iY;
stkcptr .off:= stack-size-(vect-size+segmrgrbytes+

sizeof(rl process def))7
stk-initptr:=stkptr .p;

{copy ch init on to stack}
mrove(ch-inlit,stkinitptr ,sizeof(rl process lef)) ;

{create pointers to imessage buiffers
{poirt to start cf message buffer, no offset}

ou tlu fptrrjl:= lib-mlkpntr(ldttate,outbuf _slot[j),1);
intuf-ptr~j>.: librkpntr(ldttale,intuf slottj],i);

4fillin reraining records for create process call

{ 'hild address re -ord}

{a maxinuT of 5 segrrerts may be passed in ch addr array}
for i:= 0 to 4 dc begin

rh-addr-recril.segmentrumbe-r:= chseglist[iB;

{code se~rrent must be of type read-execute}
{others are type read write
if i 1 tler begin

ch addr rec (i].segrrent type:= r e;

end else begin

c-adr-recrl1.segrentt~pe:= r w;

Sl 9X F
end; fif}

{ swapin ailsegments except rcot offset

if i = 2 then begin

end else begin

ch addr-rec [ii .swarin:= true;

end; {if)

ch-addrrecril .protection:= 1;

en1d; {for}

{child register record

ch reg_rec.ip:=
ch reg rec.sp:= stkptr. off;
ch_ reg_ rec.spl:= stack size-(vect size+seg mgr bytes);
ch regrec.sp2:= 0;
rh-reg_ rec.vec seg:= 0;
ch reg rec.vec off :stack size-vect _size;

{child resource record

{ hild. 1 i s l o c ated a t ch_ r es r e c. c hII _n u rr=
ct res _rec.child nur':= chld num-1;
ch _res _rec-.priorlty:= ch-init.rescurces.vriority;

*7 cres rec.rremrory- ch init resources rnemory;
ch _res _rec.prccesses:= ch inlt.resources.processes;
ch _res _ rec.segments:= ch lnit.resources.segments;
ch res rec.rnin _class:= oh init.resources.r'in _class;

ch-_res_ rec.p'ax _class:= ch init.rescurces.trax _class;

{ nould not pass array of pointers as calling argument
so hpd to assign t.o type pointer variatles
irptr:= int'.if-ptrrjl;

out Ptr= cu tbu fptr rj]

pvtltnwdev,'creatirg child process now');

-rat rrcs _addr rec,ch _reg_ rec,ch res rec'suCcess)l
show err('create child process error' ,succes5);

9 4

~77

{wait for child process to advance stack eventcount
indicating that child process is active I
awatt(stkslotfj1 ,stk evc val [jI +l,success);

show-err('await stack advance error' ,success);

term create-suc :=true;

end; { term proc create

proc name: xmit-rec

purpose: This procedure takes the message stored
in the outgoing buffer of the sourrce terminal, encrypts
each block, ; nd transmits it sequentially via the5
appropriate external comm~runicatio'qs port. The crypto-
graphic is provided by the systrgr -rec. The fbke is the
time at which the message is sent. At the receiver the
message is decrypted and stored 4.n the incoming message
tuffer of the destination terminal. Access levels of the
msg7 and dest are compared. If they do not tmatch the msg
is not delivered, and an error msg is returned to the
source.

note: ft key needs to be unique to avoid avoid creatin'9
identical cipher texts when a ressage is transmitted Trore
than once. Tirre of transmission may not work in applica-
tionis where there is a significant time deley in tran~s-
risst on.

--- I

pronedure xmit _recv(ch parm: sysmgr rec;
orig term: integer;
dest _term: integer;
o_ out _ptr: pointer;
oinptr :pointer;
d _ ut _ptr: pointer;
d ir_ ptr: pointer:
var int _ness_ num:inte-er;
var rev suc: toolean ;

95I

-ARI 91 MULTILEVEL SECURE FRONT END FOR DATA CONUNICRTIONS(U) /2
NRYRL POSTGRADUATE SCHOOL MONTEREY CA P J CORBETT

UNCLSSIFIED MR 6F/ 17/2 NL

ME.N."

