






CURRENT ENHANCEIENT FOR HOSE-UNSTABLE ELECTRON BEAMS

1. Introduction

The propagation of an energetic charged particle beam is controlled by

the electromagnetic fields and forces which act on the beam. These fields and

forces are modified by the electrical properties of the medium surrounding the

beam. An assessment of these modifications is required to accurately predict

beam advance. The net current, defined as the sum of the axial beam current

and the axial conduction current induced in the medium, is a useful indicator

of such modifications.

Beams passing through a gas ionize the gas and thereby change its

conduction properties. In low-pressure gases a two-stream instability can

arise which propels plasma electrons forward.1  The forward-moving plasma

electrons raise the net current for negatively charged beams but lower it for

positively charged beams. For relativistic electron beams, net currents as

large as three times the beam current have been observed. 1-3  These

enhancements are accompanied by microwave emission characteristic of the

plasma-electron oscillation frequency.

At higher pressures, binary collisions between the plasma electrons and

the gas ions and molecules damp the two-stream instability and its associated

current enhancement. Axial plasma currents then develop primarily from

inductive effects which typically drive plasma return current opposite to the
5%

beam so as to minimize changes in magnetic flux. get currents at high gas

pressures are thus anticipated to be less than the beam current.1
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Recent experiments performed on the Experimental Test Accelerator (ETA)3- 5

and elsewhere6 '7 have shown, however, that the net current can exceed the beam

current, by as much as a factor of two, even at gas pressures of a few hundred

torr. The absence of microwave emission at gas pressures above 10 torr

indicates that this enhancement is not due to the two-stream instability. A

second proposed explanation is energetic secondary electrons (delta rays)

swept forward by the beam self-magnetic field. Estimates of delta-ray

currents show that they are too small (less than 20 percent of the beam

current) to account fully for the enhancement measured.
8

In this paper we describe in detail a new and quantitative explanation
9'10

based on the observation that current enhancement at high gas pressures is

associated with large transverse excursions of the beam.3 -6  The resistive

hose instability which drives these excursions is particularly troublesome at

gas pressures above a few torr, and develops from magnetic interactions

between the beam current and plasma eddy currents that are inductively

generated by transverse beam motion. Hosing of the beam spatially

redistributes the net current density and thereby alters the effective system

inductance. A rapid drop in the inductance causes the monopole electric field

(in an azimuthal Fourier expansion) to reverse direction and drive plasma

current parallel to the beam current. Dipole and higher-order fields

complicate the redistribution of the current density but contribute little to

the spatially integrated net current.

According to the present model, current enhancement is thus a natural

outgrowth of iarge-amplitude hose instability. The inductive effects which

produce the instability also produce current enhancement. -he enhancement is,

however, a nonlinear effect wnich Is significant only for large beam

displacements and cannot be seen with linearized codes and Models i -14 that

are valid only during the onset and initial growth of the hose instability.
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In this paper we present analytic and numerical treatments of inductive

current enhancement. The circuit model in Sec. 2 provides a simple yet sound

physical basis for current enhancement due either to beam expansion or beam

displacement. In Sec. 3 we give a complete analytic field solution for beam

displacement in a uniform conductivity channel. Here we show that current

gains of three or more are possible if the beam actually strikes a metallic

wall. Consideration of beam dynamics and conductivity evolution suggests,

however, that the hose instability is unlikely to produce current gains much

above a factor of two. In Sec. 4 we present self-consistent numerical

simulations of beam propagation using a new nonlinear particle code, SARLAC,

which treats both large-amplitude hose instability and current enhancement.

Substantial enhancement (- 70 percent) is seen for beam displacements out to

half the wall radius, in agreement with the ETA experiments. Because cause-

and-effect relationships between current enhancement and various beam and

cavity parameters are obscured by the complexity and sensitivity of the hose

instability, we also present simplified simulations using a prescribed

dynamical beam displacement to further elucidate and verify the analytic

models.
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2. Circuit Analysis

We seek in this section to provide a simple physical basis for current

enhancement due either to beam displacement or expansion. A few models

suffice to demonstrate the effect.

A circuit model is often used to compute the net current In as a function

of beam current Ib. For stable beams of constant radius, the circuit model

reduces at high gas pressure to1  9

LL In  (In  I )R() :-

where L is the circuit inductance, R is the plasma resistance, and (In - b)

is the plasma current. This equation relates changes in the magnetic flux LI n

to diffusion of magnetic field through the plasma resistance R. An important

consequence of this equation is that the maximum In is less than the maximum

Ib (provided , < Ib initially). Equation (1) therefore precludes current

enhancement:

F 1(max) ( .

Equation (1) is valid, however, only if the inductance L is constant. In

general, the inductance is not constant but is a geometrical parameter which

deoends on the spatial distribution of the beam, plasma, and bounaary

currents. The boundary current is presumed to reside in a metallic pipe which

encompasses the beam and plasma. Beam displacement and expansion alter the

current distribution and thereby alter the inductance L and flux U n . To

include these effects an additional term proportional to I LL must be added

to the left-nand side of Eq. (1). This additional term is what produces

current enhancement. Such a possibility has been previously recognized but

not quantl fled.
5 ,15
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We consider first the case where the plasma conductivity is sufficiently

high to suppress electrostatic effects everywhere inside a perfectly

conducting (metallic) pipe at radius b. In addition we make the long-

wavelength and low-frequency approximations:

b L < (2)
3z' c 3t

where c is the speed of light. Maxwell's equations then reduce to the ".

magnetostatic Faraday-Ampere law for the axial vector potential Az:

A A b+ E ), (3)
.Z a

with the axial electric field given by
'I.

a Az
E 1 (4
z 0 a ~ t

The plasma conductivity a and beam current density Jb are specified functions

of (r , t). The boundary condition is

Az -

at r b b. in subsection 2.3 we extend the analysis to include electrostatic

effects which arise if the medium is poorly conducting or non-conducting at

radii that are large but still within the pipe. A complete numerical ;4

treatment is given in Sec. 4.
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Equations (3)-(5) may be reduced to a simple circuit equation provided

the plasma conductivity is azimuthal~ly symmetric about the pipe center. To

show this, consider the azimuthally averaged (monopole) component of the

electric field:

f21r
zo ~ 0

By suitably integrating Eq. (3) and applying Eq. (4~) and boundary condition

(5), one finds that

*where I is the net current flowing within radius r:

r 211
I(r,t) f dr r J d6 ( + CE~ (8)

0 0b

The plasma current equals the difference between the net Current and the

*beam current:

b 2-r
n b fdr rf 'a Ez. (9)

0 0

* For azimuthally 3ymmetric conductivity, only the monopole field contributes.

H{erce,

b b fbd 1(
I,- fdr 2?rc E = dr 2-Tr 0-, )~

0 Co r



This equation or its equivalent applies to all the analytic work presented

herein but not to the numerical simulations in Sec. 4 which allow the A

conductivity to be azimuthally asymmetric.

