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SECTION I
INTRODUCTION

OBJECTIVE

The objective of this effort is to develop a procedures for determining
when runway rubber removal is needed and when rubber has been satisfactorily
removed. These developed procedures were correlated in a designed field
equipment with friction measurements obtained using a self-watering Mu-Meter.
The results of this correlation study are to be used in the development of
contract specifications for runway rubber removal.

BACKGROUND

The higher operational speeds and heavier gross weights of modern air-
craft require high shear forces generated at the tire-pavement interface for
safe operation., These shear forces are dependent upon the available tire-
pavement friction., Dry friction between the tire and clean pavement does not
present a problem, because of the chemical and physical properties of the tire
rubber and the mechanical properties of the tire structure. However, once a
lubricant, most commonly water from rainfall, is introduced at this interface,
a serious loss of friction can occur, This loss of friction can be slight, as
on a damp pavement when the operator must reduce frictional demand during
maneuvering to maintain directional control, or significant, as in the case of
hydroplaning where the operator loses directional control of the vehicle.

Once a contaminant other than rain water is placed upon the pavement, the
operational characteristics of the pavement change, Specifically, on a run-
way, rubber deposits formed by landing aircraft can dramatically reduce the
wet frictional performance of the runway touchdown zone pavement. Since these
touchdown zones are subjected to impact of the tires during landing, a certain
amount of rubber is transferred from the tire to the pavement as a result of
heat and abrasion produced when the aircraft tires spin up. This rubber is
deposited on the pavement surface as thin layers that adhere to the pavement
materials, As subsequent rubber deposits increase the buildup to a signifi-
cant thickness, several problems appear. They are (1) obliteration of pave-
ment mirkings, (2) accumulation of loose debris on the runway surface, and
(3) reduced wet frictional levels. Maintenance action is required to elimi-
nate or reduce these problems to an acceptable level. Painting of pavement
markings is a regular activity at all active airports; periodic sweeping of
runways removes the loose debris; and rubber removal may restore the pave-
ment's frictional properties (Reference 1).

Currently both the United States Air Force (USAF) and the Federa) Avia-
tion Administration (FAA) periodically recommend removal of runway touchdown-
zone rubber deposits. Presently, the airport or base pavement engineer must
rely heavily upon visual impressions or experience or both to determine when
rubber removal is required and when removal of rubber has adequately improved
the pavement's frictional characteristics. Unfortunately, test results
obtained by the USAF indicate that this visual/experience method of inspecting
rubber deposits does not correlate well with the frictional results obtained
with a Mu-Meter (Reference 2). Since the Mu-Meter or other tire-pavement
friction measurenent equipment is expensive and requires highly trained
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personnel, it is unavailable at many airfields. As a result, a cost-effective
o rubber-removal program is impractical without guidelines indicating when
2,08 rubber buildup is sufficient to warrant removal.

The New Mexico Engineering Research Institute (NMERI) was tasked to
develop an alternate procedure to quantify amounts of rubber buildup and their
effect upon the frictional characteristics of the runway pavement. This proj-
ect was subdivided into the following five phases,

Phase I--Rubber Buildup Criteria and Evaluation Procedure Development

g

Jﬂ This phase consisted of a review of existing techniques for evaluating

%ﬁs surface friction. Based upon this review, five evaluation procedures were

Al selected which require little special training, are insensitive to operator

gt change, and are cost effective (less than $10,000 per installation for
implementation).

Hea

’PE Phase [I--Rubber Removal Techniques and Equipment Review

h 3 Phase [l required review and research of existing rubber removal tech-

z!q niques., Evaluation of effectiveness, cost, simplicity, safety, and environ-

5;; mental effects was ascertained when the reviewed techniques are applied solely

W to porous friction surfaces (PFS).

o Phase II1--Rubber Buildup Parameters Development

b "..)

N Phase IIl required the field testing of the evaluation procedures
selected in Phase I. This evaluation was conducted before and after rubber

oy removal at selected airports and air bases. Friction measurements using the

£6¢ Mu-Meter along with the five candidate procedures were obtained with sub-

y ! sequent analysis and correlation. The field testing was conducted for various

kY

surface types including portland cement concrete (PCC), asphalt concrete (AC)
1 and PFS pavements.

;&: Phase IV--Rubber Removal Specifications Development

1
%ﬁ This phase incorporates the results of Phases I and IIl into a concise
:' specification for rubber-removal contracts. The intent of this specification
() is to eliminate the undesirable attributes of existing visual/experience meth-
" ods for determining rubber removal quality. Thus an efficient rubber removal
j?: program may be initiated.
Wiy
§3 Phase V--Permeability Equipment Eveluation for Porous Friction Surfaces
"
Ji. Phase V required a review of existing techniques for evaluating permea-
L bility of porous friction surfaces. Based upon this review, the application
o of these techniques was evaluated, and measurement techniques recommended for
yo! use on PFS,
o
L)
&ﬁg Phases I, II, and V have been completed and are reported upon elsewhere
o (References 3, 1, and 4). Phase IV is currently in progress and will be
i reported upon at a later date.
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Y SCOPE !

This report is a discussion of Phase III. Included are a review of
tire-pavement friction theory, both theoretical and empirical, and description

& of selected field test techniques and design of the field evaluation experi-
™y ment. Following this review, a description of test sites, test distributions,
: regression modelling of Mu-Meter friction levels using pavement surface

texture measurements, and the results of this analysis are presented.
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SECTION II
TIRE-PAVEMENT FRICTION

THEORETICAL BACKGROUND

The development of frictiom hetween an aircraft tire and the runway pave-
ment is a complex phenomenon. As stated in an earlier report by the authors
(Reference 3), many factors influence the aircraft-wet pavement performance.
Yager (Reference 5) describes these factors in the flowchart shown in Fig-
ure 1. This flowchart emphasizes the effects of principal weather, aircraft
runway, and pilot factors which interact to affect the aircraft ground-
handling performance during wet runway conditions. To ensure ground handling
performance on wet runways, several approaches are necessary to reduce the
severity of the problem, These include continued pilot education and train-
ing, implementation of procedures to monitor wet runway conditions, implemen-
tation of procedures to notify pilots when slippery runway conditions exist, :
improvement of antiskid brake systems and prompt remedial treatment of runway
drainage problems. It is also clear that the quality of the pavement, from a
surface texture standpoint, must be ensured at the design, construction and

maintenance levels as changes continuously occur throughout the life of the
pavement,

Tire-pavement friction is formed by a combination of adhesional and hys-
teretic friction. Kummer (Reference 6) pictorially represents these com-
ponents in Figure 2, The adhesional component depends on both the surface
area of bonding and the intensity of the bonding, while the hysteretic fric-
tion is generated by the surface roughness. To develop a better understanding
of these mechanisms, a historical overview of each will be given.

Adhesional Friction Theories

In 1968 Schallamach (Reference 7) presented a review of adhesional fric-
tion. In this article, he stressed the importance of the rate temperature
equivalence principle first proposed by Williams, Landel, and Ferry (Ref-
erence 8)., This principle expressed by the Williams, Landel, and Ferry (WLF)
equation allows for horizontal shifts in friction versus sliding speeds plots
that help researchers correct for temperature and develop “friction master
curves." An example of these curves is given in Figure 3 (Reference 9).

These master curves are unique for any combination of rubber and surface. For
many years researchers have tried unsuccessfully to develop a theory of adhe-
sional friction which models these curves.

Various theoretical models have been used in developing a theory of
adhesional friction. Schallamach (Reference 10) used a concept of molecular
bonding, akin to Van der Waals bonds, but considered their making and breaking
as separately activated processes. A newly formed bond does not sustain any
force until a relative displacement occurs, at which time the baond breaks and
a new unstressed bond is formed. This explains the slip-stick mechanism of
adhesional friction but does not explain friction at either very low or very
high frequencies. Also the peak value is related to an adhesional energy
concept that depends on both the surface and the rubber.
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Schallamach's proposed theory assumed independent bonding of the rubber
molecules. This independence between bonds did not predict static friction,
since independent bonds would break under the smallest force, just as a
Newtonian liquid flows under the slightest shear stress. Hdatfield and Rathman
(Reference 11) suggested that a finite domain of bonding exists. This theory
explained static friction as the result of an equilibrium forming between
making and breaking of bonds, which could permit a small finite force to
exist.

REBLLE S sdddd IR

Savkoor's theory (Reference 12), which becomes quite involved, assumes
these finite domains of bonding and Van der Waals bonding, yet uses energy
criteria rather than force criteria for bond breakage. This theory was quite
successful in predicting adhesional energy behavior; however, equality between »
stored and bonded energy is not a criterion for bond breakage, and a bonded
asperity that is not strained should not support a force.

Kummer (Reference 6) describes adhesional friction by means of an equiva-
lent electrical roughness and a concept of microhysteresis. He describes
molecular forces as a series of equivalent sawtooth roughness, and describes
the energy losses as microdeformation losses within the rubber. This deriva-
tion allows him to describe both adhesional and hysteretic friction as being
two processes dependent upon the same rubber properties. However, this theory
assumes that the rubber undergoes cyclic deformation due to the making and
breaking of bonds, yet does not describe how these bonds are broken., Sec-
ondly, this theory is generalized from consideration of cleavage planes of
ionic crystals, making it difficult to explain rubber friction on smooth metal
surfaces.

Various others have attempted to explain this controversial process of
adhesional friction, but detailed descriptions of their work are beyond the
scope of this report,

Hysteretic Friction Theories

At this time attention will be turned to hysteretic friction. To make
this phenomonen easier to understand, a brief history of analytical modeling
follows.

In 1966, Kummer published the Unified Theory of Rubber and Tire Fric- '
tion (Reference 6). In this classical work, he described the mechanism of
hysteretic friction to be a function of asperity shape, height and density,
and the draping and damping properties of the rubber. He modelled the bulk -
rubber as a Kelvin element, and used this model and elastic-draping theory to
describe both the volume of rubber deformed and the energy dissipated within
this volume. In 1969, Hegmon (Reference 13) used the concept of conservation
of strain energy coupled with the viscoelastic relaxation times of rubber to
describe deformation or hysteretic losses of rubber. He also theorized that a
specific volume of rubber is deformed during loading and that losses are
generated within this volume, This derivation agrees in general with
Kummer's, with the major difference being that the rubber damping was modelled
by a Maxwell rather than a Kelvin model. Both Kummer and Hegmon describe the
energy losses in the area of the displaced rubber.
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Yandell (Reference 14) determined hysteretic losses, using ¢ mechano-
lattic analogy to calculate the stresses and deflections in a rubber slider of
infinite length, unit width, and finite thickness, fastened to a rigid backing
plate, He modeled the losses within a rubber block as an arrangement of eight
Kelvin elements. Using this model and simple triangular asperities, his math-
ematical derivation describes the hysteretic losses as a function of changes
in the stress flux of the rubber. This analogy allows energy dissipation to
occur in rubber volumes larger than that which is displaced by the surface
asperity, He further describes a condition of stress saturation. This condi-
tion occurs when residual stresses remain in the rubber at locations of low-
stress contours.

