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1. Description of Progress
This report summarizes accomplishments of the ISIS project during the period Feb 4, 1986 -
May 4, 1986. We assume that the reader is femiliar with the goals of the project and has read
some of our recent progress reports. Accordingly, the summary will be brief and target.. to
specific accomplishments made during this period, rather than the overall status of the project.
The first querter of 1986 represents the beginning of our second year of DARPA funding,
and we are pleased to report substantial progress in several important areas. Our effort is now
L 7fo;tismg o;malnn; tl;csfe;ﬁxéiogy of fault-tolerance easier touseandsmppmgmmudxunuscn-
ualovcrheadfromourapproadxaswecan (Webehcvethatbyadoptmgwhatnsmennanya
(VRISC* approad: to software fault-tolerance, it will be possible to address a broader collection of
distributed computing problems than we have in the past, making our work useful to practitioners
whose applications cannot be addressed efficiently using our curremt approach (resilient objects).
Our plan is to develop a new system that will continue to provide resilient objects at a high level,
but will also include support for fault-tolerant process groups/ described-belowpat a lower level,
This lower level will be directly accessible to programmers, and much of our own software will
reside within it, including a collection of fault-tolerant services embodying spedialized distributed

{a - p VA i Aesf
algorithms, such asptheshared memory mechanism described-below. Mloc yociontd e pagly
© gt 7 feen!
In the subsections that follow, we first summarize activity on the ISIS prototype, then discuss )
the new system, and then describe some of the other activities of (e project. ‘ ‘_//
}/f ' J 7 I/ Py }
1.1. ISIS Prototype and Application Software ) u L

Since completing the ISIS prototype, we have been using it to develop application software.
This presently includes a calendar program, described in our previous quarterly status report, and
a distributed monitoring program that uses ISIS to distribute a task over multiple sites and then to
monitor the computation while it is underway, reacting dynamically to failures and other events.
It is interesting to note that both of these programs were developed largely by naive programmers
with no understanding of fault-tolerance or distributed protocols. In addition to demonstrating
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how ISIS can be used, these applications have helped us debug it. Because the prototype now
seems quite stable, a copy has been made available to colleagues at Berkeley, where Prof. Domen-
ico Ferrari’s group is considering using it for experimentai purposes. We will continue to make
this version of SIS available to other rescarchers on a limited basis.

A sew paper on ISIS was completed during the report period [1]. In addition to giving a
detailed analysis of the algorithms used in the system, this paper describes the calendar prograr
and the techniques used to develop it, and presents new performance data. One unexpected
insight resulted from this performance work. We discovered that using our concurrent update
techniques (2] [3), updates of replicated data can actually be cheaper than updates to nom-
replicsted data. This is counterintuitive: one would have expected that a computer system must do
more work to maintain multiple copies of a data item than to maintain just a single copy, and
hence performance shouid degrade as the number of copies increases. In fact, ISIS operates more
efi:cienily under moderazs distributed loads, for two reascns. First, our approach divides updates
to replicated objects into local and remote computational activity, and the remote part is much
cheaper than the remote part. Thus, when the local work for a collection of operations is distri-
buted over multiple sites, a given site ends up doing less work than if it had to do everything by
itself. Moreover, a significant amount of *“piggybacking” occurs when the system operates this
way (that is, a typical communications packet carries multiple messages, not just one message).
Since I/O overhead is a significant cost factor in ISIS, this means that it becomes less expensive to
read a typical messuge, hence efficiency rises until the maximum level of piggybacking is reached.
The net impact of these two effects is that performance improves when objects are replicated to
small numbers of sites, for moderate request loads presented randomly at all sites. Spedifically,
we obscrved improved performance for objects distributed to as many as six sites and subjected to
request loads of up to 10 operations per second - very respectable for SUN 2 workstations run-
ning UNIX. Improvements in both the average response time and the maximum number of
operations the object could perform per second were noted. These results supports our belief that
what we are doing in ISIS will be valuable in a wide range of distributed computing projects in

-3
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years to come.

