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Abstract. A closed form equation for inverse kinematics of manipula-
tor with redundancy is derived, using the Lagrangian multiplier method.
The proposed equation is proved to provide the exact equilibrium state
for the resolved motion meth-,, and is shown to be a general expression
that yields the extended Jacobian method. The repeatability problem in"
the resolved motion method does not exist in the proposed. equation. The
equation is demonstrated to give more accurate trajectories than the re-
solved motion method.
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1 Introduction

A kinematically redundant robot manipulator is a manipulator that has
more degrees of freedom than are necessary to locate the end effector at a
desired position and orientation. For example, if we want to locate some
point on a two-dimensional end effector at a specified position and ori-
entation, we need three degrees of freedom. Thus, a robot manipulator
with more than three degrees of freedom is kinematically redundant in the
two-dimensional space.

The major advantages to adding redundant degrees of freedom to a
robot manipulator are as follows:

1. One achieves greater dexterity in maneuvering in a workspace with
obstacles.

2. One can avoid singular configurations of the manipulators.

1.1 The Resolved Motion Method vs. the Inverse
Kinematic Method

Because of these significant advantages, an increasing amount of research
has focused on the kinematically redundant manipulator, and the progress
in this field has been rapid [Whitney,1972; Li6geois,1977; Klein and Huang,1983;
Yoshikawa,1984; Hollerbach,1984]. Much of this research has involved the
resolution of motion using the pseudoinverse of the Jacobian matrix - also
known as the Moore-Penrose generalized inverse matrix - in order to re-
solve the redundancy. This resolved motion technique first determines the
joint velocity using the pseudoinverse matrix, and then incrementally de-
termines the joint displacement; it thus transforms from workspace to joint
space via joint velocity. In contrast to this direction of research, relatively
little research [Benati et al,1982; Hollerbach,1984] has involved the inverse
kinematics - the direct mapping from the workspace to the joint space -

for kinematically redundant manipulators.
The advantages and disadvantages in the inverse kinematic method over

the resolved motion method are well known in nonredundant robot manip-
ulators. The resolved motion method - now using the inverse of the Jaco-
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bian matrix instead of the pseudoinverse matrix - is well-defined for gen-
eral manipulator kinematics, except for numerical problems near kinematic
singularities. Furthermore, the joint velocities can be efficiently computed
from the workspace velocities using the Jacobian matrix without requiring
an explicit matrix inverse. The resolved motion method, however, has some -?

weak points:

9 The method has intrinsic inaccuracy because of linear approximation
characteristics of the Jacobian matrix; thus it accumulates errors,
which become even larger as the velocity increases.

9 The method does not give directly the joint values for a given position
and orientation of the end effector.

On the other hand, the inverse kinematic method has symbolic solutions
only in some types of manipulator kinematics [Pieper,1969]. For general
manipulator kinematics, it has only iterative solutions based on numerical .
methods, which can be computationally expensive unless we have initial
conditions sufficiently near to the solution. However, this method - be it
symbolic or numerical - is attractive because of the direct mapping from
the workspace to joint space, fixing most of the aforementioned problems
of the resolved motion method.

1.2 Inverse Kinematic Method in the Redundant
Manipulator

*' The comparison between the two methods remains essentially unchanged
in redundant robot manipulators; thus we have good reasons to choose the
inverse kinematic method.

As in the nonredundant case, no symbolic solution has been developed
yet for the general redundant manipulator, for we cannot obtain symbolic
solutions unless certain conditions are met by the manipulator structure.
For example, in (Benati et al,1982; Hollerbach,1984] only some of the joint
variables were obtained symbolically. To obtain these solutions the ma-
nipulator structure and the number of degrees of freedom were fixed -
explicitly in [Hollerbach,1984 and implicitly in [Benati et al,1982].

