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STUDY ON ALGORITHMS FOR FREDICTION OF SOLID PROFELLANT ROCKET MOTOR
PERFORMANCE

Wang Xin and Zhang Zhongqin
Beijing Institute of Aeronautics and Astronautics
Received on Cerptember 17, 1986

hisr article introduces two predictive
algorith@>for the performance of solid propellant
rocket motor. The emphasis is on the introduction
of Time-Space Algorithm. The authors proposed a
general two-dimensional grain calculation
procedure in order to conduct the grain
calculations. Therefore, the predictive algorithms
for performance introduced by this article show
generality. A comprehensive computer program for
the aforementioned method bhas been written and
applied to calculating the performance of three
different solid rocket motors. The calculated
results are consistent with those derived from

experimental data;

Nomencl ature

¢ speed of sound r combustion speed of propellant
8, combustion speed coefficient Rgas constant
8,critical speed of sound T combustion gas temperature
A combustion area g circumference of combustion
Aucombustion area at the head Tiadiabatic combustion temperature
Arpassage area ! time
Ainozzle throat area # combustion gas speed
Crexhaust gas coefficient 2z axial coordinate
A space increment Y specific heat ratio
H enthalpy A speed coefficient
H,enthalpy of propellant P combustion gas density
m mass flow rate P,propellant density
s pressure index sratio of corrosion
P combustion gas pressure t time increment
Subscript

0 parameters at O cross-section t parameters at nozzle threoat

of grain s stagnation parameter
| parameters at passage exit

cross—-section
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I. Preface
The purpose for predicting the performance of asolid propellant
rocket motor is: to base on raw data such as structure of the motor,
u geometrical shape and dimensions of the grain, characteristics of
propellant,etc. and calculate the changegs with respect to time and
their distribution along the lengthof thecombustion chamber for

parameters such as combustion gas pressure ¢, +¢low speed v, densitye

and temperature T during motor operating period..

Great advances have been achieved in the development of performahce
algorithms throughout the vyears. In earlier days the performance
algorithms were built on the basis of quasi-steady flow and
zero-dimension simplification [1]. Then, a one-dimensional model was
adopted for conditions with larger volume filling coefficient and
rather distinctive corrosion combustion phenomenon. A group of
ordinary differential equations {2,551 could be obtained when
conducting guasi-steady simplification on the basisof aone~dimensional
model, and generally they could be solved using the Runge-kKutta or the
Merson method [7]. If the unsteady effects are considered on the basis
o¥§2ﬁe-dimensianal model, then the group of performance control
equations are of first-order, 1linear hyperbolic partial differential
equations, and the finite-difference and the characteristic-line
method could be applied to solving them [8].

This article concentrates on the introduction of general algorithms
for quasi-steady and unsteady equations, which is the Time-Space
Alternate Algorithm. It was developed on the basisof theTriple-Loop
Iteration Algorithm. Since the grain and performance calculations are
closely related and indivisible, a general two-dimensional grain

calculation procedure was employed in these calculations.
11. Triple-Loop Iteration and Time-Space Alternate Algorithms
1. Motor Model and Its One-Dimensional Performance Control Equations

Select motor model as depicted in Figure 1.
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flow field inside the

combustion chamber: combustion gas is ideal gas; flow is

The following assumptions are made for the
one-dimensional in the grain passagejflow process is frictionless,
adiabatic, chemically nonreactive and homogeneous gaseous flow; the
x—axis component of momentum of combustion gases generated on the
combustion surface is zero. The performance control equations can be

derived as:

2 (b)) +-2-(pAw) =P (1)
2 (pods) 4L (At pA) = P 24 (2)
PA;(—"'E) NA;(‘—"'H)]-"H’ - 1‘”; (3)

1§ »&a. P&Psy AAKA, (within combustion gases resident time), the
operation process of motor can be considered quasi-steady and the

above equations can be simplified as:

d dA, ‘
_d__ pA,u)-P,r-d—x— (s)
d4
& (ot pAn) = PG (e)
A ot ()] 1
P =pRT (.)

