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STUDY ON ALGORITHMS FOR PREDICTION OF SOLID PROPELLANT ROCKET MOTOR

PERFORMANCE

Wang Xin and Zhang Zhongqin

Beijing Institute of Aeronautics and Astronautics
Received on ember 1986

-- his article introduces two predictive
algorithVfor the performance of solid propellant
rocket motor. The emphasis is on the introduction
of Time-Space Algorithm. The authors proposed a
general two-dimensional grain calculation
procedure in order to conduct the grain
calculations. Therefore, the predictive algorithms
for performance introduced by this article show
generality. A comprehensive computer program for
the aforementioned method has been written and
applied to calculating the performance of three ,
different solid rocket motors. The calculated
results are consistent with those derived from
experimental data

Nomenclature
a speed of sound rcombustion speed of propellant
@,combustion speed coefficient Rgas constant
iecritical speed of sound Tcombustion gas temperature
A combustion area 4 circumference of combustion
A~combustion area at the head Tsadiabatic combustion temperature
A, passage area I time
Anozzle throat area 9 combustion gas speed
Coexhaust gas coefficient s axial coordinate
h space increment Y specific heat ratio
H enthalpy Xspeed coefficient
Henthalpy of propellant P combustion gas density
A mass flow rate P,propellant density
a pressure index a ratio of corrosion
p combustion gas pressure v time increment

Subscript

0 parameters at 0 cross-section g parameters at nozzle throat
of grain s stagnation parameter

I parameters at passage exit
cross-section



I. Preface

The purpose for predicting the performance of asolid propellant

rocket motor is: to base on raw data such as structure of the motor,

geometrical shape and dimensions of the grain, characteristics of

propellant,etc. and calculate the changes with respect to time and

their distribution along the lengthofthecombustion chamber for

parameters such as combustion gas pressure P, flow speed v, density P

and temperature T during motor operating period.

Great advances have been achieved in the development of performance

algorithms throughout the years. In earlier days the performance

algorithms were built on the basis of quasi-steady flow and

zero-dimension simplification E13. Then, a one-dimensional model was

adopted for conditions with larger volume filling coefficient and

rather distinctive corrosion combustion phenomenon. A group of

ordinary differential equations E2,53 could be obtained when

conducting quasi-steady simplification on the basisof aone-dimensional

model, and generally they could be solved using the Runge-Kutta or the

Merson method [73. If the unsteady effects are considered on the basis
the

ofAone-dimensional model, then the group of performance control

equations are of first-order, linear hyperbolic partial differential

equations, and the finite-difference and the characteristic-line

method could be applied to solving them [83.

This article concentrates on the introduction of general algorithms

for quasi-steady and unsteady equations, which is the Time-Space

Alternate Algorithm. It was developed on the basisof theTriple-Loop

Iteration Algorithm. Since the grain and performance calculations are

closely related and indivisible, a general two-dimensional grain

calculation procedure was employed in these calculations.

II. Triple-Loop Iteration and Time-Space Alternate Algorithms

1. Motor Model and Its One-Dimensional Performance Control Equations

Select motor model as depicted in Figure 1.

2.



The following assumptions are made for the flow field inside the

combustion chambers combustion gas is ideal gas; flow is

one-dimensional in the grain passage;flow process is frictionless,

adiabatic, chemically nonreactive and homogeneous gaseous flow; the

x-axis component of momentum of combustion gases generated on the

combustion surface is zero. The performance control equations can be

derived as:

(PA,) ++(PArv,)-pr (1)O° a

(v4)+ "--L- (v4 pA,) - P ) ".(2)

-[,A, vs-"- + E + "'-L + 11)) Pe H (3)

P-PRT (4)

If :(a. P((), AAP, <A, (within combustion gases resident time), the

operation process of motor can be considered quasi-steady and the

above equations can be simplified as: ."

d dA-
'((PAP) pp),"

d (PdA 1.+ PAO d.¢, (6)
dx d

p pRT (e)

Figure 1. Schematic of solid

propellant rocket motor

2. Triple-Loop Iteration Algorithm

For adiabatic flow, the energy equation (7) in the one-dimensional

quasi-steady performance control equations (5)-(8) can be simplified

as:-().

Then, only the continuity and momentum equations in the group are in

differential form. Now let's select the mass flow rate 1h and Ppressure

as variables and change the continuity and momentum equations into the

. . . . . . .. . . . d u I lm n a t-. . . . . . .



following calculation forms.

