
D- AlE? 763 PC i PILOT REFERENCE
ANU L(U) DEFENSE TECHNICAL

/
INFORMATION CENTER ALEXANDRIA VA OFFICE OF INFORMATION
SYSTEMS AND TECHNOLOGY R G THORNETT MAY 86

I D RUNCLASSIFIED DTIC/TR-B6/i2 F/6 9/2 UEEEEEEEEEEliE
EEEEEEEEEEEEEE

I lflflllllllll
IIIIIIIIIIIIIIlf...
EEEEEEEEEEEEEE
I.

12.2l2

'-S.

~~M-M

N A 10 OF S
111111

PC11--PILOT REFERENCE MANUAL

DTIC

D efense
T echnical

* I nformationbenppod
C enter itsdcueths enaprvd

distibution is lme

Office of Information Systems and Technology

Cameron Station, Alexandria, VA 22304-6145

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATION I DOWNGRADING SCHEDULE Approved for public release;
Distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

DrIC/TR-86/12
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Defense Technical Information (If applicable)

Center I IDTIC-EA _
6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Cameron Station
Alexandria, VA 22304-6145

8a. NAME OF FUNDING ISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.DS000060

11. TITLE (Include Security Classification)

PC11 PILOT Reference Manual

12. PERSONAL AUTHOR(S)
Thornett, Richard Geoffrey

13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 1S. PAGE COUNTFROM TO___I 86 may 68
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Computer Aided Instruction4 Computer-Assisted Instruction;

Training; Individualized Training; DROLS
no fl

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

,This document describes the PC11 PILOT Computer-Assisted Instruction/(CAl) programming
language and the PC11 PILOT interpreter which presents instruction written in that
language. Two implementations of this interpreter exist: one for IBM POs and some
microcomputers compatible with them, and one for Sperry Univac 1100 Series computers.
Both are written in Pascal. A course about retrieval from the Defense RDT&E Online
System (DROLS) was written in PC11 PILOT. The course is available on diskettes and
to dial-up users of the DTIC ADPE Time Sharing Service (vrSS). The manual also
describes learner- .ntered commands which give help and control over the order of
presentation. / , -

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIED/UNLIMITED a SAME AS RPT. - DTIC USERS NCLASSIFIEM tIMLIMITED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE Onhide Area Code) 22c. OFFICE SYMBOL

PC11 PILOT REFERENCE MANUAL

Richard G. Thornett

OFFICE OF INFORMATION SYSTEMS AND TECHNOLOGY
DEFENSE TECHNICAL INFORMATION CENTER

CAMERON STATION
ALEXANDRIA, VA 22304-6145

1 ccessijfl Fa

FTIS GW\A&I
DTLC TkB l

lkianfloup;Et El

A~ei~W I Codes

Av& a/or

Spec__

1. PCII PILOT INTRODUCTION 1
1.1 PCII PILOT I
1.2 Document Description 1

2. PREPARING AND PRESENTING PCll PILOT PROGRAMS 3

2.1 Preparing and Presenting PC11T PILOT Programs 3
2.1.1 Executive Control Language Fundamentals 3

2.1.1.1 Demand Run Initiation 3
2.1.1.2 Naming and Creating Files 4
2.1.2 PILOT Course Preparation and Presentation 5
2.1.2.1 PILOT Course Preparation 6
2.1.2.2 PILOT Course Presentation 7
2.2 Preparing and Presenting PC11P PILOT Programs 10
2.2.1 DOS Fundamentals 10
2.2.1.1 Starting DOS Processes 10
2.2.1.2 Naming and Creating DOS Files 11
2.2.2 PC11P PILOT Course Preparation and Presentation 12
2.2.2.1 PC11P PILOT Program Preparation 13
2.2.2.2 PCI1P PILOT Program Presentation 13

3. THE PCll PILOT LANGUAGE 15
3.1 Conventions Used in Describing Commands 15
3.2 Command Format 15
3.3 Variables 16
3.3.1 Numeric Variables 16
3.3.2 Setting of System Numeric Variables by PILOT ... 17
3.3.3 String Variables 18
3.4 Expressions in PCl PILOT 18
3.4.1 Use of Expressions 18
3.4.2 Components of Expressions 19

4. PCl PILOT COMMAND DESCRIPTIONS 22
4.1 ACCEPT Command (A) 22
4.2 COMPUTE COMMAND (C) 24
4.3 END Command (E) 25
4.4 JUMP Command (J) 26
4.5 MATCH Command (M) 28
4.6 REMARK Command (R) 31
4.7 TYPE Command (T) 32
4.8 USE Command (U) 34
4.9 ESCSTOP Command (X) 36

5. PCI1 PILOT COURSE STRUCTURE AND USER COMMANDS 38
5.1 PC1l PILOT Course Structure 38
5.2 PC11 PILOT User Commands 38
5.2.1 SHOW User Command 39
5.2.2 GOTO User Command 39
5.2.3 BACK User Command 39
5.2.4 HELP User Command 40
5.2.5 STOP User Command 40,
5.2.6 NOTE User Command 40
5.2.7 TIME User Command 40
5.2.8 WAIT User Command 41
5.2.9 ESC User Command 41

APPENDIX A. HOW TO TAKE A PC11 PILOT COURSE IN THE
DTIC ADPE TIME SHARING SERVICE (DTSS) 42

APPENDIX B. HOW TO TAKE A PC11 PILOT COURSE USING AN
IBM PERSONAL COMPUTER 45

APPENDIX C. PC11 PILOT ERROR MESSAGES 47

APPENDIX D. TRANSFERRING FILES BETWEEN THE DTSS AND A
MICROCOMPUTER 52

APPENDIX E. MAINTENANCE OF DTSS PC11 PILOT SYSTEM 55

APPENDIX F. MAINTENANCE OF MICROCOMPUTER PC11 PILOT
SYSTEM 59

S

PCll PILOT REFERENCE MANUAL

1. PCll PILOT INTRODUCTION

This document describes the PCll PILOT computer-assisted instruction (CAI)

programming language and the PCll PILOT interpreter which presents

instruction written in that language. This interpreter was developed at
the Defense Technical Information Center (DTIC) for a CAI project. The

objective of the project is to provide both a capability for preparing and

presenting CAI and one or more prototype courses. The subject of the
courses is retrieval from the Defense RDT&E On-Line System (DROLS). RDT&E
means Research, Development, Test and Evaluation.

1.1 PCIl PILOT

PILOT is a simple but popular CAI authoring language used since the early

1970s. PILOT is an acronym for Programmed Instruction, Learning Or
Teaching. PILOT has been implemented on a wide variety of computers both
large and small. There are many versions of PILOT, and many extensions and
enhancements of the language are found in them.

PCIl Pilot was modeled on LHC 8080 PILOT, which is an extended version of
CORE PILOT '73 and executes on microcomputers. LHC 8080 PILOT was
developed by the Lister Hill National Center for Biomedical Communications.
PCl PILOT was developed by selecting a subset of the features of LHC 8080
PILOT and implementing them in Pascal 1100, using the LHC 8080 PILOT users
manual as a specification, There are some differences between
corresponding features of the two PILOTs.

In order to make PCll PILOT courses widely available, two implementations

were done. One is in the DTIC ADPE Time Sharing Service (DTSS), which is
hosted by a Sperry Univac 1100/61 computer and is accessible through
TYMNET. The other is for IBM Personal Computers (PCs) and some
compatibles. The time-sharing and personal computer implementations are
called PC11T and PCIIP, respectively.

The PCll PILOT Interpreter is written in the general purpose programming
language Pascal, for the following reasons:

1. Pascal is an easy-to-use high-level language.
2. Pascal programs are relatively portable.
3. The C programming language is not available in the DTSS.

The PC11T PILOT interpreter is written in Pascal 1100, which is used in
Sperry Univac 1100 Series computers. This Pascal was developed by M. S.
Ball of the U. S. Naval Ocean Systems Center and enhanced by Ira L. Ruben
of Sperry Univac. The PC1lP interpreter is written in IBM Pascal.

1.2 Document Description

Section 2 of this document gives a brief overview of the processes of
preparing and presenting PCll PILOT courses for each of the two
implementations. Section 3 gives an overview of the PCI1 PILOT language.

1

Section 4 describes each PCll PILOT command. Appendix A tells how to sign
onto the DTSS and take a PCIl PILOT course. Appendix B tells how to take a
PCII PILOT course using an IBM PC. Appendix C lists error messages which
might appear while preparing or presenting PCll PILOT courses. Appendix D
tells how use the MSKERMIT program to transfer files between the DTSS and
an IBM PC. Appendix E is about maintenance of the PC11T PILOT course
preparation and presentation system in the DTSS. Appendix F is about
maintenance of the PC11P PILOT course preparation and presentation system
in an IBM PC.

2

2. PREPARING AND PRESENTING PCll PILOT PROGRAMS

This section briefly describes PClI PILOT program preparation and

presentation for each of the two implementations.

2.1 Preparing and Presenting PCIIT PILOT Programs

PCl1T PILOT lives in the DTIC ADPE Time*Sharing Service (DTSS), which is
hosted by a Sperry Univac 1100/61 computer. PC11T executes under the
Sperry Univac 1100 Series Executive System (EXEC). The file management,
text editing and other features of the EXEC were used to prepare PILOT
programs. These features of the EXEC are described in the relevant Univac
documents.

This section briefly describes some EXEC Control Language (ECL) commands
useful in preparing and presenting PCIIT PILOT instructional units. For a
fuller description see the handbook "DTIC ADPE Time Sharing Service Users
Guide", DLAH 4185.7.

Section 2.1.1 gives basic information on the EXEC and ECL commands.

Section 2.1.2 describes ECL commands pertinent to PCIIT PILOT.

2.1.1 Executive Control Language Fundamantals

2.1.1.1 Demand Run Initiation

Demand processing is a mode of operation in which processing is dependent
on manual interface between the executive (EXEC) and the user during
processing. It is a conversational way of operating involving repeated
demand and response. Conversational operation by a remote terminal causes
the EXEC or a demand processor or an active program to react and respond
immediately. The terminal usually has a keyboard and a printer or cathode
ray tube (CRT). A demand terminal user must turn the terminal on, set its
various switches and establish the proper communication line connection if
operation is on a switched line network.

Once you are connected to the DTSS, you sign onto it. This is explained in
Appendix A. You start signing on by presenting a six-character site
identifier to the operating system. The operating system responds and
requests a user identifier and password. The character > is used to prompt
you for input. When these have been entered and accepted, an RUN ECL
command must be entered. An @ character is entered before each ECL command
to distinguish it from data. In the DTSS the @RUN command is ordinarily
entered automatically without the user seeing it. Among the parameters of
the @RUN command are the user's project identifier and account number. The
project identifier is the default qualifier (prefix) of the name of each
file referenced in the run. Thus if your project identifier is GRAPHICS
and you refer to a file as POSTERS, the full file name is GRAPHICS*POSTERS,
where the asterisk separates the qualifier from the rest of the file name.

A run is a group of tasks treated as a unit by EXEC. A runstream consists
of an @RUN command followed by other ECL statements and data. These
control statements direct the performance of individual tasks. The tasks
are executed in the order specified by the runstream. A run is terminated
by the first @FIN command entered from the terminal. After @FIN enter

3

- . ~~~~%'% * * * .V

I. - ;.

@@TERM to tell EXEC to disconnect you.

2.1.1.2 Naming and Creating Files

Here we consider only Univac 1100 Series disk files and their use as PILOT
program files. In this context a file name is a string of one to twelve
characters from the set containing A-Z, 0-9, - and $. Since $ is used in
system file names, it is better not to use it in user file names. In some
ECL commands a period is required after a file name, in others it is
optional, and rarely it is prohibited.

To create a new file, the @ASG command is used. For example

@ASG,UP COURSE-2.,F40///I000

creates file COURSE-2 as a disk file. The @ character tells EXEC that what
follows is an ECL command. ASG means assign. The U and P after the first
comma indicate options. The U indicates that the file is to be cataloged
unconditionally. The catalog is the EXEC's master file directory. The P
indicates that the file is to be public. The F40 parameter indicates the
type of mass storage equipment to be used (a type of disk drive). The
space separates the command name and options from the command's parameters.
Commas separate parameters and slashes separate subparameters. The number
1000 indicates that the file is to be limited to 1000 tracks. A track
holds 7168 characters coded in the ASCII code. ASCII stands for the
American Standard Code for Information Interchange.

