
mi: ISIS IMIOJECT: Quarterly R&
D Status Report

Slav I. 198H

rman

fe*'r

—J

' i I
«SB.!

fS -v' i

*- 11
■|# V'1 '$

n

B€ 5 /^ 0°% *

aJL i_". *_". K^ ^A *
is.,.,-.,% „> ,sv% „^ ,.

 -. ^5-. ^i. . "^ . t^ . &- . T- ; -■■

y

THE ISIS PROJECT: Quarterly R &
D Status Report

February 4,1986 - May 4,1986

Kenneth P. Birman

ELECTE
MAY 1 6 «86

D
D

PROVED FOR PU6UC, HEWSE
DISTRIBUTION UNUMUED

This work was sponsored by the Defense Advanced Research Projects Agency (DoD), ARPA
Order No. 5378, under contract MDA903-85-C-0124 issued by the department of the Army.

The view, opinions and findings contained in his report are those of the authors and should not
be construed as an official DoD position, policy, or decision.

tuaiTY CLASSIFICATION OF THIS PACT

yjpj rjwwm

REPORT DOCUMENTATION PAGE ßßA j^OS^
i REPORT SECURITY CLASSIHCATION

Jnclassifled

form Approved
OMBNo 07040188
e*p D»te Jw ?0. 1986

!b RESTRICTIVE MARKINGS

SECURITY CLASSIFICATION AUTHORITY

DECLASSIFICATION / DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

PERFORMING ORGANIZATION REPORT NUM3ER(S)

^

5 MONlTOpING ORGANIZATION REPORT NUMBERS)

I NAME OF PERFORMING ORGANIZATION

Kenneth P. Birman, Dept. of CS
Cornell University

6b OFFICE SYMBOL
(If applicable)

7a NAME OF MONITORING ORGANIZATION

Defense Advanced Research Projects Agency/IPTO

: ADDRESS (Gty, State, and ZIP Code)

Department of Computer Science, 405 Upson Hal
Cornell University
Ithaca, NY 14353

7b ADDRESS (Oty, State, and ZIP Code)

Defense Advanced Research, Project Agency
Attn: TIO/Admin, 1400 Wilson Blvd.
Arlington. VA ?22nQ

NAME OF FUNDING .SPONSORING
ORGANIZATlOi

DARPA/1PTO

8b OFFICE SYMBOL
(if »pplidble)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ARPA order 5378
Contract MDA-903-85-C-0I24

I ADDRESS (Oty, State, and Z/PCode)
Defense Advanced Research, Project Agencv
Atta: TIO/Admin., 1403 Wilson Blvd.
Arlington, VÄ 22209

10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

• ORK UNIT
- ^CESSION NO

1 TITLE (Include Security Clauifiafon)

Quarterly R&D Status Report
Approved for Public Release

Distribution Unlimited

2 PERSONAL AUTHOR(S)

Kenneth P. Birman
13b TIME COVERED " ' ""T

FROM JW86 TO 5/4/86 j
3a Tvp£ OF REPORT

Quart. R&D Status Rep
6 DATE OF REPOR1

5/4/86
(Year, Month, Day) 15 PAGE COUNT

8
6 SUPPLEMENTARY NOTATION

18 SUBJECT TERMS {Continue on reverse if necessary and identify by block number) COSATi CODES

FIELD GHOUP SUB-GROUP

9 ABSTRACT {Continue on reverse if necessary tnd identify by block number)

May
This quarterly R & D Status report covers the period between February 4, 1986 and

1986.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

E UNCLASSIFIED/UNLIMITED D SAME AS RPT □ DTlC USERS

21 ABSTRACT SECURITY CLASSIFICATION

22a. NAME OF RESPONSIBLE INDIVIDUAL

30 FORM 1473,8^

22b TELEPHONE (/nc/ude Area Code) 22c OFFiCE SY!V30L

83 APR edition iiay be used until exhausted

All other edixions are obsolete
SECURITY CLASSIFICATION OF THIS PAGE

.H' -'• «>
.-:^: :%^^-.-^:-:^'; .^--.:-~0:>::<.-c--^i^-^"

THE ISIS PROJECT! Quarterly R&D Statna Report

Feb. 4,198« • May 4,1586

ICfniwth P« Btrzosn

RE: Two Related Reports in One Document
Process as one report per Mrs. Winn, DARPA/
TIO

D
U

; ~, , til'icatlon

i

„J

D:.;:t,ribut on/ j

A .at] '■-'. " ' '"''i^S j

\

"-'

L —-~-

This work was sponsored by the Defense Advanced Research Projects Agency (DoD), ARPA
Order No. 5378, under contract MDA903-85-C-0124 issued by the department of the Army.

The view, opinions and findfap contained in this report are those of the authors and should not
be construed as an official DoD position, policy, or decision.

s(^Ä<N>^i>>^iN^ 'ijfä

Academic ätaiT

Ksniicth P. Bimum, Priodpai loTestisatar

Thonas A. Juwpb, Rwwrch Aaaodate

Graduate Students

Jacob AidkowLj

Ann. EL Abbadl

RkhardKoo

Patrick Steph

1. Dncriptkui of ProgrcH

This report summarizes accomplishments of the ISIS project during the period Feb 4,1986 -

May 4, 1986. We assume that the reader is familiar with the goals of the project and has read

some of our recent progress reports. Accordingly, the summary will be brief and targeu. to

specific aooomplishmeDts made during this period, rather than the overall status of the project.