Figure 1. Schematic of solid
propellant rocket motor
2. Triple-Loop Iteration Algorithm
For adiabatic flow, the enerqy equation (7) in the one-~-dimensional
quasi—-steady performance control equatians (5)-(8) can be simplified
as:s
C'r+'./z-¢’1.o ( 9 )
Then, only the continuity and momentum equations in the group are 1in
differential form. Now let’'s select the mass flow rate m and f pressure

as variables .and change the continuity and momentum equations into the
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..........................
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following calculation forms: :;
N
di dA o
Y Faald tr u (10) !;
d 1 { 33 dA» dA, T
’ 7%'&?0’—0‘) Po's’ gx = P gy © (2’ + (Y l)"]} an b2
N o
y Every unknown parameter can be expressed as a function of m and? '
3 using the energy and state equations and other well known formulae. $:2
¥
\h
The solving of performance equations is a boundary value problem f@
; rather than an initial value one; therefore the test-firing method is \:
.1 8
! adopted. First, assume that the test value of head presure P can be :
) estimated according to the following formula: N
. 1 -'.:‘_5
X - ProiAm, 2(¥Y+1) 1 )7-+ (12) -
X ] { A Y 1) } ‘ ]
. i“:a
i 18
] where 100 -5 4 1 X ) dz a13) K
2yt - —— o
| and A is determined by the following formulas &
. AN
- ; ) 1 @
: - -y=1 -)‘v ~T(!:" l.)—v -1 ‘ R
: I=4. l'(l Y+ M 2 a9 Ry
L

, The test value of P at time f, can be obtained by selecting theb

A

value that satisfies the flow conditions at time ¢ . As to the p test

.

R
«
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. values at time 4 and beyond,they can be obtained by using the /. values

-y r
o

at two previous time instants and applying the proportionality method,

7

‘ which is: '
3 )= pu () 2L (mm, 3, ) (15) <
' (AN (] [} '.'._')0 1 L] .\}
. :::;L
X At any time instant, the mass flow rate across the O cross-~section :~:::
should be equal to the combustion gas generation rate at the motor -
’ ,
v head, then ) "
: ! My = AuPs0, pi (15) =

l-'}

-'{
Once the grain head boundary conditions Pe and m are determined, :‘"

equations (10) and (11) can be solved as initial value problems using

P

the Merson wmethod. Then adjust H value according to the boundary

conditions at the grain tail. In order to do this, the combustion gas
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generation rate m; and exhaust rate m, must be obtained, ¥
l e
1 *.-*‘4‘*‘ P ¥ :
. "‘1
I 'l-CDPuAc "'7
> . . '\;I:
; where m,is the combustion gas generation rate at the cross-section of ,:::,
\ grain tail. Since the flow from the cross-section of grain exit to 3}&:
. 1
§ nozzle throat is also considered quasi-steady,m should be equal to m, . 3!§q
1f the calculated values for ™ and m are not equal, then this shows _¥

that the assumed value for A is not reasonable and should be adjusted. :.::::
(AN
The proportionality method can be used for the first adjustment of the :;:;::
P test value, that is: B e g R

Pe* = ps*ime/m, (17)

X After the number of iterations exceeds two, interpolation formula can ::f::
be used to adjust Py value. At this time, let Am=m,—m then -}-;:

N
(Ll L] '.'l)__p_.'_._-_l_’:_n.(:t’:_- ' S
2 P S P AT R T S T (w v
: ("-3. { ...) \iﬂ_
. NI
) The iteration continues until M is less than a designated value. :EE:
A
, When the solution at time fe., has been obtained and the solution at '-::::
: time l=. is continued, the geometrical parameters at time fe should be 5‘
. obtaine:d by grain calculations first. The grain thickness burned at ».
each node during time Af can be obtained according to the following i

.l.'

: calculation: G
A Ayi=riAt t;-:
where "a'is the average speed of combustion during time Af and it is ‘£
dependent upon the speed of combustion at time /= . However, the speed -
of combustion at time f. is affected by combustion gas parameters and '{\.-::
he
thus by Ayi, it must be calculated by},\iteration method. We employed the ;.
scheme of simple prediction and multiple adjustments. The specific -":
formul ae are: -
'l‘"('.)-"l(‘-q)o (--l. 2 ) :...:.

Cd

~

P (te) = (e ) $1{70 (1)), (m =1, 2, ) 5
o)

In applying the Merson method to conduct numerical integration, the g
. grain geometrical parameters and their derivatives with respect to x 7.::::
) at certain points between two nodes must be used. These data are :';:f
obtained from the LaGrange quadratic polynomial interpolation and A
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their corresponding numerical differential equations.

3. Time-Space Alternate Algorithm
The one-dimensional, unsteady performance control equations (1)-(4)

are of first-degree, near-linear, hyperbolic partial differential
equations. If the characteristic-line method is used for solution, the
time increment must be set very small due to the limitation of
stability conditions of the difference scheme. Ten thousand or more

calculation steps are required for a typical motor. This is very

Pl s g S 4

inconvenient and sometimes even unacceptable.

