_AD-R167 891 MULTILEVEL SECURE FRONT END FbR DATA COMMUNICATIONSCU) 172
NR L POSTGRADUATE SCHOOL MONTEREY CA P J CORBETTY

UNCLASSIFIED F/G 17/2

LN L R R R T I LT

(O T T R I

PR
™G

IS

"“ = "m 15)
= :

FFEFEEE L

——
.
—
£r
F
13

"

i

e ——
| ea——
em———
—

MICROCOM CHART

4

6« TERlN
,I
o/

LI

ST T Te e €

,
L]
IO
.
«

. . R
I e P L
bl b, A * SRR L,

DI sl

- -
ORI AL A

A A

y)

AD-A167 891

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

THESIS

MULTILEVEL SECURE FRONT END
FOR DATA COMMUNICATIONS

by

Philip J. Corbett
March 1986

Thesis Advisor: Uno R.

Kodres

Approved for public release; distribution is

mlimited

REPORT DOCUMENTATION PAGE

D T YT T Ty Y ..
ta REPORT SECURITY CLASSIFICATION

UNCLAS

1b. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

YT T T T T Y a—
3 DISTRIBUTION/ AVAILABILITY OF REPORT
-Appraved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

distribution is unlimited

| T TS s
4 PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION

6b. OFFICE SYMBOL
(if appiicable)

73. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School| Code 62 Naval Postgraduate School
6¢c. ADDRESS (City, State, and 2IP Code) 7b. ADDRESS (City, State, and 2IP Code)
Monterey, California 93943-5000 Monterey, California 93943-5000

8a NAME OF FUNDING / SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(It applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (City, State, and 2IP Code)

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

1t TITLE (Include Secursty Classification)

MULTILEVEL SECURE FRONT END FOR DATA COMMUNICATIONS

12 PERSONAL AUTHOR(S),
Corbett, Philip,. J.

‘3a TYPE OF REPORT .
Master's Thesis

FROM

‘6 SUPPLEMENTARY NOTATION

13b TIME COVERED

TO

14 DATE QF REPORT_(Year, Month, Day)

£ 1S _PAGE COUNT
1986 March 113

7 COSATI CODES

FELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and dentify by block number)
Multilevel Security, Information Security,

Trusted Computer System, Communication Security,

Gemini Computers

2 ABSTRACT (Continue on reverse if necessary and identify by block number)
This thesis demonstrates the feasibility of using a multilevel secure
computer system to augment traditional security measures used to safeguard

sensitive

information in an office to office communication environment. A

multilevel secure communication interface can be used for high speed

transmission of a wide variety of computerized information, from text files,
to large volumes of bulk data including computer program listings.

Such a

system significantly reduces the delays associated with traditional

transmission techniques such as couriers, and registered mail.

The ability

to encrypt all external communicat‘ons provides additional security. By
automating message processing functions, providing secure storage devices,
and restricting access to sensitive information, the multilevel secure

- ’ .
"

’

communication interface can greatly improve overall svstem security.
. - . ‘, ,#" B bl

L PR ’ { N
- L

20 OS5TM3AUTION/ AVAILABILITY OF ABSTRACT

£ .nciassiteoUNUMITED (O SAME As RPT

CJoric users

21 ABSTRACT SECURITY CLASSIFICATION _
UNCLASSTIEITIED :

i2a “AME OF RESPONSIBLE INDIVIDUAL
no P. Kodres

22b TELEPHONE (Include Area Code) [22¢ OFFICE_SYMBOL
LOB-ARLE~2197 Code 52Kr

DD FORM 1473, 8a MaRr

83 APR edition may be used until exhausted
All ather editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

- - &
5ty
-“'.

~r
LN

: . v
w

ol

4
o

AN

v v
]
iy -

[y

[y

l'l$

‘Y

f]
et

e .
G Vo r My

.'.’ L
. el

v v "t

R i ';’..',

"-.ﬂﬁ"‘ -
s
L N Y

S %y
s 2
l"'

L]
s I

e I
s

RS

‘,
oy *y

2% TrTe %y
«

PR
a_r_3

-
-
-

.

et

a
MY
— Bty N

« 0a

P
»

il

s

i - A & A A L Al R S A And 4 LAy bR L-f"
¥yt

] e
u.'
SN
Approved for public release; distribution is unlimited. ”,:;.t
J !’
' B
J Multilevel Secure Front End ’
for Data Communications D,
[% Y
e
by TR
)
NI
Whe
, Philip J. Corbett N
Lieutenant, United States Nav t

B.S., U. S. Naval Academy, 197 e
Submitted in partial fulfillment of the ']
requirements for the degree of e
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING oy
. A
s
Y
from the .o
NAVAL POSTGRADUATE SCHOOL TS
March 198

'
Author:- wly’ -Uli¢ bole
_ 7 Bﬁ.llp J. Corbett .:-._.:
s
Approved by: M—ﬂ . /&W Pl
Uno R. kodres, Thesis Advisor R
Mty K. Colim R
Mitchell L. Cotton, Second Reader ;-

Harriet Rigas, Chaingan, . .
Department of Electrical and ter Engineering

i e
/ ohn N. Dyer, RO

Dean of Science and Engineering .

[SV]

T R S T T R Y
AHER O L OR C RS NS

. » se P . - PR !
R AT PR RS T AT : PSP o iopaLg R Ay A B, WD e eSS R f dad e R S g - g et - 5 s © Bt oA B am g

ABSTRACT

This thesis demonstrates the feasibility of using a
multilevel secure computer system to augment <traditional
security measures used to safeguard sensitive information in
an office to office communication environment. A multilevel
secure communication interface can be used for high speed
transmission of a wide variety of computerized information,
from text files, to large volumes of bulk data including
computer program listings. Such a system significantly
reduces the delays associated with traditional transmission

techniques such as couriers, and registered mail. The
ability to encrypt all external communications provides
additional security. By automating message processing func-
tions, providing secure storage devices, and restricting
access to sensitive information, the multilevel secure
communication interface can greatly improve overall system
security.

Accenslon For)
TNTIS GTAST v

BTIC T -
Unaninoieed 0
JustaTio ot ion e
BY oo o e —
Diztritaiten/, .
) Ly Lodes

Av: taol L
- - P
ACE NS G Vet

DS

Dist | <pwcial

el

PN MNP

THESIS DISCLAIMER

The reader is cautioned that computer programs developed
in the research may not have been exercised for all cases of
interest. While every effort has been made, within the time
available, to ensure that the programs are free of computa-
tional and logic errors, they cannot be considered vali-
dated. Any application of these programs without additional
verification is at the risk of the user.

Some terms used in this thesis are registered trademarks
of commercial products. Rather than attempt to c¢ite each
occurance of a trademark, all trademarks appearing in this
thesis will be listed below, following the firm holding the
trademark:

1. Gemini Computers Inc., Monterey, California

Gemini Trusted Multiple Microcomputer Base

GEMSOS

2. Digital Research, Pacific Grove, California

Pascal MT+

CP/M-86 _ .

3. INTEL Corporation, Santa Clara, California

INTEL

Multibus

APX-286

ol RS
£\

A .
UYL B

e

WYy

Y 4

by

N ‘l"u'

AL oY

Pyl

[

v el
.
VS

r v v
l',"l
o DR A

%
s,
4
D

-

o
-

«

~

_ A 2

L ot aea e o

Y A YPad

II.

III.

TABLE OF CONTENTS

INTRODUCTION . . . ¢ + ¢« « o o o &« o« &
A. PROBLEM STATEMENT . . .

B. PROPOSED SOLUTION

C. THESIS FORMAT

BACKGROUND . . . + ¢ v v v ¢ o « o« o o =&

A. MULTILEVEL SECURE COMPUTING SYSTEMS
1. Trusted Computer System Requirements . . .
2. Secure Communication Methods .
3. Network Security Threats .
4. Data Encryption
5. Summary

B. GEMINI TRUSTED MULTIPLE MICROCOMPUTER BASE .

1. Description of Gem1n1 System
Components . . .

Gemini Resource Management Overview

3. Gemini Secure Operatlng System(GEMSOS)
Architecture . .

4., Summary

SYSTEM DESIGN
A. DESIGN ISSUES
1. Objectives .
2. Design Constraints .
3. Summary of Design Decisions
B. SYSTEM IMPLEMENTATION
1. Hardware Components
2. Application Program Format .
C. SYSTEM SOFTWARE DESIGN .
1. Application Segment Development

2. Process Synchronization

VWU LG W LTI LI gt . ¥ R LI,

10
11

13
13
13
15
17
20
27

28
30

31
34

37
37
37
39
40
43
43
46
47
47
51

v T T w

L 2 A 2 S

O ot o {

e

D. DESIGN SUMMARY .

Iv. DISCUSSION OF RESULTS
A. SYSTEM OPERATION .
B. SYSTEM TESTING .
1. General Comments .
2. System Security Testing
3. Encryption Testing .

v. CONCLUSIONS

APPENDIX A: TERMINAL UTILITY PROGRAM LISTING .

APPENDIX B: SYSTEM MANAGER PROGRAM LISTING .
LIST OF REFERENCES

INITIAL DISTRIBUTION LIST .

52

53
53
54
54
56
58

61

63

79

110

112

T g oty bk ate ale Ta% d

X

IO S gt 8o da’ Uai g by JME o 3 2 28 oM0 B3 all a2 a"

LIST OF FIGURES

Sample Project Office Organization
Simplified System Design . .

ECB mode of DES encryption

CBC mode of DES encryption

CFB mode of DES encryption

I1SO Interconnection Reference Model .
Compromise and Integrity Properties .
Single and Multilevel Device Properties .
Final System Design .

Process Block Diagram With Covert Channel .

Process Diagram Eliminating Covert Channels .

Final Hardware Diagram

DCE to DTE Convertor

Terminal Utility Flow Diagram .
System Manager Flow Diagram .

18
22
23
24
26
33
35
41
42
44
45
46

.. 49

51

TN A i
j By by 4y & 5y M .)
EA TN . YABAD

St ’/
NN
'y ' v

“ e
£
A

“a P Ay
[N / r v 2, 5
".. vl ’

- -

e
D
.,

-
.

’ "'.I
o

TR TR TR e A T T R I, s, —

T Te s v I VN . 3 F ¢ TR et W W W W

I. INTRODUCTION

A. PROBLEM STATEMENT

This thesis investigates the use of a multilevel secure
computer system as a secure front end for data communica-
tions in a small scale network environment. The specific
application of the proposed system would be to protect
incoming and outgoing messages from unauthorized access, as
well as to ensure secure internal routing of classified
information.

An example of the type of environment in which the
system would be utilized is shown in Figure 1.1 . This
structure is similar to that found in many project offices
within the Department of Defense. Communications within a
project cover a wide range of classifications, and include
both military and civilian installations. Recent highly
publicized security violations have underlined the need to
make sure that communications channels both internal and
external are properly protected. Currently, this protection
is provided by a variety of physical and electronic means.
Among these techniques are:

1) hardware encryption devices
2) secure teletype

3) secure radio communications
4) couriers

5) message scramblers

6) secure modems

Each method has specific strengths and weaknesses that
can be exploited by a potential adversary. By far the most
difficult problems with existing methods are to control
access to the physical devices, and monitor internal distri-
bution of received information. Access control is the

responsibility of the security manager, however even in a

e e s]
R, i‘
s S E

»

3 é’_&‘:\'-

4’ 1@‘

o Y
bl FEER

R RS
o

LS
.
y

NN
PRy
-~ ‘r‘rfi{

)
~*e Ty
P
4

(T 1
W) tvi

< A

‘. n N
Wil aa s
A A,

TR
ﬂﬁﬁﬂﬁﬁ\<
IV XXE I

1

. a8

.7
.y 1,
»

s
o

.

v
’
Wt
P

[Y
o
EEY

R A e

SN T AN

- s
oL,

AT e

I -
STehh YK

s a

RSV, S ST

e ST S S R

Project
Manager

|) A

development sup orting% construction fleet

/test sites contractor sites . assets

Figure 1.1 Sample Project Office O;ganization.

small project the problem can become unmanageable. This is
especially true due to the recent proliferation of computer-

ized processing systems throughout the Departhent of Defense

(DOD) and commercial industry.

This research was performed in conjunction with the
Naval Postgraduate School's AEGIS Modeling Group. This
group is sponsored by the AEGIS Combat System Project Office
to conduct research in the area of combat system develop-
ment. The AEGIS project is made up of many field activities
which include both military and civilian personnel. All
activities receive, transmit, and are required to store
classified information. Included in this information are
messages, official correspondence, and computer programs
related to AEGIS Combat System development. These documents
are currently processed by the traditional methods discussed

-

b~ Bt

f’ “‘.‘-‘l':.'u £

L g 3
-

Yl SOSRTN.

»
)
L}

P
RN A B0

. -3 Yy R £ ¥
R $'~'-""
i 2y Ty Sy fr

e, o
>

Bt
Ay A St

{;-1'"

>

g previously. The process is slow, and often reduces the ;?
; amount of time an activity has to respond to an wurgent o
. problem. In addition to the external delays, once a docu- §
ment is received, it must go through internal security Eﬁ
; processing before it is delivered to the ultimate i?
‘i destination.] E:f
L -
" B. PROPOSED SOLUTION Ei
j This thesis proposes inserting a multilevel secure ﬁz
E computer system as the trusted project communications inter- ;ﬁf
. face and traffic manager. The trusted computer system o
. [Ref. 1] would receive all incoming traffic, determine its g'
£ classification, and notify the destination that it has an Pi
5 incoming message. If the destination did not have suffi- L
~ cient clearance to display the message, it would not be o
' delivered. When transmitting data, the system would ensure 'jf
that the transmission device is of the appropriate classifi- ﬁ}
- cation, and that the data is properly encrypted. By auto=- s
" mating message handling and record keeping functions S
i associated with the transmission of classified data, the S
; transmission delay can be significantly reduced. The use of ‘ }?
; a trusted computer system in this capacity would also allow ::
- greater flexibility in establishing security policies. Each ;l
classification level can be further broken into several {Q
smaller groups in which access is based on a user's 'need to Qf
know' information of a particular type. This technique ;f
: would enhance overall security by further restricting access E’
within each security level. >
Z: The Department of Defense is currently evaluating :ﬁ
> several systems for approval to operate in this capacity. i&
i The Gemini Trusted Multiple Computer Base 1is the trusted Si
. computer system used in this research. A model for a secure X
i communication system was developed which allows single level » SE
remote terminal users located at different sites, to commu- ﬁﬁ
nicate through a multilevel communication process created by ' ﬁ?

10

-
i--"..’~ ...-.'_ e B A A A T T I N RN PP S S ST
At a S e PR L SN P IEAL AN :';{L-’\ AR - VI AT D¢ Ry I Sy

the Gemini system. The Gemini trusted computer system is
still undergoing development which imposed some restrictions
on the scope of the communications system which was devel-
oped. These restrictions did not however, prevent demon-
strating the feasibility of using a trusted computer system
in this application environment.

Although primary concern 1is in protecting classified
data, interception of large quantities of unclassified (for
official use only) data can also be damaging. Documents
which are by themselves unclassified, can be analyzed along
with other intercepted information to produce a classified
result. For this reason, all external communications
throughout the model secure communication system are
encrypted.

C. THESIS FORMAT

This thesis is composed of five chapters which are
designed to provide the reader background information
concerning multilevel .security concepts, and then discuss
the design of a model for the type of securé communication
system discussed above.

Chapter I provides introductory information concerning
the problem addressed in this research as well as the
proposed solution.

Chapter II contains a discussion of multilevel security
concepts. It explains the various types of security, and
discusses the current Department of Defense (DOD) require-
ments for each type. General security methods are presented
as well as methods used to attack secure systems. Data
encryption methods are discussed, and a strategy for
providing maximum data protection using the Gemini system's
data encryption device is developed. The remainder of the
chapter is devoted to explain Gemini system architecture,
and discuss how it creates a multilevel secure environment.

.

RN

&i \!\:. :’. ,'-.';-.':'A'.‘,-,'.

v
v
A, by

EARI
: ‘e
LA

1Y s e Y v
"l'l' o,

¢

1" s :"
< 2 B
Pl N

.-:‘

WY N (U
, oy

L)

-
f!

."g

P2

-

\'_l.):l‘,'

e

i’-

S
P
AR

) 93, 1
PR

Ao % % 9N

AALNIRINENS

-1

Chapter III discusses actual Gemini system operation.
The design of a model secure communication system is
presented with a discussion of system constraints imposed by
hardware and software limitations.

Chapter IV discusses system implementation and testing.
Test results are used to demonstrate the system's ability to
act as a secure front end for data communications between
remote data terminals.

Chapter V brings together system test results to make a
series of observations c¢oncerning the feasibility of
utilizing a trusted computer system, such as the Gemini, as
a multilevel secure front end for data communications.

12

-

TS a2 "k

.:'}

o
o,

g

£ "
e A", o

A

!4

L DAL
SR

v

'-'n':'.;'_o'
M bl 2 4

P
"'
.
PN

PP I
o

« v
e
I 4
str e

B oA

o

e
s
.l ‘J

& ',

v
»

P
]
()
[

v
{

'.-A',:'v"‘
Lol e

7

II. BACKGROUND

MULTILEVEL SECURE COMPUTING SYSTEMS
1. Irusted Computer System Requirements

There are many documents which attempt to 1lay down 0P

A.

requirements for trusted computer systems. They have been ¥
o generated at all levels of the government, and in some cases :;‘
¥ are in conflict with each other. In 1983 an attempt was iut
n made within the Department of Defense (DOD) to bring ﬁ':
together these documents as well as other information ;;
concerning trusted computer systems. ?he goal was to come %ﬁ
: up with a single source document which would define guide~ EE
’ lines which could be used to develop and test new systems. ;:«

: The dozument which .resulted from this research 1is entitled
. the "DOD Trusted Computer System Evaluation Criteria," more
commonly referred to as the 'Orange Book'. [Ref. 1].
Published in 1983, it contains definitions and information
essential to understanding trusted computer systems. The g
Orange Book goes into extensive detail concerning the imple- .Qﬁ
mentation of automated data processing (ADP) security g

systems. This thesis will primarily be concerned with the ,{j
major issues involved in using a trusted computer system, ' i
and will not deal with actual implementation details. As ,;
described in [Ref. 1] there are two types of security policy :é&
to be considered. The first is mandatory security which is ;g{

= defined as:
"Security policies defined for systems that are used I

X to process classified or other specifically categorized ﬁ%j
; sensitive information must include provisions for the E}.
~ enforcement of mandatory access control rules. That is, -
N they must include a set of rules for controlling access 3&
N based directly on a comparison of the individual's clearance $t|

PP,

information and the classification

or authorization for the

.....
................................

NP A PR aRE RS RE S G B , S
..................

F g Sl

-.'-‘

S
%

[

e

s
¢ s

LA

[Sl 4.-‘.‘\ 4 %

W AT A e At T T T Y T e T e T e T T AT e et

or sensitivity designation of the information being sought,
and indirectly on considerations of physical and other envi-
ronmental factors of control. The mandatory access control
rules must accurately reflect the laws, regulations, and
general policies from which they are derived." [Ref. 1l: p.
72]

As the name implies, mandatory security policy is a
a strict limitation of access based on access level which is

determined by the user's security clearance. This policy
can not be changed and represents the foundation for the
second type of security policy. Discretionary security

policy is a subset of mandatory security policy which repre-
sents a further restriction of access to information based
on a user's 'need-to-know' the information. The control
objective for discretionary security is:
' "Security policies that are defined for systems that
are used to process classified or other sensitive informa-
tion must include provisions for the enforcement of discre-
tionary access control rules. That is, they must include a
consistent set of rules for controlling and limiting access
based on identified individuals who have been determined to
have a need-to-know for the information." [Ref. 1: p. 73]

This type of security is a definite asset in a
research and development environment. In particular, when
developing combat system software, a project manager may
have teams developing several modules simultaneously on the
same system. Although the modules may be of the same clas~
sification level, the manager may want to limit each team's
access to the module on which they are working. This would
be accomplished by establishing a discretionary security
policy.