IL2 8

12.2.
L3 6

W6NA 12.0

1.05Jl-A

mlRr.) l COR

11111 m L. 40 62

% iiI

var

out rec I In rec: tuf rec;
inpftr,outptr: array (l..num term] of pointer;
time: cc array;
fbkey: bufe;
srce,dest: char;
int -dest: integer;
str mess num! string;
encryptoult~decryptin,decryptout: array [1..81 of char;
i,j: integer;
size: Integer; K
recv class,xmitcless,class: access-class;
count: integer;
success: integer;

* dest cormp,mess camp: integer;
* proc suc: uloolean;

tee~in f xmit recv}

* recv suc:= false;

* putln(w dev,'entering transmit/receive rodule');

sysconfig(crig_ term,dest term ,proc suc); ;

{ retrieve mressage stcred in, originator's outgoing ms?, tuf}
move(o out _ptr ,out _rec,sizeof(out-rec));

* { fill in remaininf address block entries}

{outgoing message rurrber}
out rec.num:=int mess nur;

*message classification}
cut rec~blocckllie][-1:=chr(ch parmr.ch_ access[orig terml

compromiseri] +49);

{insart message numrter in address tl1" }-
ti nascii (it trsm ur,sriess rum.0
fcr I:= 1 to 3 de ,t esrn 0)

',ut rec. lock[11i] i21 :=str ress nur i~

{increment message nurber counter
intm!ess-nur?:=intFressnur41;

VJMY--JLO(76X ?W737-A~rW.-ArJ97da-

(determine fb_key
feedback key is the time of transmissionI
this provides a unique initialization vector

(attach callerder clock device
cc rattach(cc_sit ,success);
show-err('clockread attach error',success);

{read calender clock
cc rdev(cc slt ,tirre*,success);
shcw-err('read time error ,5uccess);

{transmission time = fb key
putln(wdev,'crypto key is');
for i:= 1 to 8 do begin

fb-keyri]>= ord(timre[I-3]);
putdec(w_dev,fb key~il);

end; {for}

detach device(cc sit ,success);
s how -err('clock detach error',success);

{transmitter access class
xmrit class-= cbhparrr.chaccess~ori6_term];

* begin trarsmit/receive loop I

*for i:= 1 to cut _rec.num blk do beein

{in cbc mode crypto devices mwus t te reattached to transmit
* each blccK. this is required because tqie previous ercrypt-
*ed block is used as the fbke to encrypt the next block.}

att _crypto(chja rm . ey, f b~ey , prcc -5e);

{write to e'icrypticn levice
* write seque'rtialwen slt,addr(cut _rer.I.Iockril),E,

x-it class,success);
shcw-err('wei sicw er~or',suc-cess';;

{read encry;pted text
read sequert ial(ren slt ,addr (encrytout),size -class * -:cess);
show err('ren sior irrcr',success);

272

.**%._

{transmit encrypted block
write sequential(xmit .slt,addr(encryptout),S,xmit.class,p

success);
* show err('transmit error',success);

{ determine fb_key for next block
for J:= 1 to S d~o

fb key[j :=encrypt out J];

* ~egin receiving messageI

* {receiver access class
recv-class:= chparm.ch.acces[est..terml;

* { read encry ted text
*read -sequert ial(recv _ slt,addr(decryptIn),size,c'iass,siccC5ss) A

* show err('receive error',surcess);

putln'w _dev,'received text is');
* for j:= 1 to P dc

putchar(wIev,iecryptinj] t

* putln(wdev,')
{write to decryrtion device
writesequentiawe slt,addr(ecrptri,P,rcv..Olass,

* show-err('wde siow error',success)

* { read decrypted text
*read -sequerlal (rd-sl t,addrleryiAOt ut), 5ize, las,VCsu

show err('rde sior error',success);

putlni(w ev,'decrypted text is');
for j: 1 to E do begir

in rec.blocke[i]1 : -detryp tcu t[jD
putchar(w_ dev,decry,tcutlj1);

end;
*pu tln (w _d ev,

{court is numrber of block~s in received message
o ou at-count ,-1;

{det, ch crylto devio-es to prppire for next block
det cry~t o(prcr suc,'

end; fforl

9E.

WV~

detach(xmit sit);
detach(recv-sit);

'S message transmitted and received}

{ insert numbler of tlocks into ircor'ir~g record
in-rec.nurmblk:= count;

{ decode address "Clock~
srce:= ir rec.tl cc k[11 [1141 I
dest:= in rec.block[11i] 1;
putstr(wd ev,'dest Is');
putchar(w dev,dest);
putln(w-div,)

int dest:= ord(dest)-4E;
putstr(w dev,'Int dest is');
rutdec(w dev int lest)*
putir(waTev, V

dest-coTp:= chparr. chaccess [intdes t. ojrorri se [1]

mess corr;:= ord(ir rec.block(11,L61)-4S;
putln(w dev, -

putstr(w dev,'destcorp-rresscorrp');
putdec (w dev,dest comrp
putdeck wdev,ress comp
putln(wdEev,' ;

