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Technical Progress Report
Contract Number N00014-85-C-0852

Radar Cross-Section of Damped Cylinders
and Anisotropic Cylinders

This quarter, we have generalized the TDFD RCS code to handle materials
characterized byt)
(1) Lossy, frequency-dependent dielectrics,
(2) Magnetic loss and conductivity )
(3) Anisotropy in the xy plane; ~r-./
¢4) Embedded resistive or reactive sheets ,

e

' Our treatment of frequency dependence goes beyond what had been the

state of the art in TDFD codes; the frequency dependence here may be
anisotropic and may extend across a molecular resonance. The techniques for
doing this are documented in the attached article, "Time-domain treatment of
Maxwell's equations in frequency dependent media.” This article was written
for the March conference in Monterey and represents work entirely inspired
by the present contract. s

\

A second computer code has also been written to compute the RCS of a
circular cylinder composed of an arbitrary number of concentric shells, each
characterized by an arbitrary o, a*, e and p. This code uses the expansion
of plane wave in cylindrical harmonics and matching of harmonic coefficients
at each interface. It is described in the attached note, "Scattering from a

layered dielectric cylinder."

Code-code comparisons between the TDFD and cylindrical harmonic codes

have been run for a perfect conductor .5 m in radius, bare and covered by a
*

damper .5 m thick. The damper has properties €e/ey = p/ug = l; o = €0 /p=24

-3

X L0

damper thickness at frequencies (50 - 500 MHz) for which calculations were

These values were selected to give a skin depth on the order of the

run. The TDFD code utilized square cells 4 cm on each side or 25 cells to a

cylinder diameter.
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While our TDFD code only treats the TM case, we are able to simulate
the TE problem through appeal to duality. In particular, the previously
described code-code comparison was rerun with the cylinder perfectly mag-
netically conducting (a* = o, ¢ = 0); and the damper unchanged.

The following four figures present code-code results for the four
possible combinations of electric and magnetic conducting cylinders with and

without damping shells.
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e Figure 1. RCS of a bare cylinder, .5 m in radius, electrically perfectly

L conducting for TM illumination (H along axis). Solid curve is
TDFD result; dotted curve is cylindrical harmonic result.
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v Figure 2. RCS of a bare cylinder, .5 m in radius, magnetically perfectly
— conducting for TM illumination (H along axis). Solid curve is
s -5. TDFD result; dotted curve is cylindrical harmonic result.
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Figure 4. RCS of a damped cylinder, .5 m in radius, magnetically perfectly
conducting for TM illumination (H along axis). Solid curve is
TDFD result; dotted curve is cylindrical harmonic result.
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Scattering from a Layered Dielectric Cylinder

This note discusses scattering of a plane wave by a circular dielectric
cylinder composed of concentric layers of different materials. Let us
assume there are N layers, with layer i characterized by €50 Bys 95, a: and

i
outer radius a;. We shall here treat the TM case (H along the cylinder
axis; E transverse), although the TM problem is nearly identical
mathematically.

Assume the incident wave is propagating in the + y direction,

. i(korsing - wt)
Bz, t) = Yoie (L

i(korsing - wt)
EMe) - - i (2)

€o
Here, Y, -\/;— is the admittance of free space. The same symbol will sub-
°

sequently be used to designate Neuman functions, but context should keep the
meaning unambiguous. Additionally, k, is the free space wavenumber, w/eqyu,

- w/c.

Equation (1) may be expanded in cylindrical harmonics,

ﬂinc(r_’t) - Yoiz } Jn(kol‘)ein¢
N=-o
ot @®
- Yoiz Jo(ker) + } 2Jn(k°r)cos né + } 21Jn(kor)sin né 3)
n-2,2 n-]_,z
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In the future, it will be useful to designate the coefficients of these W
g harmonics as ai“c; o
n SN
3
v
, I
tﬁ inc -1 hing
o
- &
o ainc -2 n > 0, even t{:‘
n e
“ : RN
E: a;nc - 2i n odd (4) X
Since V x HIP® . jweoginc, the cylindrical harmonic expansion for E'"°¢
el becomes
&
::.:: inc 1Yo j‘r 3 inc S inc
- E (r,t) = w_co' -7 } a, Jn(kor)n sin n¢ - } a Jn(kor)n cos n¢
i n=0,2 n=1,2
.. @ ©
- inc inc .,
- - 1¢ko E a, J!'l(kor)cos né + } a, Jn(kor)sin n¢ (5)
n=0,2 n=1,2
. -
-
(R
. The innermost material will include the c¢cylinder axis. Thus, only __\
:::: Bessel functions of the first kind are permitted in the solution there: :'.:';
~ -
S
= © « '
o
1 - Y.i 1 1 ;
H!(k,t) le_L,z } aan(klr)cos ne + } aan(klr)sxn né (6) o5
n=0,2 n=1,2 -
(% va
o © P
L iy, %l at e
] 1 - —— 1 . 1 -
: El(x.t) ool T } aan(klr)n sin n¢ } aan(klr)n cos n¢ \:',