As neither component of tire-pavement friction is clearly understood,
controversy arises as to the importance of adhesional versus hysteretic
friction. Yandell (Reference 14) hypothesizes that hysteretic friction is
the primary cause of wet tire-pavement friction. Conversely, Hegmon (Ref-
erence 13) believes that the majority of this friction is caused by a sup-
pressed but not completely damped adhesive friction component. Moore
(Reference 15) also believes that the adhesional component of friction is the
dominating factor at low sliding speeds. He bases this opinion on the tire
having an essentially dry contact zone where these adhesional forces are
generated. His model of wet tire-pavement friction is discussed later in this
report.

EFFECTS OF PAVEMENT TEXTURE ON TIRE-PAVEMENT FRICTION

Two important features of the pavement govern its characteristics with
regard to tire-pavement friction. These are the pavement's adhesional bonding
potential and its texture. Since the pavement's adhesional bonding potential
has not yet been identified, pavement engineers concentrate on the pavement's
textural characteristics.

Pavement texture has been found to govern many aspects of the tire-pave-
ment interaction. Among these are: noise generation, tire wear, and tire-
pavement friction. As the main focus of this report is the role of pavement
texture in tire-pavement friction, emphasis will be given there.

Pavement texture is generally divided into two segments according to
typical profile wavelengths; these are termed macrotexture and microtexture,
respectively. Moore (Reference 15) differentiates the macrotexture from the
microtexture as follows. The individual asperities or stones in a pavement
surface constitute the macrotexture, while the finer asperities (or grit) on
the larger asperities (macrotexture) constitute the microtexture. Figure 4
illustrates the difference between macro- and microtexture, According to
Moore, typical wavelengths (A) associated with macrotexture are 6 to 20 mm
(0,25 to 0.80 inch), and for microtexture are 10 to 100 wm (0.0004 to
0.004 inch).

The pavement's macrotexture performs two functions, the first of which is
to provide drainage channels for dissipation of bulk water, Removal of this
bulk water prevents the occurrence of dynamic hydroplaning under the leading
edge of the tire, Second, the shape of the major asperity determines hoth the
hysteretic losses generated by the tire rubber sliding over this atperity
(Reference 14) and the local contact pressures gencrated at the tip of this
asperity (Reference 15). Highly angular asperities, gencrally represented as
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cones, cause local contact pressures greater than the viscous fluid pressures;
thereby, the bulk water is removed through the drainage channels and the vis-
cous film is broken, allowing the tip of the asperity to be in dry contact
with tread rubber. However, road aggregates do not retain this high angular-
ity because of wear and polish. Therefore the macrotexture predominantly
determines the frictional decline with speed on wet pavements. Its prime role
is to displace the bulk water so the microtexture can penetrate the thin films
remaining.

The pavement's microtexture on these larger protrusions must generate
these higher contact pressures necessary to penetrate the viscous film. Moore
(Reference 16), in his derivation of a viscous hydroplaning theory, estimates
the film thickness at the crest of a sinusoidal asperity to be approximately
that of average microtexture depth (see h* in Figure 5). Williams' study
(Reference 17) showed an optimum texture band of microtexture, from 10 to
100 um average texture depth, at which wet friction was adequate yet tire
abrasive wear was not excessive, This texture band expressed in texture depth
confirmed Moore's estimated microtexture requirements. Therefore, micro-
texture determines the peak of a wet friction speed curve by determining a
percentage of the tire's footprint which remains in dry contact,

The importance of the pavement's microtexture cannot be overemphasized in
determining a peak friction value, However, this fraction of the paverment's
texture is both the hardest to quantify and the most variable, hecause of
seasonal variations and traffic polish,
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2 HYDROPLANING

K

v::f The loss of wet tire-pavement friction due to lubrication effects is

B termed hydroplaning. Since tire-pavement traction becomes critical when the

J pavement is wet, this case is of utmost importance. Hydroplaning manifests

I itself in one or more of three forms: dynamic, viscous, and reverted rubber

R hydroplaning.

"y

::,' Dynamic hydroplaning occurs when the fluid thickness between the tire and

R the pavement is such that fluid inertial effects predominate in its removal.

. Two conditions must be met for dynamic hydroplaning to occur. They are: (1)

witny fluid film thickness must be greater than some minimum (this can be as low as

2&% ) 0.05 inch for a Goodyear 29 by 16 aircraft tire placed on a Hawker Siddeley

j:,c,i. Hunter F-6 Jet Fighter traveling at 1.47 times the critical hydroplaning speed

3.::':: ‘ on very lightly brushed concrete [Reference 18]) and (2) a critical velocity

,“.h. at which hydroplaning occurs must be reached. Horne and Joyner (Reference 19)

9y found that the critical velocity is proportional to the square root of the
tire inflation pressure. Namely, for aircraft tires V = 1.8 P'n' where V

e is the critical hydroplaning speed in m/s and P; 1is the tire infl3tion

ey pressure in kilopascals.

N

()

1‘¢§ Viscous hydroplaning, unlike dynamic hydroplaning, can occur at any speed

e and requires only a thin film of water to be present. Moore (Reference 16)

o::Zi‘ describes the formation of a viscous film on an idealized surface and dis-

;‘{::f,‘: cusses the necessity of microtexture to penetrate this film. Full development
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ﬂu of a viscous film prevents the adhesional component of friction from forming,

c?& thereby drastically reducing the wet friction value. The film thicknesses

yh encountered during viscous hydroplaning are slight; therefore, fluid viscous

Je effects predominate., Thus, high localized stresses are required to penetrate

- these water films, making them much harder to remove than bulk water.

Vg

QQ Reverted rubber hydroplaning is caused by heat generated at the tire-

‘ pavement interface during tire lockup on a damp pavement, causing the rubber

5} to melt or revert back to its uncured state. Nybakken, Staples, and Clark

e (Reference 20) estimate interface temperatures to be of the order of 204°C to

. 315°C (400 to 600°F). Two possibilities seem to exist with reverted tire

) hydroplaning. The first possibility is the tire remains locked, and heat

{ ’ generation continues to occur at the interface between the tire and the damp

b4 pavement. This would cause steam generation beneath the tire as first pro-

?ﬁi posed by Obertop (Reference 21). Horne and Joyner (Reference 19) expanded

Wt upon this concept and generalized that reverted rubber may form and possibly

. provide a seal around the periphery of the footprint, thus allowing a very

ikb thin film of water to be trapped in the footprint, which upon heating will

X cause steam. This steam pressure could lift the tire from contact with the

%5 pavement; as a result, the tire would slide upon molten rubber and a cushion

oy of steam. The second possibility, suggested by Nybakken et al. (Refer-

0 ence 20), was that the reverted rubber, once formed, could not sustain the

{i high localized stresses necessary to penetrate a viscous film of water, and a

& o resultant process analogous to viscous hydroplaning would exist.

5¢: Yager (Reference 5) summarized the types of hydroplaning with the con-

2?. tributing and alleviating factors associated with them. Since wet tire-pave-

s ment friction is modelled as a combination of hydroplaning zones and dry con-
tact zones interacting in a complex manner, tire and pavement engineers must

;;} rely heavily upon empirical modelling to determine optimum parameters for both

159 the tire and the pavement. |

K W :

%32 EMPIRICAL MODELLING OF WET-TIRE TRACTION

/ Empirical modelling of wet tire traction evolves from Moore's generaliza-

Qﬁ tion of the rolling tire friction zones (Reference 22). A pictorial represen-

@Q tation of these zones is shown in Figure 6 and described below. T

\..!

5&: Sinkage, or Squeeze-Film Zone

Wy !

Under wet conditions, the forward part of what under dry conditions would i

normally be considered the contact area floats on a thin film of water, the j

e thickness of which decreases progressively as individual tread elements trav- ‘

;"\ erse the contact area. Since the tire, water-film, and road surface have |

o virtually no relative motion in the contact area, the tread elements in effect ;

b attempt to squeeze out the water between rubber and pavement. i

£5 Draping, or Transition Zone

!"\-

o

- The draping zone begins when the tire elements, having penetrated the

5.: squeeze film, begin to drape over the major asperities of the surface and tn

ﬂﬂ make contact with the lesser asperities.
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Q)
%3
:s Actual Contact, or Tractive Zone
N
W) This is the region where the tire elements, after draping, have attained
i an equilibrium position vertically on the surface. The length of this region
depends on vehicle velocity; it occupies the rear portion of the overall con-
Q? tact area. Tractive effort is developed here.
)
:;@' The frictional forces generated in the tractive zone (Zone C) of the tire
e footprint depend on the tire's stiffness in the direction of slip and upon the
R0 slipping or sliding velocity of the tread elements. As very little slip
- occurs in an unyawed free-rolling tire, the tire's rolling resistance is not
o caused by a friction couple between the tread elements and the pavement, but
2N by hysteretic energy losses in the tire structure caused by cyclic deforma-
59 tions and by drag forces. However, during acceleration, braking or cornering,
the tread element slips in contact with the pavement. Empirical research has
..' determined that the slip ratio, where wet pavement friction reaches a maximum,
) ranges from 6 to 12 percent. Both the peak friction value and the slip per-
o, cent where it occurs is dependent upon many variables, including the tire's
" structural stiffness, aspect ratio, inflation pressure, operating mode
'? (locked, yawed or transient slip), the tread pattern, physical and chemical
o Characteristics of the tire, and textural and chemical characteristics of the
et pavement. Figure 7 demonstrates this general relationship between slip and
{ friction.
8

Figure 7 shows three curves combined to explain the measured wet friction
speed curves, The top curve or the theoretical friction curve is analogous to
the friction master curves presented earlier. This curve depends on both the
e tread rubber and the pavement. The tire structural influence curve is
dominated by structural properties of the tire and is substantially “slip

A distance dependent" and substantially independent of speed. These first two
5 curves combine to form the experimentally derived wet friction speed curves
?: (Reference 23). :
[/
é The tire footprint hydroplaning model is not pictorically correct as to
) the geometry of the footprint. However, high-speed photos of tires passing
) over a glass plate have verified the existence of these three distinct zones
;.’ (References 16, 24). This simplified model has been very useful in explaining
:t the reduction of wet tire-pavement friction, and has enabled engineers to gen-
)

eralize about the role of pavement texture in this reduction of friction
" levels,

CURRENT SURFACE-CHARACTERIZATION TECHNIQUES

-..:

A

54 The pavement's surface texture governs its frictional response. An

-$ extensive literature search conducted by the authors reviewed current methods
of both measuring surface texture and relationships between texture and fric-
tion (Reference 3). A review of methods used to characterize texture and

s applicable relationship will be reviewed.

bt

5 The measurement techniques reviewed were divided into three cateqories

o according to how the textural property was measured. These three categories

o were |
b ‘
' 1
1Y
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1. Direct profile measurement methods,
2. Direct measurements yielding average texture values, and
3. Indirect texture measurement techniques.

Since this study included two direct average texture depth techniques and
two indirect texture measurement techniques, theories or relationships invols-
ing profiles are excluded from this report. Emphasis is given to relation-
ships involving measurements taken.,

Recalling the shape of the wet-friction speed curves (see Figure 7),
large differences in sliding speeds experienced by a locked wheel tester form
an exponentially decaying curve, while smaller differences in sliding speed
experienced by either limited s1ip or yawed test modes exhibit linearity in
these plots. This difference in testing modes yields two distinct friction
speed plots: exponential and linear curves.