{compare ressa~'e and destination access levels f'cr
possitle security violation
if rresscomp 0> dest ccrrpr then Iegir

{if srce= Z'thei incorrir.- essage is aq error
mressage con,7erning a se-i.~rity violation}
If srce 0 1~' then tegin

putlriiv dev,'security vicleticn ri~ssaTe nuumler');

for i:= 7 to 5 do
pvtchar(wdev,irec.t1ock[11[riJ
recv suc:=falsey

fprepare errcr mns, fcr transm'ission
err r'sg(srce ,d out"_ptr ,jr cc svc.

end else begin

{ if incoming traffic is an error msg then
move it to the incorming wessage buffer of
the destination terminal I
rove(inrec,dinptr ,sizeof(in-reci);

{reset recv suc
recv suc:=trie;

end;

end else begin

{if nc violatio.n, move msg into incoming ms-a
buffer of destination terminal}
T1ove(inre,dinptr ,stzeof(in rec));
recv suc :=true;

end; {if}

* end; {xmit-rer}

---------------------------- -----------------

proc name: err mrsg

purrose: In the event of a security violation,
this prcce dure fills destination outgoin- buffer with
an error message. This error ress;!ge is thern transmitted
to the source for cistlay at the origitator 's tr~i

*~---I

pror-.edure err~rrsg(dest:ch-ar;
xrit t r poi nt er;
va r err rsg suc bo olee.n)

* var

err_ rec: buf-rec;
.: integer;

tepir {err _rsg}

102.

err rec.num:= 0;
{ error msg has only an address block }
err rec.numblk:=1;

{ source of "' indicates an error message }

errrec.block(1] [i1:='O';

errrec.block[11[2] "2=dest;

{ remainder of address block is empty .
for I:= 3 to 8 do

errrec.block[1] [i] :='O';

move error message to outgoing buffer of dest term
for transmission back to source }
move(err_ rec,xmitptr ,sizecf(err rec));

end; {errmsg}

proc neme" det_crypto

purpose: This procedure detachs all data
encryption/decryption devices.

-- I

procedure det crypto(var procsuc:tcclean);

tegin {det cryptol

detach(wen slt);
detach(ren sit);
detach(wde-slt);
detach(rde slt);

end; {det cryptol

proc name: show-err

purpose: This procedure is called to display
the success code of the resource raragement call if it is
other than 7erc. If the success code indicatEs no error
then no message is ot'tput.

---- ------------------------------------ - - . ,..

L

procedure show err(str: string;
code: integerf;

begin {show_err}

if code < no-error then begin

putstr(wdev,str);
putstr(wdev," d"
putdec(w-dev ,code;
putln (w dev, ");

end;

end; { show err N

--
proc name: main

purpose: This procedure initializes syster,
operation. It performs comm and crypto checks and then
creates a single level process for each remote terminal.
Once the system is on-lire, it controls access to the
external communications p orts. Messages are transmitted
and received, and security chec':s are performed on all

* incoming traffic.

*rocedure rrain(var inlt : rl_rocess-def);

vat r.

i: integer;
stk slt,bufout slt,bufin slt: ch arraj;
bufout_ptr,tufinptr: array [l..urrterrr-]

of -cinter;
.ufout_evc,tufinevc: charra ;
-m ,r rec: sysmgr rec
tesT key,test_fEkey: tufe;
ress dest,mess srce: integer;
tempi port,temp2_port: integer:
success: integer;
ch num: Integer; ,
proc_suc: boolean:
recv sue: boolean;
* ess nurr :iteger;

102

4.

begin {maial

attach(init.cpu,wdev,false,success);
shcv..err('attach sysirgr slow error',success);

attach(init.cpu,rdev,true,success);
show err('attach sysmgr star error' ,success);

putln(vdev,'sysmgr terminal attached');

{call procedure to enter system pdrameters}
parminput(mgr rec,proc suc);

{xrnit/recv ports for Comm tst
templport:= mgr rec.comm port (1]; ''
temp2_port:= mgrj'ee.comrport [21;

fconfigure xrit/recv ports
syscorfig(tei~l~port,tem;2_port,lrocsuc);

f test cor-rr channel pass 1
coMntst(init,tenplport,terrp2-1ort, roc-suc);

{reconfigure xrrit/recv ports to transmit in oppcsite lir
sysconfig(terrp2_pcrt,templport,proc.-suc);

{test corrm chanrel pass 21
c omirrts tin t , terp2port,temp1_port,procsuc);

{keys for cryptc test}
for I:= 1 to 8 do tegirn

test key [Ii I=1
test fb ke yii:= I;

end; {for}

{attac crypto devices in CPC mode
att-crypto(test key, test flkey ,proc7suc);