1.2. Fault-tolerant process groups

The crux of our present effort is to develop a system that will support feult-tolerant process
groups, an idea which we first reported in [4] and elaborate on in [5] (a copy of which is attached).
Such a g@ consists of a set of processes that cooperate to implement some fault-tolerant distri-
buted service. In the case of a resilient object, the group members are the components of the

| object, and implement a coordinator-cohort algorithm to provide fault-tolerant processing of client
requests [1]. However, the process group approach also simplifies a wide range of other prob-
lems, ranging from distributed process control software (i.e. to control critical tasks witkin a
power plant or spacecraft) to more conventional distributed computing tasks, such as dynamic

reconfiguration of a distributed program. We are making rapid progress on an implementation of ::',
-y
this approach, and will soon complete the lowest levels of a new system providing for fault- il

tolerant inter-site and inter-process communication support based on the algorithms given in our

¥

h el

s N w e g

papers. Once this layer has been completed, we expect to have higher levels, which implement
the process gioup sbstraction, working very rapidly. Our initial work is being done using UNTX,
but we are minimizing our dependence on UNIX-specific features in the expectation that UNIX
will eventually be replaced by some new operating system.

e e g
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1.3. New forms of fault-tolerant objects

———
e i

A forthcoming paper will report some recent work of ours on mechanisms for supporting
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fault-toleram objects that provide predictable behavior in the presense of concurrency and failures,
but without the overhead of a transactional access mechanism. Such an object is best viewed as a
“shared memory”, implemented using message passing in a way that provides predictable behavior
and eliminates both the need for higher level synchronization and for special code to handle

failures. Since these are common sources of complexity in distributed software, users of these q
facilities can build fault-tolerant distributed programs without being particularly sophisticated

\
5

s

ol

o
-

g

.

d
~
- - » ‘e - i
BN W N

. 3 IR O » S ) -(' Vo .\]
LR GRS N I e A T e ,-M.AA.-_;‘AJ_&.-.

------ R RCIRCIR
- .



about distributed computing. On the other hand, since access to the shared memory is not tran-
sactional, much higher performance can be achieved than using resilient objects. Moreover,
shared memories can be used for interprocess communication in ways that are awkward to express
using resilient objects. Thus, the approach promises to provide a cheap, easily uszd, altezuative to
resilient objects. We plan to include software support for this approach as a component of the

fault-toleran® proozss group system we are now bulding.

1.4. Other areas of activity

Research on techniques for applying our work to parallel software and methods for tolerat-
ing network partitioning continues. In addition, soms of the new graduate stud=ats who have
joined the project are starting to explore problems in fault-tolerant process control and high leve!
operating systems software based on the fault-tolerant process group approach. We will have

more to say about work in all these areas during the next few months.

2. Project Pasonned

The ISIS project has besn successful in attracting some very strong new graduate students,
largely because of a distributed romputing course that Birman taught dwing Soring 1986. In fact,
the department as a whole has becoine an extremely active rescarch ar=a, and now includes six
faculty members with interests in areas relating to ISIS. There have been no changes in the key

peisonnel of the project, which continues to be run by Prof. Birman with the help of Dr. T.

Joseph.

3. Travd

Several members of the ISIS project attended the Asilomar workshop on fault-tclerant distri-
buted computing in Asilomar, California during March 1986. Prof. Birman presented a paper at
this workshop. Afterwards, he visited the IBM San Jose Research Center, Cheriton’s V group at

Stanford University, and Ferrari’s DASH group at Berkeley. Other trips (to the Universities of

Rochester and Toronto) did not use project funds. Additionally, graduate student A. El Abbadi
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4. Budget summary

We conclude with a summary of the finandal status of the project, which is close to projec-

tions in all categories.

Expenditures - 2/5/86 - 5/4/86

Planned budget Expenses Prior
for period for period Expenses
Secretary support 544 584 484
Summer faculty 0- 20,609
Research Associate 8,700 8,700 6,444
Graduate students 18,633 18,633 71,406
Employee benefits 2,635 2,635 4,035
Computer muintenance 769 1,000 4,025
Publications 327 917 1,457
Supplies 253 419 3134
Computer Supplies 154 0- 643
Travel 2,000 1,933 11,170
Programumer 1,006
Equipment 67,993
Indirect cost 10,981 11,468 62,578
Totals 44,996 46,249 260,984
-7-
e e el e e AR - --_,-- DTN
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Total
to 11/4/85
1028