Wambold et al. (Reference 25) cite the importance of the two components
of texture (macro and micro) on surface friction. They found that the most
conceptually satisfying model relating locked wheel friction and terture
characteristics is that developed by Leu and Henry (Reference 26), namely

SNy = C, exp(C,V) (1)




fﬁ& where SN is the skid number (friction number), V is the sliding velocity of
;.ﬁa the tire, and C, and C, are regression coefficients which define the skid
b number velocity curve. The coefficient C; defines the peak or intercept value
Rt and can be correlated with microtexture, while the coefficient C,, which
- describes the frictional decay with speed, depends on macrotexture alone.
;:2 However, since the differences in sliding speed experienced by a yawed
1o test trailer, such as Mu-Meter, produced wet friction speed plots that are
%tﬁ linear, a conceptually satisfying model relating yawed or side force friction
Ko and texture should be
Y MuNy = B - MV (2)

I
15 where MuNy is the Mu-Meter number (friction number), V is the towing velocity,
; E and B and M are the intercept and slope of the linear wet frictinon speed
P curves, which are dependent on micro- and macrotexture, respectively.

g Horne and Buhlmann (Reference 27), using rolling and yawed aircraft

sﬁ tires, presented another conceptual model that involved the use of interfacial
;;& fluid pressures and pavement drainage coefficients to describe the wet fric-
e tional performance of the pavement. Using variations of fluid pressures
[ measured under rolling aircraft tires at different speeds, they defined three
¢ zones of a tire footprint. Congruent with Moore's footprint model, these
<L zones consisted of a bulk fluid zone, a thin film zone, and a dry contact
'2{. region. However, unlike Leu and Henry, they modeled the wet friction speed
;t\; curves as linear, and developed two pavement drainage coefficients, C ;. ., and
oot Cm c? which are related to microtexture and macrotexture, respectively. Cmic
Wkt det6rmines drainage rates through the microtexture, and C determines

: ac .
drainage rates through the macrotexture. These pavement gralnage coefficients
are determined by transformation of the linear wet-friction speed curves by

§; N dividing both scales by a peak or critical value to obtain nondimensional
:*;: parameters. Thus the measured friction is divided by a peak friction value
mxgt and the velocity is divided by a critical hydroplaning velocity. From these
ey curves a transformed slope, m, and intercept, b, are determined. This slope
J and intercept are used in regression equations to determine C ;. and C.. ,
(gt namely;

.'}!fv“

\‘.. \ . = -

!*dz Cnic = 1.153 - 1.153b + 0.297 |m| (3)
)

gsb Cpac = -0.155 + 0.155b + 0.725|m| (4)
L PN

o where

A{?

':ﬁ b is the transformed intercept

ANy Im| is the absolute value of the transformed slope

T Cpic is the microtexture drainage coefficient

® Cpac 1S the macrotexture drainage coefficient

.'.

R ’ A more detailed description of this method is given in Section V, "Data
' Analysis."
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N EFFECTS OF RUBBER DEPQSITS

b \ Y

X A certain amount of rubber is removed as a result of heat and abrasion as

V- aircraft tires spin up during landings. This rubber is deposited on the pave-
kY ment surface as thin layers that adhere to the pavement materials. Subsequent
rubber deposits increase the buildup to significant thicknesses. Rubber
affects tire-pavement friction by first coating the finer microtexture, then

) occluding the macrotexture as rubber buildup increases.

",

*{ During dry operations this rubber buildup is not critical, yet during wet
(r operations, friction levels can be dramatically reduced. The rubber coating
N the microtexture changes the sharp asperities to rounded spheres which cannot
;: generate the hydraulic pressures necessary to penetrate the thin viscous films
r: of water found on a wet runway. This reduces the efficiency of the pavement
S’ in removing viscous water films, thereby reducing both the area of dry contact
5 and the adhesional friction developed. Once rubber buildup is excessive, the
A bulk water drainage capability of the runway is lost. This is caused by the

rubber deposits occluding the macrotexture, whereby the bulk water no longer

S has flow path by which to drain., Thus the combined micro/macrotexture losses
‘né could cause high potential for hydroplaning to exist on rubber-contaminated
W) runways.
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SECTION III
DESIGN OF FIELD EXPERIMENT

Since the evaluation of runway friction by use of the Mu-Meter is
impractical, an extensive literature search was conducted to develop field
evaluation procedures (Reference 3). That investigation suggested the use of
the pavement's textural characteristics to quantify runway friction levels. A
thorough analysis of current textural measurement procedures was compiled in
that earlier report. The selected candidate test procedures were subject to
the following constraints: (1) economic: costing less than $10,000 to
implement; (2) simple: tests and techniques must be readily understandable
and usable by typical airport personnel; (3) reliable and sensitive: must be
able to predict friction and differences in friction levels due to rubber
removal; (4) readily accepted: tests that are currently available and do not
require large amounts of research and development to substantiate.

The following test methods were selected for evaluation. Two volumetric
techniques of determinina average texture depth, the Sand Patch and Silicone
Putty tests, were used to quantify the pavement's macrotexture., Two distinc-
tive methods, a rubber slider device (the Penn State Drag Tester) and a chalk
wear device (the Chalk Wear Tester developed by NMERI), were used to quantify
the pavement's microtexture. The last method, which has yet to be analyzed,
is stereophotography. This technique uses an automated system to analyze
stereophoto pairs by a technique first proposed by Schonfeld (Reference 28)
and further developed by Holt and Musgrove (Reference 29). The test
procedures used in predicting friction are summarized in Table 1, Procedures
for each of these tests were presented by Lenke et al. (Reference 3).

As the intent of this experiment was both to evaluate runway touchdown
zone friction levels before and after rubber removal and to correlate the
pavement's textural properties to friction levels as measured by the Mu-Meter,
various theoretical concepts were considered., First, rubber removal is not
always 100 percent effective in increasing friction levels of the pavement.
Therefore, two control sections were included which would determine the
effects of both weathering and traffic polish and indicate the maximum

TABLE 1, SELECTED FIELD PROCEDURES

Sand Patch Volumetric
Technique (ASTM E965)

Macrotexture
Silicone Putty
Volumetric Procedure
Microtexture Penn State Drag Tester

Chalk Wear Test
Combined Micro/Macro Stereophotography
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obtainable friction levels on any particular pavement. This concept is fur-
ther illustrated by Figure 8. On this figure are three theoretical friction
curves. The lowest curve is the rubber-contaminated zone before removal. It
has the smallest intercept and largest negative slope, due to the rubber
deposits coating the microtexture and occluding the macrotexture, The middle
curve is representative of the rubber zone after removal. The intercept has
increased because of improvement of the pavement's microtexture, and the
negative gradient is less because of increase in the macrotexture., The upper
curve is indicative of the control sections. The clean pavement's microtex-
ture allows large adhesional friction forces to form and, since the pavement's
macrotexture provides good bulk water drainage, the frictional decline with
speed is less.

The test matrix (Figure 9) collected both wet and dry Mu-Meter values at
32, 64, and 96 km/h (20, 40, and 60 mi/h), pavement temperatures corresponding
to each Mu-Meter run, sand patch average texture depth, silicone putty average
texture depth, both dry and wet Penn State Drag Test numbers (DTN) in both the
Tongitudinal and transverse directions with corresponding pavement tempera-
tures, chalk wear coefficients as measured by the chalk wear test in the lon-
gitudinal and transverse directions, and two sets of stereophoto pairs for
each repetition, The various wet Mu-Meter test speeds (32, 64, 96 km/h
(20, 40, 60 mi/h]) were used to develop friction speed curves as discussed
previously. An unpublished data report by Burk (Reference 30) suggested that
a combination of macrotexture and microtexture dictates the wet 64 km/h
(40 mi/h) Mu-Meter values. In addition, dry Mu-Meter testing was performed.
The dry Mu-Meter testing was also thought to be indicative of the maximum
friction or intercept of the wet friction speed curves,

As the Mu-Meter provides an analog output of friction over a given test
section, a point-by-point comparison of the Mu-Meter testing with the five
candidates was performed. This comparison was performed by using a standard
test section layout, as shown in Figure 10. Three distinct sections were ana-
lyzed. These included a centerline rubber section, tested before and after
rubber removal, a centerline nonrubber section, and a pavement edge nonrubber
section, Within each section, three locations, placed at the quarter points
of the section approximately 120 feet apart, were tested in a random sequence
with two repetitions per location. Since analysis of the effect of both rub-
ber buildup and removal of this buildup on any specific pavement required
control sections to gage, the two control sections were used. The centerline
nonrubber control section was tested to judge the possible effects of traffic
polish, The pavement edge nonrubber section was included to determine both
the possible effects of weathering and the maximum friction level of any spe-
cific pavement texture. Each of these sections was tested on pavement of the
same material and surface texture as the rubber buildup area, enabling con-
parisons to be valid.

This statistical approach described above was used in collecting a data
base to find meaningful relationships between the Mu-Meter and texture
measurements. Because runway access time for testing was limited, two repli-
cative measurements were made at each location to analyze test variability.
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SECTION IV
TEST SITES EVALUATED

As this experimental design required testing of rubber-contaminated run-
ways prior to and after rubber removal, arrangements for field testing were
made in two ways. The first attempt was contacting the various rubber removal
contractors. These contractors agreed to notify the NMERI Principal Investi-
gator of pending rubber removal jobs. Upon notification, NMERI personnel
would contact the airport or airbase and arrange for testing. This method
proved to be unsuccessful after testing the fourth site, so an alternative
means of identifying sites for field testing was found. This was accomplished
through a massive canvassing of all airports and airbases where rubber removal
projects might be conducted. The canvassing questionnaire and cover letter
are shown in Appendix A.

PAVEMENT TYPES TESTED

During the field-testing phase of this program, 18 runways were investi-
gated. These are designated A through R; they are discussed briefly later in
this report and summarized here. They were located at seven Air Force Bases,
nine commercial air facilities, and two Naval Air Stations. These pavements
were classified into four basic pavement types discussed below. Photographs
of these pavement types are shown in Appendix B.

Seven runways were grooved portland cement concrete (PCC). Five of these
runways (C, E, G, P, and Q) were transversely saw-cut PCC with grooves of
6.4 mm by 6.4 mm and 38.1 mm (1/4 inch by 1/4 inch and 1-1/2 inch) center-to-
center groove spacing. Figure B-1, which is a photograph of runway Q,
typifies the saw-cut grooving. One runway (F) was a plastic-grooved or wire-
tined concrete. This runway was textured by a stiff steel brush being swept
across the runway while the concrete was still in its plastic state.
Figure B-2 demonstrates this texturing. The last of the grooved PCCs (B) was
a longitudinal wire-combed PCC. This texturing produced a multitude of small
longitudinal channels, which is shown in Figure B-3,

Seven runways were ungrooved PCC pavements. Five of these runways (I, M,
N, 0, and R) were burlap dragged PCC. The surface texture of these pavements
is shown in Figure B-4, Two of these runways (A, D) were worn PCC surfaces.
On these surfaces, the original finish of the concrete was worn or weathered
away, leaving the aggregate showing through the matrix (Figure B-5).

Three runways were porous friction surfaces (H, J, K). These runways
consisted of a thin overlay (0.75 to 1 inch) of a uniform-graded asphaltic
concrete mix. The overlay has a porosity of 20 to 45 percent, making it very
pervious; thus water drains from both the top surface of the runway and within
the thin overlay. Examples of this runway type are seen in Figures BE-6 and
B-7.

