
I- A1lL67 866 RIDING COMPUTER PPLIC TION PROGRAMMERS
A NM USERS NITH 2/1

THE TOOLS OF THE VISUAL INTERFACE(U) NAVAL POSTGRADUATE
SCHOOL MONTEREY CA M N FREDERICKSEN MAR 6

UNCLASSIFIED F/G 9/'2 NL

La Igo

.. 4.

I S.' ' ..

..

, o- •I . * a

11111. 11=

MICROCOPY RESOLUTION TES1ICHAR
T

.. ..' ..,.- .." ,-,: - .- . .- ..-.-. .. -. : - . .. -. _. .- ., - -.. ., .- -. ,- -

1757&-F ~ 47 77163 T-1 7w W v

%,%

'w S;

NAVAL POSTGRADUATE SCHOOL
00 Monterey, California

THESIS

* o: ° .,

AIDING COMPUTER APPLICATION PROGRAMMERS
AND USERS WITH THE TOOLS OF THE

VISUAL INTERFACE

by *'. ,m%

Michael Nei s Fredericksen

March 1986

LL.J Thesis Advisor: Gordon H. Bradley %

Approved for public release; distribution is unlimited.

.,. -. .. ,.

... ° ta.. Sk

UNCLASSIFIED

sECURtY CLASSIFICATION OF THIS PAGE / ?

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
Za. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORTApproved for public release;
Zb. DECLASSIFICATION / DOWNGRADING SCHEDULE- p o f-uc e a

distribution unlimited.
4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) %

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if apoicable)

Naval Postgraduate School Code 52 Naval Postgraduate School

6C. ADDRESS (City, State, and ZIP Code) lb. ADDRESS (City, State, and ZIP Code) * .

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9, PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c ADDRESS (City, State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT .-

ELEMENT NO. NO NO ACCESSION NO

I 1 TITLE (Include Security Classification)
(U') AIDING COMPUTER APPLICATION PROGRAMMERS AND USERS WITH THE TOOLS

OF THE VISUAL INTERFACE

" PERSONAL AUTHOR(S)

Freadarick sn Mic-hppl N
"3j TYPE OF REPORT 1 3b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) IS PAGE COUNT

Master's Thesis FROM TO 1986 M'irch 61
'6 SUPPLEMENTARY NOTATION

COSATI CODES I8. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

:ELD GROUP SUB-GROUP User Interface, Visual Interface, Visual Tools,
Toolbox, Application Programmers

'9 ABSTRACT (Continue on reverse if necessary and identify by block number)

The purpose of this thesis is to explicate the benefits of the computer
visual interface by identifying the functional capabilities of some of
the visual devices made possible by such an interface, and by examining
the ways in which these visual devices can provide tools to aid the
programmer in writing, debugging, and unit testing application programs,
arid the user in learning and using applications. This thesis should give
the reader some insight into how current visual technology is being used
(or can be used in the future) to aid the applications programmer and
application user. The focus will primarily be on the programmers and users
of applications for low-cost desktop computers.

;0 ', ',UTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

"%CLASSIFIED/UNLIMITED 0 SAME AS RPT Q DTIC USERS U N C LASS I FIED
2"a %AME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

G. H1. Bradle (408) 646-2359 ode 52Bz
DO FORM 1473, 84 MAR 83 APR edition rmay be used until exhausted SECURITY CLASSIFICATION OF THiS PAGE

All other editions are obsolete

..- .. . ,. . ,}- ," ,'; .,. 4 " .-2 '- " ." .' .-. .. -' , > -€ ., -/ , : ., " -" ,.1.

Approved for public release; distribution is unlimited

Aiding Computer Application Programmers And Users

With The Tools Of The VisualI nterface

by

Michael N. Fredericksen
Lieutenant, United States Navy

B.B.A., James Madison University, 1975
4. -

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE I N ENGINEERI NG SCI ENCE

from the

NAVAL POSTGRADUATE SCHOOL
March, 195

Author: y_,/__ _ _ _ _ _ _--------_
"MitlIdl N. Fredericksen

Approved by.

Darn I L. Davis, Second Reader

VincenfLum, Chairma(Department of Computer Science

John N Dyer, Oean of Science and Engineering

2

%L

,.
--_S..'%

V .
G .

-J .1". ... m ... * . . -o -, r r -. .. ,. z -. .. , r.- t i- i .w -- twsa . rrru r e. -s . k..- .,W ==-

* ABSTRACT

The purpose of this thesis is to explicate the benefits of the computer

visual interface by identifying the functional capabilities of some of the

visual devices made possible by such an interface, and by examining the

ways in which these visual devices can provide tools to aid the programmer

in writing, debugging, and unit testing application programs, and the user in

learning and using applications. This thesis should give the reader some

insight into how current visual technology is being used (or can be used in

the future) to aid the applications programmer and application user. The

focus will primarily be on the programmers and users of applications for

low-cost desktop computers. (-

Ac~es 0,1 For

NTIS CRAWI
Ue.:TIC I A

ByP Di.1 ti

k"deS

DI t

frIo~o

•. /.t r.=lY.

INSI~:...';

4

" 3

- ::r.:%

;. J-. V- L- Inv . . ~ U *~-

TABLE OF CONTENTS

I. INTRODUCTION 5

II. TOOLS OF THE VISUAL INTERFACE 10

A. TERMINOLOGY10

B. A LIST OF VISUAL DEVICES O10

111. VISUAL DEVICES TO AID THE APPLICATIONS PROGRAMMER .17

A. THE PROGRAMMING TASK 17

B. AIDS FOR WRITING AND EDITING THE PROGRAM 19.....19

IV. THE USER INTERFACE 34
A. BACKGROUND34

B. THE CHANGING USER 34

C. THE STANDARDIZED INTERFACE36

D. DISCUSSION 41

V. CONCLUSION 58

LIST OF REFERENCES59

INITIAL DISTRIBUTION LIST60

.4

, .'.'.-'.'.-...'.3.r.:. . .-.- ,., ' .;' . . .- - / % %- . ./ .r S ,V .-.- '.'.4.-

The introduction of computers with bit-mapped, high resolution

screens during the 11970s spurred the development of a new medium for

human--machine interaction: the visual interface. Initial research into the '

utilization of this interface was carried out on high-cost devices by

universities and private concerns, most notably the Xerox Palo Alto

Research Center (Xerox PARC).

When technological advances made it possible to implement a visual
interface economically on a desktop machine in the late '70s, many of the

research ideas generated at Xerox PARC were combined into a single,

relatively low-cost system, the Apple Macintosh'". It combined a high-

quality visual display, sufficient computer power, and, most importantly, a

comprehensive, visually-oriented systems interface.

The Macintosh" was the result of an effort to create a powerful,

easy-to-use desktop machine which, utilizing a standardized visual

interface, would decrease user learning time and ease transitions when

going from one application to another. Recognizing the need for

standardization, Apple incorporated a set of tools (a toolbox) for the

creation of the many elements of the visual interface into the ROM of the

machine, accessible to applications programmers via a special programming

language. '

The success of the Macintosh" has stimulated great interest in visual

interfaces and has paved the way for the development of similar systems: I)

machines that have Nac/ntos,'"-/Ike interfaces (eg., the Commodore

5 .

9 ,'

Amiga'" and the Atari 520ST'); and 2) software products that create a
Macintosh'"-like visual interface on systems that use linguistically-
oriented operating systems (eg. Digital Research's GEM'" and Microsoft's

WINDOWS'"). 1 One reason for much of the interest in visual interfaces lies

In the changing nature of the computer user--the widespread use of

computers in almost every field of human endeavor has created two new

types of users: 1) the manager--user of many applications; and 2) the

casual user--the infrequent user of applications. "Nonspecialists require a

rich interactive environment making use of graphics and audio

communication" [Ref. 1] in order to be productive--the visual interface

provides this rich environment. Another reason for the increasing interest

in the visual interface is the changing nature of application programs. The

domain of the computer has extended beyond that of just wordprocessing,

file management and number crunching--computers are being used with

page-layout applications, CAD (Computer Aided Design) and engineering

applications, and graphically oriented database programs--areas of use

made possible by enhanced display capabilities.

The visual interface is having an extraordinary impact on the computer

industry: 1) it is expanding the range of use of computers to areas

previously ignored because of the need for high quality graphics; 2) it is

broadening the user base to include managers, casual users, and those not

knowledgable in the ways of computers; and 3) it is facilitating the

I The reader should note that the term /lacintosht m -fike as used here
refers to the visual similarities to the Macintosh'" interface and does not
imply that it was intentionally emulated by other products.

6

development and use of software applications whose complexity would

prohibit use on a non-visual interface.

A written explanation detailing the reasons for this impact is difficult

to find since the development of the Macintosh" interface and similar

systems was accomplished with little or no conceptual explanation--they

were just presented and sold as products. Hence, the only way a potential

user can develop an understanding of the benefits of the visual interface

(outside of this thesis) is to buy or borrow one of these products and use it.

This fact, together with the misconceptions arising from a general lack of

understanding of such an interface and the relatively high cost of visually

oriented systems, has undoubtedly slowed the widespread acceptance of

systems utilizing a visual interface.

The purpose of this thesis is to explicate the benefits of the computer

visual interface by identifying the functional capabilities of some of the

visual devices made possible by such an interface, and by examining the

ways in which these visual devices can provide tools to aid the programmer

in writing, debugging, and unit testing application programs, and the user in

learning and using applications. This thesis should give the reader some

insight into how current visual technology is being used (or can be used in

the future) to aid the applications programmer and application user. The ""4

focus will primarily be on the programmers and users of applications for

low-cost desktop computers.