2
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An additional difficult task for a redundant manipulator - regardless
of whether or not it has symbolic solutions - is to rationally (or optimally)
use the extra degrees of freedom to achieve the objectives such as singularity
avoidance or obstacle avoidance. In other words, the task is to resolve the
redundancy while achieving some objectives.

To our knowledge, the general, closed-form equation to resolve the re-
dundancy at the inverse kinematic level has not appeared yet. In this -.

paper, we propose a method, or a general equation - derived from the La-
grangian multiplier method - to resolve the redundancy; thus fully spec-
ifying the kinematic equations. The resulting system of equations will be
qualitatively compared with the two existing methods: the extended Ja-
cobian method[Baillieul,1985 and the resolved motion method [Li~geois
,1977; Klein and Huang,19831, which uses the pseudoinverse matrix. From
this comparison, the relationships between the proposed method and each
of the two methods will be examined. To numerically evaluate the proposed
method, the system of equations - which requires numerical iterative so-
lutions - is solved for a simulated task, and its solutions are compared
with those of the resolved motion method.

In Section 2, the proposed method will be derived. In Section 3, the
comparison and the relationships will be covered. The proposed method
will be evaluated by simulations in Section 4, and the results will be dis-
cussed in Section 5, and conclusions in Section 6.

2 Derivation of the Proposed Equation

In this section, we will derive extra equations which, together with the kine-
matic equations of the manipulator, can fully specify the under-determined
problem.

The kinematic equation for the redundant manipulator is given as the
following vector equation:

x = f(9) (1)

where x is an m-dimensional vector representing the position and orien-
tation of the end effector in the workspace, 0 is n-dimensional vector rep-
resenting joint variables, and f is a vector function consisting of m scalar

3



functions, with m < n. Eq.(1) may be rewritten as

F() =f(i) -x (ia)
=0

Let H(i) be some criteria function to be minimized, which quantitatively
represents the desired performance - for instance, singularity avoidance or
obstacle avoidance. Here, any criteria function can be used, as long as the
function is expressed in terms of joint variables - which is easy in most
cases by using Eq.(1) - and the function has first partial derivatives.

Let us define the Lagrangian function L(9) as the following:

L(i) = XTF(i) + H(i) (2)

where X is an m-dimensional Lagrangian multiplier vector. At the minimum
of L,

OL .XT OF +70 = o f 8 (3)

where the m x n matrix, I, is the Jacobian matrix J. The second term in
the r.h.s. of Eq.(3) may be expressed as

hT - H
CO

where h = (h1, h2, ..., h ,)T with

OHh (i= n)

Thus Eq.(3) becomes the following:

XTJ= hT (4)

If we transpose Eq.(4), we get

i.1 T"A -h

4



or

o ( J " ) "  A , h, 
.

where (ji)T denotes the transpose of i-th column vector of the Jacobian
matrix. If we select m linearly independent rows from JT, which are, with-
out loss of the generality, the first m rows, and constitute a nonsingular
matrix, Jm, then X can be obtained from Eq.(5), as

A 2 h2

hf..

Substituting this into Eq.(5), we have

'ifn~lT h, L 1
(jfa+2)T h2 h,+2

JI- (6) p.

*J"T h(j j) h.j

For simplicity, let us denote

(j,,+.)T

Jn-M[

(jn)T

where J.m is an (n - m) x m matrix. If we define

Z [ n-mJm- -Inm] (6a)

... ............



where I,-m is an identity matrix of rank (n - m), then Eq.(6) becomes

Zh = 0 (7)

where Z and h are defined as above. If we combine the kinematic equation,
Eq.(1), with Eq.(7), as a system of equations, we get a.

Zh=f0

Since Z is an (n - m) x n matrix, and h is an n-dimensional vector,
Eq.(7) consists of (n-m) scalar equations with n unknowns, 0. On the other
hand, the kinematic equation, Eq.(1), has m scalar equations. Therefore,
Eq.(7a) has n independent nonlinear equations which now fully specify the
n unknowns. Note that Eq.(7a) has to be solved numerically.