The last runway type (L) was a grooved dense graded asphalt roncrete
pavement which is seen in Fiqure B-8,

Table 2 displays a summary of the hases tested, the pavement tgpe, and
the type of facility.
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o TABLE 2. SUMMARY OF RUNWAYS TESTED
S
s Pavement Facility
s Base Type Type
ad
;3?: A PCC AFB
.:is: B gpcc? AFB
! C GPCC CAF
" D PCC AFB
bN
;:’u E GPCC CAF
i F apccP CAF
ot G GPCC CAF
» H PFS AFB
e I PCC AFB
Rl J PFS CAF
L K PFS CAF
& L GAC CAF

X M PCC AFB
o N PCC NAS
¥ |
a4 0 PCC NAS
o P GPCC CAF
i Q GPCC CAF
v R PCC AFB
)
.’ Pavement type describes the pavement's surface characteristics.
o PCC  Portland cement concrete
']': GPCC Grooved portland cement concrete
W
) PFS  Porous friction surface .
. GAC  Grooved asphalt concrete
: . Facility type describes major usage of runway.
Vil
\G AFB  Air Force Base

CAF  Commercial air facility

f NAS  Naval Air Station
Y
‘_L-, dwire-combed portland cement concrete
" bwir‘e-tined portland cement concrete
v::
u
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RUNWAYS INVESTIGATED

Runway A is a military runway comprised of old portland cement concrete.
Primary usage of this runway is for heavy military aircraft. Rubber is
removed once a year in conjunction with paint removal and repainting opera-
tions. As total operations are limited, the degree of rubber buildup was
medium with the surface retaining a grittiness, indicating that the larger
microtexture asperities were coated but not yet obliterated. Pavement slabs
were old and polished yet structurally sound, with little differential settle-
ment at the joints. Field notes indicate that friction levels after rubber
removal may not be indicative of true friction improvement resulting from
rubber removal, because of the presence of glass beads on the runway surface.
These glass beads were used in the reflective paint markings, and during
application of the reflective paint some of the beads scattered over the
runway., These beads may have acted as a ball bearing lubricant.

Runway B is a military runway comprised of a wire combed portland cement
concrete (PCC) touchdown zone and an asphalt interior. This runway is used
primarily for light fighter aircraft; therefore, rubber buildup was not
critical, Rubber is removed regularly once a year, as part of the maintenance
program. Permanent slabs were fairly new with a wire combed concrete finish
placed longitudinally down the runway. Pavement was structurally sound with
good sideslope and a smooth ride. Field notes and visual examination sug-
gested rubber buildup was not a problem. Field testing was performed in the
opposite direction of aircraft landing because of limited runup distance.

Runway C is a commercial runway comprised of grooved portland cement
concrete, The surface texture was formed by longitudinally wire combing and
transversely saw cutting 6.4 by 6.4 by 38.1 mm (1/4 by 1/4 by 1-1/2-inch)
grooves. This runway is a high-volume commercial hub with high rubber buildup
rates. Although rubber was removed twice a year, rubber buildup was a
problem. Pavement structure had been recently constructed and was in good
condition in terms of both smoothness and soundness. Here again, measured
friction levels after rubber removal may not have been as high as they
actually were immediately following removal, since testing was performed
10 days after removal took place. This delay permitted rubber deposits to
form on the lands between grooves and possibly reduced friction levels.

Runway D is a military runway comprised of low-texture, worn portland
cement concrete. Low volumes of heavy military aircraft formed light rubber
deposits., As with most military runways investigated, rubber is removed once
a year in conjunction with paint removal and repainting operations. Pavement
slabs were old, weathered, and polished. These slabs were structurally sound,
yet pavement roughness caused the Mu-Meter to bounce up and down during
64 km/h (40 mi/h) test runs, making traces difficult to read. Thus the relia-
bility of these readings on centerline is a potential source of error.

Runway E is a heavy commercial air cargo runway constructed of portland
cement concrete. Surface texture was transversely wire combed and transverse
6.4 by 6.4 by 38.1 mm (1/4 by 1/4 by 1-1/2-inch) grooves were saw cut into the
pavement. Rubber buildup was medium, with rubber coating many but not all of
the lands. Rubber is removed from this runway twice o year, Pavement struc-
ture was sound and smooth, Some surface cracking was noted but considered
nondetrimental to the pavement,
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Runway F is a medium-density commercial runway constructed of a wire-
tined or plastic grooved portland cement concrete. Rubber buildup on this
runway was light, and was removed twice a year. Pavement structure was sound
and smooth, showing few signs of weathering. Field notes indicate that the
removal operation may not have been too effective because of silicone putty
that remained on the runway after rubber removal. This indicates that little
energy was imparted to that area of the pavement during the removal process,
and as a result little rubber could be removed. Friction measurements were
taken opposite to the direction of landing.

Runway G is the opposite end of runway E. Traffic density at this end is
higher, as this is the preferred direction of landing. Rubber buildup was
also higher at this end than the E end.

Runway H is a military Runway with a varied traffic pattern. The runway
surface consisted of low textured portland cement concrete at both ends with a
porous friction course overlay in the center portion of the runway. Typically
rubber removal is performed on only the concrete touchdown zones; however,
since many touchdowns occurred beyond the concrete touchdown zone, and inter-
est was expressed in removing rubber from porous friction courses, a small
test section was selected and rubber was removed from this section. Since the
structural integrity of any asphalt friction overlay is dependent upon the
strength of the base pavement, this particular runway was in the process of
being replaced because of a faulty base. Rubber buildup was light to medium
in this area, with much of the pavement texture still visible.

Runway I is a military runway with both varied traffic densities and an
asphalt runway with concrete touchdown zones. The touchdown zone had an unu-
sual pattern of rubber buildup. This pattern seemed to develop as a result
of pilot technique. Since, at the beginning section of the touchdown zone,
the concrete slabs were cracked, and settled and provided a rough landing
surface, the pilots tended to touch down beyond this section, depositing rub-
ber near the end of the landing zone. Crack patterns also affected the
Mu-Meter readings since water ponding was noticed after multiple runs in areas
of cracked slabs. This base did not have a nonrubber centerline section of
the same material and the pavement edge nonrubber control section was not of
the same texture as the rubber-contaminated zone. This change of texture,
coloration and visible gradation indicates that the centerline sections were
replaced at some time during the 1ife of the pavement. Rubber buildup was
medium, covering much of the pavement's texture. The rubber was removed once
a year. All testing was performed opposite to direction of landing.

Runway J is a commercial runway with a porous friction surface which
receives low usage due to its orientation (used only during high cross-wind
conditions). This surface had minimal rubber buildup with good sideslope.
Minor damage in the form of popouts was noticed at location 3 of the center-
line nonrubber section. These popouts caused an extremely high average
texture depth measurement.

Runway K is also a commercial runway with a porous friction surface.
llowever, this surface serves large volumes of traffic, and had had substantial

rubber buildup over a period of 12 years before cleaning operations began.
Coating this runway was a hardened rubber which could not be cut by a knife as
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on most runways, but could only be sampled by chiseling a piece off using a
hammer and screwdriver. This coating covered approximately 25 percent of the
total exposed area in the touchdown zones and was 6.4 mm (1/4 inch) thick in
areas of heaviest deposits. Rubber removal is performed here once a year.
The airport manager reported favorable visual impressions following removal.
Each year more of the original pavement is cleaned. Effectiveness of rubber
removal at this site is dependent upon the removal of recent deposits along
with removing the previously deposited, hardened rubber dep051ts, therefore,
this runway was not typical of most removal jobs.

Runway L is a grooved dense-mix, asphalt concrete surface which had been
recently constructed with sulfur extenders. Since this runway is used for
touch-and-go training of Boeing 747 crews, rubber buildup on the lands was of
a medium thickness and grooves were mostly clogged with rubber debris. How-
ever, friction values as measured by the Mu-Meter did not show an appreciable
reduction in friction levels. The reason for this is not known.

Runway M is a military runway with concrete touchdown zones and an
asphalt concrete interior. Rubber buildup was heavy and channelized down the
middle 7.62 meters (25 feet) of the runway. Beyond these limits very little
rubber was deposited. This heavy buildup completely occluded the pavement's
texture, yet the rubber layer had a fair amount of microtexture due to wind-
blown sand embedded in the top rubber layers. The pavement was in good condi-
tion, although aged and having little texture. Since the center of the runway
was asphalt, only two sections could be tested. The centerline nonrubber
section of the same pavement type did not exist. Because of the runway con-
figuration, testing was performed opposite to the direction of a1rcraft
landing.

Runway N, a Naval Air Station runway, is of portland cement concrete.
The rubber buildup zone tested was a simulated aircraft carrier deck. The
deck was simulated by both painting and lighting the outline of an aircraft
carrier's runway on the side of an existing runway. Carrier pilots practice
their landings by continously doing touch and go operations in a controlled
crash pattern, In other words, the pilot must land within a limited space at
a high approach and drop into this zone to ensure grabbing the arresting gear,
These landings cause extreme wear rates on the tires and heavy rubber buildup.
Unlike most landings where minimal tread wear occurs, this style of landing
causes sections of the tire to revert under the high-impact loads, depositing
thick layers of rubber at a time. Rubber was being removed at this location
once a year; however, because of damage occurring to pavement during removal
operations, the contractor ceased removal operations early without removing
much of the rubber, and negotiated returning twice a year to remove rubhber,
Friction testing was performed opposite to direction of travel.

Runway O is also a Naval Air Station runway of portland cement concrete,
This runway is a parallel of Runway N, where various types of aircraft landed.
The rubber buildup occluded most of the pavement's texture, yielding low
friction values before rubber removal. The contractor also damaged this pave-
ment during removal operations, and agreed to return twice a year to remove
rubber at lower pressures,

Runway P is a grooved portland cement concrete runway that had heen
recently constructed and that had been open to traffic only about 9 months,
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'% This runway was textured by a wire-combing technique that left the surface
rough to the touch. The area tested as a centerline rubber zone was beyond

, {

g the area of heavier rubber buildup due to the test matrix's requiring

@ 2500 feet of runup distance to perform the 96 km/h (60 mi/h) wet Mu-Meter
g runs. As there was little rubber on this runway, no improvement in friction
A levels was seen. High pavement temperatures were recorded during the day, and
K. their effect upon results could not be determined.
7,
Z; Runway Q is a grooved portland cement concrete commercial runway that
b showed 1little or no rubber buildup. No evidence of rubber deposits was seen

- in the grooves of this runway, indicating that rubber buildup was minimal.
5‘ This runway showed a decay in friction after rubber removal.
h~ Runway R is a portland cement concrete military runway. This particular
h? runway was in a constant state of repair because of an expansive aggregate ’
o problem in the concrete used. Pavement slabs were replaced as they became

structurally unsound, and little thought was given to texturing. Texture on

W this runway ranged from a weathered portland cement concrete to a recently
" replaced broomed portland cement concrete. Since this runway was used to
g: train pilots of light jet aircraft, rubber buildup was not yet a problem.
?b However, the high-pressure water blasts used in rubber removal may accelerate
o the existing expansive aggregate problem.

Data collected at each of these sites, in accordance with the designed
. field experiment discussed in Section III, is listed in Appendix C. The sites
X are designated "Base A" through "Base R," corresponding to “"Runway A" through
A “Runway R," respectively.
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SECTION V
DATA ANALYSIS

This section discusses test distributions, analysis of variance (ANOVA)
techniques, correlations between variables and regression modeling of texture
measurements to predict runway friction levels,

Since the primary goal of this experiment was to predict runway friction
levels from texture measurements, background information on the test distribu-
tions and general trends of the data is given to provide supporting evidence
for the conclusions reached.