To express Eq. (10) in a form similar to Eq. (1), we define the radial

profiles of the net current and plasma conductance, respectively, by

and

R r~C~t Rfdr 2wra (12)
0

where

R(t) ( f dx' 2ira) -1(13)
0

is the plasma resistance per unit length. Equation (10) may then be rewritten

as ~-.-

L L 1, 1. (1 - I(R ~
at n n 11 b

where we def'ine L(t) and '.(t) as

L'(t) * 2R f1b 21rra f
c 0 r

and

E~)~2 fbdr 2irra fb jx' .
c0 rr



Integration by parts and use of definition (12) produces an effective system

*inductance given by

L(t) 2 1br 1%15)
2 r

and a parameter L given by

2-dr (16)

C o

Circuit equation (14) together with definitions (13), (15), and (16) is

- an equivalent and exact representation of the Faraday-Ampere laws (3)-(5),

provided that the plasma conductivity is azimuthally symmetric about the pipe

center. Even for asymmetric conductivity, Eq. (14) is often a good

approximation. In this equation, the effective system inductance L is a

geometrical parameter determined by the location of the pipe boundary and by

the spatial distributions of the plasma conductivity and net current. The

parameter t, which was absent from the original circuit equation (1),

represents a change in inductance due to redistribution of the net current.

Note however that L does not equal L unless the distribution of plasma

*[ conductivity is constant (L - 0). Current enhancement is possible only
at

if L < 0.

The circuit model offers a simple yet potentially accurate means for

computing the net current. The accuracy is limited primarily by our abilty

to determine R, L, and L which depend (weakly) on the spatial distribution of

the plasma current and conductivity. In this paper we make only partial use

of the circuit equation. We nonetheless provide in Appendix A some inductance

formulae which demonstrate the dependence of L on geometry. When using these

".'- . . . . . . . . . . . . . .. . . ...~. . . . " ,



formulae to compute the net current fir a prescribed beam perturbation, the

parameter should generally be assigned a value from one-half to one

times .,

2.1 Ehrancement Due to Beam Expansion

To demonstrate the utility of the circuit model, consider current

enhancement arising from self-similar expansion of an on-axis beam and

plasma. This example is chosen for illustrative purposes orly. We later

conclude, from consideration of beam dynamics, that beam expansion due to _-"

axisymmetric instabilities such as sausage and hollowing is unlikely to

produce current gains above unity. The high current gains observed

experimentally are shown in subsection 2.2 and following to arise from hose-

induced beam displacement with expansion as a secondary effect.

For self-similar expansion, the distribution functions for current and

conductance become equal:

Z(r,t)-= I',r,t) . (17) .'.-

Equations (15) and (16) then yield

I L

2 at

so that circuit equation (14) reduces to

L I I L= (In  I)R.(natn

97
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An alternative form is the energy conservation relationship

S( [ I 2) I I - - I)R]
aT 2 n n bry -I)] 2s)

where L 1,2 is the stored magnetic field energy and [(I - I )R] I is the2 rin b

rate at which the current !. extracts energy ohmically from the inductive

electric field (In -

Rapid expansion maximizes current enhancement and reduces Eq. (?0) to

conservation of magnetic field energy:

n2 )  .'- '

6(. I n) 0. (21)

inserting inductance formula (Al) of Appendix A into this relationship yields

a maximum current gain for an expanding on-axis beam and plasma given by

F - In/ib

Zn(b/a )  + Ct..'.
0 1/2"..-o Ln(b/a) m , • (22)

Here ao is the initial beam radius, a is the expanded beam radius,

-=,, /1. < I is the current gain immediately prior to expansion, and

< is a geometrical constant. Examination of Eq. (19) reveals, however,

that result (22) is valid only if the beam and plasma expand in a time short

compared with the monopole decay time,

- L/R. (23)

10
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Otherwise, ohmic heating extracts sufficient energy during the expansion that

relatiorship (21) is a poor approximation.

For the ETA experiments where b/a. 10, Eq. (22) predicts that current0

enhancements of 30 percent (F - 1.3) are possible if F° - 1 and if the beam

radius doubles (a/a0 > 2) in less than a monopole decay time T0. The

simulation results presented in Sec. 4.1 show such expansion.

Several observations should be made regarding current enhancement due to

beam expansion. The first is that axisymmetric irstabilities such as the

sausage and hollowing modes16-18 can cause the beam to expand and inductively

raise the net current. Yet such expansion is unlikely to produce current

gains above unity. The reason is that beam expansion due to the axisymmetric

resistive instabilities occurs because on-axis plasma current initially flows

opposite to the beam current and magnetically repels it; as a result, F < 1/2
0-

at the onset of the axisymmetric instabilities. I6 u °8 Although beam expansion

increases F, this in turn strengthens the magnetic pinch force on the beam

which restrains or reverses further expansion. Usuallyl8 a dynamic balance Is

reached, or further radial oscillations occur, but with F < 1.

A second observation, direct from result (22), is that the pipe radius b

is the radial scale length governing current erhancement. This is because the

inductance L changes appreciably only when the beam radius (or beam

displacement, as shown in Sec. 2.2) is non-negligible compared with b. One

might surmise that current enhancement cannot occur if the pipe _'s absent or

very large. This conclusion is incorrect, however, as showr in Sec. 2.3 where

we incorporate electrostatic effects into the circuit analysis. There we show

that b is really the monopole boundary radius at which the azimuthally

averaged field Ezo falls to zero, and that b is finite if the medium becomes

non-conducting at large radii (r 0 as r .

. 2..--..-



A third point is that beam expansion is a secondary effect of the

resistive hose instability: as the beam displaces far off axis, it separates

from the centroid of the net current so that the pinch force on the beam

weakens and the beam expands. The circumstances of this expansion are

sufficiently complex that Eq. (22) should be treated as but a rough guide for

current enhancement due to beam expansion, as distinct from enhancement due to

beam displacement alone.

A fourth observation is that the energy source responsible for producing

and driving the plasma currents is not kinetic beam energy directly but

magnetic field energy. In the case of beam expansion the stored magnetic

field energy not only drives the plasma currents but also accelerates the beam "-.

to higher energy.

2.2 Enhancement Due to Beam Displacement

Consider now current enhancement resulting from transverse displacement

of a rigid-rod beam of fixed radius a. We again assume that the plasma

conductivity is azimuthally symmetric about the pipe center. Only the

monopole electric field then contributes to the net current. For other

conductivity configurations the dipole and higher-order fields contribute as

well.

A simple model which provides a semi-quantitative estimate of current

enhancement is as follows. Imagine a beam which originally resides in a fixed

plasma channel centered within a pipe of radius b. The plasma channel and

beam have a small radius a << b.

A sudden displacement of the beam to an off-axis location rb perturbs the

plasma currents and wall currents. The values of these currents immediately

after the displacement can be readily computed provided: (i) the displacement

12
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occurs instantaneously; and (ii) the displaced beam is wholly outside the

plasma but wholly inside the pipe, i.e.,

2a < rb < b - a. (24)

The plasma then behaves as a- perfect conductor while the beam can, be treated

as a line current atr

A circuit treatment of this problem Is given in Appendix A. Here we give

for comparison a field treatment. We begin by dividing the plasma current

into two components. The homogeneous component is derived by imagining that

the beam current Ib is suddenly moved from inside the plasma to outside the

pipe. Because magnetic flux remains trapped within the plasma, the

homogeneous plasma current is given by

I ph 1no (25)

where T is the net current just prior to beam displacement.