The essence of the Time-Space Alternate Algorithm is to reduce
partial differential equation to ordinary differential equation. High
accuracy for time and space increments can be obtained. In reference
{61,Burstein used a similar method to solve hyperbolic equations and
obtained third-degree accuracy for both time and space increments.
This article applied the Time-Space Alternate Algorithm and obtained
not only fourth-degree accuracy for time and space increments, but
also nicely combined the solving methods of unsteady and quasi-steady

equations.

In the Time—-Space Alternate Algorithm, p, vand P were selected as

ca'culation variables. First of all,equations (1)-(3) were changed to:

» " L
o Ut = (19)

o o 1 P
ot ot =P (20)

" ] [ ) d
SEavp rvlay (21)

1 1 oA,
A (Pr—P)er .ATW ">

-——p-’-ggr—
8 A

where am=

-‘l’-( Y=gt )-Uzv_ 24,
= A, P»YRT, + 3 Pyv P A, ox

e e e 0 ST TV T, TV e
-

Then equations (19)-(21) were written in calculation forms, thus

| J]
2. ) [-‘_.i_ ® _»p f; I or']

3 ” [ aad M v ” v o

' T B Gt LR S (22)

i o= { v v
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at any prescribed time instant, if the values of /&, #/at and p/et in '::
eguations (22)-(24) have already been obtained. Thus, the equations :ﬂg
tan be considered ordinary differential equations with respect to x. B?E
With this in mind, the solutions can be obtained by the aforementioned e
Triple-Loop Iteration Algorithm. After obtaining the values ofp, v, :§:
and P in the axial direction at each node and, respectively, E%t
substracting from them the values of ¢ , ®# and ? at the same node but f?*
at a previous time instant, and then divided by the time increment -
between the two time instants, the average rate of change of p, © andp N
at any node between two time instants can be obtained. Using these &;ﬁ
average rates of change as the approximate values for /e, /o, anddp/a ;{E

and substituting them into equations (22)-(24) for solution based on e
the above algorithm. Thus, repetitive and alternating calculations can :
be conducted according to time and space increments so0 as to adjust
the values of #/a, w/t, andép/diteratively. Once a certain accuracy is

satisfied, the calculations for the next time instant begin and
proceed till the motor stops.

If equations (22)-(24) are expressed in vector forms, then

.y (25)

When discussing the stability of the difference scheme, the above

equation is usually simplified as:

F | |
rvyiate T (26)

where A, is a constant matrix.

When using the Time-Space Alternate Algorithm to solve model ;&:
equation (26), it is equivalent to applying the difference scheme: féf
TA=Gr A (B Al B, S
-t fedse fo1/ 1S bk I 2N y
(e T, o] (27) =

-
AL

A

o
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Here the difference scheme is unconditionally stable with respect to
the model equation. Through actual calculations, it is proven that for

actual equations, the above discussions also apply.

The Triple-Loop Iteration Algorithm was adopted in consideration of
the solving of equations with respect to x in the Time-Space Alternate
Algorithm. Therafore, only the portion different +from the algorithm
for quasi-steady equations is introduced here.

The necessary initial conditions for the Time-Space Alternate
Algorithm include the values of P, v and 2 at each node at the initial
time instant and the values of #®/d, op/at and ®/ét. When tonducting
calculations immediately following the startup of the motor, the above
initial conditions could be determined by the calculations for the
startup process. However, when the calculations were started directly
at the steady state of the motor, we assumed that the flow field
inside the combustion chamber reached&steady state at the initial
instant; thus the values of #/#, /ot and 9p/#t at each node can be
assigned zero and the values for P, ®and » at each node obtained by

the Triple-Loop Iteration Algorithm were used as the initial values.

The determination of the value £ in the grain head boundary
conditions is the same as that of the Triple-Loop Iteration Algorithm.

But the value of P, and % is determined by using the following formula:

Py=p,/RT,
- A0ePea,pg

% p.Ap.

At time W, the test values for o%, &/t and ¢p/et values at each
node are substituted by the average values JAP/A, Av/Atand Ap/\ between
time ‘~: and f-.. ., After the values of P, v and P at each node at time
were obtained they are then adjusted. The adjustment formulae are:

(i)“"‘ 8P () =3,(1e))
” / lo=ta,

(ﬂ-]’ z. ) Bm], 2. ...)

e

Adjustment can be conducted repetitively until the difference of 0,0

and ? values between two consecutive iterations is smaller than a

*

o

G

* prescribed value.
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I111. Grain Calculation

The purpose for grain calculation ise to obtain the grain
geometrical parameters required for the motor performance calculation.
For different types of motor performance calculation, not only the
required grain geometrical parameters are different, the type of
coordination between the grain and motor performance calculation is
also different. For zero—-dimensional performance algorithm, the
required grain geometrical parameters generally correspond to the
value of grain combustion surface of a given burned grain thickness.
Then, the grain and performance calculations can be conducted
separately. However, far the performance algorithm of one-dimensional
and variable cross-sectional passage the required grain geometrical
parameters generally correspond to the values of the combustion
circumference of the local burned grain thickness and passage surface
area. With corrosion combustion present, the grain and performance
calculations are already closely related and indivisible, and they

must be conducted alternately through iteration.