The visual interfaces of the low-cost systems currently available are

remarkably similar. We will use the process of abstraction to rise

above the details of each system's particular implementation, create an

abstract system interface, and then generate a list of the basic components

7

.............................- *.*

4. 4 '.4 4 -. 9

"IT.P, Y .F" 'AY j Y~7 ' - -77%F %F.s~ - -7.- - r.1- "N~ ----.. pm -

of this interface--the visual devices (and their respective capabilities) that
• '.

make up the display that the user sees [Ref. 21 This abstraction makes it

possible to view each existing system as an example of the abstract system

combined with specific Implementation decisions.

The terminology used to refer to visual devices in this thesis refers to

the visual devices of the abstract interface, rather than of any particular

system. We shall normally (but not always) use the terminology of the

Macintosh'" interface I , since it appears to be the most descriptive. Apple

was the first to introduce a low-cost visually-oriented system interface in

the Macintosh'", and was not restricted by copyright laws in developing its

terminology for the visual tools as were subsequent firms. We intend -

however that the terminology apply to the abstract system, and thus, need

not be attributed to a specific system. Specific definitions of features or

details of operation also refer to the features of the abstract system;

hence, it is not necessary to attribute them to the system in which they

appear.

The Incorporation of a greatly enhanced display technology into

low-cost machines has challenged programmers to find ways to exploit the

new capabilities offered by bit-mapped, high-resolution displays. Some of

This thesis is about the tools of the visual interface, therefore, it is

important that we have a standard terminology for referring to these tools.
Some of the terms which we have chosen to use are part of a terminology
developed by Apple Computer, Inc. (Cupertino, CA) for their Macintosh'"
computer, and are registered trademarks or are protected by copyright. This
terminology includes the terms: Pointer, Select, Click, Double-Click, Mouse,
Desktop, Window, Dialog Box, Desk Accessory, Icon, Toolbox and Pull-down
Menu.

8
t,,'

. I....

the capabilities and features described in this thesis are exactly as

available on current systems; others are from research and development

efforts on visual systems [Ref. 3. This thesis presents a discussion of PS

the union of these capabilities plus some additional capabilities which

would be useful, but which are not yet implemented, that go along with the

spirit of the interface. The thesis is organized into four parts, of which this

Introduction is the first. Part II introduces the reader to the visual devices

and the capabilities they provide (together these form the visual tools).

Part III discusses ways in which visual tools can be used to help the

applications programmer; this is illustrated through the use of a

hypothetical program (a program with which to write programs). Part IV of

the thesis is devoted to the user interface--its creation by the applications

programmer, and Its use by the application user. Part V is the conclusion.

9

.*.......

II. TOOLS OF THE VISUAL INTERFACE

A TERMINOLOGY

The terms administrative and non-administrative are referred to

frequently throughout this thesis. Administrative tasks are those

operations that are activated from outside application programs. Examples

of these tasks include: naming, combining, printing, copying and deleting

files, and Initializing, booting, ejecting, erasing, copying and naming disks.

The user associates the accomplishment of these, and other functions

dealing with whole files or whole disks, with the administrative

environment. Non-administrative tasks are those tasks which are activated

from within applications (they are application specific).

The term &ackground is used (only in conjunction with a visual F
interface) to describe the whole-screen, graphical image that is furthest to

the rear of the screen. All windows, icons, dialog boxes and other visual

tools are projected on top of some background (a background cannot be

manipulated, although it has features that can be used). A background is

usually used as a frame of reference and is named in accordance with the

function it performs: in the administrative environment, the background is

referred to as the desktop; in the environment of an application, the

background is given some name that is appropriate to its use.

B. A LIST OF VISUAL DEVICES

The following is a list of visual devices that provide system users with

powerful tools which are easy to use and remember, and which allow

10

applications programmers to create an environment which varies little from

application to application. The visual devices are described both in terms of

their primitive functional aspects and In terms of the capabilities they

provide when enhanced by software.
1. Pointer

The Pointer is a tool which gives the user a rapid means of

pointing to any geographical location (pixel) on the screen. When facilitated

through the use of a mouse, the Pointer can select individual plxels (by

clicking), create linear arrangements of pixels (by dragging), and select

predefined patterns of pixels (ie. icons, windows etc., by clicking). These

basic functions make it possible for the Pointer to do the following:

(a) Access pull-down menus and select command options.

(b) Select choices from dialog boxes.

(c) Select, move and resize Icons and windows.

(d) Select and manipulate screen areas containing graphics or text.

(e) Select pixels linearly to create two-dimensional graphics.

(f) Launch applications or open documents.

The Pointer may change form to suit different applications (i.e. it

may be an arrow in the administrative environment, an insertion-point

bracket in a word processing application, or a pair of scissors in a page

layout application), but its principles of operation should remain the

same--the user should not have to relearn its basic functions.

The Pointer is the user's primary tool for manipulating, creating,

and editing screen elements, and for selecting actions or elements to be ..-

11 ::::

. acted upon. By not having to memorize keyboard commands, the user is free

to concentrate on what he is doing with the information rather than how he

is doing it

2. Windows

"" Windows are organizational frames of reference for the user. They

provide a means of organizing information graphically and a means of

displaying "large amounts of information onscreen simultaneously" [Ref. 3].

When combined with the use of icons, windows provide a way of visualizing

the actual location of an element of information (represented by an icon)

and a basis for its manipulation. By having multiple windows onscreen

simultaneously, the user can arrange his elements or aggregates of'

information as he pleases without having to go to a lower level of

abstraction, and he gets immediate feedback on any actions that he takes in

the form of highlighting or other screen changes. Windows also can provide

a means of observing two or more processes simultaneously (for example,

watching a graphics program execute line-by-line and observing its output
as it is drawn in another window).

3. Dialog Boxes

Dialog boxes are the system's best means of communicating with

the user. Often incorporating menus of options, dialog boxes force decisions

to be made and give immediate (and specific) feedback (in the form of error 4

messages or system failure messages) on problems with the system,

application, or user inputs. Within applications, they provide prompts to the

user and give him a selection of options and a means to select those options

(for example, when quiting an application, the user might be presented with

' a dialog box inquiring whether the changes that have been made to the

12

, ~ '2 '. !f 1-- . . ': . .r . .i r -- ". .,J ,

document that he was working on should be saved or discarded--his I *g.

subsequent selection either activates a save to disk process or discards the

changes).

4 Pul)-down Menus

Pull-down menus are expandable menus that can be viewed In their

entirety by selecting the menu name and dragging downwards toward the

bottom of the screen. The menu names appear across the top of any

background screen. Pull-down menus perform several functions:

(a) They give the user a list of what actions are available to him at any
time (highlighted selections show what actions are possible now,
while unhighlighted selections indicate that something is required
from another process or the user before they become possible).

(b) They guide the user down the decision path when he is uncertain of
what to do next.

(c) They give the user access to powerful processes without ever
touching the keyboard (routines and functions can be activated by
selecting a single menu item).

(d) They are tailor-made to fit the environment of the system or
application so that the user is always aware, by the menus available,
of which environment he is in.

(e) They facilitate much faster learning of the system and applications
because the user is not required to memorize a command language
(they are the command language), and thus necessitate far fewer
references to manuals.

5. Desk Accessories

An extension of pull-down menus, these are powerful

mini-programs that run in the background of an application or the desktop.

They can be used without leaving the present environment.

13

FN

,%.

The power of desk accessories lies in the ability they give the

user to perform administrative tasks from a non-administrative i

environment, and in the fact that they provide the user with valuable tools

which he can use within an application, even though they were not included

in its software. In some ways, they are very much like library routines,

except that they are called directly by the programmer or user and not by

the application program, and are wielded by the programmer or user as

tools, rather than used as subroutines.

6. Icons

Icons are graphical symbols used to represent meaningful

elements or aggregates of information. Icons adhere to the

"picture-is-worth-a-thousand-words' concept in that, to oe useful, they

must immediately convey their exact meaning to the user at a glance. They

can represent simple identifiers for physical things such as disks or

applications, or they can represent complex concepts such as files or"4 "

relational objects (i.e. folders).

System icons are system created and are used to represent

standard elements in the administrative environment (ie. disks, trash,

folders, files). The user is usually permitted to name these icons with ..-

names that are designed to jog his memory as to exactly what they

represent; thus, they provide a way for the user to tailor his visual

interface to suit his particular way of thinking. Since system icons are

components of the standardized visual interface, they remain the same

regardless of the application, creating a familiar environment for the user.

14

'i. 14 ...-,

Application icons, created by applications programmers, vary among

applications, necessitating that the user learn the meanings of the icons

within a specific application. This is usually not difficult because: 1) they

are limited in number; and 2) an icon's form is designed by the application

programmer to be visual representation of its function or contents. The use

of application Icons Is a way of customizing the visual Interface to fit a

particular application, thus making it easier for the user to learn. It is

Important that the application programmer ensure that the rules for the

manipulation of these icons remain the same as for the system icons, so

that the user is not required to learn and memorize any new rules.

Some applications allow the application user to create icons

which serve as identifiers to represent specific, user created functions or

items of data to be manipulated or used within the application. This is

particularly true of certain visually oriented database applications, where a

user created icon might be used to represent a unique item for which the

database contains underlying information.