The driven component of the plasma current is derived by imagining that

the line current Ib is suddenly moved from outside the pipe to the location r

inside. For this problem the vector potential Az is zero both at the pipe

boundary, r - b, and everywhere within the plasma, r < a. These two boundary

conditions determine the driven (surface) plasma current

We evaluate Ipd by integrating the Faraday-Ampere law (3) over r and 3 to

obtain for r > a:

dAzo 2 [ d 1 H(r rQI (26)
c2r pd b

a r

13.................................. . " •=.. *. .. .
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where H is the Heaviside step function and where the monopole vector potential

is defLned by

A (r) 2w de A2i re). (27)
zo 21 f d8

* 0

Integrating Eq. (26) and applying the boundary condition

A (a) - 0 (28)
zo

yields

A (r) L [pI ln(r/a) + I H(r - rb ) ln(r/rb)] (29)
zo c2 pd bb b

Applying the boundary condition

A zo(b) l 0 (30)

produces

I ln(b/r
b (31)

I b  ln(b/a)

Solution (31) for the driven olasma current :pd has a simple physical"

b tasis. injecting a current source 1b between two conducting surfaces drives

* return current in each of the surfaces. The total return current equals

S-I b . The fraction of return current flowing in either one of the surfaces is
c-'4

a function of the surface geometr7 and of the source location. For coaxial

conductors of inner and outer radii a and b, the fraction flowing on the inner

(plasma) conductor is given by Eq. (31).

14
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The overall net current inside radius b is the sum of the beam current b

and the plasma currents IP6 and Ipd" From Eqs" (25) and (31) we thus have

F a lb I ph pd

__ I
+ (32)

in(b/a)

where F o  b l is the current gain immediately prior to pushing the source

off axis. Typically F. < I due to plasma return currents which were induced

when the on-axis source was originally injected into the plasma.

Result (32) for the current gain F was derived assuming instantaneous

beam displacement. We show in Appendix A, however, that magnetic flux relaxes"-

slowly on a monopole decay time, To= L/R. Result (32) can thus still be
.%

applied provided the beam moves off axis to rb in a finite but short timebi
r(r ) < To - 2 Etn(b/a) * a]. (33)bR c2

ReI

Although the net current and monopole fields relax slowly, the dipole and

higher-order fields (in an azimuthal Fourier decomposition) relax rapidly or a

dipole decay time given by11

2-1.

d (2Rc 2 .34)d

Comparison of Eqs. (33) and (34) reveals that the monopole and dipole decay

times are typically related by
*6 '

T0 IT - LCLn(b/a) a ] >> . (35)

The plasma current thus spatially redistributes before ±t decays.

...
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The distinction between decay and redistribution of the plasma eddy

currents is important in understanding hose-induced current enhancement. The

resistive hose instability develops from a phase lag between dynamical beam

displacement and redistribution of the dipole fields. In the absence of a

phase lag, the dipole fields produce a restoring force which causes

oscillation but no growth in beam displacement.14 The dipole decay time

Td controls the phase lag and thus characterizes the growth rate of the

instabi2.ty. During a monopole time >> d' large-amplitude hose

displacement is possible. A hose-unstable beam of long duration (>> d ) is

thus likely to produce, given sufficient propagation distance, a significant

increase in the net current.

For the ETA experiments where b/a 10, Eq. (32) predicts that current

enhancements of 30 percent (F - 1.3) are possible even for modest

displacements of a few beam radii, rb - 2a. A current enhancement of nearly
bJ "p

100 percent (F " 2) is possible for large displacements, rb b - a.

2.3 3eams Propagating in Unbounded Neutral Gas

In the preceding treatmenta we assumed that a metallic drift tube was

present and that the gas conductivity everywhere within the drift tube was

sufficiently large to ensure space-charge neutralization. If this Is not the

case, electrostatic terms must be included in the field and circuit equations.

We show here, using a revised circuit analysis, that the phenomencn of hose-

induced current enhancement is qualitativel-y unchanged even if the drift tube

is absent or lies far outside the region where space-charge neutralization

occurs. The principal revision is that the monopole boundary radius b, where

E 0, is not the pipe radius but a "vacuum radius" beyond which the space-

charge fields are unsuppressed.

16
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The revised circuit analysis is based on Maxwell's equation for the axial

electric field: 0.

E * 72 *S92  E z a z 4w _£i
__ - - (J E + vL (36)

z z2  2 2 2 at b z (6

where p is the charge density. As shown by E. P. Lee,2 2 this equation can be

simplified for beams which are both ultrarelativistic, .

It.

B E v /a * 1, (37) " "

and paraxial,

a d a( ) -O(a/A) << 1. (38)
B B,

Here v is the beam axial velocity, a is a characteristic beam radius,

T a t - z/Sc is a temporal variable designating a particular beam slice,

and Xa 21ra(aYmc 3/el.) /2 is a characteristic betatron wavelength. The S.;

electron charge-to-mass ratio is elm, and Y (-8 2 )-1/2 is the usual

relativistic factor.

By changing variables from (z,t) to (z,T) and by setting S - and

rL - 0, we can rewrite Eq. (36) as

2 _,I

7. 3 ZE - PC) (39)
2l~ - T - (b ° z ,...

which is typically valid to order Y << I and a/ << 1. The neglect of,

axial derivatives is denoted the "frozen-field approximation" and follows from

the paraxial condition (38). The full Lee field equations, which are

presented in Sec. 4, employ an additional approximation not needed here. -

17
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For azimuthally symmetric conductivity, we may duplicate the procedure in

Sec. 2 and reduce Eq. (39) to a circuit equation for the net conduction

current I,:

L In n - -IIn -I b )R (40)

where the effective system inductance is now defined by

L(T) f "dr C ( -L(1)
c2 ~r"

and the parameter t is defined by

2fdr (1 Q) (42)
co

Here the radial profile of the distributed charge is given by

r 2-r
Q(rT) -Q f dr r f dO p (43)

0 0 ~

while the distributed net charge is given from charge conservation by

- f dr r f dO I, (T)/c. (344)
0 0

The revised circuit equations %:0)-(12) closely resemble the earlier versions

(14)-(16). The difference is the presence of Q and the apparent absence of a'-

finite cutoff radius b in the inductance formulae. Recall that a finite

cutoff is required for current enhancement to occur. .-

18.-O



A finite cutoff in fact exists. At some large radius b outside the beam,

the conductivity becomes so low that the medium acts as a vacuum: typically,

l. ..

4war/c < 0.1 (45)

for all r > b. Beyond the vacuum radius b, the profile functions I and Q

equal unity by definition. Inductance formulae (41) and (42) can thus be

terminated without approximation at r - b.
-.

