AD-A167 886 RIDING COHPUTER BPPLICRTION PROGRAMNERS AND USERS NITH 11
T 0LS OF THE VISURL INTERFRCE(U) NﬂVﬁL POSTBRRDURTE
SCHOOL HONTERE? CA l FREDERICKSEN MAR

UNCLASSIFIED

B el tal SniC Sul sulh da? Mo .

OO, LN L Fad, 0% D B8 b e o h 5,0 A A TN Mo A A hig Al 0 Ayl ol 5T, Ay Ay ¥ nteipby #3. - atarat al S0 .8

e

!
l
FFEEEER
E
i

rre
F
rr
E
=]
N
o

\
MICROCOPY RESOLUTION TEST§CHAR'

RATIONAL #tied 0F STANL o e

------------ ryrrrurhTeYTiY Y

\ | @

-pe

NAVAL POSTGRADUATE SCHOOL

Monterey, California

AD-A167 886

THESIS

AIDING COMPUTER APPLICATION PROGRAMMERS
AND USERS WITH THE TOOLS OF THE
VISUAL INTERFACE

by
Michael Neis Fredericksen

March 1986

Approved for public release; distribution is unlimited.

-
[i
Ll Thesis Advisor: Gordon H. Bradley
=
i
T
—
co

UNCLASSIFIED

URITY CLASSIFICATI i

A Al

REPORT DOCUMENTATION PAGE

Ta REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

T
1b. RESTRICTIVE MARKINGS

B
2a. SECURITY CLASSIFICATION AUTHORITY

e ———r—Tt I —————————r—
3 OISTRIBUTION/AVAILABILITY OF REPORT

4 2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release;
distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

S. MONITORING ORGANIZATION REPORT NUMBER(S)

Naval

6a. NAME OF PERFORMING ORGANIZATION

Postgraduate School C

6b. OFFICE SYMBOL
(If applicable)

ode 52

7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6¢. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000

7b. ADDRESS (City, State, and 2/P Code)

Monterey, CA 93943-5000

8a NAME OF FUNDING /SPONSORING
ORGANIZATION (f

8b. OFFICE SYMBOL

applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢ ADDRESS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

TASK WORK UNIT

PROGRAM PROJECT
NO NO ACCESSION NO

ELEMENT NO.

11 TITLE (Include Securnity Clasufication)

OF THE VISUAL INTERFACE

(U) AIDING COMPUTER APPLICATION PROGRAMMERS AND USERS WITH THE TOOLS

2 PERSONAL AUTHOR(S)
Fredericksen, Michael N

*3a TYPE OF REPORT 13b TIME COVERED

14 DATE OF REPORT (Year, Month, Day) § PAGE COUNT

J Master's Thesis FROM TO 1986 March 61
‘6 SUPPLEMENTARY NOTATION
"7 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FELD GROuYP SUB-GROQUP User Interface, Visual Visual

Toolbox, Application Programmers

Interface, Tools,

4

The purpose of this thesis
visual

9 ABSTRACT (Continue on reverse if necessary and identify by block number)
is to explicate the benefits of the computer
interface by identifying the functional
the visual devices made possible by such an

capabilities of some of
interface, and by examining

the ways in which these visual devices can provide tools to aid the
programmer in writing, debugging, and unit testing application programs,
and the user in learning and using applications.
the reader some insight into how current visual technology is being used
(or can be used in the future) to aid the applications programmer and
application user. The focus will
of applications for low-cost desktop computers.

This thesis should give

primarily be on the programmers and users

20 D5 M3UTION/AVAILABILITY OF ABSTRACT
G0 -NCLASSIFIEDAUNUMITED [SAME As ReT

21 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

CJoric_users

2la “AME OF RESPONSIBLE INDIVIDUAL

-~

22b TELEPHONE (Include Area Code)

22¢ QFFICE SYMBOL

N (408) 646-2359

83 APR edition may be used until exhaysted

DD FORM 1473, 3a Mmar SECURITY CLASSIFICATION OF THIS PAGE

Code 52Bz

All other editions are obsolete

LI

4

v s »
’

v
PENEVEEEN . Y
A_‘.'.‘.' P

“s
[
R

Approved for public release; distribution is unlimited

Aiding Computer Application Programmers And Users
With The Tools Of The Visual Interface

i .

.ri Michael N. Fredericksen

< Lieutenant, United States Navy

W B.B.A,, James Madison University, 1978

;:' Submitted in partial fulfiliment of the

2 requirements for the degree of
MASTER OF SCIENCE IN ENGINEERING SCIENCE

;1 from the

NAVAL POSTGRADUATE SCHOOL

Mar;:,y/

Author:

L g §

Mithael N. Fredericksen

Approved by:
Gordofh H. Bradley, Advisor
i (D L Boavra
g Danigl L. Davis, Second Reader
b Ai’// }/7,'/
” Vincent Lum, Chairmary/ Department of Computer Science
N John N. Dyer, Dean of Science and Engineering
N 2
N
o

N R I P A S , Py T A N T TR T e AT AT T e T AT TR e e e N

KAl Tolhg SO fCul A S

Ty JEEEIE LA AN NY Y

ABSTRACT

(—~—

/ The purpose of this thesis is to explicate the benefits of the computer
visual interface by identifying the functional capabilities of some of the
visual devices made possible by such an interface, and by examining the
ways in which these visual devices can provide tools to aid the programmer
in writing, debugging, and unit testing application programs, and the user in
learning and using applications. This thesis should give the reader some
insight into how current visual technology is being used (or can be used in
the future) to aid the applications programmer and application user. The

focus will primarily be on the programmers and users of applications for
low-cost desktop computers.

Bbabrias
NTIS CRA&
pTIC TAB
Unai o0 cad
JustiiCeliC |

JUPRORR S

-

By ...

W
h-'.h‘lup'

-

Dt -

Accesion for

Di.{1b tio |

AV 2 C|of

—

»>

e e rmmmp——)
ity Codes

v Gl

——

-~

Goriny

INSI'LCTED
3 -

TABLE OF CONTENTS

...................
............
...................

..............

VISUAL DEVICES TO AID THE APPLICATIONS PROGRAMMER . . 17
A THEPROGRAMMINGTASK 17

B. AIDS FOR WRITING AND EDITING THE PROGRAM 9
IV. THEUSER INTERFACE 34
. A BACKGROUND 34
g B. THECHANGINGUSER. 34
; C. THE STANDARDIZED INTERFACE 36
‘ D. DISCUSSION 41
X V. CONCLUSION, 58
? LISTOF REFERENCES59
N INITIAL DISTRIBUTIONLIST 60
:
4
:

. INTRODUCTION

The introduction of computers with bit-mapped, high resolution
screens during the 1970s spurred the development of a new medium for
human--machine interaction : the visual interface. Initial research into the
utilization of this interface was carried out on high-cost devices by
universities and private concerns, most notably the Xerox Palo Alto
Research Center (Xerox PARC).

When technological advances made it possible to implement a visual
interface economically on a desktop machine in the late '70s, many of the
research ideas generated at Xerox PARC were combined into a single,
relatively low-cost syStem, the Apple Macintosh™. [t combined a high-
quality visual display, sufficient computer power, and, most importantly, a
comprehensive, visually-oriented systems interface. |

The Macintosh™ was the result of an effort to create a powerful, |
easy-to-use desktop machine which, utilizing a standardized visual
interface, would decrease user learning time and ease transitions when
going from one application to another. Recognizing the need for
standardization, Apple incorporated a set of tools (a toolbox) for the
creation of the many elements of the visual interface into the ROM of the

machine, accessible to applications programmers via a special programming

I PR S S AT
e Se) [

language.

The success of the Macintosh™ has stimulated great interest in visual S
interfaces and has paved the way for the development of similar systems: 1) .,}_;.;
machines that have /acintosh™-//ke interfaces (eg, the Commodore _{E'}

5 o3
]
P
A . g g e g o e At

Y T Y T N T T T L oy e,

Y .

Amiga™ and the Atari 520ST™); and 2) software products that create a
Macintosh™ -like visual interface on systems that use linguistically-
oriented operating systems (eg Digital Research’'s GEM™ and Microsoft's
WINDOWS™).! One reason for much of the interest in visual interfaces lies
in the changing nature of the computer user--the widespread use of
computers in almost every field of human endeavor has created two new
types. of users: 1) the manager--user of many applications; and 2) the
casual user--the infrequent user of applications. "Nonspecialists require a
rich interactive environment making use of graphics and audio
communication” [Ref. 1] in order to be productive--the visual interface
provides this rich environment. Another reason for the increasing interest
in the visual interface is the changing nature of application programs. The
domain of the computer has extended beyond that of just wordprocessing,
file management and number crunching--computers are being used- with
page-layout applications, CAD (Computer Aided Design) and engineering
applications, and graphically oriented database programs--areas of use
made possible by enhanced display capabilities.

The visual interface is having an extraordinary impact on the computer
industry: 1) it is expanding the range of use of computers to areas
previously ignored because of the need for high quality graphics; 2) it is
broadening the user base to include managers, casual users, and those not

knowledgable in the ways of computers; and 3) it is facilitating the

! The reader should note that the term AMac/ntosh™-/ike as used here
refers to the visual similarities to the Macintosh™ interface and does not
imply that it was intentionally emulated by other products.

......
........ .

Lo i - L M ibbe

3
\
|
]
]
A

Ty

development and use of software applications whose complexity would

-prohibit use on a non-visual interface.

A written explanation detailing the reasons for this impact is difficuit
to find since the development of the Macintosh™ interface and similar
systems was accomplished with little or no conceptual explanation--they
were just presented and sold as products. Hence, the only way a potential
user can develop an understanding of the benefits of the visual interface
(outside of this thesis) is to buy or borrow one of these products and use it.
This fact, together with the misconceptions arising from a general lack of
understanding of such an interface and the relatively high cost of visually
oriented systems, has‘undoubtedly slowed the widespread acceptance of
systems utilizing a visual interface. '

The purpose of th.is thesis is to explicate the benefits of the computer
visual interface by identifying the functional capabilities of some of the
visual devices made possible by such an interface, and by examining the '
ways in which these visual devices can provide tools to 2id the programmer
in writing, debugging, and unit testing application programs, and the user in
learning and using applications. This thesis should give the reader some
insight into how current visual technology is being used (or can be used in
the future) to aid the applications programmer and application user. The
focus will primarily be on the programmers and users of applications for
low-cost desktop computers.

The visual interfaces of the low-cost systems currently available are
remarkably similar. We will use the process of abstraction to rise
above the details of each system’s particular implementation, create an
abstract system interface, and then generate a list of the basic components

T ™ s T EEERE .Y T T

ARt

CEER P S ST TS

s o HERE 0 v VYV 00

vr.v

'<w- ‘e ‘v

Tl 2SS TRt .