The first quarter of 1986 represents the beginning of our second year of DARPA funding,

and we are pleased to report substantial progress in several important areas. Our effort is now

focusing on making the technology of fault-tolerance easier to use^and stripping as much unessen-

tial overhead from our approach as we can. We believe that by adopting what is essentially a

"RISC approach to software fault-tderance, it will be possible to address a broader collection of

distributed computing problems than we have in the past, making our work useful to practitioners

whose applications cannot be addressed efficiently using our currant approach (resilient objects).

Our plan is to develop a new system that wiD continue to provide resilient objects at a high level,

but wiD also include support for fault-tolerant process groups» described belowpat a lower level.

This lower level win be directly accessible to programmers, and much of our own software will

reside within it, including a collection of fault-tolerant services embodying specialized distributed

algorithms, such asfohe^thared memory mechanism^deseribed below.—^ M^o k^ äM ^ 'M^f

In the subsections that follow, we first summarize activity on the ISIS prototype, then discuss \

the new system, and then describe some of the other activities of Ihe project. ^

1.1. ISIS Prototype and Application Softwi« u .

Since completing the ISIS prototype, we have been using it to develop application software.

Uns presently includes a calendar program, described in our previous quarterly status report, and

a distributed monitoring program that uses ISIS to distribute a task over multiple sites and then to

monitor the computation while it is underway, reacting dynamically io failures and other events.

It is interesting to note that both of these programs were developed largely by naive programmers

with no understanding of fault-tolerance or distributed protocols. In addition to demonstrating

y&^&^te^^

how ISIS can be used, these applications have helped us debug it. because the prototype now

seems quite stable, a copy has been made available to colleagues at Berkeley, where Prof. Domen-

ico Ferrari's group is considering using it for ezperimenta! purposes. We will continue to make

this version of ISIS available to other researchers on a limited basis.

A new paper on ISIS was completed during the report period [1]. In addition to givinj a

detailed analysis of the algorithms used in the system, this paper describes the calendar program

and the techniques used to develop it, and presents new performance data. One unexpected

insight resulted from this performance work. We discovered that using our concurrent update

techniques [2] [3], updates of replicated data can actually be cheaper than updates to non-

replicsted data. This is counterintuitive: one would have expected that a computer system must do

more work to maintain multiple copies of a data item than to maintain just a single copy, and

hence perfoimance should degrade as the number of copies increases. In fact, ISIS operates more

efLdsntly under mederats distribuwd loads, for two reasons. First, our approach divides updates

to replicated objects into local and remote computational activity, and the remote part is much

cheaper than the remote part. Thus, when the local work for a collection of operations is distri-

buted over multiple sites, a given site ends up doing less work than if it had to do everything by

itself. Moreover, a significant amount of "piggybacking" occurs when the system operates this

way (that is, a typical communications packet carries multiple messages, not just one message).

Since I/O overhead is a significant cost factor in ISIS, this means that it becomes less expensive to

read a typical message, hence efficiency rises until the maximum level of piggybacking is reached.

The net impact of these two effects is that performance improves when objects a«-e replicated to

small numbers of sites, for moderate request loads presented randomly at all sites. Specifically,

we observed improved performance for objects distributed to as many as six sites and subjected to

request loads of 14) to 10 operations per second - very respectable for SUN 2 workstations run-

ning UNIX. Improvements in both the average response time and the maximum number of

operations the object could perform per second were noted. These results supports our belief that

what we are doing in ISIS will be valuable in a wide range of distributed computing projects in

.3.

years to come.

1.2. Fmitt-tolenot procfln sroupt

The crux of our present effort is to develop a system that will sappon faub-tolertau process

groups, an idea which we first reported in [4] and elaborate on in [5] (a copy of which is attached).

Such a group consists of a set of processes that cooperate to implement some fault-tolerant distri-

buted service. In the case of a resilient object, the group members are the components of the

object, and implement a coordinator-cohort algorithm to provide fault-tolerant proensing of dient

requests [1]. However, the process group approach also simplifies a wide range of other prob-

lems, ranging from distributed process control software (i.e. to control critical tasks within a

power plant or spacecraft) to more conventional distributed computing tasks, such as dynamic

reconfiguration of a distributed program. We are making rapid progress on an implementation of

this approach, and will soon complete the lowest levels of a new system providing for fault-

tolerant inter-site and inter-prooess communication support based on the algorithms given in our

papers. Once this layer has been completed, we expect to have higher levels, which implement

the process gioup abstraction, working very rapidly. Our initial work is being dons using UNIX,

but we are minimizing our dependence on UNIX-spedfic features in the expectation that UNIX

will eventually be replaced by some new operating system.