Traditional attacks on security systems have
involved compromise of Kkeywords which would allow
unauthorized access to a system. This threat can largel, be

14

- e v &
e

=

A LS E

[N AN

Y '::o)

M D

7

A

-y

! i A7

&

II-I.A}
A 8 Aty 5

",
’,.

R

¥y Tk e T

Y
LS.

A ST A S NI S e M e e e B b at ay fae 4 v - ISR e e A R N e Al 2 BT A e g
DT CUL R - R I A Jufas) Y

. - . BRI il R AR i) k [A N A 2 R ke Alnt-a 4 A -l
| -

eliminated by physical means: changing keywords, multilevel

identification, and restricting access to the system. A
more subtle attack, and potentially more dangerous threat is
the establishment of a c¢overt channel in the system. A

3 covert channel is defined as "any communications channel
j] that can be exploited by a process to transfer information
in a manner that violates the system security policy."
[Ref. 1: p. 79] In a multilevel computer system the presence
of a covert channel can be exploited to gain unauthorized
access to information without alerting security mechanisms.
Covert channels will be discussed further in Chapter III as
a design consideration for the multilevel secure communica-

T TT I

tions systemnm.
One of the most difficult tasks in developing
trusted computer systems is determining test criteria to

evaluate their performance. As the security level is
increased, the test criteria become more stringent and
detailed. When operating in a network environment, the

problem is made even more difficult by requiring communica-~
tions security between the trusted computer systems as well.
This thesis is primarily concerned with this portion of the
security problem. The Department of Defense 1is in the
process of preparing a document which will detail evaluation
criteria for trusted computer networks fRef. 2].
2. Secure Communpication Methods
As described by Voydock and Kent in [Ref. 3], there

are two basic types of communications security. These are
link-oriented and end to end security measures. Selection
of a type of security measure for a particular application
is dependent on the complexity of the network, as well as

the vulnerability of the system to attack.
Link oriented measures treat each link in the commu-

B
'l

., s, "r"v .

Yo,
7.

nications chain from source to destination as a separate
security problem. Each node is responsible for encrypting

E 15
1
E

SRR
L{‘.{L’:L'

S

NI
e

PLL2
"I_f‘f_

[

e

AR ASEEN Sty

N
Rt
=
o
information passing through it, and for transmitting the ?32.
information on the appropriate link. Encrypting with a ”s
different key at each node provides added security in that, ”‘z
compromise of one link does not necessarily mean that other] 55?
links wi;l also be compromised. This type of system does E{A'
have several serious drawbacks [Ref. 4: p. 144]. First, in) ﬁ:“
order to encrypt using a different keyword at each node —3
means maintaining a large keylist. Changing keywords can be q£3
very costly. Second, since each link is encrypted indepen- }gi}
dently there must be physical security at each node. :ﬁ;
Finally, in addition to physical security at the nodes, peN
hardware and software components must be certified to DO
process the security level of information passing through E?f‘
the node. ;ﬁ;i
The second type of security measure is end to end ‘f;
protection. End to end security treats the network as a : e
secure medium in which protocol data units (PDUs) are trans- ‘;5?
ported [Ref. 4: p. 145]. Since each link is not encrypted l%?
independently, interception of the message stream at an - 7M
intermediate node will not necessarily compromise the infor- O
mation. In addition to being a great deal less expensive to) Zﬁff
implement, end to end encryption has several other advan- if 5
tages [Ref. 4: p. 145]. Because there 1is no additional Pt
encryption at intermediate nodes there is no need for phys- 3};
ical security at the nodes. Users or host computer systems EE;?
can independently decide whether or not to use the security TN
measures, further reducing the cost. Finally, end to end Qﬂ;;
encryption can be used in both packet switched and packet .“'?
broadcast network environments, whereas 1link oriented fﬁﬁ:
security measures are more difficult to adapt in a packet Iﬁgf‘
broadcast system [Ref. 5: p. 213]. :
Figure 2.1 1is a simplified diagram of the type of) si‘ﬁ
communications system this thesis is proposing. The system gi\:
is relatively small scale with a limited number of users.) §£:
\. "
’.
16 Ef.:.
i
-.\
PRI N I SRR Rt N B T L T N G L A, S I BN R, A L :-.

The communication network consists of modem-like telecommu-
nications. Link oriented security measures are much too
complex for this type of application. They would also
provide no significant advantage over end to end measures.
End to end security measures were chosen for this design to
ease implementation and trouble-shooting. In this applica-
tion the host computers are assumed to be trusted computer
systems. The host is being used in a secure front end
configuration therefore the end to end security measures
will only be used to connect the hosts. This simplifies the
problem by limiting the number of hardware and software
interfaces involved in the end to end encryption path.
3. Network Security Ihreats

Before developing a trusted computer network, it is

necessary to understand how an intruder could try to exploit

system weaknesses. Voydock and Kent [Ref. 4] divide the
methods of attack into three categories. These categories
are:

1) wunauthorized release of information

2) unauthorized modification of information

3) unauthorized denial of use of resources

The first type of attack is passive while the second

and third require active involvement by a potential
intruder. In passive attacks an intruder places himself in
a communication path and monitors traffic flowing over the
links. Even with the information encrypted the intruder can
still gain Lknowledge about the types of information being
transmitted, and the destinations to which it is sent. By
examining the message length and transmission frequency the
intruder gains additional information. One form of this
attack uses a 'Trojan horse' program to establish a covert
channel and alter message characteristics which would
passively divert copies of information to the intruder
[Ref. 6].

17

RCRAD bl i Rl

site A site B
host host
trusted encr¥pted trusted
computer data computer
system | - System
A B
)
| | :
multiple multiplj
user user
terminals terminal

Figure 2.1 Simplified System Design.

Active attacks involve more risk to the intruder,
however, they can yield much more damaging results. These
attacks are normally directed at the protocol data units
(PDUs). Once access is gained to the PDU chain the stream
is modified in a manner dependent on the objective of the
intruder. The category of active attacks can further be
subdivided into three basic techniques [Ref. 7]:

1) message stream modification
2) denial of message service
J) spurious association initiation

18

A

B

XL ¢

R

ASTee |

LG

o

o 1;"' &7

AP

Ly

[P

'.,', 0

Lo S N
a0
SR

L) R o

‘oAt baada A ala A ke ha ta Jbs b “abR Lt ate o%a g¥d gt e ey T 6 'ata at s AV

Message stream modification attacks seek to alter
the authenticity, integrity, and/or ordering of the PDUs
[Ref. 4: p.142]. In attacking authenticity the source or
destination of a PDU is altered causing information to be
misdirected. This is similar to the passive attack. The
intent is to disrupt communication more than to passively
obtain information. Attacks on message integrity involve
the data portion of the PDU. Modifying or deleting informa-
tion can cause transmitted data to be misrepresented.
Finally, changing the order of the PDUs can make the message
unintelligible to the user trying to receive it.

The second type of active attack, denial of message
service, can take two forms. The first type is complete
denial in which a communications channel is blocked allowing
no PDUs to pass. In the second form all PDUs are delayed
making it impossible to decode the incoming message. These
attacks are difficult to detect, particularly if they are
put into effect between messages so that the user has no
indication that communications have been interrupted.

Spurious association initiation, the third type of
attack, is a form of jamming. In this attack a previous
recording of communications between two authorized users is
played back to confuse the receiver into thinking'it is
recei&ing legitimate PDUs.

After examining the methods of attacking secure
networks, a plan to counter these threats needs to be devel-
oped. Voydock and Kent [Ref. 3] point out that there are
limitations on the ability to detect and prevent these types
of attacks. They say that "Although message stream modifi-
cation, denial of service, and spurious association initia-
tion attacks can not e prevented, they can be reliably
detected. Conversely, release of message contents and
traffic analysis attacks usually can not be detected but
they <can be effectively prevented." Given these

19

d
-
]
-
=
.

e gt b gatin sty Utk gt

»
L)

| LAAA
-)

.2 limitations, they present five goals for providing communi- 2-
‘é cations security: [Ref. 4: p. 143] tf
; 1) prevention of release of message contents 3
3 2) prevention of traffic analysis - \
‘ 3) detection of message stream modification i.
‘ 4) detection of denial of message service .
; 5) detection of spﬁrious association initiation if
y Referring to Figure 2.1 it can be seen that in the i:
X system proposed by this thesis, there are two general areas ;3
}f in which an attack could occur. The first is within the f?
- host computer system. In this application the host is the t;
R Gemini Trusted Multiple Microcomputer Base. The second ;'
- possible area is the communications network itself. N
‘i Communications on these links need to be encrypted in a &1
N manner that will provide the maximum possible protection for =
the encryption method chosen. The remainder of this chapter H?
will discuss how data encryption, and Gemini system features ;ﬂ
j; can be used to achieve the desired security goals. , j;
4. Data Encryption
’ Data encryption is fundamental to a secure communi-) Q]
: cations network. The methods available vary widely as do E?
3 the security levels for which they are approved. Approval :E
J is based on the computational power, and the amount of time e
required to break the code. A cipher that cannot be proven :b
‘S to resist all attacks is considered 'computationally secure' E%,
9: if the computational cost involved in breaking it exceeds ?}
¥ the value of the information gained [Ref. 8]. Recent tech- E%
N nological advances have produced computer chips which reli- t'
; ably encrypt data with a high degree of security. The Eﬁ
.: relatively low cost and high speed of these devices make bﬁ
X them e:icellent choices for secure network applications. The 4;
N major problem to date has been getting them approved for :}
- transport of DOD classified data. Two major encryption i?
; methods are the Data Encryption Standard (DES) [Ref. 9], and . E&

2 20 W

N NI IV IS T

the Public Key systems [Ref. 8]. The Gemini system used in
this research utilizes DES as it's encryption method, and
therefore it will be the only method discussed.

The Data Encryption Standard (DES) is the National
Bureau of Standards (NBS) cryptographic protection standard

[Ref. 10]. It is widely used for the protection. of commer-
cial data. It has come under attack from several sources
[Ref. 10: p. 171]. Because of these alleged weaknesses DES

is not currently authorized for transmission of DOD classi-
fied data. Despite its problems DES remains a highly secure
’ and reliable method of encryption for official documentation
J which would otherwise be transmitted in unencrypted form.
As discussed in Chapter I, interception of large volumes of
unclassified data can often lead to unintended compromise of
classified information. The remainder of this section will
discuss characteristics of DES encryption and techniques
{ which can be used to maximize the protection of transmitted
data. '
There are four modes that the DES can operate in.
They are: the Electronic Code Book (ECB) mode, the Cipher
Block Chaining (CBC) mode, the Cipher Feedback (CFB) mode,
and the Output Feedback (OFB) mode [Ref. 11].
a. Electronic Code Book (ECB) Mode
Figure 2.2 shows how a DES device operates in
this mode. ECB is the simplest of the DES modes however, it
is also the most +wvulnerable to attack. This is because

identical blocks of cleartext code will always produce iden-
tical ciphertexts until the encryption key is changed. This
method is not recommended for transmitting messages which
contain repetition of data forms such as English text
messages [Ref. 10: p.178]. Since identical blocks yield
identical ciphertexts, by observing over a period of time an
intruder would eventually be able to determine the cleartext

message.

T TR e W W R W - T W . v W

21

\
|
i

CLEARTEXY

CEEE:D:D)
ﬂn?viinl ~=—1— 64.8:t Blocks ‘
|
|
CIEIIDj : CIPHERTEXT Recewver
—

|

(1171

s
3
?

6481t Blocks 109(:::0') Key

CLEARTEXT

!
|
! smun)
|

Figure 2.2 ECB mode of DES encryption.

b. Cipher Block Chaining (CBC) Mode
Figure 2.3 shows how the CBC mode operates. CBC
is a block encryption method which overcomes the pattern
recognition problems of ECB mode by using the ciphertext of
each preceding block as an input to encrypt the next block.
The process is started by applying an initialization vector
to the £first block of data to be encrypted. Incomplete
blocks are padded as additional protection against pattern
recognition attacks.
c. Cipher Feedback(CFB) Mode
Figure 2.4 shows the CFB mode of operation. CFB
mode is a stream encryption technique in which a key stream
is generated, then combined with plain text to produce a
ciphertext. The ciphertext is then fed back as an input to
the key stream generation process. Stream ciphers are in
general slower than block ciphers [Ref. 4: p. 151], and are
not used when large throughputs are required.

22

-

WARODOE
O

e

-'f.

-

W S TR s

v o« o 2 a2 ¥
PR T il B}

T

T

(S RN

1 MRS | ORISR RNT TLAAIGSERIARIRN

St a0 s

SRRSO 7.
) |
: Biock 1 Biock 2 Biock 3 !
| :
' Ve !
' \r > '
\ |
:)
Key DEs Key—ef DES Key —e DES !
: (Encipher) {Encipher) i {E ncipher) !
!
|
i] | S
I [}
. '
|)
L—-——---a--———-»-——————-—u-—-.-—-——--—-————l---—d‘
CIPHERTEXT
r—————--—_--4>-—-——--—f—--—_-—----—-—a—g——-—q
: [' !
: 1 |
| .
[i !
h 4 ’ ' i |
' - ' .
DES DES i
| Koy ~mme ! Key ——e X DES 1 i
: : {Decipher) ,' {Dec pher! | T T (Decinner) | ’
! | ——
: ' !
' * ' . ! N t
- ~ r—————
. " oo ! i (1’ { b
;L . 1 i Do N
. /:\ . : . ‘
) . ~ .
‘ S 5
! - ! \
. \ ! =2 [i .
! | Biock 1 Biock 2 Brack 3 : ‘
1 }
. v
]
1
e o o o = A" - = > - > - = - — . > = . . > - e o == e [

Recerver

Figure 2.3 CBC mode of DES encryption.

d. Output Feedback (COFB) Mode
The OFB mode is also a stream encryption method.
In this method the key stream is completely independent of
the plaintext and ciphertext streams. This eliminates the
problem of error propagation and would seem to be a definite

advantage. However, some degree of error prcpagation is

23

_"-.’ ~,J (AL L " R N
FIFIEIENEREIE A AL PR PR P Sl Y

R D R A ¥ R St SN T e O

(A
NG
-'_'

&

AN
!
. B

¥ T

Ly
s, s
o
WV oa

b & Y

I TR,
'.'I{A'kc
A y W - :

]
AU

S

~ w s
AL
0y te

r

p ‘a' .‘
E. . ‘v
» i "}
Synchromzed 64 - bit

- Yransminer it register inputs Recesver K-

. - - — e -y fivitiel value P . - T - -y ‘\ ¢
. ‘ r————f trom V) 'L-_\ | !.’\

::' : : i ’ ' ("‘\
- I | ¥
: | OO | oo | R
s I ' ! | s

!

| o | *

DEs { DES ! o

. : Key —=1 (Encioher) 1 : {Encipher) [Key |

E | ey
5 l | } : %
- ! : | I T
» ' .‘.._
! J10 | | ! T |
I i _—;\‘—U ; ! | A’ ‘ y -
scard .

» i i " 0\ i f'k Discard : E' 4
- |] l T A\ \ s
\e | CLEARTEXT | CIPMERTEXT | CLEARTEXT T
‘T.‘ b o s —— s > - - - S J ':'.‘
57

Figure 2.4 CFB mode of DES encryption.

required to cdetect message mocdification attacks |[Ref. 4&:
p. 149]. As a result, OFB mode is ~not normally used in
secure network environments. This mode is not implemented
on the Gemini system's hardware encryption device because 1t
is not self synchronizing.

The communication system being developed in this
thesis can best be implemented using the CBC mode of DES

encryption. As discussed in Chapter I the system must be
capable of quickly handling large volumes of data (large
throughput), as well as official correspondance. Specific

steps can be taken to strengthen the CBC mode against the
types of attack presented earlier in this chapter.

The first method of attack was to force unau-
thorized release of message contents. There are several
ways to prevent release of message contents using CBC mode
encryption. Control of encryption keys and their wuse are

P A SR A Ce t et . .«
B - - . . - -t - - o, et S - he . T -~ =
., DR PO N AP - .

.............
.......................

very important in preventing attacks of this type. One

technique is to encrypt the PDU contents using one key, and

encrypt the network protocol address information using
another [Ref. 4: p.153]. This provides a sort of 'two man
control' over the transmitted message. To prevent pattern
recognition attacks, +the operator must ensure that each
message starts with a unique prefix. Since each ciphertext
depends on the encryption of the previocus block, this will
ensure that each message produces a unique ciphertext. This
can be accomplished by employing a communication protocol
which generates a unique message identifier, or by changing
the CBC initialization vector for each message and transmit-
ting it with the message.

The second method of attack is through traffic
analysis. End to end security measures are more susceptible
to traffic analysis attack than 1link oriented measures

[Ref. 4: p. 157]. As discussed earlier in this chapter,
link oriented security measures were not feasible for this
application. As a result, the task will be to minimize the
susceptibility of the end to end system to this type of
attack. Figure 2.5 shows the ISO reference model of open
system interconnection. Voydock and Kent [Ref. 3] show that
encryption below the transport layer does not provide
significant additional cryptographic protection. Encryption
at this level also provides the maximum reasonable degree of
protection against traffic analysis attacks. By encrypting

the source and destination information +the intruder is
limited in his analysis to the host computer level. Even
then, the attacker can only examine the quantity, frequency,
and lengths between the hosts while protecting the identity
of the source and destination of the information.
Countermeasures used to detect message stream
modification attacks are related to the communication
protocol employed by the system. A wide variety of

...

...............................

- . M - Ay i g - Rl e g .~y i) CAF ‘
C O IR IR AN AN AN IR N N SR R S B - R A RS Pl Ol A

layer

7 application
6 presentation
5 session

4 transport
3 network

2 data link
1 physical

Figure 2.5 ISO Interconnection Reference Model.

protocols are currently in use throughout DOD and commercial

industry. Because any secure communications network will
most likely adapt an existing protoceol, no optimal protocol
will be proposed. The system will make use of existing

*o

.
Vot
AL
.
1 . .
. _.-_‘.
OIS
—mantitis.

Gemini system features to ensure message authenticity and

integrity. If a communications protocol was found to have

LA

insufficient protection against message stream modification
attack, it could be then be strengthened by adding

Yy w vl w

y 4y
|'~f~t'
PR

I .

26

S AN R LR Lt AR R A N I T G PN SIS
B . ho? . al ' . .

vy . s T— Q
P.-.".f‘-.- ERE I T etk i ate S J

additional transmission verification features to the iﬁ,

p P e s o

transport layer.

Detection of denial of message service attacks
involves verifying that the communications c¢hannel between
the two hosts is open. This is best accomplished in an
encryption environment by exchanging request-response PDUs
[Ref. 4: p. 165] at random intervals. Failure to respond to
this PDU indicates that a denial of service attack may be in
progress. This technique obviously slows down the system.
By selecting an appropriate frequency for the checks based
on the types of messages being exchanged, the effects of
this slow down can be minimized.)

Spurious association initiation attacks can be
detected using the same method used to counter denial of

message service attacks. By sending the request-response
PDUs at random intervals, ‘'play-back' attacks can be reli-
ably detected. Another method, using periodic intervals, {

would be to send a time verification in the request-response
PDU.
5. Summary
The secure communications network proposed in this

thesis has two major areas of vulnerability: the host
computer system (Gemini system), and the communications
network. End to end security measures were chosen between
host computer systems because of the relatively small size
of the network, and for ease of implementation. DES encryp-
tion was selected for network encryption because it 1is
widely used, and is readily available as the Gemini system's
data encryption device. Although this method is not author-
ized for transmission of classified data it could be

combined with another approved encryption method +to trans-
port <classified information. This technique 1is called
layered encryption [Ref. 12], and will be further discussed
in Chapter III. The CBC mode of DES encryption was selected

PR A

27

LR .."'

