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1 Introduction gt

@ Increasing interest in manipulator redundancy is a direct consequence of perceived :':*

limitations of current 6 degree of freedom robots. On the one hand, singularity regions

] of 6 degree of freedom rotary manipulators occupy such a significant portion of the

workspace as to render them functionally only 5 degree of freedom manipulators (Paul ot

3 and Stevenson, 1983). On the other hand, workspace obstacles may sufficiently constrain
movement as to effectively reduce the degrees of freedom.

Most analysis of redundant arms has proceeded independent of consideration of any PE
particular mechanism. Hollerbach (1984b, 1985) proposed a 7 degree of freedom kine- f{
matic design with a spherical shoulder joint to eliminate singularities and to improve hOS
workspace. Yoshikawa (1985a) proposed a 4 degree of freedom wrist to overcome the L:{
usual problem of wrist singularity. In practice very few redundant manipulators have e
been constructed. At research laboratories, 7 degree of freedom arms of anthropomor- oy

phic geometry include a tendon-driven, torque-controlied robot (Takase, Inoue, and

[yw)

Sato, 1974) and the UJIBOT, driven by DC servo motors (Nakamura, 1985). An 8 A
' degree of freedom redundant sheep-shearing robot has been discussed in (Trevelyan, :';::
' Kovesi, and Ong, 1983). Commercially, 7 degree of freedom robots have been produced
by the Robotics Research Corp., also of anthropomorphic geometry, and by Cybotech, A
' whose P-15 robot has a yaw axis in the forearm (Litvin et al., 1985). In addition, a "_'.:
N number of 6 degree of freedom robots have been mounted on linear tracks, but it is hard \f-
3 to count this 7th degree of freedom into fine motion control of the endpoint. [:‘_‘.;;
’ ‘) Thus, while the incidence of redundant arms in research labs and industry is grad- >
. ually increasing, present research in redundant arms has progressed primarily at a o
A theoretical and simulation level, in advance and expectation of available mechanical ‘.\
. hardware. %
. 1.1 Kinematic Resolution of Redundancy P
‘ The vast majority of research into the control of redundant arms has involved the R
. instantaneous resolution of the redundancy at the velocity level through use of the e
. pseudoinverse Jt of the Jacobian matrix J. If z is the 6-dimensional velocity vector of ;::’.;
the hand and @ is the n > 6 dimensional vector of joint angles, then ;
™
: x = JQ (1) \‘:
! 8 = Itz+a-3tayg (2) o
L] - » '.‘i
; at =TI (3) o
. [P
X where ¢ is an arbitrary joint velocity vector and (I~ It )¢ is its projection into the null I~
space of J, corresponding to a self-motion of the linkage that does not move the end q.\';
. effector. The pseudoinverse is also known as the Moore-Penrose generalized inverse. The 0
‘ attractiveness of this approach is twofold. First, the pseudoinverse is one of the types j-\.
of generalized inverse that has a least squares property (Ben-Israel and Greville, 1980), ¥
" {:;-',? in the present case minimizing QTQ Presumably any joint is prevented from moving too - g
. ) fast, leading to a more controllable motion (Whitney, 1969). It is also presumed that :::-_Z.
e 1 7
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squared velocities are approximately related to kinetic energy, which would then also
be approximately minimized (Whitney, 1969, 1972).

Second, the redundancy available beyond that required for the tip motion is suc-
cinctly characterized by the null space of the Jacobian, which may be freely utilized to
assist in the realization of some chosen objective. Liegeois (1977) developed a general
formulation for instantaneously minimizing a position-dependent scalar performance
criterion p = g(8). The null space vector that minimizes p is ¢ = kdg/08, where k is an
arbitrary constant, and yields the solution -

d=dtz+ (- JTJ)kg—z (4)

Liegeois demonstrated a way of avoiding joint limits, by minimizing the scalar function
n 0 _ 0m|d 2
where 67*** and 67" are the upper and lower joint angle limits for joint ¢ and /¢ =
(07 + 0722) /2.
The null space vector has also been used in singularity avoidance. Yoshikawa (1984)
proposed minimizing a dexterity measure w, called by him the manipulatability measure,

given by
= 4/det(JIT) (6)

Since at a singularity w = 0, then the scalar function p = —w(6) instantaneously
maximizes w and tends to keep the arm away from singularities. Klein (1985) compared
various dexterity measures including w and decided instead on the minimum singular
value.