1.3. New forms of bott-tokrant objects

A forthcoming paper will report some recent work of ours on mechanisms for supporting

fault-toI*rant objects that provide predictable behavior in the presense of concurrency and failures,

but without the overhead of a transactional access mechanism. Such an object is best viewed as a

"shared memory", implemented using message passing in a way that provides predictable behavior

and eliminates both the need for higher level synchronization and for special code to handle

failures. Since these are common souron of complexity in distributed software, users of these

facilities can build fault-tolerant distributed programs without being particularly sophisticated

mmtm&mimm:^täi&xm^

about distributed computing. On the other hand, since access to the shared memory is not tran-

sactional, much higher performance can be achieved than using resilient objects. Moreover,

shared memories can be used for interprocess communication in ways that are awkward to express

using resilient objects. Thus, the approach promises to provide a cheap, easily used, alternative to

resilient objects. We plaa to include software support for this approach as a component of the

fault-tolerant process group system we are now building.

1.4. Other areas of actlvHy

Research on techniques for applying our work to parallel software and methods for tolerat-

ing network partitioning continues. In addition, some of the new graduate students who have

joined the project are starting to explore problems in fault-tolerant process control and high level

operating systems software besed on the fault-tolerant process group approach. We will have

more to say about work in all these areas during the next few months.

2. Project Penonnel

The ISIS project has be^n successful in attracting some very strong new graduate students,

largely because of a distributed computing course that Birman taught dining Spring 1986. In fact,

the department as a whole has become an extremely active research area, and no» includes six

faculty members with interests in areas relating to ISIS. That have been no changes in the key

personnel of the project, which continues to be run by Prof. Birman with the help of Dr. T.

Joseph.

3. Travel

Several members of the ISIS project attended the A&lomar workshop on fault-tolerant distri-

buted computing in Asilomar, California during March 1986. Prof. Birman presented a paper at

this workshop. Afterwards, he visited the IBM San Jose Research Center, Cheriton's V group at

Stanford University, and Ferrari's DASH group at Berkeley. Other trips (to the Universities of

Rochester and Toronto) did not use project funds. Additionally, graduate student A. El Abbadi

-5-

presented a paper on techniques for tolerating network partitioning at the March Principles of

Database Systems conference in Boston.

•sJ.i-r^'j, >^>^>>v^^v^\^^.v\^a^^

4. Budget Miinniiry

We conclude with a summary of the fmapdal status of the project, which is dose to projec-

tions in all categories.

Expenditures • 2/3/86. 5/4/86

Secretary support
Summer faculty
Research Associate
Graduate students
Employee benefits
Computer maintenance
Publications
Supplier
Computer Supplies
Travel
Programmer
Equipment

Indirect cost

Totals

Planned budget ftior Total
for period for period to 11/4/85

544 584 484 1028
-0- 20,609 20,600

8,700 8,700 6,444 15,144
18,633 18,633 77,406 96,039
2,635 2,635 4,035 6,670

769 1,000 4,025 5,025
327 917 1,457 2,374
253 419 3134 3553
154 -0- 643 643

2,000 1,933 11,170 13,103
1,006 1,006

67,993 67,993

10,981 11,468 62,578 74,046

44,996 46,249 260,984 307,233

• 7

'-»-"■ü- -fe '-«■ "v-.'-'■'.' .".4-V.. ü'.ii'- <'- «.'. £M '-' t^Kaji

5. Referenc»

[1] K. Birman. Joseph. ISIS: A system for fault-tolerant distributed computing. Dept. of Com-

puter Sdeüce, Tedsnical Report TR-86-744, April 1986.

[2] T. Joseph and K. Binnan. Low-Cost Management of Replicated Data in Fault-Tolerant Dis-

tributed Computing Systems. ACM Trau, on Computing Systems, Feb. 1986.

[3] T. Joseph. Low cost management of replicated data. PhD. dissertation, Dept. of Computer

Science, Comeii University, January 1986 (Available as TR-85-712, December 1985).

[4] K. Birman and T. Joseph. Rdiable communication in an unreliable environment. Dept. of

Computer Science, Technical Report TR-8S-694, (Aug. 1985; Revised Sept. 1985).

[5] K. Birman and T. Josqph. Communication Support for Fault Tolerant Process Groups.

Proc Asüomar workshop on fault-tolerant distributed computing. Springer Verlag, March 1986.

• i. ■>»-'»•- •;, • i •«■'.'■'.-. -k -.-,.•■,•,,-.•,-1,--".,•.
, • Vk.. »v *J\ O «O ■ "-* O ■■ ^ to •_". ^ * * O *"«"•.' «^ .-O «.' - ^ "■ -^* "■*"-."'■* ^ O "" - ^ • ^ - " ^1 4.^ ^ "-•■-*- ' - " » '■ ^ * * ' -O *
■ -^- - — -*— IT— - — ^-- ^—^ J ..£_■&_ ^^ W- .g. . J - -^ —- - ^-. . —- - ——. kg. . J . M— J1. . mf . « „ ^*_ ^_ ^V. «-.»^ *i-_- ^^ ^. ■ j w^t*"^ M^j ^_ ~ ^ -* J - ' . -^ -ft ■'.

Communication Support for Reliable
Distributed Computing*

Kenneth P. Birman
Thomas A. Joseph

TR 86-753
May 1986

* Department of Computer Science
ComeU University
Ithaca, NY 14853

i

This work was supported by the Defense Advanced Research Projects Agency (DoD) under
ARPA order 5378, Contract MDA903-85-C 0124. and by the National Science Foundation
under grant DCR-84r25ö2, The views, opinions and findings contained in thi1. report are those
of the authors and should not be construed as an official Offpartment of Defense position, policy,
or decision.