..
SERTRE S

o

.
[

,,,,,,,,,,,,,,,,,,,,,,,,,,, e . S e e e e e e e e e . .
........... o e T T ST o - . S A I R . .
....................... RIS RIS N L T T A P L I DL L R
) B & .o N e, B A TR I Y et e e LRCRE ~ N
RPN PP PO SRR P AL AT A MR IRAEAA PP PR VL VA WL VR W v A W P S PO i ey AN

to best meet the needs of this application. The communica-
f tions network can further be strengthened against attack by
> taking the following steps:
1) Change encry@tion keys as often_ as is feasible takin
into” account the expense involved, and the threa
o environment in which e system operates.

2) Encryﬁt data PDUs and address information with sepa-
rate keys if possible.

~ 3) Ensure each message starts with a unique message iden-
tifier to hamper pattern recognition attacks.

4) Encrgpt data in the transport layer to provide maximum
cryptologic protection.

5) -Use request-response PDUs, exchanged at random inter-
vals to verify that communications channels are open.

These features have been incorporated in system
. design to the maximum degree possible. The next section
: will discuss the Gemini Trusted Multiple Microcomputer
System, and how it provides security at the host computer

level.

X B. GEMINI TRUSTED MULTIPLE MICROCOMPUTER BASE
: 1. Description of Gemini System Components
The Gemini Trusted Multiple Microcomputer Base is
one of many systems currently being evaluated by the
Department of Defense Computer Security Center for certifi-
cation to operate at the B3 [Ref. 1] level of classifica-
tion. Until recently lack of evaluation criteria, as well
. as microprocessor technology made construction of such
, systems impractical. The foundation on which all trusted
computer systems are developed is the security kernel.
While operation of the security kernel will be discussed in

general terms, details concerning kernel construction are
beyond the scope of this research. The Gemini system

ot .
PR NS N |
e T &

employs the latest technology in both hardware and software

o .',.’.
n
I

engineering. Some of it's major features are [Ref. 13]:

1) The capability to operate up to eight Intel APX-286 A

. microcomputers in parallel. This provides tremendous 35
) processing power, while communicating through shared tg
) memory increases throughput. e
= P
w

{ 28 ‘i

-
Pk

2,0 e sty
AR A

I I Y

i

)

2) The Gemini system is extremely flexible with regard to
the types of peripheral devices which may be connected

to e Multibus. These include fixed hard disk,
removable disk and high density floppy ,diskette
drives, as well as non-volatile memory . devices. A

maximum_ of eight devices may be attached to each
RS=-232 I/0 interface board.

3) With its multiple microcomggters, the GCemini_ system
supports a variety of multiprocessing and, multipro-
gramming applications. Procegses can be pifellned to
a single processor, or distributed in parallel among
several processors.

4) Other features include a NBS DES chip encryption
device real time clock, and non-volatile memory to
protec£ passwords and encryption keys.

The Naval Postgraduate School (NPS) version of the
Gemini system is a subset of the full delivery system. This
system has one APX-286 microcomputer, (2) 1.2 Mbyte floppy
disk drives, and one RS-232 interface board (max. 8 ports).
The NPS system does have other specific 1limitations which
will be discussed in Chapter III. '

The Gemini system also provides a self-hosfing envi=-
ronment for software development [Ref. 13: bp. 4]. This
allows users to develop applications software. The original
intent of this thesis was to generate application software
using the Janus/AdaAcomputer language. The Janus/Ada envi-
ronment was not available in time to support the research,
and as a result Pascal MT+ was used instead. Pascal MT+
programs must be modified to run with. the Gemini Secure
Operating System (GEMSO0S). Not all Pascal MT+ constructs
are supported in the GEMSOS environment. The majority of
modifications occur in the input/output area. Because
communications to and from devices require special formats,
a utility 1library is provided with the system containing
routines which put calling arguments in the proper format
for use in GEMSOS. These special features will be discussed
in more detail later in this chapter.

A major source of attraction for the Gemini system
is its tremendous potential for future growth. Its ability

to handle a variety of hardware configurations is especially

29

L
o
‘e
Plat™

AN

»e

?

i f
-
~
-
»
-

.’
* i

-
A
.
AR

N v . ..
RS A L \
2t
oty LA NTAT AT AR
« e DM A
e 2 B

- :l"v-v.
« LS
N T

v
A .
. ;

. .

- r
I'J"".’
.’Q"-'n .

o
¢

v 8 e e .
Lttt
KR

- .

v v

.

-

T e
" "'.'..j . 1Y ‘ufi

e,
;
valuable in DOD applications where a trusted computer system %}E
may be required to communicate with systems using different ‘f;
protocols and hardware interfaces. When utilized as =l
proposed by this thesis as a secure front-end for data - ‘g?
communications, the Gemini system could potentially communi- ‘gz
cate simultaneously with a variety of secure communication . Al
devices using different I/0 ports. ;é
2. Gemini Resource Manacement Overview
The Gemini Secure Operating System (GEMSOS) kernel .:f;
is logically divided into three management areas. These Eﬁ;
are: segment management, process management, and device ';
management. Management functions are invoked by initiating g;
a GEMSOS service call [Ref. 13: p. 5]. The formats for S
calling arguments are found in the GEMSOS interface Eﬁ%
libraries provided with the Pascal MT+ compiler. » :é
a. Segment Management . %2
All data utilized in the GEMSOS environment is E?f
contained in segments. The applications programmer is ﬁ&
mainly concerned with code segments, stack segments, and "gg
data segments. Bootstrap and kernel segments normally do ﬁf
not change when developing basic applications software on gg
the NPS system. There are eight segment management func- ék;
tions. A discussion of how to initiate these service calls -
is contained in [Ref. 14: pp. 13-78]. Segments can also be
managed in groups. Secondary storage devices are repre-

sented by volumes which can be identified as separate enti-
ties to a calling process. Volumes and individual segments
can be brought into the address space of the calling process
by using resource management service calls.

b. Process Management

The NPS Gemini system currently has only one

processor, however through process management functions it : fgs
'u"‘l
is able to support a full range of multiprogramming and qu
IR

multiprocessing applications. Each process is identified by . ﬁ:q

A T N\, W & WY

code, stack, and data segments which uniquely identify the
process. Once created the process can be synchronized to
run simultaneously with other processes using one of two
methods. Eventcounts and sequencers were selected over
other possible techniques because they are particularly well
adapted to operation in a secure environment [Ref. 13: p.
6]. All segments created in an applications program are
assigned an eventcount and sequencer automaticélly. Process
management calls to these devices allow the programmer to
coordinate process functioning while maintaining access
security.
¢. Device Management

The third management area is device management.
The Gemini approach to device management is to minimize the
size of the security kernel code by reassigning devige
management functions to application level c¢ode whenever
possible [Ref. 13: p. 8]. This has two effects. Reducing

v vy
I.O'.l' 4
P :

2

the size of the kernel makes verification easier, however it

Aok

also makes writing I/0 applications software more difficult.
Traditional input and output files are replaced by segments
which can be read from or written into. Devices are
attached and detached to allow them to be used by more than
one calling process. Process synchronization primitives are
used to control access to the segments made available to an
attached device. The I/0 device controller is treated as a
process, which is then synchronized with the available
segments eventcounts or sequencers to perform the required
device management functions. Additional information
concerning Gemini resource management functions is contained
in (Ref. 13: pp.5-11].
3. GCemini Secure Operating System(GEMSOS) Architecture

The Gemini system uses four hierarchical rings to

implement its security structure. Ring O provides the most

security, while ring 3 is least secure. It can support both

31

Y 0 F
. . iy o - 4 ~
eaas . e YU N y LA ey tart da Y » ' oA e Rt R | o ? oliat it et A N T W MY AW e L e
- . L 3 1 a8 _p i .

4 discretionary and nondiscretionary policies. The nondiscre- -
tionary or mandatory policy is controlled in ring O. This "'
s policy cannot be modified. Ring 1 is used to control the
discretionary or 'need to know' policy, supervise the use of N
the data encryption device, and support any other security :x
5 functions not contained in the mandatory policy. Rings 2 M
and 3 are available to the programmer for use in developing 3
applications software. ‘ P
The security mechanism which coordinates inter-ring Ff
communications involves the control of access to subjects E
and objects. A subject is a process which is allowed to ‘
o operate over a specific domain within the system. An object Q¢
' is a specific piece "of information which is assigned a X
security label. All access between subjects and objects is Fi
controlled by the GEMSOS security Kkernel located.in ring O. =
Approval is based on a comparison of the security labels of
’ the two entities trying to gain access.
Security labels are uéed to identify the access
class of all subjects and objects. The access class is

1

further broken into a compromise (observe) level, and an g}
integrity (modify) level. Compromise and integrity protec- ‘
tion are based on strict properties which must be observed o
in order for access to be granted. Figure 2.6 is taken from i

oA A LA A

[Ref. 13: pp. 16,17], and contains a simplified statement of

. these properties. Domination as stated in these properties "y
) means that the level of the access component is greater than XX
) or equal to the entity it is trying to observe or modify. Eg
Compromise protection property 1 1is a traditional .

N security policy. It states that in order to observe infor- i}

v v

mation, you must have a clearance equal to or greater than)

" IR

* the information you want to observe. The second property is :
more subtle. This property prevents, for example, a secret .
user from modifying a file which could then be observed by a ﬂt
confidential user. This property is especially important in

32 S

R

o " v

PR

AT

b

s

Compromise Properties:

1) If a sﬁbject has "observe" access to an object,

e compromise access component of the subject must
dgmln%te the compromise access component ol the
object.

2% If a subject has "modify" access to - an object,
the compromise access component of the object must
dﬁg;nage the compromise access component of the
subject.

Integrity Properties:

1% If a.sub%ect has "modify" access to an object
then the integrity access component of the subject

dominates-the integrity access component of the

object.

2% If a sgb%ect.has "observe" access to an object
then the integrity access component of the obﬁect
e

dominates the integrity access component of t

subject.

Figure 2.6 Compromise and Integrity Properties.

prevention of 'Trojan horse' <type attacks [Ref. 6]. The
integrity protection properties are similar to the compro=-
mise properties except that they refer to the ability to
modify information. Property 1 states that in order to
modify a confidential document you must have at least a
confidential integrity level. The second integrity property
prevents, for example, secret users from observing (and
possibly being influenced by) information which could be
modified by someone with a lower integrity level.

33

W

In addition to the access class integrity described \s:
above, the Gemini system also employs ring integrity. Ring Et;
integrity means that subjects at a certain level can only el Lud
access objects of the same, or a higher ring number. This éi:
policy reinforces the hierarchical structure of the GEMSOS Eﬁ‘
rings. -] V—"l\'::

These compromise and integrity properties are e ;
further complicated by the fact that the Gemini system is a -4
multilevel system. This means that both users and resources gftf
may have clearance to access a range of security levels. e
Multilevel subjects are potentially very dangerous because ”'f
within their range of operation they are not subject to the !!i
second compromise and integrity protection properties E;?‘
[Ref. 13: p. 20]. It is up to the applications programmer &;i
to ensure that he does not create subjects which will allow fﬁ;
violation of these properties. This is especially important R
when interfacing with devices. Figure 2.7 1is taken from T
[Ref. 13: pp. 21,22], and represents a summary of the ,
security properties of sirgle and multilevel devices.

Devige access levels refer to the physical security };Qﬂ
of the environment in which the 'device is going to operate. . ﬁigv
This is separate from the security level of the process 'E&
which is attempting to communicate using the device. For RN
example, a terminal located in an unsecure room with an i;i
unclassified device access level, cannot receive information j%i
from a secret process. The term single level device implies ;3;

that the maximum and minimum access classes for the device
are the same. In multilevel devices they are different, and
represent the range over which the device is allowed to

operate. ﬁff
4. Summary

The Gemini Trusted Multiple Microcomputer Base is an . 5¢§
extremely capable computer system which combines :f%?.
state of the art technology with a high degree of . {:?
I'E\

34 A

b

e TS & T S S e ¥ TSN s T ET T S 8 W TeTeTe TSV Y R V¥V OF OV =N wow-

Single level devices-

1) To receive ("read") information: | .
process maximum compromise >= device minimum compromise
device maximum integrity >= process minimum integrity

2) To send ("write") information:)
device maximum compromi se >= process minimum compromise
process minimum integrity >= device minimum integrity

Multilevel devices-

1) To receive ("read") information:)
process maximum compromise >= device maximum compromise
device minimum integrity >= process minimum integrity

.2) To send ("write") information:)
device minimum compromise >= process minimum compromise
process maximum integrity >= device maximum integrity

Figure 2.7 Single and Multilevel Device Properties.

flexibility to be able to handle a variety of possible
applications. Its multiple processor and multiprogramming
configurations are valuable assets when functioning as a
secure front-end for data communications as proposed by this
thesis. By being able to simultaneously handle devices with
different protocol requirements and security levels, the
Gemini system operating in this mode could potentially elim-
inate the need for separate stations for each secure commu-
nication device.

Key to developing a trusted computer system applica-
tion is the ability to develop a sound, secure resource

35

7
s

.
o

Yooa
7
s ¥ ’

L ARAEA

e

" 'l
NS

'. I
M A
A Ay by

Sh

“
»
0

*e

0K
A :
. A

L e S P
YO
l"' "

k44

‘l
's

management strategy. This strategy must adhere to the
system's mandatory security policy, and avoid misapplication
of resource management functions which could make the system
vulnerable to a covert channel attack.

Chapter 1II introduced trusted computer system
concepts, and provided necessary background information
concerning the Gemini system. Chapter III will discuss
Gemini system operation, and the creation of an application
program which will allow the system to function as a multi-
level secure front-end for data communications.

36

a8

"
2

T

) Py
J'l N S N |

A
Eﬂiﬁai

o= ALY

&

AR | .

v % LN
-
., &

RO)
MR R

A g
=1
ik

0

(2n e 4
P

A

a2
LN e
Pt

{
!

T A A BTy RN ¥ _®. Y.

T,

A,

Calud o0 /LAY
I S

e, rrT,

III. SYSTEM DESIGN

A. DESIGN ISSUES
1. Qbjectives

The primary objective of this design was to develop
a simple communications system which would demonstrate how
the Gemini Trusted Multiple Microcomputer Base could be
effectively utilized as a secure front end for data communi-
cations. There were three major phases in developing the
system design:

l) Establish two _way communications between users at
remote _terminals “using the Gemini system as an
external communications interface. :

2) Use the Data ciphering Processor (DCP) [Ref. 14: p.
57] to rovide end to end encryption of external
communications.

3) Demonstrate the use of Gemini security mechanisms to
prevent unauthorized access to classifled information.

In order to create a realistic communications link
it was necessary to simulate having two separate trusted
computer systems communicating with each other. This was
accomplished by having the Gemini system communicate with
itself using separate I/0 ports. By routing the incoming
and outgoing traffic from each port to separate processes,
the two computer environment was simulated. The system is
operated by a system security manager who is located at a
data terminal. The system security manager is responsible
for: .

1) System start-up and initialization.

2) Assigning access levels for user terminals.

3) Control of communications at the external ports.
4) Insertion of cryptographic keywords.

5) Routing_ of incoming traffic to the appropriate
terminals.

Each user terminal is assumed to be located in an

area which provides appropriate physical security for the

37

................................

.........

RO At Do et R A DA W -3 S0 St b 23 A
S

.‘..
e
e

\ 2

]
oy

’n”b

+
5

g 'v"' “ W
’ ‘

RV R
AR A .
Vet)

R
"

e TwTw Y Ty r W, WY -

AR N ot AN AN VLS S Nt S Vil R N R Y

YL

'."’

access level of the terminal. Each can enter messages to be

SEE 7R, 2

sent, transmit messages, and display incoming messages Ei,

provided the terminal at which they are located has the ;

proper access level.] ¢
" To accomplish the second objective, the data ‘E
- ciphering processor (DCP) was used as discussed in Chapter i'

.'l

II. The entire outgoing message, including address informa-
tion, 1is encrypted to provide maximum protection. This

T WALl

technique is valid for this specific application because of
the small size of the network, and the limited quantity of
information being exchanged. It may not be appropriate in
larger scale applications involving larger networks such as
the Defense Data Network (DDN). Communications are assumed

s

s ¥
DU

to be established between the two sites using some form of

4

LN

modem~like telecommunications device. In this design, the

BN SRR

RS-232 external communications ports were directly connected
by an interface cable. Since all incoming traffic must pass
through the trusted computer first, it is up to the Gemini
system to decipher the address information, determine the
access class, and route the message to the proper incoming
message buffer.

Additional security could be provided by encrypting
the data a second time prior to transmission using another
method. This technique is called 1layered encryption
[Ref. 12: p. 159]. The second method could be an authorized
DOD hardware encryption device, a secure teletype, a message
scrambler, or an interface to a secure network such as the
Defense Data Network (DDN). The Gemini system would format
outgoing messages, and route them to the proper device.

The final goal, to test security of information and

1
3

access, was demonstrated using a series of specific configu-

.'-E

rations and data sets to exercise security mechanisms.

4

1 4
.Y,

N
These tests are meant to demonstrate, rather than prove that)
o

information security and integrity are preserved. They are o
l-:‘!

38 2

\':1

IR REART IR

- - o
> o« N W
FREIN I S I AEIE IO N ¢

- e,
E i T TR S
[AL

-

Rl (NCAENCRENERENE)

in no way intended to be exhaustive, however will allow for
a series of observations to be made concerning overall
system security.

2. Design Constraints

The hardware and software limitations of the Naval
Postgraduate School (NPS) Gemini system limited the scope of
system design. The NPS system has eight ports available for
attachment of I/0 devices. This would appear to allow for
at least four user terminals in addition to the two communi-
cations ports and system security manager terminal. This is
not the case due to a limitation on the number of process
local device slots(8) which identify the I/O devices. The
serial read and serial write devices must have separate
process local device numbers assigned. Therefore two
process local device numbers are required to attach a
terminal as a read/write device. This situation is further
complicated by the requirement that the read encryption,
write encryption, read decryption, - and write decryption
devices must be attached separately also. Device management
was a major factor in determining ultimate system
configuration.

Software development constraints were generated by
the environment in which this +type of system would be
utilized. An assumption was made that when acting as a
secure front end, the system would most likely be adapted to
an existing computerized processing system. There are a
wide variety of such systems currently in use both within
the Department of Defense (DOD) and commercial industry.
Each system has specific built in physical and software
security attributes. For this reason, no effort was made to
provide security between the trusted computer system and the
remote data terminals. These lines are assumed to be
secure, as are the locations in which the terminals are
utilized. In order to provide overall system security,

39

g <
fs
E these security measures would have to be verified prior to ::
4
o installation of the trusted computer system at a particular ;:
R -
.; activity. Another assumption was that the system could ;

potentially communicate by a variety of means including;
secure teletype, secure landline, Autodin, or DDN. For this
reason, no specific communications protocol was adopted. A
-~ source and destination header was placed at the start of

a

1

- each message along with initialization information for the
data encryption device. This header could be further modi-
fied to allow the message to be transmitted over a partic-
ular communications network. The simplified source and

AT

’
... .
»

destination header will be sufficient for purposes of this
research.
3. Summary of Design Decisjons -
Figure 3.1 shows a block diagram of the final system A
- design. Due to the process local device slot limitations)
discussed in the preceding section, only two user terminals Zf
- were used. To provide additional flexibility, the access “
‘ class of each terminal can be set and changed by the system .
security manager. All communications leaving the external
communications ports are encrypted using the Data Encryption
Standard (DES) operating in Cipher Block Chaining (CBC)
mode. Communications between the trusted computer system *f
and the remote data terminals are not encrypted, however are Y
assumed to travel in a physically secure environment. ;_
i System operation is controlled by the system security ?i
- manager. User terminals can send messages to and receive >
- messages from the trusted computer system, however they must
' rely on the system security manager to actually transmit the
messages. iﬁ.
At first glance it appears to be a relatively simple o
task to create a single process which would allow messages
k to be exchanged between users. Figure 3.2 shows an example f%

of how a process like this would operate, and why the design

«
[
, -
~

.....................

e

L

" 40

r
R -t
AR ﬂ fl'l', e
Y TR A)

_L.
':l
»
"
.
.)
1]
.
\
s
.
p
Aa
1]
r]
.
2
)
£ 3
E]
*
P4
i g
I]
P
A
Pd
1y
":
N ’)
'
.l‘
o
?
'l
4 ’
1 3
t
,
2
'I
t §
P

encrypted data

excomm excomm
poit pogt

Gemini Trusted
Computer System

4

remote user remote user
terminal terménal

Figure 3.1 Final System Design.

would not work. The problem is caused by the multilevel
nature of the communications process. In order to handle

messages with different access classes, it must be a multi-
level process. Attaching the single level terminals
directly to a multilevel process creates the potential for a

covert channel [Ref. 1l: p. 79] which could be exploited to .
N
gain unauthorized access to classified information. L

encrypted) ¥
communications

e,
v _» s

v

o,
DAL

L

-
LA

excomm excomm
pogt pogt

LA ?
. e
i & »

v
CRdEY
e

multilevel
communications
process

o
PR

»

- e -

ol

*

T ey
A

_ | multilevel ’
| environment

1

) \ | . .