{test crypto deviccs
-ryptotst(init ,;roc-suc);

pDUtlntwdev,'systerr Initialization complete');

-'%

(loop to create child process for each remote terminal}
f or i:= 1 to rumt term do begin

ch-num:= 1;

{create child process}
term proc~create(init,

mgrrec,
chnum, .

stk -sit,
bufout sit,
bufin slt,
tufoutpDtr~i],
tufin jtrri]
procsiuc);

putstr(w dev,'child process created termiral '
putdec(w dev,;
rutlr'wdEev,' ');

{initialize buf fer event cou nts
tufin evcrII:= 0;,
tufout evc[il:= 0;

end; {tor}

{initial rress _dest is terminal 2}
rress-dest:= 2;
mess-rur:=O0

{to start systerr advance inbuf evc for terminal 1
advance(tufin -slt [1],success);
show err('start system inbuf advarA'e error' ,suiccess);

{initialize mressage receipt sucress value
recv suc:'=true:

begin independent system operetion loop

w hil1e true do begir

{inner loop synchrcnizes terminal tc termnal
communicetions I
for i:= 1 tc nnim terrm do tegin

1 LA4

mess srce= i

mess -num: =me ssnrur+i;

chc o eevdmsaescrt ilto

if ecvsuc = true then tegin

itoerror then wait for next outgoing message

bufoutevcril : bufoutevci]-441

putln(wdev,' message ready for transrrissior')

{transmit and receive outgoing mEssageP rrit -recvc~rgr rec,mess -srce,messdest,

Stfy m~tressgesrce thar trress wscejt ,
advafcu bufL _lenssre~sce st'

shcw _err('advance source irtbuf' ,success):

Icheck for received mressaege securitir violationI
if recv suc =true then le-in

{if ro error then notifyf dest terrinal1
to display incorninp~ message
advance(tuf in sit [mess-destI, succes:

shiwe er r(advin ce des t in tuf errDr - succe ss ~

vutln(wdev,rrsg recvd ardo deliverd'i

Inew dest ter-, is message sr-e
mress _dest :=i;

end else begin

fif security violatior did occu,.r th.en
transmit error rrsg lack to source. errc^r
rrTs has alr ead.y I een placed i i ou t -oi n,
b:f f er by I rocedure x-i t_ recv.

.;~~* G. W, 'I P

xmit recv(mgr rec,mess dest,mess srce ,
bufoutptr Eress dest] buf in ptr ~mess-dest]tuf out ptr lmess -sr - I If _ptr Lmess srce ,

mess num,proc suc);

putln(w dev,'error msg transmitted');

{ notify srce of incoming error message I

advance(bufin slt[mess srce],su7ess);
show err('notify srce-of error advance',Success);

end; {i f

end else begin

{ if received message had a security violation the
locp will return coitrci to the message source so
that be can display the error xessage }

{ recvsuc = true to 21l0w displai cf error msg
recv -suc:= true;

erd; {if}

end; {for}

end; {while}

putln(w dev,'prcgram complete';
while true do;

end; {main -

modend.

N:~ 76E. " .-'-V

.

V:-,-

{ ** V

program name: mgr-typ.zli

author. P-. .. Corbett, Lt . USN
date: 28 Fet P_-
jurpose: This file contains type declarations_%-

used in both the system manager and remote terminal utility
programs. It should be include4 in the type declaration
sections of both programs.

sysCrgr rec = record

coir-pcrt : array [i..21 of integer;
bsize : integer;
ch size : integer;
ch access : array [1..nur, terr] of access class;
chTd ent : array [I..num Term] of intEger-
key: iif-;

er d

bui rec = record

nur : irteger:
n-urr bk: integer;
tlock • array Li..mess buf sizel of

array Ti..CJ of char;

ch array array [1. .nurm_term] of integer;

e-nd rgr-ty, zli ---------------------

107

................... .-.--. ,.

program name: mgr-con.zli

a-uthor: P. J. Corbett, Lt. USN4
date: 28 Feb 86-
purpose: This file contains global constants

used by both the system manager and terminal utility
programs. It must be included in the covistant
declaration section of both programs.

num term =2;

mess buf _size =4;

XT i t slt = 6
recv sit = 7;

wen _sit = 2;
rer. sit = 3;-
vde sit = 4;
rde sit = 5;

cc sit = 2;

stack offset 0 ;
code offset = 1;
rcct offset = 2;
pboffset =3;
outbuf offset =3;

i"buf ffset =4;

vect _size = 4;

----------------- erd of mgr-covn.zli ---------------

106*

1*17

program tame: sysnmgr.kmd

author: P.J. Corbett, Lt., USMl
date: 28 Feb 86
purpose: This program is used when linking the

sysmgr program after It is compiled. It eliminates the
need to manually enter each of the file names each ti~re
a new version cf the program Is compiled.

note: the actiual sysmgr.kird file contains only
one line. An additional Information will cause an
Prror when the pascal MIT+ linker Is called.

t:sysrrgr=t :r1-init,b:sysirgr,b:rlibs,t:c/s~paslib/s/p:P.