15 144
96,039
6,670

2, 374
3553
643
13,103
67 993
74,046

307,233
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COMMUNICATION SUPPORT FOR RELIABLE
DISTRIBUTED COMPUTING

Kenneth P. Birmean and Thomas A. Tosenh
Decpartment of Computer Science

Cornell University, Ithaca, M~ York
ABSTRACT
We describe a collection of comimunicaticn primitives integrated with a mechanism for han-
dling process failure and recovery. These primitives fadlitate the implementation of fault-tolerant

process groups, which czin be used to provide distributed services in an environment subject to
non-malicicus yash failures.

i. Introduction

At Corrnell, we recently completed a potoiype of the 'N/S syitem, which transforms abstract
type specifications intc fault-tclerant distributed implementations, wiiile insulating users from the
mechanisms by which {ault-tclerance is achicved [Birman-a). A wids range of reliable communica-
tion primitives Liave been proposed in the literature, and we became convinced that by using such
primitives when building the ISIS system, complexity could oc avoided. Unfortupately, the exist-
ing protocols, which range from reliable and atomic bruadcas: {Chang] [Cristian] [Schneider] to
Byzantine agreement [Strong], either do not satisfy the ordering constraints required for many
fault-tolerart applications or satisfy a stronger constraint than necessary at too high a cost. In par-
ticular, these protocols have not attempted to minimize the latency (delay) incurred before mes-
sage delivery can occur. In ISIS, latency appears to be a major factor that limits performance.
Fzult-tclerant distzibuted systems also need a way to detect faiiures and recoveries comsistently,
an! we found that this could be integrated into the communication ayer in a manner that reduces
the synchronization burden on higher level algoritbms. These observations motivsted the dev=lop-

raent of a new collection of primitives, which we present telow

*This work was supparted by the Defense Advanced Research Projects Agency (DaD) under ARPA arder 5378,
Conrract MDAS03-85-C-0124, and by the National Science Foundation under grant DCR-8412582. The views, opinions
and findings contained in this report ar: those of the authars and sheiild not be construed 25 an official Deporement of
Defense position, palicy, or decision.

.......
.......

..............



E:G.“‘{".
s

AR L L TAAUEA AR

LT
v
' 'A_J—

LAl
3 .
v

S ibaiiadn A et aum
i N Yy '-‘

P I e e gl e
RS ORI S

w

Our broadcast primitives are designed to respect several sorts of ordering constraints, and
have cost and latency that varies depending on the nature of the constraint required [Birman-b]
[Joseph-a] [Joseph-b]. Failure and recovery are integrated into the communication subsystem by
treating ihese cvents as a special sort of broadcast issued on behalf of a process that has failed or
recovered. The primitives are presented in the conizxt of fault tolerant process g. oups: groups of
processes that cooperate to implement some distributed algorithm or service, and which need to
see consistant orderings of system events in order to achieve mutually consistent behavior. Our
primitives provide flexible, inexpensive support for process groups of this sort. By using these
primitives, the ISIS system achieved both high levels of concurrency and suprisingly good perfor-
mance. Equally important, its structure was made suprisir.gly simple, malking it feasible to reason
about the correctness of our algorithms.

In the remainder of this paper we sumarize the issues and alternatives that the decigner of a
distributed system is presented with, focusing on iwo styles of support for fault-tolerant comput-
ing: remote procedure cells coupled with a transactional execution fadility, and the fauit-tolerant
process group mechanism mentionar above. Next, our primitives are described. We conclude by

speculating on future directions in which this work might be taken.

2. Goals and assumptions

The difficulty of constructing fault-tolerant distributed software can be traced to a number of
interrelated issucs. The list that foliows is not exbaustive, tut attempts to touch on the principal

considerations that must be addressed in any such system:

1.  Synchronization. Distributed systems offer tbe potential for large emounts of concurrency,
and it is usually (lesirable tn operate at as Ligh a level uf concurrency as possible. However,
when we move from a sequential execution environment to a concurrent one, it becomes
necessary to synchronize actions that may conflict ir their access o shared data or cntail
communication with overlapping sets of processes. Additional problems that can ansc in this

context include deadlock avoidance or detection, iivelock avoidance, etc.