TEST DISTRIBUTIONS

The validity of inferences from regression analysis and analysis of
variance require certain assumptions concerning the variable populations;
therefore, descriptions of the variable populations are presented here.

The first step in analyzing the test populations was checking for homo-
geneity of population variance. The Burr Foster Q test of homogeneity (Ref-
erence 31) was used to determine whether or not the hypothesis of equal popu-
lation variances should be rejected. This test proved to be inconclusive
because of the large number of degrees of freedom. However, with 210 cells
within the matrix, it was felt that only large departures from homogeneity
would affect the data analysis (Reference 32).

Next an estimate of variable variance was computed. Since the number of
cells was large but replications within cells were limited to two, only an
estimate of variance could be computed. A description of how variable vari-
ance was computed is described in Appendix D with the results being expressed
as Table 3.

Further descriptive information on the test variables is included in
Appendix E, which includes frequency histograms on each of the test variables.
The pertinent points of each variable are the following.

The variable M20, or the MuN measured at 32 km/h (20 mi/h) on a dry
pavement, has both a very low variance and coefficient of variation. This
implies that measurement of this variable is highly repeatable and is fairly
precise as to the measured value. The histogram in Figure E-1 of Appendix E
shows a wide variation in measured levels. This variation indicates that, on
a dry pavement testing at the same speed, tire inflation pressure, rubber
compound, and testing mode, the pavement's type and composition play an
important role in determining friction levels since, if the measured friction
level were independent of the pavement, the range of values would have heen
smaller. This evidence disputes the concept of an ultimate tire-pavement
friction level determined by tire inflation pressure proposed hy Horne and
Buhlmann (Reference 27).

M40 is the measured MuN at 64 km/h (40 mi/h) on dry pavement. This vari-
able is also highly repeatable and has a range of 20 MuN. This high range of

values would not be expected if the pavement did not have some influence in
determining the friction levels.
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TABLE 3. VARIATION OF FIELD MEASUREMENTS
Variable | Estimated | Lower Limit | Upper Limit | Coefficient Range
Name Variance Variance Variance of of
a? °L2 °u2 Variation, % | Measurement

M20 1.27 1.16 1.48 1.5 65-88
M40 1.06 0.97 1.24 1.3 68-88
M60 2.62 2.39 3.06 2.1 66-91
MW20 2.57 2.35 3.00 2.3 32-¢8
MW40 4.58 4,18 5.34 3.7 16-87
MW60 6.88 6.28 8.03 5.5 7-82
SAP 1700 1550 1990 13.0 87-1126
SIp 11960 10900 14000 17.6 148-2109
PTIL 9.15 8.35 10.68 3.5 52-112
PTIT 3.99 3.64 4,66 2.3 54-102
PTIWL 11.42 10.43 13.32 5.8 32-87
PTIWT 5.11 4.67 5.96 3.8 30-85
CTL 273.00 250,00 319.00 15.8 21-220
1T 195.00 178.00 227.90 12.6 24-221

M20 20 mi/h dry Mu value

MW20 20 mi/h wet Mu value

M40 40 mi/h dry Mu value

MW40 40 mi/h wet Mu value

M60 60 mi/h dry Mu value

MW60 60 mi/h wet Mu value

SAP Average texture depth as measured by sand patch measured in

10-* inches
SIP Average texture depth as measured by silicone putty measured in
10-* inches

PTIL Raw drag test number (DTN) measured dry in the longitudinal direction

PTIT  Raw DTN measured dry in the transverse direction

PTIWL Raw DTN measured wet in the longitudinal direction

PTIWT Raw DTN measured wet in the transverse direction

CTL Chalk test measured in the longitudinal direction and recorded as a

wear coefficient in 10-% in/ft

C1T1 Chalk test mmeasured in the transverse direction and recorded as a

wear coefficient in 10-% in/ft
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M60 is the measured MuN at 96 km/h (60 mi/h) on a dry pavement. This
variable exhibits much the same characteristics as M20 and M40.

MW20 is the MuN measured at 32 km/h (20 mi/h) on a pavement with 1 mm
(0.04 in) of water depth delivered to the pavement under the test tires. The
water distribution was described in a previous report (Reference 3). Thus the
presence of a lubricant is introduced into the testing. This lubrication of
the pavement caused a much greater range of measured values while the variance
increased only slightly. Thus the measured values are slightly less precise,
yet the pavement characteristics caused an appreciably larger difference in
range, Of particular note on the frequency histogram (Figure E-4) are the
values in the thirties, These values occurred in an area of extremely heavy
rubber buildup and their influence will continue throughout the wet testing,

MW40, the MuN measured at 64 km/h (40 mi/h) on a wet pavement, has higher
variation than the MW20 which can be attributed with lubrication effects
becoming more variable at higher speeds. On the histogram (Fiqure E-5) there
is a slight tendency for two separate peaks to occur. These peaks dare caused
by the distinct differences in average texture depth or degree of drainage
paths between the low textured portland cement concrete pavements and the high
textured pavements such as grooved pavements or porous friction surfaces.
{hese peaks will become more evident as the test speed increases to 96 km/h

60 mi/h).

MW60, the MuN measured at 96 km/h (60 mi/h) on a wet pavement, emphasizes
the two separate peaks on the frequency histogram (Figure E-6). The lower
peak occurs on pavements with an average texture depth of less than 0.8 mm
(0.03 in), while the higher peak was on pavements where the average texture
depth was greater than 0.8 mm (0.03 inch). This demonstrates the effect of
texture depth on friction levels at higher speeds.

SAP, or the average texture depth as measured by the sand patch procedure
and recorded in 10-* inches, has high variability and its distribution is
skewed towards the lower values, The skewed distribution is caused by both
the large number of low texture surfaces and the Tower texture measured in the
rubber contaminated zones. Thus this variable has two distinctive problems,
making its predictive worth suspect. First, its high variability is evidenced
by a coefficient of variation of 13 percent. Secondly, the Mu-Meter friction
data does not exhibit the same skewed frequency distribution. However, as
seen later, this variable has the greatest influence and is most stable in the
predictive modeling., Therefore, macrotexture is important in determining
friction levels; yet average texture depth specifically as measured by the
sand patch may not be informative enough to determine friction levels.

SIP is the average texture depth, as measured by the silicone putty pro-
cedure, and is also expressed in 10~"“ inches. This test has a higher vari-
ability than the sand patch, which is probably a result of its averaging
texture over a smaller area. Its distribution is not as badly skewed and the
values recorded are higher than those obtained by the sand patch. This is due
to the method of applying the putty to the pavement. This point is emphasized
in an earlier report (Reference 3). However, this high variahility (COV ~18%)
causes this variable to be insensitive to all but very large changes in
friction.

mME™ ¥ TR e "W NN CRIR-RTMAE R M e e, T




e e et tan o3 cacakar aie \nin Al S Al SR d et S Hali It Let JAN JUC ahd N St i Sl Sl Sult SR N SR N L A i e e "1

PTIL is the raw drag test number measured dry in the longitudinal direc-
tion. The variability of this number is low; however, the range of values is
also low, making its measurement insensitive to changes in pavement
characteristics,

) PTIT is the raw drag test number measured dry in the transverse direc-
tion., Its characteristics are identical to those of PTIL.

PTIWL is the raw drag test number measured wet in the longitudinal direc-
tion. Its variability is greater than that of either of the dry values.
However, since the measurement system is only slightly damped, the "bouncing"
of the measurement needle of the pressure gage introduced a bias on grooved or
highly textured pavements. This bounce may have been as great as 20 DTN in
number and therefore the first recorded number biased the second recording
number., This bouncing also demonstrated the strong influence of macrotexture -
on this instrument that was designed to measure microtexture independent of
macrotexture, Another inherent problem with this device was the difficulty in
testing rubber-contaminated zones. The rubber slider would adhere to the
rubber-coated pavement momentarily, then slip quickly as this bond was broken,
Thus the continuously changing friction, also known as slip-stick friction,
was also not damped by the measuring system, making the recorded value a judg-
ment measurement,

PTIWT is the raw drag test number measured wet in the transverse direc-
tion., Since this test was not influenced by pavement grooving, its variabil-
ity was slightly lower than the longitudinal direction. However, the same
problems existed here, especially where the rubber-to-rubber contact exhibited
a pronounced slip stick friction.

CTL is the chalk wear coefficient measured by the chalk test in the
longitudinal direction and recorded in 10-* in/ft. This test method had high
variability over the wide range of levels measured. Influence of macrotexture
on this microtexture testing device could not be evaluated. Unlike the impact
loading condition of the drag tester on grooved pavements, the 25.4-mm
(1-inch) diameter chalk was able to bridge the 6.35-mm (1/4-inch) grooves
without an adverse effect,

CTT is the chalk wear coefficient measured in the transverse direction.
This test also had high variability, making its predictive capabilities
suspect,

ANALYSIS OF VARIANCE (ANOVA)

Following is a discussion of the results obtained by using an analysis of
variance computational package available from the SAS Institute (Reference
33). This statistical procedure was used to identify general trends in the
data., This procedure examines differences between class means to determine
whether a significant difference exists between the class variable means.
Class variables investigated were the location, section, and base where the
test was performed. Results of these ANOVA program runs follow.
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The first class variable, location, is the building block of this experi-

) . : - N

N ment. No significant difference between means of the different locations was
, found. Thus, each section can be considered a homogeneous pavement with

gj respect to the variables tested.

X Next, the four section means were analyzed. The ranking of sections for

o the wet Mu-Meter tests, the intercept of a linear wet friction speed curve,

’ and the two microtexture tests (the drag tester and the chalk wear tester)
: were the same. In order of increasing means, this ranking was centerline

-& rubber before removal, centerline rubber after removal, centerline non rubber,
| and pavement edge nonrubber., Another group of tests ranked in similar order,
" These were the dry Mu-Meter tests, the slope of the wet friction Speed curves,
y and both macrotexture tests (sand patch and silicone putty volumetric tech-

niques). The ranking here was centerline rubber before removal, centerline
rubber after removal, pavement edge nonrubber, and centerline nonrubber,

; These ranking inverted the relative positions of both the centerline nonrubber
and the pavement edge nonrubber control sections. This reversal is caused by

o i two bases not having a centerline nonrubber control section, which biased the

" pavement edge nonrubber section lower. However, this reversal does show that

;a the macrotexture tests follow the same reversal as the slope of a linear wet

o friction speed curve.

5, .

g The ANOVA of section groupings for the wet Mu-Meter tests showed little

difference between the friction levels before and after removal. The four

to.
‘-
-

2 sections' centerline rubber before, centerline rubber after, centerline non-
3 rubber, and pavement edge nonrubber had increasing means of 51.9, 54.9, 64.3
'g and 66.0 MuN, respectively, This ordering is consistent with aggregate

polishing and rubber buildup mechanisms present upon a runway. However, the
differences between the before and after values in the rubber-contaminated
area are slight, and the overall friction level before removal is above the
minimum of 50; therefore, rubber removal at some locations is being needlessly
! done. This confirms the need for a specification or guidelines or both to

" improve the cost effectiveness of the rubber removal program, Similarly the

h candidate procedures showed improvement between the conditions before and

‘ after rubber removal. However, with these tests, improvement was likewise
insignificant., The differences between control sections is also slight.