— — —— ev—

("<::;;:botentiaL,,—””/?
|
!

covert
channel l i

1Y A

remote user

‘ remote user ~
terminal

terminal 0
B

.
« ¢

T
»
o
oy,

Figure 3.2 Process Block Diagram With Covert Channel.

20
‘. " .

’
‘e

. [

T

42 3

PP
P A RN S I 2 iy

e

To eliminate this problem, it 1s necessary for the
system security manager to create a single level process for

each user terminal attached. Figure 3.3 eliminates the
covert channel problem by providing a single level process
buffer to protect information. Even if an attacker was to

cause information of a higher level to be misrouted by the
multilevel process, it would still be protected from compro-
mise by the single level process which interfaces directly
with the user terminal.

This design creates another problem. That is, the

need for synchronization among the processes. Interprocess
communications are synchronized by using eventcounts
{Ref. 15: p. 20]. Although the system simulates two sepa-

rate trusted computer systems, only one multilevel communi-
cations process was used to simplify the synchronization
problem. Since the communications processes would be iden-
tical this limitation did not adversely impact system

design.

B. SYSTEM IMPLEMENTATION
1. Harxdware Components

As discussed in the preceding section, the number of
data terminals used in the system was limited by the number
of process local device slots available. Figure 3.4 shows
the final system hardware design. Terminal O is used by the
system security manager to initiate and coordinate communi-
cations via the external communications interface. Two
remote user terminals are also connected as read/write
devices. They represent the users at the two sites which
are exchanging information. The external communications
interface consists of a special cable which allows one of
the ports to function as a data communication equipment port
(DCE) while the other functions as a data terminal equipment
(DTE) port. All of the Gemini ports are initially config-
ured as DCE ports. In order +to communicate computer to

43

]

T.:‘
g
')

.
ettt

- s, Ay oy
LA LA

%ﬁ
3

.
be £
! " A ‘.
% &2

i
I
'y

¥
v r 1
g

Ty
P

s
v

.4

7

~
r

2
o oSt oo

¢
’,

g

L]
[

‘v

» 5 &
XAAR

e

=

encrypted
communications

1 1

excomm excomm
pogt pogt

multilevel
communications
process

multilevel
environment

single level
term utility
process

i !

single level
.term utility
process

single level
environment

\

remote user
terminal

remote user
terménal

note: The single level terminal processes buffer
information travelin
preventing the cover

to and from user terminals
channel problem.

RYS RTINS

Figure 3.3

Process Diagram Eliminating Covert Channels.

44

v
4

S A |
v I
1

o
.
PR
v
$ 4

»
»

PR
.”?4
’

2T

0
[
.

computer required the use of a
cable [Ref. 1l4: p. 51].
cable is constructed.

this application.

special DCE to DTE convertor
Figure 3.5 shows how the convertor
Gemini ports 3 and 4 were not used in

Gemini
Trusted
Computer
System
data
terminal | pO
p3 pl
4 - p2
data P P
terminal [p5
data
terminal | pb
’ e —————————
p7

DCL /DI
convertor

printer

port assignments:

- not used
- not used

pO- system manager terminal
pl- external communication port 1
p2- external communication port 2

3
4
5
6
7

oltoNofoke]

remote terminal user 1
remote terminal user 2

printer

Figure 3.4 Final Hardware Diagram.

e e e s,
e e e e T e
VRS T IR SRR A LR W

SRR

o s w v 2 7
" % .a,;,"

I’ ’
e

AL,

LR

.0
s,
W h

h Y

‘fsn‘.. o'
L
A0

’
P
fo 'y %y e
PP -
)

"%
x ¢ # :
A

XN

- s 4 12
h Bl

'..P
y

o

ne

g

DCE/DTE
converter
% ~
pin pin
-1 2 2
1 3 >3 [T
to 1 4 4 | __ to
external 1 S <5 [_ | external
" communication 1 6 6 | communication
port 1] g%g - port 2
—1 20 20 [—
—
\ P

Figure 3.5 -DCE to DTE Convertor.

2. Application Program Format

Preparing programs - to run in the Gemini Secure
Operating System (GEMSOS) environment is significantly more
complicated than running the Pascal MT+ programs in a non-
secure environment. In order to be accepted by the system
they must first be put into a specific format which can be
recognized by the Gemini Secure Operating System (GEMSOS),
to gain access to the security kernel. There are several
software tools which can greatly speed up the process of
preparing a program to be run in the secure environment.
The fact that a program compiles successfully does not
necessarily mean that it will run in the GEMSOS environment.
Following Pascal MT+ compilation, the program is linked to

the appropriate modules using a file named, 'applica-
tion_name.KMD' [Ref. 16]. This file contains a formatted
46

5 .':.r‘

.‘:;.—,

ko

P
[

;t','g VoA

-

TP

X . R

SR SACATAE LIl eu Sl Se s <8 €1 S 08

DA AR A B AP A AN B U § P St i a e Bl e B8 o B g e o TW I ™ YT YV -
L ath arl o 1 r TR Y T e
0

list of the modules the application segment needs to be
linked with. The result of the linking process is a file
named 'application_name.CMD' which still has no security
classification assigned. To assign security classification,
and prepare the program to execute in the secure environ-
ment, a secure volume must be created by running the oper-
ating system generation (SYSGEN) program.

Executing the SYSGEN program includes the applica-
tion program into a segment structure which is then trans-

formed into a "bootable system segment structure on
formatted volumes.™ [Ref. 17: p. 1] Detailed procedures for
using the SYSGEN program are contained in [Ref. 17: Pp.
8-18]. The key to proper use of the SYSGEN program is iden-
tifying the segment structure in which the application
segment is going to be placed. The segment structure
includes the boot-strap, kernel, application code, and data
segments. The easiest way to identify this segment struc-
ture is to include it in a submit file named ‘'applica-
tion_name.SSB.{ For basic application programs, the segment
structure does not change. Use of the submit (.SSB) file
eliminates the need to enter the segment structure interac-
tively each time the operating system generation program is
run. Use of the SYSGEN submit mode is further ekplained in
[Ref. 17: pp. 13-18]}.

C. SYSTEM SOFTWARE DESIGN
1. Application Segment Development
Application software for this system was developed
using modular programming construction techniques. This
allowed for independent testing of each module prior to its
inclusion in the main program. This technique was espe-
cially useful because trouble~shooting GEMSOS related Ring O
service calls was particularly difficult. Figure 3.3 shows
the three processes which were developed as application code
segments. They are:
1) multilevel system manager process

47

A s i YA

2) terminal A single level terminal utility process
3) terminal B single level terminal utility process

Each process was developed as an independent appli-

cation c¢ode segment. The terminal utility segments are

almost 1identical, however must remain separate entities

because they represent different systems. In addition, they

are assigned different physical ports and can also be
assigned different access levels.

a. Terminal Utility Segments

As discussed earlier in this chapter the user

terminals can input, transmit, and display messages. Each

terminal is a single level device capable of sending and

receiving messages of the same level. Figure 3.6 shows a

flow diagram for the terminal utility application segment.

The actual code for the Pascal MT+ program which implements

this flow diagram is contained in Appendix A. This program

is activated when the terminal process is created by the

system manager process.

’ All messages input and received at the terminal

are stored in a specially designated message buffer segment.

Access to this segment is shared by the user terminal and

- TS

the system manager process. Each terminal has its own -

message buffer segment, and cannot access the othgr's
segment without going through the system manager process.
When the wuser has completed his message transactions, he
initiates a logoff procedure.

The logoff procedure deletes the terminal
process and returns the resources allocated to the process
to the system manager process which created it. These
include memory space, process local segment numbers, and any
attached devices.

b. System Manager Segment

The system manager segment controls system

configuration, data encryption, and communications through

48

R UL SN s o G S ko ing et AL iz et

>y vy
(G

XA 116K

LATA

R N T s]

A

ENNXANX

i

PP
RN M
a o, 8, 4 s",k

+ 1

L
BREAR |4
IO !

. .
TR]

e —

display
mode

entry
menu

display
error

enter
mode

display
error

logoff

delete
child
process

enter .display notify
message incoming sysmgtr
to be xmi msg msg ready (:j—;nd

await
incoming
msqg

) .]

Figure 3.6 Terminal Utility Flow Diagram.

jorey
LN
49 NS

SRS L R O

the external communications ports. Figure 3.7 shows a flow
diagram of how this segment is constructed. A detailed
source listing of the Pascal MT+ code implementation is
contained in Appendix B.

Creation of a child process requires completion

i
:
i
P
¢
i
\

of four record structures. Each record structure has
several entries. Each entry 1is completed in a specific
order which builds to the 'create_process' resource manage-
{ ment call. Detailed instructions for process crea ion and

record entry format are found in [Ref. 14: p. 28]. Segment

and process management are the most difficult concepts for

someone unfamiliar with secure computer systems to grasp.

The procedure developed in this segment could be used as a

model for process creation in other programs. The specific

entries may vary, however the physical structure of the
3 procedure is general enough to fit a variety of
: applications.

The system security hanager located at terminal
0 has direct control over system assets. To provide this
control, the system manager has the option of specifying
{within predefined limits) how the system will operate.
These parameters are entered when the system is initialized.
They are interactively entered into a system operator record
from which they c¢an be drawn when required by other proce-
dures. Parameters which do not need to be directly
controlled by the system manager are fixed and cannot be
directly accessed.

c. Program Documentation

Each module in the application segments has a
header describing its purpose and general operation. Since
this is the first research effort using the Gemini system,
the intent was to provide clear programs which could be used
as a basis for future research. In some cases this meant

, sacrificing efficiency in order to provide better clarity.

¥ Y TEECCY.Y VO

e p

Pl i

oaa e

.

s F

‘ start ’

)

input
system
parameters

i

comm test
crypto test

create
terminal
process

um terms?

E

T

g

await
srce ready
to xXmit

]

notify
source

of error

msg

Xxmit/recv
message

srce=dest
for next

transmission

prepare
error
message

)

notify dest

| of incoming

msqg

Figure 3.7

System Manager Flow

51

Diagram.

[P
o

IR

L
L ot f
oD S L N e
5 PR

+

..,
A
AAAA
S

5 .:. bl -

~
~
o

L)

2. DProcess Synchronization

Process synchronization was accompiished using the

eventcount of the message buffer segments of each terminal
process created by the multilevel system manager. By
advancing the proper stack eventcount the terminal process
alerts the system manager that it is ready to begin message
processing. The terminal advances the the outgoing message
buffer segment eventcount +to notify the system manager
process when it desires to transmit a message or when it has
completed processing. When a terminal process indicates
that it desires to transmit a message, the system manager
transmits the message, and then unblocks the other terminal
process to display the incoming message by advancing its
incoming message buffer eventcount. This process can be
continued indefinitely. The actual implementation of this
sequencing 1is further explained in the applications code
segment listings contained in Appendices A. and B.

D. DESIGN SUMMARY

This chapter has discussed the system design process in
terms of its objectives and limitations. Hardware limita-
tions of the NPS Gemini system limited the sccpe of the
system‘design, but did not>prevent achieving desired design
goals. The resulting hardware and software configuration
was implemented using modular construction techniques which
greatly reduced the number of software errors.

The resulting system utilizes the Gemini as a two-way
communications interface, and message processing facility.
All communications are protected to the maximum extent
possible using the Data Encryption Standard (DES) algorithm
in the cipher block chaining (CBC) mode. Terminal processes
are assigned single level access which eliminates the covert
channel problem and prevents the user from gaining unauthor-
ized access to classified information.

52

- - -~

. - s -
« s "
et

»
LA

.-t et et

«

)

]
;'v..;‘g.\"
LTl

elatela

. s
v e %

~

IV. DRISQUSSION QF RESULTS

A. SYSTEM OPERATION

The model communication system developed in this thesis
to demonstrate the feasibility of using a trusted computer
system as a secure front end for data communications met or
exceeded all design goals. Messages were passed between two
remote terminals in a manner that ensured security from
unauthorized access at both source and destination. Data
encryption was utilized to maximize the security of the
transmitted data. Finally, by varying the access class of

the terminal processes it was possible to demonstrate the
system's ability to detect and respond to security viola-
tions. Flexibility in determining system configuration
allows modification of system parameters to meet a variety
of test requirements.

System operation is initiated and contreolled by the
system manager. The multilevel system manager process
creates the single level terminal processes at an access e
level predetermined by the system manager. Once initialized "
a remote terminal may only display and enter messages which .
are of the access level at which the terminal process was
created. It 1is important to note +that the user does not
assign the classification of the outgoing message. Message

classification is assigned by the system manager according
to the access level of the terminal sending the message. v
This is done to prevent a user from downgrading a classified "3?
message to send to an unclassified user at another terminal.
All security checks are therefore performed within the Sv
system manager process. For test purposes, the terminal
access levels in this system are manually entered by the

system manager. If the project manager did not want to

2_»

)
(2]
v

leave this choice up to the system manager, the access level

e
' l’ “ . * "
i

. }

.y . y . B ~ »
AR AN AL S D9 A AN Bl W N S N Y N [el AR A A S -

&N

information could be hidden in a file that he does not have %’:’
access too. Once it is started, the system operates inde- O
pendently. This eliminates the possibility of a corrupt '
system manager from manually misrouting information stored . &3-
! in the message buffers. ?ﬁ‘
; One potential problem was the possibility that an . f;%
unclassified user could enter classified information in an "%
¢ unclassified message and transmit it to an accomplice who :ﬁi
had tapped into the external communications line. To help ?Z:
prevent this, the outgoing message is encrypted using keys vﬁ?
which are inserted by the system manager. Possible compro- .
mise of the key could further be prevented by having the key ?f'
entered by someone other than the system manager. The goal ;jﬁ
of this process was to develop a system in which no one ii}
person would be in possesion of enough information to ;;
misroute, and potentially compromise classified information. g;
There are a wide variety of possible system configurations. ;i;
Selection of a particular configuration would have to be Eii
based on a detailed study of the activity, and its associ- -
ated security requirements. ﬁj:
o

B. SYSTEM TESTING :I':-f._
1. General Comments 5%
The'process of debugging and running applications e
programs proved to be much more time consuming than had been &:ﬁ
originally anticipated. Three factors contributed to this gix
problem. They were: ﬁb'
l) unfamiliarity with multilevel security concepts _“
2) difficulty in transforming Pascal MT+ programs to code L
compatible with the trusted computer operating system v

3) time delays required to prepare modified programs to ;ﬁi
be tested in theé secure environment. Var

As with any new area of study, multilevel security) \é?i

has its own terms and concepts which must be thoroughly :}}
understood prior to attempting to use the trusted computer EE:

v

."'-, & P

system. As discussed in Chapter II, the manner in which the

':i

Gemini system manages resources is very different from

traditional non-secure systems. The interaction of the
process, segment, and device management functions is key to
understanding overall system operation.

The second problem concerned identifying Pascal MT+
instructions which were not recognized by the trusted
computer operating system. A program which compiles without
error, may not necessarily run in the secure environment.
An example of this would be a program which contains the
Pascal command 'read' or 'write'. These are legitiﬁate
commands which would compile without error. The problem
arises when the secure operating system encounters the
command. Trying to read or write to a file is not allowed
in the Gemini Secure Operating System (GEMSOS). The file in
this case would have to be redefined as a segment to which
the process has access. The data would then be passed to
and from the segment by using a pointer to the desired loca-~
tion. The best way to overcome this problem is to start
with very simple programs which test specific functions and
gradually build to larger more capable programs.

The final difficulty had to do with the amount of
time that was required to take a program which had been
compiled and prepare it to be tested in the secure environ-
ment. As discussed in Chapter III, in order to prepare a
program to run in the secure environment, a secure volume
containing the program segment must be created by running
the operating system generation (SYSGEN) program. Once the
secure volume is created, the system is reinitialized using
the secure application program volume. When a problem is
encountered in the execution of the program, the system will
either execute an interrupt trap halt and indicate the
processor's register contents at the time of the interrupt,
or in some cases will halt completely. In either case, the
error must be corrected before the system will be able to

55

...... e
oy AN et S e BRI AR U e e W
_,- -

NN s T N R I
PR .._’ PRATR IS L A_n_-d..'._'LA RO IE RS S AP AP AP RIS o AT Dot e

»
R
- E
b progress any further in the program. Once the desired k
correction has been made, the preparatioh process must be C$
- repeated to test the modified program. For the programs g;
§ developed in this application, the preparation process took %:
i from between four and seven minutes for each program. The :f
% use of modular programming techniques is vital when program- E%
y ming in this environment to minimize the time delays associ- e
ated with program execution and testing.
. As future versions of the Gemini system become
: available, it is expected that the effects of these problems
X will be significantly reduced. Expanded system libraries,
and an improved application development environment will
3 make the process of writing programs which can be run in the
. GEMSOS environment simpler and less time consuming.
. 2. System Security Testing
The system security test phase was designed to
' demonstrate particular security features of the model commu-
x nications system. It was not intended to prove that the
. security of the system that was developed could not be
violated. One of the major results noted was the fact that
no matter how secure a system 1is, it can still be violated
by generating application programs which misroute informa-
f' tion obtained through the security kernel. For example, if

a corrupt system manager is allowed to modify the encryption
key, he could potentially insert a key which had also been
passed to someone who is monitoring system external communi-
cations. This would allow him to decrypt the outgoing
message and compromise any information contained in it.
Another example would be if the user was allowed to specify
the c¢lassification of his outgoing message. This would
allow a corrupt user to improperly downgrade information and
send it to an unauthorized destination. Tight restrictions

imposed by the project manager are required to limit access

to the application code segment and prevent these types of
problems.

56

The Gemini system used in this research does not LS
currently support the attachment of classified serial I/O i
ports. This means that the system does not identify the

e s g

. eight ports in terms of a specific access level. Future
versions will be able to identify each port with a specific
access class. This will prevent an unclassified user from

transmitting data through an unclassified port. User termi-

4

k)
‘Z
.l.

s

nals will also be attached at a predefined level to prevent A
the system manager from creating a classified terminal Kfq
process at an unclassified port. \-4,

Security testing consisted of two major areas. 15%
First, communications were established between users having }}i
the same access level. Messages were passed between the two ;ig

terminals via the multilevel communication process. &?}
Initially a multilevel (min-unclass, max-confidential)
system manager was created to coordinate communications

]

between two unclassified users. As discussed above, the
Gemini system does not currently subport secure serial I/0
which necessitated manually entering the access level of
each of the terminal processes. Once the secure serial I/0

y-

«'t'/"

NN A/

e

"-:"(‘v'l.v.--
b L
g

capability is available, the system manager would not have E;ﬂ
to specify the classification of data_ going to and from the F}_
remote user terminals because it is already specified by the X
system classification of the port to which the terminal is AN
attached. Following unclassified testing, confidential Eﬂg
a0

2

e

messages were exchanged between the simulated confidential

.
'-.o
-

R .
o o A
e« I
et e le ¢
T
RS .

user terminals.
The second task was to test the system's ability to

detect and respond to a security violation. To accomplish
this, the user terminals were assigned different access e
levels. When messages were sent between the terminals, the C

system recognized the security violation and issued the

LA
"'u' .