T e - ¢ > PP VY L O

S s e 55,0

of this interface--the vtsuél dev'ices (and their resp?ctive capabilities) that
make up the display that the user sees [Ref. 2] This abstraction makes it
possible to view each existing system as an example of the abstract system
combined with specific implementation decisions.

The terminology used to refer to visual devices in this thesis refers to
the visual devices of the abstract interface, rather than of any particular
system. We shall normally (but not always) use the terminology of the
Macintosh™ interface', since it appears to be the most descriptive. Apple
was the first to introduce a low-cost visually-oriented system interface in
the Macintosh™, and was not restricted by copyright l1aws in developing its
terminology for the visual tools as were subsequent firms. We intend
however that the terminology apply to the abstract system, and thus, need
not be attributed to a specific system. Specific definitions of features or
details of operation also refer to the features of the abstract system;
hence, it is not necessary to attribute them to the system in which they
appear.

The incorporation of a greatly enhanced display technology into
low-cost machines has challenged programmers to find ways to exploit the
new capabilities offered by bit-mapped, high-resolution displays. Some of

| This thesis is about the tools of the visual interface, therefore, it is
important that we have a standard terminology for referring to these tools.
Some of the terms which we have chosen to use are part of a terminology
developed by Apple Computer, Inc. (Cupertino, CA) for their Macintosh™
computer, and are registered trademarks or are protected by copyright. This
terminology includes the terms: Pointer, Select, Click, Double-Click, Mouse,
Desktop, Window, Dialog Box, Desk Accessory, Icon, Toolbox and Pull-down
Menu.

Sat ba*

. 3
.I
»

-

-y
A

e Fss s
[l‘" .":

—
.

o N

s "

(SN

AR

[

RN

[t
I
.
DR
AN

the capabilities and features described in this thesis are exactly as *
available on current systems; others are from research and development B

| efforts on visual systems [Ref. 3. This thesis presents a discussion of

| the union of these capabilities plus some additional capabilities which

would be useful, but which are not yet implemented, that go along with the

spirit of the interface. The thesis is organized into four parts, of which this

introduction is the first. Part Il introduces the reader to the visual devices

and the capabilities they provide (together these form the visual tools).

Part 1!l discusses ways in which visual tools can be used to help the

applications programmer; this is illustrated through the use of a

hypothetical program (a program with which to write programs). Part 1V of

the thesis is devoted to the user interface--its creation by the applications

programmer, and its use by the application user. Part V is the conclusion.

¥
- N

¥ Y
1. TOOLS OF THE VISUAL INTERFACE %

:

A TERMINOLOGY ¢
The terms aaministrative and non-aaministrative are referred to | X
frequently. throughout this thesis. Adaminisirative tasks are those \
operations that are activated from outside application programs. Exampies
of these tasks include: naming, combining, printing, copying and deleting &
files, and initializing, booting, ejecting, erasing, copying and naming disks.
The user associates the accomplishment of these, and other functions "
dealing with whole files or whole disks, with the administrative
environment. Aon-aaministrative tasks are those tasks which are activated
from within applications (they are application specific). \
The term background is used (only in conjunction with a visual F‘

interface) to describe the whole-screen, graphical image that is furthest to
the rear of the screen. All windows, icons, dialog boxes and other visual
tools are projected on top of some background (a background cannot be

manipulated, although it has features that can be used). A background is

usually used as a frame of reference and is named in accordance with the
function it performs: in the administrative environment, the background is
referred to as the desktop; in the environment of an application, the

background is given some name that is appropriate to its use.

B. ALIST OF VISUAL DEVICES
The following is a list of visual devices that provide system users with

powerful tools which are easy to use and remember, and which allow

10

...
..........................

...

applications programmers to create an environment which varies little from
application to application. The visual devices are described both in terms of

their primitive functional aspects and in terms of the capabilities they
provide when enhanced by software.
I. Pointer

The Pointer is a tool which gives the user a rapid means of
pointing to any geographical location (pixel) on the screen. When facilitated
through the use of a mouse, the Pointer can select individual pixels (by
. clicking), create linear arrangements of pixels (by dragging), and select
' predefined patterns of pixels (ie. icons, windows etc., by clicking). These

: basic functions make it possible for the Pointer to do the following:
(a) Access pull-down menus and select command options.

(b) Select choices from dialog boxes.

(c) Select, move and resize icons and windows.
(d) Select and manipulate screen areas containing graphics or text.
(e) Select pixels linearly to create two-dimensional graphics.

(f) Launch applications or open documents.

The Pointer may change form to suit different applications (i.e. it

may be an arrow in the administrative environment, an insertion-point
bracket in a word processing application, or a pair of scissors in a page

layout application), but its principles of operation should remain the

same--the user should not have to relearn its basic functions.
The Pointer is the user’'s primary tool for manipulating, creating,

and editing screen elements, and for selecting actions or elements to be

B

acted upon. By not having to memorize keyboard commands, the user is free

to concentrate on what he is doing with the information rather than how he
is doing it.
2. Windows

windows are organizational frames of reference for the user. They
provide a means of organizing information graphically and a means of
displaying “large amounts of information onscreen simultaneously” [Ref. 3],
When combined with the use of icons, windows provide a way of visualizing
the actual location of an element of information (represented by an icon)
and a basis for its manipulation. By having muitiple windows onscreen
simultaneously, the user can arrange his elements or aggregates of
information as he pleases without having to go to a lower level of
abstraction, and he gets immediate feedback on any actions that he takes in
the form of highlighting or other screeﬁ changes. Windows also can provide
a means of observing two or more processes simultaneously (for example,
watching a graphics program execute line-by-line and observing its output
as it is drawn in another window).

3. Dialog Boxes

Dialog boxes are the system’'s best means of communicating with
the user. Often incorporating menus of options, dialog boxes force decisions
to be made and give immediate (and specific) feedback (in the form of error
messages or system failure messages) on problems with the system,
application, or user inputs. Within applications, they provide prompts to the
user and give him a selection of options and a means to select those options
(for example, when quiting an application, the user might be presented with
a dialog box inquiring whether the changes that have been made to the

12

document that he was working on should be saved or discarded--his
subsequent selection either activates a save to disk process or discards the
changes).
-4 Pyll-down Menus

Pull-down menus are expandable menus that can be viewed in their
entirety by selecting the menu name and dragging downwards toward the

bottom of the screen. The menu names appear across the top of any

background screen. Pull-down menus perform several functions:

(a) They give the user a list of what actions are available to him at any
time (highlighted selections show what actions are possible now,
while unhighlighted selections indicate that something is required
from another process or the user before they become possible).

(b) They guide the user down the decision path when he is uncertain of
what to do next.

(c) They give the user access to powerful processes without ever
touching the keyboard (routines and functions can be activated by
selecting a single menu item).

(d) They are tailor-made to fit the environment of the system or
application so that the user is always aware, by the menus available,
of which environment he is in.

(e) They facilitate much faster learning of the system and applications
because the user is not required to memorize a command language
(they are the command language), and thus necessitate far fewer
references to manuals.

S. Desk Accessories
An extension of pull-down menus, these are powerful
mini-programs that run in the background of an application or the desktop.
They can be used without leaving the present environment.

13

The power of desk accessories lies in the ability they give the
user to perform administrative tasks from a non-administrative
environment, and in the fact that they provide the user with valuable toois
which he can use within an application, even though they were not included
in its software. In some ways, they are very much like library routines,
except that they are called directly by the programmer or user and not by
the application program, and are wielded by the programmer or user as
tools, rather than used as subroutines.

6. Icons

Ilcons are graphical symbols used to represent meaningful
elements or aggregates of information. Icons adhere to the
“picture-is-worth-a-thousand-words™ concept in that, to oe useful, they
must immediately convey their exact meaning to the user at a glance. They
can represent simpie identifiers for physical things such as disks or
applications, or they can represent complex concepts such as files or
relational objects (i.e. folders).

System icons are system created and are used to represent
standard elements in the administrative environment (ije. disks, trash,
folders, files). The user is usually permitted to name these icons with
names that are designed to jog his memory as to exactly what they
represent; thus, they provide a way for the user to tailor his visual
interface to suit his particular way of thinking. Since system icons are
components of the standardized visual interface, they remain the same

regardless of the application, creating a familiar environment for the user.

14

MNP AL LB R ML S0 AL LS LoD SR ol il ST AR Ja/l Sef Al iad o N e)
)

¥

Lan on e i

Application icons, created by applications programmers, vary among
applications, necessitating that the user learn the meanings of the icons
within a specific application. This is usually not difficult because: 1) they
are limited in number; and 2) an icon's form is designed by the application
programmer to be visual representation of its function or contents. The use
of application icons is a way of customizing the visual interface to fit a
particular application, thus making it easier for the user to learn. It is
important that the application programmer ensure that the rules for the
manipulation of these icons remain the same as for the system iéons, S0
that the user is not required to learn and memorize any new rules.

Some applications allow the application user to create icons
which serve as identifiers to represent specific, user created functions or
items of data to be manipuiated or used within the application. This is
particularly true of certain visually oriented database applications, where a
user created icon might be used to represent a unique item for which the
database contains underlying information.

fcons can be moved around easily with the mouse, enabling the
user to mové the large amounts of information that they may represent into
an organized format that he is better able to work with--they allow him to
see and manipulate the big picture.

7. Desktop

The desktop is the background of the administrative environment
of the system. It provides a geographical frame of reference to the user and

a framework in which to manipulate and organize (to his liking) lower-order

objects (windows, icons etc.). When the system user is presented with the

desktop, he immediately knows that he is in the system (administrative) '_g
environment, and is aware of the tasks that can be accomplished there. A
8 Controls 3
Controls are visual devices which emulate (with a few exceptions) ' :

physical devices--they are manipulated as if they were physical objects . *
2

rather than graphical images. Controls can be used to: 1) activate
processes--they can take the form of buttons in a dialog box or window ‘
which the user "pushes” (clicking with the mouse) to execute a particular i
command (e.g. a C/ose box on a window); 2) manipulate objects--they can &
take the form of scro// bars (for scrolling through the contents of the i
window) or £Lxpander boxes (for increasing or decreasing the size of the

window) on windows; and 3) regulate the features of certain other

objects--for example, they can be used to modify certain system
characteristics--increasing or decreasing the volume of the audio output, or ii:'
the frequency of the cursor blink, or adjusting the responsiveness of the
keyboard. Controls are designed so that their operation is physically ;'-Z?_'
obvious--their form describes the method by which they are operated. :
o

-

o

:‘

16 o

B

R ORI L AT S0 BTN o R R SR e T T T A e T S N T N e e
RS SRR SN ORI, S, i SR S TR Piner s o O 13 3y tts ¥ PRI VI 5.0 S SO0 1. 0TS YA L AN

[* %0 R Ba® Aot Naf Muf DR et Pabu ot ol 8% Fub et pot 0oV At It RA Ly ft Do

v rew v

e AT

T ry CYETr o .