Page 2
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2. Fault detection. 1t is usually necessary for a fauit-tnlerant application to have a consistent
picture of which components fail, and in what order. Timeout, the most common mechanism
for detecting failure, is unsatisfactory, because there are many situations in which a healthy
component can timeout with respect to one compenent without this being detected by some
another. Failure detection under more rigorcus requirernents requires ao agresment proto-
col that is related to Byzaniine agreement [Strong] [Hadvilacos).

3.  Consistency. When a group of processes cocperate in a distributed system, it is necessary to
ensure that the operational processes have consistent views of the state of the group as a

inrhatop o S e g e LR AR, gl g

whole. For example, if process p believes that some property P holds, and on the basis of
g this interacts with process g, the state of ¢ should not contradict the fact that p believes P to
. be true. This problem is closely related to notions of knowledge and consistency in distri-
buted systems [Halpern] {Larcport]. In our context, P will often be the assertion that a

broadcast has been received by ¢, or that ¢ saw some sequence of evaits Gocr i the samc
order as did p.

4.  Serializability. Many distributed systems are partitioned into data manager processes, which
implemented shared variahles, and transaciion manager processes, which issue series of
requests to data managers [Bernstein]. If transaction managers can execute concurrently, it
is often desirable to ensure that transactions produce serializable outcomes [Eswaren] [Papa-
dimitrou]. Serializability is increasingly viewed as an important property in ‘“object-
oriented” distributed systems that package services as abstract objects with which clients
communicate by remote procedure calls (RPC). Or the other hand, there are systems for
which serializability is cither too strong a constraint, or simply inappropriate.

Jointly, these problems render the design of fault-tolerant distributed software daunting.

The correctness of any proposed design and of its implementation become sericus .ot insur-

mountable, concerns. We faces: this range of problems in nur work on the ISIS system, and

rapidly became convinced that in the absence of some systcmatic
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nevar ha sonetructad  Tn Ser. . we will thow how the primitives of Sec. 5 provide such an

The failure mode} that one adopts has considerable Lnpact on the structure of the resulting
system. We adopted the model of fail-stop processors [Schneider}): when failures occur, a proces-
sor simply stops (crashes), as do all the processes executing on it. We rejected the extremely pes-
simustic assumptions of the malidous Byzantine failure models because they lead to slower, more
redundant software, and because the probability that a system failure will be undetectably mali-
cious seems vanishingly swnall in practice. Work based cn Byzantine assumptions is described in
[Lamport] and [Schlicting]. We also assume that the communication network is reliable but sub-
ject tc unbounded delay. Although network partitioning is an important problem, we do not

address it here.

Further assumptions are sometimes made about the aveilability of synchronized reallime
clocks. Here, we adopt the position that although reasonably accurate elapsed-time clocks are nor-
mally available, closely synchronized clocks frequently are not. For example, the 60Hz “line”
clocks commonly used on current workstations are only accurate to 16ms. On the cther hand, 4-
8ms inter-site message transit times are common and 1-2ms are reported increasingly often. Thus,
it is impossible to synchronize clocks to better than 32-48ms, enough time for a pair of sites to
exchiange between 4 and 50 messages. Thus, we assume that clock skew is *“large” compared to

inter-site message latency.

3. Alternatives

Two different approaches to reliable distributed coraputing have become predominant. The
first approach involves the provision of a communication primitive, such as atomic broadcast,
which can be used as the framework on which higher level algorithmis are designed. Such a primi-
tive secks to deliver messages reliably to some set of destinations, despite the possit v that
failures might occur during the execution of the protocol. We term this the process group
approaidi, since it lends itself to the organmization of cooperating processes into groups, as

described in the introduction. Process groups are an extreme!y fiexibie abstraction, and have been




employed in the V Kernel {Cheriton] as well in the ISIS system. The idea of using process groups

to address the problems raised in the previous section seems to be new.