, ^ W7B t» TSTMiTTS - : "h ■ ~W t

COMMUNICATION SUPPORT FOR RfLIABLE
DISTRIBUTED COMPUTING

Kenneth P. Binn&n Rad Thomas A- Joseph

Department of Computer Science
Cornell University, Ithaca, P*w York

ABSTRACT

We describe a collection of communication primitives integrated with a mechanism for han-
dling process failure and recovery. These primitives facilitate the implementation of fault-tolerant
process groips, which csn be used to provide distributed services in an envimnment subject to
non-malidous .rash failures.

1. IntroductioD

At Ccmell, we recently completed a p-otoiype of tht 7V5 syJem, which transforms abstract

type specifications into fadt tolerant distributed implementations, wliile insulating users from the

mechanisms by which iault-tclcrsncs is achieved [Birman-a]. A wide range of reliable communica-

tion primitives hpve been proposed in the literature, and we became convinced that by using stich

primitives when building the ISIS system, complexity could be avoided. Uofortunntely, the exist-

ing protocols, which range from reliable and atomic broadcast [Chang] [Cristian] [Sdmddsr] to

Byzantine agreement [Strong], either do not satisfy the ordering constraints required for many

fault-tolerant applications or satisfy a stronger constraint than necessary at too high a cost. In par-

ticular, these protocols have not attempted to minimize the latency (delay) incurred before mes-

sage delivery can occur. In ISIS, latency appears to be a major factor that limits performance.

Fault-tolerant distributed systems also need a way to detect failures and recoveries consistently,

and we found that this could be integrated into the communication layer in a manner that reduces

the synchronization burden on higher level algorithms. These observations motivated the dev^op-

raent of a new collection of primitives, which we present below

This work was supported by the Defense Advanced Rssearch Projects Agency (DoD) under ARPA Qrd2r 5378,
Contract MDA903-85-C-0124, and by the National Science Foundation under grant DCR-8412582. The views, opinions
and findings contained in this report ars those of the authors and should not be construed as an official Dspcrtmsnt of
Defense position, policy, en dediioa

..> :."-,■-

'■ Mi k ti h Tl
.. - . • * ^ .

lit.Ä.'i i_'i A-"!. «Jl t-l .

-.*.■»* ^ .'*. '

1 ■

Our broadcast primitives are designed to respect several sorts of ordering constraints, and

have cost and latency that varies depending on the nature of the constraint required [Birman-b]

[Joseph-a] [Joseph-bj. Failure and recovery are integrated into the communication subsystem by

treating these cvsnts as a »pedal sort of broadcast issued on behalf of a process that has failed or

recovered. Hie primitives are presented in the context of fault tolerant process g jups. groups of

processes that cooperate to implement some distributed algorithm or service, and which need to

see consistent orderings of system event: in order to achieve mutually consiitent behavior. Our

primitives provide flexible, inexpensive support for process groups of this sort. By using these

primitives, the ISIS system achieved both high levels of concurrency and suprisingly good perfor-

mance. Equally important, its structure was made suprisingly simple, making it feasible to reason

about the correctness of our algorithms.

In the remainder of this paper we sumarize the issues and sitcrnatives that the designer of a

distributed system is presented with, focusing on two styles of support for fault-tolerant comput-

ing; remote procedure calls coupled with a transactional executien facility, and the fault-tolerant

process group mechanism mentioned above. Next, our primitives are described. We conclude by

speculating on future directions in which this work might be taken.

2. Goals and assumpdona

The difficulty of constructing fault-tolerant distributed software can be traced to a number of

interrelated issues. The list that foüows is not exhaustive, but attempts to touch on the principal

considerations that must be addressed in any such system:

1. Synchronization. Distributed systems offer the potential for large amounts of concurrency,

and it is usually ilesirable tn operate at as high a level of concurrency as possible. However,

when we move from a sequential execution environment to a concurrent one, it becomes

necessary to synchronize actions that may conflict in their access to shared data or entail

communication with overlapping sets of processes. Additional problems that can arise in this

context iadude deadlock avoidance or detection, livelock avoidance, etc.

P«g« 2

2. Fault detection. It is usually necessary for a fault-tolerant application to have a consistent

picture of which components fail, and in what order. Timeout, the most common mechanism

for detecting failure, is unsatisfactory, because there are many situations in which a healthy

component can timeout with respect to one comxneat without this being detected by some

another. Failure detection under more rigorous requirements requires an agreement proto-

col that is related to Byzandne agreement [Strong] [Hadälacos].

3. Consistency. When a group of processes cooperate in a distributed system, it is necessary to

ensure that the operational processes have consistent views of the state of the group as a

whole. For example, if process p believes that some property P holds, and on the basis of

this interacts with process q, the state of q should not contradict the fact that p believes P to

be true. This problem is closely related to notions of knowledge and consistency in distri-

buted systems [Halpsm] [Lamport]. Is our contest, P will often be the assertion that a

broadcast has been received by «7, or that q saw some sequence of eveata OCMU m the «üüC

order as did p.