At a singularity a nonredundant manipulator can actually execute a self motion,
since for example a 6 degree of freedom robot has an excess freedom with regard to the
5 degree of freedom endpoint motion possible at the singularity. The null space vector
corresponding to this self motion is useful if the endpoint variables are partitioned
into high-priority variables z,, which must be realized, and low-priority variables z,,
which are sacrificed to avoid the singularity but which should be realized insofar as is
possible (Hanafusa, Yoshikawa, and Nakamura, 1981). For example, in spray painting
the control of rotation about the spray direction is not as important as the control of the
other positioning variables, and could be sacrificed at a singularity. From the relations

£, = Jab (7)
5 o= 3 8)
i = I+ (1-313,)9 (9)

the null space vector left over after realizing the high priority variables is found by
substituting (9) into (8):

¢ =1~ JIJ;.)]T(QH - JlJI‘Ch) (10)
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» @ Substituting into (9) yields
b =3}z + [ - I3 & - 33 2) (11)

[,

3 where use has been made of the identity B(CB|t = [CB]!, with B = (I - JIJ,.) a E:":
hermetian and idempotent matrix (Maciejewski and Klein, 1985).

The null space vector can aid obstacle avoidance (Maciejewski and Klein, 1985).

. Suppose z, is some point on the arm closest to an obstacle, J, is the Jacobian such

that z, = 3,0, and £, is a movement of this point away from the obstacle that would

; . * 13
’ be desirable. In a procedure like that above, ¢ is found by substituting (1) into this :.‘:}
: relation: ] Q‘;
¢ =1~ 3TN, - 3.41) (12)
. After substitution and simplification, the joint rates that avoid the obstacle are: 5
6 =32+ (3.0- 39z, - 3.312) (13) :
One problem with the Moore-Penrose inverse is that its application is nonconserva-
tive (Klein and Huang, 1983). Repetitive motions planned with the pseudoinverse alone
do not return at a given tip point to the same joint configuration. Baillieul (1985) has »
proposed an extended Jacobian method, which may be used to make a repetitive motion '.‘;_
. conservative. If n; is a vector from the one-dimensional null space of J, obtained by o
“ taking cross products of columns of J, and g(@) is a scalar function to be minimized,
N then define 94(0) -
g(@
N G(0) = 30 Y (14) .
3 The extended Jacobian J.. is then defined by -
. x J ’
Jezg = ’ Jez =1 ac (15) :.
0 o7 :
y Assuming the manipulator is nonsingular, this relation may be inverted directly to find
0. 1t is possible to recast this method in terms of a generalized inverse with null space I
- vector. RS
b An entirely different mechanism from use of a null space vector to realize desired o
X performance characteristics is the weighteg pseudoinverse. The generalized inverse JTw -
2 that instantaneously minimizes the cost § W4 is (Whitney, 1969, 1972)
-,
- I = WIT(IW-137)! (16)
<4
% where W is a matrix of weights. Whitney (1969) proposed an alternative method A4
R for enforcing high and low priority of hand variables through appropriate selection of
. weights. Konstantinov, Markov, and Nenchev (1981) used weights to avoid joint limits.

Most research involving the pseudoinverse deals with the instantaneous kinematics

of motion, that is to say, motion that is locally optimized by incremental movement *'




from the current arm state. The Jacobian has also been used in dexterity measures to
aid global trajectory planning and the avoidance of singularities. Uchiyama, Shimizu,
and Hakomori (1985) parameterized joint angles by polynomials and optimized manipu-
latability w integrated across the whole trajectory by gradient adjustment of polynomial
coefficents. Nakamura and Hanafusa (1985) used Pontryagin’s Maximum Principle to

T
minimize a cost function combining manipulatability w, and 8 8, interpreted by them
as energy, for global determination of trajectory.

1.2 Kinetic Resolution of Redundancy

The previous redundancy resolution schemes are purely kinematic, despite the pre-
sumption that since the sum of squares of joint velocities is minimized by the pseu-
doinverse, then the kinetic energy is approximately minimized. True minimization of
kinetic energy would only be realized if the generalized inverse were weighted with the
inertia matrix, so that the relation to kinetic energy of an unweighted pseudoinverse is
not clear. The kinetic energy is

T=-9 HY (17)

where H is the inertia matrix. Minimizing the kinetic energy T is just Whitney’s
criterion with the weighting matrix W = H in (16).