2

PR

'_.c' LA

appropriate error message back to the originator. In this

)

RPN
. 4 -

case the security check consisted of a comparison of the

v /7
>

.,-'.’-.‘ ”

57

o~
\1
~

e Yo

incoming message header, with the system manager defined
destination access level. The error message interrupts the
normal sequential passing of messages, to inform the origi-
nator that the destination of his message did not have the
proper access level to receive it.

Although only one communication process was used to
create both terminal processes, the terminals operate inde-
pendently to simulate being located at two different activi=-
ties. They send and receive messages from different
physical ports, and communicate to each other using
different external communication ports. Inter-process
synchronization was accomplished by allowing only one
terminal to send a message at a time. Once a terminal's
message transmission was complete, control was passed to the
other terminal to allow it to display the incoming message,
and send its outgoing message. This technique was chosen to
facilitate testing, and is not the only method which could
have been used. Depending 6n the particular application, a
timed polling scheme with all terminals operating simulfane-
ously may be appropriate.

3. Encryption Iesting

All data passed between the external communications
ports was encrypted using the Data Encryption Standard (DES)
algorithm operating in the cipher block chaining (CBC) mode.
Data encryption was enhanced by using the techniques
discussed in Chapter II. 'The objective was to create a
unique ciphertext for each transmitted message, regardless
of whether the actual text of the message was the same.
This was accomplished by providing the data encryption
device with a unique initialization vector for each message.
This system uses the transmission time of the message as the
initialization vector. 1In an actual system, this would need
to be modified by a random offset to prevent someone moni-
toring the outgoing traffic from gaining access to the

58

”

| ERNEEE)

initialization vector. Another way to do this would be to
use a sequential message number which had been randomly
modified as the initialization vector. As long as the
initialization vector is unique, no two messages will have
the same ciphertext.

To test the data encryption device using the data
encryption techniques discussed above, a series of test
messages were generated. These messagés were used to test
specific features of the data encryption process. The
system manager application program was modified to display
the ciphertext of each encrypted block. Identical messages
were transmitted to compare the resulting ciphertexts. As
expected, the resulting ciphertexts were not the same.
Error propagation was also tested by inserting errors in the
received ciphertext prior to decryption. The errors
appeared in the decrypted text however were confined to the
block of data in which the error was introduced.

' Another area of concern was that encrypting the
outgoing message adversely effect system operation. As
discussed in Chapter II, there are two basic encryption
methods. They are the methods which utilize feedback to
provide added security such as the cipher block chaining
(CBC) method, and those which do not, such as the electronic
code book (ECB) method. In the Gemini system, use of a
feedback mode requires that the encryption and decryption
devices be reattached with the new feedback key for each
block of data processed. This slow-down could degrade
impact system performance where large messages are required
to be transmitted at high speeds. A decision would have to
be made whether to sacrifice some security by using the ECB
mode in order to gain speed. This potential problem is
largely overcome in the Gemini system by the speed of the
Intel APX-286 microprocessor. When test strings were used

to provide continuous output on the external communications

Sl At Sl M i LA Gl e, A’y

ports, no noticeable slow-down was observed when using the
CBC (feedback) mode.

-y o]
]
.

Y

“s.l' - l» >

0
vl ing

TN
: J '.'i/ " 1{ v}A l". "

e

‘
LA
._® 2

&,
4. -

-

ry
s

ce e
P
A, 4

MRS

VY
NN

‘l
0o XA

.

e
v T
e
)
.

[}
13

60

.

A
'.'/..I S

',. *
‘e v é

Bl S A4t 8 Sl A Attt i e g & abui cend i ari
- L%

LS -
AT
f'_..

V. CONCLUSIONS

In this thesis a model secure communications system was
developed to demonstrate the feasibility of using a multi-
level secure computer system as a secure front end for data
communications in an office to office communication environ-
ment. The Gemini Trusted Multiple Microcomputer Base used
in this research proved to be an extremely flexible system,
easily capable of providing a high speed data communication
interface. The following observations concern the use of a
multilevel secure computer system in this capacity:

1) The major advantages of a multilevel secure front end
are the reduction in the message transmission delay
due to internal and _external processing requirements,
and the additional flexibility it provides ™ in devel-
oglng,a_dlsgretlonarg security policy. Each security
ﬁ asgification can be broken into ~several 'need_ to

now classes which further restrict access to infor-
mation, and provide additional security.

2) By developing secure application software which auto-
mates internal message routing, and security record
keeping requirements "which are currently done manu-
ally, a significant reduction in the manhours required
to lprogess and store sensitive information can be
realized.

3) A major problem in developing application software is
the difficulty encountered in generating programs to
run in the secure environment. There is currently_ no
way of taking existing software for a particular
system, and directly adapting it to run in a secure
environment.

4) Electronic transmission of sensitive information in an
encrypted format, reduces the delay associated with
traditional transmission techniques. Information
which can not be readily converted to a_ form which
could be transmitted electreonically, would still be oo
transmitted via conventional routes. i

5) Data encryption can be used_ to greatl increase the
protection of transmitted data without adversely
effecting system performance. Although not currently

aggroved for transmission of Department of Defense

D classified data, the Data Encrygtion Standard Sk
DES algorithm .when used in_ cipher lock c¢haining il
CBC mode as discussed in Chapter II provides the e

maximum protection. By multiprocessing the DES ‘

encryption rocess with "a DOD approved method the
system can be used for transmission of <c¢lassified g

data. e

l."n '-

6) By directly controlling the access of remote users to AR
eXternal communication devices, the security manager ot s

. &

A Y

. \w-

61 Ry

ot tatalala

NS RN

.
-
-
-
.

can have positive control over all incoming and

outgoing messages. The security manager defineés the
access level of each device, preventing unauthorized
transmission of c¢lassified data, and ensuring that

incoming traffic is routed in a secure manner.

7) The multilevel secure computer system can _interface
dlrectlg with a wide variety of communication equip~
ment, owever, incompatible devices would still "have
to be monitored separately. It 1is important to note
that, the use of a multllevel secure computer system
does not necessarily reduce the physical seclurit
requirements. Physical devices must still be provide
grotgctlon consistent with the classification level of

he information they process.

As the number of computerized processing systems with
external communications capabilities grows, the need to have
a trusted secure interface between system users and external
communications devices becomes increasingly important. Use
of a multilevel secure computer system as a secure front end
interface can greatly enhance overall system security.
Functioning as both an external communications interface and
internal traffic manager, the trusted computer system
provides the project manager with centralized control over

access and distribution of sensitive information.

62

<y v '
"{\";

A AR

LY

"o
-

R

,5, 4
A

4L,

¥ r
*'v’% e d

APPENDIX A
TERMINAL UTILITY PROGRAM LISTING

The terminal utility program is compiled and prepared
for execution in almost the same manner as the system
manager application program discussed in Appendix A. By
modifying certain parameters which are identified in the
program listing, the system manager can specify the physical
port and terminal number of the remote terminal process.
Once copied to the bootable disk which includes the oper-
ating system generation (SYSGEN) program, the tl=-util.cmd
and t2-util.cmd files are automatically entered in the
secure volume created using the sysmgr.ssb file. To enter
additional terminals, the sysmgr.ssb file would have to be
modified to specify the entry number of the new terminal
utility program. A listing of the tl-util.kmd file which is
used to ' create the tl-util.cmd file is included following
the terminal utility source code listing.

63

VRA WLELE USRI T UG T Ty 7y

RN AL AR AL A S L A Sl oA S AN AR LD A

{***************#***

program pame: t1 _util.txt
date: 18 feb 86

author: P. J. Corbett Lt./USN 4 .
for: AFGIS Modelling Group

advisor: Prof. Kecdres

purpose: This program is initiated wken a terminal

%rocess is created by the system manager process
sysmgr.txt). It allows the terminsal operator to enter
and serd messages via the sysmgr process, as well as dis-
play irnccming messages. Message specificatiors arnd
terminal access level are determined bty the sysmz2r precess
and passed to the terminel fprocess in its rl_prccess_def
record. Other system constants are previded in the
mgr—typ.z1i and mgr-con.z1li files. I+icoming and outgcing
tuffers are used to store messages. Everptcourts for these
segrents are used to syrchronize syster communicatiors.

"2 als ol s ube o o e » wf o3 s ulp wie ats of wle 3 ! s als alsale wle aleale Wis als wizals uf,
2 HE N BTN A sle e He sl ie sl ey shralesiesleaiesie e eals dienz st sir e sl al e e e e i sl sl vl e e sie e siesia e sieslesle ieale el she],
/

module t1_utils ‘

coast

{ system constant include files }
{51 gate-con.z1li}

{%1 ri-con.zli}
{51 mgr-rcn.zli}

{ physical pcrt to wtick }

t_pkys_dev
{ terrinal is attached 1

terr_num = "1

AL

A8
- we

tyrpe

3

{ ccmmon type include files }

et e p e e tatar At
SIS AL RN AN

v e
.
P IRV IALNS I,

e Bim 9t

{$i gate-typ.z1li}
{51 1it-typ.z1li}

fit rie-tye-ziyy

{ livrary procedure include files }
{51 1iv.z11}

{51 io0.2z11}

{51 gate.zli}

{81 seg-rgr.zli}

S —— —— —— e

prcc_name: input_mess

purpose: This procedure alliows the operator
tc input a message icto the outgoing message tuffer.
Characters are input into 2 byte tlocks sc that they
will Ye cormpatihle with the data encryrtion device,
The character “$° is used to irdicate the end c¢cf the
messaze. Tre intial tlock is ressrved fcr the
address header. 7Format of the header is zs follows:

tlk(1]71Y: source .

r1xl1]0(2}: destination

bli[1]1[3-8]: message numter
vlkf{1)78): classificaticn
P1¥[117M?-2]): numker of tlorks in mse

Source,destinatinon, ard nurmter of *lo2ks are entereqd
ia this procedure. Remaining entries are filled in
ty the sysmgr process prior to traensmission.

preccedure iaput_mess{comn_tuf:integer;
var buf _stat:toclean);

(8}
w

S
rex

o 7y I s T LR

a,'l,",."', o1 ‘1.-‘. PR LTINS
’ b 4 £ . I‘ .-

IR ond I NN n-i' N

i]

L L T

P

g g

W

P
—'l’.‘l'

Py
MR S

N Ot

v rlrl

....

) Sl A [t ~ Che T ™ v NS st S U il R N Y

var
mess _rec: tuf_rec)

blk_cnt: string:

temp _ptr,input_ptr: poirnter;
charintchar;
1,j,z,success:integer;
count: integer;

proc_suc: btecleanj

tegin {input_mess}

{ create peinter to start of input tuffer }

................

fnput _ptr:=lit_mk_pntr(ldt_tatle,comn_buf,1);

temp_ptri=input_ptr;

clr_screea(proc_suc);

putln/w_dev, ‘enter message to te transmitted’);
putln(w _dev, enter a $ to indicate end of msg’jj

’

putlniw_dev,” 7);

{ initialize msg block counter }
je=12

{ tegin chararter entry loop }
A’

while{charin <> 37, and

(i <> mess_tuf_size+l) do tegicn

[®lack 1 is addr, block 2 is strt of msg }

i:=1+13

{ tegin loop to read # char €or eack btlock }
for j:i= 1 to & do teein
i# charia ¢> "¢’ trea tegin
getcher(r _dev,charin);
ress_rec.tlockTi] [ji:= charir;
€E
o A e e A Tt A e T e T e T,

........

‘o".i

s >y
' PR A

« T £
s
.’ 1]

"’;;

y '\‘ﬂ"t !

LY

ll »
AL,
-2,

-

LN
TYRY

......
PP m

£ 1] v - b -
Tt st e ¥ .
KARRANCRTRET) By I

f i

L
DA
.

N

Y| %

AR
N

’
[
e’

B

L

PR P
NSNS

P MV
H0h AN

T"" o e
. L)

<

s

N
L SOAS

{ echo character input }
putchar(w_dev,charin);

end else

{ if charin="%" then pad the remain-~
ing entries with "% to avoid sending
an incomplete tlock
mess_rec.block (1] [jl:= "$7;

end; {for}

end; {whilel}

{ irsert sentirel at end of btuffer in case ingput
buffer size was exceeded }
mess_rec.block[mess_duf_size] [”]:="$";

{ count keegs track of numbter of tlocks input }
count:=i;

{ fi1lin address block source,dest,and num_tlk }
mess_rec.pum_blk:=count;
mess_rec.tlock{1][1]):= term_pumr;

putln(w_dev,” 7);

sutln(w dev, ‘erter destiratior terminal numter’;;
getchar?r_dev,mess_rec.block’1]EZ]); '
putchar(w_dev,mess_rec.tlocktl] 2]
putla(w_dev,” ");

tinascii(court,3,tlk _cnt,’2”");

for {:=1 tec 2 do
mess_rec.tlcck (1] [1+6] := tlk_cnt[i];

{ rlace mess _rec in outgoing message tuffer to
await transmission }

move{mess rec,temp _rtr ,sizeof({mess_rec));

tuf stat:=true;

putln(w _dev, ‘message iaput complete’);

€7

g
N

-

B

v

<55

WY

.

P AT
Y .""
] r’;“.,l‘t'

* "’;Fos
‘!m,

".T‘T
R,

_ '.».;f’;f;f"f_
| e

N A
h

end; {input_mess}

{ -— - — ——

proc name: xmit_mess

purpose: This procedure alerts the sysmgr
process that the operator desires to transrit the
message stored in the outgoing message tuffer. This
is done by advancing the outbuf eventccunt. The
sysmgr process notifies the terminal prccess that
the message has been sent ty advancing the intuf

eventccunt.

————————— ———— ——— = e e = e e e - }

procedure xmit_mess(inbuf_slot:integerjouttuf_slot:integer;
var intuf_evc:integer;
var xmit_buf_stat:toolean);

var
success:integer;

tegin {xmit_mess}

{ nctify sysmgr, msg ready to xmit }
advance(outtuf_slot,success’;
show_err(’outtuf advence errcr’,success);

{ await sysrgr xmit complete notification }
awalt(intuf_slot,intuf _evc+1l,success’;
show_err(“await inbuf error”’,success’;

intuf_evc:=intuf_evc+l;

putln(w_dev, ‘message transmission complete’);
xmit_tuf stat:=false; -

end; {xmit_ress} E?g

:" - NN iy e E A At it e S P IR W M A A SN S i o 4 aE A L s A gl bl U DL oA il R g s Y ::::
~ ..l
L L,
/ E
& "\
¢ o
<)iﬂ
p) Ry,
.: o .: ‘
] proc name: disp_mess !?;
purpose: This procedure displays the i
3 message stored in the incoming buffer segmert. It e
\ is similar in structure to input_mess. ;
o ,'L':,‘
- - - e ettt [3
procedure disp_mess(comn_tuf:integer; 543
var rec_buf_stat:toolean); S
. var]
disp_rec:tuf_rec; E?
X disp_gptr:pointer; j¢
- d_char:char; -
- i,j:integer; o
N proc_suc: toolean; A
, -
g tegin {disp_mess} : e
{ create pointer to incoming message tuffer segment} ;3
disp_ptr:= 1lit_mk_pntr(ldt_tadle,comn_tuf,1}; o
- clr_screer(proc_suc); A
Cd -_:_1
- putln(w_dev, tegin displey of received message’); Pl
* . *.
. . W
: . - 3
{ rlace contents of incoming message buffer intec '
disp_rec } kﬂ
move(disy _ptr ,disp_rec,sizeof(disp_rec)); Eﬁ
- !'.:\
. { check incoming message for errcr message which i&
is indicated ty a source of “27 } :;
¢
- { if no error message then tegin display } s
= if disp rec.tlock{11[1] <> ‘¢ then tegin N
. putstr(w_dev, ‘message from termirel’); QI
4 rutchar(w_dev,disp_rec.tlock (1] [2]); N
putln(w_dev,” ’); o
. putln{w_dev, ressege follows -="); N
- '\:._ ‘
- putln(w_dev,’)3 ey
g -"‘-
3 i:=1; 35
g

€9 e

T TR P PR S P S p ‘e T T T Nl PR T S Ot R N AL I) P S Y .
....... s . P L P A e -y ® [T A P NI 2 Y et atw .
2 SR, TR T A PR P OSSR,) e M L l

{ output intuf contents to terminal }
while (d_char <) and
(1 ¢> mess_bduf_size+l) do tegin

At

for j:= 1 to & do begin
i® d_char ¢> "%’ then tegin
putchaer(w_dev,disp_rec.tlock([i] (i]);
d_char:=disp_rec.tlock(i] (13

end; {if}

end; {for}
ie=1+1;
end; {while}
end else begir
Y e
oy

putln{w_dev, 'message from system manager

putln(w_dev, security violation’);
putln(w_dev, improper dest access’);
putln(w_dev, ‘message not delivered’);

end; Tif}

rutlr(w_dev, “end cf message)}

rec_buf stat:=false;

end; {disp_mess}

72

proc name: logoff

purpose: This procedure disatles the term
and makes the resources assigned tc the terminal
. process avallatle. No new terminal process is
created to replace it.

procedure logoff(init:rl process_def);

var
suc,success:integer;

tegin {logoff}

putln(w_dev, terminating child segrents’);

{ to reinitialize a terminal process at this term,
process segments would have to. te terminated prior
to the self_delete call }

putln(w_dev, ’self deleting ckild process now’);
rutln(w_dev, “terminal off-line”);

detach(w_dev);
detach(r_dev);

self _delete(irit.initial_seg(stack_offset],success};

if (success <> no_error) then tegin
attach(t_phys_dev,w_dev,false,suc);
attack(t _pkys_dev,r_dev,true,suc;};
show_err{ child self delete error’,s.cress):
end; {if}

end; {logoff}

‘?'

71

1'::
5

" -:
*
- ‘\(5"5

A

proc neme: show_err

purpose: This procedure is called to
display the success code of the resource mngmnt
call if it is otker than zero. If the success code
indicates no_error then no message is output.

——— —— - - - --}

procedure show_err/stristring; code:integer);
tegin {shcw_err}

if code <> no_error then degin
putstr(w_dev,str);
putstri{w_dev,” “);
rutdec(w _dev,code);
putln(w_dev, Ok
end?
end; {show_err}

proc name: clr_screen

rurpose: Clears display screen.

procedure clr_screen{proc_suc:boolean);

var
i:irteger;
begin {clr screen}

25 4do

for {:=1 to ,
putln{w_dev,” ");

eni; {clr_screen}

@ m W TN e L s e e e s e
- SN NN
PO R SRV RN

B R T e AT L L F A S P P T e S I I T TV I T PR
e f.J' KN ‘_o"_._ s ‘-“ k. _‘L. n'_,._ AN -~ '.».-‘4 ".. R AT .~:_~:- KX] _Ih e

P WK W - P AN 2 ~ \ e~ EiaM v Sl - - - Lt
i
.
u gy
), 0
e ale e le o e s e s e ok e g ol 3¢ s e o i o e skl e s e st s sl o e e feale s sk ofeste e o et e ofe s e >N
sieale e o seate e sl e e sfeste s o s Skl ie e el sealele sieae e sl aieafe siesteate ok sesie stesis siesaleale e ek 3

. ;z‘
proc name: main o
i T
purpose: This procedure provides a mode iy
selection menu for the terminal operator. It moni- K3

tors tuffer status and cells the eppropriate proc %

deperdent or the mode selectiocr entry. F{

Ko

slesleale e el s igale ool ste e eate o oele dealegesie e sle e siesic stete e stesle eolesieate e siele iesis e deste delese -

e e e e e e e ke de e sk ofe s 3k sleole ik sje ol ook sl e sfeslk deale sfe e ke sfe sie o st s el e e e afe eslk e vk }

procedure main(var init : rl_process_def };

var -
success ¢ integer; , S
seg_nur:integer; O
mode:char; =
xmit_tuf stat,rec_btuf_stat:becolean; e
temp_stristring(1]; : bt
i,level:integer; St
inbuf_evec: integer; ']
stk_evc:integer; L
sys_start:toolean; 44

tegir {main} N
' i,

{ initialize terminal process parameters } X
xmit_tuf stat:=false; :
mede:="¢";

AL

.