4. Sericdüabüity. Many distributed systems are partitioned into data manager processes, which

implemented shared variables, and transaciion manager processes, which issue series of

requests to data managers [Bernstein]. If transaction managers can execute concurrendy, it

is often desirable to ensure that transactions nroduce serializable outcomes [Eswaren] [Papa-

dimitrou]. Serializability is increasingly viewed as an important property in "object-

oriented" distributed systems that package services as abstract objects with which clients

communicate by remote procedure calls (RFC). On the otter hand, there are systems for

which serializability is dther too strong a constraint, or simply inappropriate.

Jointly, these problems render the design of fault-tolerant distributed software daunting.

Hie correctness of any proposed design and of its implementation become serious .iot insur-

mountable, concerns. We facea this range of problems in rnx work on the ISIS system, and

rapidly became convinced that in the absence of some systematic

Pr-ge3

,v,
:\-\. vN> V-i"-:'''^^ j^i^v^^

ZT:~ bs c^uitrjc*''^ In S??t 6j *« will »how how the primitives of Sec. 5 provide such an

The failure mode! that one adopts has considerable impact on the structure of the resulting

system. We adopted the model of fail-stop processors [Schneider]: when failures occur, a proces-

sor simply stops (crashes), as do all the processes executing en it. We rejected the extremely pes-

simistic assumptions of the malidous Byzantine failure models because they lead to slower, more

redundant software, and because the probability that a system failure will be undetectably mali-

dous seems vanishingly small in practice. Work based en Byzantine assumptions is described in

[Lamport] and [Scfalicdng]. We also assume that the communication network is reliable but sub-

ject to unbounded delay. Although network partitioning is an important problem, we do not

iddress it here.

Further assumptions are sometimes made about the availability of synchronized realiime

docks. Here, we adopt the position that although reasonably accurate elapsed-time docks are nor-

mally available, dosely synchronized docks frequently are not. For example, the 60Hz "line"

docks commonly used on current workstations are only accurate to 16ms. On the other hand, 4-

8ms inter-site message transit times are common and l-2ms are reported increasingly often. Thus,

it is impossible to synchronize docks to better than 32-48ms, enough time for a pair of sites to

exchange between 4 and 50 messages. Thus, we assume that dock skew is "large" compared to

inter-site message latency.

3. Alternativ«

Two different approaches to reliable distributed computing have become predominant. The

first approach involves the provision of a communication primitive, such as atomic broadcast,

which can be used as the framework on which higher level algorithms are designed. Such a primi-

tive seeks to deliver messages reliably to some set of destinations, despite the possT y that

failures might occur during the execution of the protocol. We term this the process group

approach, since it lends itself to the organization of cooperating processes into groups, as

described in the introduction. Process groups are an extreme1-/ flexible abstraction, and hav been

P«ge4

employed in the V Kernel [Cheriton] as well in the /5/5 system. The idea of using process groups

to address the problems raised in the previous section seems to be new.

A higher level approach is to provide mechanisms for transactional interactions between

processes that communicate using remote procedure calls [BirreC]. This has lead to work on

nested transactions (due to nested RPCs) [Moss], support for transactions at the language level

[Liäkov], transactions within an operating systems kernel [Spector] [Allchin] [Popek] [Lazowska],

and transactional access to higher-level replicated scrvicrs, such as resilient objects in ISIS or rela-

tions in datab&sA systec^. The primitives in a transactional system provide mechanisms for distri-

buting the request tiiat initiales the transaction, accessing data (which may be replicated), perform-

ing concurrency control, and implementing commit or abort. Additional mechanisms are normally

needed for orphan termination, deadlock detection, etc. The issue then arises «"f how these

mechanisms should themselves be implemented. Our work in ISIS leads us to believe that transac-

tions are easily implemented on top of fault-tolerant process groups; lacking such a mechanism a

number of complicated protocols are needed and the associated system support can be substantial.

Moreover, transactions represent a relatively heavy-v.Hght solution to the problems surveyed in

the previous section. We now believe 'hat transactions are inappropriate for casual interactions

between processes in typical distributed systems. The remainder of this paper is therefore focused

on the process group approach.

4. Existisg broadcast primitives

The considerations outlined above motivated us to examine reliable broadcast primitives.

Previous work has been reported on this problem, under assumptions comparable with those of

Sec. 2, and we begin by surveying this research. In [Schneider], an implementation of a reliable

broadcast primitive is described. Such a primitive ensures that a designated message will be

transmitted from one site to all other operational sites in a system; if a failure occurs but any site

has received the message, all will eventually do so. [Chang] and [Cristian] describe implementa-

tions for atomic broadcast, which is a reliable broadcast with the additional property that messages

PageS

are delivered in the same order at all overlapping destinations, and this order preserves the

transmission order if messages originate in a single site.

Atomic broadcast is a pcvrcrful abstraction, and essentially the same behavior is provided by

one of the primitives we discuss m the next section. However, it has several drawbacks which

made us hesitant to adopt it as the only primitive in the system. Most serious is the latency that i»

incurred in order to satisfy the delivery ordering property. Without delving into the implementa-

tions, which arc based on a token scheme in [Chang] and an acknowledgement protocol in

[Schneider], we observe that the delaying of certain messages is fundamental to the establishment

of a unique global delivery ordering; indeed, it is easy to prove that this must always be the case.