Icons can be moved around easily with the mouse, enabling the

user to move the large amounts of information that they may represent into

an organized format that he is better able to work with--they allow him to

see and manipulate the big picture.

7. D

The desktop is the background of the administrative environment

of the system. It provides a geographical frame of reference to the user and

a framework in which to manipulate and organize (to his liking) lower-order

objects (windows, icons etc.). When the system user is presented with the

15

I desktop, he Immediately knows that he Is In the system (administrative)

environment, and is aware of the tasks that can be accomplished there.

8. Controls

Controls are visual devices which emulate (with a few exceptions)

*physical devices--they are manipulated as if they were physical objects

rather than graphical images. Controls can be used to: I) activate

processes--they can take the form of buttons in a dialog box or window

which the user "pushes" (clicking with the mouse) to execute a particular C.'

command (e.g. a Close box on a window); 2) manipulate objects--they can

take the form of scroll bars (for scrolling through the contents of the

window) or Expander boxes (for increasing or decreasing the size of the

window) on windows; and 3) regulate the features of certain other

objects--for example, they can be used to modify certain system

characteristics--increasing or decreasing the volume of the audio output, or

the frequency of the cursor blink, or adjusting the responsiveness of the

keyboard. Controls are designed so that their operation is physically

obvious--their form describes the method by which they are operated.

16

-71

III. VISUAL DEVICES TO AID THE APPLICATONS PROGRAMMER

A. THE PROGRAMMING TASK

The actual writing of an application, as discussed in this thesis,

Involves the implementation (coding) of a specified algorithm. Devising an

algorithm to solve a specific problem Is here considered part of program

design, and not part of the implementation of the program. Thus, the actual

Implementation of an application Is the area which shall be focused upon.

This task consists of devising a plan of attack (possibly several, using

different methods and different data structures to accomplish the same

task), coding the plan, testing the code, making modifications and

corrections, retesting, and documenting..-

The following is a discussion of the visual tools which could be used to

aid the programmer in the writing, testing and debugging of application

programs. Suggestions as to how these visual tools might be used are

included.I

1. Capabilities To Be Provided By Visual Tools

Before proceeding, it is important that we discuss the

capabilities that we wish to provide the programmer through the use of

visual tools. The following is a list of these capabilities:

'The reader should note that since Implementation is necessarily ..-

language dependent, these visual tools may not be applicable to all
languages--we leave it to the reader to determine which ones are applicable
to which languages. 4

17

.-

.-

(a) Give the programmer graphically oriented word processing and
editing tools to help him in the initial writing of the program.

Mb Let the main portion of the programmers efforts go toward the
writing and refining of the problem solving features of the

application by providing him access to tools which simplify the
creation of the user interface (give him a toolbox with tools for
creating windows, dialog boxes, pull-down menus, icons etc. with

toolbox routines).

(c) Enable the programmer to create hierarchical structures that make
use of abstraction and zoom-in so that he is able to see the big
picture, or the greatest detail (or any level in between) of the
program on which he is working (compacting information).

(d) Enable the programmer to step through the program to observe the
effect of each line of code on the output of the program, the contents
of the data structures, or on the value of variables.

(e) Enable the programmer to execute commands at any point during
program execution (after any line of code) which allow him to view
parameter or variable values, or allow him to experiment with quick
fixes without actually changing the program (using an Instant
Command Window).

(f) Enable the programmer to eliminate redundant or repetitive tasks by
giving him sophisticated tools to edit and manipulate code and store
his efforts for later use (libraries of icons, templates, and coded
subroutines).

(g) Free the programmer from having to worry about proper syntax and
static semantics by having the system do that for him.

(h) Give the programmer sophisticated search and editing devices which
simplify the debugging and maintenance of the program.

*: The question should be asked at this point: What sort of visual

tools provide these capabilities? Visual tools for programmers can be

18

. . '
4

=. .. *,.-

classified Into three categories: wordprocessing and editing type tools,

organizational and search tools, and library building/tapping tools. Each of

these categories makes its own contribution to Improving programmer

productivity (and program quality), but each does it in a distinctly different

way.

B. AIDS FOR WRITING AND EDITING THE PROGRAM

The discussion of visual tools to aid the programmer in the writing and

editing of an application program is most easily accomplished through the

description of a 1ypothetical piogram that provides such tools) It should

be noted that the initial writing of the program does not lend itself to being

aided by the use of visual devices, with the exception of sophisticated word

processing tools and program libraries. Editing functions, and fast access

to a library of reusable code and routines, provide some opportunity to

increase programmer productivity. However, these increases are generally

small, and thus, aside from offering a few tools which save the programmer

a little typing, visual aids for the initial writing of the program are of

limited value. We shall discuss the most valuable ones.

I. A Hypothetical Program

The program we require is specifically designed for writing and -,a

editing applications. It makes extensive use of windows. The main window

1 The reader should note that the hypothetical program discussed in

this thesis focuses on aiding programmers working with traditional
imperative languages. A similar hypothetical program (not discussed in this
thesis) could be produced to aid programmers in functional programming.

19
'.!

" " %. ; " " "" ". "". '""

serves as a background for all other windows, and is at least partially

visible at all times. This window contains the present version of the

developing program, gives the programmer a geographical frame of

reference to which he can return at any time, and is used for the initial

writing of the program and the selection of elements for the edit windows.

It is also used for compiling--this is the only window that the compiler can

see, hence, any changes made elsewhere must be written to this window

(Note,. All the edit windows and applicable dialog boxes provide a feature to

do this). The main program window allows either line by line or rapid

scrolling through the program in either direction.

The program has a feature called Instant Info which allows the

user to query the system about certain program elements. It works as

follows:

(a) Double clicking on a variable or constant displays a dialog box

containing the variable name, its type, its initial value, and the
names of the procedures and functions it is used by (see Figure I).

(b) Double clicking on a function name or procedure name displays a
window containing its name, its callers, its callees, its required
inputs, its returned outputs, its termination condition (if
applicable), and its internal type, variable, and constant declarations
(see Figure 2).

(c) Selecting a variable or constant and then choosing CREATE EDIT
WINDOW (these windows are discussed later) from the edit menu
creates an edit window stack containing all occurences of the
variable or constant, and also highlights them in the main program
window (see Figure 3).

20

.d

INSTANT INFO
VARIABLE ORCONSTANT IAME TyPt (if aplicable)

SUBROMINES IT IS UISED BY' (iaom) INIT YM.UE(YA LUE
prog FlithtLlst
prcc RaudPss

prc GetfS3

Figure I
The Instant Info Window For Variables Or Constants

UEIROUTINE 94ME INSTANT INFO TERMINATIONCOND.
Prot GetPass =-
CALLED BY PASSED tpe RETURNS tupe
prog FlightLi3t i' ad PassPtr NevPss fP3 -n

Next Pa3s Ptr Meqer Niiteq-r

IALLS PASSES :up(IS RETURNED type

Readlam I od Pm~Ptr NevP8m Pasieriq
NevFlt integer

... outP~s 11'intecer I ineue
YARRI'BLE tlue CONSTANT valueXPtr Pes.ptr ..asa s O5 '

LOCAL VARIABLES [X~tmexseatrs o

§ANC AD COIISTANT

Figure 2
The Instant Info Window For Subroutines

21

* * * ~ ~ -I'.- -* *o .-

pr'gram FlightLirt (input,cutru).
oenst
rnaxseals=50: 01 in stack PAG NO: I<-
s#ntNr*=zzz, procecure ReadPass(v NwPass: A

type Pass.agnqi d:
Ni~ti in~e' 2O]; ~FssPtryar Full:
Fisengrecord boolan);name Aanestrirg; €os

M o~t Jt W ;~ smtir*1 'zzz';
end,jP ssen) oar

FlightFile=fil of Paseftg Target,Count :itejer;

>'mslt '- Passrole. S~ats,NSets intger;
>asnnoderecord bcin

Passinfo: Passeng; wiih NePass do
Link: PassPtr; begin

enA;(Passnoce) Wri*1l'Enter passenger nzme or 'zzz'

Yar
Had, Ta l:PassPtr;

Figure 3
Edit Windows

a. Declarations

host modem Imperative programming languages require the

programmer to declare the variables, constants, and types that are used

within the program. Such declarations create an environment in which the

program is to run. The writing of declarations can be tedious for large

programs which use many variables, constants and types. Although it is

conceivable that this process could be automated (see dialog box below), it
appears that such automation would be no faster than manual declarations

and might actually slow down the programmer. In view of this, it would

seem that the traditional method of declaration for languages that require

it remains the most efficient--there is an exception to this: while writing a
program the programmer often finds himself having to create new variables,

22 I.-:-

.:-:--:-.::.- .: . ::::: :::::: ::::::::: ::: :::::: . -

the need for which was not previously forseen. Two methods could be used

for dealing with this situation:NO.

(a) A simple, automated method of declaring variables through the use of
a dialog box (which could prove a real time-saver--it would relieve
the programmer of having to scroll back to the beginning of the
program or procedure.

(b) A "rapid transit" mechanism which would allow the programmer to be
instantly transported from one part of the program to another, using
program, function, or procedure names as geographical keys.

(1) The Automated Method. In our hypothetical program, the

automated method works as follows: the user utilizes the pointer to

pull-down the PROGRAM menu (see Figure 4), chooses CREATE DECLARATIONS

from It, is presented with a dialog box (see Figure 5), and then points to,

selects and fills in the appropriate choices within the box. As each item is

declared, a new dialog box appears for the next Item until all declarations

are made. When no more entries are desired, double clicking on the name

block of the dialog box returns the programmer to the main window. The

dialog box "CREATE DECLARATIONS" can be used for declaring global and

local variables, types and constants for the main program and subroutines.