A PCII PILOT program is an ASCII text file containing a sequence of lines,
each containing 80 characters or less. Lines may be entered into a file by
means of the text editor (ED). To start a new text file enter, for
example:

@ED,IQ COURSE-2.

Here @ED tells EXEC to start processor ED. The option letter I indicates
that this is the initial insertion into the file, and Q indicates that the
text is to consist of ASCII characters as opposed to Univac's Fieldata
code. (The ASCII code has 128 characters, including upper and lower case
letters. Fieldata has 64 characters and only upper case.) PCll PILOT
program files must be ASCII text files. File COURSE-2 must exist before it
can be edited. If the initial insertion process is completed, the file's
previous content (if any) will be lost.

After doing initialization, ED issues the prompt. Due to the I option, ED
expects lines of text to be input. Finish entering each line by entering a
return character. If you enter a nonempty line, ED inserts it into the
file and again issues the prompt. An empty line is zero or more spaces
followed by a return. The line entry mode of editor operation is called
INPUT MODE. To change from input mode to edit mode, the enter an empty
line.

In EDIT MODE a variety of commands are available for such things as moving
back and forth in the file, printing lines, locating character strings,
changing strings, and deleting and inserting lines. In addition to the
standard editor commands, the user may form and use macro commands.

4

Macro commands are editor commands formed and named by the user. A macro
command is a sequence of standard editor commands or macro commands or
both. Macros extend and specialize the capabilities of the editor.

To end an editing session and save its result, the user enters EXIT while
in edit mode. To cancel the editing session, the user enters OMIT while in
edit mode. To make sure that edits are not lost, free the file edited,
like this:

@FREE COURSE-2.

This command tells EXEC to update the directory entry of file COURSE-2. If
this is not done before disconnection, the edits may be lost. The @FIN
command frees all files assigned to the run. The FREE command is the
opposite of the ASG command. ASG associates a file with a run. FREE
removes such an association.

To view file COURSE-2 without changing it, enter:

@ED,R COURSE-2.

where the R option letter specifies read only mode in which insertions and
other changes are not allowed. Use this mode as a precaution against
accidentally changing what you view.

PROGRAM FILES are files which contain separately accessible parts which may
be referred to by name. They are called program files because many
computer programs and their components can be kept in one program file.
The named parts of a program file are called elements. There are three
kinds of elements. SYMBOLIC elements contain text. RELOCATABLE elements
contain elements produced by compilers or assemblers. ABSOLUTE ELEMENTS
are executable programs or processors. An element specifier consists of a
file name followed by a period followed by an element name. The rules for
element names are the same as those for file names.

A symbolic program file element can be edited or printed separately.

A PCll PILOT program is a text file which contains a sequence of PCll PILOT
commands. It is NOT a program file in the Univac 1100 Series meaning of
the term.

2.1.2 PCIIT PILOT Course Preparation and Presentation

A PCll PILOT COURSE is PCll PILOT program which is built of lessons which
are built of sections which are built of units. This special
lesson-section-unit (LSU) structure is explained in Section 5.1 below. For
simplicity we will talk as though all PCIl PILOT programs are courses,
although this is not necessarily so.

A PCIl PILOT course exists in two forms. In its first form, it is a text
file which consists of a sequence of PCll PILOT commands. In this form it
can be examined and modified by the text editor ED. Its second form is a
special random-access form which permits PILOT to get any course line
quickly. We call the first form the EDITABLE form of the course and the

5

second form the EXECUTABLE form. Similarly the help file used with a
course has an editable and an executable form. There is a preprocessor
which converts editable PCll PILOT courses to executable form, and another
preprocessor which converts editable PCIl PILOT help files to executable
form.

Preparing a PCII PILOT course includes preparing an editable course file
and help file, and inputting each of these to its preprocessor, which
outputs the executable file.

Presenting a PCll PILOT course includes specifying which executable course
and help files are to be used and starting the PCII PILOT interpreter,
which reads the files, presents the course, provides help, and otherwise
interacts with the learner.

2.1.2.1 PC11T PILOT Course Preparation

A PCIIT PILOT course in editable form is a standard text file containing a
sequence of commands written in the PC11T PILOT language. An example is
the course "Introduction to DROLS Retrieval (IDR)." A course can be
prepared on a word processor or microcomputer and communicated to the DTSS.
The Univac text editor (ED) may be used to prepare or modify a course.

The preprocessor SEQRAN converts an editable course file into an executable
course file. SEQRAN inputs file SEQFILE and outputs file RANFILE. The
following ECL is used:

@ASG,A SEQFILE.
@ASG,A RANFILE.
@PILOT.SEQRAN
@FREE RANFILE.

Both files must exist. They must be assigned to the run, which statements
I and 2 do. Statement 3 starts execution of processor SEQRAN. Statement 4
assures that the output file is saved.

A PCIIT help file in editable form is a standard text file containing terms

and their meanings. Each term can have up to 60 characters, including
spaces. An example is ACCESSION NUMBER. A start-of-header (SOH) character
(ASCII code 1) must immediately follow the last character of each term.
The term's meanino begins on the next line. A blank line must follow the
meaning. The terms must be in alphabetical order. An example is the help
file for the course IDR. A help file may be prepared on a word processor
or a microcomputer and communicated to the DTSS. The Univac text editor
(ED) may be used to modify it.

The preprocessor HSEQRAN converts an editable help file into an executable
help file. HSEQRAN inputs file HSEQFILE and outputs file HRANFILE. The
following ECL is used:

@ASG,A HSEQFILE.
@ASG,A HRANFILE.
@PILOT.HSEQRAN
@FREE HRANFILE.

6

Both files must exist. They must be assigned to the run, which statements
1 and 2 do. Statement 3 starts execution of processor HSEQRAN. Statement
4 assures that the output file is saved.

The @USE command is used to tell SEQRAN or HSEQRAN what files to operate
on. For example, if a course part is called PPIE (PILOT Program I in
editable form), enter:

@USE SEQFILE,PP1E
@USE RANFILE,PP1
@ASG,A SEQFILE.
@ASG,A RANFILE.
@PILOT.SEQRAN
@FREE RANFILE.

This ECL sequence converts editable course file PPIE to executable file PPI
ready for input to PCIIT PILOT. A similar sequence can convert help file
PHIE to PHI.

2.1.2.2 PC11T PILOT Course Presentation

When the PC11T Pilot interpreter is started, it reads executable files
PILOPROG and PILOHELP, and writes to file USERRESPONSE. The first two

* . files were called RANFILE and HRANFILE, respectively, by the preprocessors
which produced them. Each response entered by the user during the session
is written to USERRESPONSE, which may be viewed later to see some of what
the course and the learner did. Current practice is to use files named
URFAAOO, URFAAO1, URFAA01, and so on through URFZZ99. To present course
PPI with help file PHI and response file UR01 enter:

@USE PILOPROG,PPI
@USE PILOHELP,PH1
@USE USERRESPONSE,UR01
@ASG,A PILOPROG.
@ASG,A PILOHELP.
@ASG,A USERRESPONSE.
@PILOT.DATA

The first three commands give the course, help and response files the names
PC11T PILOT expects. The next three assign the files to the run. The last
command starts the PILOT interpreter.

* Presentation of PILOPROG ends in one of the following ways:
,

4

1. PCIlT PILOT encounters an END command in the course when no
subroutine is active (see section 4.3 below).

2. The learner enters the user command STOP. (See section 5.2.5
below.)

3. PCIIT PILOT detects an error in the course.

4. PC11T PILOT makes a mistake.

If course presentation ends in way 1, 2 or 3, PC11T PILOT saves file

7

USERRESPONSE and disconnects the learner from the DTSS. If PILOT detects
an error (way 3), it emits an error message before exiting. APPENDIX A
lists and explains the error messages. Special arangements may be made to
have disconnection omitted when courses are being tested.

Following are two samples of PCIIT PILOT error messages:

Error message 3:
Error in reading PILOT course line.

At PILOT course line 1

Error message 11:
No value expression in COMPUTE command.

At PILOT course line 544
C:X-

The first message resulted from a bad executable course file. The second
message resulted from a COMPUTE command which did not specify a value to be
given to variable X. The course line is shown if possible.

If PASCAL detects a PILOT error (way 4), it emits a message like the
following:

Subscript out of range.
Error occurred at line 1298 in procedure GETPOP
Called from line 2203 in program PILOT

If EXEC detects an error (way 4) and tells Pascal, messages like these may
be seen:

I/O TYPE 01 CODE 24 CONT 12 REENT ADR: 011757 BDI: 000004
PACKET ADR 047513

The lucid message above courtesy of 1100 Exec.
Error occurred at line 328 in procedure RRANREC
Called from line 337 in procedure RDIRREC
Called from line 478 in procedure RANSEQIN
Called from line 2186 in course PILOT

In the unlikely event that a Pascal message appears, please write it down
and notify the CAI staff.

If PILOT terminates with a Pascal error message, the learner cannot enter
ECL commands. If you try to enter an ECL command, the message "DATA
IGNORED - IN CONTROL MODE" appears. To restore contact with EXEC enter:

@END

If you ever find PILOT not executing when you are still connected, restart
the course or terminate your connection. To restart the course, enter:

@CAI

To terminate your connection, enter

8

@@TERI4

'I
4

4

9

2.2 Preparing and Presenting PCllP PILOT Programs

PCllP PILOT executes in IBM PCs and some microcomputers compatible with it.
The file management, text editing and other features of the IBM Disk
Operating System (DOS) were used to prepare PILOT programs. These features
are well described in IBM Disk Operating System manuals and various other
documents. IBM DOS and MSDOS are both products of Microsoft, Inc. and are
nearly the same. So PC11P PILOT will probably operate properly in MS DOS
systems.

This section briefly describes some DOS commands useful in preparing and
presenting PC11P PILOT courses. For a fuller description see the DOS
manuals.

Section 2.2.1 gives basic information on the DOS commands and files.
Section 2.2.2 describes DOS commands pertinent to PC11P PILOT.

2.2.1 DOS Fundamentals

2.2.1.1 Starting DOS Processes

After DOS is started, when the system is waiting for you to tell it what to
do, a prompt like this appears:

A>_

where the underscore is the prompt character. This says that the default
disk drive is the A drive and that DOS is waiting for a command. To change
the default drive to the C drive enter:

C:

The prompt changes to

C>_

When specifyng a file on a disk in a drive other than the default drive,
prefix the drive letter followed by a colon to the file name like this:

A>B:WS

This entry might be used to start the Wordstar (WS) word processing
program.

Four kinds of commands in an MS DOS system are internal commands, batch
commands, external commands and executables. Examples are:

Example Command Type

directory internal
idr-ab.bat batch
print.com external
pilot.exe external executable

The first column above gives the names of four commands. DIRECTORY (DIR

10

for short) is an internal command, that is, one built into DOS. The other
three are contained in files which have the names listed. To start one of
these, simply enter the part of its name to the left of the dot. PRINT and
PILOT are external commands. A batch command is not really a command but a
file containing one or more commands which DOS executes one at a time. For
example, file IDR-AB.BAT contains one command:

PILOT B:IDR IDRHELP

which is used to start PC11P PILOT in a microcomputer which has just two
disk drives: A and B.

External commands often require one or more file names or other information
specifying what is to be done. For example, if you use the print command
to print a file, you must specify the name of the file. For example:

PRINT PPIE

tells DOS to print file PP1E in the current directory. If you do not
specify required files, DOS will prompt you for them.

2.2.1.2 Naming and Creating Files

A PCIIP PILOT program is built in a DOS text file containing a sequence of
lines, each containing 80 characters or less. In DOS a file specifier
consists of three items: a drive specifier, a filename and an extension.

The drive specifier need not be entered if the file is in the current
directory. A file specifier need not include an extension.

The DRIVE SPECIFIER is a letter followed by a colon. A FILENAME is from
one to eight characters long. The characters can be a letter, a decimal
digit or one of the following:

$# & @ ! () - () I _'

A filename EXTENSION is a period followed by one, two or three characters.
Some extensions are meaningful to DOS, such as the BAT, COM and EXE
extensions in examples above. BASIC program filenames have the extension
BAS. Other extensions, like TXT, just tell people what kind of data is in
the file.