In [Chang] a primary goal is to minLoize the number of messages sent, and the protocol given

performs extremely well in this regard. However, a delay occurs while waiting for tokens to

arrive and the delivery latency that results may be high. [Cristian] assumes that docks are dosely

syncfarcnized and that message transit times are bounded by well-known constants, and uses this to

derive atomic broadcast protocols tolerant of increasingly severe dasscs of failures. The protocols

explidtly delay delivery to achieve the desired global ordering on broadcasts. Hence for poorly

synchronized docks (which are typical of existing workstations), latency would be high in com-

parison to inter-site message transit times.

Another drawback of the atomic broadcast protocols is that no mechanism is provided for

ensuring that all processes observe the same sequence of failures and recoveries, or for ensuring

that failures and recoveries are ordered relative to ongoing broadcasts. We deuJed to look more

dosely at these issues.

5. Our buwdcast primitives

We now describe three broadcast protocols - GBCAST, BCAST, and OBCAST - for transmit-

ting a message reliably from a sender orocess to seme set of destination processes. Details of the

protocols and their correctness proofs can be found in [Birrnan-b]. The protocols ensure "all or

nothing" behavior: if any destination receives a message, then unless it fails, all destinations will

Paseö

receive it.

5.1. The GBCAST primiftrc

GECAST (group broadcast) is the most constrained, and costly, of the three primitives. It is

used to transmit information about failures and recoveries to members of a process group. A

recovering member uses GBCAST to inform the operational ones that it has become available.

Additionally, when a member fails, the system arranges for a GBCAST to be issued to group

members on its behalf, informing them of its failure. Arguments to GBCAST are a message and a

process group identifier, which is translated into a set of destinations as described below (Sec.

5.6).

Our GBCAST protocol ensures that if any process receives a broadcast B before receiving a

GBCAST G, then all overlapping destinations will receive B before G. This is true regardless of

the type of broadcast involved. Moreover, when a failure occurs, the corresponding GBCAST

message is delivered after any other broadcasts from the failed process. Each member can there-

fore maintain a view listing the membership of the process group, updating it when a GBCAST is

received. Although views are not updated simultaneously in real time, all members observe the

same sequtnee of view changes. Since, GBCASTs are ordered relative to all other broadcasts, all

members receiving a given broadcast will have the same value of view when they receive it.1

Members of a process group can use this value to pick a strategy for processing an incoming

request, or to react to failure or recovery without having to run any special protocol first. Since

die GBCAST ordering is the same everywhere, their actions will all be consistent. Notice that

when all the members of a process group may have failed, GBCAST also provides an inexpensive

way to determine the last site that failed: process group members simply log each new view that

becomes defined on stable storage before using it; a simplified version of the algorithm in [Skeen-

lA problem arises if a process p fails without receiving some message after that message has already
been delivered to some other process q: q'i view when it received the message would show p to be operation-
al; hence, q will assume that p received the message, although p is physically incapable of doing so. Howev-
er, the state of the syntem is now equivalent to one in whkh p (fid receive the message, but failed before act-
ing on it. In effect, there exists an interpretatian of the actual system state that is consistent with ^'s as-

P«ge7

a] can then be executed when recovering from failure.

5.2. The BCAST primitiTe

The GBCAST primitive is too costly to be used for general communication between process

group members. This motivates the introduction of weaker (less ordered) primitives, which might

be used in situations where a total order oc broadcast messages is not necessary. Our second

primitive, BCAST, satisfies such a weaker constraint. Specifically, it is often desired that if two

broadcasts are received in some order nt a common destination site, they be received in that order

at all other common destinations, even if this order was not predetermined. For example, if a

process group is being used to maintain a replicated queue and BCAST is used to transmit queue

operations to all copies, the operations will be done in the same order everywhere, hence the

copies of the queue will remain mutually consistent. The primitive BCAST(msg, label, dests),

where nag is the message and label is a string of characters, provides this behavior. Two ßCAST's

having the same label are delivered in the same order at all common destinations. On the other

hand, BCAST's with different labels can be delivered in arbitrary order, and since BCAST is not

used to propagate information about failures, no flushing mechanism is needed. The relaxed syn-

chronization reiults in lower latency.

5.3. The GBCAST primitive

Our third primitive, OBCAST (ordered broadcast), is weakest in the sense that the it involves

less distributed synchronization then GBCAST or BCAST. OBCAST(msg, dests) atomically delivers

msg to each operational dest. If an OBCAST potentially causai'y dependent on another, then the

former is delivered after the latter at all overlapping destinations. A broadcast 5: is potentially

causally dependent on a broadcast fi, if both broadcasts originate from the same process, and 52 is

sent after fl., or if there exists a chain of message transmissions and receptions or local events by

which knowledge could have been transferred from the process that issued Bl to the process that

sumption.

Page 8

issued 52 [Lamport]. For causally independent broadcasts, the deliver ordering is not constrained.