Ty Ty v W vow

N1 VISUAL DEVICES TO AID THE APPLICATONS PROGRAMMER

A THE PROGRAMMING TASK

The actual writing of an application, as discussed in this thesis,
involves the implementation (coding) of a specified algorithm. Devising an
algorithm to solve a specific problem is here considered part of program
design, and not part of the implementation of the program. Thus, the actual
implementation of an application is the area which shall be focused upon.
This task consists of ‘devising a plan of attack (possibly several, using
different methods and different data structures to accomplish the same
task), coding the plan, testing the code, making modifications and

-corrections, retesting, and documenting.

The following is a discussion of the visual tools which could be used to
aid the programmer in the writing, testing and debugging of application
programs. Suggestions as to how these visual tools might be used are
included.!

1. Capabilities To Be Provided By Visual Tools

Before proceeding, it is important that we discuss the
capabilities that we wish to provide the programmer through the use of
visual tools. The following is a list of these capabilities:

IThe reader should note that since implementation is necessarily
language dependent, these visual tools may not be applicable to all
languages--we leave it to the reader to determine which ones are applicable
to which languages.

17

- b ARV

»
P O W W

(a)

(b)

Tl Wl 2N

(c)

S
=
L
3
..
E
e,

(d)

(e)

()

(9)

(h)

Give the programmer graphically oriented word processing and
editing tools to help him in the initial writing of the program.

Let the main portion of the programmer’'s efforts go toward the
writing and refining of the problem solving features of the
application by providing him access to tools which simplify the
creation of the user interface (give him a toolbox with tools for
creating windows, dialog boxes, pull-down menus, icons etc. with
toolbox routines).

Enable the programmer to create hierarchical structures that make
use of abstraction and zoom-in so that he is able to see the big
picture, or the greatest detail (or any level in between) of the
program on which he is working (compacting information).

Enable the programmer to step through the program to observe the
effect of each line of code on the output of the program, the contents
of the data structures, or on the value of variables.

Enable the programmer to execute commands at any point during

program execution (after any line of code) which allow him to view
parameter or variable values, or allow him to experiment with quick
fixes without actually changing the program (using an Instant
Command Window).

Enable the programmer to eliminate redundant or repetitive tasks by
giving him sophisticated tools to edit and manipulate code and store
his efforts for later use (libraries of icons, templates, and coded
subroutines).

Free the programmer from having to worry about proper syntax and
static semantics by having the system do that for him.

Give the programmer sophisticated search and editing devices which
simplify the debugging and maintenance of the program.

The question should be asked at this point: What sort of visual

tools provide these capabilities? Visual tools for programmers can be

s

[y .

classified into three categories: wordprocessing and editing type tools, , %ﬂ

organizational and search tools, and library building/tapping tools. Each of r

A
these categories makes its own contribution to improving programmer ad

productivit, (and program quality), but each does it in a distinctly different x':'

way. 2":'-*_-'

B. AIDS FOR WRITING AND EDITING THE PROGRAM ﬁ;

' R

The discussion of visual tools to aid the programmer in the writing and o

editing of an application program is most easily accomplished through the ?*

E description of a Aypothetical program that provides such tools.! It should D
: be noted that the initial writing of the program does not lend itself to being “
_| aided by the use of visual devices, with the exception of sophisticated word 3
: . -_:_:_
. processing tools and program libraries. Editing functions, and fast access :*.:y_;
E to a library of reusable code and routines, provide some opportunity to
i increase programmer productivity. However, these increases are generaily =
F !'. ¥
small, and thus, aside from offering a few tools which save the programmer ;;?E
: a little typing, visual aids for the initial writing of the program are of &E
! : limited value. We shall discuss the most valuable ones. -
E 1. AHypothetical Program 2
E The program we require is specifically designed for writing and
3 PRNE
) editing appiications. It makes extensive use of windows. The main window .,
t I The reader should note that the hypothetical program discussed in L
this thesis focuses on aiding programmers working with traditional

imperative languages. A similar hypothetical program (not discussed in this o

thesis) could be produced to aid programmers in functional programming. o

{2

)

AT

S

Xt

B UL N, TR e
e T N T N .-

- - R I
S S I DR Jis S Rl Se¥ Oy

serves as a background for all other windows, and is at least partially
visible at all times. This window contains the present version of the
developing program, gives the programmer a geographical frame of %
reference to which he can return at any time, and is used for the initial B
writing of the program and the selection of elements for the edit windows. '
It is also used for compiling--this is the only window that the compiler can

see, hence, any changes made elsewhere must be written to this window P
(Note: All the edit windows and applicable dialog boxes provide a feature to ‘)
do this). The main program window allows either line by line or rapid E
scrolling through the program in either direction.

The program has a feature called Instant info which allows the

2 4 02V IR T T AEEROURSUOYY Y 727 7 FERETX
s " r, v
' MO,

user to query the system about certain program elements. It works as .
follows: '
(a) Double clicking on a variable or constant displays a dialog box - :‘
containing the variable name, its type, its initial value, and the 2

names of the procedures and functions it is used by (see Figurel).

(b) Double clicking on a function name or procedure name displays a
window containing its name, its callers, its callees, its required A
inputs, its returned outputs, its termination condition (if

applicable), and its internal type, variable, and constant declarations iEl;
(see Figure 2). a
(c) Selecting a variable or constant and then choosing CREATE EDIT
WINDOW (these windows are discussed later) from the edit menu o
creates an edit window stack containing all occurences of the
variable or constant, and also highlights them in the main program -
window (see Figure 3).
2

N

g

o~

20 o

PO

T e f SIS NV VT S S 8. e 00 NTEHEL T, e T L WEHEE .U T Ty e e e T R Y VSV HEEESTSTY VT Y Y. .TEEEEEY V.Y TSR W e -

RN

INSTANT INFO

YARIABLE ORCONSTANT NAME TyPe (if applicable)
Hesd PasaPtr
SUBROUTINES IT 15 USED BY (1€ any) INIT YALUE/YALUE
prog FlightList

proc ReedPess

proc GetPass

RET

CANC

Figure 1
The Instant Info Window For Variables Or Constants

[3
- ks
278 A

s e 5o
LI

Lol 1:'!. AR
(XA

g LI
4 et e Y

S ‘v
LA

r

ISUBROUTINE NAME INSTANT INFO 1eppminaTiON COND.
proe GetPass U=50]
CALLED BY _PASSED type RETURNS tupe
prog FlightList PassPtr | NevPass Pysseng |
PassPtr |1 inteqer fd
integer Fi NewFlt ireger
CALLS PASSES “ype ISRETURMED type
ReadPass PassPtr [NevPass Passer
“I NewFl1t inte@r k.
FW"'P‘” intecer |- iuteger
 VARISBLL e CONSTANT vale
{ RET)iocaL variaBLES [xptr Pessptr |Jmaxsests |50
{CANC) ANDCOMSTANTS

Figure 2
The instant info Window For Subroutines

21

R 2 S yiata ket it Ayl

oS re IR 4

SRR Al XL LEAAN g

Bas 3

o T e) e 83 0
LT o R e

AL L A
Av A

i Nl ey
P AL

Y3
s 8

.
f;-_

lprogran PlightList Ginpat cutput); =
e seats=50; 01 [06pages in staok | PAGNO: [[—
sentinel='z22’; procecure ReadPass(var NewPass :
type ‘ Passang;Head :
Namestring=string{20); FassPtr;var Full:
Passang=record beolean);
name Namestrirg; const
flight integer ; sentinel="z2z";
end {Passeng} var
flichtFile=file of Passeng Target Count sinteqer
List, Next PassPtr;
PassPir="Passnode Seats NoSeats intager;
Passnodesrecord becin
Passinfo: Passeng; with NewPass do
Link : PassPtr ; begin I
end {Passnoce} "
var
Head, Tal PassPir;

“Figure 3
Edit Windows

a. Declarations

Most modern imperative programming languages require the
programmer to declare the variables, constants, and types that are used
within the program. Such declarations create an environment in which the
program is to run. The writing of declarations can be tedious for large
programs which use many variables, constants and types. Although it is
conceivable that this process could be automated (see dialog box below), it
appears that such automation would be no faster than manual declarations
and might actually slow down the programmer. In view of this, it would
seem that the traditional method of declaration for languages that require
it remains the most efficient--there is an exception to this: while writing a

program the programmer often finds himself having to create new variables,

22

s 8 5 ',
T S Y
AN

L, lv'v.'-rn
-.l'l'l""“'.l L Ay

> v e

KL [Ry

A

Yy YY) r:r_ﬂ‘_
&,

ey v w

T e

T T v

the need for which was not previously forseen. Two methods could be used
for dealing with this situation:

(a) A simple, automated method of declaring variables through the use of

a dialog box (which could prove a real time-saver--it would relieve

the programmer of having to scroll back to the beginning of the
program of procedure.

(b) A “°rapid transit™ mechanism which would allow the programmer to be
instantly transported from one part of the program to another, using
program, function, or procedure names as geographical keys.

(1) TIhe Automated Method. In our hypothetical program, the
automated method works as follows: the user utilizes the pointer to
pull-down the PROGRAM menu (see Figure 4), chooses CREATE DECLARATIONS
from it, is presented with a dialog box (see Figure S), and then points to,
selects and fills in the appropriate choices within the box. As each item is
declared, a new dialog box appears for the next item until all declarations
are made. when no more entries are desired, double clicking on the name
block of the dialog box returns the programmer to the main window. The
dialog box "CREATE DECLARATIONS™ can be used for declaring global and
local variables, types and constants for the main program and subroutines.
To delineate which is chosen, the programmer selects (points and drags
across) the program name or the appropriate function or procedure name and
then chooses CREATE DECLARATIONS from the PROGRAM menu. This places
him in the proper context.

23

i S
« v "‘r""‘.
1y o
SN LRI y
PPN

P, . 1SS
I}

f" o
DRI)
R Lttt

..........................