n=0,2 n=1,2 N
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. 1¢k1 } a%;ﬁ(k,r)cos né¢ + } a;Jﬁ(k‘r)sin n¢é N
n=0,2 n=1,2

where Y, is the admittance of medium 1

€; + jo,/w
Y, =\/7TT% (8)
By + Jo, /v

and k,; is the wavenumber of medium 1,

k, = wV(;1 + Jo,/0) (B, + Jo3/w (9)

The N-1 concentric shells will permit solutions of both kinds. Thus,
in region i, 1 < i < N, a;Jn(klr) of eqs. (6)-(9) becomes replaced by

i i
1
aan(k1r) - aan(kir) + bnYn(kir) (10)

Finally, in free space outside the cylinder, the first Hankel function
is the only permitted solution for the scattered field. Thus, in this

region, a;nan(kor) is replaced by
inc scat, (1
al™y (kor) » a2°2%H{D (1) (11)

in eqs. (3)-(5).
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The boundary conditions at each interface are that eEr, E¢ and Hz be

continuous. It turns out that the first and third of these conditions are
equivalent. Thus, matching of coefficients at the innermost interface leads

to

alY,J (kja,) - a2¥,J (kpa;) - b2Y,Y_(kza,) = O

all!(kja;) - a2J!(kpa;) - b2Y!(Ka,) = 0 (12)

Matching of coefficients at any other interface except the outer bound-

ary of the cylinder gives

i-1 i1
an Yy aTn(ky qa5 90 + b T Y (kg a5 )
-aly s (xa, ;) - blv.Y (x.a, ) =0
nin 1ii-1 ninti"i-1
i1, i-1,,
an Ialkyq35.9) + by YRy g2y )

i, ig
- aJr(kia; 1) - b ¥ (k;a; )) =0 (13)

Finally, the boundary condition at the outermost surface is

el O+ Sty - S5 ) = 437001 iy

scat

oz + Bty - D (e = gy a0
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For each azimuthal harmonic, eqs. (12)-(14) comprise a set of 2N linear
!; equations in 2N unknowns. The associated matrix is five-banded, and ex-
tremely easy to solve by Gaussian elimination. (The main diagonal and first
diagonal off each side of the main is full. The second diagonal off each
side of the main is half zeros.)

A

E« The quantities of interest in RCS evaluation are the a:cat's. A two-
dimensional bislatic RCS is defined by
2
. scat

= RCS(4) = 2n rlife|E——(OVE (15)
< gine

\.:-

[+

The scattered electric field (neglecting the reactive radial component) is

ixde &

] E5°*(z, 1)
© © ..
- - -1, } a§°atn£1)-(kor)cos né + } aicatﬂé(kor)sin né (16) -
n—O ’ 2 n-l ] 2 ..; -’

e,

Here, use is made of the identity kY, = we,.

l‘ ll
i'l » ' b

For large arguments, Hankel functions have the asymptotic limit

2n+l
- i(kr- )
;‘_ l'lt(_ll) (kor) -4 Qﬁ'kor e 4 (17)

Substitution of eqs. (16) and (17) in (15) then yields the RCS in terms of

scat,
the a, :
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U RCS(¢) = 5‘k—° } a:cat(-i)ncos né + } a:“"(-l)“sm né (18)
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TIME-DOMAIN TREATMENT OF MAXWELL'’S EQUATIONS
IN FREQUENCY DEPENDENT MEDIA

Richard Holland
Applied Physics, Inc.
5353 Wyoming Blvd., NE, Suite 3
Albuquerque, NM 87109

ABSTRACT

Longmire and Longley (DNA report 3167F, 1973) have described a method
for representing certain types of frequency-dependent media in time-domain
finite difference codes. They assumed the media could be described by a
series of relaxation phenomena, one phenomenon per decade. Each phenomenon
contributes a "current" to the V x H equation, although these "currents" do
not conveniently fit either the concept of conduction or displacement.

Recent discussions with ONR personnel have raised interest in more
general types of media characterization. Specifically, there is now a
desire to input the SEM or Prony parameters of a medium'’s o and ¢ to time-
domain codes. In other words, we now wish to work with the actual poles and
residues of o and ¢ rather than assuming the poles are uniformly spaced one
per decade. The present work describes how this may be done.