The additional set of equations, Eq.(7), resolve the redundancy - at
the inverse kinematic level - in such a way that the criteria function,
H(O), may be minimized. This resolution of redundancy may be viewed as
the direct counterpart of the resolution technique in the resolved motion
method, which uses the null space to resolve the redundancy. We will
discuss the relationship in more detail in the subsequent section. Note the
generality of Eq.(7); no assumption was made that could limit it.

3 Comparison with Other Methods

In this section, the present result in Eq.(7) will be compared with two
existing methods: the extended Jacobian method and the resolved motion
method which uses the pseudoinverse. The relationships will be investigated
on the basis of comparisons.

3.1 Relationship with Extended Jacobian Method

An alternative method to resolve the redundancy - also at the inverse
kinematic level - is presented in [Baillieul,19851. This method derives the
additional equations by using the orthogonality between the gradient vector

6 '

f.



of the criteria function and the null space vector, n, such as

o (8)

where
ni = (All A,-:.(9

with
A, = (-1)'+det(JJ 2,..,J'-, J'+ ,..,Jn) (10)

and where P1 is the k-th column vector of the Jacobian matrix. From
the resulting fully specified system of equations, the new Jacobian matrix,
called the extended Jacobian, is derived, just in the same way as in the
nonredundant case.

This method, however, is limited to redundant manipulators that have
only one redundant degree of freedom, that is, only if n = m + 1. Obviously,
this limitation is not desirable.

As proved in Appendix A, the additional equation, Eq.(8) can be also
obtained from Eq.(7) in the case that n = m + 1. Therefore, we may regard
Eq.(7) as a general equation from which Eq.(8) could be derived.

Moreover, as Eqs.(9) and (10) show, elements of nj are the determi-
nants of n m x m submatrices made from the original Jacobian matrix -

making n different combinations from n column vectors, and obtaining n
determinants. Compared to this, however, Eq.(7) has only one inversion of
an m x m matrix; accordingly, it is somewhat easier to manipulate either
symbolically or numerically.

Therefore, we may say that Eq.(7) is the more general equation with
expressions somewhat simpler to treat and more efficient to compute than*Eq.(8). "

3.2 Relationship with Pseudoinverse Control

A general solution for the equation

J8

7
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when n > m, was given as [Ben-Israel and Greville,1980]

! a = J+A + (I - J+J)h(1)

where J + is the pseudoinverse matrix, defined as

+ = jT(jjT)-l (12)

and (I - J+J) is the null space of J, with h an arbitrary vector. Eq.(11)
gives a way to resolve the redundancy at the velocity level.

Li~geois[1977] developed a formulation of resolution of redundancy, such
that a scalar criteria function may be minimized, by setting the vector h
as

h = VH (12a)

where H is the criteria function to be minimized. He expresses Eq.(11) and
Eq.(12a) in terms of the infinitesimal displacement, as

dO J+dx + (I- J+J) V H (13)

In Eq.(13)(or Eq.(11)), the first term in the r.h.s. is responsible for the
displacement of the end effector. The second term, on the other hand,
forces joints to have self-motion to achieve an equilibrium (or optimum),
0, where H has a local minimum, for an instantaneous location of the end
effector, x(t). In practice, however, while the joint variables are searching
for a 0" for a given x, x(t) continuously varies - thus requiring different

, 9*'s. Therefore, the joint variables never reach the optimal configuration,
but are slightly different from that configuration in the direction determined
by the first term in Eq.(13), J+dx.

Because of these characteristics, the resolved motion method in Eq.(13)(or
Eq.(11)) has an undesirable property: it does not preserve repeatablity of
joint values for repeated end effector motions. More specifically, two factors

• that cause this property are as follows:

1. Because of the directionality in the first term of Eq.(13), the joint
variables have different values depending on the direction of the re-
peated path - a cyclic path, for instance - in the workspace. Note,

8
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however, that the repeatablility can be preserved when tracing only
one direction of the cyclic path even in the presence of this factor
[Baillieul,1985].