For intense tightly pinched beams, conductivity in the corona region

outside the beam is generated both from collisional ionization by the expanded

beam head and from avalanche ionization in the radial electrostatic field.

For such beams, the vacuum radius b is typically large (>> a) and insensitive

to displacement or expansion of the beam body. Moreover, the corona

conductivity rises rapidly inside b so that space charge accumulates near

r = b. Behind the beam head, the charge density p and profile Q therefore

approach zero for r < b, and Eqs. (40)-(42) become virtually indistinguishable

from Eqs. (O±)-(16). Current enhancement for a given perturbation of the beam

body, where large hose growth is most probable, is thus almost the same

whether or not a metallic boundary is present at r = b (or at r > b).

The presence or absence of a metallic wall beyond the vacuum radius does

not directly affect current enhancement because a vacuum boundary, like a

metalli l boundary, shorts out the monopole electric field E which determineszo

the net current for axisymmetric conductivity. Even for asymmetric

conductivity, the monopole contribution usually dominates because: (i) o is

positive definite and thus has a large monopole component; and (ii) the dipole

and higher-order azimuthal components of E decay much more rapidly than

Ezo. Circuit equations (40)-(42) are thus usually a fair approximation to Eq.

(39) even if a is asymmetric.

19*



5.

The nature of the boundary can, of course, strongly affect the dipole and

* hilgher-order fields which control beam displacement. Large displacements are

restrained, for example, by metallic boundaries which carry a return current

that magnetically repels the beam, but are not restrained by vacuum boundaries r6

where the return current and associated wall forces are absent or weak. The .

nature of the boundary can thus alter the degree of hose growth and consequent

current enhancement, but does not alter the occurrence or qualitative behavior

of the phenomenon.

,--
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3. Beam Displacement in a Uniform Plasma

In this section we consider a broad channel with uniform conductivity

extending out to the metallic boundary. The extension in a has a pronounced

effect on current erhancement and represents the opposite limit to the narrow

conductivity channels considered in Sec. 2.2. Unfortunately, a circuit

analysis is impractical for extended a because the spatial distribution of the

plasma current can. no longer be estimated a priori. We give instead a

complete field solution for a problem which is analytically tractable: viz.,

an infinitesimally thin current source moving at constant transverse velocity

u through a medium of uniform and constant conductivity a. The underlined

words represent the simplifying assumptions. In subsection 3.2 we discuss the

consequences of relaxing some of these assumptions.

The solution to our model problem can be expressed in terms of two

* dimensionless parameters: rb(t)/b and a /b where rb(t) is the beam

dsplacement and 6 & c2/4wcu is identified as a skin depth. The solution

would depend on a third parameter, a/b, if the source were of finite

[2 thickness.

Solutions are given with and without displacement currents included in

- the analysis. As expected, the displacement currents are unimportant provided

. u/c < 0.1. We show in Appendix C that the solutions are insensitive to the

cavity shape as well.

We describe this problem and its solution in considerable letal "ecause

it provides additional insight and because it reveals two new features. The

first is that current enhancement in broad conductivity channels does not

*~ become appreciable until the current source approaches to within a skin deptn ,*

of the conducting boundary. The second and more surprising feature is that

for a /b << 1, a current gain of three or more is attained as the source is

21
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about to strike the boundary. Recall that Eq. (32) restricts the current gain

for a narrow (and stationary) conductivity channel to a maximum value of two.

Extending the plasma conductivity out to the boundary thus reduces the current

gain for modest displacements, r < b/2, but increases the gain for large

displacements rb 0 b.

3.1 Formulation and Solution

For simplicity we consider a one-dimensional system in slab geometry.

The extension to a two-dimensional system may be found in Appendix . In

our model, an infinitesimally thin current sheet of surface density b flows

in the z-direction. The current sheet is initially located midway between two

perfectly conducting plates, ?L and PR, at x = 0 and x - 4, respectively. We

assume that the medium between P and PR is characterized by a constant

electrical conductivity a. We further assume that the current sheet has been

situated at x = xb = Z12 for a long time so that all plasma current has

tecayed to zero at t-0. For t a 0, the current sheet As given a unifirm

x-ward motion, i.e., xb(t) Z 1/2 ut where the speed u is assumed to be

constant.

The fields are governed by the diffusion equation for the longitudinal

vector potential A-:

222

3 2 A ;
cx x~ ') z < < t,0 < < / , , -

.4xT 2  C ,5t 0. ." "

Here 6 Is the Dirac delta function, and displacement currents are (Initially) "

ignored. The boundary condition is "'

A,(O,t) A z(Zt) 0 . (47)
z' .o
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The initial condition is

A(xO) Oft:r /c) (1 12 -J) (418)
zb

reflecting the assumption that a steady magnetic field is established prior to

Th current ernhancement factor bis given b

F~)(,!bc) f dx ; /a,(49a)

where -(a/c-)IA z/3t is the current density induced 'within the conductivity

channel. Alternatively,

F(t) L I I9 (49b) -

where the square bracket represents the wall currents. Equation (49b) is

readily obtained by integrating Eq. (146) from x =0 to x - Z.

The diffusion equation (46), together with its associated initial

conditions and boundary conditions, i'S solved in Appendix B. There we show

that 41ust before the current sheet makes contact with Pthe current

enhancement *factor is given by [cf. Eq. (3113)]

2
n- 2

IT2 2v 7
F I . anh - -) e 5Q'

M. V(2 2
n odd

where
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is the ratio of the characteristic diffusion time xTdi f 3 2aZ2/Ci o the

transit time Tt 1/2u. The infinite sum in Eq. (50) converges rapidly for

finite values of v.

The enhancement factor F, as given by Eq. (50), is plotted in Fig. 1 as a

function of the normalized velocity v. The most interesting and unexpected

feature is that F approaches an asymptotic limit of three as v becomes large.

From Fig. 1, one sees that F > 2 for v > 1. For v < 0.5, a good approximation

• : is F - 1 + v/2, as is readily verified from Eq. (50) and is also easily

deduced from a quasi-static argument.

The time evolution of F gives additional insight into the physical

processes. We show in Appendix B that

n-1 2
2 n2

F(t) 2I + -v 2 cos(f-t) nv sin(- ) v en-1 n(n 2  v 2 ) t t
n odd

(52)

This infinite series is absolutely and uniformly convergent for all t > 0.

The evolution of F as a function of normalized time t/ t is shown in Fig. 2

for various values of v. Observe that current enhancement becomes appreciable

only when xb reaches within a "boundary layer" width of PR' i.e., when

t - t < T /v. The width of this boundary layer (skin depth) is on the ordert-

* of I/v, as suggested by Fig. 2. This .may also '.e deduced by a 4imensional

argument from the diffusion Eq. (!16).

In Appendix C we extend our model to two transverse dimensions and

represent the beam as a current-carrying wire which moves at constant

transverse velocity inside a waveguide filled with conducting medium. We find

that all qualitative features of the one-dimensional model, including the
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maximum enhancement factor of thee, are essentially unchanged. Indeed, these

features are of such a universal nature that they are independent of the

initial location of the current source as long as Tdif > > rt. in the next

subsection we discuss the effects of finite beam thickness and of nonuniform A

veloci ty.