There are various ways to build DOS text files. For example word
processing packages like Wordstar may be used. The DOS line editor (EDLIN)
can be used for quick creation or modification of DOS text files. To start
EDLIN enter:

* EDLIN <filespec>

where <filespec> is a file specifier. For example:

EDLIN B:COURSE2

If COURSE2 does not exist in the current B drive directory, a new file
named COURSE2 is created there and the following message and prompt are
displayed:

a 1

NEW FILE

where the underscore is the cursor. EDLIN has two modes of operation:
command mode and insert mode. When you see the prompt after starting
EDLIN, you are in command mode. To enter text into a file, get into insert
mode by entering the command:

I

Then type in lines of text, pressing the enter key at the end of each line.
When finished inserting, return to command mode by pressing the Ctrl-Beak
keys (hold down Ctrl, press Break, release both). To save the file, enter
an E (End edit) command. To quit an editing session without saving changes
made during it, enter Q (Quit edit).

In command mode you can delete, edit, insert and display lines. You can
copy or move one or a sequence of lines. You can search for, delete, or
replace text within one or more lines. You can transfer the content of a
file into the file you are editing. This can speed insertion of frequently
occurring sequences. For example the command

ttprc

can insert

T:
T:Press <RETURN> to continue.
A:

if file tprc contains this sequence.

The DOS editor keys facilitate editing. They are Fl through F5, Del, Esc
and Ins.

2.2.2 PC11P PILOT Program Preparation and Presentation

As explained in section 2.1.2 above, a PCll PILOT program is a file
containing a sequence of PCIl PILOT commands. A PCll PILOT course consists
of a PCll PILOT program which has a special lesson-section-unit (LSU)
structure, and a related help file containing terms and their meanings.
(The course structure is described in section 5.1 below.) Each of these
two files exists two forms: an editable form and an executable form. An
example of a PC1IP course is "Introduction to DROLS Retrieval" (IDR), which
is contained in files IDRE, IDRHELPE, IDR and IDRHELP.

Preparing a PCll PILOT course includes preparing an editable course file
and an editable help file, and inputting each file to its preprocessor,
which outputs the executable file.

Presenting a PC11 PILOT course includes specifying which executable course
and help files are to be used and starting the PCll PILOT interpreter,
which reads the files, presents the course, provides help, and otherwise
interacts with the learner.

12

2.2.2.1 PC1lP PILOT Program Preparation

A PC11P PILOT course in editable form is a standard DOS text file
containing a sequence of commands written in the PClI PILOT language. An
example is IDR. An editable course file can be prepared on a word
processor or minicomputer and communicated to an IBM PC. The DOS EDLIN
line editor may be used to prepare or modify a course.

Preprocessor SEQRAN converts an editable course file into an executable
course file. SEQRAN calls its input file SEQFILE and its output file
RANFILE. To start SEQRAN enter, for example:

SEQRAN PP1E PPl

where PP1E (pilot program 1) is the editable file and PPI is the executable
file. If either file name is omitted, SEQRAN prompts for it:

C>SEQRAN
SEQFILE: PPIE
RANFILE: PPI

where PP1E and PPI are responses to prompts.

A PCl1P PILOT HELP FILE in editable form is a standard DOS text file
containing terms and their meanings. Each term can have up to 60
characters, including spaces. An example is ACCESSION NUMBER. A
start-of-header (SOH) character (ASCII code 1) must immediately follow the
last character of each term. In EDLIN enter an SOH by typing Ctrl-V
followed by A. The term's meaning begins on the next line. A blank line
must follow the meaning. The terms must be in alphabetical order. An
example is IDRHELPE, the help file for course IDR.

A PC11P help file can be prepared on a word processor or minicomputer and
communicated to an IBM PC. The DOS EDLIN line editor can be used to
prepare or modify a help file.

Preprocessor HSEQRAN converts an editable course file into an executable
course file. HSEQRAN calls its input file HSEQFILE and its output file
HRANFILE. To start HSEQRAN enter, for example:

HSEQRAN PH1E PHI

where PH1E (pilot help file 1 in editable form) is the editable file and
PHI is the executable file. If either file name is omitted, HSEQRAN
prompts for it.

2.2.2.2 PC11P PILOT Program Presentation

*When the PCll PILOT interpreter is started, it reads the executable course
and help files specified on the start line. To start PC1lP PILOT enter,
for example:

PILOT PPl PHI

13

I II W III II''II V(!

If either file name is omitted, PCIP PILOT prompts for it. For example:

A:PILOT
PILOPROG: PP1
PILOHELP: PHI

where PPl and PHI are responses to prompts.

Presentation of PILOPROG ends in one of the following ways:

1. PClIP PILOT encounters an END command in the program when no
subroutine is active (see section 4.3 below).

2. The learner enters the user command STOP. (See section 5.2.5
below.)

3. PC11P PILOT detects an error in the course.

4. PC11P PILOT makes a mistake.

Ways 1 and 2 are normal terminations. If PCIIP PILOT detects an error (way
3), it emits an error message and exits. APPENDIX C lists and explains the
error messages.

Following are two samples of PC11P PILOT error messages:

Error message 3:
Error in reading PILOT program line.

At PILOT program line 1

Error message 11:
No value expression in COMPUTE command.

At PILOT program line 544
C:X-

The first message resulted from a bad executable course file. The second
message resulted from a COMPUTE command which did not specify a value to be
given to variable X. The course line is shown if possible.

In the unlikely event that PC11P makes a mistake, Pascal or DOS usually
detects it and emits an error message. Please write it down and notify the
CAI staff. If your PC fails to respond, reboot the system and restart
PILOT.

14

i' t -.

3. THE PCll PILOT LANGUAGE

Each PCll PILOT program consists of a series of commands which tell the
host computer system how to deliver some instruction. Each command is a
line in a text file. Each line contains at least two and at most 80
characters. The characters are coded in the ASCII code.

3.1 Conventions Used in Describing PCll PILOT Language

Following are some conventions we use in describing PCll PILOT:

* One upper case letter is used for the PILOT command code.

* Tokens are used to represent parts of commands. Each token
consists of one or more words enclosed by angle brackets and
separated by underscore characters. Examples are <label> and
<operation-code>.

* Items enclosed in square brackets are optional, as in [#]X.

* Exclamation characters are used to separate alternatives, as
in [#!$].

3.2 Command Line Format

Each PILOT command is in one of the following formats:

(*<label>]<operation code>[<cond>]:

[*<label>]<operationcode>[<cond>]:<operand>

Labels are optional in command lines. When a label is present, it is
preceded by the character *, and begins in the second character position of
the line. A label may appear on a line by itself:

*PART-TWO

When a labeled line contains a command, one space separates the label from
the operation code. A label contains from 1 to 12 characters other than
control characters and spaces. In comparing labels, lower and upper case
characters are treated as different. A given character string may not be
used to label more than one line in the same program. Labels are used as
operands incommands which transfer control. UNIT LABELS are labels which
consist of exactly four digits. They mark the start of a course unit.
They are related to course structure and user commands (see section 5
below).

The operation code starts in character position 1 in unlabeled commands.
Otherwise it starts after the space after the label. The operation code
tells the interpreter what kind of action to take, such as outputting text
to the user. There are nine PCll PILOT command codes, and each is a single
letter:

Code Command Function

A ACCEPT Take a response from the learner.

is

C COMPUTE Assign a value to a variable.
E END Terminate subroutine or course.
J JUMP Specify which PILOT program line to execute next.
M MATCH Look for string(s) in the learner's response.
R REMARK Comment for reader of editable PILOT program.
T TYPE Output text to learner.
U USE Call a subroutine.
X ESCSTOP Stop skipping PILOT program lines.

The first eight commands are standard. The X command is peculiar to PCII.
The nine commands are explained in detail in section 4 below.

An execution condition may be specified immediately after the operation
code. The character : immediately follows the operation code, if no
execution condition is present. Otherwise it immediately follows the
condition.

The execution condition may be the letter N or the letter Y or an
expression in parentheses. N and Y are mutually exclusive, but each may be
combined with an expression. These alternatives may by symbolized as
follows:

<cond>-N!Y!(expression)!.J(expression)!Y(expression)

N and Y are short for the expressions &N<O and &Y<>O, respectively, and
are related to MATCH commands. An execution condition is an arithmetic or
Boolean expression. When a command containing an execution condition is
processed, the expression is evaluated and the action is taken if and only
if the expression is true. Expressions and their evaluation are discussed
in section 3.4 below.

The operand field is required or optional depending on the operation code.
The ACCEPT command usually has no operand. The END command never has one.
The JUMP and USE commands must have one. The TYPE command may or may not
have one.

3.3 Variables

PC11 PILOT has a small set of variables for saving values. Two types of
variables are supported: numeric variables and character string variables.
Arrays are not supported.

3.3.1 Numeric Variables.

Two sets of numeric variables are available: system numeric variables and
application numeric variables. Each set contains one variable for each
letter of the alphabet. Upper and lower case letters in numeric variable
names are treated the same. Each numeric variable name consists of a type
indicator followed by a letter. The system variable names are &A through
&Z, and the application variable names are #A through #Z. The prefix # may
be omitted in expressions.

All numeric variable values are stored as single precision real values. In
the Univac 1100 version of PCl PILOT the magnitude can be between 10**38

16

and 10**-38, with a significance of approximately 8 digits. In the IBM PC
version, the maximum value is about 1.7E+38, with about 7 digits of
precision.

All numeric variables are set to zero when execution of the PCIl Pilot
interpreter starts. The value of a numeric variable may be altered by an
ACCEPT command or a COMPUTE command. When an ACCEPT command containing a
numeric variable name in its operand field is executed, the numeric
variable is set to the value of the first numeric expression in the input
from the user. When a COMPUTE command contains a numeric variable name at
the start of the operand field, the variable is set to the value of the
expression following the equal sign (-). Examples are:

A:#R
C:p-q*r

When a TYPE command contains a numeric variable name in its operand field,
the value of the variable is rounded up, converted to an integer string and
output in place of the variable name. For example, the command sequence

C:q-12.3
C:r-45.6
C:p-q*r
T:#P is the answer.

will output "561 is the answer."

3.3.2 System Numeric Variables

The values of some system variables are set by the PILOT Interpreter. It
is best not to alter these values. The description of each PILOT command
in section 4 below tells which system variables (if any) are altered by the
command and how. Following is a summary:

&A is set by each ACCEPT commmand to the number of times in a row
the particular command (PILOT program line) has been executed.

&C is set to the value (true or false) of the execution condition
expression in the most recently executed statement containing such a
condition.

&L is set by each ACCEPT command to the length of the response
received, not counting the return character and any trailing blanks.

&M is set to zero by each ACCEPT command and increased by I by each
MATCH command which finds a match.

&N is set by each MATCH command to false (zero) if a match is

found, and to -1 (true) if not.

&X is set to 0 by each ESCSTOP command. When &X is false (0), both
"T:Press <RETURN> to continue." commands and ESCSTOP commands stop escape
skipping. When &X is true (nonzero), only an ESCSTOP command stops escape
skipping.

17

&Y is set by each MATCH command to the position number in its
operand field of the first matching operand if a match with an item in the
most recent user response is found, and to zero if not.

3.3.3 String Variables

String variables are used to save and output character strings. Each
string variable name consists of the type indicator $ followed by 1 to 12
characters from the set containing A-Z, a-z, 0-9, dash (-) and underscore
(_). In string variable names, upper case letters are different from lower
case letters. The value of a string variable is a string of from 0 to 80
characters.

String variables are used to save character strings received by the ACCEPT
command. String variables are also set by the COMPUTE commands. Example:

C:TEAMl-BIRDS
C:TEAM2-'TIGERS'

In the second example, the apostrophes are not part of the string.

When a TYPE command containing a string variable name in its operand field
is executed, the variable's value replaces the variable name in the output.
If, however, the string variable has not been given a value during this
execution of the PILOT interpreter, the variable name itself is output.

PCll initializes variable $NAME to Learner and variable $LOOP to LOOP (for
use with J:@A commands).

3.4 Expressions in PCll PILOT

In computing languages, EXPRESSIONS are constructs denoting rules of
computation for obtaining values. Although expressions in PCIl PILOT are
similar to expressions in other programming languages, what is said about
expressions in what follows is meant to apply only to the former.

3.4.1 Uses of Expressions

Expressions may appear in PCIl PILOT commands in two places: in the
execution condition field of any command, and in the operand field of
certain ACCEPT and COMPUTE commands. Examples are:

C:G-3
C: P-Q+R
T(G<l):No more guesses.
A:#X

Here 3, Q+R and G<l are expressions. The first command gives the value 3
to the variable G. The second command computes the value of Q+R and gives
it to variable P. The third command is executed if and only if the value
of the expression G<1 is true, that is, if and only if G is less than 1.
The fourth command does not treat #A as an expression but as a variable
which is to receive the value of an expression to be entered by the user.
The command prompts for a response from the user, evaluates the first
expression in the response, and gives the value to #X.