2. Because of the irreversibility of the second term, they never return to
the original configuration, once the joint variables achieve a i6. This
situation can happen at the initial transient period when initial joint
values are far from the optimum; for the optimal joint values cannot
be known in advance.

In Appendix B, we prove that Eq.(7) is the necessary and sufficient condi-
tion to be satisfied when Eq.(13) reaches its equilibrium states with dx = 0.
In other words, Eq.(7a) gives the exact equilibrium state at which Eq.(13)
will eventually arrive - the optimal joint configuration - for a given end

effector location. Thus, we may regard Eq.(13) in the resolved motion
method as an approximated equation linearized at states that are exactly
determined by Eq.(7a).

4 Simulation

In this section, we select a kinematically redundant manipulator and apply
Eq.(7). The resulting system of equations are solved numerically for x,
the end effector location, which makes a cyclic path. In parallel to using
Eq.(7a), the resolved motion method is applied to the same manipulator
with the same tip motion. The points we try to examine or verify through
the simulation are as follows:

1. Whether the resulting system in Eq.(7a) gives kinematically correct
joint variables for a given x, achieving the performance represented
by the criteria function we select.

2. How the present method compares to the resolved motion method in
terms of accuracy and repeatability.

3. Whether the present method gives, in fact, the same equilibrium
states as the resolved motion method will eventually reach.

9



Y 03

11= 0.60 m
12 0.85 m
13= 0.20 m

b4.

Figure 1: The Schematic Diagram Of The Redundant Manipulator

We use the same manipulator presented in the paper[Yoshikawa,1984]
for the sake of comparison of data obtained in that paper: a 3 degrees of
freedom manipulator with the end effector moving in the (x,y) plane; thus
kinematically redundant. The schematic diagram with necessary parame-
ters is in Figure 1.

The task is to make a square path - thus a cyclic path - while avoid-
ing singularities. A good criteria function for this objective may be the
manipulability[Yoshikawa,1984], which is given as

4. H = det(JJT) (14)

4.The kinematic equation is given as

Z = 1181 + 12$12 + 13812s (15)

y = lcI + 12c12 + 13I2s (16)
where 11,12, and Is represent the length of each link, while the variables with
subscripts are defined as

si = sin(O=), a, ...k = sin(O, + di + ... + 8k),
c,=coa(Oi), cq...k =Cos(O+0,j+...+6O0), i,j,..,k=1,2,3 '

10 . -
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Then, the Jacobian matrix is obtained as

J = VC123 + UC 12 + C1  VC123 + UC12 V (17)

-VS1 23 - US12 + 1 -VS 123 - US12  -V8 12s

where
12 13

By applying Eq.(7), we get

2u 2 V3(823833 - C2383) + uv3(2e238233 - 38223383) + 2U3V20 2833 +
zz(c3 - c() + 2uv2 (82233 - c 213) - u 3 V8 22 83 - 2u2v8 2 83  (18)

-0

where the same definition is used for the subscripts as in Eqs.(15) and (16).
The system of equations, Eq.(15), Eq.(16), and Eq.(18) now fully specify

the originally under-determined system of equations, Eq.(15) and Eq.(16),
while minimizing H in Eq.(14). The system of equations may be solved
either purely numerically, or by symbolically reducing variables - in this
example, 01 - and then by using numerical methods. Incidentally, this
example suggests that it is possible to reduce variables, thus reducing the
order of the system of nonlinear equations, after resolving the redundancy
first with all the joint variables. The system of equations were numerically
solved for joint values, tracing each (z, yi) on a square command path in
the workspac" by using a subroutine called ZSOLVE, translated from the
IMSL library into MACSYMA. As shown in Figure 3, the x-y coordinates
of the four vertices of the command path are given as follows:

(446.00, 91.514),(546.00, 91.514)

(446.00,-84.865),(546.00,-84.865),

where the units are mm.
Meanwhile, the resolved motion method in Eq.(11) is also applied to

this manipulator for the same path. Since Eq.(11) is a system of differ-
ential equations, a FORTRAN program, called DYSYS - which uses the
Runge-Kutta integration method - was used together with the LINPACK
subroutines. Note that this numerical scheme allows much more accurate
solutions than the normal scheme for the resolved motion method. That

U11..
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is, the Runge-Kutta method evaluates the derivative four times at each
time interval and calculates the weighted average, while the normal scheme
evaluates it only once at each time interval.