The performance algorithm introduced in this article incorporates
the grain calculations. For this reason the authors proposed a
two-dimensional general algorithm for grain calculation [?93. To expand
from the basis of this algorithm, three-dimensional calculation
problems such as the double-arc transient head seal and the tail-end
surface, which is located at the ellipsoid behind the motor and does

not restrict combustion.

IV. Examples and Discussions

Test runs of this computer program on three different real motors
were conducted. Both Triple-Loop Iteration and Time-Space Alternate
Algorithms were applied on each motor. For example 1 and 3, since
their performance parameters during the operation period changed
little with respect to time and the results obtained <from both
algorithms differed 1little, only the results obtained from the
Triple-lLoop Iteration Algorithm are presented. As for Example 2, the

results obtained from both algorithms are presented.
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Example 1. The grain is star-shaped, two-dimensional and internal
cavity-filled. The head portion is double-arc transient head seal. The
tail-end surface is located at the ellipsoid behind the motor and

allows unrestricted combustion. See Figure 2 for the results of

-
v
AN .

calculation.

0”2”2 a"
":‘,'

. 2

Example 2. The grain is wheel-shaped and internal cavity—-filled.

;

Both the head and tail-end surfaces are located at the cylindrical

section of the motor and both allow unrestricted combustion. See

“r-w v
WA EA
s, 8,0 ’

*

Figure 3 for the results of calculation.

NS
.’

.

’

Example 3. The grain is of inner/outer surfaces simultaneous

2,
2

RS

combustion and single tubular +ill. Both the head and tail-end

0,
2 s

-"
2
7

surfaces restrict combustion. See Figure 4 for results of calculation.
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«assscalculated curve (Triple-Loop

Iteration Algorithm)

test curve

— HAMRCRARDE)
— R¥uN

1.7 [72{]

Figure 2. Fressure vs time diagram of solid

rocket motor for Example 1.

It can be observed from the calculated results that when changes
with respect to ¢time in the performance parameters are more
significant (Example 2), there are marked differences between results
obtained from ¢the quasi-steady ordinary differential equations
(Triple-Loop Iteration Algorithm) and those from the unsteady ordinary
differential equations (Time-Space Alternate Algorithm), and the
latter had a calculation accuracy about 1.6% higher than that of the

former.
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Figure 3. Pressure vs time diagram of solid

rocket motor for Example 2.

» cessscalculated curve (Tripl e-Loop.
Iteration Algorithm)

————— tested curve

0.
—= #BARCRARD
0.4 — RERR
0.2
) 0.2 v.d 0.8 °tl fl,.

Figure 4., Pressure vs time diagram of solid
rocket motor for Example 3.
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STUDY ON ALGORITHMS FOR PREDICTION OF
SOLID PROPELLANT ROCKET MOTOR PERFORMANCE

Wang Xin and Zhang Zhonggin
(Beijing Institute of Aeronautics and Asironautics)

Abstract

Two algorithms for prediction of solid propellant rocket motor perfor-
mance are introduced. Triple Loop Iteration Algorithm is applied to solu-
tion of quasi-steady equations(5)~(8). Its computer program comprises
a procedure with three iterative loops. Time-Space Alternate Algorithm can
be applied to soluting both quasi-steady equations and unsteady equations
(22)~(24). If oP/dl, dv/at, ap/at in equations (22)~(24) are giren, equa-
tions (22)~(24) will be reduced to ordinary differential equations. They
can be solved by Merson’s method. When AP/Af, Ao/At, Ap/At are appro-
ximated to oP/of, ov/at, ap/at, this algorithm for model equation

o ol

=
ax * o

corresponds to the finite difference scheme
Tm A (373
A 6

It is an unconditionally stable scheme.

L] DRel s N iad P
" 44 Bl 2 Sl F7S LIS Sl IS
L ¢ T <

A general two-dimensional grain calculation method is introduced for
calculation of grain. A comprehensive computer program for above men-
tioned metbods has been written and applied to calculating the perfor-
mance of three different motors. The results of the numerical examples

u.e consistent with the experimental data.
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