A higher level approach is to provide mechanisms for transactional interactions between
processes that communicate using remote procedure calls [Birrell]. This has lesd to work on
nested transactions (due to nested RPC's) {Moss], support for transactions at the language level
[Liskov], transactions within an operating systems kernel [Spector] [Allchin] [Popek] [Lazowska],
and transactional access to higher-level replicated scrvices, such as resilient objects in ISIS or rela-
ticns in databwse systerss. The primitives in a transactional system provide mechanisss for distri-
buting the reques’ tiat initiales the transaction, accessing data (which may be replicated), perform-
ing concurrency control, and implementing commit or abort. Additional mechanisms are normally
needed for orphan termination, deadlock destection, etc. The issue then arises ~f how these
mechanisms shonld themnseives be implemented. Our work in ISIS leads us to believe that transac-
tions are easily implemented on top of fault-tolerant process groups; lacking such a mechanism a
number of complicated protocols are needed and the assodated system support can be substantial.
Moreover, transactions represent a relatively heavy-w=ight solution to the problems surveyed in
the previous section. We now believe that transactions are inappropriate for casual interactions
between processes in typical distributed systems. The remainder of this paper is therefore focused

on the process group approach.

4. Existing broadcast primitives

The considerations outlined above motivated us to examine reliabie broadcast primitives.
Previous work has been reported on this problem, under assumptions comparable with those of
Sec. 2, and we begin by surveying this research. In (Schneider], an implementation of a reliable
broadcast primitive is describec. Such a primitive ensures that a designated message will be
transmitted from one site to all other operational sites in a system; if a failure occurs but any site
has received the message, all will eventually do so. [Chang] and [Cristian] describe imgiementa-

tions for atomic broadcast, which is a relizble broadcast with the additicnal property that messages
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are delivered in the same order at all overlapping destinations, and this order preserves the
transmission order if messages originate in a single site.

Atomic broadcast is a powerful abstraction, and essentially the same behavior is provided by
one of the primitives we discuss in the next section. However, it has several drawbacks which
madc us hesitant to adopt it as the onlyprimin:veinmesystm. Most serious is the latency that is
incurred in order to satisfy the delivery ordering property. YVithout delving into the implementa-
tions, which are based on a token scheme in [Chang] and an acknowledgement protocol in
[Schneider], we observe that the delaying of certain messoges is fundamental to the establishment
of a unique global delivery ordering; indeed, it is easy to prove that this must always be the case.
In [Chang] a primary goal is to mininize the number of messages sent, and the protocol given
performs extremely well in this regard. However, a delay occurs while waiting for tokens to
arrive and the delivery latency that results may be high. [Cristian] assumes that clocks are closely
synchrcnized and that message transit times are bounded by well-known constants, and uses this to
derive atomic broadcast protocls tolerant of increasingly severe classes of failures. The protocols
expliatly delay delivery to achieve the desired global ordering on broadcasts. Hence for poorly
synchronized clocks (which are typical of existing workstations), latency would be high in com-
parison to inter-site message transit times.

Another drawback of the atcimic broadeast protocols is that no mechanism is provided for
ensuring that all processes observe the same sequence of failures and recoveries, or for ensuring
that failures and recoveries aic ordered relative io ongoing broadcasts. We dewJed to look more

closely at these issues.

5. Our biooadcast prinmitives

We now describe three broadcast protocols - GBCAST, BCAST, and OBCAST - for transmit-
ting a message reliably from a sender orocess to some set of destination processes. Details of the
protocols and their correctness proofs can be found in [Birman-b]. The protocols 2nsure “all or

nothing” behavior: if any destination receives a message, then unless it fails, all destinztions will

Page 6

[l ol i
e i
3

e Lo ‘\‘.‘.-._.:'.. o ". “‘l’.-“ -. .‘- .‘. ) K
TN AT AR S R AT T T

2 i oh
e 1.“ PR




receive it.

5.1. The GBCAST primitive

GBCAST (group broadcast) is the most constrained, and costly, of the three primitives, It is

used to transmit information about failures and recoveries to members of a process group. A

recovering member uses GBCAST to inform the operational ones that it has become available.
Additionally, when a member fails, the system arranges for a GBCAST to be issued to group
members on its behalf, informing them of its failure. Arguments to GBCAST are a message and a
process group identifier, which is translated into a set of destinations as described below (Sec.

5.6).