3.2 Interpretation and Generalizations

To elucidate the preceding unexpected features of a boundary-layer effect

and F * 3 for v >> 1, we decompose the induced plasma current into two parts.

The first part is associated with relaxation of the magnetic field which was

present prior to t - 0. This part is independent of the motion of the current

source. The second part is due to the transverse motion of the current

source, but is Independent of the initial magnetic field. Such a

decomposition also enables us to predict the qualitative behavior when the

beam motion is nonuniform or the beam size is finite. These generalizations,

together with the influence of the displacement currents, will be addressed

later.

The above mentioned decomposition is equivalent to expressing the

solution Az(x,t) to Eq. (146) as a superposition:

Az(X,t) A A (x,t) A Ad Xt). (53)

in -q. ,53), Ah(x,t) is the homogeneous soluticn and Ad(x,t) is the driven

solution. We similarly decompose the plasma current density as

DA aA 3A
G z h _) a j (514)

p c at C at p ph pd
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and the plasma current as

Ip L f-- dx(Ah A) I +h
p cat h d ph  pd"

The homogeneous solution A describes the relaxation of the magnetic

field which pre-exists before t 0 0. It is governed by

32Ah ,,A.<.

c h a h
1r 2  a at (6

* and is subject to the boundary condition

Ah(Ot) = Ah(tt) = 0 (57)

and to the initial condition

Ah(x,O). ( l b/C) (1- 12x-lI/t). (58)

The driven solution Ad represents the response to the transverse motion

of a current source which is "switched on" instantaneously at time t - 0.

That is, the initial magnetic field plays no role in the driven solution Ad.

Thus Ad satisfies

c d a d4  .L - 59)

and Is subject to the boundary condition

Ad(Ot) - Ad(L,t) = 0 (60)

.JJ.

"';.
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and to the initial condition
A,

Ad(x,0) - 0. (1)
*%*

Both Ah and Ad may be obtained by the method outlined in Appendix B. Let V

us first concentrate on Ah. It is given by [e. Eq. (315)]

4L1 ",i-ib2 -r (.ElltA(xt) 2 (-1) e ." (62)-n n 1 [,2- d ntI -j 2)-Ah~x't - R'dd n2

which relaxes on the time constant T di . Ahalso gives rise to Jph which

decays on the same time scale. The evolution of Jph is shown in Fig. 3 for

two values of v. Its spatial distribution is approximately gaussian. Note

that for t < < Tdif. ph * Ib, as expected on physical grounds and readily

verified from solution (62). Thus, in the limit v > > 1, ph contributes one

unit to the current enhancement factor F.

The driven solution Ad gives rise to the unexpected features mentioned at

the beginning of this subsection. It is given by

L4LIb - 2 d (t)

Ad(x,t) -a irn(n2 v2 sin  (63)

where WN

n2t .."

d (t) -n sin(nh) -v cos(rh) -e dif sin(i 0) - cos(r~h )2

with h E r(I + t/-t)/2 and ho 1 ,/2. The evolution of Jpd(Xt) Is shown in"

Fig. 4 for v - 0.5 and for v =.
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We note that J pd(x,t) is negative for t/Tt < < I but becomes positive

pdpdfor t/rt * I. This behavior may be understood by observing that Jpd is the "
tN

plasma current due to a current source that is switched on at time t - 0.

Initially, Ad - 0. An induced field and current are thus generated at time

t - 0 so as to maintain zero magnetic field by Lenz's law. Initially, Ipd
pdp

exactly cancels Ib, i.e., I * -Ib as t - 0 . A major portion of the

negative inductive electric field lies ahead of the sheet current, especially

when Y > > 1 [cf. Fig. 4]. However, as this inductive electric field "wave

front" approaches the conducting boundary PR, it is reflected and its polarity

is changed in the same manner as when a voltage wave is reflected by a short

on the path of a transmission line. In this analogy, the transmission 1lne is

4 lossy. But in the limit of high electrical conductivity (v > > 1), the

. reflected current pulse has not decayed substantially, i.e., I + + I as
pd b

t *t for v > > 1. Hence, F + 1 as t - 0, while F * 3 as t * T for v > > 1.

In fact, a simple analytic solution for the driven solution Ad and the

- associated current density Jpd may be derived in the limit that v > > 1.

" First, it is easily seen that Eq. (59) admits a wave-like solution of the form

A1 (x,t) c f [x x (t)]. Such a solution yields an induced current density
d b

" given by

.- ) V-65)

. which is indeed an approximate solution when the current sheet is far from the
1

wall. The important feature is that J lies entirely ahead of the beam and
pd

thus reaches the wall before the beam. Because A (x,t) does not satisfy the

boundary condition A (1,t) - 0, an image current source of the form
d

-Ib 6x-[2Z-x bt)31 must be added to render the vector potential zero at

x - 7. Associated with this image is the plasma current density

28
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2 0 x > 2. - x b 66
Jpd (x,t) W v  (66".-

I (_ ) e, b x < 21 - x

which represents the reflected wave previously mentioned. Summing all

currents (Ib  I ph' 2pd' Ipd) between PL and PR yields a current enhancement

factor of 3 as Xb 1 9, since the contribution from I 1 becomes negligibly
b pd

2small while the contribution from I becomes significant. Equations (65) and
pd

(66) demonstrate why current enhancement occurs within a boundary layer of

width /v of ?-

For simplicity of exposition, the calculations of this section have been

based on idealized model assumptions. We now relax some of these assumptions

and use the insight provided by our results to predict what happens when the

beam has finite thickness or nonuniform velocity to the wall. (One could also

draw insight for the case of non-uniform conductivity.) Consider first the

neglect of finite beam thickness. Thick beams can be treated as a linear

superpcsition of thin beams. A beam is thin if its thickness 2a is small

compared with the Skin depth 6 a /Vv - 2/4wou. If the beam is thick, the
0

limiting value of F is reduced because part of the beam is more than one skin

depth away from the wall when the beam's leading edge reaches the wall. High

current enhancement is thus possible in broad conductivity channels only if

a << c2/Lrau << 1. (67)

Current gains above three are possible .n broad cnannels if the beam

accelerates to the wall. To show this, consider a case w.ere x maintains

uniform motion at speed u until t - T< t but undergoes an impulse

acceleration so that dx /dt - u - constant (> u) for t > TI. For time t <

TI, the solution remains the same as that obtained in the previous subsection.
Specifically, F(T,) > 1. For time t > since is uniform, we may again
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use the previous section; the only modification is that the solution is time-

translated by T1 and that the "initial condition" at t T, must reflect a

* larger initial current, F(T1)Ib. Now, for u -, we have as xb
F (Ib pd ph /b phb 2 + F(T1 ) > 3. Here, we have

*i used the result that Ipd I irrespective of the "initial condition". In
*pd b

retrospect, it is somewhat surprising that F * 3 regardless of the magnitude of

*, u so long as it is large and constant, but that F may exceed 3 if du/dt > 0.