-- P (10)

pose-e) ' -P d- C +(T- 0) (11)

Every unknown parameter can be expressed as a function of is andP

using the energy and state equations and other well known formulae.

The solving of performance equations is a boundary value problem

rather than an initial value one; therefore the test-firing method is

adopted. First, assume that the test value of head presure P can be

estimated according to the following formula:

pa,oAg. z(+1) 1(Y) + 1 (12) S.

where 40 1.2) A( (13)Y+ 9-01"0o(1 +).*):"( l - )* (.

and At is determined by the following formulas

A) 2*- ,1 ~ - 2)(14)

The test value of P. at time t, can be obtained by selecting theP.

value that satisfies the flow conditions at time I* . As to the Ps test

values at time 4 and beyond,they can be obtained by using the Pe values

at two previous time instants and applying the proportionality method,

which is:

( .-1) -2, 3.

At any time instant, the mass flow rate across the 0 cross-section

should be equal to the combustion gas generation rate at the motor
head, then

*,-- a, ;(16)

Once the grain head boundary conditions P and m are determined.

equations (10) and (11) can be solved as initial value problems using

the Merson method. Then adjust P. value according to the boundary

conditions at the grain tail. In order to do this, the combustion gas

4
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generation rate , and exhaust rate us must be obtained,

i4.""dopl, .6,

where , is the combustion gas generation rate at the cross-section of

grain tail. Since the flow from the cross-section of grain exit to

nozzle throat is also considered quasi-steadyk, should be equal to ki.

If the calculated values for i, and n, are not equal, then this shows

that the assumed value for P9 is not reasonable and should be adjusted.

The proportionality method can be used for the first adjustment of the

P. test value, that is: .2 .

After the number of iterations exceeds two, interpolation formula can

be used to adjust Pe value. At this time, let ,ia-m,-m, then

NO Pe

--q

al ula i n:ay,h * a,.1"

( it -3,

The iteration continues until mbu is less than a designated value.

When the solution at time m-a has been obtained and the solution at

time o. is continued, the geometrical parameters at time nshould be

obtained by grain calculations first. The grain thickness burned at

each node during time At can be obtained according to the followingDI.

* calculation: *y-.S...

.

where tris the average speed of combustion during time At and it is

dependent upon the speed of combustion at time In . However, the speed

* of combustion at time I. is affected by combustion gas parameters and
the

thus by,&Yi, it must be calculated by~iteration method. We employed the

scheme of simple prediction and multiple adjustments. The specific

formulae are:

r'(Q.l-+,(,.n)+rii."(,..),(-, "
real~( 04. 260,) *M..)

In applying the Merson method to conduct numerical integration, the

grain geometrical parameters and their derivatives with respect to x

at certain points between two nodes must be used. These data are

obtained from the LaGrange quadratic polynomial interpolation and 'P

5,--'
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their corresponding numerical differential equations.

3. Time-Space Alternate Algorithm

The one-dimensional, unsteady performance control equations (1)-(4)

are of first-degree, near-linear, hyperbolic partial differential

equations. If the characteristic-line method is used for solution, the W4"

time increment must be set very small due to the limitation of

stability conditions of the difference scheme. Ten thousand or more

calculation steps are required for a typical motor. This is very

inconvenient and sometimes even unacceptable.

The essence of the Time-Space Alternate Algorithm is to reduce

partial differential equation to ordinary differential equation. High

accuracy for time and space increments can be obtained. In reference

[6],Burstein used a similar method to solve hyperbolic equations and

obtained third-degree accuracy for both time and space increments.

This article applied the Time-Space Alternate Algorithm and obtained

not only fourth-degree accuracy for time and space increments, but

also nicely combined the solving methods of unsteady and quasi-steady

equations.

In the Time-Space Alternate Algorithm, p, wand P were selected as

ca culation variables. First of all,equations (1)-(3) were changed to:

-W-+ V - + p - (19) .

+1 V~ + -1 P (20)

at~ 7+ O-h (21)

where a= (P,-P)qrL--Pu-AP
p,Oqr 

"

$"E A!.P +Y R TD I ' - P .P
A, 2x S.

Then equations (19)-(21) were written in calculation forms, thus

op ol0- op -+
-- --- P #-- -

(a-u) + A (22)

6
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00t - 1 -!L) I -p-L)(3
ax at a I6-

at any prescribed time instant, if the values of A9/M, a/rand CP/M in
equations (22)-(24) have already been obtained. Thus, the equations

can be considered ordinary differential equations with respect to x.