Our GBCAST protocol ensures that if any process receives a broadcast B before receiving a
GBCAST G, then all overlapping destinations will receive B before G. This is true regardless of
the type of broadcast involved. Morcover, when a failire occurs, the corresponding GECAST
message is delivered after any other broadcasts from the failed process. Each member can there-
fore maintain a view listing the membership of the process group, updating it when a GBCAST is
received. Althcugh views are not updated simultaneously in real time, all members observe the
same sequence of view changes. Since, GBCAST’s are ordered relative to all other broadcasts, all
members receiving a given broadcast will have the same value of view when they receive it.!
Members of a process group can use this value to pick a strategy for procecsing an incoming
request, or to react to failure or recovery withcut having to run any spedal protocol first. Since
the GBCAST ordering is the same everywhere, their actions will all be consistent. Notice that
when all the members of & process group may have failed, GBCAST also provides an inexpensive
way to determine the last site that failed: process group members simply log each new view that
becomes defined on suable storage before using it; a simplified version of the algorithm in [Skeen-

1A problem arises if a process p fails without receiving some message after that message has already
been delivered to same other process g: ¢'s view when it received the message would show » to be operation-
al; hence, ¢ will assume that p received the message, although p is physically incapable of doing so. Howev-
er, the state of the system is now equivalent to ane in which p did receive the message, but failed before act-
ing on it. In effect, there exists an interpretation of the actual system state that is consistent with g's as.
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a] can then be executed when recovering from failure.
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5.2. The BCAST primitive

The GBCAST primitive is too costly to be used for general communication between process
group members. This motivates the introduction of weaker (less ordered) primitives, which might
"be used in situations where a total order or. broadcast messages is not necessary. Our second
primitive, BCAST, satisfies such a weaker constraint. Spedifically, it is often desired that if two
broadcasts are received in some order at a common destination site, they be received in that order

at all other common destinations, even if this order was not predetermined. For example, if a

i el ol
LEP L

process group is being used to maintain a replicated queue and BCAST is used to transmit queue
operations to all copies, the operations will be done in the same order everywhere, hence the
copies of the queue will remain mutually consistent. The primitive BCAST(msg, label, dests),
where msg is the message and label is a string of characters, provides this behavior. Two BCAST’s
having the same label are delivered in the same order at all common destinations. On the other
hand, BCAST’s ‘ith different labels can be delivered in arbitrary order, and since BCAST is not
used to propagate information about failures, no flushing mechanism is needed. The relaxed syn-

chronization recults in lower latency.

5.3. The OBCAST primitive

Our third primitive, OBCAST (ordered broadcast), is weakest in the sense that the it involves
less distributed synchronization then GBCAST or BCAST. OBCAST(msg, dests) atomically delivers
msg to cach operational dest. If an OBCAST potentially causaily dependent on another, then the
former is delivered after the latter at all overlapping destinations. A broadcast B, is potentially
causally dependent on a broadcast B, if both broadcasts originate from the same process, and B, is
sent after B,, or if there exists a chain of message transmissions and receptions or local events by

which knowledge could have been transferred from the process that issued B, to the process that

sumption.
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issued B, [Lamport]. For causally independent brcadcasts, the deliver ordering is not constrained.

OBCAST is valuable in systems like ISIS, where concurrency control algorithms are used to
synchronize concurrent computations. In these systems, if two processes communicate con-
currently with the same process the ressages are almost always independent cnes that can be pro-
cessed in any order: otherwise, concurrency control weuld have caused one to pause uatil the other
was finished. On the other hand, order is clearly important within a causally linked series of
broadcasts, and it is precisely this sort of order that OBCAST respects.

£.4. Other broadcast primitives

A weaker broadcast primitive is reliable broadcast, which provides all-or-nothing delivery,
but no ordering properties. The formulation of OBCAST in [Birman-b] actually includes a
mechanism for performing broadcasts of this sort, hence no spedal primitive is needed for the
purpose. Additionally, there may be situations in which BCAST protocols that also satisfy an
OBCAST ordering property would be valuable. Although cur BCAST primitive could be changed
to respect such a rule, when we considered the likely uses of the primitives it seemed that BCAST
was better left completely orthogonal to OBCAST. In situations needing hybrid ordering behavior,
the protocols of [Birman-b] could easily be modified to implement BCAST in terms of OBCAST,

and the resulting proiocol would behave as desired.