2
N,

N

PROGRAM (menu)
CREATE DECLARATIONS (choice)

UNIT.TEST (choice)
CREATE EDIT WINDOWS (choice)

Figure 4
The Program Menu

CREATE DECLARATIONS

NAME:|]
type [J TYPE: real O INIT URLUE | |
const [J integer [] UALUE []
var [J boolean [J :
char O
string O
array O
enum. [J
length | |
range | |
enum. fist
Figure 5

The Create Declarations Dialog Box

(2) The "Rapid Transit” Mechanism. We will define a
Rapid Transit mechanism as a device which allows the programmer to move

swiftly from one part of the program to another. In our hypothetical

24

program, the utilization of such a mechanism is accomplished through the
use of a window (we'll call this the RAPID TRANSIT WINDOW). An icon for
summoning this window is a constant element of any screen in the main
program window (it is always onscreen, in some convenient location, for
ready access). Opening this icon, the user is presented with a window
containing a comprehensive list of the program, procedure, and function

names within his program. By selecting one of these names, the programmer

is transported to the program location containing the declarations for that
name (this is an example of zooming in on the details). A return feature is
provided for returning the programmer to the original location, as well as
other enhancements for stepping through the locations in both directions.
This Rapid Transit mechanism is useful for checking and
adjusting program, procedure, and function parameters, as well as making
new declarations. To illustrate, let's look at an example: if the programmer
is writing a procedure call to CancelList in progam FlightList and cannot
remember all the parameters needed to call CancellList, he can use the Rapid
Transit Window to transport himself to the declaration of Cancellist, get
the information that he needs, and then transport himself back to the
procedure call to CancelList and continue coding. The figure below (Figure 6)
shows what this window might look like. The procedure Cancellist is
selected in the name list portion of the window. Double clicking on the name
or selecting GO THERE NOW will transport the programmer to the declaration
of the procedure; selecting the Return box will transport him back. If he
desires to remain at the declaration of the procedure, he can select the
Cancel Return box, which will close the RAPID TRANSIT WINDOW and cause
the icon to reappear in the main program window. If he decides to go on to

25

AR R s Sl o) " e o sy TN AN 4 TR T . i ia- ik - e~ R ie Nl 8 Sama B Sl AL AR Aud S B Al Sudt S 4

0

another location, the computer will keep track of each location visited (in
order), allowing him to back track or go forward to any location already

visited.
Program, Return:
Procedure, or Function Name
prog FlightlList ‘
proc ReadPass RAPID TRANSIT WINDOY

N . select the name of
function CheckCount _ your destination

proc Updatelist

proc Cancellist - (GO THERE NDW)

(PREVIOUS LOC)

(NEXT LOcATION)
(cancek)

2ed Cancel Return:

Figure 6
The Rapid Transit Win<_10w

b. Debugging
Program debugging offers perhaps the most significant
opportunity to increase programmer productivity through the use of visual
devices. This is because much of the time spent debugging is devoted to '
searching for and locating the cause of an error rather than actually a

correcting it. The visual interface simplifies this search process through NN

L |

the use of powerful visual tools. Let's examine some examples of such tools

LA
AR A

: and the things that can be done with them.

26

, »
in order to realize the full potential of visual tools in the ::z
area of debugging, it is necessary to use an interpreter during the debugging :Sf
process. This is because many of these visgal debugging tools require that ;
the running program be stopped in mid-execution or executed line by line. 2,
e . The process of debugging can involve the correction of many ‘
‘ types of errors, and visual tools can be used in finding and correcting many , .
. of these. Nevertheless, in this thesis, we will focus on the visual debugging ,
tools which bring about the greatest increases in programmer productivity. >
(1) Syntax And Static Semantic Corrections Let's start !’
with syntax and Static semantic errors. With a non-visual interface, syntax «:
and static semantic (e.g. type) errors are discovered at compile time (when _-;C.

(A -"

using a compiler). The compiler generates error messages, usually referring
to specific locations; the programmer writes down the error messages on

X paper, scrolls to the designated location, corrects the errors, and

N recompiles the program. Even given a good text processor that saves some ;._
) >

scrolling, this process can be cumbersome. ;'-E;:

- . ",
- 1t would be much more efficient to detect syntax errors W

. as they are made and correct them on the spot. The use of a syntax directed
- editor [Ref. 4] during coding doing syntax checking (and formatting),

combined with the visuail effect of highlighting, makes this possible. As the

RO

i o]
programmer types in his lines of code, any syntax errors are highlighted as o
they are made (after the return key is pressed or after an end of line
deliniation such as the semi-colon in Pascal). The programmer immediately
knows he has made an error and corrects it before going on. This is a ;
significant time saver. ;
.
o
‘ 27
AT e e e g e e T T AT e e et 8 e e s

" (2) Program Monitoring A much more effective time saver .
E can be realized by enabling the programmer to step through the program E’i

line-by-line, and providing him with the capability of examining the value of 3
: variables and parameters as he goes. This is particularly effective because ;c“
g it deals with the search aspect of debugging--it allows him to watch the ﬁ
' execution of the program in detail, monitor the changing vaiues of his i%
{ variables and parameters, and subsequently locate the cause of the probiem K

v v
r

when the execution fails to follow the expected path or the value of a

'

variable changes to something unexpected (this tool is useful in locating

program logic errors).

)

(a) The Instant Command And Observation Windows. The

.
L .

/nstant Command Window and the Observation Window are visual devices
which allow the programmer to monitor the values of variables, parameters
and expressions--while the program is being executed. The Instant

Command Window enables the programmer to execute instant commands at

% o | BRI

any point during the step-by-step execution of the program (eg
writein(variable); in Pascal). This tool allows the selection of specific

points in the program for the examination of the values of variables, or the

R e e e s
* . PRI
., . Cale
VIREE A NIV BB

"<1<

verification of parameter values that are passed from one subroutine to

another. When using the Instaht Command Window, it is important that the

LI
Vs

programmer have some means of stopping program execution at points which
he designates, allowing him to pass quickly through the parts of the program

that work properly and get to the location of the suspected error. This is

e
P,

4

accomplished by enabling the programmer to place "stop” icons at those

"
: points in the program where execution is to be stopped. In addition to o
. rod
: allowing the programmer to check the values of his variables and {.—;3
’ oS

! o

28

parameters, the Instant Command Window enables the programmer to insert
"quick fix" commands into the program during execution and to observe their
effect without actually changing the program.

Another window which allows the programmer to
monitor the values of variabies and parameters is the Observation Window.
4 This window is especially effective for watching the values of variables or
parameters during an iteratiye process. The programmer types in the
expression he wants to monitor and executes the program--the values of the
variable, parameter or expression are updated automatically after each

iteration (the programmer doesn't have to give any commands to make this

happen each time). This window also offers the advantage of not cluttering

up the screen--uniike the instant Window, it displays evaluation results
itself and does not require any other window for its operation.
| (b) The Outpyt Window. Use of the Instant Command
window necessitates having an Oulput Window that allows the programmer
to monitor program output as the program is being executed line-by-line.
This window receives the same output that the programmer would normally
receive after the program had run. It is useful in that the programmer can
see the program’s outputs while watching the step- by-step execution of the
program in the main program window. The reader should note that the power
of these visual tools lies in the fact that the programmer can watch
different aspects of his program simuitaneously, and thus, pinpoint errors
in the program simply by noting the location--the specific step during
execution--where the error occurred.
(3) Editing Windows. It is in the editing windows that most

of the program modifications are made by the programmer. The number and

29

B

contents of these windows varies. The following methods are used to 7-
create them: n

(1) The programmer can select portions of the program at random which E
he desires to edit by selecting the applicable text and choosing COPY S
TO EDIT from the EDIT menu. This allows non-destructive ¥
manipulation of the code--he can work with the code segment in the O
editing window while leaving it intact in the main program window.

(2) The programmer can activate a search for specified elements of the
program. For instance, he can activate a search for all program
portions where a certain variable or constant appears--the system e
searches for all occurences of that variable or constant and copies E
the line on which the variabie or constant appears plus the next ;:‘_3
eleven lines following it (or some number that is practical with 4
regard to screen size) to the edit window. Each occurence of the
variable or constant is highlighted in the edit window. The user is
also able to activate searches for all calls to a certain procedure or
function in order to check for errors in parameter passing.

(3) The programmer can work on a particular subroutine by selecting its
name and then selecting CREATE EDIT WINDOW from the PROGRAM
menu. The entire subroutine will be inserted into an editing window
(see Figure 3).

when the programmer creates an editing window stack, a
separate window is created for each selection that is copied to the stack. .
Selections that are greater than some specified length (determined by
screen size) will enable the scroll bar on the edit window, allowing the user
to scroll through the entire selection. All windows are numbered
sequentially based on their contents’ actual position in the program, not the

order of selection. They appear as a stack of windows that can be paged

through in either direction via a page bar located across the top of the

window, which consists of two horizontal directionai arrows for page

LA
.

l"l‘ 0{'1 . g
T
NI

30

T
PRI FEOERONIOF = =0 K

—

P T

turning, a numerical indicator of the number of pages in the edit window
stack, and a page number block which tells the user which page he is on.

Multiple editing window stacks (up to the maximum
number that can be accommodated by the size of the screen) are able to be
displayed onscreen simultaneously. The stacks can be named by the user or
they will receive some specified default names, for example, A-E. They can
be dragged around the screen and arranged as desired, but are restricted
from the leftmost inch of the screen which always maintains the image of
the main program window. Windows within a stack can be separated from
the stack for window comparisons etc. This does not affect page turning.

(a) Type Checking: Using Edit Windows. Type errors are
often difficult to trace down in ianguages that are not strongly typed,
especially in a large program. A tool is needed that allows the programmer
to specify the variable that he wants to type-check and then retrieves ali
the instances where that variable is used in the program or subroutine
(depending upon whether it is local or global) for the programmer to
examine for errors. In our hypothetical program, the user can select the
variable to be type-checked by double clicking on it. This creates a stack of
edit windows which contains all usages of the selected variable throughout
its scope. In addition, this highlights all usages of the variable in the main
program window. Examining these windows should reveal the source of the
error, which can then be corrected directly in the edit window.