=

; However, this can be attributed to the two bases (I, M) without a centerline

K, nonrubber section and four bases (B, F, N, 0) that were tested opposite the

4 direction of travel, which produced an upward bias to the centerline nonrubber

,:‘ Mu Numbers (MuN).

ﬁ‘ The last group of ANOVA runs compared base means. Comparing base means

* of Mu-Meter runs to other tests by ranking was impracticable, as the |
o individual candidate procedures were not sensitive enough to detect these ‘
- differences. Yet, ranking of the pavement edge control section by order of

.. increasing means reveals the importance of texturing. Table 4 highlights the

i importance of texturing on airfield pavements. As the friction levels

o increase, the general trend is for the average texture depth to increase.

‘:. This table emphasizes the difference in average texture depth between the

:; plain portland cement concrete and the grooved or porous friction pavements.

- The wire-tined portland cement concrete did not significantly improve either

» the average texture depth or the friction level over the ungrooved portland
cement concrete pavements.
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TABLE 4. MEANS OF PAVEMENT EDGE CONTROL SECTIONS

i

A

g

i 64 km/h (40 mi/h) Wet Average

Runway Mu-Meter Number (MuN) Texture Depth
Identification Pavement Edge Control SAP (10" in) FACTYPE | PVMTYPE

% I 239.2 127 AFB PCC

| M 52.5 138 AFB PCC

i N 53.5 170 NAS PCC

g R 57.3 133 AFB PCC

g A 58,2 201 AFB PCC

. 0 59.8 251 NAS PCC
D 62.2 169 AFB PCC
F 62.5 261 CAF grec”

E 65.3 429 CAF GPCC
G 69.3 362 CAF GPCC
K 71.5 673 CAF PFS
Q 72.3 408 CAF GPCC
J 74.5 626 CAF PFS
H 75.3 524 AFB PES
L 75.5 528 CAF GAC
B 78.2 309 AFB GPCC”
C 79.8 381 CAF GPCC
P 83.5 626 CAF GPCC

aControl section not representative of centerline pavement.

bwire-tined portland cement concrete.
cwire-combed portland cement concrete.

Notes:
FACTYPE = facility type PCC = portland cement concrete
PYMTYPE = pavement type GPCC = grooved portland cement concrete
AFB = Air Force Base PFS = porous friction surfaces
NAS = Naval Air Station GAC = grooved asphaltic concrete
CAF = commercial air facility
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CORRELATIONS

Once general trends of the data were established by the ANOVA computa-
tions, efforts to model the friction level, measured by the Mu-Meter, through
use of texture measurements began. This was accomplished by use of correla-
tions matrixes.

The correlation matrix (Table 5) highlights some interesting relation-
ships. First there is a strong relationship between the various test speeds
for both wet and dry MuN. The correlation between MW60 (MuN measured wet at
96 km/h [60 mi/h]) and MW40 (MuN measured wet at 64 km/h [40 mi/h]) is the
strongest relationship., This may be due to the low pressure tire having a
sheoretical hydroplaning speed of 52.7 km/h (32.75 mi/h) or a measured hydro-
planing speed of 73 km/h (45 mi/h), thus the influence of pavement drainage
characteristics is more pronounced in preventing hydroplaning (Reference 34).
The lower correlation coefficients between MW20 (MuN measured wet at 32 km/hr
[20 mi/h]) and MW40 or MW60 might be caused by a different lubrication condi-
tion, since both the 64 km/h (40 mi/h) and the 96 km/h (60 mi/h) test runs are
near or above a critical hydroplaning speed. The high correlation coefficient
between M20 (MuN measured dry at 32 km/h [20 mi/h]) and M40 (MuN measured dry
at 64 km/h [40 mi/h]) may be due to slight differences in relative sliding
speed within the rising portion of the adhesion curve. Lower correlation
coefficients were noted between ME0 (MuN measured dry at 96 km/h [60 mi/h])
and M20 or M40. These lower coefficients are not explainable at present.

The correlations between the various macrotexture candidate procedures
also indicate some interesting relationships. The low correlation (0.86)
between SIP and SAP (average texture depth measured by the silicone putty and
sand patch procedure, respectively) demonstrates either that the different
techniques measure different texture depths due to test technique, or that
sample variation is too high for accurate correlations. The different
techniques measuring different average texture depth was demonstrated earlier
by Lenke et al. (Reference 3), where texture measurements were performed on
controlled surfaces. The high sample variation is evidenced by Table 3.
Since both conditions exist simultaneously, determining which is the deciding
factor is impracticable.

The correlations between the microtexture candidate procedures demon-
strate the low correlations between the various procedures, indicating that
different mechanisms occur between wet and dry testing, and between rubber
slider devices versus chalk wear devices. The chalk test seemed to be less
influenced by direction than the PTI drag tester. This could probably be
attributed to the impact loading which occurred with the drag tester while
testing longitudinally on grooved pavements. The chalk wear tester did not
experience this impact loading because the 25.4-mm (1-inch) diameter chalk was
able to bridge the 6.35-mm (1/4-inch) grooves, and was thus less influenced by
direction.

The dry MuN values did not correlate well with any of the candidate
procedures., Thus, the techniques used did not address the controversial issue
of tire-pavement adhesion., The increasing influence of macrotexture with
speed during wet testing demonstrates the influence of bulk water dissipation
from the tire-pavement interface. Conversely, the decreasing influence of

T microtexture indicates the reduced draping of the tread rubber allows thin
film Jubrication to become more effective as speed increases,
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REGRESSION ANALYSIS

Attempts were made to verify one of four possible models or methods for
predicting the wet 64 km/h (40 mi/h) MuN. These four methods were:

1. Burk's concept of correlating 64 km/h (40 mi/h) wet MuN by a cross-
product of macrotexture and microtexture (Reference 30).

2. Correlating microtexture with intercept and macrotexture with slope
of linear wet friction speed curve.

3. Correlating the Horne and Buhlmann (Reference 27) method, Caic and
Cmac' to microtexture and macrotexture, respectively.

4. Correlating the 64 km/h (40 mi/h) wet MuN directly with micro- and
macrotexture measurements,

Burk's Correlation Concept

Burk (Reference 30) suggested that the wet 40 mi/h MuN can be attributed
to a cross-product of microtexture and macrotexture. Lenke et al, (Refer-
ence 35) described Burk's theory and analysis in a previous paper. This
theory indicates that isofriction lines exist that are defined by the pave-
ment's texture. Figure 11 demonstrates this concept. As either component of
the pavement texture increases, the measured friction value should increase,
This theory can be related to Moore's rolling tire hydroplaning model in the
following manner. An increase in macrotexture reduces the sinkage zone of the
tire footprint, enabling more of the tire to be in a traction zone. Also as
macrotexture increases beyond a certain limit, the asperities become more
conical in shape, thereby generating contact pressures necessary to penetrate
the viscous film (Reference 20). Similarly, an increase in microtexture
reduces the draping zone of the footprint, increasing both the tractive zone
area and, correspondingly, the friction level.

Using a General Linear Models Procedure {SAS GLM) the 64 km/h (40 mi/h)
wet MuN was modelled by a cross product of a macrotexture (average texture
depth measured by the sand patch SAP), and a microtexture measurement (either
a raw Drag Test Number [DT] from the PTI drag tester or a chalk wear coeffi-
cient [CT] measured by the chalk wear tester). Two combinations showed the
most promise, namely:

Mu40 = 0.00080 SAP x DT + 43 (5)
R = 0,72
/MSE = 9.4
and
Mud0 = 0.00035 SAP x CT + 46 (6)
_R=10.70
"MS[. = 9.6

where
R_is the correlation covfficient
/MSL. is the root mcan square error expressed in MuN
Mud0 is the 40 mi/h wet MuN predicted by texture medasurements
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INCREASING FRICTION

MOC—AXM—AO200ODP=

TEST SPEED 40 mi/h

MICROTEXTURE

FIGURE 11. BURK'S THEORY OF ISOMETRIC FRICTION
(REFERENCE 30)

However, neither of these regression models, which determine friction levels
within approximately 19 MuN, are able to predict friction to the close
tolerances necessary to develop specifications for rubber removal. Also the
fit of the regression equation, as determined by the correlation coefficient,
did not improve much over predicting by macrotexture (SAP) alone. The Pearson
correlation coefficients increased from 0.67 for predicting with sand patch
alone to 0.70 and 0.72 for the cross-product regression Equations 5 and 6,
This demonstrates the strong predictive value of the sand patch with little
additional variation being explained by the microtexture parameters, drag
tested number, or chalk wear coefficient. Comparison plots of values pre-
dicted by the regression models presented in this section and actual measured
values are shown in Figures F-1 through F-16 in Appendix F.

Slope and Intercept Correlation

This method of regression modelling correlates the slope and intercept of

a linear wet friction speed curve with macrotexture and microtexture param-
eters, respectively, Since the Mu-Meter measures side force friction, the
differences in sliding speeds are limited by the experimental design, This
places the measured friction values in the approximately linear range of the
wet friction speed curves (see Figure 7). Therefure the developed frictinn
speed curves are expressed as linear functions, unlike the exponential nodel
developed by Leu and Henry (Reference 26). Two parameters are computed from
these friction speed lines, namely slope (M) and intercept (B).
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The slope (M) describes the frictional decay with speed similar to the
exponential decay coefficient C; developed by Leu and Henry (Reference 26).
This decay of friction with speed is predominantly a result of lubrication
becoming more effective as speed increases. Using the tire footprint hydro-
planing model, increasing the test speed increases the fluid pressures in the
tire-pavement interface which causes both fluid zones of Figure 6, sinkage
(Zone A), and draping (Zone B) to encroach upon the dry tractive zone (C),
thus resulting in lower friction levels. Measurement of the pavement's drain-
age capacity, obtained by measuring the average texture depth, can be related
to this decay since this relates to pavement drainage times.

Conversely, the intercept is conceptually the highest obtainabhle frictioun
on any given pavement surface. Relating microtexture to optimum friction is
based on Kummer's work of adhesional friction (Reference 6). In his deriva-
tion he models adhesional friction as a combination of electrical roughness
and microhysteresis. Therefore, microtexture, as measured by a rubber slider
device, should simulate both the microhysteresis created by the pavement's
microtexture and equivalent electrical roughness.