We saw in Sec. 2.2 that the current gain for narrow and stationary

*: conductivity channels is restricted to F < 2; this low value of Fmax occurs

because only the beam current Ib physically displaces to lower the inductance

L. For the broad channels discussed in this section, Fmax car. be as large as -

- three or more because a portion of the plasma current, Ipd, moves with Ib to

further lower L. Maximum current gain is achieved if all current moves with .

" b so that the final value of L(> 0) is minimized. This is the case for a .

narrow conductivity channel which physically displaces with the beam. In this

case, the final values of L and F are limited only by the finite breadth of ~.'

te beam and channel, which prevents all the net current from simultaneously

reaching the boundary. By applying flux conservation to inductance formula

.- (A4) of Appendix A, we conclude that in cylindrical geometry the maximum

current gain is given by

F Zn(b/a) + (68a)-'
max I n(2)

where a is a characteristic beam-channel radius, b is the boundary radius,

a2 < 1, and the beam displacement rb varies from zero to (b -a). Similar

arguments applied in planar geometry produce "

F a x  /a (68b)max
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where Z is the plate separation and 2a characterizes the thickness of the beam

and conductivity sheets. Hose-unstable beams are unlikely, however, to

produce current gains much above a factor of two because they leave behind a

highly conducting on-axis channel that traps plasma current and magnetic flux;

see Sec. 4.1.

The displacement current has been neglected thus far, and in the

numerical simulations of the next section as well. While the physical

description given here indicates that the displacement current effects should

be small, we nevertheless repeated our calculations with the displacement

-1 2 2current term (4wc) 3 A /at2 included on the left-hand side of Eq. (46). In
z

addition to conditions (47) and (48), the initial condition 3A /3t - 0 atz

t - 0 is introduced to completely specify the solution Az The current

enhancement factor F is calculated according to Eq. (49b) which now implicitly

includes the displacement current. The result is shown in Fig. 5. We

conclude from Fig. 5 that the displacement current generally increases the

ennancement factor F, but that F does not exceed a value of 3.2 if u/c < 0.3.

This explicit demcnstration of the unimportance of the displacement current

provides additional confidence in Lee's simplified field equations which are

used in the simulations presented in Sec. 4.

3.
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U. Computational Models

The resistive hose instability has been widely studied using linearized

simulation models 14 ' 19 '20 which are valid orly for small beam displacements.

However, the current multiplication effect described in the previous sections V.

is an inherently nonlinear phenomenon. In this section, we describe nonlinear

simulations using a new particle code, SARLAC. This code provides a self-

consistent treatment of the hose instability for large displacements and

reproduces the current enhancement effect. A more complete description of the

code is given elsewhere.
2 1

SARLAC employs a number of approximations which have been widely used in

studies of electron beam propagation. Longitudinal and transverse beam

dynamics are decoupled and treated separately (to order v /v = 2va/X << 1)

* by invoking the ultrarelativistic approximation (37) and the paraxial

condition (38). The field solver is based on the Lee field equations:22

V2 (A *) N (J A) (69)
I ( jc Lr

and

A 7 0 - *), (70)
j3 -. C

.- which are obtained by dropping derivatives of the tran3verse vector potential

A * 0) and by employing the frozen-field approximation discussed in Sec.

2.3. Here is the electrostatic potential, and A A - 0. The independent

temporal variable used in SARLAC is not T but its equivalent, ; cT - ct - z'

wnich is the distance behind the beam head. The axial electric field is given

by

ZZ -- A (71a)

32,° °.... * * ... . . . . . . . * **.*****

""..-'::/ '<:: : .: ':""-'J:'*"I** ' ,..' ****, *~' ' ,'-'**..-''. .- '-..,-'-'-?.":" """'"" "?i



while the transverse electric and magnetic fields are given respectively by

= --V , (71b)

and

B 7 (A + *) Z. (71c)

Metallic boundary conditions are assumed:

0 (72)

at a specified pipe radius b.

The conductivity a is treated by a simple rate equation:

I2
KJ~ V a/ce 0 Cr73

ac .K b  I ,i/_ rpa 7),

where in air we use the beam collisional ionization coefficient K - 6X10 - 4

cm/statamp-sec and the recombination coefficient 8 7Xi0 1 5 sec/cm-atm. The

gas density p is specified in atm. The electron-avalanche ionization rate

- vi(p;E) is a complicated function of density p and electric field E, and

is given by Eqs. (16) and (17) of Ref. 18.

The beam current density Jb is calculated in the full SARLAC code by."N
b V

accumulating contributions from the simulation particles onto a polar mesh.

Since vz - c, all simulation particles remain at constant and move in the

transverse plane in response to the fields calculated from Eqs. (69)-(73).

Because Eqs. (69)-(73) do not involve derivatives in z and because field

information can propagate only forward in C, SARLAC is structured differently

from conventional simulations. SARLAC treats one C-slice at a time, thus
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reducing the number of particles in the simulation at any given time to

4
- !0 . ach beam slice is propagated forward in z until a specified maximum * '-

propagation distance zmax is reached; at this point, particles are loaded

into the next slice at z = 0, and the process is repeated.

Nonlinear particle simulations similar to SARLAC have been developed by .0%

Freeman23 and Godfrey.24 The major novel feature of the SARLAC model is its

field solver which first does a predictor step using the azimuthally averaged

conductivity, followed by two corrector steps. This process is fast and thus

allows a large number of Fourier modes to be retained.

4.1 SARLAC Particle Simulations

The SARLAC particle code was designed primarily to treat the nonlinear

evolution of the resistive hose instability. Thus, the beam displacements

X(;,z) and Y(;,z) in the full simulation are calculated self-consistently from

the particle dynamics. The results below are for a 7 kA, 5 MeV beam with a

nominal radius of a. 1.5 cm. The beam is injected into a conducting drift

tube of radius b - 13.5 cm filled with air at 230 Torr (P - 0.3 atm). The

oeam profile was tapered at Injection and had a rise length of Cr " 210 cm

(7 ns). These parameters closely resemble the ETA experimental parameters

reported by Zhambers, et al. 5

Figure 6 is a plot of the beam and net currents, 1( ) and I,(;,z), at

various propagation distances z. initially, 1, is everywhere smaller than

ib . As the beam propagates to large z, the value of 1nises in the beam tail

and soon exceeds Ib* At z - 270 cm from injection, tne peak net current isqm
11.5 kA, as compared to I - 6.8 kA at that point in the beam. The peak net

current is thus 70 percent larger than the beam current.

The association of current enhancement with large-amolltude hose motion -

is shown in Figs. 7 and 8. These figures plot the x and y positions of a

subset of simulation particles versus ; at constant z. As is well-Known, 14
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the hose amplitude increases with Q and (for a while) with z. At z - 130 cm

(Fig. 7), the beam displacements are of the order of the beam radius, and

current enhancement is not observed. By z - 270 cm (Fig. 8), the hose motion 'V

of the beam is highly nonlinear, and the beam is close to striking the wall.

For < 500 cm, the beam radius decreases with C as In and the resulting pinch

force build up. However, in the tail of the beam, the beam expands even

though In exceeds I This is a nonlinear effect which arises when the beam

moves out into regions far from the pipe axis where the fields generated by

the front of the beam have fallen off.