The simulation for the resolved motion method was made with initial
joint angle values of (-40.5006, 141.6408, 78.4169) in degrees, which are
far from equilibrium states, that were deliberately selected to examine re-
peatability. The same initial value was also used as the initial guess for the
above nonlinear equations for fair comparison of the two methods.

5 Results and Discussions

5.1 Results

The numerical results of simulations are listed in Figures 2-3 and Tables
1-3:

e Figure 2 is the plot of joint variables solved with the two methods.
Note that the 3-D trajectory of joint variables is represented with two
2-D plots: 01 vs. 02 and 01 vs. 03.

On the other hand, Figure 3 shows actual trajectories, with the two
methods, of the end effector in the workspace, as compared to the
command path. The actual trajectory was determined by forward
kinematics with joint values obtained by each method.

* In Table 1, some representative solutions are listed to numerically
compare the accuracy of the end effector position obtained with each
method, while, in Table 2, the repeatability was examined for a simple
reciprocal path.

Table 3, on the other hand, verifies the relationship proved in Ap-
pendix B : the solution with the resolved motion method when dx -0
is the same as that with the proposed method.

.5 'N
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Table 1: The Comparison Of Accuracy Obtained With The Two
Methods

X(mm) Y(mm) $,(deg) 02 (deg) 03(deg)

Command Path : 446.00 91.514
Proposed Method : 446.00 91.514 -25.5116 134.4894 100.8165
Resolved Method :446.00 91.514 -40.5006 141.6408 78.4169

Command Path : 446.00 -84.866
Proposed Method : 446.00 -84.866 -13.4927 135.1801 101.6627
Resolved Method : 445.74 -65.824 -14.0445 135.3160 101.2448

Command Path : 546.00 -84.866
Proposed Method : 546.00 -84.863 -7.1232 128.0020 92.1837
Resolved Method : 545.52 -68.216 -7.1924 127.9635 92.4919 de

Command Path : 546.00 91.514 -

Proposed Method : 546.00 91.514 -17.0753 127.4846 91.4484
Resolved Method : 545.73 92.947 -17.0519 127.3890 91.7938

U..-.

Command Path : 446.00 91.514 :-. ,
Proposed Method : 446.00 91.514 -25.5116 134.4894 100.8165
Resolved Method : 445.97 93.167 -25.7427 134.4867 100.7127

.-

._. 15

%. %



Table 2: The Repeatability Test With The Two Methods

X(mm) Y(mm) $,(deg) 02(deg) Os(deg)

Command Path : 446.00 91.514
Proposed Method : 446.00 91.514 -25.5116 134.4894 100.8165
Resolved Method : 445.89 93.140 -25.7472 134.4929 100.7206

Command Path : 446.00 -84.866
Proposed Method : 446.00 -84.866 -13.4927 135.1801 101.6627
Resolved Method : 445.63 -66.244 -14.0476 135.3249 101.2557

Command Path : 446.00 91.514
Proposed Method : 446.00 91.514 -25.5116 134.4894 100.8165
Resolved Method : 445.60 92.912 -25.4178 134.3821 101.2799

Command Path : 446.00 -84.866
Proposed Method : 446.00 -84.866 -13.4927 135.1801 101.6627
Resolved Method : 445.57 -66.184 -14.0526 135.3293 101.2610