18

3.4.2 Components of Expressions

Expressions are composed of operands, operators and parentheses.
A numeric constant, such as 1.5, or a numeric variable name by itself is a

simple expression. Before any expression is evaluated, all spaces are

removed from it.

The value of an expressioi. may be Boolean (true or false) or numeric. If
the value of an execution condition expression is numeric, it is converted
to Boolean. Zero becomes FALSE and any other value becomes TRUE. If the
value of an expression to be given to a numeric variable is Boolean, it is
converted to numeric. FALSE becomes 0 and TRUE becomes -4.

Operands in expressions are constants, numeric variables or expressions.
For example in the expression A+(5.7*&B), 5.7 is a constant, A and &B are
numeric variables, + and * are operators, and 5.7*&B is an expression.
Operands may be numeric or Boolean. Numeric operands have real (floating
point) values. Boolean operands have one of two values: TRUE or FALSE.

Operators may be divided in three ways: by number of operands, by type and
by precedence.

Operators are divided by NUMBER OF OPERATORS into unary or binary. A UNARY
OPERATOR is one which has only one operand, such as the - operator in -7.
The unary operators are +, -, NOT and BNOT. BNOT means "bitwise NOT", that
is, each bit in the operand is changed from 0 to 1 or from 1 to 0. The
BNOT operator converts the operand to an integer, changes each 0 bit in it
to 1 and each 1 bit to 0, and converts the resultant integer value to real.

A BINARY OPERATOR is one which has two operands, such as the operator * in
the expression a*b. The symbols + and - (plus and minus) are used both as
unary and as binary operators. The way they are used in a particular case

depends on the context. (Other symbols, such as - and ^ could have been
used for unary plus and minus.) Unary + is an identity operator. Unary -

reverses the sign of the operand.

Operators are divided by TYPE into numeric, relational and Boolean. The
NUMERIC OPERATORS are unary +, - and BNOT, and the following:

Operator Meaning

• multiplication
/ division
// integer division
+ addition
- subtraction
BAND bitwise AND
BOR bitwise OR

4 BXOR bitwise exclusive OR

Integer division here means dividing one real number by another, converting
the result to an integer (fraction is dropped), and converting the integer
to a real value. Bitwise binary operations convert each operand to an
integer, perform an AND, OR or XOR on corresponding bit pairs, and convert

19

the result to a real value.

The RELATIONAL OPERATORS are -, 0, <, <-, > and >-, meaning equal, not

equal, less than, less than or equal, greater than, and greater than or
equal.

The BOOLEAN OPERATORS are NOT, AND and OR.

Examples are:

expression operator type

x+y+z + numeric
f < g+h < relational

a<b OR c<d OR Boolean

The operand(s) of each numeric or relational operator must be numeric. The
operand(s) of each Boolean operator must be Boolean.

Operators are divided by PRECEDENCE into seven groups. If an expression
contains one or more pairs of parentheses, the expression inside each
parenthesis is evaluated before those outside it. In expressions
containing no parenthesis, operators with higher precedence are executed
before those with lower precedence. Sequences of operators with the same
precedence are executed from left to right. The unary numeric operators +,
- and BNOT have the highest precedence. The Boolean operator OR has the
lowest. The following table shows the precedence and other characteristics
of each group.

operator prece- number of operator operand result
group dence operands type type type

+ - BNOT 7 1 numeric numeric numeric
* / // 6 2 numeric numeric numeric

+ - BAND 5 2 numeric numeric numeric

BOR BXOR 5 2 numeric numeric numeric
- <> < 4 2 relational numeric Boolean
<- > >- 4 2 relational numeric Boolean

NOT 3 1 Boolean Boolean Boolean
AND 2 2 Boolean Boolean Boolean
OR 1 2 Boolean Boolean Boolean

Note that relational operators input numeric values and output Booleans.
This is the only way Booleans arise in PCll PILOT. There are no Boolean
variables in which to save Boolean values. However, if a COMPUTE command
specifies that a numeric variable is to be given a Boolean value, that
value is converted from true or false to -1 or 0, respectively. These can
be converted back to Boolean by using a relational expression, as in the
following example:

C:V-(7*X*Y)<L
T(V<>0):The product is under the limit.

Here V1O would be equivalent to V-TRUE, if the latter were an expression
in PCII PILOT.

20

Parentheses may be used in expressions for clarity or to override the
left-to-right or precedence rules. Following are illustrations of
precedence:

expression equivalent expression

a*b+c (a*b)+c
a+b*c a+(b*c)
NOT a-l AND b-2 (NOT a=l) AND b=2
p-l OR q-l AND r-2 p=l OR (q-1 AND r-2)

21

4. PCll PILOT COMMAND DESCRIPTIONS

This section describes each of the nine PCll PILOT commands. For each
command the following are given: meaning, syntax, description, example(s),
system variable(s) altered and notes.

4.1 ACCEPT Command (A)

Meaning: Accept input from the user or a string variable

Syntax:

[*<label>]A[<cond>]: (type Al)
[*<label>]A[<cond>]:<numericvariable> (type A2)
[*<label>]A[<cond>]:<string_variable> (type A3)
[*<label>]A[<cond>]:@<string_variable> (type A4)

Description:

A type Al command writes the prompt character to the user, waits for a
response, inputs it, simplifies it, and puts it into the accept buffer with
one space before and after it. The simplification consists of removing
trailing blanks and converting lower case letters to upper case.

Type A2 and A3 commands have the same effect as type Al, except that each
sets a variable according to the user's response. A type A2 command sets
a numeric variable to the numeric value of the first expression in the
response. The expression begins with the first character in the set:

(+ - 0123456789

and ends with the end of the accept buffer. A type A3 command sets a
string variable to the user's response without trailing blanks.

A type A4 command does not prompt or input a user response but copies the
value of the specified character string variable into the accept buffer.

Examples:

A:
A:#C
A:$LASTNAME
A:@$TEST-RESPONS

Example 1 is a type Al command, which outputs the prompt character, inputs
a user response, simplifies it and puts it between two spaces in the accept
buffer.

Example 2 is a type A2 command, which puts the response in the accept
buffer and sets the value of system numeric variable &C to the numeric
value of the first expression in the response.

Example 3 is a type A3 command, which puts the response in the accept
buffer and sets the value of string variable $LASTNAME to the user
response.

22

-'n - z

Example 4 is a type A4 command, which does not solicit or accept a user
response but copies the value of string variable TEST-RESPONS into the
accept buffer, putting a space before and after it.

System variables altered:

&A is set to the number of times in a row this accept command (PILOT
program line) has been executed. Only executions of accept commands are
used in determining the value of &A.

&C is set to the value of the execution condition, if the ACCEPT has
one.

&E is set to -1 (true) if the ACCEPT type is A2 and the response
contains a numeric expression. Otherwise, it is set to false (0).

&L is set to the number of characters in the response, not counting
trailing blanks, return characters, or the spaces put in the accept buffer
before and after the response.

&M is the successful match counter and is set to zero.

Notes:

1. Lower case letters in the response become upper case in the accept
buffer.

2. User responses are truncated after 78 characters.

3. Type A4 commands may be used to test a PILOT program's reaction to
various user responses.

4. Special responses called user commands are recognized by the PC11
PILOT interpreter. These are described in section 5.2.

23

*I

4.2 COMPUTE command (C)

Meaning: Set a numeric variable to the value of a numeric or
Boolean expression, or set a string variable to the user's
response.

Syntax:

[*<label>]C[<cond>]:<numericvariable>-<expression> (type Cl)
[*<label>]C[<cond>]:<string_variable>-<string>!'<string>' (type C2)

Description:

A type Cl command sets the value of the numeric variable specified in the
operand to the numeric value of the arithmetic or Boolean expression
following the equal sign C-).

A type C2 command sets the value of the string variable specified in the
operand to the character string following the equal sign (-). The string
may put between single quote marks (') if these are the character after the
equal sign and the last character in the command. If no character follows
the equal sign, the string variable is set to the empty string.

Examples:

R:R is the number of correct answers.
R:W is the number of wrong answers.
R:Compute the average and present it to the user.
C:R-21
C:W-27
C:$U-quiz
C:A-(100*R)/(R+W)
T:Your average for this $U is #A%.

System variables altered:

&C is set to the value of the execution condition, if the COMPUTE
command has one.

Notes:

1. Variables are explained in section 3.3.

2. Expressions are explained in section 3.4.

24

4.3 END Command (E)

Meaning: END subroutine or program.

Syntax:

[*<label>]E[<cond>]:

Description:

When an END command is executed, the return line stack is tested. If it is
empty, the PILOT program terminates. If it is not empty, the line whose
number is on top of the stack is executed next. This is the line after the
most recently executed USE command. The END command decreases the return
line stack top pointer by one.

Example:

T:Do you wish to see the list of topics?
A:
M: Y,
UY:SHOW-T-LIST

R:End of program
E:

*SHOW-T-LIST

T: GENE SPLICING

R:End of subroutine.
E:

System variables altered:

&C is set to the value of the execution condition, if the END command
has one.

Notes:

1. Subroutine calls and returns are explained in section 4.8, which is
about the USE command.

25

4.4 JUMP Command (J)

Meaning: Jump to a labeled line in the PILOT program being executed.

Syntax:

[*<label>]J[<cond>]:[*]<targetlabel> (type J11
[*<label>]J[<cond>]:@A (type J2)
[*<label>]J[<cond>]:@M (type J3)

Description:

In a type Jl command, <target label> is a statement label with or without a
preceding asterisk. When a type Jl command is executed, the line executed
next is the target label's line. If the line contains a command, the
command is executed. If it does not, the first command following the
label's line is executed. If the label does not exist, the PILOT
interpreter emits an error message and terminates.

When a type J2 command is executed, the line executed next is the most
recently executed ACCEPT command.

When a type J3 command is executed, the line executed next is the next
following MATCH command.

Examples:

T:Do you wish to continue?
A:
M: N
JN:@M
T:Bye!
E:
M: Y
JY:GO
T:Enter Y for Yes or N for No.
J:@A
*GO T:On you go!

This sequence prompts the learner and takes a response. If the response is
the letter N, "Bye!" is output to the user and the program (or subroutine)
terminates. If the response is the letter Y, "Here you go!" is output to
the user and the program continues. If the response is not M or Y, "Enter
Y for Yes or N for No." is output to the user, and the ACCEPT command is
executed again. The program cycles until the learner enters an N or a Y (1
character).

System variables altered:

&C is set to the value of the execution condition, if the JUMP has one.

Notes:

1. Using a type J1 or J2 command is sometimes more convenient than
using a label.

26

2. The five-character MATCH command M: , can be used instead of a
label as the target of the forward jumping command J:@M. An M: , command
affects no system variable. Of course there must be no MATCH command
between the J:@M and the M: command. The M: , command affects no system
variable. The two-character command M: is a fatal error.

3. An ACCEPT command of the form A:@$<stringvariable> can be used
instead of a label as the target of the backward jumping command J:@A, if
the string variable exists, that is, has been given a value (usually by a
COMPUTE command). The command A:@$LOOP is convenient, since it uses a
string variable initialized to LOOP by the PCll PILOT interpreter. Of
course there must be no ACCEPT command between the J:@A and the A:@$
commands. The A:@$ command affects the accept buffer and some system
variables.

27

4.5 MATCH Command (M)

Meaning: Compare each operand with the content of the accept buffer to
determine if any operand is in the buffer.

Syntax:

[*<label>]M[<cond>]:<string>!<stringvariable>[....] (type Ml)

[*<label>]M[<cond>]:,<s><string>!<stringvariable>[<s>...] (type M2)

Description:

Each MATCH command has one or more operands. In type Ml commands
successive operands are separated by a comma. In type M2 commands the
operand field starts with a comma followed immediately by the character to
be used as a separator for this command. This is needed if a match operand
contains a comma.

The MATCH command takes its operands one at a time, from left to right, and
compares them with the content of the accept buffer. Each operand is a
string constant or the value of a string variable. If an operand matches a
string in the buffer, the "no match" system variable &N is set to false
(zero), the match pointer &Y is set to the position number in the operand
list of the first matching operand, if any, and the match counter &M is
increased by 1. If no operand is found in the accept buffer, &N is set to
-1 (true), &Y is set to false (0), and &M is set to 0.