(4) Unit Testing Using An Environment Generator. Unit

testing is presently complicated by the necessity of writing complex test
harnesses or program stubs in order to create the environment in which the

program is to run. This is one of the reasons testing consumes such a large

31

L
W
P

.

portion of program development time. Significant increases in programmer f,

productivity could be gained if the programmer were provided with an ii

interactive environment generator that used dialog boxes or windows for ﬂ;

: communicating with the programmer. This device would allow the '.f
. programmer. to create the module interfaces (test harnesses and stubs) ;2\
required for the testing of the module, and would allow him to manipulate s =

A

the values of the parameters passed to the module in accordance with his

&
[
A

test specification.‘ Wwith such a device in mind, let's see how unit testing

s

is done in our hypothetical program.
when he wants to test a subroutine, the programmer
selects UNIT TEST from the PROGRAM pull-down menu and is presented with

s J <

" s" 1T
.’ "“" E
-&2. T e

.......................................

a dialog box where he has to fill in the blanks and answer simple computer

2 generated queries regarding parameters needed as inputs, parameters used l:_:;f;
: internally by the subroutine, data structures needed by the subroutine, and
control information to be accepted and/or passed by the subroutine. The i
dialog box is actually the communications link between the programmer and "
the underlying environment generator. The latter is a sophisticated device f :
that performs the functions of making declarations, initializations, typing,
et
ot
oA
- ' The reader should note that the implementation of an environment S5
generator is extremely complicated and is not feasible for some languages. '

Those languages where it is possible vary as to how much environment lends 3;;?-

itself to generation and how much must be borrowed from the main program \
Although it would be desirable to be able to create complete testing ::-_I_-_
environments through the use of such a device, a true, whole environment
.:Z ;

N

DAY

o

<

1])
:

32 o

e T L e o e g e e T T TR R N

W

.
!
b

F P
&£}

and the construction of data structures. The programmer supplies the
necessary information via the dialog box, and hence, creates the operational

environment for running his subroutine. The idea behind an environment

%A

generator is to allow the programmer to run and test program components

- OO
- a

. without forcing him to go to great lengths to create a run-time environment.
Because time taken writing a test harness takes away from application
programming time, such a device would increase programmer .
productivity. However, since an environment generator is not inherently a -
visually oriented device (it could be implemented in a linguistically !
oriented system), we will not attempt to cover the subject further in the .

course of this thesis. Let us simply say that the visual interface wouid

T’

provide good tools for its implementation.

Other valuable tools to aid in writing and editing the -
program include a sophistfcated, visually oriented text processor that ';)
simplifies program editing (one that inciudes cut, copy, and paste routines) q
and a program library, which allows the programmer to save program -
segments for future use; this is especially valuable during debugging =
because changes to the code can be made non-destructively--the original i‘

code can be saved when the corrective code is inserted, and thus, can be

retrieved if the corrective code doesn't work out.

generator is probably not technologically feasible on a low-cost machine at
,' this writing. The environment generator discussed in reference to our
hypothetical program is useful because it simplifies the creation of
program stubs and test harnesses--the degree to which this is possible
depends on many factors, most notably the language used, and will not be
discussed further in this thesis.

33

44"
-~

Al

S %

IV. THE USER INTERFACE ;

: A BACKGROUND

.. One of the major tasks facing the applications programmer is the ‘ -

creation of the user interface. The user interface is often the key to it

whether an application is successful as a product.

The user interface can take many forms, but it always serves the same '

function--it is the user’'s sole means of communicating with the computer. H

:. Hence, it is important to develop an interface which is both powerful and (

. easy to use. Unfortunately, these two features are often diametrically k

(opposed, since powerful implies more features, and more features implies 2

greater complexity. For these reasons, much of the effort in developing ¢

software applications goes towards designing an elegant, .\-

\ appiication-specific interface. S_

< &

= &
B. THE CHANGING USER

‘. The widespread use of computers today, in just about ail areas of ,}J

‘. human endeavor, has necessitated a change in user interface design goals. ‘:‘_

Instead of creating applications only for computer-knowledgable clients, i

applications programmers must also create applications that can be learned r

3 by people with very little knowledge of computers or computer languages E

(the goal is to create applications that are powerful enough to satisfy the

expert user while making them easy to learn and use). Thus, the programmer T

i
3
A
o
o)
s
7‘

DS
LS
W

BACACAY

is faced with developing a user interface which is very easy to learn to use

34

SNSANSL

a0 e B A DASRA SA St S N SN AL R AS A AN N S I

(this is to be distinguished from easy to use) if he wants to sell his
software product. All the power in the world is of no use to the client if he
is unable to tap it. In addition, since the cost of computer time is no longer
as significant as it used to be, the cost of human time has become very
significant. Training personnel to use a computer or computer system is
expensive. Training implies: 1) people who will do the training; 2) hours,
days or weeks to be trained, on salary; and 3) low initial production from
the person while the training sinks in and they become adept at using the
system. Hence, there is a real market for easy-to-learn software
applications. |
The mention of a distinction between easy-to-learn and easy-to-use
has been made--let's elaborate on this distinction. An application that is
easy-to-learn provides an interface that is friendly to the user--he can
quickly grasp (and remember) the steps necessary to accomplish his task. An
application that is easy-to-use goes beyond this--it is elegant--it provides
enormous power in few steps, flexibility (all users were not created equal),
and design integrity--all of which contribute to the ease and pleasure with
which it's used.
1. Mana An ual Use
There are two other reasons that the market is growing for
easy-to-learn and easy-to-use software: managers and casual users. The
principal users of computers have, in the past, largely been technicians who
have little need of easy-to-learn software because they are daily users of
few applications. One new group of users emerging is the managers.
Managers are more expensive to train, have less time to learn, and are more

likely to need a variety of applications to suit their needs. The other new

35

A 2 P AP A St g Satttets das Jhdt el Bat Jaft Aot i e S B b g
.

XA

B NN . ~ o
Lagd ¥ ;'""""“’,' AR i o] JEPLIE

- v r I]
o SRR)
v 's 4 SR R A

0 PR R
Dy DA I U

X

[
v
v

group is composed of the casual users. These are users who often don’t touch
their computer for days or weeks at a time, plenty of time to forget
everything they know about command language and syntax. Easy-to-learn and ‘
easy-to-use software is a must for this group if they are going to be
productive. 2

& ISy SOSTEI S YO Y ERN. ., S
MBI

C. THE STANDARDIZED INTERFACE
A standardized interface is one which varies little from application to
application. There are two environments in which this standardization can g

B take place: 1) the administrative environment; and 2) the environment of
a the application.
i Standardization of the administrative environment is the first step in | '
creating easy-to-learn and easy-to-use software. Such standardization
necessitates that the user need learn only once how to perform the

i administrative tasks (creating, copying, transferring, and deleting files, 3
:’ erasing disks etc.)--this knowledge allows him to perform these tasks : ,L._
i henceforth without regard for the application, since the tasks are performed :E
' in the same manner in all applications that adhere to the standardization
“’ (each application actually gives the user practice performing administrative :;
U tasks). ;’
:l: There are arguments both for and against a standardized interface. One '
P of the disadvantages of it is that it prevents the programmer from tailoring

F\ the interface to the application. With all the myriads of applications, there :
E are bound to be some that would benefit from having their own unique user '
> interface. Another of the disadvantages of standardization is that it stifles |
L creativity: the programmer may know exactly how he wants his program to
- o

............

.............
.........

AL AL R Al ksl el el a8 dul Sul g8

communicate to the user (perhaps far superior to the standard), but is
prevented from implementing it because of the requirement for
standardization. We will see how these problems can be partially resolved.
The advantages of standardization are primarily: 1) a standardized
interface greatly simplifies the learning of more than one application; 2) a
standardized interface significantly reduces development costs--less time

is spent on the development of the user interface; and 3) a standardized
interface implies tools that are provided to the programmer for the creation
of that interface (toolbox routines)--these tools make the accomplishment
of the simple things even simpler.

It is possible to create a standardized non-visual interface--many of

these exist. They are usually operating system interfaces that are machine

or brand speéif ic (found on the same type of machine or on machines from 5
the same manufacturer). Such interfaces are usually very simple and of
limited power. It is also possible to create a menu-driven interface for use "i
on machines with limited graphics capabilities (non-bit-mapped, low : 'J

resolution machines). These interfaces are usually application specific and
share a similar feature with visual interfaces in that they offer the user a
selection of options from which to choose, the choice of which constitutes a
command which activates a process or displays another menu. Menu driven
interfaces are adequate for simple applications but do not lend themselves
to standardization (since the menus are necessarily application specific)
and are therefore of littie help to the modern user.

Because of the need for creating easy-to-learn and easy-to-use
applications, the natural choice for an interface is one that is visually

oriented. The goal of such an interface is to create an environment where

37

SR e A N S Y P T T R T T T Ty T T YTy Iryryyy Ty Ty sy oy ey

the user feels comfortable-~where he is presented with familiar objects no

P X e

matter what the application (he uses a standard set of visual tools i.e.
pointer, windows, desktop etc), and where his commands bring forth the
desired, and most importantly, the expected results (the basic control

AA_ K A A 8,

actions required of the user are executed in a standard manner, from
application to application).

The creation of the visual interface by the programmer can be made
simpler by the use of existent toolbox routines that the applications
programmer can call at will. The idea here is to make the programming
tasks that should be simple, even simpler. The implementation of the
functions that the application is to provide should be the highest priority of
the programmer and the most difficult to do; the user interface shouid be
eaéy by comparison. Unfortunately, this is not always the case. Without
toolbox routines to aid in creating the visual interface, such a task can be
formidable. This is due to the nature of the machines that run software
utilizing a visual interface--they are bit-mapped and object oriented.

1. The Toolbox

The creation of 2 window or dialog box from scratch each time one

was needed would just not be practical--either one would require a major

programming effort. Of course, it is possible to standardize the visual

interface without using toolbox routines: a software company could keep a
library of such routines that it had aiready created for the use of its
programmers (however, standardization among companies woild be a major '»,j
- probiem); or, in a worst case scenario, a general guideline could be agreed) H

upon by software developers, whose programmers would find their own

R St iad it et At I el C el gt I e A A L AC AR i Ja i o gl wrerwowLwrmor el e Datat ifa'ate’ 49, a0 0 Y T i A > ¥ Vo g\,

33
2
unique ways of conforming to the standard. Two good methods of ‘\
standardizing are: 5 b-
(a) Developing and distributing a machine specif ic ROM-based tootbox, so '.::
all the programmers would have the same tools. _‘f
(b) Developing and distributing a software-based toolbox (this would be i~
not be machine specific but would have the disadvantage of being A
slower than a ROM-based toolbox and would take up RAM and disk fi
space.
No matter which method is employed, the use of such a toolbox P
can; 1) significantly reduce program development time and :
cost--programmers can spend most of their time on implementing the :_,
functional aspects of the program instead of the interface; and 2) heip make :;
the product easy-to-learn and easy-to-use by the. user--the use of a toolbox)
leads to a great degree of standardization in the interface, thus reducing the ,
number of application specific details of operation that the user must By
remember. 2
We might now ask the gquestion, What tools should the toolbox
contain? Since we are concerned with the standardized visual interface, we -
shall concentrate on the tools which aid the programmer in its creation :
(there are many other tools which could be included in such a toolbox to
make the programmer’s job easier in other areas of writing the program (i.e. ’;
floating point routines etc.).
First, let's make a list of the tasks the programmer might want to
accomplish (these are the basic tasks involved in creating a visual 3
interface): \\
(a) Create the desktop environment. 3

39

-9
....... 4

. B I LIPS S s e e e e e T L e . : R R I T O LT IR LI
SRS R R P A e N e AP S A . e

o N
W, W T . - .. R . - . IR BRI
PR UL S P TR W A P WGP P WP L SO DS PRI TR W AT W W T A AP VI i, el Iy WO W WA P AT T W Y, 0 Vs)

P
'.l.l." .