It also goes beyond the work of Longmire and Longley in permitting use
of complex as well as real poles. Prony "currents" associated with complex
poles obey a temporally second-order differential equation, as opposed to
the Prony "currents" of real poles. In both this formulation, and of the
Longmire-Longley formulation, the latter obey temporally first-order dif-
ferential equations.

In actual time-domain finite-difference codes, it is most exact to
evaluate the Prony "currents" as well as the electric fields at the same
spatial and temporal points. In the past, this simultaneous solution has
not been implemented, due to the peculiar coupling of the equations for
electric fields and Prony "currents”. For the case of all poles real, we

-here also describe how to perform this exact solution using state theory;

Work was sponsored by Office of Naval Research and DARPA under Contract No.
N00014-85-€-0852
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i.e., by exponentiating the matrices coupling all the electric fields and

Prony "currents”.
INTRODUCTION

Consider a medium with anisotropic, frequency-dependent electrical
properties. The electrical response of such a material may be fairly
generally described by

VxH=J(t) + 1.(t) (1)
where if(t) is a forced current and

t
J(t) = g E(t) + &, * DE(t) + J_ K(t-t') * DE(t*)de’ (2)

with D indicating the time-derivative operator. In this formulationm, %o>

[ and E(t-t') are second-rank tensors.

The frequency-domain form of eq. (2) is
-1 .
I(w) = [go + fwe_ + 1w ]:e “’“g(u)du] E(w) (3)

Separation of eq. (3) into real and imaginary parts gives representations
for the frequency-dependent conductivity and permittivity tensors,

g(w) = gq + Re[iqr:e'iwux(u)du] (&)
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e(w) = ¢ + Ref)q e " MKR(u)du (5
eu+ meffoet

Longmire and Longley1 have considered the scalar version of this for-
mulation for the special case when K(u) can be expressed as an exponential

series,
M
-ﬂ u
K(u) -} ae " (6)
m~1

For this situation, eq. (2) may be rewritten

M
J(t) = ooE(t) + ¢ DE(t) + } a g, (t) €]
m=1
with
-8 _tet R
I(t)~e an(c')e " ae (8)

Equation (8) is equivalent to the differential equation

DI (t) = DE(t) - L (t) 9

Longmire and Longley assumed that materials could be represented by the
exponential series of eq. (6) with one term for each decade of frequency
over the spectrum of interest. This is equivalent to doing a Prony expan-
sion of K(u) [or o(w) and e(w)] with the poles forced to be spaced at
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(10)

While this assumption has been claimed to be reasonably accurate for wet
soil, it would seem generally more correct to determine the poles from a
Prony analysis of the medium’s measured frequency-dependent characteristics.
This 1is especially likely to be true if the material exhibits rapid varia-
tion in o and ¢ with frequency.

STATE THEORY APPLICATIONS

Let us first assume the Prony analysis reveals no complex-conjugate
pole pairs. In general, the 2, will be second rank tensors, but the ﬂm will
only be scalars. Then for every pole, each component of Jm will obey

DEi - DJmi - ﬁmjmi -0 m=1-M {i«1-3 (11)

Additionally, the tensor form of eq. (7) gives

M

‘QijDEj + a°ijEj + Z-lamij de - JJ i,j=-1-3 (12)
where

Equations (11) and (12) constitute a set of 3(M+l) coupled first order
differential equations.




If anisotropy and frequency dependence were not present, the usual
method of numerical solution would be explicit time-domain finite
differencing. In this method, E and H evaluation points alternate both
spatially and temporally wusing a well-tested leapfrog arrangement:.z"4 In

n+1/2 1.7.K) means E,

this arrangement, no two equations are coupled, and Ex

evaluated at ((I + 1/2)AX, JAY, KAZ, (n + 1/2)At).

However, the present system of equations requires the three Ej's and 3M
ij's all to be evaluated simultaneously. While this cannot be done using
conventional time-domain finite differencing, state theory does indicate an

appropriate generalization of time-domain finite differencing.