5.5. Synchronous versus asynchronous broadcast abstractions

Many systems employ RPC internally, as a lowest level primitive for interaction between
processes. It should be evident that all of our broadcast primitives can be used to implement
replicated remote procedure calls {Cooper]: the caller would simply pause until replies have been
received from all the participants (observation of a faiiure constitutes a reply in this case). We

term such a use of the primitives synchronous, to distinguish it from from an asynchronous broad-

cast in which no replies, or just one reply, svffices.
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In our work on ISIS, GBCAST and BCAST are ncrinally invoked synchronou-ly, to imple-
ment & remote procedure call by one memtier of an object on all the members of its process
group. However, OBCAST, which is the most frequently used overall, is almost never invoked
synchronously. Asynchronous OBCAST s are the source of most concurrency in ISIS: although the
deﬁvaymdainghmumd,mnmhdmmuddayedmmbleamgembepiggyba&ed
on another, or to schedule IO within the system as a whole. While the system cannot defer an
asynchronous broadcast indefinitely, the ability to defer it a little, without delaying some computa-
tion by deing so, permits load 0 be smoothed. Since OBCAST rcspects the delivery orderings on
which a computation might depend, and is ordered with respect to failures, the concurrency intro-
duced does not complicate higher level algorithms. Moreover, the protocol itself is extremely

cheap.

A problem is introduced by our dedsion to allow asynchronous broadcasts: the atomic recep-
tion property must now be extended to addrcss causally related sequences of asynchronous mes-

sages. If a failure were to result in some broadcasts being delivered to all their destinations but

others that precede them not being delivered anywhere, inconsistency might result even if the des- |

tinations do not overlap. We therefore extend the atomicty property as follows. If process ¢
receives a message m from process s, and s subsequently fails, then uniess ¢ fails as well, m’ must
be delivered to its remaining destinations. This is because the state of ¢ may depend on any mes-

sage m' received by s before it sent m. The costs of the protocols are not affected by this change.

A second problem arises when the user-level implications of this atomidty rule are con-
sidered. In the event of & failure, any suffix of a sequence of aysnchroncus broadcasts could be
lost and the system state would still be internally consistent. A process that is about to take some
action that may leave an externally visible side-effect will need a way to pause until it is
guaranteed that surh broadcasts have actually been delivered. For this purpose, a finsh primitive

is provided. Occasional calls to finsh do not eliminate the benefit of using OBCAST asynchro-

nously. Unless the system has built up a considerable backlog of undelivered broadcast messages,
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which should be rare, fiush will only pause while transmission of the last few broadcasts com-

pletes.

5.6. Group addressing protocol

Since group membership can change dynamically, itmaybedifﬁamforapxocmtocom-
pute a list of destinations to which a message should be sent, for cxample, as is needed to oerform
a GBCAST. In [Birman-b] we report on a protocol for encuring that a given broadcast will be
delivered to all members of a process group in the same view. This view is either the view that
was operative when the message transmission was initiated, or a view that was defined subse-
quently. The algorithm is a simple iterative one that costs nothing unless the group me:=bership
changes, and permits the caching of possibly inaccurate membership information near processes
that might want to communicate with a group. Using the protocol, a flexible message addressing
scheme can readily be supported.

5.7. Example

Figure 1 illustrates a pair of computations interacting with a process group while its member-

ship changes dynamically. One client issues a pair of OBCAST’s, then uses BCAST to perform a

third request on the group. A second client interacts only once, using BCAST. Note that unless
the first client invoked flush before issuing the BCAST, the BCAST might be received before the
prior OBCAST's at some sites. Arrows showing reply messages have becn omitted to simplify the

figure, but it would normally be the case that one or more group members reply to each request.

6. Using the primitives
The reliable communication primitives described above dramatically simplify the solution of
the problems dted in Sec. 2:

1.  Synchronization. Many synchronization problems are subsumed into the primitives them-

selves. For example, consider the use of GBCAST to implement recovery. A recovering

process would issue a GBCAST to the process group members, requesting tiat ctate
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Figure 1: Client processes interacting with a process group

information be transferred to it. In addition to sending the current state of the group to the
recovering process, group members update the process group view at this time. Subsequent
messages to the group will be delivered tc the recovered process, with all necessary syn-
chronization being provided by the ordering propertiss of GBCAST. In situations where
other forms of synchronization are needed, BCAST provides a simple way to ensure that
several processes take actions in the same order, and this form of low-level synchronization
simplifies a number of higher-level synchronization problems. For example, if BCAST is
used to request write-locks froma lock-manager processes, two write-lock requests on the
same item can never deadlock by being granted in different orders by a pair of managers.