\
N :,
C: (b) Create windows that can be moved, overlayed, resized, scrolied It
through, opened and closed, selected and deselected, named, and I

which are capable of containing other objects.

Ayhy
Pt
ay

(c) Create dialog boxes that appear when needed, communicate a
message to the user, enable a means of selecting options or typing a W
response, act on his response, and disappear when not needed.

A

t v §

(d) Create icons that can be moved, opened, seiected and deselected, and
, which can contain other icons through the use of windows (disk icons

- can be opened to 2 window which contains icons representing the
h next hierarchy level of objects; these icons can, in turn, be opened to
L-‘?j windows which contain the next level of the hierarchy).

DaiChets
e

™ “'.'.'.." Ny

ARK

0 o R

(e) Create the environment(s) of the application (this would require
2 drawing tools as well as tools enabling selection and the launching
F of processes).

v

-

‘ ...-.
A iy -_v,-'_ XN
)1 ot

R

There are two paths one can follow in developing the tooibox: you

can make the tools high level, thus restricting the degree to which the

interface can be tailored to the application (and restricting the

g

programmers creativity), or you can make the tools low level, giving the
programmer much greater flexibility in conforming to the interface but i

making it far more work for him to create it.

Use of a toolbox that is composed of a few high-level tools will
result in programs whose interfaces are very similar, but which do not take
full advantage of the visual aspect of the interface. The advantages of such
a toolbox are: it restricts the number of different interfaces that can be
created, and thus requires less time for the programmer to design the
interface, and, because the tools are high level, it provides the simplest and

fastest means of creating the visual interface.

- 40

o ol

Use of a toolbox that is composed of a great number of lower level

tools enables programmers to create a great variety of visual features,
allowing them to finely tailor the interface to the application (this takes
full advantage of the power of the visual interface because the program’'s
visual form follows its function, making it easy to learn and easy to use).
There are two problems associated with this type of toolbox: 1) the great
flexibility it gives the programmer in creating the application's interface
can lead to the creation of one that is overly compiex; and 2) the low level
of the tools somewhat defeats the purpose of the toolbox, which was to
simplify the creation of the visual interface.

| We might ask what benefits the application user gets from the use
of a2 standardized visual interface? First of all, it's important that we
examiné the nature of the environment that is created by this visual
interface. Let's assume that the user communicates with the computer
through the use of the keyboard and the mouse. The keyboard provides him
with capability to enter data (or in some cases, comrhands) into the
computer. Thus, the visual interface does little for the user in the entering
of data (except dialog boxes, which are often used for data entry). The
mouse, on the other hand, is almost solely devoted to working with the
visual interface--it is the tool that makes such an interface work. The
mouse is used for many tasks, but these can be categorized into two main

areas: contro/ and non-contro/.

D. DISCUSSION
Some distinction between control tasks and non-control tasks should

be made here. Let us define contro/ tasks as those which transfer control

41

.,
" (] ‘V ‘l 'xj
54 CRN

P
2a Sy

r

AT

o

,...
ARy

-aan

a2
.x!,"l
-

. t‘..’;‘:-.,'
AN

//1&-2’ T s

rrrr
;,

N
L

v

NARNAYNX)
3 {:'_-:.;5(5,(;' u(O &

from one part of the program to another. These are equivalent to commands
entered via the keyboard on linguistically oriented systems. Control tasks
include: launching and quitting applications, opening files or windows,
selecting menu items in pull-down menus and desk accessories, and
selecting command options within dialog boxes (in almost all other cases,
the act of selection is a non-control task). All these control tasks activate
some process, transfer control to that process, and manifest themselves in
the form of screen changes at the time of activation. In a linguistically
oriented interface, where the user is often presented with a standard
prompt, these screen changes often take the form of hyphens or other
symbols that appear in place of the prompt, teiling the user that the system
is acting on his command. In a visually oriented interface, the screen
changes that occur take many forms, often logically related to the task
bei'ng carried out. Some examples of such screen changes are: 1)
double-clicking on the icon of a disk or folder causes a window to zoom
(expand rapidly) out of the icon and be displayed on the screen showing its
contents; 2) clicking the c/ose box (a standard element of any window) of a
window causes the window to implode back into the icon; and 3) selecting
an item from a pull-down menu causes the selection to momentarily blink
rapidly on and off and then to vanish, in addition to the screen changes
caused by the execution of the command.

Non-contro/ (asks are mainly selection oriented--their primary
function is the selection of those objects to be operated on. This process is
similar to prefix notation in arithmetic--first the items subject to the
operation are chosen, and then the operation itself. Non-controi tasks, like

control tasks, provide instant feedback to the user as to whether they are

42

1Rt T

being carried out, but this feedback usually takes a different form. The
screen changes are not as dramatic as with those associated with control
tasks--generally, only the area of the screen where the pointer is affected.
These changes usually involve a color (i.e.light to dark) or pattern change in
the object being selected or deselected such that the object stands out on
its background. An analogy can be made between control and non-control
tasks and arithmetic operators and operands: non-control tasks are tho_se
that choose the operands; control tasks are those that choose the operators
and activate them.

Undoubtedly, the single most important capability provided by the
toois of the visual interface is that of seleétion. Almost all of the tools of
the interface are accessible only through the use of the mouse, and aimost
all uses of the mouse invoive the process of selection (this process is found
in both control and non~control tasks and takes mény forms).

Before going on, it is important to go over the basic procedures for
using the mouse. The mouse is a device which, when moved across the

surface of a worktable or desk, correspondingly moves a pointer across the

- computer screen. The mouse is equipped with a button which can be clicked

(pressed once), double clicked (pressed twice rapidly in succession) or held
down (this facilitates dragging--pointing, holding down the button, and
moving the pointer). Each of these actions is associated with the
performance of certain specific tasks:

(a) Pointing which is done by moving the mouse and thus the pointer on
the screen to point at something.

(b) Selecting wnhich is done by pointing and clicking when selecting
objects, by pointing, clicking and dragging when selecting text, and

43

-t -~
I"r“'.‘ b

. S

’.l.“' 13

J_ .
NN

”' -"': 4 "'
W P AR N

e,
'y

R
[

: by pointing, dragging and releasing for menu item selection.

(c) Qpening, which is done by pointing and double clicking on an object
or by selecting "Open” from a pull-down menu.

(d) Manjpulating which is actually moving things around, done by
selecting and dragging the object to be moved. In developing a
standardized visual interface, it is important that these basic
methods of using the mouse are adhered to, since changing them
would serve to confound and confuse the user.

[ACAESEE Y,

Let's examine some of the tasks that the user is able to accomplish
with the mouse. First, let's assume that upon entering the system, the user
is placed in the environment of the desktop--the administrative
environment of the computer. On this desktop he sees pull~down menus and
icons. The pull-down menus list the set of commands available to him and
the icons represent the data disks presently accessible, and perhaps a
trashcan. The mouse provides the means to activate commands (control
tasks) and also the means by which to manipulate objects (non-control
tasks) on the screen. The menus on the desktop list the administrative
functions that are available to the user (actually, they list all the
commands that can be activated from the desktop, but only the ones

highlighted are presently available for selection). Confronted with this s

desktop, the user can rearrange the icons on the screen or pull-down and

survey menu items (non-control tasks accomplished by pointing and

- .,- e
NP DR R
PR RLAE RN % Rt A S R
St atalal el et .

dragging). Selecting an item from a menu is a control task, which transfers

control to some predefined process. Other things can be done by the user ;1;3
also: by moving one disk icon on top of another he can copy the contents of '.:
the first disk to the other; by double-clicking on any icon he can open it to ?
see what files it contains; by clicking on an icon he can select that icon for o3
some process to be activated via the menus. E

44

et T e R R Lol - R AL AR R R A R R S A o B P et vt o e LR Bye Bot gt B R g0 2N 4 Rac piy Bis AR Bl lo Mo ala e Aai ke el R Sl SRk Ad TS 4 A ¢ A & 4
B

Opening a disk icon, the user is confronted with a window containing
the icons of all the files on that disk. These icons are
application-specific--their -appearance conveys information about the
application that created them. Double-clicking on a file will launch the
application that created that file (the application will then open to that
file), while double-clicking on the icon of an application will faunch that

:' application, which will open to a new file. Once inside an application, the
user is presented with a backgo(md that is specific to the application;
f however, he retains the visual tools that he started with. He still has
: | pull-down menus and/or icons, and the basic operations of the mouse in
pointing, selecting, opening and dragging are the same. Naturally, eVery
application has different requirements regarding functioné and features but
it is important to maintain the integrity of the /og/c of the visual tools (for
instance, having the user double-click on an icon to "select” it would go
3 against the logic of the tools of the visual interface).
-' What advantages does such a visual interface have over a linguistically
) based one? To begin with, a visual interface of this sort eliminates
command syntax errors. On traditional systems, where all commands are
entered via the keyboard, the user is required to enter commands in 3
specific format--altering this format either generates an error message or
executes the wrong command. This simply does not occur on with a visual
interface. The only commands that will be accepted by the system are those
that are highlighted in the pull-down menus--the user simply cannot
activate commands that are inappropriate to the environment which he is in
(they are not highlighted and will not respond to selection), nor can he

execute a command that doesn't exist (since he can only select commands

45

s a st 550N

...".

wfal sl

..........

available onscreen, which by definition are part of the application's
command language).

The elimination of command syntax and static semantic errors saves
the user time--no doubt about it--but there is another area related to this
that is even more beneficial: the visual interface relieves the user of the
burden of having to memorize the command language of the software. This is
one of the most powerful features of the visual interface and its importance
in facilitating ease of use cannot be overstated. In present day
linguistically oriented interfaces, the users sole means of accomplishing
control tasks'is by typing commands at the keyboard. An application which
contains more than a few features will undoubtedly require an extensive
command language. Learning and maintaining a khowledge of such a language
is only made possible by the very frequent use of the application--even
then, features which are not used very often might necessitate looking up
the desired command in 3 manual. Thus, casual users are at a great
disadvantage with a linguisticaily oriented interface, because they simply
don't use the application enough to remember its command language.
Managers and other users who frequently use more than one application are
put at an additional disadvantage: memorizing several different command
languages is an enormous task and can lead to confusion (one application's
commands might be confused with those of another application).

with a visual interface, the command language (of the application) is
built into the application in the form of choices offered on pull-down
menus, dialog boxes, and desk accessories. This is in addition to the
standardized command language of the interface, which consists mainiy of

the basic functions of the mouse. The visual interface facilitates a dialog

.....