With this in mind, the solutions can be obtained by the aforementioned

Triple-Loop Iteration Algorithm. After obtaining the values of p. v,

and P in the axial direction at each node and, respectively,

substracting from them the values of P , w and P at the same node but

at a previous time instant, and then divided by the time increment

between the two time instants, the average rate of change of p, 9 andp -P

at any node between two time instants can be obtained. Using these

average rates of change as the approximate values for J9/N, k/M., and-OP/cl *."-

and substituting them into equations (22)-(24) for solution based on

the above algorithm. Thus, repetitive and alternating calculations can

be conducted according to time and space increments so as to adjust

the values of 0/t, Ar/M, and*p/Miteratively. Once a certain accuracy is

satisfied, the calculations for the next time instant begin and

proceed till the motor stops.

If equations (22)-(24) are expressed in vector forms, then

- - (.s) .-

When discussing the stability of the difference scheme, the above

equation is usually simplified as:

a- A (26)
ax

where As is a constant matrix.

When using the Time-Space Alternate Algorithm to solve model

equation (26), it is equivalent to applying the difference scheme:

.P1P

7
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Here the difference scheme is unconditionally stable with respect to

the model equation. Through actual calculations, it is proven that for

actual equations, the above discussions also apply.

The Triple-Loop Iteration Algorithm was adopted in consideration of

the solving of equations with respect to x in the Time-Space Alternate

Algorithm. Therefore, only the portion different from the algorithm

for quasi-steady equations is introduced here.

The necessary initial conditions for the Time-Space Alternate

Algorithm include the values of P, vand P at each node at the initial

time instant and the values of O9/e, #,/l and OIN. When conducting

calculations immediately following the startup of t!ie motor, the above

initial conditions could be determined by the calculations for the

startup process. However, when the calculations were started directly

at the steady state of the motor, we assumed that the flow field

inside the combustion chamber reached steady state at the initial

instant; thus the values of O/at, w/e and OP/Df at each node can be

assigned zero and the values for P, *and P at each node obtained by

the Triple-Loop Iteration Algorithm were used as the initial values.

The determination of the value P. in the grain head boundary

conditions is the same as that of the Triple-Loop Iteration Algorithm.

But the value of P. and v, is determined by using the following formula.

urn" poRT °

At time t., the test values for #p,', A,/#tand *plt values at each

node are substituted by the average values AP/At, Av/.11and Ap/A: between

time t-- and I.. After the values of P , v and P at each node at timet.

were obtained they are then adjusted. The adjustment formulae are:

-$

(a-]j, 2, . u j 2.*)

Adjustment can be conducted repetitively until the difference of P,v

and P values between two consecutive iterations is smaller than a

prescribed value.

e6
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III. Grain Calculation

The purpose for grain calculation is to obtain the grain

geometrical parameters required for the motor performance calculation.

For different types of motor performance calculation, not only the

required grain geometrical parameters are different, the type of

coordination between the grain and motor performance calculation is

also different. For zero-dimensional performance algorithm, the
required grain geometrical parameters generally correspond to the

value of grain combustion surface of a given burned grain thickness.

Then, the grain and performance calculations can be conducted

separately. However, for the performance algorithm of one-dimensional

* and variable cross-sectional passage the required grain geometrical

parameters generally correspond to the values of the combustion

circumference of the local burned grain thickness and passage surface

area. With corrosion combustion present, the grain and performance

* calculations are already closely related and indivisible, and they

must be conducted alternately through iteration.

The performance algorithm introduced in this article incorporates

the grain calculations. For this reason the authors proposed a

two-dimensional general algorithm for grain calculation 193. To expand

from the basis of this algorithm, three-dimensional calculation

problems such as the double-arc transient head seal and the tail-end

* surface, which is located at the ellipsoid behind the motor and does

* not restrict combustion.

IV. Examples and Discussions

Test runs of this computer program on three different real motors

were conducted. Both Triple-Loop Iteration and Time-Space Alternate

Algorithms were applied on each motor. For example 1 and 3,. since

* their performance parameters during the operation period changed

little with respect to time and the results obtained from both

algorithms differed little, only the results obtained from the

Triple-Loop Iteration Algorithm are presented. As for Example 2, the

results obtained from both algorithms are presented.