Y

s et e,
R

{ sys_start=false for twerrinel 1 only all
other terrinals shculd have sys_start=trve} o
sys_start:=false;
intuf_eve:=2; 3

'/ o
P_' ['u. .l

e
=

{ attach terminal as read/write device }
attach(t_phys dev,w_dev,false,success);

attach(t phys_cev,r_dev,true,suscess);

show_err{ attach terr read device error’,success)s

putln(w_dev,” ’): o
putln(w_dev, “termiral active term numer’); o
putctar{w_dev, term_qgum); R
putln(w_cev,’” "); o

{ stack eventcount is advanced to notify

sysmgr that terminal is activated }
advance(init.initial_seg(stack_offset] ,success);
show_err(“stack advance error’,success);

{ locp until operatcr enters ‘e’ to indicate logoff }
while mode <> ‘e’ do tegin

{ inbuf_evc is used to have the terminal wait after
transmitting a message until & reply is received

frem the dest term., It is iritially advanced for

terminal 1 to start the system and then i{s advanced

upon receirt of an incoming message } '
await(init.irnitial seg(inbuf_offset] ,inbduf_evc+l,success);
show_err(“awalt inccming message’,success);

intuf _evci=irnbuf_svec+l;

{ sys_start is used to avoid the “display incoming
message’ prompt at terminal 1 when the system is

started. Once the system is operating it will
always be true }

if sys_start= true then tegin

rec_tuf_stat:=true;
putln(w_dev, ‘display incoming ressage

LN
/Y

end; {if}
sys_start:=true;

{ inner loor is used to indicate that a
message has been sent and alert the operator
that the terminal is waiting for a reply)
while mode <> “x” do0 btegin

{ help meru consists cf a display of term
access level, and a display of possitle
modes }

putstr(w_dev, terminal compromise level)3
level:= init.root_access.compromise(1]:
case level cf

2: putln(w_dev,’unclassified’ }:

2: putln(w_dev, ‘confidential’);

74

O AN
TR il BN

¢
a

1 o
r 51

4
AR

“ e
n"'d'.-~.t "-'

'l
RS

30 XA

%Y 'r':-;l.:'-'
0 2 A Ty

Rl P

T T T T I Y U r.'i

/)
g
e
\ N

&

1 04
’ ’ P‘.*

4: putln(w _dev,’secret’); ety
6: putla(w _dev,’top secret’); %
o 'b.»
. end; {case} %;'
J iyl
' %ﬁ
putla(w_dev,’enter mode desired’); =
putln(w_dev, i= input message’); ap)
putln(w_dev,’d= display received message’); i

putla(w_dev, x= transmit message’); oA
putln(w_dev, ‘e= logoff’); !
putln(w_dev,” “); ey

putstr(w_dev, ’enter mode here’); -

r.

getchar(r_dev,mode); L

‘ 1f mode= ‘i’ then begin K
o ‘-"&
if xmit_tuf_stat= false then tegir 3

; { erter message to te stored in ,tﬁ
outgoing message tuffer } NS
input_mess{init.icitial_seg(cuttuf_offset], NS

xmit_buf _stat); oty
=

end else begin N

: ot
3 putlr(w_dev, ' message waiting tc te xmit’;; '{
\ end; e
. Py
end else if rode= “4° ther begin A

o

N

s:_

if rec_buf_stat= true then tegia -E\:

., A
putln(w_dev,’erterirs display module’); .
{ display conteats cf inccring N
message tuffer } gtf

disp_ress(init.initial _seg(intuf_cffset], sﬁ

rec_tuf stat); K31
- - '&
end else begin o
rutln(w_dev, incomirg dbuffer emcty’}; Efx

o

v a8 et aca atecetat . » I T T S T O e N T Y A W T S
cﬁ{{ﬁvﬁﬂvﬁvvfﬁa$:?¢6J¢¢)waﬂ::JQRH::::‘JJJJ¥;NHkyQ-

end else if mode= “x” then tegin

if xmit_tuf_stat= true then tegin

’\N e

putln(w_dev, sending message to te xmit’)};

ymit_mess(init.initial seg[inbuf_offset],
init.initial_segloutbuf offset],
inbuf_evc,xmit_duf_stat);

end else begin

rutln(w_dev, outgoing tuffer empty’);
erds

end else if rode="e’ tken tegin

putln(w_dev,”lcgoff process initiated”);
logoff(init);

end else
putln(w_dev, ’mode eatry error try agaia’):

{ end c¢f inner lcop-exit after msg xmit }
end; {while}

futlnfw_dev.’weiting for incoming traffic”);
reset mode selecticr value }
mode:="2";

end; {while}

] L'gt gk ‘g b . a 4 Ch ™) * CER ™ ot 4.0 ¥ » ae]
gutln(w_dev,’end of terminal 1 process’);
etach(w_dev);
detach(r_dev);
{infinite loopr to avaid crasih}
‘ while true do;
end; {main}
modend.
77
L T e S T e el e e e e e

s
e

A

v

Pl

RN
Dot AF AN
UL
P 2

2

A

T

{ et gesteste e geste e teiesieedele e e et seofe ool see e ste e e ek sfe i sl e deate e e e el steoiele e o
program name: t#-util.kmd

author: P.J. Corbett, Lt., USN

date: 28 Fed 86

purpose: This program is used when lirking the
terminal utility program after it has been successfully
compiled. It eliminates the need to erter the names of
the modules the program is to be linked with each time
a new version ¢f the program is ccmpiled.

note: the actvel t#-util.kmé file <contains only
one lire. Any additional information will cause an
error when the pascal MT+ linker is called. To adapt this

file for a specific terminal the “#° in the program name
is changed to the terminal numter, tl-util, t2-util etc..

e sizsiz sjesiesie viesieie e dlesle slealesie sl djeae slesie sl e sia e sl sl e sleole e sl sl 3 e e X e RN sie B diee s Aesie ek Nese i Nes }

bet#-util=teiri-init,bet#-util,derllid/s,brcc/s,vaslib/s/p:E2

CANLA WA N A% A% h e 8t 2ha Bt
1'.'b
.-
"

[

AR

.
s b &
By~ SRR

hrd Ll A

Yk

v

- h}-".}r

l’.l

.
‘I v

'
LA

K o1

L
v
T,

M Y7, . s
! . ,."{fl,’ W

., 6,
a0y,

< o

7
1Y

AR AN % 'y e
& n..-'.':,A,'.'_ g I"I"I'

v,

;

APPENDIX B
SYSTEM MANAGER PROGRAM LISTING

The source code for the system manager application
program { sysmgr.txt) i1is written in Pascal MT+. With the
exception of the mgr-typ.zli and mgr-con.zli files, all
included files are library utility programs which were
delivered with version 1.3 of the Gemini operating system.
Information concerning how to invoke library functions is
contained in [Ref. 14]. Once the text file is compiled, the
required modules are linked together by using the sysmgr. kmd
submit file with the Pascal MT+ linker. A listing of this
file is provided immediately following the source code
listing. Upon completion of the linking process, the
resulting sysmgr.cmd file must be prepared to run in the
Gemini Secure Operating System (GEMSOS) environment. This
is accomplished by transferring the sysmgr.cmd file +to the
bootable disk which contains the operating system generation
(SYSGEN) program. Procedures for running the sysgen program
are contained in [Ref. 17]. A listing of the submit file

sysmgr. ssb which contains the .applicétion segment hierarchy

used in the system generation process is included at the end
of this appendix. Once a secure volume is created on fhe
disk, the Gemini system is reinitialized using ‘the secure
volume. This begins execution of the system manager appli-
cation segment.

SRR

2
.
a

. ‘.’.ﬁ_;”. :.

.o
~n)
e &Y
(e

L

'S

,l "s{.l Y

"l L S

e

Y -
o ..ﬁ
c 4

[
RS
AR

7y

By T e
AR 3

LS

- R - - - N, - T R TR TN T N T EARAN]

(et b ot S % tat Gt W -~ d ah b da e tg" TR

{- - -- B
program name- sysmgr.ixt

date: 1& fel 8€

author: P. J. Cortett Lt./USN
for: AEGIS Modeling Group
advisor: Prof. Xodres

purpcse: This program is initialized as & multi-
level process which allows the sysmgr tc corfigure arnd
operate a multi terminal communication system. It relies
on information contained in the mgr-c¢on.zli and mgr-typ.zli
files as well as interactive inputs to determine config-
uration parameters. Cnce initialization is coemplete, the
system runs ipdependertly e2llowing remote terminal users
to trarsmit messagzes via the multilevel secure front end
process.

- —- - -}

moiule sysmgr:
{ constant include files }

corst

{41 mgr-con.zli} .
{41 gate-ron.zli}
{$1 ri-con.zli}

{ type include files }
type

gate-typ.z1li}
rip-typ.z1i} o
lib—typ.zlii S
kst-tyo.z1i g
rar~typ.zli} @l

Ay iy Ay ey ey
AP A A
L N]

{ litrary include } e

{$1 i0.211}

{$1 gzate.zli}
{¢1 seg-mgr.zlil} -
{31 cc.zli} s

82 o

{$1 lib.z14}

{ — —— -

proc name: parm_input

purgose: This procedure allows the
sysmgr to input system parameters necessary to test
system operation.

———— e e e e - — ———— ———— - }

procedure parm_input(var sys_rec:sysmgr_rec;
proc_suc:bcolean);

var
temp_str:string;
temp_char:char;
temp_int:integer;
irinteger;

begin {parm_irput}

putln(w_dev, “tegin entering system parameters’):

rutln{w dev, enter physical port 1 for external comm’)};

setckar{r_dev,temp char);
putchar(w_dev,temp_char);

sys_rec.corm_pcrt(1l:=ord(temp_char)-48;
putln(w_dev,” “);

putlni{w cev, ’enter physical port 2 for external comm’)};

getchar(r_dev,temp char):
rutln{w_dev,temp char);

sys_rec.comm _port(2]:=ord(temp_char)-48;
putinfw_dev,” *);

sys_rec.ch_size:=400;5

rutlalw_dev,’child size is’);

”“}5

l‘ *
—

ol gl on T
I G IV L3

IR

“E
R
e A e & Y

e

~

Aiqg

P e

] r
A M
AR PP Yl

| S] .'. I'..'-

e,
PN A
DN Sl
a &8 F A »

.l ‘I';. -{
AN
2o lr !

o e
N

“
NS

A Sart Sab LR P at Rov b ot Bk Sut Soi g20 8.4 8.0 & Candthdl 2l
DA

N

el

]

putdec(w_dev,sys_rec.ch_size);)
putln/{w_dev,)3 =
W

putln(w_dev, tuffer size is 188 tytes’); : : :::':‘
sys_rec.b_size:=12¢; f\\
putln(w_dev,” "); - e
putln(w_dev, “enter terminal access level’); r~
putln(w_dev, unclass=0"); A
putln{w_dev, conf=2"); R

putln(w_dev, ‘secret=4"); e
putln(w_dev, "ts=6"); -

putln{w _dev, “entry must te within sysmgr access range’); !!?
for i:=1 tc num_term do tegin fi
putstr(w_dev, terminal”’); ﬂi{
putdec(w _dev,i); B
putstriw_dev, ’access level is”); s
getchar(r_dev,temp_char); el
putchar(w_dev,temp_char); RN
temp_int:=ord(temp_cher)~4§&; RS
{ £f111 access class record with entered class } !?f
fillckar(sys_rec.ch access[i; sizeoflaccess _class), NS
carTtemp_int 53 e
\.':*:':
putln({w_dev,” ’); N
end; {for} | PG
putln{w_dev,“enter & character crypto key (no ecno)’); ﬁi:
S
for 1:= 1 to 28 d¢ tegin e
getchar(r_dev,temp char); e
sys_rec.keylil:=ord(terp_char)-48; -
end; {fcr} T
putln/w dev, “crypto key inserted’);
oy
{ fixed parameters } ' ?ﬂ:
RN
{ rode segment entry numbders } N
’ s

s
L

g2 e

6
75

inn

sys_rec.chlad ent[l]:
sys_rec.chld _ent{2]:

putln(w_dev, “parameter entry complete”);
end; {parm_input}

{ -— —

proc name: sys_config

purpose: This procedure configures the externeal
communicaticn perts identified in rarm_input for port tc
port communications with flow controcl. They are attached
to read and write sequentially & dbytes at a time to be
compatitie with the data encryption device.

rrocedure sys_config! send_port: integer;
recv_port: integer;
var config_suc:boolean);

var

rd_dev,wr_dev: dev_nare;
rd _parm,wr_parm: dev_parm_rec;
success: integer;

vegin { sys_config }
config_suc:= false;
putlﬂ(w_dev.'configure transmit and receive ports’);

{ attach xmit and recv ports for corputer to romputier
cormunicaticns }

{ ?111-in attach _device calling arsuments }

{ receiver snould te attached first }
rd_dev.name:= sior;

rd _dev.nur:= rerv_gport;

réd _dev.d_type:= icj

rd_parm.sicr.mrl:= 5@4d: { device mode e-tries }
rd _parm.sicr.rr2:= $@%e

rd_yerm sior. 1o_vod='- rts_oflow;
rJ _parm.sicr.max:= R;

-e

mn
(@]

e) "".' SR T RRCOYK -\ '...ﬁ'.‘-‘ S ORI P R RR -..: e _-'...- B N SR R DI TIRPPE

0P

224 Nt e A A A N K EA A SR Tt A it i A TR " ™! -]

A A 4

bl Mot -4 d Sl ik sridgrd A LA AL TUW DA G

"';"l:.'_'
ATOS

s
5

N

i

l'
e

rd _parm.sior.delim_active:= false;

attach_device(rd_dev,recv_slt,rd_gparm,success);)
show_err(” receiver attach error’,success);

{ attach transmitter }
wr _dev.name:= siow;
wr_dev.nur:= send_gport;
wr_dev.d_type:= io;

Wwr_parm.siow.mrl:= $¢44d; { device mcde entries } ‘e
wr_parm.siow.mr2:= $22e; ey
wr _rarm.siow.ic_mocde:= asrt_none; s
attach_device(wr_dev,xmit_slt,wr_parm,success); KD
show_err(transmitter attach error’,success); R~
putla(w_dev, “comm devices attached’); -3
{ trit ard recv attached computer to computer ro flow =7
control } n
config_suc:= true; S
erd; {sys _config} IO
 — e e S 3
o

prcc name: comm_tst NS

purpose: Trkis procedure checks communications ix
toth directisns ty trensmittirg a test strirng of date. On-e NN

cormunications have teen checked the comm devices are s
detached.
e —————— e } s
b

procedure comm_tst(init: rl_process_def; R
send _port: integer; S

recv_port: integer; e

var comm_tst_suc: tcolean); i

O
var —
!“‘

chari~,charout: array [1..8] of char; re,
wr_class,rd4_class: access_class; ﬁ:‘

i,sucress: integer; .-
size: irteger;

IR R e]
e e e e

hl

-

e

TSN

-
of

tegia { comm_tst }

comm_tst_suc:= false;
putln(w_dev, “tegin comm test’);

{ transritter access_class for comm test }
wr_class.compromise:= init.rescurces.max_class.compromise;
wr_class.integrity:= init.resources.min_class.integrity;

putstr(w_dev,‘outgoing string is “);
for i:=1 to 2 40 tegin

7.

cherout(i]:= "t
putchar(w_dev,charout [i1);

endi; {for}
putlnfw_dev,” 7);

write_sequential(xmit_slt,addr(charout),®,wr_class,success;;
show err(‘write sequential error’,sucress);

read_sequentiel(recv_slt,addr(charir),size,wr_class,success;;
show_err(‘read sequertial error’,success);

fer L= 1 to 8§ do
putchar(w_dev,cherin(li]);
putln(w _dev,” 7);

detach _device(xmit_slt,success);
stow_err(“transmitter detach error’,success);

detach_device(recv_slt,success); "
shew_efr(’receiver detach’,success); o

rutlnl{w_dev, ‘romr test complete’);) N
commr_tst_suc:= truej g

end; { comr_tst }

e - e e e e
R CORN Syl T G o R S S e e T R R
<) 3 . - h . 3 -

Bl ey 4 g .y . N .
iRl gl okl A . . - o [Dl i R < l H W

: ol G A A - .t . A PadY - A i o~ « L i ghe P aWal .".
- -
y \
» Ry
, ::;

v *

. &
» { —- - - o
, proc name: att_crypto R
. . ..‘.

v purpose: This procedure uses four process local :k
i device slots to attach the required eacryption and B
- decrypticr devices. Crypto key and feedtack key are pro-) v
vided in the procedure call. Devices are attached usirg 3

q thke cipher block chaining (CBC) mode. 7
b 4
Zf ———————————— — -~} <
procedure att_crypto(cry_key: bufg; -4

L cry_ftkey: tufé; -
- var att_crypto_suc: boclean); s
e var .“
y '-J.
rendev ,wendev,rdedev,wdedev: dev_name; =
N rea_parm,wen_parm,wde_parm,rde_parm: dev_parmr_rec;]
o success: integer) '
~ . R

3 tegin { att_crypto } .
att_crypto_suc:= false; <4

& { attach read encryption device } O
b4 rendev.name:= dcp_ren; "
. rendev.num:= g;

o rendev.d type:= io;
f. ren_parm.ren.rlk size:= 83 { 2 rytes per blk } {ﬁ
7 attach_device(rerdev,ren_slt,ren_germ,success;; o
— show_err(“attach ren device error’,success); k)
o { attach write encryption device } [l
- wendev.name:= dcp_wen; jf
- wendev.num:= 2; . -
_ wendev.d _tyre:= ioj .
3 wen_parm.wen.mode:= 13 { 1 for CBC mcie })
" wen_parm.wen . zeyi= cry_key; V)
> wen_parm.wen.ft_key:= ory_fbkey; K
) b:'
i

n? »,
; 26 &
§ e

.
. .
?

PO o - 1 o aw -

attach_device(werdev,wen slt,wen_parm, success);
show_err(‘attach wea device error .success),

{ attach read decryption device }

rdedev.name:= dcp_rde;
rdedev.num:= 1;
rdedev.d _type:= ip;

[

rde_parm.rde.mode:= 1; { 1 fer CR2C mcde
rde_perm.rde.key:= cry_key;

rde_crarm.rde.fdkey:= cry_ftkey;
rde_parm.rde.tlk_size:= 8 ,

attach dev1ce(rdedev rde_slt,rde_garm, success);
show_err(‘attach rde device error .suc#ess),

f attach write decryption device }
wdedev.rame:= dcp_wde;
wdedev.num:= 1}
wdedev.d_type:= io0j

{ wide_parm is bdlank record }

ettach device(wdedev,wde_slt,wde_parm,success); .
show_err(“attach wde device error ’,success);

att_crypto_sur:= true;

{ att_crypto }

proc name: cryuvto_tst

purpose: This procedure verifies that the
encryprtion and decryption devices z2re working prorerly.
A test strirg is ercrypted ther decrypted usirg test
¥eys. 3Iesults are ocutput to the sysmzgr terminal. Wwiaen
complate ell dete riphering devices are detacned.

R
* ." N ." -.'

Fd /.c' g
4

procedure ~rypto_tstl{init: rl _process def:

»

87

T Yk & ~ > oy 4 ¢ an iy "RAL R AR R d -4 el N & degt LN BV e i gt g Dt R e ot il i ard gig v SICID REESLE - At i oo

" crypto_tst_suc: boolean);

Va.