Examples:

R:Start of program
T:Please enter your identifier.
A:$IDENTIFIER
M: SMITH , JONES , BROWN
T(&Y-l):Hello Steve.
T(&Y-2):Hello Jean.
T(&Y-3):Hello Bobby.
TN:$IDENTIFIER is not a valid identifier.
EN:

If the learner's identifier is not one of the three listed, the END command

terminates the program.

The MATCH command sets system variables &N and &Y as follows:

command response &N &Y

M: SMITH ,JONES, BROWN, SMITH 0 1
M: SMITH ,JONES, BROWN, JONES 0 2
M: SMITH ,JONES, BROWN, BROWN 0 3
M: SMITH , JONES , BROWN , GREEN -l 0

If the user's response contains one or more of the three names in the MATCH
operand list, &N is set to 0 and &Y is set the lowest position number in

28

u~

the list of any matching response item. Thus if the user enters BROWN
JONES SMITH, the MATCH will set &Y to 3. If no operand item is in the
response, &N is set to -1 (true) and &Y set to false (0).

Thus if JONES is entered, &Y is set to 2 and the second TYPE command
outputs "Hello Jean" to the user. If any of the three listed names is
entered, the TN and EN commands are not executed. If the response contains
none of the MATCH operands, the TN command outputs its message and the EN
command terminates the program. If the user enters Green, the TN outputs
"GREEN is not a valid identifier."

The ACCEPT command puts a space in the accept buffer before and after the
response. The following example shows the effect of spaces in MATCH
command operand lists:

R: Suppose a learner's response to a prompt is "warm" (4 letters),
R: so that the accept buffer contains " WARM " (six characters).
R: If the following commands are then executed, which ones will NOT set
R: the match pointer &Y to 1?
R:
*1 M:WARM
*2 M: WARM
*3 M:WARM
*4 M: WARM
*5 M:WAR
*6 M: WAR
*7 M:WAR
*8 M: WAR
*9 M:ARM
*10 M: ARM
*11 M:ARM
*12 M: ARM

See note 5 below for the answer.

System variables altered:

&C is set to the value of the execution condition, if the MATCH command
has one.

&M is increased by I if a match is found.

&N is set to 0 (false) if a match is found, and to -1 (true) if not.

&Y is set to the position number in the operand list of the first
matching operand if a match is found, and to 0 if not.

Notes:

1. The ACCEPT command puts a space in the accept buffer before and
after the user response.

2. Put a separator after the last character of the last MATCH operand.
IF no separator follows the last operand, trailing spaces in the operand
are removed before the MATCH is executed.

29
I

3. Lower case letters in MATCH command operands are changed to upper
case before comparing begins.

4. The five-character MATCH command M: , can be used instead of a
label as the target of the forward jumping command J:@M. An M: , command
affects no system variable. Of course there must be no MATCH command
between the J:@M and the H: command. The M: , command affects no system
variable. The two-character command M: is a fatal error.

5. The answer to the question in the "WARM" example is: 7, 8, 10 and
12.

.0

ppQ

pp.

4.6 REMARK Line (R)

Meaning: The operand field contains a remark.

Syntax:

[*<label>]R:<character_string>

Description:

REMARK is has the form of a command but is not a command and is not
executed. REMARK lines are used to tell things to people reading a listing
of the editable form of the program. A REMARK line may appear anywhere in
a program.

Example:

R:Variable #T holds the number of tries.

System variables altered: None.

Notes:

1. The SEQRAN preprocessor outputs R: (two characters) instead of
nonempty REMARK statements. This reduces the size of the output file
without changing line numbers, so that the interpreters's error messages
can give the line number of the erroneous line in the editable PILOT
program file.

2. Labels on REMARK lines are permitted. Execution conditions in
REMARK statements are permitted but serve no purpose.

31

4.7 TYPE Command (T)

Meaning: Type text to the user.

Syntax:

[*<label>]T[<cond>]:[<string>!<variable>] . . [;]

Description:

The TYPE command is used to output text to the user. The text to be
displayed is specified in the operand field. There may be zero or more
operands. The pieces of text specified by operands are output with no
character between them. Each specifier in the operand field is a string
constant or a variable name.

String constants are output without change, except that "$$", "&&" and "#"

are changed to "$", "&" and "#", respectively. These characters are
doubled in TYPE operand string constants to make it possible to distinguish
between variables and constants.

If a specifier is a string variable name, the value of the variable (a
string) is output. If the string variable has not received a value during
the execution of the program, the name of the variable, preceded by a $
character is output. If a specifier is a numeric variable, value of the
variable is rounded up, converted to an integer string and output.

After all specified characters have been output, a return character is
output to position to the next line. If there is no operand, just the
return is output. The return is omitted if the last character in the
operand is a semicolon (;).

Examples:

R:Get the user's state of being and echo it.
T:How are you today?
A:$HOW-YOU
T:I'm $HOW-YOU too.

R:Keep price in a string variable.
C:$P-'349.95'
R:Keep item number, month, day and year in separate numeric
R:variables.
C:I-29007
C:D-31
C:M-12
C:Y-86
R:Output item number, price and date.
T:The price of item #I is $$$P (plus tax).
T:The offer is good only through
T:#M/#D/#Y.

The output of the second example is:

The price of item 29007 is $349.95.

32

The offer is good only through 12/31/86.

System Variables Altered:

&C is set to the value of the execution condition, if the TYPE command
has one.

Notes:

1. The values of all numeric variables are kept as real values. The
way these values are rounded up for output by the TYPE command depends on
the sign. For positive values, the rounded value is the greatest integer
less than or equal to the sum of the real value and 0.5. For negative
values, the rounded value is the least integer greater than or equal to the
sum of the real value and -0.5.

33

%

4.8 USE Command (U)

Meaning: Use a subroutine.

Syntax:

[*<label>]U[<cond>]:[*]<targetlabel> (type Ul)
[*<label>]U[<cond>]:@A (type U2)
[*<label>]U(<cond>]:@M (type U3)

Description:

The USE command specifies which line in the PILOT program is to be executed

next and provides for a return to the line immediately following itself.

In a type Ul command, <targetlabel> is a statement label with or without a
preceding asterisk. When a type Ul command is executed, the line executed
next is the target label's line. If the line contains a command, the
command is executed. If it does not, the first command following the
label's line is executed. If the label does not exist, the PILOT program
emits an error message and terminates.

When a type U2 command is executed, the line executed next is the most
recently executed ACCEPT command.

When a type U3 command is executed, the line executed next is the next
following MATCH command.

The USE command increases the return line stack top pointer by one and puts
the number of the line after itself on top of the stack. Thus the USE
statement does a subroutine call. The sequence of statements from the
label which is the target of the USE command and the END command which
returns control to the line after the USE is a subroutine. Subroutines may
be nested, that is, one subroutine may contain a USE command calling
another subroutine.

When an END command is executed, the return line stack is tested. If it is
empty, the program terminates. If it is not empty, the line whose number
is on top of the stack is executed next. This is the line after the most
recently executed USE command. The END command decreases the return line
stack top pointer by one.

Example:

*START U:FIRST
T:command.
E:

*FIRST U:SECOND

T:handy
E:
*SECOND U:THIRD

T:is a

*THIRD

T:U

34

I'

E:

This example is a subroutine or a program, depending on the context.

System variables altered:

&C is set to the value of the execution condition, if the USE command

has one.

Notes:

1. The USE and JUMP commands have the same effects, except that USE
provides for a return and thus affects the next executed END command.

2. A subroutine may contain JUMP commands, but it is good practice not

to jump into or out of a subroutine. Instead enter at the subroutine's
first line and exit through the END command which is its last line.

3. The return line stack can hold ten line numbers, so no more than 10
USE commands may be executed without an END being executed.

4. The five-character MATCH command M: , can be used instead of a

label as the target of the forward jumping command U:@M. The M: , command
affects no system variable. Of course there must be no MATCH command
between the U:@M and the M: commands. The M: , command affects no system
variable. The command M: is a fatal error.

5. An ACCEPT command of the form A:@$<stringvariable> can be used
instead of a label as the target of the backward jumping command U:@A, if

the string variable has been given a value (usually by a COMPUTE command).

The command A:@$LOOP is convenient, since it uses a string variable

initialized to LOOP by the PCII PILOT interpreter. Of course there must be

no ACCEPT command between the U:@A and the A:@$ commands. The A:@$ command

affects the accept buffer and some system variables.