9



Example 1. The grain is star-shaped, two-dimensional and internal

cavity-filled. The head portion is double-arc transient head seal. The

tail-end surface is located at the ellipsoid behind the motor and

allows unrestricted combustion. See Figure 2 for the results of

calculation.

Example 2. The grain is wheel-shaped and internal cavity-filled.

Both the head and tail-end surfaces are located at the cylindrical

section of the motor and both allow unrestricted combustion. See

Figure 3 for the results of calculation.

Example 3. The grain is of inner/outer surfaces simultaneous

combustion and single tubular fill. Both the head and tail-end

surfaces restrict combustion. See Figure 4 for results of calculation.

..... calculated curve (Triple-Loop
pip Iteration Algorithm)

|.4.

----- test curve

*. 0.2 0.4 0.A 0.6 1.0 it:1l7

Figure 2. Pressure vs time diagram of solid

rocket motor for Example 1.

It can be observed from the calculated results that when changes

with respect to time in the performance parameters are more

significant (Example 2), there are marked differences between results

obtained from the quasi-steady ordinary differential equations

(Triple-Loop Iteration Algorithm) and those from the unsteady ordinary

differential equations (Time-Space Alternate Algorithm), and the

latter had a calculation accuracy about 1.6% higher than that of the

former.

10 C)



p
*.....calculated curve (Time-Space

Alternate Algorithm)
--- calculated curve (Triple-Loop

Iteration Algorithm)

0.*--- tested curve

6.4

Figure 3. Pressure vs time diagram of solid

rocket motor for Example 2.

..... .calculated curve (Triple-Loop

Iteration Algorithm)

--- tested curve

0.0

Figure 4. Pressure vs time diagram of solid

rocket motor for Example 3.

References

CO 9~ ~Mr.. iemaeet.. A., Fnitip do Vesae, 3. &Wd . Vamdggkthmg. Rocket Propaltiom.
Elmvwsr Publuhiog Compasy. (1"60).

(2 A.A.OflRAAR X*00, 04SAUROK'ISS*9. Opzftkamm (Isig).
CS3 A.M 5. 0,**go, N0A**01 ESIASM~t. (1931).
C 43 Rarzk. 3. A., Yerokbie. D.?T.. Sumr, Kt. P.. Ptkmipks of doe Theory el ppeaden, g

Rothet S$rtoo. es lid PI,. AD ITOW, UMf).
(S) Cma. D. . a. A Camuaster Psurmai LW the N,I ofSUSW Potpmtl Rami aWW pw.

lasen. Voli-L ADAHS, (115S).
(42 Unste S. Z. mod Miris. A. A., Thid Oidm Vila,. metiu& ter Hmpeolit zqwatoe,..

Cempot -Pbys -Vol. - . No.3. (1010).
C?) so, 0100. Z3*fAI APAO*M JU . man*. 4M (1333)CC) hute, A.. Koo, K.- K.. Cmerp L. H., 4.. lelw w.. Smut t"Witot .1 Sold Ptpml.

tees Rachel Moen with High terel Gm Volids., AZAA 1. Vol.. isP. its (2515).

*kfp=11jNX1Aq 1M1k* o(1)

' .%~ %*. %. %. * %~ ~, ~%



STUDY ON ALGORITHMS FOR PREDICTION OF
SOLID PROPELLANT ROCKET MOTOR PERFORMANCE

Wang Xin and Zhang Zhongqin
(Beijing Institute of Aeronatic. and Astronxatics)

Abstract

Two algorithms for prediction of solid propellant rocket motor perfor-

mance are introduced. Triple Loop Iteration Algorithm is applied to solu- r.

tion of quasi-steady equations( 5 )-( 8 ). Its computer program comprises

a procedure with three iterative loops. Time-Space Alternate Algorithm can

be applied to soluting both quasi-steady equations and unsteady equations
(22)-'(24). If 0P/0t, Pv/t, #p/at in equations (22)-(24) are ginen, equa-

tions (22)f-(24) will be reduced to ordinary differential equations. They

can be solved by Merson's method. When AP/At, AV/At, Ap/At are appro-

ximated to 0/01, 00/t, Op/t, this algorithm for model equation

corresponds to the finite difference scheme

A 61' +4+j

It is an unconditionally stable scheme.

A general two-dimensional grain calculation method is introduced for

calculation of grain. A comprehensive com-puter program for above men- .
tioned methods has been written and applied to calculating the perfor-

mance of three different motors. The results of the numerical examples

&.e consistent with the experimental data.
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