To delineate which is chosen, the programmer selects (points and drags

across) the program name or the appropriate function or procedure name and

then chooses CREATE DECLARATIONS from the PROGRAM menu. This places

him in the proper context.

23

- * ~ ~*~ ~ 2 C %- i

L

PROGRAM (menu)
CREATE DECLARATIONS (choice)

UNIT TEST (choice)
CREATE EDIT WINDOWS (choice)

Figure 4
The Program Menu

CREATE DECLARATIONS
NAME:

type 0 TYPE: real 0 INIT URLUE I
const 0 integer U VALUE
var Q boolean El

char 0
string El
array C
enum. 13

length;

range !

enum. list

Figure 5
The Create Declarations Dialog Box

(2) The "RaDid Transit" Mechanism. We will define a

Rapid Transit mechanism as a device which allows the programmer to move

swiftly from one part of the program to another. In our hypothetical

24

"* % * ~ .*4 b, ~

-_. ...S.

program, the utilization of such a mechanism is accomplished through the

use of a window (we'll call this the RAPID TRANSIT WINDOW). An icon for

summoning this window is a constant element of any screen in the main

program window (it is always onscreen, in some convenient location, for

ready access). Opening this icon, the user is presented with a window

containing a comprehensive list of the program, procedure, and function
names within his program. By selecting one of these names, the programmer

is transported to the program location containing the declarations for that

name (this is an example of zooming in on the details). A return feature is

provided for returning the programmer to the original location, as well as

other enhancements for stepping through the locations in both directions.

This Rapid Transit mechanism is useful for checking and

adjusting program, procedure, and function parameters, as well as making

new declarations. To Illustrate, let's look at an example: if the programmer

is writing a procedure call to CancelList in progam FlightList and cannot

remember all the parameters needed to call CancelList, he can use the Rapid

Transit Window to transport himself to the declaration of CancelList, get..

the information that he needs, and then transport himself back to the

procedure call to CancelList and continue coding. The figure below (Figure 6)

shows what this window might look like. The procedure CancelList is

selected in the name list portion of the window. Double clicking on the name

or selecting GO THERE NOW will transport the programmer to the declaration

of the procedure; selecting the Return box will transport him back. If he

desires to remain at the declaration of the procedure, he can select the

Cancel Return box, which will close the RAPID TRANSIT WINDOW and cause .-.

the icon to reappear in the main program window. If he decides to go on to

25

:..:

another location, the computer will keep track of each location visited (in

order), allowing him to back track or go forward to any location already

visited.

Program, Return: !
Procedure, or Function Name I I
prog FlightList
proc ReadPass -RAPID TRANSIT WINDOW

-- co select the name offunction CheckCount i your destination
proc UpdateList

GO THERE NOW

M PREVIOUS LOC

I, NEXT LOCATIOtJ
;::',,,, CANCEL

_Cancel Return:

Figure 6
The Rapid Transit Window

b. Debugging

Program debugging offers perhaps the most significant

opportunity to increase programmer productivity through the use of visual

devices. This is because much of the time spent debugging is devoted to

searching for and locating the cause of an error rather than actually

correcting it. The visual interface simplifies this search process through

-d the use of powerful visual tools. Let's examine some examples of such tools

and the things that can be done with them.

26

_I 1 "

bo p°°"-

In order to realize the full potential of visual tools in the
area of debugging, it is necessary to use an interpreter during the debugging

process. This is because many of these visual debugging tools require that

the running program be stopped in mid-execution or executed line by line.

The process of debugging can involve the correction of many

types of errors, and visual tools can be used in finding and correcting many

of these. Nevertheless, in this thesis, we will focus on the visual debugging

tools which bring about the greatest increases in programmer productivity.

(1) Syntax And Static Semantic Corrections. Let's start

with syntax and Static semantic errors. With a non-visual interface, syntax

and static semantic (e.g. type) errors are discovered at compile time (when

using a compiler). The compiler generates error messages, usually referring

to specific locations; the programmer writes down the error messages on

paper, scrolls to the designated location, corrects the errors, and

recompiles the program. Even given a good text processor that saves some

scrolling, this process can be cumbersome. .

I.t would be much more efficient to detect syntax errors

as they are made and correct them on the spot. The use of a syntax directed

editor [Ref. 41 during coding doing syntax checking (and formatting),

combined with the visual effect of highlighting, makes this possible. As the

programmer types in his lines of code, any syntax errors are highlighted as

they are made (after the return key is pressed or after an end of line

deliniation such as the semi-colon in Pascal). The programmer immediately

knows he has made an error and corrects it before going on. This is a

significant time saver.

27

(2) Program Monitoring A much more effective time saver

can be realized by enabling the programmer to step through the program IRA
line-by-line, and providing him with the capability of examining the value of

variables and parameters as he goes. This is particularly effective because

it deals with the search aspect of debugging--it allows him to watch the

execution of the program in detail, monitor the changing values of his

variables and parameters, and subsequently locate the cause of the problem

when the execution fails to follow the expected path or the value of a

variable changes to something unexpected (this tool is useful in locating

program logic errors).

(a) The Instant Command And Observation Windows. The

Instant Command Window and the Observation Window are visual devices

which allow the programmer to monitor the values of variables, parameters

and expressions--while the program is being executed. The Instant

Command Window enables the programmer to execute instant commands at

any point during the step-by-step execution of the program (e.g.

Writeln(variable); in Pascal). This tool allows the selection of specific

points in the program for the examination of the values of variables, or the

verification of parameter values that are passed from one subroutine to

another. When using the Instant Command Window, it is important that the

programmer have some means of stopping program execution at points which

he designates, allowing him to pass quickly through the parts of the program

that work properly and get to the location of the suspected error. This is

accomplished by enabling the programmer to place "stop" icons at those

points in the program where execution is to be stopped. In addition to

allowing the programmer to check the values of his variables and

28

parameters, the Instant Command Window enables the programmer to insert

"quick fix" commands into the program during execution and to observe their

effect without actually changing the program.

Another window which allows the programmer to '

monitor the values of variables and parameters is the Observation Window. .

This window is especially effective for watching the values of variables or

parameters during an iterative process. The programmer types in the *
expression he wants to monitor and executes the program--the values of the j
variable, parameter or expression are updated automatically after each

iteration (the programmer doesn't have to give any commands to make this ":-

happen each time). This window also offers the advantage of not cluttering
up the screen--unlike the Instant Window, it displays evaluation results

itself and does not require any other window for its operation. '. I

'~

(b) The Out~ut Window. Use of the Instant Command .:

Window necessitates having an Output Window that al lows the programmer

•.. ..,

to monitor program output as the program is being executed line-by-line.

This window receives the same output that the programmer would normallyreceive after the program had run. It is useful in that the programmer can

see the program's outputs while watching the step- by-step execution of the

program in the main program window. The reader should note that the power

of these visual tools lies in the fact that the programmer can watch

different aspects of his program simultaneously, and thus, pinpoint errors

in the program simply by noting the location--the specific step during

pexecution--where the error occurred.

(3) Editins Windows. It is in the editing winows that most

of the program modifications are made by the programmer. The number and

i," ,--.-. o-- - °..... , '

contents of these windows varies. The following methods are used to

create them:

(1) The programmer can select portions of the program at random which Pa

he desires to edit by selecting the applicable text and choosing COPY
TO EDIT from the EDIT menu. This allows non-destructive
manipulation of the code--he can work with the code segment in the
editing window while leaving it intact in the main program window.

(2) The programmer can activate a search for specified elements of the
program. For instance, he can activate a search for all program
portions where a certain variable or constant appears--the system
searches for all occurences of that variable or constant and copies
the line on which the variable or constant appears plus the next
eleven lines following it (or some number that is practical with
regard to screen size) to the edit window. Each occurence of the
variable or constant is highlighted in the edit window. The user is
also able to activate searches for all calls to a certain procedure or
function in order to check for errors in parameter passing.

(3) The programmer can work on a particular subroutine by selecting its
name and then selecting CREATE EDIT WINDOW from the PROGRAM
menu. The entire subroutine will be inserted into an editing window
(see Figure 3).

When the programmer creates an editing window stack, a

separate window is created for each selection that is copied to the stack. -.

Selections that are greater than some specified length (determined by

screen size) will enable the scroll bar on the edit window, allowing the user.'

to scroll through the entire selection. All windows are numbered

sequentially based on their contents' actual position in the program, not the

order of selection. They appear as a stack of windows that can be paged

through in either direction via a page bar located across the top of the

window, which consists of two horizontal directional arrows for page
lq;o4

30

'VV

..* *..**

.

PL.,

turning, a numerical indicator of the number of pages in the edit window

stack, and a page number block which tells the user which page he is on.

Multiple editing window stacks (up to the maximum

number that can be accommodated by the size of the screen) are able to be

displayed onscreen simultaneously. The stacks can be named by the user or

they will receive some specified default names, for example, A-E. They can

be dragged around the screen and arranged as desired, but are restricted

from the leftmost inch of the screen which always maintains the image of

the main program window. Windows within a stack can be separated from

the stack for window comparisons etc. This does not affect page turning.