I

a35

~~~~ % . 1'

4.9 ESCSTOP command (X)

Meaning: Stop line skipping started by the response ESC.

Syntax:

[*<label>]X[<cond>]:

Description:

If escape skipping is in progress, the escape indicator is turned off.
Otherwise nothing is done.

The three-letter response ESC is a user command recognized by any ACCEPT
command. It starts escape skipping by turning on the escape indicator.
This suppresses execution of PILOT program commands until either of two
conditions is fulfilled: (I) an ESCSTOP command is met, or (2) the value of
system variable &X is false (not zero) when the following command is met:

T:Press <RETURN> to continue.

In the second case, the "Press <RETURN>" line and the line after it
(usually A:) are also skipped. In either case, &X is set to 0 and the
escape indicator is turned off.

The purpose of the ESC command is to permit the learner to break free from
a question or exercise. The ESCSTOP command is used to control how much is
skipped.

Example:

C:&X-l
T:What command displays all the directory paths on a drive?
A:
M: TREE,
JN:@A
T:Good $NAME!
T:
T:Press <RETURN> to continue.
A:
T:What command displays the names of the files in all the
T:directory paths on the default drive?
T:
A:
M: TREE/F,
JN:@A
T:Very good $NAME!
T:
T:Press <RETURN to continue.
A:
X:
T:Let's turn to another topic.

This example has two ACCEPT-HATCH-JUMP sequences each of which repeats
until the correct answer or ESC is entered. Since &X is made true by the

36

first command, if ESC is entered, skipping won't stop until the "Lets turn"
line.

System variables altered:

&C is set to the value of the execution condition, if the COMPUTE
command has one.

&X is set to 0 (false).

Notes:

1. Since no JUMP, USE, or END (or other) command is executed during
escape skipping, the interpreter proceeds through the PILOT program
examining each line until an escape-stopping condition is fulfilled or the
end of the program is reached.

2. The escape indicator is a Boolean variable in the interpreter.
Only one thing turns it on: the response ESC to an ACCEPT command. Only
two things turn it off: (1) an ESCSTOP command or (2) a "T:Press <RETURN>
to continue." command when system variable &X is false (0).

3. User commands are described in section 5.2 below.

37

ALq '

wJ

5. PCIl PILOT COURSE STRUCTURE AND USER COMMANDS

THE PCll PILOT interpreter recognizes nine user commands. Some of these
commands presuppose that the PCII PILOT program being presented is a PCll
PILOT course. Section 5.1 describes the PC1I PILOT course structure.
Section 5.2 describes the PCII PILOT user commands.

5.1 PCll PILOT Course Structure

A PCll PILOT COURSE is built of lessons which are built of sections which
are built of units. This lesson-section-unit (LSU) structure distinguishes
courses from other PCII PILOT programs. Each UNIT in a course starts with
a unit header line which has the following format:

*<un> T:U<un> <unit heading>

where <un> is a unit number consisting of exactly four decimal digits and
<unit heading> is a descriptive title containing up to 66 characters. Thus
each unit header line is a labeled TYPE command. For example:

*0220 T:U0220 OVERVIEW OF DTIC

The label 0220 is a unit label. In each PCII PILOT course, the unit labels
must be in ascending sequence. If not, the SEQRAN preprocessor catches the
error and terminates abnormally.

In each unit number, the first two digits are the lesson number. The next
digit is the section number relative to the lesson, and the last digit is
the unit number relative to the section. Thus unit 1234 is unit 4 of
section 3 of lesson 12.

Lesson 0 of each course introduces the learner to the PCIl PILOT CAI
system.

The first unit number in each lesson ends in 00. For example:

*1100 T:UllOO DROLS SORT COMMANDS

The first unit in a lesson usually gives an overview of the lesson. The
first unit number in a section ends in 0.

5.2 PC11 PILOT User Commands

PC11 PILOT provides nine user commands. They give the learner some control
over the presentation, offer assistance, and permit user feedback. The
user commands are:

SHOW NOTE ESC
GOTO TIME
BACK WAIT
HELP or ?
STOP

NOTE, TIME and WAIT are available in the dial-up version but not in the
microcomputer version of PC1l PILOT.

38

User commands other than ESC are recognized when and only when the

following prompt appears:

Press <RETURN> to continue.

5.2.1 The SHOW User Command

The SHOW user command lists all or a subset of the unit headings in the
course. Such a listing is, in a way, an outline of the course. You may
show all headings, lesson headings only (top level), lesson and section
headings (top two levels), or some other subset of headings.

The question mark (?) can be used in show command unit numbers. It is a
"wild card" meaning any digit. Thus 123? means 1230 through 1239.

Examples are:

Command Headings shown

SHOW depends on answers to prompts
SHOW ???? all in course
SHOW 0021 one
SHOW 10?? all in lesson 10
SHOW 123? all in section 3 of lesson 12
SHOW 0900 1199 all in lessons 9, 10 and 11

If a subset of unit numbers is specified, it may contain many numbers which

are not unit labels in the course being presented.

5.2.2 The GOTO User Command

The GOTO user command lets the user to alter the order in which course
units are presented. For example:

GOTO 0021

causes unit 0021 to be presented next. The unit number must have exactly
four digits. Thus the following commands go nowhere:

GOTO 333 GOTO 55555

If there is a problem with the unit number part of the command, the learner
is helped.

5.2.3 The BACK User Command

The BACK user command returns to a previously presented part of the course.
BACK or BACK 1 returns to the line after the most recently presented
"T:Press <RETURN> to continue." (PRC) line. BACK 2 returns to the line
after the second most recent PRC line, and so on.

The GOTO command erases the PRC line trail, so that BACK cannot return
beyond the unit gone to.

39

.J jA%'V~

5.2.4 The HELP User Command

The HELP user command is just the word HELP or a question mark (?) alone on
a line. The prompt character becomes '?' when help starts. It becomes '>'

again when the learner quits getting help.

The HELP feature is primarily a glossary with an index to it. These permit
quick recall of meanings of some terms related to the course subject or the
PCII PILOT system. You can also view the page (window) of the index which
contains (or would contain) a given term.

The HELP feature is self explanatory. Try it.

5.2.5 The STOP User Command

The STOP user command lets the learner terminate the course. When STOP is
entered, the learner is asked:

DO YOU WISH TO TERMINATE THIS COURSE (Y/N)?

to make sure there's no mistake. If the answers is Y, the course is
terminated. If it is N, the 'Press <RETURN>' prompt reappears. If you
plan to stop and continue the course later, write down the current unit
number. Then you can skip the preceding material next time (using the GOTO
command).

5.2.6 The NOTE User Command

The NOTE user command is available only in the dial-up PCll PILOT system.

The NOTE user command enables you to comment on the course or the course
presentation system or other topic. You are prompted to enter lines of
text. Questions and other types of input are accepted. The lines entered
are placed in the session's user response file and can be read by the
training staff after your the session ends.

You are encouraged to comment and question freely. Notes can lead to
course improvement and removal of user difficulties.

Put short notes on the command line like this:

NOTE This part is confusing.

To make a long note, enter only:

NOTE

and you'll be prompted for lines until you enter an empty line.

5.2.7 The TIME User Command

The TIME command is available only in the dial-up PCll PILOT system.

To obtain the date and time from the dial-up computer enter:

40

6Z

TIME

5.2.8 The WAIT User Command

The WAIT command is available only in the dial-up PCll PILOT system.

If you do not respond to any prompt within a few minutes, you receive the
following message:

TIMEOUT WARNING

Then, if you do not respond within another few minutes, your terminal will
be disconnected, so that another dialer can use the communication port.
But the wait command resets the timeout timer.

Suppose you anticipate disconnection but are not quite ready to continue
with the course. Enter the WAIT command to avoid disconnection.

5.2.9 The ESC User Command

The three letter response ESC is recognized by every ACCEPT command. The
purpose of this user command is to permit the user to break free from a
question or exercise.

ESC starts escape skipping by turning on the escape indicator. This causes
execution of PILOT program lines to be suppressed until (1) an ESCSTOP (X)
command is met or (2) the value of system variable &X is false (0) when
this PILOT line is met:

T:Press <RETURN> to continue.

In the second case, the "Press <RETURN>" line and the following line
(usually A:) are also skipped. In either case &X is set to 0 (false), and
the escape indicator is turned off. ESCSTOP commands and "Press <RETURN>"
lines control how much is skipped.

41

APPENDIX A

HOW TO USE THE DTIC CAI COURSE "INTRODUCTION TO DROLS RETRIEVAL"
IN THE DTIC TIME SHARING SERVICE (DTSS)

PLEASE READ ALL INSTRUCTIONS BEFORE SIGNING ON

1. A computer-assisted instruction (CAI) system which delivers
"Introduction to DROLS Retrieval" is in the DTIC ADPE Time Sharing System
(DTSS). This system is hosted by the DTIC Univac 1100/61 computer. To be
able to take the course you must sign onto this system. This requires you
to have a DTSS site identifier (6 characters), user identifier (6
characters) and password (up to 6 characters). If your organization is
registered to use the DTSS, obtain the sign-on items from the appropriate
person. If your organization is not registered to use the DTSS, you may
obtain sign-on items for temporary guest use of the DTSS for CAI only.

2. In the following description of the sign-on process, we refer to some
terminal keyboard keys and some characters. The symbols [control],
[return] and [backspace] represent keys. The return and backspace keys
correspond to the RETURN and BACKSPACE characters, which are represented as
numbers in computers. The control key is used with other keys to enter
special characters. For example, to enter the CANCEL character, hold down
the control key, press and release the X key, then release the control key.
In other words, "Enter [control]X."

3. When you are ready to take a CAI course, you must first sign onto the
DTSS.

a. Check your terminal's characteristics. It must operate at 300
baud, in the half-duplex mode, with even parity or none. If your terminal
has switches for these parameters, set them.

b. Dial 274-8401 or 274-8574 for access by commercial lines. If
you have an acoustic coupler modem, listen for the high-pitched carrier
tone. When you hear it, place the telephone handset into the coupler.
When the carrier light on your modem or terminal comes on, the connection
has been made. If you receive a busy signal or no answer, try the other
number. If this fails, try again later.

c. Enter your site identifier. No RETURN is required. The DTSS
should respond within 20 seconds with the following prompt:

ENTER USERID/PASSWORD:

d. Enter your USERID, a slash (/), and your password immediately

after the prompt character (>). For example:

>XYZI2A/OPENUP[return]

If the USERID you enter is unacceptable, the system says "ID NOT ACCEPTED"
and disconnects you. If this happens, hang up the phone and go back to
step a. If the USERID is acceptable but the password is wrong for it, the

42

system repeats the prompt of step c. If this happens, go back to step d.

If you make a mistake in entering your USERID/PASSWORD and realize you did
before you press (return], DO NOT BACKSPACE. Instead, enter a CANCEL
character, as explained in item 2 above. This tells the DTSS to discard
all you entered after the last prompt. It is like backspacing to the
prompt. The DTSS computer does not act on the BACKSPACE character until
after step f. So, if you enter a BACKSPACE character before that, it will
be part of your USERID/PASSWORD entry and make it unacceptable. You may
use the CANCEL character at any time in your session to discard a line you
are entering. When you do this, the DTSS then sends you a RETURN and a
LINE FEED character but not a prompt.

e. After you sign on, something like the following appears:

*DESTROY USERID/PASSWORD ENTRY

*UNIVAC 1100 OPERATING SYSTEM LEV. 37R2C*DTIC87(RSI)*

*** USERS OF THIS TERMINAL HAVE THE RESPONSIBILITY ***

*** TO RESTRICT USE TO AUTHORIZED PERSONNEL ONLY

RUN NUMBER 63

LAST RUN AT: 100783 091712
DATE: 101483 TIME: 075048

4. The CAI system starts the PILOT interpreter presenting the course
Introduction to DROLS Retrieval. Soon you see:

PILOT INTERPRETER VERSION 1.2

and after a pause

INTRODUCTION TO DROLS RETRIEVAL - VERSION 3.4

The version number may change. The course is meant to be self-explanatory.

If the course terminates abnormally, enter the following commands to
restart CAI:

@END[return]
*Q @CAI[return]

5. If the course terminates normally, the message "PILOT CAI PROGRAM DONE"
appears and you are disconnected and your carrier light goes out. Turn off
your terminal and modem and hang up the telephone.

6. Some CAI user commands are available. These are explained at the
beginning of the course. One user command is NOTE. Please use it to
comment on the course. If you want to talk baout it, include your name and
phone number in a comment.

43

7. All your responses to course prompts are recorded in a user response

file in the DTSS and may be used to assess the course.

8. For assistance call:

Rich Thornett, DTIC-EA, (703) 274-7661 or Autovon 284-7661.

44

APPENDIX B

HOW TO USE THE DTIC CAI COURSE "INTRODUCTION TO DROLS RETRIEVAL"
IN AN IBM PERSONAL COMPUTER

The PC11P PILOT interpreter and course IDR can be put on two double-sided,
double-density 5 1/4" floppy diskettes and sent to learners. Disk 1
contains the following files:

Disk File Content

I PILOT.EXE PCll PILOT interpreter

I IDRHELP Help file for course IDR
1 IDR-AB.BAT Commands for using A and B drive

1 IDR-AC.BAT Commands for using A and C drive

I IDR-C.BAT Commands for using C drive only
2 IDR Course IDR

Each of the three BAT file contains just 1 line:

Current
Drive BAT File Content

A: IDR-AB.BAT PILOT B:IDR IDRHELP
A: IDR-AC.BAT PILOT C:IDR IDRHELP