1.
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Table 3: The Comparison Of Solutions: Proposed Method Vs. Re-
solved Method With dx=O

X(mm) Y(mm) 01(deg) 02 (deg) 03 (deg)

Command Path : 446.00 91.514
Proposed Method : 446.00 91.514 -25.5116 134.4894 100.8165
Resolved Method : 446.00 91.514 -25.5115 134.4894 100.8164

Command Path : 446.00 -84.866
Proposed Method : 446.00 -84.866 -13.4927 135.1801 101.6627
Resolved Method : 446.00 -84.868 -13.4927 135.1801 101.6626

Command Path : 546.00 -84.866
Proposed Method : 546.00 -84.863 -7.1232 128.0020 92.1837
Resolved Method : 546.00 -84.863 -7.1232 128.0020 92.1837

Command Path : 546.00 91.514
Proposed Method : 546.00 91.514 -17.0753 127.4846 91.4484
Resolved Method : 546.00 91.514 -17.0752 127.4846 91.4484

17
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5.2 Discussions

From the results of simulations, we may evaluate the proposed method

in terms of accuracy and repeatability by comparing it with the resolved

motion method. We can also derive some useful ideas from the relationship
between the two methods.

5.2.1 Accuracy

As shown in Table 1 and Figure 3, the proposed method gives joint vari-

ables which exactly correspond to the commanded z and y, minimizing the
criteria function to avoid singularities. Clearly, we see that the accuracy in
the workspace achieved with the proposed method is better than that with
the resolved motion method.

Therefore, the proposed method provides a useful mean for an accurate

position control of the end-effector, when the manipulator is kinematically
redundant.

5.2.2 Repeatability

Table 2 and Figure 2 show that the repeatability is not preserved with the
resolved motion method because of the two factors mentioned in Section 3:
the initial joint variables which are far from optimal joint values (Figure
2) and the direction - clockwise or counterclockwise - of the path to be
traced (Table 2).

The lack of repeatablility can be a considerable drawback in robot ma-
nipulators which perform cyclic tasks, because, as the end effector traces
the cyclic path, joint variables evolve into states which cannot be predicted
in advance.

On the other hand, it is obvious that the proposed method preserves

the repeatability regardless of direction. In other words, the method allows
a fixed transformation from workspace to joint space. The property of

fixed transformation is useful not only for the prediction of joint variables,
but also for the precomputation of position dependent terms such as the
Jacobian matrix and the inertia matrix.fRaibert and Horn,1978]

| 18.
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5.2.3 Relationship between the Two Methods

The result in Table 3 shows a nearly perfect agreement of both solutions,
verifying that Eq.(7) in the proposed method is the equilibrium equation
at which Eq.(11) will finally arrive.

Because of the relationship between the two methods, we may use them
interchangeably as follows:

The exact equilibrium state can be determined either directly with
the proposed method, or indirectly with the resolved motion methodby setting dx = 0. The latter, however, would require more compu-
tations than the former.

. The incremental displacement d, which Eq.(11) in the resolved mo-
tion method easily provides, can be also obtained by first differenti-
ating Eq.(7a) to get the Jacobian matrix and then by inverting it.

We can also make use of the relationship complementarily: The proposed
method could be more effective if the initial guess for the method is provided
by the resolved motion method.

6 C onclusions ' ,5.

In the paper, we have derived a general equation which resolves the redun-
dancy in the kinematically redundant manipulator. This equation, together
with the kinematic equations, constitutes a system of equations, the solu-
tion of which generates accurate joint values which make the end effector
trace the commanded path in the workspace, while minimizing the criteria
function.