(a) Type Checking: Using Edit Windows. Type errors are

often difficult to trace down in languages that are not strongly typed,

especially in a large program. A tool is needed that allows the programmer

to specify the variable that he wants to type-check and then retrieves all

the instances where that variable is used in the program or subroutine .

(depending upon whether it is local or global) for the programmer to

examine for errors. In our hypothetical program, the user can select the

variable to be type-checked by double clicking on it. This creates a stack of

edit windows which contains all usages of the selected variable throughout

its scope. In addition, this highlights all usages of the variable in the main

program window. Examining these windows should reveal the source of the

error, which can then be corrected directly in the edit window.

(4) Unit Testing: Using An Environment Generator. Unit

testing is presently complicated by the necessity of writing complex test

harnesses or program stubs in order to create the environment in which the

program is to run. This is one of the reasons testing consumes such a large

31

portion of program development time. Significant increases in programmer

productivity could be gained if the programmer were provided with an

interactive environment generator that used dialog boxes or windows for

communicating with the programmer. This device would allow the

programmer to create the module interfaces (test harnesses and stubs)

required for the testing of the module, and would allow him to manipulate

the values of the parameters passed to the module in accordance with his

test specification.1 With such a device in mind, let's see how unit testing

is done in our hypothetical program.

When he wants to test a subroutine, the programmer

selects UNIT TEST from the PROGRAM pull-down menu and is presented with

a dialog box where he has to fill in the blanks and answer simple computer

generated queries regarding parameters needed as inputs, parameters used

internally by the subroutine, data structures needed by the subroutine, and

control information to be accepted and/or passed by the subroutine. The

dialog box is actually the communications link between the programmer and

the underlying environment generator. The latter is a sophisticated device

that performs the functions of making declarations, initializations, typing,

.4.6-

I The reader should note that the implementation of an environment
generator is extremely complicated and is not feasible for some languages.
Those languages where it is possible vary as to how much environment lends
itself to generation and how much must be borrowed from the main program
Although it would be desirable to be able to create complete testing
environments through the use of such a device, a true, whole environment

32

. 'A. - A*~ -- ..-- i

and the construction of data structures. The programmer supplies the

necessary information via the dialog box, and hence, creates the operational

environment for running his subroutine. The idea behind an environment

generator is to allow the programmer to run and test program components

without forcing him to go to great lengths to create a run-time environment.

Because time taken writing a test harness takes away from application

programming time, such a device would increase programmer

productivity. However, since an environment generator is not inherently a

visually oriented device (it could be implemented in a linguistically

oriented system), we will not attempt to cover the subject further in the

course of this thesis. Let us simply say that the visual interface would

provide good tools for its implementation.

Other valuable tools to aid in writing and editing the

program include a sophisticated, visually oriented text processor that

simplifies program editing (one that includes cut, copy, and paste routines)

and a program library, which allows the programmer to save program

segments for future use; this is especially valuable during debugging

because changes to the code can be made non-destructively--the original

code can be saved when the corrective code is inserted, and thus, can be

retrieved if the corrective code doesn't work out.

generator is probably not technologically feasible on a low-cost machine at
this writing. The environment generator discussed in reference to our
hypothetical program is useful because it simplifies the creation of
program stubs and test harnesses--the degree to which this is possible
depends on many factors, most notably the language used, and will not be
discussed further in this thesis.

33

IV. THE USER INTERFACE

A. BACKGROUND

One of the major tasks facing the applications programmer is the

creation of the user Interface. The user interface is often the key to

whether an application is successful as a product.

The user interface can take many forms, but it always serves the same

function--it is the user's sole means of communicating with the computer.

Hence, it is important to develop an interface which is both powerful and

easy to use. Unfortunately, these two features are often diametrically

opposed, since powerful implies more features, and more features implies

greater complexity. For these reasons, much of the effort in developing

software applications goes towards designing an elegant,

application-specific interface. -

B. THE CHANGING USER

The widespread use of computers today, in just about all areas of

human endeavor, has necessitated a change in user interface design goals.

Instead of creating applications only for computer-knowledgable clients,

applications programmers must also create applications that can be learned

by people with very little knowledge of computers or computer languages

(the goal is to create applications that are powerful enough to satisfy the

expert user while making them easy to learn and use). Thus, the programmer

is faced with developing a user interface which is very easy to learn to use

34

"'~~ ~~............. * ". ,.....",..........•""...- " 'D1

5. . . t* *. *.*.. .4. . ., M

L%- L..............

(this is to be distinguished from easy to use) if he wants to sell his

software product All the power in the world is of no use to the client If he
Wis unable to tap it. In addition, since the cost of computer time is no longer

*. as significant as it used to be, the cost of human time has become very

significant. Training personnel to use a computer or computer system is

expensive. Training Implies: 1) people who will do the training; 2) hours,

days or weeks to be trained, on salary; and 3) low Initial production from

the person while the training sinks in and they become adept at using the

system. Hence, there is a real market for easy-to-learn software

applications.

The mention of a distinction between easy-to-learn and easy-to-use

has been made--let's elaborate on this distinction. An application that is

easy-to-learn provides an interface that is friendly to the user--he can

quickly grasp (and remember) the steps necessary to accomplish his task. An

application that is easy-to-use goes beyond this--it is elegant--it provides

enormous power in few steps, flexibility (all users were not created equal),

and design integrity--all of which contribute to the ease and pleasure with

which it's used.

1. Managers And Casual Users

There are two other reasons that the market is growing for

easy-to-learn and easy-to-use software: managers and casual users. The

principal users of computers have, in the past, largely been technicians who

have little need of easy-to-learn software because they are daily users of

few applications. One new group of users emerging is the managers.

Managers are more expensive to train, have less time to learn, and are more

likely to need a variety of applications to suit their needs. The other new

35

- -)U, D

group is composed of the casual users. These are users who often don't touch

their computer for days or weeks at a time, plenty of time to forget

everything they know about command language and syntax. Easy-to-learn and

easy-to-use software is a must for this group If they are going to be

productive.

C. THE STANDARDIZED INTERFACE

A standardized interface is one which varies little from application to

application. There are two environments In which this standardization can

take place: 1) the administrative environment; and 2) the environment of

the application.

Standardization of the administrative environment is the first step in

creating easy-to-learn and easy-to-use software. Such standardization

necessitates that the user need learn only once how to perform the

administrative tasks (creating, copying, transferring, and deleting files,

erasing disks etc.)--this knowledge allows him to perform these tasks

henceforth without regard for the application, since the tasks are performed

in the same manner in all applications that adhere to the standardization

(each application actually gives the user practice performing administrative

tasks).

There are arguments both for and against a standardized interface. One

of the disadvantages of it is that it prevents the programmer from tailoring

the interface to the application. With all the myriads of applications, there

are bound to be some that would benefit from having their own unique user

interface. Another of the disadvantages of standardization is that it stifles

creativity: the programmer may know exactly how he wants his program to

36

,. ..-. j..... 5

V~ T %,T I U-ML7

communicate to the user (perhaps far superior to the standard), but is

prevented from Implementing it because of the requirement for

standardization. We will see how these problems can be partially resolved.

The advantages of standardization are primarily: 1) a standardized

Interface greatly simplifies the learning of more than one application; 2) a

standardized interface significantly reduces development costs--less time

is spent on the development of the user interface; and 3) a standardized

interface implies tools that are provided to the programmer for the creation

of that interface (toolbox routines)--these tools make the accomplishment

of the simple things even simpler.

It is possible to create a standardized non-visual interface--many of

these exist. They are usually operating system interfaces that are machine

or brand specific (found on the same type of machine or on machines from

the same manufacturer). Such interfaces are usually very simple and of
limited power. It Is also possible to create a menu-driven interface for use

on machines with limited graphics capabilities (non-bit-mapped, low

resolution machines). These interfaces are usually application specific and

share a similar feature with visual interfaces in that they offer the user a

selection of options from which to choose, the choice of which constitutes a

command which activates a process or displays another menu. Menu driven

interfaces are adequate for simple applications but do not lend themselves

to standardization (since the menus are necessarily application specific)

and are therefore of little help to the modern user.

Because of the need for creating easy-to-learn and easy-to-use

applications, the natural choice for an interface is one that is visually

oriented. The goal of such an interface is to create an environment where

37

L

the user feels comfortable--where he is presented with familiar objects no IN

matter what the application (he uses a standard set of visual tools i.e.

pointer, windows, desktop etc), and where his commands bring forth the

desired, and most importantly, the expected results (the basic control

actions required of the user are executed in a standard manner, from

application to application).

The creation of the visual interface by the programmer can be made

simpler by the use of existent toolbox routines that the applications

programmer can call at will. The idea here is to make the programming

tasks that should be simple, even simpler. The implementation of the

functions that the application is to provide should be the highest priority of

the programmer and the most difficult to do; the user interface shouid be

easy by comparison. Unfortunately, this is not always the case. Without

toolbox routines to aid in creating the visual interface, such a task can be

formidable. This is due to the nature of the machines that run software

utilizing a visual interface--they are bit-mapped and object oriented.

1. The Toolbox

The creation of a window or dialog box from scratch each time one

was needed would just not be practical--either one would require a major

programming effort. Of course, it is possible to standardize the visual

interface without using toolbox routines: a software company could keep a

library of such routines that it had already created for the use of its

programmers (however, standardization among companies wold be a major

problem); or, in a worst case scenario, a general guideline could be agreed

upon by software developers, whose programmers would find their own

38

~**9* ***% %~*~**.*. ~ %-

unique ways of conforming to the standard. Two good methods of

standardizing are:

(a) Developing and distributing a machine specific ROM-based toolbox, so
all the programmers would have the same tools.