N encryptirn,encryptout,decryptout: array {1..8] of charj
wr_class,rd_class: access_class;

size: integer;

i: integers A

surcess: integer;

proc_suc: toolean;

R e Dy

begin { crypto_tst }
crypto_tst_suc:= false;

rutln(w_dev, “tegin crypto device test’)};

wr_class.compromise:=init.resources.max_class.ccmpromise;
wr_class.integrity:=irit.resources.min_class.integrityi

putstr(w_dev,“crypto test strirg is)3

for it= 1 to 8 do tegin

‘e

encryptin(il:= “t73;
putchar(w_dev,encryptin(i]}; .

end; {for}
putla(w _dev,” 7);

{ write test string to encryption device }
write_sequertial(wen_slt,addr(ercryptin),&,wr_class,

- , _ success);
show_err{‘wen siow error’,success);

{ read ercrypted strirg }
read_sequentiel(ren_slt,eddr(encryptout),size,rd_class,
success);

show_err(“ren sicr error’,success);
putstr(w_dev, ‘encrypted string is 7);

= for 1:=1 to 8 dc¢
putcher(w_dev,encryptout{i]);

3 rutlnlw dev,” °);

n { write encrypted string to decryption device }

N ' as

..-;. “..-_‘ .;.- .:.:_;J\;r .- _..- A __ . \'\': ¥ e b e g W g AT AT A _. T A

gy Bt Rl AN G Wt R R Gt 4P AR RS ¥ pa8 DAt gur at Bt ok RV 0 8. ab) b §ot

write_sequential(wde_slt,addr(encryptout),8,wr_class,
, success);
show_err(‘wde siow error’,success);

{ read decrypted string }
~read_sequential(rde_slt,addr(decryptout),size,rd_class,
success);
show_err(‘rde sicr error’,success);

putstr(w_dev, ‘decrypted string is ’);
for i:=1 tc € do
putchar(w_dev,decryptout(il);

putla(w_dev,”)3
putln(w_dev, ‘crypto test complete”);

{ detach encryption/decryption devices }
det_crypto(proc_suc);

crypto_tst_suc:= true;

end; { crypto_tst }

prcc nare: term_proc_create

purpose: This procedure creates a single level
child process for & user terminal using the paerameters
specified ty the sysmgr in parm_input. The ckild process
code segment is a terminel utility rrogramr which attaches
the child process at the desired physical port. Four seg-
reats are passed to the child process. The stack segment
contains the ch init:rl process def record. The two
comror message buffer ségments (iantuf and outtuf) are used
to pass messages tetween the parent and child precesses.

Finally & code segment is regnired for e2ll chilé processes.

Process local segrent numbers as well as pcinters to the
ressage buffer segrents are passed tack tc the maia pro-
cedure when the chilé process has teen created.

____________________ - — —— —— __}

£9

.
v
A i
- " -

X n;L:‘ é}

.,

N Y R < o R R L "y
& (AL .13 5 Y
R B, -

PR
v 4

L]
AN

s ey

¢
Py

‘y

s e v
-'r:v__"
'n't'l‘

Y
l' l'_ H

oA

1Y

+

A Yy Yy
LT,

l' l' .’ l' l' " .
v B

PR]

)

T T T T Y W T N S S N R R W R W L e L8 e W o o s N T L UL LYW T VI I "o wWLow v

procedure term_proc_create(init: rl1_process_def;
ch_parm: sysmgr_rec;
chld_num: integer;
var stk _slot:ch_array;
var outbuf_slot: ch_arrays
var intuf_slot: ch_array’
var cut_ptr: pointer; :
var in_ptr: poirter;
term_create_suc: boolean);

-
-

X xlon?

R
Lo

LS

var

ch_cde_seg_num: ch_array;
. pt seg_num: ch_array;

N chld _entry: integer:

ch_init: rl_process_def;
ch addr _rec: rl_addr_arrays
ch_reg_ Tec: ri _reg_ record;
ch_res_rec: 1_res_record.
ch“seg_list: seg_array; -

stk_init_ptr: “r1_process_def;
sty ptr. var p01nter, .
intuf _ptr,outbtuf ptr: array [1..num_terr] of pointer;

N

Ay

seg mgr_bytes: integer;

sterk_size,chld_size,tuf size: integer)
stk_eve_val: ch_array;

- size,success: 1rtev°ry

- i,j¢ integer;

classtaccess_class;

tegin { term_proc_create }

&

term_create_suc:=false;

I
)
..

e
ot

{ initialize -~hild perameters }
chld size:= ch_parm.ch_size;
tuf_size:= ch_parm.t_size;

Ji= chld _num;

chld _entry:= ch_parm.chld _ent [j];

AN

.
l,'

a8 Bl

:-'s....‘\.ll

s

L. _~ e e .

ARG e
PP S Dy " A.gj_.,L‘_.A‘ ‘.A‘.AA‘I_L‘Q

PR SIS I N S e e P e ® v Y AR N T e e
“\.n‘n‘- fﬂ‘ -’ _.)--‘_.] '-._. K] [N '.'_-‘." K

{== ¥+ & 1 -t
create, makeknown, and swapin as eppropriate, child
segments

{ makeknown terminal utility code segment located at child
entry numter specified in sysmgr.sst file }
seg_makexncwn(init.initial_segiroot_offset],chld_erntry,
ch_cde_seg_rum[j],r_e,size,class,success;;
show_err(’‘makeknown rhild entry off root error’,success);

{ ~reate and makeknown child process btase }
seg_createlinit.initiel_seglcode_offset],chld_num,?,success);
shew_err(“create process base for child error”,success);

seg_makekncwn(init.initial_seg(code_offset],chld _nur,

%p_seg nun{j],r w,size.class,success)? .
sacw_err{ ‘makeknown child process tase error’,success);

{ determine required size for stack. it must te large

ercugh required information for child iritialization. This
expression was adapted from the pro-tst.zpa process
creation deronstration program }

seg_mgr_tytes:= sizeof(stack_neader)+sizeof(kst_header)+
(sizeof(kst _eatry)*init.zum_xstl;

stack_size:= rl1_stack_size+vect_size+seg_mgr_tytes;

{ ~reate, maxe¥aown, and swapin child stack segment }
seg_create(pt_seg_num[j],®,stacx_size-1,success);
show_err(‘create child stack error’,success);

seg_makeknown(pt_seg num(j],2,stk_slot(j],r_w,size,
class,success); ,
show_err(‘makeknown crild stack error ,success);

swapin_segment(stk_slot[}],surcess);
show_err(swapin child stack error’,success);

{ <tack eventcount is used@ to notify sysmgr that the
terminal process is activated. It is also used as an
entry in the ch_init record }
read_evc{stk_slot{j],stk _evec_vell}),success);
show_err{ 'read stack evc error’,success);

3

3 i
N 33
~ 38
J A\
{ create message tuffers } o

. { outgoing message tuffer } o
- seg_create(pdb_seg_rum[j],1,buf_size,success); <
Y show_err(‘create outdbuf error’,success); KS
F) - R %
» seg_makeknown(pb_seg_num[j],1,outbuf_slotfj], N
r_w,size,class,success;; I]

- show_err(“outtuf makeknown error’,success); oo
oy swapin_segmrent{outtuf_slect{j],success); %7
- show_err(“outtuf swapin error’,success); i
i { incoming message tuffer } E
% seg_create(pt_seg_rum{jl,2,buf_size,success); T
. show_err(’creat intuf error’,success); ;2
- seg_makexnowr(pb_seg_num[j},2,intuf_slot[3], ﬁ:
. r_ w,size,class,success;; pra

show_err(“inbuf makeknown error’,success); =

!'.‘\’

a swapin_segrent(intuf_slot[j],success); :ﬁ
- show_err(“inbuf swapin error’,success); ;5
B !:,';
{ fillir ch_seg_list } e

- { ch_seg _list determines order in which segments are passed G
e to the child process } m3
: ch_seg_liststack_offset]:= stk _slot[j]; ui
ch_seg_list(code_offset]:=ch_cde_seg_num[j]; it
ck_seg_list[root_offset):=init.initial_segfrcct offset]; "

. ch_seg_list[outbuf _offset):= outbuf_slotlj]; !

- ch_seg_list[intuf_offset):= intuf slot[J]; s
- {fillin child init record }
: { ch_init record is placed on stack for use bty child il
, procéss when created } o]
. ch_init.cpu:= init.cpu; ' o
N ch_irit.num_kst:= init.num_kst; o
Y ch_init.root _access:=init.root_access; o
‘ ch_init.s_seg:= stack_cffset; A
e ch_init.s_seg event:= st¥_evc_val(il; it
{ priority is imrortant in multiprocessing with a single o

- processor to ensure proper synchronization } -
- ch_init.resourres.iriority:= init.resources.priority-12; "

: 1i»_integer_to_t24(chld_size,ch_init.resources.remory;; N
- ch_init.rescurces.pgrocesses:= 2; o
I

::'. g2 A
: i
. -.

A A, WA

ch_init.resources.segments:= 9&;

{ min_class and max_class determine the access level of
the child process. Since the terminal process is single
level, they are the same. Levels are specified ty the
sysmgr during the parm_input initialization.
ch_init.resources.min_class:= ch_parm.ch_access(j]
ch_init.resources.max_class:= ch_gperm.ch_access[j]
ch_init.sp2:= 7;

ch_iait.ring_num:= 13

I3
b
.
’

{create stack poirter}

{ stack pointer is offset to start of r1l _process_def }
stk_ptr.seg:= 1lit_rk_sel(1ldt_tatle,stk_sIot(3j],1);
stk_ptr.off:= stack_size-(vect_size+seg mgr_tytes+

sizeof(rl_process_def));
stk_init_ptr:=stk_ptr.p;

{ copy ch_init on tc stack }
move(ch_init,stk_init_ptr ,sizeof(rl_process_def)):

{ create pointers to message Yuffers }
{ point to start cf message buffer, no offset }

outtuf ptr{jl:= 1ib»_mk _pntr{ldt tatle,outtuf_slot(jl,1);
intuf_ptr(Jj}:= lit_mk_pntr(ldt_tatle,intuf_slot{j],1);

{ £111in reraining records for create_process call }
2hild address record }

{
{
£

maximur of S segments may te passed in ch_addr_array
i

4
or i:= 2 to 4 dc tegin

rh_addr_recli].segment_numter:= ch_seg 1ist[i];

{ ccde sesgmeat must te of type read execute }

{ others are type read_write }

if i = 1 thern tegir
ck_addr_rec{i].segment_type:= r_e;

end else begin

ch_addr_rec(i].segment _type:= r_w;

e B

My T I I o e S Acag Ul oA/l ad it iyl atte St et SNl s ladl o o o B) gl Sak

end; {if}

lsegments except rcot_offset }

{ swapi 1
= hen bdegin

a
if i t

n
2
ch_addr_rec(i].swapin:= false;

end else tegin

ch_addr_rec[i].swarin:= true;
end; {if}

ch_addr_rec(il.protection:= 13
ead; {for}
{ ~hild register record }

ch_reg_rec.ip:
ch_reg_rec.sp:=
ch_reg_rec.spl:=

=$9

st

S

ch_reg_rec.sp2:= @
g

f

k¥ ptr,.off;
ack_size-(vect_size+seg_mgr_tytes);

= 23
=stack_size-vect_sizej

t
’
ch_reg_rec.vec_seg:
ch_reg_rec.vec_off:

{ child rescurce record }

{ child 1 is located at ch_res_rec.chld _num= 2 }
ck_res_rec.child num:= chld num-1;

ch res_rec.priority:= ch_init.rescurces. Driority,
ch_res _rec.remory:= ch init resources.memory;
ch_res_rec.prccesses:= “ch init.resources.grocesses;
ch rec rec.segmeats:= ch_Init.resources.segments;
ch_res rec.min_class:= ck_init.resources.min_class;
ch_res_rec.max_class:= ch_init.rescurces.max_class;

{ rould 20t pass array of poiaters as calling arzumeat

so had to assxen t9 type peinter variatles }
ir ptr'- intaf_ptrl3];
t_ptr:= cutbuf ptr(jl;

putln/w _cev, ‘creating child process now’);

create croﬁes<(v* _addr_rec,ch_reg_ rec.cr res _rec,succe
show err(’create child process error .success)y

-

{ wait for child process to advance stack eventcount
indicating that child process is active }
avait(stk_slot[3],stk_evec_val[j]+1,success);
show_err(’await stack advance error’,success);
putln(wdev, child process created’);
term_create_suc:=true;

end; { term_proc_create }

{~ -— - S ——

proc¢c name: xmit_rec

purprose: This procedure takes the message stcred
in the outgoing tuffer of the source terminal, eacrypts
each Ylock, and transmits it sequentielly via the
approoriate external ccmmunicatioas port. The crypto-
graphic is prcvided ty the sysrmgr_rec. The fb_key is the
time at which the ressage is sent. At the receiver the
message is decrypted and stored ‘=2 the ircoming message
tuffer of the destination terminal. Access levels of the
msz and dest are comrared. If they do not metch the msg
is not delivered, and an error msg is returned to the
source,

note: ft_key needs to be unique to avoid avoid creating
identical cipher texts when a rmessage is transmitted rore
than once. Tire of traasmission may not work in applica-
tions where there is a significant time deley in trans-
rissicn.

procedure xmit_recv(ch_parm: sysmgr_rec;
orig_term: integer:
dest_term: integer;
o_cut_ptr: pointer;
o_in_ptr:pointer;
d_»nut_ptr: pointer;
d_ir _ptr: pointer:
var int_mess_aur:integer;
var re~v_suc: toolean);

Y9
n

TR

=

“w ey ~ r 2
Y " Tt

e R LR

'L":l’k"-‘mE“'.'v' T VIJ'

Ty
a

)
s

. -"'- "‘-

-y
]

«
h AN

-~

XX 10

L.

o«
....
i
-

WLTILEVEL SECURE FRONT END FOR DATA COHHUNICRTIOIS(U) 272
WIL PDSTGRRDUHTE SCHOOL MONTEREY CA

UNCLASSIFIED F/G 1772 NL

‘NO-A167 891

Y

<
P S Y

v
f
'
{
;
R
Ly ‘n&‘\‘ &
a

SRS
N

~
a

5
TN

AN,S T
LIAORE

-

A
AR

.l.. «lttr. - -

FEE
S EEFE|
m_—m-m—mum..u..._m
2l =

1.6
==
CHART

I

1.4

22 i

P iy S I o MEER AR - ZB - .- o g GBS M 4 M e ewn amm o . o

»
var e,
—
out_rec,in_rec: tuf_rec; . .
in_ptr, out ptr: array (1l..num_term] of pointer; 2
time: cc_array;
ft_key: bufe;
srce,dest: charj
int_dest: integer; 3
str_mess_num:string L)
encryptout, decryptin decryptout: array [1..8] of char; Y
i,j: integers :::':4
size: integer; o
recv_class,xmit_class,class: access_class; ared
count: integer; , [N
success: integer; o
dest_comp,mess_comp: integer; -
proc_suc: toclean;y ‘o
s ‘
tesin { xmit_recv } ‘ _ O,
recv_suc:= falsej Y
, . , 2
rutlrn(w dev, “entering transmit/receive redule’}; N
sys_config(crig_term,dest_term,proc_suc); - 2
{ retrieve message stered in originator’s cutgoing msg tuf} oA
move{o_out_ptr~ ,out_rec,sizeof(out _rec)); T
{ £111 in remaining a2ddress block entries } -ﬁ;
e
{ outgoing message rumber }
out_rec.num:=int_mess_num; e
{ message classification } Qi
cut_rec:block {1] [€]:=chr(ch_parr.ch_access[orig_term]. v
compromise[1]+AQ), o~
o
{ insert message nurter in address tlock } DR
tirasc 11(1“t_wess_'uw.é,str_mess_ﬁur 3733 %ﬁ
fer 1:=1 to 3 dc¢ o
sut_rec.tlock(1][i+2] t=str_ress_num(i]; L
L
{ increrent message nurter counter -
int_mess_aur:=int_ress_nur+l; : AT
LY .
v
k&
. !
_d,
Sl s.::\
LN
o
LA
LSS,

R PP E NN A A AR ot 07 0ot it CEN RPN RN PN O " XX S Bt pav got g t 0yt pat WURSTUCMUA S P TR Ra- b o b o’ “‘?g
t

o . ’
. ‘,.

2
L g
R
e
{ determine fb_key } S
i feedback key is tke time of transmission } s
this provides a unique initialization vector } ﬁzi
L N”
{ attach callerder clock device } }¥§
cc_r_attach(cc_slt,success); \§
show_err(‘clockread attach error’,success); ’
¥
{ read calender clock } 00
cc_r_dev(cc_slt,time,success); NG
shcw_err(“read time error’,success); X
{ transmission time = fb _key } e
putln(w_dev,‘crypto key 1s’); !&
for i:=1 to 8 do tegin O
ft_key[il:= ord(time[is+2]); 50
putdec(w dev,fd_wey[i]);]
end; {for} Koy
detach_device(cc_slt,success); o
stow_err(‘clock ietach error’,success); oy
{ transmitter access class } S
xmit_class:= ch_parm.ch_access[orig_term); il
$_ o
{ Hesetesiete ot doteds desloo et doleeotetes ook sl ok 2 N
tegin trarsmit/receive loop } N
for 1:=1 to cut_rec.num _blk d¢ tegin ;fﬁ
{ in cbc mode cryptb devices must.te reattached to transmit -
each bleck. this is required tecause tne previous encrypt- e
ed tlock is used as the ft_key to encrypt the next dlock.} Y
att_crypto(ch_parm.key,ft_key,rrcc_suc); | -
{ write to encrypticn ievice } =
write_sequertiallwen_slt,addr(cut_rec.tlock[il},§, <
, x~it_class,success)i RO
shcw_err(’wea sicw error’,success); S
{ read encrypted text } o
read _sequertial(ren_slt,adér(encryrtout),size,class,success); i
skow_err(‘ren sior error’,csuccess); e
SN
X
I:::':
Y

7
o) &5
{ transmit encrypted bdlock } A
write _sequential{xmit_slt,addr{encryptout),8,xmit_class, 3
v succéss)s I~
: show_err(“transmit error’,success); ' TN
N { determine £fb key for next block } %E
i for j:=1 to 8 do - :Q
fb_kgy[1]:=encryptout[j]; P
rutln(w_dev, Y3 e
.~ {***#******xi**** esle sl g e ole e aie sl sl sle veslk ok e lesle sie sleaie 2le e sia sieale sieole fesle sieslesiesia dk e e sie sl B slesle B -]
" tegin receiving message } -
e { receiver access class } "
recv_class:= ch_parm.ch_access[dest_term];
‘ﬁ { read encryfted text }
. read _sequert al(recv_slt,addr(decryptin),size,class,success);
» stow_err(receive error’,suncess);
&
putln’w_dev, ‘received text is’);
. for j:=1 to & dc¢
: putc;ag(w_iev.iecryptin[j]3;
Futln(w_dev,)3

{ write tc decryption device }

write sequentiallwie_slt,addr(decryptin),R,recv_class,
success)s

show_err(‘wde siow error’,success);

{ reaé decrypted text }
read_sequenrtial (rde_slt,addr{decryptout),size,class,suscess
stow_err(‘rde sior error .success%;

Ve
;8

S putlnfw_dev, decryrted text is’);
for j:=1 tc € do Yegir

., in_rec.block[i}lj]: = de
putchar(w_dev,decryptou

—~
—

end
putln(w_dev,” “);

{ zourt is nurber of tlocks in received message }
couat:=count+1;

) { detzch crypto devices to prepare for next tlock }
: det_cryrto(prec_sne;?

f; ends {for}

\.- _-. _.‘-'_ - "...: &

Palaa® .

.............