Y

v

P AP

(4
-

2, Ry Tpiy &R -
"'.'1' ‘:’.v"(\-“}d“ ‘.:':" ,_q_{ ﬁ

[
(S
[N
[9%
)
NS

between the user and the computer, as opposed to the monologue from the

the user to the machine that is prevalent in linguistically based interfaces.

Before going on, it is important to discuss this concept, which is a

fundamental difference between the two interfaces.

k- Most linguistically oriented interfaces demand that the user be
thoroughly familiar with the command language of the application, and
assume that the user always knows what he wants to do next. This
assumption, though true in many situations, may be false in others. Complex
applications often require that the user go through a step-by-step process
to reach a desired end. i’he steps of this process are not always obvious.
Linguistically oriented interfaces might require the user to write down the
series of commands needed to perform a desired function. Unless the user

is wholly familiar with the application, he is never quite sure what

. commands are executable from a given point within the program--even if he

is, if there are a number of them, he must be able to keep in mind what he is

trying to do and know which one will accomplish his task. In this way,
communication with such an interface is one-way--the user must know
what commands to issue without any help from the computer.

The visual interface, with its command language built into the
interface and the application, conducts a dialog with the user. Pull-down
menus (showing the user a list of possibie actions) and dialog boxes (actuai
queries to the user demanding a response) continually offer the user choices
of what to do next; the user then makes his choice. This two-way
communication serves to guide the user down the decision path--he is no
longer forced to plot out the details of his actions beforehand or to

memorize the commands that bring about those actions. if the user gets to

P

47

{
the point where he is not quite sure what to do next, he can pull down menus 2

) until he finds the desired command. It is this feature which is especially :;
useful to the new user, the casual user, and the user of many applications,
§ since it makes no demands on their memories, only on their decision making " EE
: capabilities.) ‘t
The fact that the command language is presented to the user via dialog Y
boxes and pulli-down menus and need not be memorized puts the user in the }
unusual position of being able to sit down at the computer, start the Ei\
application, and work productively (as long as he has the knowledge needed !
to solve his barticular problem--the interface will not do this for him)
without ever having to glance at an instruction manual for the application. | :
, Naturally, there might be subtle nuances of the program that cannot be
' determined by such experimentation--for these one must still consult the ;\
 -‘ manual--but the point is that the user can simply "figure out™ the basic ‘
l functions of the program by just diving in and using it. Such a thing would be -‘
. unthinkable for most applications which have linguistically oriented ,:__
E interfaces--you cannot execute commands which you do not know exist. :
Let's briefly examine the reasons why a standardized visual interface makes o
this possible. *
The difference between a standardized visual interface and a
non-standardized visual interface is that, with the former, upon entering ‘
any application, the user is greeted by a familiar visual environment
(generally the desktop) for which he knows the basic command language, ;*
whereas with the latter, he enters an unfamiliar environment in which he .-
has no knowledge of the command language. The standardization of the ‘ ‘-
visual interface is very important because it gives the user a solid . '-.::
48 :
: 3

0
7

.'.;.""J‘ ')‘.’)_:.-.;4'.;4‘.:.-_;:\'-';(RN 2000 F O L R L G U L L R S U O L L A O AT O ¥ A

g e e g

Al Y

foundation from which to start the application: he knows the basic
operations of his principal tool, the mouse (clicking, double clicking,
dragging, pointing) and the capabilities those operations provide; in
addition, he is fainiliar with the desktop environment and the
administrative tasks that can be accomplished there. Thus, he already has
some knowledge of the operation of the application. Upon entering the
program environment, which may be quite different from the desktdp
environment, the user is still armed with his knowledge of the function of
his basic tool, the mouse, and is able manipulate or select objects, or
activate processes in the same manner that he is accustomed to. The nature
of the application may require that he extend this knowledge--application
specific functions may necessitate variations or additions to the
capabilities provided by the mouse--but it should never require that he
"un-learn” those basic functions. Note that it is crucial that applications
follow the logic of the standardized visual interface if the advantages of
the visual interface are to be exploited Departing from this
logic--requiring the user to conduct operations in ways dissimilar from
those he has learned--forces the user to memorize a new command language
(which is diff icult because it departs from the p///osophy of that which he
has already learned), and thus constitutes a failure to utilize one of the
most powerful features of the visual interface.

Following the philosopfy of the standardized visual interface consists
of the following:

(a) Retaining the basic functions of the mouse--any additional functions
or variations must be easy to remember--they must maintain logical

49

ey e

R

X0

e

::i" t

o
¢
- 3 e A“"" LA

¥

Y%, 2
4:./ 'n' ’-'.’v

3.}

integrity with the basic functions (they should be easy to remember
because they should become intuitively obvious once they are
performed a few times).

(b) Retaining the standard visual tools and their means of operation:
windows, icons, dialog boxes, desktop, pull-down menus.

(c) Providing visual tools specific to the application that are extensions
of the standard visual tools and whose operation.is logicaily similar.
Adherance by the application programmer to the philosbphy of the
interface makes it possible for the user to jump into an application with no
prior knowledge of its operation, and to navigate through the program using
just the standard tools of the interface. This is a powerful feature which is
of great value to new users, casual users, and users of many applications.
Another advantage that the visual interface has over the linguistically
oriented ihterface is the simplification of operations which would normally
require a complex command sequence. To illustrate this, let's discuss one
of the complaints often voiced about the visual interface: users of
non-visual interfaces frequently complain that while the visual interface
simplifies use of the computer for the novice, who doesn't always know
where he’s going, it complicates the use of the computer by the expert, who
X knows exactly where he is going. In other words, the tools of the visual
interface can be tedious when the user knows what he is doing.
Before going on, we must ask ourselves the question: is the method of
command activation really the complaint of these expert users or are they

really complaining that the visual interface slows down the machine? The
visual tools are powerful, but much of the computer power goes into the
creation and management of the visual interface instead of being directed
toward accomplishing the task at hand. When the user activates a command

S0

.........

. - « - - % Y '.-q.-.--'.‘n' AR 'h'.’.‘t.’l" - .t T Y
IR O PO ORI P PO I N NI IR ML T S ST AR TR R,

to perform a certain function, the command sets many processes in motion
which may have little to do with the actual function to be performed. These
processes include: screen changes (to indicate execution); background
changes (from the desktop environment to that of the application, or from
one environment of the application to another); percent done indicators,
which give the user some idea of how long an operation is going to take,
allowing him to be productive eisewhere while he's waiting [Ref. SJ;
pull-down menu modification or creation (different selections might be
highlighted or new pull-down menus created); dialog box presentation;
window and icon modification or creation (windows and icons might be
created or highlighted/de-highlighted). It is not the intent of this thesis to
go into the area of performance siowdowns due to the maintenance of the
visual interface. Let it suffice to say that with technolbgical advances and
the use of separate processors to manage the visual interface, it is probably
no longer arelevant issue.

Since the visual interface does tend to guide the user down the decision
path, it would seem that more steps would be necessary to get from point A
to point B. This is not necessarily true. The command language of an
application that uses a visual interface is generally more poWerfuI (one
command in the visual interface is often equal to several in the non-visual
interface) and more flexible (the visual interface often provides more than
one way to go from point A to point B) than that of applications utilizing
linguistically oriented interfaces (Note: as we shall see, there are
inflexibilities associated with the visual interface as well). The visual
tools are the source of this power. For instance, let’s say that you wanted to

copy a file from one disk to another. With the non-visuai interface, you

51

1 vy
-’ "1 '.l

M RPN
Ay AN
. fi ',4,-", I"-

"o
PV]
e

v

-’l‘.’.l_{l," % LR
7‘,'-" " {.t‘ ."'t .' *

A
.7,

'’

,_
4

.........

..........................

would have to type a specific command which included the name of the file

OOl SR AN

to be copied, the disk copied from, and the disk copied to. With the visual
interface, you could select the file in the source disk window and then drag

the selection to the destination disk window. Such an operation could be

AW

A A

i performed faster than that involved with the non-visual interface, with less .
chance of error--no chance of a command syntax error and little chance of a

Ny v_x,
“ " " ;ﬂ&

b procedural error since the operation follows the logic of the user's thinking -
B ("take this file on this disk and copy it onto this other disk”). The power of
the visual tools translates the physical act of dragging an icon into a :lj

command sequence that accomplishes the copying of the file.
Although there are many examples like the one above, there is some o
truth in the argument made by the expert users--the argument that the use ﬂ
of the tools of the visual interface (i.e. pull;down menus etc.) is far more j
time consuming than the use of typed-in commands. This is a valid criticism
because the visual interface usually requires that the user adhere to the []
- somewhat inflexible rules of the environment. This inflexibility can :
necessitate otherwise unnecessary steps on the part of the user. Let's look

at an example: the user has a number of windows onscreen in the desktop
environment and wishes to transfer a file from one window to another (the
user knows the names of the windows and the file)--unless the two
windows involved in the transfer, and the file to be transferred, happen to
be visible and recognizable, the user must shuffle windows around (bring
them to front/send them to back, or close them) until they are visible, in
order to accomplish the transfer. Selecting and dragging the icon of the file
from the source window to the destination window will accomplish the

transfer; forcing the user to manipulate the windows to get to this transfer

o A

52

’

.

)

-

'

>
A

step is a waste of time. A typed-in transfer command containing the name

of the source window, the file name, and the destination window would
speed up this process considerably.

Obviously, if the user knows the command that he wants to execute,
typing it in may often be faster than finding and selecting it from a
pull-down menu, especially for a fast typist. However, there are ways of

making the visual interface just as productive as the non-visual interface
for these expert users:

(a) Create keyboard commands that coincide with pull-down menu
selections.

(b) Create a redundant command lahguage--a linguistic command
language to lie beneath the visual command language.

(c) Allow the user to create macros or executives.

The idea of an underlying linguistic command language is intrigding. It
would solve many of our problems. First, it would satisfy the expert
users--they could ignore the mouse (well, almost) and work entirely from
the keyboard (this might not always be desirable, even for the experts, in
extremely complex applications). The clumsiness of the visual tools in
certain situations could be bypassed by these experienced users, thus,
saving them time and adding power. Second, an underlying linguistic
command language would simplify the creation and modification of user
defined macros or executives (single commands that activate muitiple
commands), since it would break down the visual commands into
lower-level, type-in commands that could be selectively edited. Third, such

a language would in no way affect the normal visual interface--if desired,

33

TR
il > AR

1

R
-2)J-‘v:rr'

R LALN e »
5] .") -".-‘. ? AENNOAN A
AR K B

s
o 5

X

A A
"v"-"f:’l{“
s

Y g

2 i

1 s,
- o W -

“y

%7,

r
[";I""
. gA

PP

.fi.