First, let us consider the case where anisotropy, but not frequency
dependence, is present,

(e,] DIE] + [00][E] = [J] (14)

This matrix differential equation has a homogeneous solution

e ) Mool
(Ely, = e (A] (15)

and a particular solution
-1
[E], = [o0] (4] (16)
giving a general solution

-le ) Hoolt _1
(E] - e (4] + [o0)7M19] an
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The constant vector [A] may be evaluated at (n - 1/2)At: ¢

i (1™ /2 o [a] + (01 L(a)™ (18) ""E‘
‘ B
:Z: This gives the new E-field vector in terms of the old, Ly
. :
TS -1 -1 <5
R PV I A o8] oo L1t a0y
2 B
e

> Similar exponential matrix techniques have been reported for time- :‘w
. domain solution of generalized multi-conductor transmission li.nes.5 In the _
:;: previous.lwork, one may see how to evaluate eq. (19) if [0y] is singular or 3 ‘
R if [e_] "[oo]At has arbitrarily large elements. Basically, matrices are [{‘:
exponentiated using the power-series representation of an exponential. "}.

| 7
.hj

If frequency dependence is present, the [E] vector of eqs. (14)-(19)

R :
.
NI ¥i

T e v b v w

. becomes replaced by o
o
! E [ -’."

’ (E] = |44 = [E'] (20) b

. [ .-,

0 Iy R

< X

- PR

o~ The [e_] matrix becomes f-.:.t
-\.:‘

N
7 e
() =&y 9 - o = [e'] (21) e

. L 1ot BS

- : : PO
3 1 -1 e -1 :,:.::
b E - - - "‘
and the [o,] matrix becomes

& K&
pA) ::
18
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b o
e
S
[oo] = [20 a ay 1= [e’) (22)
- 0 -8:1 0
E . . :
- 9 . {
Lastly, the forcing vector becomes
44
Cd
>
. 1 =
- (J1 ~ (9] = (L'] (23) i
. N
by oo P
'J S
] -
. o Then the matrix equation for sim.ltaneous advancement of E and the ’Im is f_;
7 i
i 3
1 1 3
. P R VE I O30 Rl CAD XRS5 V2 R PRI 10 [l CA0 T3 PR FRTL. SN z
- \3
P}
- » 'p
: oS
- In the past, time-domain finite differencing has not often considered K .:
] anisotropy. Frequency-dependent effects have been included by using the old
- ,13'1/2 to find the new Bn+1/2. (This decouples E from the ’lm in eq. (12).) ;~j:
) . Then the new En+1/ 2 have been used to find the new ,1:"'1/ 2 from eq. (11). S.*:
e 5
£
~ TREATMENT OF COMPLEX POLES e
b SORN
: e If Prony analysis of the material’'s frequency dependence reveals com- :’\
3 »
;_\ plex pole pairs, a more general treatment becomes necessary. In this case, :ﬁ
K(u) will contain terms of the form o
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K(u) = b sin(yu + ¢ )e

“Byu ] -B_u
- Bmcos¢ms1n1mue + hm sln¢mcos1mue

The Jm(t) of eq. (8) now becomes

It 4 ] -pm(t-t')
gm(t) - °°D§(t )(cos¢msin1m(t-t e

-By(t-t*)

+ sin¢mcosym(t-t')e ydc’

- imc(t)cos¢In + ,Lms(t)sindtm

where gmc and lms are the parts of lm associated with cos¢m
respectively:

It =B (t-t’)
J__(t) = ] DE(t’)siny (t-t')e de

t -ﬂm(t-t')d

Jms(t') - I;Di(t')cosym(t-t')e t’

Differentiation of Jmc(t) and ims(t) yields

Dl (9) = “Bylne(E) *+ Tplny(9

20

(25)

(26)

and sin¢m.

(27)

(28)

(29)
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: DJ _(t) = DE(t) - B3 (t) + v d, (€) (30) N
& 3
5‘ F: These equations can be solved for J_mc(t:) and =lms(t:) using Heavyside algebra: t,j
- Bt

%

= [(D+B)2% + 2] I (t) = v, DE(E) (31) L.»‘,’f
%

. [(D+ B2 + 73] I () = (D + B IDE(E) (32) E;
o

Thus, im (t) obeys the differential equation :::

&
e

i [(D+ B )% + 93] I (€) = [sing (D + B) + cosé v IDE(E) (33) v
e

A

ﬁ In principle, equations 1like (33) could be added to the set of equa- __,
tions given by (11) and (12), and the entire ensemble solved by state ::::'

,‘_; theory. This approach, however, requires treatment of second-order matrix ::;_‘::

v differential equations of the form ::::'

! W
N
[A]D2(E] + [BID[E] + [C][E] = [F] (34) 2

= e

s o

= The homogeneous solution of this equations includes square roots and complex :‘.j‘::
exponents of matrices; it is much more complicated than egs. (14) - (19).

(To the best of our knowledge, exponential differencing has never been ':-:.{

'L'.: applied even to scalar second-order differential equations.) el

~ S

;: Consequently, when Prony analysis of the material data yields complex :\
pole pairs, our present strategy is to fall back to the old technique for ",-;.

i’f dealing with real poles: First find E" nt+l/2 using the old ,1:'1/2. Then use by
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