To incorporate the generalized inverse into dynamics, the pseudoinverse must be
formulated in terms of accelerations. Khatib (1980, 1983) was one of the first researchers
to do this, in his case using the inertia-weighted pseudoinverse:

= Jo+36 (18)
= gz - Jb) (19)

[L- S 23 1

The dynamic equations in closed form are (Hollerbach, 1984)
[=HQ+Q-C-Q+_¢_]. (20)

where previously undefined terms are C, the matrix of Coriolis and centrifugal coeffi-
cients, and g, the gravity vector. Hence the joint torques are given by

r=HIp(z-J8)+6.-C-4+g (21)

Vukobratovic and Kircanski (1985) broadened the method of Khatib to include en-
ergetic models of hydraulic and electromagnetic motors, and applied the resultant gen-
eralized inverse to velocities.

While kinetic resolution of redundancy incorporates dynamics, the resulting formu-
lation is only indirectly related to torque production at the joints. A major reason for
attempting to reflect directly the effect of redundancy on joint torque is to avoid ex-
ceeding torque limits. Past work has been concerned with characterizing the endpoint
accelerations that depend on the utilization of the redundancy and on torque limits,
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rather than on an actual application to trajectory planning. Yoshikawa (1985b,c) de-
fined a dynamic manipulability ellipsoid, derived from a pseudo-endpoint acceleration
= & — J4 related to a pseudo-torque 7 =7 ~§-C-9 —g by

183t

(22)

The derivation proceeds at zero velocity by a kind of normalization of the torques
according to range. The upper r* and lower 7~ joint torque bounds are presumed equal,
and each pseudo-joint torque is normalized as #; = 7;/(r;" — |g,|). Ignoring bounds on
acceleration, then

=JA 't (23)
where H = WH and W = diag(1/(r}" - |g,1)) is a diagonal weighting matrix. The
dynamic manipulability ellipsoid consists of the set of Z that are derivable from a unit
input # < 1, obtained from the dot product

qu

FTEahTaIN: <1 (24)

The dynamic manipulability index w is derived from this relation, and is an extension
of (6) through the inclusion of inertia:

w = \/det(I(EH H)-137) (25)

This index has not yet been applied to redundancy resolution.
Khatib (1985) presented a different normalization for torque range in a procedure
similar to Yoshikawa’s. Defining

A .

# = min(|77 — &il, |7 — i)

the weighting matrix is W = diag(1/#;). Khatib applied this procedure to adjust a two-
link manipulator’s link lengths and masses to optimize the isotropic nature of endpoint
acceleration throughout the workspace.

This paper reports on a method for instantaneously minimizing torque loading at
the joints in a least squares sense, by specification of a null space vector applied to
generalized inverse accelerations and derived from manipulator dynamics. This method
is compared to use of a straightforward pseudoinverse and to use of an inertia-weighted
pseudoinverse with regard to the effect on joint torques. Portions of this research have
been previously reported (Baillieul, Hollerbach, and Brockett, 1984; Hollerbach and
Suh, 1985).

2 The Generalized Inverse and Torque Optimization

Consider an n degree of freedom manipulator whose task is described by m hand
variables z, where m < n. Assume that the upper and the lower torque limits of the
joints are 7+ and 7~ respectively, where for simplicity the limits are assumed motion
independent. Then given a desired hand trajectory z(t}, we would like to find the set
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of joint torques that results in z(t) and at the same time reduces actuator demands.
One way of reducing the actuator demands is to place the joint torques closest to the
midpoint of the joint torque limits 1(r* + 7~). In the following, a method is presented
for finding this set of joint torques using the null space of the Jacobian matrix.

In order to incorporate dynamics, the redundancy is resolved at the acceleration
level rather than at the velocity level. Using the pseudoinverse, the inverse kinematics
readily follows from (18).

8=3"z-30)+ (1~ 3138 (26)

where the null space vector (I — JTJ)::# now appears relative to (19). Substituting (26)
into (20),

r=7+HI-313)¢ (27)
where . ) ]
F=HIN(E-J8)+6.-C.0+g (28)
The goal is to place 7 closest to 3(r* + ) in a least squares sense, that is to say, to
minimize 2
t4+r-
— = = 9
T > (29)
Substituting (27) into (29) and defining 7* = 7+ — 7 and ¥~ = 7~ — 7, the goal is recast
as finding the vector ¢ to minimize
tos P+
H(I-J'J)¢ - — (30)

This least squares problem can also be solved by the generalized inverse (Ben-Israel and
Greville, 1980), yielding

(31)