We have compared the equation with two other methods. We have
proved that the equation derived is a general equation that generates the
extended Jacobian method. We have also shown that the proposed system
of equations is an equilibrium equation toward which the resolved motion
method converges. This point was proved and verified in the simulation
results. The results of simulation also show that the proposed method gives
better joint values than the resolved motion method in terms of accuracy
and repeatability.
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7 Ap endi A. he D rivaion f th Ex

7 A pni A.The Derivnaleqation ofrsov the reudnyi h xedx-
tedJcobian Method i ie[aliu,95 nEs()() n 1)a

G(P) np

In~ thsApniw(ilprv8htteetne)Jcba ehdii

Gi(i'le(O),h (80)

and where J" is the k-th column vector of the Jacobian matrix, J, derived
from Eq.(1). When n = m + 1, our result, Eq.(7), is specified as

G2 (O) [(jfl)Tjm-l,~1h(

wher is he ransoseof the n-th column vector of the Jacobian
matrix, J. Jm- can be derived as

im-1
Jm = Am (A2)

where A. is the adjoint matrix of Jm and Dm is the determinant of Jm.
Thus Am is expressed as( Of11  COf 21  ... COfm1

Am Cof2 Cof 2 2  ... COfm,2  (3

(Cofm iih" CofmmJ
where Cof,, is the cofactor of j of the Jacobian matrix, J. From Eqs.(A1),(A2),
and (M3), we get

(jfl)Tj mI -1 ...... (f)A' (TA, ... (jn)T Am] (A4)
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where A'. is the i-th column vector of Am. Since

(J)TAm = jICof1 + jCof12 + .. +jnCOflm

=--A 1  m

we get likewise
(J-)TA't = -A, (A5)

From the definition of A,,, we get

A,, = det(Jm T )
= det(Jm) (A6) . %

D,,

Therefore,
((jn)Tjm-l,_X) = A A2  (A7)A.' A.'',"7

Since Jm is nonsingular - and thus A. is nonzero, we can multiply by it
on both sides of Eq.(A1), resulting in Eq.(8). Thus we have proved that
Eq.(7) is a general expression which yields the additional equation in the
extended Jacobian method.

8 Appendix B. The Relationship Between
The Proposed Method And The Resolved
Motion Method

The matrix in Eq.(6a) is again,

Z [Jn-mJm- -In-m] (6a)

Since the rank of any matrix is the dimension of its largest nonsingular
submatrix, which is In-m for Z, the rank of Z (and ZT, too) is n - m. In
addition, since

jZT .qjT. Jml[(jm-')T(Jn IT]

IIn-m (B1)
=0,

24

,'a-

- • .. . . • o • .



column vectors of ZT are a set of basis vectors which are orthogonal to J.
Thus, row vectors of J, together with column vectors of ZT constitute the
basis of n-dimensional vector space.

Accordingly, any n-dimensional vector h can be represented as
h = JTh + ZT h2  (B2)

where h, and h 2 are arbitrary vectors of m and n - m dimensions, respec-
tively. Premultiplying Eq.(B2) by J, we have

Jh = JJThi-

Thus,

hi = (JJT)-'Jh (B3)

Similarly, if we multiply Eq.(B2) with Z and solve for h 2, we get

h 2 = (ZZT)-lZh (B4)

From Eq.(B2), Eq.(B3), and Eq.(B4), we obtain the following relationship:

(I - jT(JJT)-lJ)h = ZT(ZZT)-iZh

or, from Eq.(12),
(I - J+J)h = ZT(ZZT) -Zh (B)

For a constant location of the end effector (no tip motion), when dx =0,
Eq.(13), with Eq.(B5), becomes

do= ZT(ZZT)-Zh (B6)

If Zh = 0 as in Eq.(7), then from Eq.(B6), di = 0, which means that
joint variables reach an equilibrium state - or a stationary state - which
is mostly the optimal configuraion for a given tip location. Conversely, if
dW = 0, we have Zh = 0; since the rank of ZT(ZZT)- l in Eq.(B6) is n - m
and Zh is an (n - m)-dimensional vector.

Therefore, Zh = 0, Eq.(7), of the proposed method is the necessaryand sufficient condition to be satisfied when Eq.(13) of the resolved motion

method reaches its equilibrium state.
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