(b) Developing and distributing a software-based toolbox (this would be
not be machine specific but would have the disadvantage of being
slower than a ROM-based toolbox and would take up RAM and disk
space.

No matter which method is employed, the use of such a toolbox
can: I) significantly reduce program development time and

cost--programmers can spend most of their time on implementing the

functional aspects of the program instead of the interface; and 2) help make

the product easy-to-learn and easy-to-use by the user--the use of a toolbox

leads to a great degree of standardization in the interface, thus reducing the

number of application specific details of operation that the user must

remember.

We might now ask the question, What tools should the toolbox

contain? Since we are concerned with the standardized visual interface, we

shall concentrate on the tools which aid the programmer in its creation

(there are many other tools which could be included in such a toolbox to

make the programmer's job easier in other areas of writing the program (i.e.

floating point routines etc.).

First, let's make a list of the tasks the programmer might want to

accomplish (these are the basic tasks involved in creating a visual

* interface):

(a) Create the desktop environment.

39

..-.. . . . '.

(b) Create windows that can be moved, overlayed, resized, scrolled
through, opened and closed, selected and deselected, named, and
which are capable of containing other objects.

(c) Create dialog boxes that appear when needed, communicate a
message to the user, enable a means of selecting options or typing a
response, act on his response, and disappear when not needed.

(d) Create icons that can be moved, opened, selected and deselected, and
which can contain other icons through the use of windows (disk icons
can be opened to a window which contains icons representing the
next hierarchy level of objects; these icons can, in turn, be opened to
windows which contain the next level of the hierarchy).

(e) Create the environment(s) of the application (this would require
drawing tools as well as tools enabling selection and the launching
of processes).

There are two paths one can follow in developing the toolbox: you

can make the tools high level, thus restricting the degree to which the

interface can be tailored to the application (and restricting the

programmers creativity), or you can make the tools low level, giving the

programmer much greater flexibility in conforming to the interface but

making it far more work for him to create it.

Use of a toolbox that is composed of a few high-level tools will

result in programs whose interfaces are very similar, but which do not take

full advantage of the visual aspect of the interface. The advantages of such

a toolbox are: it restricts the number of different interfaces that can be

created, and thus requires less time for the programmer to design the

interface, and, because the tools are high level, it provides the simplest and

fastest means of creating the visual interface.

40

PC

Use of a toolbox that is composed of a great number of lower level

tools enables programmers to create a great variety of visual features,

allowing them to finely tailor the interface to the application (this takes

full advantage of the power of the visual interface because the program's

visual form follows its function, making it easy to learn and easy to use).

There are two problems associated with this type of toolbox: i) the great

flexibility it gives the programmer in creating the application's interface

can lead to the creation of one that is overly complex; and 2) the low level

of the tools somewhat defeats the purpose of the toolbox, which was to

simplify the creation of the visual interface.

We might ask what benefits.the application user gets from the use

of a standardized visual interface? First of all, it's important that we

examine the nature of the environment that is created by this visual

interface. Let's assume that the user communicates with the computer

through the use of the keyboard and the mouse. The keyboard provides him

with capability to enter data (or in some cases, commands) into the

computer. Thus, the visual interface does little for the user in the entering

of data (except dialog boxes, which are often used for data entry). The

mouse, on the other hand, is almost solely devoted to working with the

visual interface--it is the tool that makes such an interface work. The

mouse is used for many tasks, but these can be categorized into two main

areas: control and non-control.

0. DISCUSSION

Some distinction between control tasks and non-control tasks should ,'-

be made here. Let us define control tasks as those which transfer control

41

PTA

from one part of the program to another. These are equivalent to commands

entered via the keyboard on linguistically oriented systems. Control tasks

include: launching and quitting applications, opening files or windows,

selecting menu items in pull-down menus and desk accessories, and

selecting command options within dialog boxes (in almost all other cases,
the act of selection is a non-control task). All these control tasks activate '

some process, transfer control to that process, and manifest themselves in

the form of screen changes at the time of activation. In a linguistically

oriented interface, where the user is often presented with a standard

prompt, these screen changes often take the form of hyphens or other

symbols that appear in place of the prompt, telling the user that the system

is acting on his command. In a visually oriented interface, the screen

changes that occur take many forms, often logically related to the task

being carried out. Some examples of such screen changes are: 1)

double-clicking on the icon of a disk or folder causes a window to zoom

(expand rapidly) out of the icon and be displayed on the screen showing its

contents; 2) clicking the close box (a standard element of any window) of a

window causes the window to implode back into the icon; and 3) selecting

an item from a pull-down menu causes the selection to momentarily blink

rapidly on and off and then to vanish, in addition to the screen changes

caused by the execution of the command.

Non-control tasks are mainly selection oriented--their primary

function is the selection of those objects to be operated on. This process is

similar to prefix notation in arithmetic--first the items subject to the

operation are chosen, and then the operation itself. Non-control tasks, like

control tasks, provide instant feedback to the user as to whether they are

42

. ,-' . . - - ' . -

W -74 WE. V R

being carried out, but this feedback usually takes a different form. The

screen changes are not as dramatic as with those associated with control

tasks--generally, only the area of the screen where the pointer is affected.

These changes usually involve a color (i.e.light to dark) or pattern change in

the object being selected or deselected such that the object stands out on

its background. An analogy can be made between control and non-control

tasks and arithmetic operators and operands: non-control tasks are those

that choose the operands; control tasks are those that choose the operators

and activate them.

Undoubtedly, the single most important capability provided by the

tools of the visual interface is that of selection. Almost all of the tools of

the interface are accessible only through the use of the mouse, and almost

all uses of the mouse involve the process of selection (this process is found

in both control and non-control tasks and takes many forms). --- 1

Before going on, it is important to go over the basic procedures for

using the mouse. The mouse is a device which, when moved across the

surface of a worktable or desk, correspondingly moves a pointer across the

computer screen. The mouse is equipped with a button which can be clicked
(pressed once), double clicked (pressed twice rapidly in succession) or held U
down (this facilitates dragging--pointing, holding down the button, and

moving the pointer). Each of these actions is associated with the

performance of certain specific tasks:

(a) Pointing which is done by moving the mouse and thus the pointer on
the screen to point at something.

(b) Selecting which is done by pointing and clicking when selecting
objects, by pointing, clicking and dragging when selecting text, and

43

0"2 X .. "- " -- " " - " "

* by pointing, dragging and releasing for menu item selection.

(c) Opening, which Is done by pointing and double clicking on an object
or by selecting "Open* from a pull-down menu.

(d) Manipulating which is actually moving things around, done by
selecting and dragging the object to be moved. In developing a
standardized visual interface, it is important that these basic
methods of using the mouse are adhered to, since changing them
would serve to confound and confuse the user.

Let's examine some of the tasks that the user is able to accomplish

with the mouse. First, let's assume that upon entering the system, the user

is placed in the environment of the desktop--the administrative

environment of the computer. On this desktop he sees pull-down menus and

icons. The pull-down menus list the set of commands available to him and

the icons represent the data disks presently accessible, and perhaps a

trashcan. The mouse provides the means to activate commands (control

tasks) and also the means by which to manipulate objects (non-control

tasks) on the screen. The menus on the desktop list the administrative

functions that are available to the user (actually, they list all the

commands that can be activated from the desktop, but only the ones

highlighted are presently available for selection). Confronted with this ..

desktop, the user can rearrange the icons on the screen or pull-down and

survey menu items (non-control tasks accomplished by pointing and

dragging). Selecting an item from a menu is a control task, which transfers 7-7

control to some predefined process. Other things can be done by the user

also: by moving one disk icon on top of another he can copy the contents of

the first disk to the other; by double-clicking on any icon he can open it to :%

see what files it contains; by clicking on an icon he can select that icon for
some process to be activated via the menus.

44

°-.

Opening a disk icon, the user is confronted with a window containing

the icons of all the files on that disk. These icons are

application-specific--their appearance conveys information about the

application that created them. Double-clicking on a file will launch the

application that created that file (the application will then open to that

file), while double-clicking on the icon of an application will launch that

application, which will open to a new file. Once inside an application, the

user is presented with a backgound that is specific to the application;

however, he retains the visual tools that he started with. He still has .

pull-down menus and/or icons, and the basic operations of the mouse in

pointing, selecting, opening and dragging are the same. Naturally, every

application has different requirements regarding functions and features but

*it is important to maintain the integrity of the logic of the visual tools (for

Instance, having the user double-click on an icon to "select" it would go

against the logic of the tools of the visual interface).

What advantages does such a visual interface have over a linguistically

based one? To begin with, a visual interface of this sort eliminates

command syntax errors. On traditional systems, where all commands are

entered via the keyboard, the user is required to enter commands in a

specific format--altering this format either generates an error message or

executes the wrong command. This simply does not occur on with a visual

interface. The only commands that will be accepted by the system are those

that are highlighted in the pull-down menus--the user simply cannot

activate commands that are Inappropriate to the environment which he is in

(they are not highlighted and will not respond to selection), nor can he

execute a command that doesn't exist (since he can only select commands

45

. - - C;: . C :C

available onscreen, which by definition are part of the application's
command language).