This result can be extended to incorporate the idea that the available torque range is
smaller for some joints than for others, through the use of weighted least squares (Ben-
Israel and Greville, 1980). Given a weighting matrix W, we now want to minimize

=(I—'I—‘j-—§—) W(g_-_.I tr ) (32)
w 2 2

The solution to this is given by

3= [H(I - JTJ)]T A

, ™t +1”
- 2

3= [W%H(l - JTJ)]T (w%-f:—’;—il) (33)

where by definition WiWi = W, Torque range can be incorporated into the least
squares by a diagonal matrix W = diag(1/(r} — 7;7)?). Weighting the least squares by
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Figure 1: Geometry of the three-link planar manipulator. Ee
the magnitude of the torque range seems a better procedure than the weighting schemes
of Khatib and Yoshikawa, which are biased towards zero. o
X
. 3 Simulation T
3 The various algorithms for redundancy resolution at the acceleration level are demon- :
; strated by simulation. b
R i" 1. The unweighted pseudosinverse algorithm derives the joint torques from (27) and Q..«;
- (28). G %
: r=HI(z-J0)+0-C-0+g (34) R
: B 2o
2. The inertia-weighted pseudoinverse algorithm is obtained from (21). REL
3 r=HI'g(z-J0)+8.-C-0+y. (35) X
.Y - :.'(
) 3. The unweighted null-space algorithm derives the joint torques from (27), (28), and '
: (31). 54
L bt s =
z=HJT(Q:—JQ)+Q-C-Q+Q+H[H(I—JTJ)] r+i (36) 9
4. The weighted null-space algorithm is derived from (27), (28), and (33).
TR N .
; r=HINE-30)+8-C-d+g+H[WIHI-J J)] wiltl) () G
z
. Methods 3 and 4 again make use of the identity B[CB]T = [CB]T, where B = (I- JTJ) ‘\\
§ is hermetian and idempotent (Maciejewski and Klein, 1985). "
. :‘? The simulated manipulator is a planar rotary manipulator with three links (Fig- .*.»

ure 1). The parameters of the arm are link lengths /; = l; = Is = 1.0 and masses




m; = my; = mg = 10.0; link inertias are modeled by thin uniform rods. The simulated
movements are straight-line Cartesian paths starting and ending with zero velocity, with
constant tangential acceleration and deceleration of the magnitude /2 over first and
last half of the movement respectively. Total duration of the movement is varied to
give the trajectories of different lengths. Tip orientation is not constrained, giving one
degree of freedom redundancy. For simplicity gravity is ignored, and the upper and
lower torque limits are set equal in magnitude yielding 7+ + 7~ = 0. Torque limits for
joints 1-3 are set at 54, 24, and 6 respectively, derived from ratios of mass moments
at each joint when the arm is perfectly straight to ensure appropriate relative scaling.
For the weighted null-space algorithm, the diagonal elements of the weighting matrix
W were set as the inverse squares of these torque limits.

The pseudoinverse was found using the singular value decomposition of a matrix
(Strang, 1980), via a routine taken from Linpak User’s Guide (Dongarra, 1979). After
the joint torques were found, a fourth-order Runge-Kutta algorithm was used to find the
next joint velocities and angles with an integration time interval of 1 msec. Programs
were written in Fortran 77 in single precision and ran on the VAX 11/750 computer
running 4.2 BSD UNIX.

4 Results

Performance of the unweighted null-space and pseudoinverse algorithms are com-
pared in Figs. 2-4 for representative trajectories. For the short movement of Fig. 2,
the null-space algorithm seerns to give a substantial reduction in required joint torques.
The most dramatic decrease is in the joint 1 torque, which is much smaller than for
the unweighted pseudoinverse algorithm. While the other joint torques in the present
example are decreased less, the joint 3 torque is pulled away from the perilously close
torque limit of 6. For the intermediate length movement of Fig. 3, which is 2.5 times as
long as in Fig. 2, the unweighted null-space algorithm still outperforms the unweighted
pseuuvinverse algorithm, although near the movement midrange and end the joint 2
torques are somewhat larger though still within the torque range.

For the long movement of Fig. 4, which is four times as long as in Fig. 2, the
unweighted null space algorithm unexpectedly encounters stability problems near the
movement end. The torques required to keep the manipulator endpoint on the planned
trajectory become extremely high, occasioned by the joint alignment of links 2 and 3
coupled with large velocities and accelerations in all the joints (Fig. 5). Evidently
the unweighted null-space algorithm needs a long enough path for this situation to
develop. Indeed, nearly any long path led to similar instability problems, since joint
alignment and high velocities inevitably followed. This rarely happened in the case of
the unweighted pseudoinverse algorithm. Although the unweighted null-space algorithm
instantaneously gives smaller torques than the unweighted pseudoinverse algorithm,
globally the unweighted null-space algorithm degrades unacceptably in performance
with longer trajectories.