The spatial distribution of fields and currents can be seen in contour

plots at a fixed point in and z. Figure 9 is a contour plot of the beam

current density Jb at - 630 cm and z - 270 cm, showing that the beam has

moved close to the drift tube wall. The corresponding plot of conductivity a

in Fig. 10 shows that a is spread over a much larger area yet still peaks near

the pipe axis. Contour plots for the axial electric field Ez are shown in

Fig. 11 and display a characteristic two-lobed structure. As the beam spirals

counter-clockwise and enters virgin air, it induces a field which drives

plasma current opposite to the beam current. As the beam leaves an area, it

causes the field to change sign and thus drives plasma current parallel to the

beam current. The plasma conductivity is higher in the latter region.

Current multiplication results when the integrated current in the forward Ii

current lobe exceeds that in the return current lobe. The net current _ensity

contours, J, - J E z, are shown in Fig. 12. Jn is spread over a larger

area than J and its centroid generally lies closer to the pipe axis.

The phenomenology seen in this simulation most closely resembles the

model in Sec. 2.2 for narrow conductivity channels. Although the conductivity

is spread over a large area, it peaks near the pipe axis and is low near the

pipe wall. As the beam moves closer to the wall, the boundary-layer effect

discussed in See. 3 should emerge. Current gains much above a factor of two
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5. Conclusion

We have shown that current enhancement is a natural consequence of the

resistive hose instability for electron beams propagating in dense gases. The

degree of enhancement depends on the displacement amplitude of the beam

relative to the boundary radius where the monopole electric field Ezo falls to

zero. The boundary radius is usually determined by the ground returns (e.g.,

metallic drift tube) present in most experiments. If the return-current

structures are far from the beam, current enhancement still occurs but the

boundary radius is determined by the location where beam-generated

conductivity becomes vanishingly small.

The physical basis for current enhancement is conservation of magnetic

flux. As a beam displaces off axis, it lowers the effective inductance. The

circuit responds by raising the net current so as to conserve magnetic flux

(or energy) within the conducting plasma. Enhancement takes place provided

the beam displaces within a monopole time To L/R where L is the circuit

inductance and R is the plasma resistance.

The plasma eddy currents which produce current enhancement also drive the

hose instability. The hose instability develops on a plasma dipole decay time

T " Large hose growth is therefore possible in a monopole time T> "

Beams undergoing large-amplitude hose motion are thus apt to produce

substantial current enhancement. Note that the hose instability, in contrast

to the two-stream instability, produces current enhancement regardless of the

sign of the beam charge. A positive-ion beam undergoing hose motion would

thus induce electric fields that again raise the net current.

Net currents as large as three times the beam current or more are

possible if the plasma conductivity extends out to the boundary radius. In

practice, the current gain rarely exceeds a factor of two, due both to the
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restricted distribution of plasma conductivity and to the finite size of the

beam. Our particle simulation results showed current enhancements of - 70
•. .-

percent, which is in good agreement with the ETA experimental results.
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Appendix A: Inductance Formulae

We present without derivation some inductance formulae for several

different confIgurations. These formulae when inserted into circuit equation

(14) enable one to compute the net current for a prescribed beam perturbation.

The maximum current enhancement resulting from sudden displacement of a beam

outside an on-axis plasma channel is given as an example.

The inductance for an on-axis beam and plasma of characteristic radius a

is given from Eq. (15) by

-2 [En(b/a) * a] (Al)
c

where b is the pipe radius and a is a parameter that depends on the detailed

spatial distribution of the plasma conductivity and net current. Typically,

2 1
2 < (A2)

If the oeam and plasma channel expand self-similarly, the parameter L in

circuit equation (14) should be set to

1 L (A3)".- , 2.. (A3 .4-.

For a beam and conductivity channel of radius a which are disolaced off-

axis to a location r

2 2

L [in(-7 (A4)

40
J.-.. , ..f '' '''- -',:. . . ..... -'.. -. ., -. .,. .v '" . . - " """- , . "-"'' "- - ." ' ', ,-,-,' -, ,' ,'



Although the conductivity in this case is not azimuthally symmetric about the

pipe center (unless r, a 0), Eq. (14) nonetheless remains a reasonable

approximation. if the current carriers in the conductivity channel physically

displace with the beam, one should set

- 3-. (A5)

Otherwise, Eq. (A3) should be used. An example of the latter application is

an ionized charnel consisting of plasma electrons and ions that do not move

laterally but are created by the beam and then destroyed by recombination as
:.:.-

the beam moves outward.

If only the beam is displaced while the conductivity channel remains on

axis, we can use Eq. (10) to compute a channel self-inductance given by

-2 Cin(b/a) a, (A6)
c

and a beam-chanrel mutual inductance given by

Lb 2 + ]()n(b/r b)'()
b c

where in general a ' and where

r a Maximum {a;r }. (A8) j
Equation (10) can then be rewritten as

Lp L (I.. I Lb (L I (i~b - n - bR. (A9) "
%".p t " b at b b b -. (A9)
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For sudden displacement of a beam outside an. on-axis plasma channel of

constant radius a, circuit equation (A9) reduces to conservation of magnetic

flux:

6Ct*L (I" - I Lb) 1 0. (A1O)

If we ignore the usually modest charges in a and a', relationship (ATO) when

coupled to inductance formulae (06) and WA) yields

Ctn(b/a) a]) (I,- I) o nr b/a)I b. (All)

The maximum possible current gain is therefore given by

F -I /In b

Zn(r /a)
b

9.F/a (A12)

where F. I,,'/I is the current gain prior to beam displacement. If the

displacement occurs rapidly compared with a plasma dipole decay time ~Td the

driven plasma current resides on. the plasma surface and the parameter a in Eq.

(A12) should be set to zero. For slower displacements, a is unequal to

zero. Observe thl'at approximation 'Al0), and hence result (A12), 143 valid only

if the displacement occurs rapidly compared with a monopole decay time,

To L p /R. See also the time-dependent solution given in Ref. 10.

Inductance formulae can be formally given for broad Conductivity channels

but are generally of little practical value. For example, for uniform i, tne

distribution of plasma conductance is given by

42
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(r/ 2 (A13)

inductance definition (15) then reduces to

2 fb dr r
t. -2 -.1 I

C o

0 ( - r 2 b2(A14)2 n

where the mean-square centroid of the net current is give, by

r f dr r2 r. (A15)
n 0r

Inductance formulae for the planar geometries considered in Sec. 3 are

similarly straightforward. Unfortunately, these expressions depend strongly

on the spatial distribution of the electric field wnich can be determined only

after a full field analysis. A circuit analysis is then unnecessary and

superfluous.
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Appendix B: Solution to Equation (46)

In this appendix, we derive the solution to Eq. (46) via Fourier

analysis. Since the current enhancement factor F is independent of I., we set

4Ib /ci - 1 and introduce the dimensionless variables F - irx/Z and

- t/2 dif to normalize Eqs. (46)-(48) as 4

32Az  aA
zZ - - h()); 0 < < r 0 < T < ( -1)-2 -- 2v ,,

*1-

A z(OT) Az Ort) - 0 (B2)

A z ,O) -w/4) 2E - r/z,]. (B3)

. ..