C: IDR-C.BAT PILOT C:IDR IDRHELP

In the AB and AC cases, if the current drive is not the A drive but, for
example the B drive, change to the A drive by entering:

B>A:

In the AB case, put disk 1 in the A drive and disk 2 in the B drive, and

then enter:

A>IDR-AB

In the AC case, put disk 2 in the A drive and copy the disk 2 files to the
C drive, like this:

A>COPY A:*.* C:

Then remove disk 2, put disk 1 in the A drive, and enter:

A>IDR-AC

In the C drive only case, copy the files from both disks to the current
directory on the C drive. Do this by putting each disk in the A drive and
entering:

COPY A:*.* C:

When the files from both disks have been copied, change to the C drive, if
necessary, and then enter:

45

C>IDR-C

When the line in the BAT file is processed, PILOT is copied into the PC's
primary memory. If PILOT is too large for it, you will get an error
message. Otherwise the PC11P PILOT interpreter starts presenting the
course "Introduction to DROLS Retrieval." Soon you will see:

PILOT INTERPRETER VERSION 1.2

and then

INTRODUCTION TO DROLS RETRIEVAL - VERSION 3.4

The version numbers may change. The ciourse is meant to be
self-explanatory.

The CAI user commands described in section 5 of this manual are explained
at the beginning of the course.

For assistance call:

Rich Thornett, DTIC-EA, (703) 274-7661 or Autovon 284-7661

46

APPENDIX C

PCll PILOT ERROR MESSAGES

HSEQRAN ERROR MESSAGES

Each error makes the output file useless unless otherwise stated.

01 Invalid character in term.
Each character in a help glossary term must be a space, a
decimal digit, a letter, or one of the following:

Lower case letters are converted to upper case.

02 Term truncated to 60 characters.
A term in the input glossary file contains more than 60
characters. Characters after the 60th are dropped. This
message is only a warning. The error will not make the output
file unusable.

03 Input term out of sequence.
The input terms must be sorted. The sorting sequence depends
on the characters in the terms. These depend on the numeric
values of the characters in the ASCII code. The space
character is first. The others are ordered as follows:

!"#$%&'()*+,-./O..9:;<->?@A..Z[\]A_

where 0..9 and A..Z represent the digits and letters. Lower
case is converted to upper before sequence checking.

04 Term directory overflow.
The input file contains more terms than the term directory can
hold. Current maximum is 1188. If expansion is needed,
contact CAI staff.

05 OUTPUT PILOT HELP FILE UNUSABLE.
The input file contains a fatal error. The output file was
made useless.

SEQRAN ERROR MESSAGES

Each error makes the output file useless unless otherwise stated.

01 Too many lines in PILOT program.
Split program into two. Current maximum is 256000 lines.

02 PILOT program line directory overflow.
Each entry in directory corresponds to a program line storage
block. Current maximum is 1534 blocks. Split program into
two. If directory expansion needed, contact CAI staff.

47

03 Line label too long.
Line label contains more than 12 characters.

04 Duplicate line label.
The same label is used in two or more lines. Change one of the
labels and JUMP or USE commands which refer to the changed
label.

05 Unit line label out of sequence.
Each unit line label (four-digit number) must be greater than
each unit line label before it. Change the out of sequence
label or one or more preceding unit line labels so that each is
greater than all those beofre it.

06 Line label table overflow.
The program contains too many line labels (not counting unit
labels). The current maximum is 600. If expansion is needed,
contact CAI staff.

07 Unit line label table overflow.
The program contains too many unit line labels. The current
maximum is 600. If expansion is needed, contact CAI staff.

08 No label or command in line.
Each input line is squeezed and trimmed. If it then contains
one or more characters but does not contain a line label or a
PILOT command, this error message is emitted. If it contains
no characters, it is not an error and is replaced by an empty
remark statement (R:). This is done so that each line will
have the same number in the input and output files. Squeezing
removes characters whose codes are not between 32 (space) and
126 (tilde). Trimming removes spaces at the end of a line
(trailing spaces).

09 No colon in command line.
Each input line which contains a command must contain a
colon (:) after the command. There may be a parenthetical
execution condition between the command name and the colon.

10 No target label in JUMP or USE command.
Each JUMP or USE command must contain an argument specifying
the line to be executed next. The argument must be a line
label or, in a JUMP command, @A or @M.

11 OUTPUT PILOT PROGRAM FILE UNUSABLE.
The input file contains a fatal error. The output file was
made unusable by filling its line directory with zero bits.

PILOT 1100 ERROR MESSAGES

01 Pilot program empty.
No lines in program. Rerun SEQRAN preprocessor with correct
course file name.

48

N..- -

02 Error in PILOT program line directory.
Rerun SEQRAN preprocessor with correct course file. If error
still occurs, contact CAI system staff.

03 Error in reading PILOT program line.
Rerun SEQRAN preprocessor with correct course file. If error
still occurs, contact CAI system staff.

04 Label length not 1-12 characters.

05 No valid command name in line.
Each PILOT program line must contain a command name.

06 Error in command execution condition.

07 No colon in line.
Colon (:) must follow PILOT command and its optional
parenthetical execution condition expression.

08 Error in ACCEPT command argument.
v, Argument is optional in ACCEPT command, but if present must be

correct.

09 No receiving variable named in COMPUTE command.
COMPUTE command argument starts with a variable type indicator
followed by the name of the variable which is to receive a

*- " value.

10 No equal sign in COMPUTE command.
A' COMPUTE command must have equal sign after name of variable to
* receive a value.

11 No value expression in COMPUTE command.
COMPUTE command must specify a value to be given to the
variable. The value is an expression to the right of the
equal sign.

12 No target label in JUMP command.
JUMP command argument must specify the line to jump to. This
is done by a line label or @A or @M.

13 JUMP target label undefined.
Program line label specified by argument of JUMP command does
not exist in the program.

14 JUMP to self not allowed.
JUMP command specifies its own line label as target. This is
not allowed, since it can cause an endless loop.

15 No comparand in MATCH command.
MATCH command argument must be a list of strings to be compared
with user response.

16 USE command (subroutine call) stack overflow.

49

Number of subroutine calls (USE commands) minus number of
returns from subroutines (END commands) exceeds limit.
Current limit is 10.

17 String name length not 1-12 characters.

18 String name character invalid.
Each character in a string variable name must be a letter, a
a digit, a hyphen, or underscore.

19 String table overflow.
Too many string variables used in program. Current limit is
24.

The following errors occur in expression evaluation. They are not fatal,
that is, the program keeps running. The expression may be due to the
program alone or may contain a user response or part(s) of one.

20 Too many left parentheses in expression.

21 Too many right parentheses in expression.

22 Non-digit in fraction in real number in expression.

23 Real number in expression not well-formed.

24 Bad numeric variable name in expression.
Invalid name follows numeric variable type indicator in
expression.

25 Expecting operator missing.

26 Unary operator missing where expected.

27 Binary operator missing where expected.

28 NOT operator where binary operator expected.

29 Arithmetic operand with unary Boolean operator.
Operands must be of same type as operator.

30 Boolean operand with unary arithmetic operator.
Operands must be of same type as operator.

31 Arithmetic operand with Boolean operator.
Operands must be of same type as operator.

32 Boolean operand with arithmetic operator.
Operands must be of same type as operator.

33 Boolean operand in arithmetic comparison.
Operands must be of same type as operator.

34 Unidentified operator in polish stack.
Contact CAI staff.

50

35 Real variable value table overflow.
Contact CAI staff.

36 Expression evaluation stack overflow.
Expression too complex. Current limit is 80.
Try using two or more smaller expressions.

37 Expression evaluation stack underflow.
Contact CAI staff.

38 Expression evaluation parenthesis stack overflow.
Proceding from left to right in expression, the number of open
parenthesis characters encountered minus the number of close
parenthesis characters met is too large. Current limit is 16.

39 Expression evaluation parenthesis stack underflow.
More close parenthesis characters in expression than open
parenthesis characters.

40 Polish stack overflow.
Contact CAI staff. Current limit is 80.

51

APPENDIX D

TRANSFERRING FILES BETWEEN THE DTSS AND A MICROCOMPUTER

Text files may be sent from the DTSS computer to a microcomputer or from a
micro to the DTSS. Here we consider using a microcomputer with a modem and
a communications software program, such as CROSSTALK, KERMIT or SMARTCOM.

Such communication programs have a command mode and a connect mode. In
COMMAND MODE what you type is taken as a command to the communication
program. In CONVERSATION MODE, what you type goes out through your
communication port to your modem and through it to a computer or other
device if you are connected.

In command mode you can set communication parameters and enter certain of
the microcomputer's Disk Operating System (DOS) commands. You can, for
example, show a disk's file directory and delete files. Sending in either
direction requires a file ready to receive the data, entering a receive
command at one end, and entering a send command at the other.

To transmit a file you must start a sending processor at one end and a
receiving processor a the other. In the case of Kermit, there is a Kermit
processor in the DTSS called KERMIT11O0 and a Kermit processor in the
microcomputer called MSKERMIT. Each of these processors can send or
receive.

To send a file FROM THE DTSS TO A MICROCOMPUTER using Kermit, you first
start MSKERMIT be entering:

MSK 1200

This puts you in command mode. Enter CONNECT to go connect mode, dial the
DTSS and sign on. Then assign the file to be sent and start KERMIT1100.
For example:

@ASG,A COURSE-2.
@ADD A.KERMIT

Then return to command mode by entering:

Ctrl-]c

that is, hold down the Ctrl key, press], release the Ctrl key and then
press c. Then enter GET and respond to the prompts as in the following
example:

Kermit-MS>GET
Remote source file: COURSE-2.
Local destination file: COURSE2

Note that the file names need not be the same. During the transfer you
will see screens like the following:

File name: COURSE-2. AS COURSE2

52

No

KBytes transferred: 1

Receiving: In progress

Number of packets: 19
Number of retries: 0

Last error: None
Last warning: None

When the file has been transferred, Kermit will emit a beep, you will be in
command mode, and the screen will look like this:

File name: COURSE-2. AS COURSE2
KBytes transferred: 8

Receiving: Completed

Number of packets: 128
Number of retries: 0

Last error: None
Last warning: None

Enter:

CONNECT

The first command puts you thorugh to the DTSS. The second entry stops
KermitllO0. Sign off the DTSS in the usual way, return to command mode and
enter:

QUIT

which terminates MSKERMIT. This completes the DTSS-to-micro file
transmission process.

To send a file FROM THE MICRO TO THE DTSS using Kermit, start MSKERMIT and
sign onto the DTSS as explained above. Then establish a reception file in
the DTSS as in the following example:

@FREE LESSON-7.
@DELETE,C LESSON-7.
@ASGUP LESSON-7.,F40///00

The FREE and DELETE commands remove file LESSON-7 if one exists.

Now return to command mode as explained above and enter:

SEND LESSON7 LESSON-7.

During the transfer you will see screens like the following:

File name: LESSON7 AS LESSON-7.
KBytes transferred: 0

Percent transferred: 7%

53

Sending: In progress

Number of packets: 10
Number of retries: 0

Last error: None
Last warning: None

When the file has been transferred, Kermit will emit a beep, you will be in
command mode, and the screen will look like this:

File name: LESSON7 AS LESSON-7.
KBytes transferred: 8
Percent transferred: 100%

Sending: Completed

Number of packets: 128
Number of retries: 0

Last error: None
Last warning: None

When the file has been transferred, Kermit will emit a beep and you will be
in command mode. Enter:

CONNECT

@FREE LESSON-7.

The first command puts you thorugh to the DTSS. The second entry stops
KermitllOO. The FREE command tells EXEC to update the LESSON-7's directory
entry to reflect the its current condition. The file may now be examined
or modified using the ED processor or presented by PILOT 1100.

"54

-VI

APPENDIX E

MAINTENANCE OF PC11T PILOT SYSTEM IN

THE DTIC ADPE TIME SHARING SERVICE (DTSS)

This appendix was written under the assumption that the reader will have
studied section 2.1 of this manual.

A computer-assisted instruction (CAI) system which presents the course

"Introduction to DROLS Retrieval" is in the DTIC ADPE Time Sharing System
(DTSS). This system is hosted by the DTIC Univac 1100/61 computer.
Instructions for learners using this system are given in Appendix D of this
manual.

This appendix describes the components of the PC11T PILOT presentation
system and how it works. It discusses restoring the system in case files
are lost or damaged and updating the course "Introduction to DROLS
Retrieval" (IDR).

1. In the DTSS actions take place in the following projects and accounts:

PROJECT ACCOUNT USE

CAI DTDDDCAI0001 Prepare CAI
CAITEACH DTDDDCAIO002 Present CAI
CAILEARN DTDDDCAI0003 Receive CAI

We will discuss files and processors in each of these groups. But first
let's review some fundamentals about files and elements.

PROGRAM FILES are files which contain separately accessible parts which may
be referred to by name. These parts are called elements. There are three
kinds of elements. SYMBOLIC elements contain text. RELOCATABLE elements
are produced by compilers and assemblers. ABSOLUTE elements are executable