Ordinarily one would expect a proximal joint such as joint 1 to have a larger actuator
and a wider torque range than the distal joints, since it is required to exert more torque.
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Figure 2: Torque profiles for a short movement for the pseudoinverse and null-space

algorithms.
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Figure 3: Medium-length movement.
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. :;
" Yet in the unweighted torque optimization all joints are treated equal; the sum of squares ) ‘;’:
of joint torques is minimized by reducing the largest torque which is the joint 1 torque @ T
by generating high accelerations at all the joints. If the torque optimization is done
. relative to the allowable torque range at each joint, the instability problem may be _.:
o overcome. ::::‘
& To test this idea, performance of the weighted null-space algorithm is examined for -
' the same trajectory as in Fig. 2. It can be seen that the joint 3 torque is now much ‘
5 smaller at the expense of more torque at joints 1 and 2, but all remain well within their e
N torque raages (Fig. 6). Unfortunately, the weighted null-space algorithm also yields 3
. stability problems for the long movement of Fig. 4, so that the hoped-for elimination of '.:f::
instability with weights is not realized. There were even movements where the instability o
was shown only by the weighted case, although the reverse was not found. The observed bl
- characteristics of the instability in the weighted cases were identical to those of the non- '_:
weighted cases. N
Performance of the inertia-weighted pseudoinverse algorithm is also shown in Fig. I:;:Z
Y 6. Here and elsewhere the joint torques fell somewhere in between the unweighted o
pseudoinverse algorithm and the unweighted null-space algorithm. The inertia-weighted ,
N pseudoinverse algorithm also suffered from instabilities in longer movements. In most ‘\,
X of the trajectories studied, whenever the null-space algorithm was unstable, the inertia- ::C"
- weighted pseudoinverse algorithm was unstable as well. ™ X
5 Discussion ;
Vel .
. The goal of this paper was to develop a local algorithm for reducing actuator require- ;Z:;
N
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Figure 7: A free-swinging pendulum acting under the influence of gravity directed along e}
the former straight-line motion W'
o ~
" ments and avoiding torque limits, and the methods examined include use of a null-space r",
¢ acceleration vector, this vector weighted by torque range, and an inertia-weighted pseu- f}
» doinverse. These kinetic methods all lead to stability problems, even though locally - e
- these methods reduce actuator torques. Globally only the unweighted pseudoinverse al- @ T
. gorithm, which by contrast is a kinematic method, is generally well-behaved, although .
2 on rare occasions it too shows instabilities. e
3 It seems that local tampering with the energetics of movement has led to global f-‘{l
" disaster. The torque profiles in Fig. 4 are representative of the problem. High acceler- ’
ations in the distal joints lead to high joint velocities, and at the point where the third
‘ joint is straight these high velocities induce a whipping action that strongly thrusts \
the endpoint off the path. Substantial torques are required to overcome these natural \
™ movement dynamics and to maintain the planned endpoint trajectory. :t
v Insofar as torque optimization tends to reduce the torques towards zero, the situation '
may be analogous to a free-swinging pendulum. In Fig. 7 the manipulator has been N
started at the same position as the previous plots, but with gravity now acting along ‘_Z‘:‘.
- the original straight-line motion with a magnitude that yields an initial acceleration RS
¥ equal to the acceleration step in the simulated trajectories. The manipulator is allowed Y
Y to fall freely under the influence of this gravity. The free-swinging pendulum exhibits a b
. similar whipping action when the third joint straightens out. Thus the kinetic methods -,
f do indeed lead to utilization of the natural movement dynamics, but ultimately to A ;
o the detriment of the movement goals with which the natural movement dynamics are 2
14 incompatible. N
! Whether the kinetic methods may be modified to avoid the instabilities is a subject
3 of continuing research. One possibility is to weight the local optimization criterion with ':'1'(?' e
< a kinematic term to avoid high velocity buildup. For staying within torque bounds, ,
g o
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linear programming 1ather than least squares may be more satisfactory. The broader
question is whether any local algorithm can ever be completely successful, or whether
ultimately only a global resolution of redundancy can be guaranteed problem-free.
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