Using linear regression techniques, both the slope and intercept of each
set of data were computed. Using these values the slope (M), expressed in
MuN/(mi/h), was modeled against the average texture depth measured by the sand
patch (SAP). The regression equation

M= -1.0 + 0.0014 SAP (7)
R = 0.81
VMSE = 0.18

shows a relationship between slope and average texture depth; however, much
data scatter exists. Including a microtexture term (CT, for the chalkwear
coefficient, or DT, the raw drag test number), equivalent to a roughness term
in the Manning equation for open channel flow, does little to explain further
variance as evidenced by the following equations:

M=1.0 + 0.00048 CT + 0.0014 SAP (8)
R = 0.82
VMSE = 0.18
and
M= 1,11 + 0.0022 DT + 0.0014 SAP (9)
R = 0.82
YMSE = 0.18

Next, the intercept (B), expressed in MuN, was modeled with the
microtexture test values, Drag Test Number (DT) and chalk wear coefficient
(CT). Correlations on this order were very poor. For example:

B = 0.45 DT + 54 (10)
R = 0.41
/NST - 8.1
of B - 0.084 CT + 72 (11)
R - 0.38
/MSE = 8.3
39
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:k( Inclusion of a macrotexture term, sand patch average texture depth (SAP),
:ﬁﬂ improved this model slightly; however, the correlation was still poor, namely
)
oy B = 0.56 DT - 0.017 SAP + 53 (12)
“ R = 0.52
:o;, VYMSE = 7.6
55: Therefore, the intercept or optimum friction of a given pavement cannot be
‘éﬁe related to the simple microtexture devices used. Two major reasons for this
M lack of fit are probably the small range of both the computed intercepts and
‘ the Drag Tester values (DTN) and the high variability of the chalk test (CT).
N
'@S Equations 7, 8, and 9 emphasize the importance of macrotexture in
BQ retaining tire-pavement friction levels at higher speeds. These equations
,j\ reinforce the trend shown by the ANOVA computations (Table 4) that greater
" macrotexture yields higher friction levels at high speeds.
~k Another technique employed in analyzing the importance of texture on the
?5$ slope M is computing a normalized slope, that is, dividing the value of the
;*¢ slope by the central friction number (Reference 25); namely,
Y
< PNS = M/MW4Q (13)
;f where PNS is the percent normalized slope expressed in (mi/h)-!, M is the
o calculated slope and MWA0 is the MuN measured wet at 64 km/h (40 mph).
L Normalizing the slope eliminates the influence of various levels of friction;
» however, friction values are no longer independent of pavement character-
Bl istics. The following relationship was statistically shown between PNS and
“ average texture depth:
s PNS = 0.000035 SAP - 0.022 (14)
M R =0.75
e YMSE = 0.0054
"
}i This technique did not improve the modeling effort.
t
b& Horne and Buhimann Model
)
~l
:%' This method of modelling pavement friction levels from texture
P measurements is a conceptual model! developed by Horne and Buhlmann (Ref- )
NS erence 27). This method was derived from measurements of fluid pressures
A beneath an unyawed rolling tire. From these pressure measurements, they
. defined three zones of a rolling tire: a bulk fluid drainage zone, a thin
; film drainage zone and a dry contact zone, This model parallels the analyt- )
ap ical model developed by Moore (Reference 22). The bulk fluid drainage zone is
40 essentially the sinkage zone of Figure 6. Similarly, the thin film drainage
L zone describes the draping zone of the previous model, with the dry contact
;? zone remaining the same with both models.
|
Y Since water films cannot generate appreciable shedr forces, Horne and
Qv Buhlinann (Reference 27) theorized that tractive forces were generdated in only
}1 the dry contact patch of the tire footprint. The magnitude of this force was
i thought to be a function of the percent of dry contdact zone and the dry tire
" pavement traction. Namely
oo
i
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A3 Ay + A,
Hwet = Hdry (‘A—) = Wdry (1 ST A ) (15)

Myet is the wet friction coefficient
Mdpy is the dry friction coefficient
53 is dry contact zone area
A, is viscous water film zone area
A, is dynamic water layer zone area
A is total footprint area or the summation of A,, A,, and A,

To relate the relative magnitudes of the fluid areas, {hey proposed two
pavement drainage coefficients C ac (macrotexture drainage coefficient) and
Cpice These are nondimensional ﬂrainage coefficients that correlate decreases
in interfacial fluid pressures with increased drainage capacity. This is
analogous to Darcy's law, where head loss across a sample decreases as
permeability increases when all other variables remain constant. Combining
this concept of reduced pressures with the concept of the tire as an elastic
membrane (contact pressures remain equal to the tire inflation pressure), they
hypothesize that a known portion of the tire is supported by these reduced
fluid presures; namely,

where

area of tire footprint supported by viscous pressures
total tire footprint contact area

P A
C = =~ (16)
mac(T)u A
and
P, A,
Coos = £ 17
m1c(‘f5‘)u A (17)
where
Cmac = macrotexture drainage coefficient
Cnic = Microtexture drainage coefficient
p, = dynamic fluid pressure '
p2 = viscous fluid pressure )
u = a subscript detonating an ultimate pressure ratio
p = tire inflation pressure
A, = area of tire footprint supported by dynamic pressures

¥

From Equations 16 and 17, the wet friction coefficient can now be
expressed as a function of the fluid pressures and the pavement drainage
coefficients.

Py P,
et = Bult |1 - [Cmac (‘p")u * Cpic (’p-) u] (18)

Horne and Buhlmann (Reference 27) postulate that the ultimate tire-
pavement friction coefficients are dependent upon tire inflation pressure,
tread, rubber compound, tread design, vehicle speed, and tire operating mode
utilized, They state that earlier research determined the ultimate friction
coefficient could be determined from the tire inflation pressure, namely

PP 9 bt W ‘ﬂﬁ g

uu]t = 0.93 - klp (19)
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where Ky
ky

0.00016 when p is expressed in kPa or
0.0011 when p is expressed in 1b/in2

[[]

Using this concept he redefines the functional function as follows
P P2
Yp=1 '[Cmac (‘p“)u * Cpic (’p’“)u] (20)

u
where Y. is the ratio of et
r Hult

Next, Horne and Buhimann derive the pavement draining coefficient (C
and Cmic) from a linear regression analysis of theoretical generalized
friction speed curves. From this analysis they equate Chnic and Cpac to tne
transformed slope and intercept of linear friction speed curves, -

ar

Cpic = 1.153 ~ 1.153b + 0.297|m| (3)

C

ac = ~0.155 + 0,155b + 0.725|n| (4)

where b and m are the intercept and slope of the transformed friction speed
plots, respectively.

Analysis of this section began with transforming the friction speed plots
to the format of the theoretical generalized curves. This was accomplished by
dividing the measured friction coefficients by an ultimate value of 91.9 MuN,
as determined by Equation 19, and dividing the velocity by 32.73 mi/h. The
critical hydroplaning speed was determined by V = 10.35 /P, _, where P. is the
Mu-Meter tire pressure during testing (10 1b/in¢), Transformed slopes and
intercepts were calculated from these transformed plots and values of C

Cpacwere computed in accordance with Equations 3 and 4.

mic and

Corirelating these values with texture measurements yielded the following

results
Cmac = 0,242 - 0,00037 SAP (21)
R=0.78
VMSE = 0.052 ;
and
Cmic = 0,333 - 0.0012 CTT (22) )
R = 0.47
/MSE = 0.093

Little confidence was placed in either of these relationships. First,
the correlation coefficients were low, showing little dependence of the calcu-
lated drainage coefficients on texture measurements, Second, values of the
intercept coefficients were extremely low. Since a surface with no macro-
texture and no microtexture should have values of Cpge, - 1and C 5. = 1,
respectively, the low intercept values of 0,243 and 85333 seemed unrealistic,
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since they should be approximately unity. The third and most important reasurn
for rejection is that the standard errors are as high as 20 percent of the

estimated value at their best case. Therefore this method was eliminated from
further analysis.

MuN Predictive Modelling, 40 mi/h

This last method relates texture measurements to friction measurements
using multilinear regression modelling of the 64 km/h (40 mi/h) wet MuN to the
best possible set of texture parameters. Since a macrotexture measurement,
average texture depth as measured by a volumetric technique, is indicative of
bulk water dissipation and a microtexture measurement is indicative of viscous
water dissipation, a regression model including at least one parameter of each
texture band was included in developing the model.

Table 6 describes the best models determined from a detailed regression
analysis. The data scatter for the Equation 23, using all the data, is
comparable to the previously discussed techniques; therefore, refinements by
separating data into various sections were investigated.

First the data were separated into test sections and the multilinear
regression equations were computed. This resulted in a reduction of some
other data scatter, evidenced by the lower root mean square values, This
subdivision of the data also demonstrated the strong relationship of SAP to
friction levels and the unstable predictive value of the microtexture param-
eters. Thus, if a method were available to measure the average texture depth
with less variability the predictive models might have been of more use.

The measurement of microtexture seems to have eluded this experimental
design. Research has indicated the transient nature of microtexture deter-
mines the seasonal effects on friction levels. From this research, it has
been proposed that the variances in microtexture may be indicative of changing
levels of friction. However, much development work is still being done in
this area and its influences are not fully understood.

Further analysis of the section models was conducted to ascertain the
effects of pavement temperature, chronological order of testing, runway type,
and higher order regression models, including more of the measured texture
variables. None of these techniques were able to improve significantly the
predictive qualities of these models, Therefore, any further refinements due
to other variables were either hidden in the inherent variability of the
texture techniques employed or they were not measured by the experimental
design employed here.
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TABLE 6. FRICTION MODELS USING TEXTURE MEASUREMENTS

knn.

Sectiond EquationP RC | vmsE? | No.
All Mup = 16.0 LSAP + 0,096 CTT + 0.016 CTL - 43 0.80| 8.13 |23
CL-R+PE-NR Mup = 17.0 LSAP + 0,10 CTT + 0.018 CTL -~ 50 0.82] 8.20] 24
CL-R-B Mup = 16.0 LSAP + 0.12 CTT + 0.080 CTL - 53 0.88| 6.43 |25
CL-R-A Mup = 14,1 LSAP + 0,091 CTT + 0.044 CTL - 36 0.82] 6.76 )26
CL-NR Mup = 10.9 LSAP + 0.041 CTT - 0.051 CTL + 2 0.66 | 6.49 |27
PE-NR Mup = 16.8 LSAP + 0,056 CTT - 0.049 CTL - 31 0.84 | 6.24 |28

Notes
4section descriptions are as follows: %
All A1l data collected during experiment

CL-R Centerline rubber area both before and after removal
CL-R-B Centerline rubber area before removal
CL-R-A Centerline rubber area after removal
CL-NR Centerline nonrubber control area

E

PE-NR  Pavement edge nonrubber control area

bVariables descriptions:
Mu Mu Number predicted by texture measurements

LSAP Natural log of average texture depth measured by
the Sand Patch Procedure and expressed in 10-“ in

CTT Chalk wear coefficient measured in the transverse
direction expressed in 10-* in/ft

CTL Chalk wear coefficient measured in the longitudinal
direction expressed in 10-* in/ft

CR is the Correlation Coefficient

d/ﬁgf is the root mean square error, essentially the
standard deviation about the regression line (MuN).
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SECTION VI
CONCLUSIONS

The following conclusions can be reached as a result of this field
experiment.

The influence of average texture depth on higher friction levels is
strongly evident. This is based upon the strong correlations between average
texture depth and the wet 64 km/h (40 mi/h) Mu-Meter testing. MaclLennan et
al. (Reference 36) reached this same conclusion in the National Runway Fric-
tion Program. However, they state that measurement of friction rather than
texture is a preferable basis for planning routine runway maintenance. The
results of this experiment verify this conclusion for the following reasons:

(1) The measurement of macrotexture by either the sand patch or the
silicone putty volumetric procedures is an inexpensive method of quantifying
macrotexture. However, important parameters of macrotexture are not measured
by these procedures. Average texture depths do not determine the general
shape of the pavement's asperities; in addition, nonconnected voids measured
by these methods do not help in the removal of bulk water. Each of these
parameters is deemed important in friction literature, yet their influence has
not been empirically validated. Furthermore, the techniques necessary to
measure these parameters are more expensive and require highly trained person-
nel, thus defeating the purpose of this experiment.