LIST OF REFERENCES

1. Department of Defense Computer Security Center, Ft. .
Meade Md Report CSC-STD-001-83 DOD

m ~ai~ iv s em p , 15 Augus t

2. Department of the Navy, OPNAVINST 5239.1A (draftcopy),- De ~mn bf Dfe9 _e Trs Network
Evauaio Crtei, 29- July ± .Vb

3. National Bureau of Standards, Report ICST/HLNP-81-19,
ein Hiuner Level Protocols: Apraches,
61terngtiygs an= Recomndatins, by V. Vo ydock, andS. Kent, 1981. "'

4. Voydock, V., and Kent, S., "Security in High-Level
Network Protocols," Com utinSuvys, v. 15, no. 2,
pp 135-171, June 1983.-

5. Tanenbaum A.S., Comuter Networks, Prentice-Hall,
Inc., 1981.

6. Boebert E., Kain, R.,, and Young, B., "Trojan Horse
Rolls Op to DP Gate," ComDuterworld, pp.65-69, 2
December 1985.

7. MIT Laboratory for Computer Science, Cambridge, Mass.,
Report LCS-TR-162, EncrvDi on-Base FrotectionProtocolsg for Interatjive User-Comiputer [--
Communications, by S. Kent, 197.

8. Diffie W. and M.E. Hellman, "New Directions in
Cryptoiogy," IEEE Trasactions on atn , TheorIT1-22, pp. 64-4-654, b November 1"976.

9. National Bureau of Standards, Federal Information
Processing Standard, FIPS publication 46, Data
EncrvytioL Standard, January 1977.

10. Davio M., and others, "Analytical Characteristics of
the DES," Avances in Cryltloc roceedincs -o
CrvDo 8. by D. Chaum, pp. 71-0U, Plenum Press,THE , ISM8. [..

11. National Bureau of Standards, Federal Information
Processing Standard, FIPS Publication 81, DES Modes of
OperatioD, 2 December 1980.

12. Spencer,. M.E., and Tavares, S.E., "A Layered Broadcast
Svstem," Advances in v Proceedings -of Crto3 by D. Chaum, pp. -157-170, Plenum Press, Inc.,

110

S

. 0. . "4. . '4."

13. Gemini Computers, Inc., Carmel, Ca. Sle vgxw-,

14. Gemiiii Computers, Inc., Monterey~ Ca. gEMSOS BEn Q
User s anua for, Paca MT6 ovember 1985.

15. Brewer, D. J. , & xc~v

bcnot4Motea y Clornia, December 1984.

16. Digital Research, Inc., CEM-8 02eat.na ~1Maal, 1983.

17. Gemini Computers, Inc, Monterey, Ca., Syjan User's

Manual, September 1985.

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Post graduate School
Monterey, California 93943

3. Department Chairman, Code 62 1
Department of Electrical and Computer Engineering
Naval Post raduate School
Monterey, alifornia 93943

4. Dr. M.L. Cotton Code 62Cc 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943

5. Dr. Uno R. Kodres, Code 52Kr 3
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

6, Lt. Philip J. Corbett, USN 2
72 Pilgrim Rd.
Concord, Massachusetts 01742

7. Daniel Green, Code 20F 1
Naval Surface Weapons Center
Dahlgren, Virginia 22449

8. Capt. J. Donegan, USN 1
PMS 400B5
Naval Sea Systems Command
Washington, D.C. 20362

9. RCA AEGIS Data Repository 1
RCA Corporation
Government Systems Division
Mail Stop 127-327
Moorestown, N.J. 08057

10. Library (Code E33-05) 1
Naval Surface Weapons Center
Dahlgren, Virginia 22449

11. Dr. M.J. Gralia 1
Applied Physics Laboratory
Johns Hopkins Road
Laurel, Maryland 20707

12. Dana Small, Code 8242 1
NOSC
San Diego, California 92152

112

* k. - ~.*-~-'-- -- -..-.- ~ - - -~

9'
I

A

j

U

.5

.5.

5,.

-I'

.4.

~ ~. 4