Fault detection. Consistent failure (and recovery) detection are trivial using our primitives: a
process simply waits for the appropriate process group view to changs. This faclitates the
implementation of algorithms in which one processes monitors the status of another process.
A process that acts on the basis of a process group view change does so with the assurance
that other group members will (eventually) observe the same event and will take consistent

actions.




3. Consistency. We believe that consistency is generally exprmble as a set of atomidty and
ordering constrain*s on message delivery, particulatly causal unes of the sort provided by
OBCAST. Our primitives permii & process to specify the communication properties needed
to achieve a dzsired form of consistency. Continued research will be needed to understand
precisely how to pick the w~zkest primitive in a designated situation.

4,  Serializability. To achieve serializability, one implements a concurrency control algorithm
and then forces computaticns to respect the serializatior urder that this algorithm choses.
The BCAST pnmitive, as observed sbove, is a powerful tnol for establishing an order
between concuirent events. Having established such an order, OBCAST can be used to dis-
tribute information about the computation and also its texmination (commit or abort). Any
process that observes the commit o abort of a computation will only be able to interact with

data managers that have received messages preceding the commit or abort, hence & highly

asynchronous tronsactional execution results. This problem is discussed in more detail in i‘
[Birman-a] [Joseph-a] [Joseph-bj.

7. Implementation

The communication primitives can be buil: in layers, starting with a bare network providing
unrcliable datagrams. A site-to-site acknowledgement protocol converts this into a sequenced,
error-free message abstraction, using timeouts to detect apparent failures. An agreement protocol
is then used to order the site-failures and recoveries consistently. If timeouts cause a failure to be
detected erroneously, the protocol forces the affected site to undergo recovery.

Built on this is a layer that supports the primitives themselves. OBCAST has a very light-
weight implementation, based on the idea of flording the system with copies of 8 message: Each
process buffers copies of any messages needed to ensure the consistency of its view of the system.
If message m is delivered to process p, and m is poteatially causally dependent on a message m’',
then a copy of m' is sent to p us well (duplicates are discarded). A garbage collector dzletes

superfluous copies after a raessage has reached all its destinations. By using extensive
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piggyhackiag and a simple scheduling algorithm to tontrol message transmission, the cost of an

OBCAST is kept low -- often, less than one packet per destination. BCAST employs a two-phase
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protocol based on one suggested to us by Skeen [Skeen-b]. This protocol has higher iatency than
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OBCAST because delivery can only occur during the second phase; BCAST is thus inherently syn-
chronous. In ISIS, however, BCAST is used rarely; we believe that this would be the case in other
systems as well. GBCAST is implemented using a two-phase protocol similar to the one for
BCAST, but with an additional mechanism that flushes messages from a failed process beforz
delivering the GBCAST amnouncing the failure. Although GBCAST is slow, it is used even less

often than BCAST. Preliminary performance figures appear in [Birman-b).

8. Applications of the approach

Our work with communication primitives has convinced us that the resilient objects provided
by the ISIS system exist at too high a level for many sorts of distributed application. For exam-
ple, corsider the cognac still shown in figure 2. If independant, non-identical computer systems
were used to control distillation, two aspecis would have to be addressed. Fuisti, it would Ge
necessary to design the hardware itself in 2 way that adriits safe actions in all possible system
states. Second, however, one would need to implcmgnt the control software in each processor in a

way that ensures mutual consistency of the anerational computing units. That is, given that the

1 - pressure/temp
2 - heater

3 - liquid source
4,5 - vaives

6 - bottling unit

.........
e . >

...........................................




spedfica.ﬁon describes a sequence of actons to take in some scenaric (for exemple, detection of
excessive pressure in the distillation vessel), can we be assured that the operationai processors will
jointly act to avert a disastrous spill of cognac? We believe that fault-toierant process groups pro-

vide a simpie, elegant way to address probleas such as this one. We plan to complete an imple-

mentation of the protocols by the summer of 1986, and then to develop a collection of software

subsystems running on top of them.
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