programs or processors. An element specifier consists of a file name
followed by a period followed by an element name. The rules for element
names are the same as those for file names.

Files which are not program files can contain many different kinds of data.
A text file contains a sequence of lines of text. A text file can be
copied into a symbolic element of a program file, and the other way around.
For example, to copy file PPl into A.PP1 enter:

@ED,IQ A.PP1
@EDIT
ADD PP1.
EXIT
@FREE A.

To copy element A.PH1 to file PHI enter:

@FREE PHI.
@DELETE,C PH1.
@ASG,U PHi.,F33///lO00
@ED,IQ PHI.

55

@EDIT
ADD A. PHl
EXIT
@FREE PHI.

An "ADD" file or element is one which contains ECL commands and, where
appropriate, related data. For example, if file XXX contains one of the
last two examples and element A.YYY contains the other, then entering:

@ADD XXX

@ADD A.YYY

will accomplish both copies.

2. CAI PREPARATION PROJECT FILES AND PROCESSORS

The CAI preparation project (CAI) contains files and processors used in
preparing and testing PC11T PILOT programs, courses and help files. The
following files are especially important: A, ED$PF, MACBACKUP, PILOT,
IDRO013, IDRHELP and JL. (We will sometimes omit the file name qualifier
and asterisk.)

File CAI*A is an all-purpose program file. Element A.U is "added" each
time someone starts a run specifying project CAI. This sets the backspace
to the backspace character and makes text editor (ED) macros available.

File CAI*ED$PF (synonym E) is a program file containing text editor macros
as symbolic elements. The text editor (ED) can be used to put new macros
in this file or to modify existing macros.

File CAI*MACBACKUP (synonym: ED$PF) contains macros in executable form.

This file has a special structure.

Program file CAI*PILOT contains the following files:

Element Type Use

TIDY Processor Improves course file appearance
SEQRAN Processor Preprocesses a raw PCIT PILOT program
HSEQRAN Processor Preprocesses a raw PC11T PILOT help file
DATA Processor Presents a PC1lT PILOT program
SEQRANX1 Add Applies SEQRAN to PP1 producing PP1R
HSEQRANX1 Add Applies HSEQRAN to PHl producing PHIR
Xl Add Presents course PPIR using help file PHIR

Calling the interpreter DATA makes it possible for the learner to input
lines starting with the character @.

File CAI*IDROO13 contains course IDR in raw form.

File CAI*IDRHELP is contains in raw form the help file used with course
IDR.

File JL contains an element for each lesson in course IDR. These are named
JL.O0, JL.Ol through JL.13.

56

1411i i i '1 11 10 11

3. CAI PRESENTATION PROJECT FILES AND PROCESSORS

The CAI presentation project (CAITEACH) contains files and processors used
in presenting PC11T PILOT courses. The following files are especially
important: PILOT, PILOTPROGRAM, PILOTHELP and URFP.

File LEARN*PILOTPROCRAM contains in presentable form the current version of
PC11T PILOT course IDR.

File LEARN*PILOTHELP contains in presentable form the current version of
the help file used with course IDR.

File LEARN*URFP contains the four-character suffix of the user response
file most recently created. For example, if URFDE67 was the last
userresponse file, URFP contains DE67.

File LEARN*PILOT is a program file containing the following elements:

Element Type Use

MENU Add Calls processors A, B and DATA
A Processor Assigns file URFP
B Processor Updates file URFP, assigns course, help

and user response files
DATA Processor Presents PILOTPROGRAM using file PILOTHELP
END Add Restores ECL mode
ENDOFF Add Restores ECL mode and disconnects user

When EXEC encounters the command @CAI in a user runstream, system processor
SYS$*LIB$.CAI is started. It gives EXEC the command @ADD LEARN*PILOT.MENU.
This causes the three commands in element MENU to done in sequence:

@LEARN*PILOT.A
@LEARN*PILOT.B
@LEARN*PILOT.DATA

Processors A, B and DATA are Pascal programs. A and B are short. They are
needed because a Pascal 1100 processor cannot read or write a file which is
not assigned to the run when the processor starts.

Processor A merely assigns file URFP.

Processor B reads the four-character suffix from URFP, computes the next
suffix, writes it back to URFP, combines it with the string URF to form a
7-letter user response file name, like URFBC45. B then tells EXEC to
create the user response file, catalog it, and make the name USERRESPONSE a
synonym for it. Finally B tells EXEC to assign files PILOTPROGRAM,
PILOTHELP and USERRESPONSE.

Processor DATA, the PC11T PILOT interpreter, is started by the third
command in PILOT.MENU and presents PILOTPROGRAM, which is course IDR. The
interpreter is called DATA because starting a processor called DATA changes
the run's mode from control mode to data mode, where user responses which
begin with the character @ are not treated as ECL commands.

57

When the learner enters the user command STOP or reaches the end of the
course, the interpreter gives EXEC one of two commands and terminates. The
two commands are: @ADD LEARN*PILOT.END and @ADD LEARN*PILOT.ENDOFF.
Element END contains one command, @END, which puts the run in control mode
so that subsequently entered ECL commands will be recognized. Element
ENDOFF contains two commands: @END and @XQT LEARN*PILOT.SIGNOFF. The XQT
command tells EXEC to execute program SIGNOFF, which disconnects the user.

If another course is added to the curriculum, PILOT.MENU will be modified
so that the user selects a course from a menu, and the interpreter presents
that course.

The processors named in this appendix correspond to Pascal source elements
in file CAI*RGTC as follows:

Pascal Source Processor

CAI*RGTC.lT CAI*PILOT.TIDY
CAI*RGTC.IA CAI*PILOT.SEQRAN
CAI*RGTC.lB CAI*PILOT.HSEQRAN
CAI*RGTC.2A LEARN*PILOT.A
CAI*RGTC.2B LEARN*PILOT.B
CAI*RGTC.2H LEARN*PILOT.DATA

4. RESTORING AND UPDATING DTSS CAI SYSTEM COMPONENTS

Backup copies of DTSS files are made frequently by DTIC-ZDT. If a file
which is part of the PC11T PILOT system is damaged or disappears, call
274-6855 and request restoration of the file.

To update course IDR, use the ED processor. If the modification is
sizeable, make a copy of the part to be modified, such as a course unit or
section, and modify and test it separately. Then use ED to delete the
current version of the part and insert the new version.

To extract a part, make a copy of IDRE and delete the lines before and
after the ones to be modified. The ED command split can also be used. To
replace a part, delete the old part and copy in the new part. The ED
commands delete and add are use to delete lines and copy in the contents of
a file or element. For example:

@ED,U IDRE.
D 100 200
ADD+ NEWPART.
EXIT
@FREE IDRE.

These commands replace lines 100 to 200 of file IDRE with the contents of
file NEWPART.

58

U

APPENDIX F

MAINTENANCE OF PCllP PILOT CAI SYSTEM

The PCllP PILOT system is a computer-assisted instruction (CAI) system
which presents courses using IBM Personal Computers (PCs) or compatibles.
This system consists of hardware, software and files. The hardware is a PC
with keyboard, monitor and at least two floppy diskettes or one fixed disk.
The software consists of processors used to prepare and present courses.
The preparation processors include a text editor or word processor and some
special processors. The presentation processor is the PC11P PILOT
interpreter. The files contain processors, PCll PILOT courses and help
files, and command sequences (BAT files). The preparation and presentation
files and processes are described in section 2 of this manual.

The first course developed for this system is "Introduction to DROLS
Retrieval" (IDR).

This appendix describes the files and processors in the PCllP PILOT system.
It discusses putting the system on diskettes and using these, saving the
system's files and restore lost or damaged files, and modifying course IDR.

1. COURSE PREPARATION AND PRESENTATION FILES AND PROCESSORS.

The microcomputer used to prepare course IDR is an IBM PC which has two
floppy disk drives and a 10-megabyte fixed disk drive. These are drives A,
B and C, respectively. The A drive is used for system startup and for
communicating with the DTSS using the MSKERMIT communication program (see
Appendix C). Three directories in the C drive are used: the main
directory, the CAI directory and the PIL directory.

The ROOT directory contains common commands, such as EDLIN, PRINT, BACKUP
and RESTORE.

The CAI directory contains each of the 14 lessons in the course in its own
file in editable form. These files are named JLOO.NNN through JL13.NNN,
where the extension NNN is the version number of the lesson. To combine
the fourteen lessons into course IDR in file IDRE, enter:

COPY JLOO.100+JLOl.1O0+JLO2.100+JL03.100+JL04.100+
JLO5.100+JLO6.100+JL07.100+JLO8.100+JL09.100+
JLl0.100+JLll.IO0+JL12.100+JLl3.100 IDR

all in one line. File MI0013.BAT contains this command.

To modify file IDRE, use EDLIN or another processor to modify one or more
lesson files. Apply the TIDY processor to the lesson, if appropriate, like
this:

TIDY JL01.005 TY
COPY TY JL01.005
ERASE TY

The same result can be obtained by entering:

59

[' . - - - .

T JLO1.005

When the lessons have been modified, use MI0013.BAT to remake file IDRE.
If you change a lesson name, change it in the BAT file too.
File IDRHELPE contains in editable form the help file used with course IDR.

The PIL directory contains the Pascal source and object files of the
components of the TIDY, SEQRAN and HSEQRAN preprocessors and the PC11P
PILOT interpreter, and the BAT files and related input files used to
compile and link these components. These are listed in section 4 below.
The following processors and BAT files are relevant here:

File Use

TIDY.EXE Executable TIDY processor
MI0013.BAT Command which makes file IDRE from lesson files

JLOO.nnn through JLl3.nnn
SEQRAN.EXE Executable SEQRAN processor
SPPI.BAT Commands which tell processor SEQRAN to convert

editable course PPl to presentable course PPIR
HSEQRAN.EXE Executable HSEQRAN processor
PILOT.EXE Executable PILOT processor
XPPI.BAT Commands which start presentation of course PPIR
IDR-AB.BAT Start A and B drive system presenting IDR
IDR-AC.BAT Start A and C drive system presenting IDR
IDR-C.BAT Start C drive only system presenting IDR

To prepare the IDR course and help files for presentation, first get into
the PIL directory and copy them into it from the CAI directory:

CHDIR \PIL
COPY \CAI\IDRE
COPY \CAI\IDRHELPE

To convert file IDRE to presentable form enter:

SEQRAN IDRE IDR

To convert file IDRHELPE to presentable form enter:

HSEQRAN IDRHELPE IDRHELP

To present course IDR using help file IDRHELP enter:

PILOT IDR IDRHELP

2. PRESENTATION DISKETTES SENT TO LEARNERS

The PC11P PILOT interpreter and course IDR can be put on two double-sided,
double-density floppy diskettes and sent to learners. Disk 1 contains the
following files:

Disk File Content

60

1 PILOT.EXE PCl PILOT interpreter
1 IDRHELP Help file for course IDR
1 IDR-AB.BAT Commands for using A and B drive
1 IDR-AC.BAT Commands for using A and C drive
1 IDR-C.BAT Commands for using C drive only
2 IDR Course IDR

Each BAT file contains just 1 line:

File Content

IDR-AB-BAT PILOT B:IDR IDRHELP
IDR-AC.BAT PILOT C:IDR IDRHELP
IDR-C.BAT PILOT IDR IDRHELP

In the AB and AC cases, put disk 1 in the A drive and disk 2 in the B
drive, and then enter:

A: or A:
IDR-AB IDR-AC

In the third case, the contents of both disks must be copied to the current
directory on the C drive. Put each disk in the A drive and enter:

C:
4 COPY A:*.*

Then enter:

C:
IDR-C

When the line in the BAT file is processed, PILOT is copied into the PC's
primary memory. If PILOT is too large for it, you will get an error
message.

To prepare a pair of diskettes, use the DOS FORMAT command to format them,
and copy the files from the C drive to them. Or use the DOS DISKCOPY
command to copy from prepared diskettes to other diskettes.

3. SAVING AND RESTORING FILES

To save and restore the files which constitute the PC11P PILOT system, use
the DOS BACKUP and RESTORE commands. Only C drive directories CAI and PIL
need be saved.

4. RESTORING AND UPDATING DTSS CAI SYSTEM COMPONENTS

-To update course IDR, use the EDLIN processor. If the modification is
sizeable, make a copy of the part to be modified, such as a course unit or
section, and modify and test it separately. Then use EDLIN to delete the
current version of the part and insert the new version.

To extract a part, make a copy of IDRE and delete the lines before and
after the ones to be modified. To replace a part, delete the old part and

61

copy in the new part. The ED commands delete and transfer are use to
delete lines and copy in the contents of a file or element. For example:

@EDLIN IDRE
100 200 D
TNEWPART
E

These commands replace lines 100 to 200 of file IDRE with the contents of
file NEWPART.

5. PASCAL-RELATED FILES AND THEIR USE

The following Pascal-related files are in directory PIL:

File Use

TIDY.PAS TIDY processor source
TIDY.EXE Executable TIDY processor
SEQRAN.PAS SEQRAN processor source
LSEQRIP Input to LSEQRAN.BAT
LSEQRAN.BAT Commands which link SEQRAN processor
SEQRAN.EXE Executable SEQRAN processor
HSEQRAN.PAS HSEQRAN processor source
LHSEQRIP Input to LHSEQRAN.BAT
LHSEQRAN.BAT Commands which link HSEQRAN processor
HSEQRAN.EXE Executable HSEQRAN processor
PIMAIN.PAS Main part of PCIlP PILOT interpreter source
PIXOP.PAS PILOT command processor source
PIXPEV.PAS PILOT expression evaluator source
PIHELP.PAS PILOT help command processor source
HEXDUMP.PAS Hexadecimal dump subroutine source (for testing)
LPILOTIP Input to LPILOT.BAT
LPILOT.BAT Commands which link PILOT processor
PILOT.EXE Executable PILOT processor

This list does not include the object file (extension OBJ) corresponding to
each source file (extension PAS) and having the same filename (part before
dot).

To produce an object file form a source file requires two passes (steps).
For example, to produce PIXOP.OBJ from PIXOP.PAS enter:

A:PASl PIXOP PIXOP NUL NUL
A:PAS2

To link PILOT's object files and produce an exectuable file enter:

LPILOT

These commands presuppose that the A drive holds a diskette containing the
following IBM files: ENTX6S, FILKQQ.INC, FILUQQ.INC, LINK.EXE, PAS1.EXE,
PAS2.EXE, PASCAL, PASCAL.LIB and PASKEY.

An explanation of compiling and linking IBM Pascal programs is beyond the

62

scope of this manual.
.4

-. 4

.4

Mi

b.c 4
'

C

.4.-,

~4,,

4-

4%J~

S
'p

V

p

63

vMEO