Ay
w4
""I”

» »

(XA

s ‘::’fi ’Q

k]

il lan 4
LA

T oe et
*
e

AL
VI

the user need only use the visual toois via the mouse.. Thus, the
easy-to-learn, easy-to-use advantages of the standardized visual interface
would still apply; only the expert user would want to learn the linguistic
command language. Taking all these things into account, it is easy to see
that the development of such a language could only benefit users (they
would have “the best of both worlds®), as long as no compromises were made
regarding the visual command language or the interface to facilitate that
development.

The growth in the power of software applications generally entails a
growth in the numbers of features they provide, since, the more features we
have at our disposal, the more tasks we can accomplish. The greater the
number of features, the more control decisions must be made to utilize
those features. The number of these control decisions is what determines
the compléxity of the software. we'll define comp/ex applications as those
which require many control decisions to be made. Thus, by def inition, as the
level of complexity increases, the number of control decisions to be made
increases.

Perhaps the greatest benefit in using a standardized visual interface is
that it enables the user to use increasingly complex applications. Let's
make a bold statement here and see if we can back it up: The more complex
the application, the more necessary it is to have a visual interface.

Using a non-visual interface with a complex application, the user is
subject to four side effects:

(a) Regardless of his frequency of use or how expert he is, he simply
cannot remember the entire command language.

(b) Infrequently used features, of which there may be many, will

54

A\

“\
-

N

Ry

V%
r

.- ﬂ.. f
%-.

0
I.‘ .
I'A. l.l
LIS Y,

*r %y

42

o DA

necessitate frequent referrais to the application manual.

(c) Many of the features of the application will not be used.

(d) The user may become hopelessly lost in the application, having no
idea of what he should do next.

A visual interface is not as susceptibie to these side effects. The
command language of the application need not be learned or remembered (at
least, not the specific commands themselves--the user still must know
what the commands do), so the entire command language is always
accessible to the user. This feature of the visual interface makes it
invulnerable to two of the side effects encountered when using a complex
application with a non-visual interface: infrequently used features can be
utilized just as easily as frequently used features, thus, all of the features
of the program are more likely to be used. Additionally, the user is less
likely to become lost in the application since he always has a frame of
reference--the screen background--and since he is guided by the application
(highlighted choices on pull-down menus are the only ones appropriate for
his next action) in the problem solving process.

when inside a complex application, the user has a number of questions
to consider (whether the user is using a non-visual or a visual interface has
a profound effect on the answers to these questions):

(3) What is the problem he is trying to solve? The answer to this

question will hopefully be easy; if not, the visual interface may help
him by offering him choices of what he wants to do.

(b) What is the sub-problem he is trying to solve? To answer this
question, the user must have a clear idea of where he is in both the
application and the problem solving process. With the non-visual
interface, if the user is familiar with the application, is
concentrating on what he is doing, and can pursue the probiem

S5

b P Y -

)

[N AT RRA S G A A g & A Ao CALOEACARGEA LR C A PSR SRR AR A AE D A TRV

solving process uninterrupted (interruptions can cause him to lose
~ his place in the problem solving process so that when he comes back
< to the machine he will not know where he is--and it may not be easy
to find out), he will probably know what this sub-problem is. With
the visual interface, the user is guided in the decision process by the
application--he can only make choices within puli-down menus that
are possible with respect to where he is in the application. The
visual interface also makes it easier to come back from an
interruption, since it provides a visual frame of reference.

AN

(c) Wwhat is the feature of the application that will enable him to solve
this sub-problem? The non-visual interface requires that the user
memorize all the features of the application--this can be an
enormous task in a complex application. By contrast, the visual
interface always displays all the features provided within a given
frame of reference. The user does need to know what the features do
however.

- (d) How can this feature be called upon--what commands will activate

- it? The answer to this depends on the extent of his knowledge about
the application’s command language and on how familiar he is with
using this particular feature. If he is using a non-visual interface
and it is not a familiar feature, it is unlikely that he will know the
applicable command to activate it, forcing him to refer to the
manual. The pull-down menu selections in the visual interface
provide all the commands that can be executed from the environment
he is in and thus can help him immensely.

(e) In what order should commands be executed? The answer to this
depends on his knowledge of the application and his knowledge of the
problem solving process for his particular problem. The non-visual
interface may force him to carefully plan and write down his
intended steps ahead of time, in order to proceed smoothly towards
the problem solution--this may involve a thorough study of the
problem solving process and extensive referrals to the manual for
the right commands to carry out the process. The visual interface,

5 with its pull-down menus, requires that the user have a basic

N knowledge of how to solve the problem--enough so that he can

b recognize what step comes next when he sees the command to .

activate it. This is similar to a multiple choice test in academics,

-}'-', "'-l.
(N

56

.I
1"\{

A S AN N R AN AR AR A SISl Sl St it e e e Jh ot et JaAS S Il B0 Ao e B A S A a4t w2t s e e 2y

puli-down menus merely require that the user be able to recognize
) the right command when he sees it, not that the user memorize all
the choices, as with the non-visual interface. Also, the visual
interface makes it easier to execute steps in the right order through
the use of highlighting in the pull-down menus--it restricts the
number of choices available to those pertinent to the present state
of the problem solving process.

b (f) What is the next step towards solving the probiem? The problem
confronting the user when using a compiex application is that the BASY
problem solving process is not necessarily a linear process--from
any point in the process the user may be presented with numerous
choices of where he wants to go next. Whether or not he is able to R
make a choice depends on his knowledge of where he is, and what ‘
task he wants to accomplish next, as well as his knowledge of the
application itself. The non-visual interface gives him little

Ehaal aug ama 4

| indication of where he is--it provides no frame of reference; it a
' provides little help in deciding what task he wants to accomplish
next--it only displays a prompt symbol indicating it is waiting for R

f his input. By contrast, the visual interface provides a visual frame
~ of reference teliing him exactly where he is and displays puli-down

menus that can help him in deciding what to do next--if he has I
executed the correct commands up to this point, the choice of what {
to do next will always be among the highlighted selections in the R
pull-down menus. N

57

......................... . R N S S S

B I A P RPN R PO R P '.-._.-__.-__.-__I,_. A O P S R _
2 N e S S) .":' P A R e .':'-.‘.\.‘} .‘}.":'.'}. R PR

e a Cr. C A AL

V. CON iON

The reader has been given some insight into current visual technology
and how visual tools can be used to help application programmers and users.
From the application programmer’'s standpoint, these visual tools take the
form of sophisticated program processors which aid him in the writing,
editing, debugging and testing of the code. Nevertheless, it is the richness
of the visual interface that is of the greatest vaiue to application
programmers--it enables them to create an environment for their
application that is tailored to the conceptual model of the user--an
environment that facilitates fast learning and ease of use. The toolbox is
the key to creating this environment. Its use saves the programmer from
investing enormous efforts in fhe creation of the visual interface and

promotes standardization among applications. In addition, the toolbox helps

the programmer to create an environment that is unique to the appiication .

From the application users point of view, the visual interface offers a
friendly and familiar environment; applications which follow a standardized
visual interface are easy to learn and easy to use. As applications grow in
complexity and number, we have observed with the non-visual interface that
there is 3 limiting factor regarding the number and complexity of
applications that a single user can use effectively. This does not appear to
be true for the visual interface--as long as it follows the conceptual model
of the user, its standardized administrative environment and adherence to
the logic of the functions of its tools make it effective in dealing with

multiple, complex applications.

'_ -l A
- -

’ vy
BN, | ey

S

Ok 4| s

Lo

l' H
RN

v v, .--
e e
e o .-:' TR
1] Al g .
, A v&f“

SRS . o SRR
DRI 1 VNN

By

C LBE A e o -

Y

LIST OF REFERENCES

MacLennan, B. J., Principles of Programming Languages, p. 454, Holt,
Rinehart and Winston, 1983, '

Hunter, J. E., 7he Formal Specification OF A Visual Display Device.
Design And Implementation, MS. Thesis, Naval Postgraduate School,
Monterey, CA, June 198S.

Raeder, G., "A Survey of Current Graphical Programming Techniques”,
Computer, Volume 18, No. 8, p. | 1-25, August 1985.

Teitelbaum, T., and Reps, .T., “The Cornell Program Synthesizer: A
Syntax-Directed Programming Environment®, Communications of the
ACM Volume 24, No. 9, September 1981.

Moriconi, M., and Hare, D. F. "Visualizing Program Designs Through
Pegadys” , Computer, Volume 18, No. 8, p. 72-85, August 1985.

Myers, B. A, “The Importance of Percent-Done Progress Indicators for
Computer-Human Interfaces”, CH/ 85 Proceedings p. 11-17, April
1985.

]
g
L

5

el
Ex

2

e
2k

.'.. ’.Jb

LI R P
-""_ [

TR

;fl‘.’. .’l :‘ }?.'." ‘.
SO i X

XN

ot
TR AN S -
i'l.{‘)"<.'\
e S g

-[I "- “l " “' °,
9

i

rfx-ffr’:"('-':‘."-”_'('-:'f»’.‘?(‘\',-?.\,“‘v-_ Lple alt of0. TR o o70 tilate RDo'E g\ W SteCate ate gte oo bath arh g sy by 2O L La s iag e £ ou oYL

INITIAL DISTRIBUTION LIST o
| No. Copies §-.-‘:
R
1. Defense Technical Information Center 2 ’ i
Cameron Station . ' ::t;:f
Alexandria, Virginia 22304-6045 :sjg;{
2%
2. Superintendent 2 : S
Attn: Library (Code 0142) o
Naval Postgraduate School el
Monterey, California 93943-5002 D
3. Chairman (Code 52) 1 :
Department of Computer Science - A
Naval Postgraduate School o
Monterey, California 93943-5000 WInT
4. Curricular Officer (Code 33) i ._:.
Weapons Engineering - =
Naval Postgraduate School o
Monterey, California, 93943-5000 ¢
. Lt. Michael N. Fredericksen 2 RS
Department Head School Class 93 R
Surface Warfare Officers Command : \\
Newport, R.1. e
. Gordon H. Bradiey 2 o
Code 52 BZ i
Naval Postgraduate School R
Monterey, California 93943-5000 N
S
A
e
!‘ﬂ_
R
M
60 AR
Al
W
..,.f
e L L N R e e e P S S e

RS AL R oIS LN Pl)

PR}
'

?f'fu‘t

.: X 19 %
M. SRR PP

B L S o n e W Lt :_‘1_'.4.'-4'". L
mls):s_-,ﬁ.‘:.\f\f\.f\.‘ﬁ\.'&"ﬂﬁ.?.{-.f' R OGO, SO A AN

L)
LAWY GBS WAL VAR,