OBCAST is valuable in systems like ISIS, where concurrency control algorithms are used to

synchronize concurrent computations. In these systems, if two processes communicate con-

currently with the same process the nessages are almost always independent ones that can be pro-

cessed in any order: otherwise, concurrency control would have caused one to pause until the other

was finished. On the other hand, order is dearly important within a causally linked series of

broadcasts, and it is precisely this sort of order that OBCAST respects.

5.4. Other broadcast primÜhes

A weaker broadcast primitive is reliable broadcast, which provides all-or-nothing delivery,

but no ordtring properties. The formulation of OBCAST in [Erman-b] actually includes a

mechanism for performing broadcasts of this sort, hence no special primitive is needed for the

purpose. Additionally, there may be situations in which BCAST protocols that also satisfy an

OBCAST ordering property would be valuable. Although our BCAST primitive could be changed

to respect such a rule, when we considered the likely uses of the primitives it seemed that BCAST

was better left completely orthogonal to OBCAST. In situations needing hybrid ordering behavior,

the protocols of [Birman-b] could easily be modified to implement BCAST in terms of OBCAST,

and the resulting protocol would behave as desired.

5.5. Synchronous versos asynchroooas broadcast abstractions

Many systems employ RFC internally, as a lowest level primitive for interaction between

processes. It should be evident that all of our broadcast primitives can be used to implement

replicated remote procedure calls [Cooper]: the caller would simply pause until replies have been

received from all the participants (observation of a failure constitutes a reply in this case). We

term such a use of the primitives synchronous, to distinguish it from from an asynchronous broad-

cast in which no replies, or just one reply, svffioes.

Page9

In our work on ISIS, GBCAST and BCAST are normally invoked synchronou-ly, to imple-

ment a remote procedure call by one member of an object on all the members of its process

group. However, OBCAST, which is the most frequently used overall, is almost never invoked

synchronously. Asynchronous OBCASTs are the source of most concurrency in ISIS: although the

delivery ordering is assured, transmission can be delayed to enable a message to be piggybacked

on another, or to schedule 10 within the system as a whole. While the system cannot defer an

asynchronous broadcast indefinitely, the ability to defer it a little, without delaying some computa-

tion by doing so, permits load to be smoothed Since OBCAST respects the delivery orderings on

which a computation might depend, and is ordered with respect to failures, the concurrency intro-

duced does not complicate higher level algorithms. Moreover, the protocol itself 1% extremely

cheap.

A problem is introduced by our decision to allow asynchronous broadcasts: the atomic recep-

tion property must now be extended to address causally related sequences of asynchronous mes-

sages. If a failure were to result in some broadcasts being delivered to all their destinations but

others that precede them not being delivered anywhere, inconsistency might result even if the des-

tinations do not overlap. We therefore extend the atomicity property as follows. If process t

receives a message m from process s, and s subsequently fails, then unless t fails as well, m' must

be delivered to its remaining destinations. This is because the state of r may depend on any mes-

sage m' received by s before it sent m. The costs of the protocols are not affected by this change.

A second problem arises when the user-level implications of this atomicity rule are con-

sidered, hi the event of a failure, any suffix of a sequence of aysnefaroncus broadcasts could be

lost and the system state would still be internally consistent. A process that is about to take some

action that may leave an externally visible side-effect will need a way to pause until it is

guaranteed that surh broadcasts have actually been delivered. For this purpose, a (huh primitive

is provided. Occasional calls to flush do not eliminate the benefit of using OBCAST asynchro-

nously. Unless the system has built up a considerable backlog of undelivered broadcast messages,

Page 10

' *>_ * ' *

which should be rare, flush will only pause while transmission of the last few broadcasts com-

pletes.

5.6. Group addresstog protocol

Since group membership can change dynamically, it may be difficult for a process to com-

pute a list of destinations to which a message should be sent, for example, as is needed to perform

a GBCAST. In [Birman-b] we report on a protocol for ensuring that a given broadcast will be

delivered to all members of a process group in the same view. This view is either the view that

was operative when the message transmission was initiated, or a view that was defined subse-

quently. The algorithm is a simple iterative one that costs nothing unless the group membership

changes, and permits the caching of possibly inaccurate membership information near processes

that might want to communicate with a group. Using the protocol, a flexible message addressing

scheme can readily be supported

5.7. Example

Figure 1 illustrates a pair of computations interacting with a process group while its member-

ship changes dynamically. One client issun a pair of ODCASTy then uses 5CAST to perform a

third request on the group. A second client interacts only once, using BCAST. Note that unless

the first client invoked flush before issuing the BCAST, the BCAST might be received before the

prior OBCAST's at some sites. Arrows showing reply messages have been omitted to simplify the

figure, but it would normally be the case that one or more group members reply to each request.

6. Using the primitives

The reliable communication primitives described above dramatically simplify the solution of

the problems dted in Sec. 2:

1. Synchronization. Many synchronization problems are subsumed into the primitives them-

selves. For example, consider the use of GBCAST to implement recovery. A recovering

process would issue a GBCAST to the process group members, requesting that state

Page 11

■■■ ■* -Wl Vt

Client Computations Pqroup View

GBO»'.'' Bjoins

GBCAST: Cjoins

(^t tr^) GBCAST
A fails

1 T
l I
I l
I I

P Q ||

Figure 1: Client processes interacting with ■ prooes group

informati m be transferred to it. In addition to sending the current state of the group to the

recovering process, group members update the process group view at this time. Subsequent

messages to the group will be delivered tc the recovered process, with all necessary syn-

chronization being provided by the ordering properdss of CflClST. In situations where

other forms of synchronization are needed, BCAST provides a simple way to ensure that

several processes take actions in the same order, and this form of low-level synchronization

simplifies a number of higher-level synchronization problems. For example, if BCAST is

used to request wnte-locks from lock-manager processes, two write-lock requests on the

same item can never deadlock by being granted in different order; by a oair of managers.