The elimination of command syntax and static semantic errors saves

the user time--no doubt about it--but there Is another area related to this

that is even more beneficial: the visual interface relieves the user of the

burden of having to memorize the command language of the software. This is

one of the most powerful features of the visual interface and Its importance

in facilitating ease of use cannot be overstated. In present day

linguistically oriented Interfaces, the users sole means of accomplishing

control tasks is by typing commands at the keyboard. An application which

contains more than a few features will undoubtedly require an extensive

command language. Learning and maintaining a knowledge of such a language

is only made possible by the very frequent use of the application--even

then, features which are not used very often might necessitate looking up

the desired command in a manual. Thus, casual users are at a great

disadvantage with a linguistically oriented interface, because they simply

don't use the application enough to remember its command language.

Managers and other users who frequently use more than one application are

put at an additional disadvantage: memorizing several different command

languages is an enormous task and can lead to confusion (one application's

commands might be confused with those of another application).

With a visual interface, the command language (of the application) is

built Into the application in the form of choices offered on pull-down

menus, dialog boxes, and desk accessories. This is in addition to the

standardized command language of the interface, which consists mainly of

the basic functions of the mouse. The visual interface facilitates a dialog

46

a.. : ,,;' ,,, ,:""" - -'-t', .'.... / . .,,."'' , ''' .,,.-,¢'" ,,..-.-''' - ' ' '''''''''''""""

between the user and the computer, as opposed to the monologue from the

the user to the machine that is prevalent in lInguistically based Interfaces.

Before going on, It is important to discuss this concept, which Is a

fundamental difference between the two interfaces.

Most linguistically oriented Interfaces demand that the user be

thoroughly familiar with the command language of the application, and

assume that the user always knows what he wants to do next. This

assumption, though true in many situations, may be false in others. Complex

applications often require that the user go through a step-by-step process

to reach a desired end. The steps of this process are not always obvious.

Linguistically oriented interfaces might require the user to write down the

series of commands needed to perform a desired function. Unless the user

is wholly familiar with the application, he Is never quite sure what

commands are executable from a given point within the program--even if he

is, if there are a number of them, he must be able to keep in mind what he is

trying to do and know which one will accomplish his task. In this way,

communication with such an interface is one-way--the user must know

what commands to issue without any help from the computer.

The visual interface, with its command language built into the

interface and the application, conducts a dialog with the user. Pull-down

menus (showing the user a list of possible actions) and dialog boxes (actual

queries to the user demanding a response) continually offer the user choices

of what to do next; the user then makes his choice. This two-way

communication serves to guide the user down the decision path--he is no

longer forced to plot out the details of his actions beforehand or to

memorize the commands that bring about those actions. If the user gets to

47

the point where he is not quite sure what to do next, he can pull down menus
until he finds the desired command. It is this feature which is especially

useful to the new user, the casual user, and the user of many applications,

since it makes no demands on their memories, only on their decision making

capabilities.

The fact that the command language is presented to the user via dialog

boxes and pull-down menus and need not be memorized puts the user in the

*i unusual position of being able to sit down at the computer, start the

application, and work productively (as long as he has the knowledge needed

to solve his particular problem--the interface Will not do this for him)

without ever having to glance at an instruction manual for the application.

Naturally, there might be subtle nuances of the program that cannot be

determined by such experimentation--for these one must still consult the

manual--but the point is that the user can simply "figure out" the basic

functions of the program by just diving in and using it. Such a thing would be

,u:thinkable for most applications which have linguistically oriented

interfaces--you cannot execute commands which you do not know exist.

Let's briefly examine the reasons why a standardized visual interface makes

this possible.

The difference between a standardized visual interface and a

non-standardized visual interface is that, with the former, upon entering

any application, the user is greeted by a familiar visual environment

(generally the desktop) for which he knows the basic command language,

whereas with the latter, he enters an unfamiliar environment in which he

has no knowledge of the command language. The standardization of the

visual interface is very important because it gives the user a solid

48

.9-

foundation from which to start the application: he knows the basic

operations of his principal tool, the mouse (clicking, double clicking,

dragging, pointing) and the capabilities those operations provide; in rs

addition, he is familiar with the desktop environment and the

administrative tasks that can be accomplished there. Thus, he already has

some knowledge of the operation of the application. Upon entering the

program environment, which may be quite different from the desktop

environment, the user is still armed with his knowledge of the function of

his basic tool, the mouse, and is able manipulate or select objects, or

activate processes in the same manner that he is accustomed to. The nature

of the application may require that he extend this knowledge--application %

specific functions may necessitate variations or additions to the

capabilities provided by the mouse--but it should never require that he

un-learn" those basic functions. Note that it is crucial that applications

follow the logic of the standardized visual interface if the advantages of

the visual interface are to be exploited. Departing from this

logic--requiring the user to conduct operations in ways dissimilar from

those he has learned--forces the user to memorize a new command language

(which is difficult because it departs from the philosophy of that which he

has already learned), and thus constitutes a failure to utilize one of the

most powerful features of the visual interface.

Following the philosophy of the standardized visual interface consists

of the following:

(a) Retaining the basic functions of the mouse--any additional functions
or variations must be easy to remember--they must maintain logical

49

.S.7

integrity with the basic functions (they should be easy to remember
because they should become intuitively obvious once they are
performed a few times).

(b) Retaining the standard visual tools and their means of operation:

windows, icons, dialog boxes, desktop, pull-down menus.

(c) Providing visual tools specific to the application that are extensions
of the standard visual tools and whose operation is logically similar.

Adherance by the application programmer to the philosophy of the

interface makes it possible for the user to jump into an application with no

prior knowledge of its operation, and to navigate through the program using

just the standard tools of the interface. This is a powerful feature which is

of great value to new users, casual users, and users of many applications.

Another advantage that the visual interface has over the linguistically

oriented interface is the simplification of operations which would normally

require a complex command sequence. To illustrate this, let's discuss one

of the complaints often voiced about the visual interface: users of

non-visual interfaces frequently complain that while the visual interface

simplifies use of the computer for the novice, who doesn't always know

where he's going, it complicates the use of the computer by the expert, who

knows exactly where he is going. In other words, the tools of the visual

Interface can be tedious when the user knows what he is doing.

Before going on, we must ask ourselves the question: is the method of

command activation really the complaint of these expert users or are they

really complaining that the visual interface slows down the machine? The

visual tools are powerful, but much of the computer power goes into the

creation and management of the visual interface instead of being directed

toward accomplishing the task at hand. When the user activates a command

50

%.4

....%*** . ~ ~-. -

, 4, e~' a -= - ,- , , " = o ', " , •" ° ° 4' . *. . . "" , * -'- - °

to perform a certain function, the command sets many processes in motion

which may have little to do with the actual function to be performed. These

processes Include: screen changes (to indicate execution); background

changes (from the desktop environment to that of the application, or from

one environment of the application to another); percent done indicators,

which give the user some idea of how long an operation is going to take,

allowing him to be productive elsewhere while he's waiting [Ref. 51;

pull-down menu modification or creation (different selections might be

highlighted or new pull-down menus created); dialog box presentation;

window and icon modification or creation (windows and icons might be

created or highlighted/de-highlighted) It is not the intent of this thesis to

go into the area of performance slowdowns due to the maintenance of the

visual interface. Let it suffice to say that with technological advances and

the use of separate processors to manage the visual interface, it is probably

no longer a relevant issue.

Since the visual interface does tend to guide the user down the decision

path, it would seem that more steps would be necessary to get from point A

to point B. This is not necessarily true. The command language of an

application that uses a visual interface is generally more powerful (one

command in the visual interface is often equal to several in the non-visual

interface) and more flexible (the visual interface often provides more than

one way to go from point A to point B) than that of applications utilizing

linguistically oriented interfaces (Note: as we shall see, there are

inflexibilities associated with the visual interface as well). The visual

tools are the source of this power. For instance, let's say that you wanted to

copy a file from one disk to another. With the non-visual interface, you

51

would have to type a specific command which included the name of the file

to be copied, the disk copied from, and the disk copied to. With the visual

interface, you could select the file in the source disk window and then drag

the selection to the destination disk window. Such an operation could be

performed faster than that involved with the non-visual interface, with less

chance of error--no chance of a command syntax error and little chance of a

procedural error since the operation follows the logic of the user's thinking

("take this file on this disk and copy it onto this other disk"). The power of

the visual tools translates the physical act of dragging an icon into a

command sequence that accomplishes the copying of the file.

Although there are many examples like the one above, there is some

truth in the argument made by the expert users--the argument that the use

of the tools of the visual interface (i.e. pull-down menus etc.) is far more

time consuming than the use of typed-in commands. This is a valid criticism

because the visual interface usually requires that the user adhere to the

somewhat inflexible rules of the environment. This inflexibility can

necessitate otherwise unnecessary steps on the part of the user. Let's look

at an example: the user has a number of windows onscreen in the desktop

environment and wishes to transfer a file from one window to another (the

user knows the names of the windows and the file)--unless the two

windows involved in the transfer, and the file to be transferred, happen to

be visible and recognizable, the user must shuffle windows around (bring

them to front/send them to back, or close them) until they are visible, in

order to accomplish the transfer. Selecting and dragging the icon of the file

from the source window to the destination window will accomplish the

transfer; forcing the user to manipulate the windows to get to this transfer

52

IN':! N-~

step is a waste of time. A typed-in transfer command containing the name

of the source window, the file name, and the destination window would

speed up this process considerably.