(2) The measurement of microtexture has an elusive quality. The correla-
tions of microtexture measurements to either the intercept of a friction speed
curve or to the dry Mu-Meter tests with which it is generally believed to
correlate is evidence that microtexture could not be measured by the simple
methods employed in this experiment. Current technology has not developed an
alternate method of measuring this textural band.

(3) The Mu-Meter was designed to determine averages in friction over an
extended length, usually of a 152.4-meter (500-foot) test section. Being
designed for such use, the system damping caused by both the test tires and
the hydraulics of the load cell make this device insensitive to all but
extreme localized texture variations. A friction test device using tires is
not sensitive to localized texture variations, since such devices are designed
to average friction values over an extended section. Therefore, the pave-
ment's localized textural variability will not affect its readings, making the
measurement of texture maore variable than that which it is predicting.

(4) Therefore, the measurement of texture to determine friction levels of
a pavement will only give an indication or an approximation of values measured
by a friction test device, For this reason, if need arises to measure fric-
tion closely for performance specifications, one should use a friction measur-
ing device on which acceptance levels were previously established.
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3 SECTION VII

o RECOMMENDATIONS

oy

) The following recommendations are offered as a result of this

ﬁi' experiment.

LYaN

ks . . . .
.»‘x First, the use of highly textured pavements or use of grooving systems is
R essential in obtaining high friction levels. Therefore, widespread usage of
M these pavements is encouraged.

3&_ Second, the use of texture measurements to determine accurately the

o\ friction levels of a pavement cannot be accomplished with present technology.
:ﬁﬂ Therefore, the use of texture measurements should only be used as a guide in
ey determining friction levels, with a friction test device being used for

S accurately defining friction characteristics of a pavement.

A5 Third, alternate methods of measuring or quantifying the microtexture of
:,I- the pavement are required for the prediction of friction from texture measure-
O ments. These methods must be researched to determine empirically the role of
e microtexture in pavement friction.

T

@ Fourth, alternate methods of measuring the pavement's macrotexture should
W be investigated. Emphasis should be given to nonconnected voids, asperity
,\%: density, asperity shape, and profiles of the pavement's macrotexture.
A8
ftj’ . Fifth, investigations into the analysis of stereophoto pairs in determin-
oo ing the microtexture and the shape, density, and nonconnected voids of the

macrotexture should be conducted. This concept arises often in friction

Atg literature, yet detailed analysis of such procedures has not been reported. )
%i This method, if analyzed by appropriate computer algorithms, would be insensi-
5:& tive to operator error; therefore, it would be able to determine true pavement
ﬁﬁ textural variability. Furthermore, if the resolution of the photo pairs is
o fine enough, the role of microtexture in determining pavement friction may be
J better defined. Therefore, the stereophoto pairs collected in the designed
Wy field experiment should be analyzed in an effort to improve upon the friction
iu; predictive models developed in this report. This test may be used to improve
:Qﬁ the accuracy of methods employed in determining the relationship between
X A texture and friction, enabling friction to be predicted from texture with

e greater certainty.
&
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" APPENDIX A

) RUBBER REMOVAL QUESTIONNAIRE AND NMERI COVER LETTER
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‘ ’ o THE UNIVERSITY OF NEW MEXICO ALBUQUERQUE, NEW MEXICO 87141
~
NEW MEXICO ENGINEERING RESEARCH INSTITT |}
CAMPUS POST OFFICE BOX 25
TELEPHONE (505) 844-4644
July 18, 1984
Return to:

Lary Lenke, Research Engineer

New Mexico Engineering Research Institute
Campus P. 0. Box 25

Albuquerque, NM 87131

RUBBER REMOVAL QUESTIONNAIRE
Does your base or airport regularly perform runway rubber removal?
If so, how often (times per year)?
What technique(s) is (are) used to remove rubber at your base or airport?

Does your base of airport use a specification for rubber removal?

If so, please send a copy of your specification for our files. (Your
specification will aid NMERI's specification development effort.)

How many runways does your facility have?
What are their designations (R/W No.)?
What type pavement surface does each of your runways have (PCC, AC, PFS,
etc.)?

(Please be

specific).

Is your base or airport planning rubber removal operations during the
remainder of 19847

If so, when (approximate dates)?
Is it possible for the NMERI to perform field testing during your rubber

removal operations?
Please provide a point of contact for further correspondence and for arranging
possible field testing.
NAME ; _
Telephone: Autovon: o
(If applicable)
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THE UNIVERSITY OF NEW MEXICO ALBLIQUERQUE, NEW MEXICO 87141
NEW MEXICO ENGINEERING RESEARCH INSTIVURTE
CAMPUS POST OFFICE BOX 25
TELEPHONE (505) #44-4G44

July 18, 1984

~ ST Bl W R Ve N e, oy e

Dear Sir:

The New Mexico Engineering Research Institute (NMERI) has been contracted by
the Air Force Engineering Services Center (AFESC) [Tyndall AFB, FL] and the
Federal Aviation Administration (FAA) to conduct research and development
concerned with runway rubber bufld-up. The NMERI has been tasked with devel-
oping contractor specifications for rubber removal and measurement techniques
for evaluating rubber build-up.

The developed specifications will include this measurement technique as a
quantifiable method of ascertaining rubber build-up and its effect on
decreased wet friction value. This measurement technique will also aid the
base or airport engineer in determining when the contractor has satisfied the
rubber removal specification.

The NMERI has developed a field test experiment to aid in the development of
the field test procedures and resultant specifications. This field experiment
includes friction measurements (with a Mu Meter) and various texture measure-
ment techniques performed before and after rubber removal.

It is highly desirable to obtain experimental data from as many bases or air-
ports as possible during the remainder of 1984. Therefore, notification of
anticipated rubber removal operations at your facility during this time frame
is requested. The enclosed questionnaire is provided for your convenience and
quick response to this query.

The NMER! pavement friction evaluation team has recently worked at Hill AFB
(uT), Stapleton International (Denver) Airport, Ontario (California) Airport,
Tulsa Airport, Holloman AFB, Fairchild AFB, Moses Lake (Wash.) Airport, and
Mountain Home AFB. At all test sites, the experiment has been successfully
conducted without incident. Our evaluation team is equipped for night opera-
tions (if required) and has communication equipment for safe operation. Nor-
mal operation of our experiment requires uninterrupted access of 12 hours
before (two six-hour sessions are acceptable) and six hours after rubber
removal. However, in emergency situations, the team can clear the runway
within three minutes.

We appreciate your cooperation in this work, which will provide base and air-
port engineers and inspectors the simple test procedures necessary to quickly
and objectively evaluate runway rubber build-up. The field test proceudres
and specifications will be available from the FAA in October, 1985.
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Inquiry letter
July 18, 1984
Page two

If your organization is not res?onsible for runway pavements at your facility,
please forward to the responsible party. Should your facility not have run-
ways, please return questionnaire stating such. For additional information,
please feel free to contact the undersigned.

Sincerely,

Lary R. Lenke, P.E.
Research Engineer

(505) 846-0430
Autovon: 246-0430

P.S. Please return questionnaire and specifications (if any), even if rubber
removal is not planned for your facility during 1984.

Enclosure
LRL:1t
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FIGURE B-1, RUNWAY Q, A GROOVED PORTLAND CEMENT CONCRETE
(RUNWAYS C, E, G, AND P SIMILAR)
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FIGURE B-2, RUNWAY F, A WIRE-TINED PORTLAND CEMENT CONCRETE
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FIGURE B-3, RUNWAY B, A WIRE-COMBED PORTLAND CEMENT CONCRETE
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';o (RUNWAYS I, M, N AND R SIMILAR)
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gﬁ COLLECTED DATA BASE

ﬁk

) The following is an explanation of variables that appear in the data base.
Py

5:‘3 Base is runway identification code (A through R).

(. Date is approximate date of field testing.

;,' Sec is test section,

;& 1. 1 being centerline rubber before.

i*s 2. 2 being centerline rubber after.

g 3. 3 being centerline nonrubber.

e 4., 4 being pavement edge nonrubber.

A0

s . .

2& Loc is test sites.

oy 1. 1 is 120 ft from start of test section.
?54 2, 2 is 240 ft from start of test section.
E:: 3. 3 is 360 ft from start of test section.
3

RQ Rep is repetitions of tests.

3 M20 is 20 mi/h dry Mu value.

3? T20 is pavement temperature for 20 mi/h dry Mu value,
%1 MW20 is 20 mi/h wet Mu value.

Yy TW20 is pavement temperature for 20 mi/h wet Mu value.
o M40 is 40 mi/h dry Mu value.

f : T40 is pavement temperature for 40 mi/h dry Mu value.
p MW40 is 40 mi/h wet Mu value.

:é‘ TW40 is pavement temperature for 40 mi/h wet Mu value.
f; M60 is 60 mi/h dry Mu value.

Q* T60 is pavement temperature for 60 mi/h dry Mu value,
" MW60 is 60 mi/h wet Mu value.

5', TW60 is pavement temperature for 60 mi/h wet Mu value.
.’! SAP is average texture depth as measured by sand patch measured in
et 10=% in,

g* SIP is average texture depth as measured by silicone putty measured in
b 10-% in,

ﬁ] PTIL is raw drag test number (DTN) measured dry in the longitudinal
:r direction,

]
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:“ﬁ PTIT is raw DTN measured dry in the transverse direction.

W TP is pavement temperature corresponding to the dry DTN.

s PTIWL is raw DTN measured wet in the longitudinal direction,

g PTIWT is raw DTN measured wet in the transverse direction.

TPW is pavement corresponding to wet DTNs.

. CTL is chalk test measured in the longitudinal direction and recorded as
ul a wear coefficient in 10-“ in/ft.

20 17 is chalk test measured in the transverse direction and recorded as a
'y wear coefficient in 10-“ in/ft.
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' APPENDIX D
I ]» DERIVATION OF SAMPLE VARIABILITY

Due to the small sample size, the test variability cannot be expressed as
a single value but must be expressed as a range of values. A brief derivation

and discussion of how this range is determined is presented for clarity.

Assuming that the variability is constant between sample cells, the

& variability for each cell of two samples can be computed by the following:
ol
o Sy = (X, = X)2 + (X, - X)2
where Si is the variance within a cell

’.l‘ .
3%? X,» X, are cell data values.
ﬂ::: "X is cell mean
ey
Z::"L'-
L This equation may be arranged and expressed in terms of the range by the
53 following:
_l:.'
BN -
N Since X = (X, + X,)/2
e

. Then S] = [(Xl - xz)/Z]z + [(xz - xl)/z]z
'k* rearranging and collecting like terms yields

o = - 2
2 S, = (X, - X,)%/2
) .
e
I Once the cell variance is known, the overall population variance can be
."
ﬁﬁl estimated by determining the mean of the cell variances, or
[l o,

)
oo 2= (xs,)/
g& ) gé = i) /n

Q As the number of cells times the estimated variance is distributed as a
rih multiple of a Chi Square distribution, namely
o

e 62 ~ g2 o y2

Q: neo o xn,u
e
*.;:
:;\ where n is number of cells
Kf: 02 is estimated variance
. 0? is population variance
%;’ Xﬁ o is Chi Square distribution at n degrees of freedom and
k&f a confidence level.
"
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':t A confidence interval may be determined for the population variance. This
oy interval is given by the relationship

. g2)/y2 2 . a2Y/v2
(n 0)/xn,a<0 < (n 0)/xn
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