In Eq. (Bi),

h(r) = + * vT (BJ4)

where v is the dimensionless velocity defined in Eq. (51) of the main text and

dit is the characteristic diffusion time.

Representing the solution as a Fourier series

A , r) - [ a (-r) sin n&, (B5)

we note that the boundary condition (32) is automatically satisfied ard that

the initial condition (B3) yields

rO & O sin r.e - sin 2(B6)
it z 2 2
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Upon substituting (B5) into (31), we obtain an equation for a,(T):

Can(T)+ r2ar(t) - 2 sin [2 nvT] (B7)

which may be easily integrated to yield

( 2 1 { n2sin nh-ni cos ent
a (t) - -2n 2)..'

(V2s n nh0 + nv cos nh)} (B8)

where h is defined in (34) and h° = w/2. The initial condition (36) has been.5'

used to obtain (B8).

The current enhancement factor F is given by [cf. (49b)]:

F(t) z  Az  -Z n(r)
.- -ir Rnodd n

where we have used (B5) to obtain the last expression. Some care is to be

exercised in evaluating the infinite sum since the first term in the curly

bracket of (B8) contributes to a nonuniformly convergent series in (B9). To

remove this nonuniform convergence, let us write

2 {2.(n , .I V ) si.-n",.
In 1  r 2 2  2
!Rl;dd *n )  R dd - . )-.::

2 .i. -)s

itn2  2 (10)2n T +( V Pi2  + VO
H odd "d"

v)

where we have used the identity
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hd

[sin h sin 3h+ n + .. ] ; 0 < h <r. (B11)~~3 5 ''I t"

Note that the infinite series in (B11) is nonuniformly convergent, but

converges in a point-wilse manner for all h in the open interval (0,1). We now

substitute (M8) into (B9), and use (B10) to write

a1 2 v { - v2sin nh - nv cos nh
F n(n V

n odd

+ e -n r v 2sin(=) (312)

which may readily be compared with Eq. (52) in the main text. The infinite

series in (B12) is absolutely and uniformly convergent. As the current sheet

is about to touch the conducting plate, T w t/2v, h w i, and Eq. (B12) yields

n-1 2 it
--n 2v

CIS v 4 a (-1) v2e v

F I + 2 2 2 2 (B13)
n + v n n(n V

n o'dd n odd

which is reproduced as Eq. (50) in the main text upon using the identity

tanh( -) -(B14)T n-1 n2 + v2
n odd

This identity may be established Oy a standard technique of complex analysis.

Clearly, the method detailed in this appendix may readily be used to

construct the homogeneous solution Ah and the driven solution Ad, as suggested

in Sec. 3. For example, the homogeneous solution Ah is obtained by setting

the right-niand members of Eqs. (BI) and (B7) equal to zero. Then, (B5) - (37)

yield

''a
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n 2
ah ~ (O)e~ sin, r4 (B15)

vj,

which is rewritten as Eq. (53) of the main text upon using (B6). The driven

solution Ad may be obtained similarly.

Pol,
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Appendix C: Extension to Two Dimensions

In this appendix we demonstrate the insensitivity of the current 41

enhancement mechanism to geometry by extending the analysis of Sec. 3 to two

dimensior. We also demonstrate that our results are insensitive to the

initial location of the electron beam for v >> 1.

Consider an infinitesimally thin current-carrying filament ("wire")

situated in a square channel of side length Z., inside of which the medium i3

characterized by a constant, uniform electrical conductivity. We again assume

that the wire sits inside the channel for a sufficiently long time prior to t

- 0 that a steady magnetic field is already established at t = 0. For t > 0,

the wire is given a uniform x-ward velocity u.

In terms of the normalized variables outlined in Appendix B, the above

system is described by the vector potential Az (,n,r) whose evolution is

governed by

S2 A_ a 2l A,-.A

2 2  a'-

0 < < 0 < < <ri, T > 0 (Cl) %A

where 5,n are the normalized spatial (x,y) variables and T u it/2T as
dif

before. The initial coordinates of the wire are ('7,n) , (ho, 'n).

For T > 0, we assume

h(r) - h v (C2)

and the instantenous coordinates of the wire are ( ,n) - (h,qo). To
0

demonstrate the insensitivity to the geometry, we let ho, n0 be arbitrary in
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*t1is appendix. EOff course, h0  , h, nr are all restricted to lie between .5

and w]~. Equation (Cl) is subject to the boundary conditions

A z(O,ri-t) - A z(Ir'n.r) A z(&,O,f) A Z( 'iTt) =0 (3

and to the initial condition

- - r ~ in nko sin mn, sin n& sin mI
A (&,n,0) X 2 2 m

n-1 rn-1

which reflects that a steady magnetic field is already established at T 0.

The solution to Eq. (40.) may be represented as a Fourier series

A (~n~)-X X a (Tr) sin n& sin n. (Cr5)

in so doing, the boundary conditions given in (C3) are automatically

satisfied. Upon substituting (C5) into (CI), we obtain the first-order

ordinary differential equation for a (T):
mn

___M_ 2 n )a () - sin nh(T) Sin M% (C6)
mn 2

which may easily be solved upon substituting (C2) into (C6) and using the

initial condition

a (0) 4 sin nh sin min (C7)
mn ~ 2 n2 . ~2 0 0

The current enhancement factor is

F(-,) -1 L n~ ~n nT
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which may also be expressed as

= = 4 (n 2 m 2 )

F(,) - a ) C9
M=-i n-1
Mn odd

The last expression is analogous to Eq. (B9). The non-uniform convergence in

the infinite series may be handled in a similar manner as in Eq. (B1O).

Equation (Z9) may be used to calculate the current enhancement factor as

the wire is about to reach the side [ - i,.[i.e., h - i]. ThIs limiting value

of F is shown in Fig. 15 as a function of the normalized velocity v for

various combinations of the initial coordinates (h ,ro ). Note the

insensitivity to (h o ) and the similarity between the curves in Fig. 15 and

that on Fig. 1. Thus, the limiting value of F * 3 is established. We have

also shown that the evolution of F(T), as governed by (C9), is similar to Fig. -

2. Coupled with the interpretation given in Sec. 3.2, we may conclude that

the much simpler one-dimensional miodel provides a sound physical description

for current enhancement. --

*, . ,
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Figure 2: Evolutior of F for various values or' v.
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Figure 3: Evolution of the homogeneous current density Jpin units of

a01Tlb /41 , for v -0.5 and v - 4*. The arrows at the bottom mark

the instantaneous location of the current source for each of~ the

indicated curves.
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Figure 5: The effect of displacement current on the asymptotic current gain

F as a function of v.
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Figure 6: Beam current I(;) and net current I(;,z) as a function of

distance ; behind the beam head and propagation distance z, for

the SARLAC particle simulation described in Sec. 4.1.
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