Obviously, if the user knows the command that he wants to execute,

typing it in may often be faster than finding and selecting it from a

pull-down menu, especially for a fast typist. However, there are ways of

making the visual interface just as productive as the non-visual interface

for these expert users-

(a) Create keyboard commands that coincide with pull-down menu
selections.

(b) Create a redundant command language--a linguistic command
language to lie beneath the visual command language.

(c) Allow the user to create macros or executives.

The idea of an underlying linguistic command language is intriguing. It

would solve many of our problems. First, it would satisfy the expert

users--they could ignore the mouse (well, almost) and work entirely from

the keyboard (this might not always be desirable, even for the experts, in .'

extremely complex applications). The clumsiness of the visual tools in

certain situations could be bypassed by these experienced users, thus,

saving them time and adding power. Second, an underlying linguistic

command language would simplify the creation and modification of user

defined macros or executives (single commands that activate multiple

commands), since it would break down the visual commands into

lower-level, type-in commands that could be selectively edited. Third, such

a language would in no way affect the normal visual interface--if desired,

53

... .. -.-

.~~ '~~~ ~~ ~~ ~ -. 'r2 ~ ~ ~J ~ ~ r. Yr. .- -i ~ w ~ Y w w . V 1

the user need only use the visual tools via the mouse. Thus, the

easy-to-learn, easy-to-use advantages of the standardized visual interface

would still apply; only the expert user would want to learn the linguistic

command language. Taking all these things into account, It Is easy to see
that the development of such a language could only benefit users (they

would have "the best of both worlds"), as long as no compromlses were made .-.--

regarding the visual command language or the interface to facilitate that

development.

The growth in the power of software applications generally entails a

growth in the numbers of features they provide, since, the more features we

have at our disposal, the more tasks we can accomplish. The greater the

number of features, the more control decisions must be made to utilize

those features. The number of these control decisions is what determines

the complexity of the software. We'll define comnplex applications as those

which require many control decisions to be made. Thus, by definition, as the

level of complexity increases, the number of control decisions to be made

increases.

Perhaps the greatest benefit in using a standardized visual interface is

that it enables the user to use increasingly complex applications. Let's

make a bold statement here and see if we can back it up: The more complex

the application, the more necessary It is to have a visual interface.

Using a non-visual interface with a complex application, the user is

subject to four side effects:

(a) Regardless of his frequency of use or how expert he is, he simply
cannot remember the entire command language.

(b) Infrequently used features, of which there may be many, will

54 '.1

necessitate frequent referrals to the application manual.

(c) Many of the featuresof the application will not be used.

(d) The user may become hopelessly lost in the application, having no
idea of what he should do next.

A visual interface is not as susceptible to these side effects. The

command language of the application need not be learned or remembered (at

least, not the specific commands themselves--the user still must know

what the commands do), so the entire command language is always

accessible to the user. This feature of the visual interface makes it

invulnerable to two of the side effects encountered when using a complex

application with a non-visual interface: infrequently used features can be

utilized just as easily as frequently used features, thus, all of the features

of the program are more likely to be used. Additionally, the user is less

likely to become lost in the application since he always has a frame of

reference--the screen background--and since he is guided by the application

(highlighted choices on pull-down menus are the only ones appropriate for

his next action) in the problem solving process.

When inside a complex application, the user has a number of questions

to consider (whether the user is using a non-visual or a visual interface has

a profound effect on the answers to these questions):

(a) What is the problem he is trying to solve? The answer to this
question will hopefully be easy; if not, the visual interface may help
him by offering him choices of what he wants to do.

(b) What is the sub-problem he is trying to solve? To answer this
question, the user must have a clear idea of where he is in both the
application and the problem solving process. With the non-visual
interface, if the user is familiar with the application, is
concentrating on what he is doing, and can pursue the problem

55

V~'V 5 * u*.% S V- ~. - --- -.-- -.*J.a*.*'... ~a' .. .,,,t~

solving process uninterrupted (interruptions can cause him to lose
his place in the problem solving process so that when he comes back
to the machine he will not know where he is--and it may not be easy
to find out), he will probably know what this sub-problem is. With
the visual interface, the user is guided in the decision process by the
application--he can only make choices within pull-down menus that
are possible with respect to where he is in the application. The
visual interface also makes it easier to come back from an
interruption, since it provides a visual frame of reference.

(c) What is the feature of the application that will enable him to-solve
this sub-problem? The non-visual interface requires that the user
memorize all the features of the application--this can be an
enormous task in a complex application. By contrast, the visual
interface always displays all the features provided within a given
frame of reference. The user does need to know what the features do
however.

(d) How can this feature be called upon--what commands will activate
it? The answer to this depends on the extent of his knowledge about
the application's command language and on how familiar he is with
using this particular feature. If he is using a non-visual interface
and it is not a familiar feature, it is unlikely that he will know the
applicable command to activate it, forcing him to refer to the
manual. The pull-down menu selections in the visual interface
provide all the commands that can be executed from the environment
he is in and thus can help him immensely.

(e) In what order should commands be executed? The answer to this
depends on his knowledge of the application and his knowledge of the
problem solving process for his particular problem. The non-visual
interface may force him to carefully plan and write down his
intended steps ahead of time, in order to proceed smoothly towards
the problem solution--this may involve a thorough study of the
problem solving process and extensive referrals to the manual for
the right commands to carry out the process. The visual interface,
with its pull-down menus, requires that the user have a basic
knowledge of how to solve the problem--enough so that he can
recognize what step comes next when he sees the command to
activate it. This is similar to a multiple choice test in academics,

56

P-
r:7

pull-down menus merely require that the user be able to recognize
the right command when he sees it, not that the user memorize all
the choices, as with the non-visual interface. Also, the visual
interface makes it easier to execute steps in the right order through
the use of highlighting in the pull-down menus--it restricts the
number of choices available to those pertinent to the present state
of the problem solving process.

f) What is the next step towards solving the problem? The problem
confronting the user when using a complex application is that the
problem solving process is not necessarily a linear process--from
any point in the process the user may be presented with numerous
choices of where he wants to go next. Whether or not he is able to
make a choice depends on his knowledge of where he is, and what
task he wants to accomplish next, as well as his knowledge of the
application itself. The non-visual interface gives him little
indication of where he is--it provides no frame of reference; it
provides little help in deciding what task he wants to accomplish
next--it only displays a prompt symbol indicating it is waiting for
his input. By contrast, the visual interface provides a visual frame
of reference telling him exactly where he is and displays pull-down
menus that can help him in deciding what to do next--if he has
executed the correct commands up to this point, the choice of what
to do next will always be among the highlighted selections in the
pull-down menus.

,* ...

57

W-4

-7V I

V. CONCLUSION

The reader has been given some insight into current visual technology

and how visual tools can be used to help application programmers and users.

From the application programmer's standpoint, these visual tools take the

form of sophisticated program processors which aid him in the writing,

editing, debugging and testing of the code. Nevertheless, it is the richness

of the visual interface that is of the greatest value to application

programmers--it enables them to create an environment for their

application that is tailored to the conceptual model of the user--an

environment that facilitates fast learning and ease of use. The toolbox is

the key to creating this environment. Its use saves the programmer from

investing enormous efforts in the creation of the visual interface and

promotes standardization among applications. In addition, the toolbox helps

the programmer to create an environment that is unique to the application.

From the application users point of view, the visual interface offers a

friendly and familiar environment; applications which follow a standardized

visual interface are easy to learn and easy to use. As applications grow in

complexity and number, we have observed with the non-visual interface that

there is a limiting factor regarding the number and complexity of

applications that a single user can use effectively. This does not appear to

be true for the visual interface--as long as it follows the conceptual model

of the user, its standardized administrative environment and adherence to

the logic of the functions of its tools make it effective in dealing with

multiple, complex applications.

58

-..

LIST OF REFERENCES

1. MacLennan, B. J., Principles of Programming Languages, p. 454, Holt,
Rinehart and Winston, 1983.

2. Hunter, J. E., The Formal Specification Of A Visual Display Device
Design And Implementation, M.S. Thesis, Naval Postgraduate School,
Monterey, CA, June 1985.

3. Raeder, G., "A Survey of Current Graphical Programming Techniques",
Computer Volume 18, No. 8, p. 11-25, August 1985.

4. Teitelbaum, T., and Reps, .T., "The Cornell Program Synthesizer: A
Syntax-Directed Programming Environment", Communications of tie
AtY Volume 24, No. 9, September 1981.

5. Moriconi, M., and Hare, D. F., "Visualizing Program Designs Through
PegaSys", Computer, Volume 18, No. 8, p. 72-85, August 1985.

6. Myers, B. A., "The Importance of Percent-Done Progress Indicators for
Computer-Human Interfaces", CI1 '85 Proceeding$ p. 11-17, April
1985.

.

59 :.

INITIAL DISTRIBUTION LIST
No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6045 .1

2. Superintendent 2
Attn: Library (Code 0142)
Naval Postgraduate School
Monterey, California 93943-5002

3. Chairman (Code 52) 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

4. Curricular Officer (Code 33) 1
Weapons Engineering
Naval Postgraduate School
Monterey, California, 93943-5000

5. Lt. Michael N. Fredericksen 2
Department Head School Class 93
Surface Warfare Officers Command
Newport, R.I.

6. Gordon H. Bradley 2
Code 52 BZ
Naval Postgraduate School
Monterey, California 93943-5000

'.0.

60

,,°

.5--..' . S S "

- - - ~ - C r r -, -..w~. %.-~t. A

I

j~I.I ~I /

- .4

-a

U

4
44.

I.-.-