T
-

i&gw

~

¥

detach{xmit_slt);

detach(recv_slt);

{***************** edlesiesls sleaje sieviesie djese e sle e aie i aledie e siesleiesie sl Mo sk e e sgale s
message transmitted and received }

Y

| 2

{ insert numter of tlccks into incomirg record }

in_rec.num_tlk:= count; 3
§ it
» { decode address rlock } g
’ srce:= in_rec.tleck[1][1]; £
‘ dest:= in_rec.block([1][2]}]
: putstr(w_dev, "dest is”); S
putchar(w_dev,dest); ,
X putln(w_dev,)3 N
: int_dest:= ord(dest)-4€; i:
. putstr(w_dev, "int_cdest is”); SN
. rutdec(w _dev,int dest); 5
putln(w_dev,)3 BS
- dest _comp:= ch_parm.ch_access[int_dest].comprorise(1]; &2
E mess_cormp:= ord(ir_rec.tlock([1]} [6])-4€; 0
putlnlw_dev,” “); : s
i
putstr{w_dev, dest _corp-mess_comp’); o
putdec?w_dev dest_comrg); o
putdec w_dev:wess_compz; Yy
putlniw _dev,” 7); T
S
{ compare message ard destination access levels fer
- possitle security violation oy
- if mess_comp <> dest _cemp ther tegir o
y . IS
J { if srce= "2’ then iacomirz message is an error Eﬁ
« message concterning a2 sesurity violetion } o
] if srce ¢>°7?° then tegin K
R putln(w _dev, security vicletica message aumter”); ;?i
2 fer i:= 2 tc & 4o o
) pvtchar(w_dev,ia_rec.tlock([1][i]}; » ol
recv_suc:=false; -
Sy
- { prerare errcr msg fcr transmission } I;ﬂ
. err_msg{srce,d_out_ptr,grcc_svels KN
¢
() ‘P
" 3¢ .:’,::
" s;
O R S SO L L RS

PR ol

RO O

-
-
CY
)

8 Do Rat Bat Bt Gov Bk B Bat) b4 hat B Bt SN Qat §4t Sai Pat dar Bt at Gt te¥ J fa* R g P fai 8a Nn _ws- wg g Jdg

end else tegin

{ if incoming traffic is an error msg then
move it to the incomming message duffer of
the destination terminal
rove(in_rec,d_in_ptr ,sizeof(ian_rec));

{ reset recv_suc }
recv_suc:i=true;

end;

end else tegin
{ if nc vioclation, move msg into incomirg mse
tuffer of destination terminal }
move(in_rec,d ir_ptr ,sizeof(in_rec));
recv_suc: =true;

end; {if}

end; {xmit_rer}

proc neme: err_msg

purpose: In the event of a security violaticrn,
this prccedure fills destinatioa outgoins tuffer with
an error message. This error message is then transcitted
to the source for disrlay at the origirnator’s terminal.

proredure err_msgf{dest:char;
xrit_ptr:i:pcinter;
ver err_msg_suc:bodlean);
var

err_rec: buf_rec;
i:integer;

tesir {err _rsg}

1¢2

et e e . e . ..
. D R O S et T e
Sl L‘:..'; AR, O G L

24

T

‘g

.

]

ES

‘D
S

A
- -

o "
o

¥

s Wk

-~z
>
=Y

=

F o

B)
RIS

% A
Lb

ol
.
"

.
R
o

O]
e
"IIN.'

RO |

A
0 :’

.
(R

4y

RO .
- B

PR
Sy Syt ty Yt

-2
.

i

i'..-‘

=

e

o

]

o Ah‘:

ot

err_rec.num:= @3 S
{ efror msg has only an address block } —
err_rec.num_blk:=1} 5%
. %

{ source of ‘@’ indicates an error message } 5?5
err_rec.block(1]{1]:="0"; R
err_rec.block (1] [2):=dest; 3

IR
N 4
L

xl .'.-' .!' «ne

{ remainder of address block is empty }
{ for 1it= 3 tc 8 do ,
err_rec.blcck[1](i]:="¢";

&

[

{ move error message to outgoing duffer of dest term
for transmissicn tack to source

movelerr_rec,xmit_ptr ,sizecf(err_rec));

5

end; {err_msg) g%:
o ‘

{ e e e e e =
proc neme: det_crypto 3€=
purzose: This prcceidure detachs all data E:;'
encryptioca/decryption devices, S
o

- mm oo } Y

\ o

rrocedure det_crypto(var proc_suc:tcclean); :ﬁﬁ
)

tegin {det_crypto}
detach(wen _slt);
detach{ren slt);
detach(wde slt);
detach(rde_slt);
eni; {det_cryptc}

{--- —— - e e e e e e e i e e e o e e e e

proc name: show_err

purpose: This procedure is called to display
the success code of the resource maragement call if it is

otrher tkaa 7zerc. If the success code iadicates 219_error
then no message is cutput.

‘- - -’ - .»- ‘-..'-‘; ,“-,.-... “.‘n _'. -'q - ; '\-._ --. ‘* ‘.’ L3) q‘. I._ -'.‘\‘. .. -’."’ '-_:..:._ .f ‘-“.'. -'.'..'.- .

? W3
' 3
. procedure skhow_err(str: strin -
) code: integer);) ;
¢
3 tegir {show_err} ™
b . iy
b if code <> no_error then bdegin i
&
i putstr(w _dev, str); %
- put<tr€w dev, “):
" rutdec(w_dev,code); b
y putln(w_dev,’” ’); 37
> end; ey
y: end; { show_err } o
. NS
- Y
: {-- --- - - e g
QX
proc name: main et
- purpose: This procedure iritializes systen b
R- operation. It perfcrms comm and crypto checks aad then]
{ creates & single level process for each remote terminal. gt
¥ Once the system is cn-lire, it controls access to the S
: external cormmunications ports. Messages are transmitted "
and received, ané security checks are performed nn 2ll =
incoming traffic. -
. X o
: l:;::
N ' procedure rain! var init : rl_jrocess_def); e
- var -
- '.\-
: H o
- i: integer; oo
.4 stx_slt,tufeut_slt,tufin_slt: ch_arra,; i
: bufout ptr tufln_ptr’ array (1..1ur_terr) -
N of pcinter; Y
X tufout _evc,tufia_evc: ch_array;
. mar_ rEC' sysmgr rec'
g test _key,test_ftkey: tufg; o
. ress_dest,wess_srce. integer; 31
s templ port,temp2_port: integer e
success: integer) -
< ch_nur: integer; Y
~ proc_suc: boolean: :
N recv_suc: toolean; o
. ress _num:iinteger;)
:L'!:
5 122 - R0
X 3
o
.\

" - o

\\"‘.s

A L ._,_- __ . et TR e e Pt ettt O T O O N UL T
. {0 s o T S . 5 U P L. ML AR OSRE .‘_-{.--'. \q' LAY ~'~ ~*

ety AN Pyl adbbe labiaiuie A Aty - o g) ~ = V'b)‘

E*‘

2

7

oY

R

tegin {main} ' Y

K

attach(init.cpu,w_dev,false,success); 57f

shew_err(“attach sysmgr siow error’,success); Qé:

' Yy

attach(init.cpu,r_dev,true,success); oy

show_err(“attach sysmgr sior error’,success); W

¥

putln(w_dev, “sysmgr terminal attached’); %

{ call procedure to enter system parameters } &3&

parm_input(mgr_rec,proc_suc); :§3
{ zmit/recv ports for comm tst }

templ_port:= mgr_rec.comm_port[1]; AT

temp2 _port:= mgr_rec.comm_port(2]; 2

{ configure xmit/recv ports } 357

0w

sys_corfig(templ_port,temp2_port,proc_suc);

s
Pl
B

{ test comm chanael pass 1 }
comr_tst(init,templ_port,temg2 _port,rroc_suc);

AP
&P

{ reccnfigure xmit/recv ports to traasmit in opposite iir } t

sys_config(terp2 port,templ _port,proc_suc); ¥
' g
{ test comm channel pass 2 } KA
comm_tst(init,temp2_port,templ port,proc_suc); R
{ xeys for crypte test } . i
for it= 1 tc & do tegin S
test_kxey([il:= i3 e
/ test_fb_key{il:= i; e
end; {for} ;fi
{ attaclk crypto devices in CREC mode } fﬁ@
att_crypto(test_key,test_ftkey,proc_suc); S
{ test crypto devices } i
srypto_tst{init,proc_suc); s
‘n:;"
putln{w_dev, “system initialization complete’); "

oo,
R

i

RN
o
'\“ ¥

1¢3 0

Q . \

wIw g w ey e s
. e T =g

e
o
Y ¢

l Y
ol

N {]

{ loop to create chkild process for each remote terminal } -

for 1i:=1 to rnum_term do tegin =
- _ -r::
ch_num:= 13 ot
i G‘(

{ create child process } .
term_proc_create(init, Wi
mgr_rec, i

ch_num, DA

stk_slt, D

tufeout_slt, S

tufin_slt, Bl

tufout ntr[i], o

tufin_ptr(il, .

proc_suc); o

»“_1"

’ ’ e \
putstr(w_dev, child prccess created termiral “); p
putdec(w _dev,i}; Rg?
rutlnlw dev,” 7); w2
. "“X

{ inittalize tuffer event counts } N
tufin_evc(i):= @; v

tufout _evefil:= &3 o

’ : eni; {for} .) ?%
| { initial mess_dest is terminal 2 } i;
} ress_dest:= 2j o
| mess_rum:=@; N
i

i { to start syster advance intuf _evc fer terminal 1 }

| aivance(tufin_sit{1],success): e
| show_err(”’ start system inbuf advarce error’,success); e
\ '-_.‘ R
| { initialize ressage receipt success value } SO
| recv_suc:=true: s
"\,.‘

{:::::*:’_::‘,uk e ol Nasede e ool sk desiesioris e Yoo dleolealenie siesie ot sie s ate sie sle e ol ole e slesi le sl dleale st sroate e el e s ale S

e

rezin indepeadent system opsreticn loop } {:;

.‘;\.:
while true do tegin R¢¢
. I

{ ianer loop syachrcaizes terminal tc terminaal ﬁ;
comruniceticns } o

fer 1:=1 tc nmar_term do tegin LN

R3
il
":-.\:-

104 o

A

ey

N

-

Te o

RO AL S o T e

mess_srce:= 13
mess_num:=mess_num+l;

PRSI s B RE LR s L N

if recv_suc = true then tegin

AR M N LS

-

’

putln(w_dev,

tufout_evc(i]:= tufout_evcli]+1;

i i il i eI i it St) g

{ check for received message security viclaticn }

{ if no error then_wait for next outgoing message
await(tufout_slt[i],tufout_evc(i]+1,success);

show_err(“await message ready for transmit’,sucress);

message ready for transmission”};

{ traasmit aad receive outgoing message }
xmit_recv{rgr_rec,mess_srce,mess_dest,

rufcut_ptrimess_srcel,tufir_ptriress_srcel,

mess_num,recv_suc);

7\ .
. !

rutlal{w_dev, ‘message sent

. tufout_ptr{mess_dest],btufin_ptr(mess_lest], -

[notify message source that message was wmit }
advance(tufin_sltimess _srce),success);

A

if recv_suc = true then tegin

PR aN

shcw_err(“advance source irtuf’,success): .
{ check for received message security vioslation }
{ if ro error then notify dest terminel
to display ircomirg message
advance(tufin_slt{mess cest],sucaess:

show _err{“advance <est intuf errar’,success’:

putln(w_dev, rsg recvd arnd delivered’;:

{ rew dest terr is message srce }

ress_dest:i=i)

end else tegin

LAY

o M

»

1z¢

» b.s P

2SR NN, LI GO RS S A "1."\'\‘; S N NN AR AT A A
- et) A - 4 b

{ if security violatior did occur then
transmit error rsg tack to scurce, error
ms2Z has already teen placed i1 ovutgoing
tuvffer dy procedure xmit_recv. !

Pding bl s J
D

. .
o’
e

.l . v

.

{ﬁ,

2

TS

S
N

-y

FLEEAE IR
L
'

AR
I)

0
v e
«

IR
. .
o e

v

P

4

p
.
s d "

v
7,0

»

"y -..’.
)
' 5

.

-

’l

"2
ety

.
©oe

e
B
o e

oLt

‘rT el
-

]
.

end;

end;

putlr(w dev, r
hile true do;

end;

modend.

xmit_recv(mgr _rec,mess_dest,mess_srce,
tufout ptr{wess dest] bufin_ptr{mess_d°st],

tufout_ptrimess_srce
mess_num,proc_suc);

ytufin_ptrimess_srce

putln(w_dev,’error msg transmitted”);

{ notify srce of incoming error message }

<

advance(tufin _sltress_srce], success);
show_err(“notify srce of error advance ,3uccess);

end; {i¢f}

end 2lse tegirn

{ 1f received message had a security viclaticn the
locp will return coatrcl tc the message sourze so

thet he can display the error ressage

{ recv_suc = true to :llow display cf error msg ;
recv_suc:= true;

erd; {if}

{for}

iwhile}

N\

gram complete”};

{rain}

‘-}v‘_..‘..-'_~'. N TA T .._.-.- M e et »A_._v:‘.*

ot e e \-.g“._-..- “ \ et A e e - 4‘ e ._~ o

o

IR TGN

4,

+.
]
,

{ ek et e e e e ool de e sttt stttk sk e ol el ok s sk e e e el ol o
program name: mgr-typ.zli

author: P. J. Corbett, Lt., USN

date: 28 Fet 8%

purpose: This file contains type declarations
used ir toth the system marnager and remote terminal utility
programs. It should be included ir the type declaration

secticns ¢f both programs.,

3 st ale sk e a3 sls Mol kojeais st aleole sle Re 3l sk sfe sk ol e e veale sl sk e Ae sk sleseale ale e siesic seale sl siesiesie s nedle ek)

sysmgr_rec = recori

corr _pert : array [1..2) of integer;

b _size : inateger;

ch_size : integer;

ch access : array [1..num_term] of access_class;

chId _eat : array [1..num_%erm] of integer;
key: Tufg;
erd;y
tuif_rec = reccrd
nur : irteger:
nur _blk: integer;
tlocx @ array {1..ress_tuf_size] of
array 11..2] of char;
end;

ch_array = arrey [1..num_tern] of integer;

end mar-tyr.z1li

3
ofalar A

v,
A

X
»

. *‘-

b

IR ARD
\LAAAY

4
s %

[
1,

s,
RIS
g
L

- R

(\'
| d
.

. ¥

h-3

Gl

LA AR AR A
»

{***

-
-

.
F,

precgram name: mgr-con.zli

i

y

*

»

author: P. J. Corbett, Lt. USN

date: 28 Fet 85

purpose: This file contains glotal coanstants
used by btoth the system manager and terminal utility
programs. It must te included in the constant
declaration section of both programs.

******#**}

num_term = 23
mess_tuf_size =

[

xmit _slt
recv_slt

it

I
NS
-e -e

wen_slt
rep_slt
wde_slt
rde_slt

-e en wp wo

LI}
(S0 AV

cc_slt = 23

1}

stack;cffset = @3
code_offset ’
’

rcct _offset =
pt_offset = 33
outtuf_ offset = 33
i~tuf_offset = 4;

mgr-con.zlj-—--s--re—ee——— }

125

{ et st e e e e e e e el e e et e e e e e e et e ol et sk ek sk e Age o e o
. program rame: sysmgr.kmd

author: P.J. Cordett, Lt., USN

date: 28 Feb 8€

purpose: This program is used when linking the
sysmgr rrogram after it is compiled. It eliminates the
need to manually enter each of the file names each tire
a new version of the program is compiled.

note: the actval sysmgr.kmd file contains only
ore line. Any additional informatior will cause ar
error when the pascal MT+ linker is called.

sesic e ol e et eafesesiotedeoletesi ot ses el e et sl s el siote et e ot e sl ok s el e)

t:sysmgr=t:rl-iagit,b:sysmgr,b:rilibss,t:cc/s,paslit/c/p:8

"

-~ ‘§~ ~F~"5." .'I ,"u.‘-\“'- {“-..'. .

7

10.

11.

12.

LIST OF REFERENCES

Department of Defense Computer Security Center, Ft.
Meade Md. Report _CSC-STD-001-83 DoD
Computer System Evaluation Criteria, 15 August

Department of the Navy, OPNAVINST 5239.1A (draft
Trusted Network

§§§iﬁé;ign25§§fé%§§§ 299§u1§ 1588

National Bureau of Standards,_Report ICST/HLNP-81-19,
Secu e eve o ols: s,
! , by V. Voydock, and

Voydock, V., and Kent, S., "Security in High-Level
Network Protocols," %gmpg;;ng Surveys, V. 15, no. 2,
pp 135-171, June 1983.

Tanenbaum

A.S., Computer Networks, Prentice-Hall,
Inc., 198i. :

Boebert, E., Kain, R.,. and Young, B., "Trogan Horse
Rolls Up_to DP Gate," Computerworld, pp.65-69, 2
December 1985. -

MIT Laborator¥ for Computer Science, Cambridge, Mass.,
Report LCS-TR=162, E ion-Bas grofectiog
otoco . (] nterac -Ccomputer

, by S. Kent,

giff%ei W., __and M.E. Hellman, "New Directions in
ryptology, iﬂ%g Ix%nﬁgggégng on _Information Theory,
11252, pg? 644-654, ovember 1976,

National Bureau of Standards, Federal Information
Processing Standard, FIPS ?ublication 46, Data
Encryption Standard, January 1977. .

Daviob M., and others, "Analytical Characteristics of

the ES Advances Cr ologqy= roceedings o
%;xg;glggé by D. au%? PpP- I?I-EOO, Plenum gresE%
nc. , .

National Bureau of Standards, Federal _Information
Processing Standard, FIPS Publication 81, DES Modes of
Operation, 2 December 1980.

gpegcerﬁ M.E., and.Tavarei, S.E.,_"A Layered Egoadcast
stem, Ag%anggg gry% olog%- Erogegé;ngs o g§yg§o
%éé3by D. aum, lgp. - ' enum Press, nc. ,

110

13.

14.

15.

16.

Gemini Computers Inc., Carmel, Ca. Qxffziﬁu-
%E#mmgtgd Mummiﬂ% ay

vember

Gemini Computers, Inc., Monterey, Ca. Ring Q
User's Manual for Pascal MI+86, Ko thgos

Brewer, D.J., =Ti i £g: Mglsipég
MQL%§&§x§A Masters esis, aval Postgraduate
onterey 1984.

chool, Galifornia, December

Digital Research, Inc., CPM=-86 Operating Manual, 1983.

Gemini Computers, Inc., Monterey, Ca., Sysgen User's
Manual, Segtember 1985. Y

10.

11.

12.

INITIAL DISTRIBUTION LIST

No. Copies

Defense Technical Information Center 2

Cameron Station

Alexandria, Virginia 22304-6145 *
Librarg, Code 0142 2

Naval Postgraduate School

Monterey, California 93943

Department Chairman, Code 62 . o1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943

Dr. M.L. Cotton, Code 62Cc . 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943

Dr. Uno R. Kodres, Code 52Kr 3
Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

Lt. Philip J. Corbett, USN 2
72 Pilgrim Rd.
Concord, Massachusetts 01742

Daniel Green, Code 20F 1
Naval Surface Weapons Center
Dahlgren, Virginia 22449

Cagt. J. Donegan, USN 1
PMS 400B5

Naval Sea Systems Command

Washington, "D.C. 20362

RCA AEGIS Data Repository 1
RCA Corporation L.

Government Systems Division

Mail Stop 127-32

Moorestown, N.J. 08057

Librarg (Code E33-05) 1
Naval Surface Weapons Center
Dahlgren, Virginia 22449

Dr. M.J. Gralia 1 el
Apglled Physics Laboratory ST
Johns Hogklns Road N
Laurel, Maryland 20707 D
Dana Small, Code 8242 1 o
NOSC_ _ _ .
San Diego, California 92152 . e

v . i % . TAINT PR g
RV AN e R o p A ulond EARC G A L7 D L 0y o b AL 2 St A E AL A & M, 0 A B, QU a Vo S e At g art bt o b 28 L e st aE e)
':':",,: -‘?33;‘534& W4 2

Bl

'
v
@&

|

i

NI -,
0 e
T

;’
.'-Q
A

.

PP e g

o
=
()

LSO
s & -y
o S s e

L

s

A SMIATRTAT
- _' -
r h“_.\.. .

! ALY >, opne - e p Atk T P3N o\, \-:...-. '»;"-“'- -
PR RN IR L0 L i T A iy R Lo LGS G