Fault detection. Consistent failure (and recovery) detection are trivial using our primitives: a

process simply waits for the appropriate process group view to cfaangr. This facilitates the

implementation of algorithms in which one processes monitors the status of another process.

A process that acts on the basis of a process group view change does so with the assurance

that other group members will (eventually) observe the same event and will take consistent

actions.

Page 12

• .s^^^i^l^^ i^y i :-%:>-:^

3. Consistency. We believe »hat consistency is generally expressible as a set of atomicity and

ordering constraint on message delivery, particularly causal ones of the sort provided by

OBCAST. Our primitives permit a process to specify the communication properties needed

to achieve a desired form of consistency Continued research will be needed to understand

precisely how to pick the wskest primitive in a designated situation.

4. Serkdizability. To achieve serializability, one implements a concurrency control algorithm

and then forces computations to respect the serializatior vorder 'what this algorithm choses.

The BCAST primitive, as observed &buve, is a powerful tod for establishing an order

between concurrent events. Having established such an order, OBCAST can be used to dis-

tribute information about the computation and also its termination (commit or abort). Any

process that observes the commit 01 abort of a computation will only be able to interact with

data managers that have received messages preceding the commit or abort, hence a highly

asynchronous tronsactional execution results. This problem is discussed in more detail in

[Birman-a] [Joseph-o] [Joseph-bj.

7. Implementation

The communication primitives can be built in layers, starting with a bare network providing

unreliable datagrams. A site-to-site acknowledgement protocol converts this into a sequenced,

error-free message abstraction, using timeouts to detect apparent failures. An agreement protocol

is then used to order the site-failures and recoveries consistently. If timeouts cause a failure to be

detected erroneoiuiy, ihe wotocol forces the affected site to undergo recovery.

Built on this is a layer that supports the primitivcä themselves. OBCAST has a very light-

weight implementation, based on the idea of flooding the system with copies of a message: Each

process buffers copies of any message* needed to ensure the consistency of its view of the system.

If message m is delivered to process p, and m is poteiitialiy causally dependent on a message m',

then a copy of m' is sent to p us well (duplicates are discarded). A garbage collector deletes

superfluous copies after a message has reached all its destinaüons. By using extensive

Page 13

piggyback] ag and a simple scheduling algorithm to tontrol message transmission, the cost of an

OBCAST is kept low - often, less than one packet per destination. BCAST employs a two-phase

protocol based on one suggested to us by Skeen [Skeen-b]. This protocol has higher latency than

OBCAST because delivery can only occur during the second phase; BCAST is thus inherently syn-

chronous. In ISIS, however, BCAST is used rarely; we bdieve that this would be the case in other

systems as well. GBCAST is implemented using a two-phase protocol similar to the one for

BCAST, but with an additional mechanism that flushes messages from a failed process before

delivering the GBCAST announcing the failure. Although GBCAST is slow, it is used even less

often than BCAST. Preliminary performance figures appear in [Birman-b].

8. Applications of the approach

Our work with communication primitives has convinced us that the redlient objects provided

by the ISIS system exist at too high a level for many sorts of distributed application. For exam-

ple, consider the cognac still shown in figure 2. If independent, non-identical computer systems

were used to control distillation, two aspecis would have to be addressed. Fust, it would be

necessary to design the hardware itself in a way that admits safe actions in all possible system

states. Second, however, one would need to implement the control software in each processor in a

way that ensures mutual consistency of the oneiational computing units. That is, given that the

1 - pressure/temp
2 - heater
i - 1Lquid source

6 - bottling unit

FIgore 2: An antomafed cognac siiH

Page 14

^i-v-v^Wwv:svl'C%>.i^-^j
-■- -■•-•.. * - : - * -,* — -,v ^■V-^^^^V ^

■ V- "C- • "" "L" V

spedficatioii describes a sequence of actions to take in some scenario (for example, detection of

excessive pressure in the distillation vessel), can we be assured that the operational processors will

jointly act to avert a disastrous spill of cognac? We believe that fault-tolerant process groups pro*

vide a simple, elegant way to address problems such as this one. We plan to complete an imple-

mentation of the protocols by the summer of 1986, and then to develop a collection of software

subsystems running on top of them.

9. Ackaowiedgement

The authors are grateful to Pat Stephenson and Fred Schneider for many suggestions ihat ore

reflected in the presentation of this material, and to Dale Skeen, with whom we colaborated on

many aspects of the work reported here.

10. References

[Alfchln] Alkliin, J., McKendry, M. Synchronizadan and recovery of actions. Prae. 2nd ACM
SIGACTISIGOPS Principles (fDutributtd Computing, Montreal, Canada, 1983.

[Babaogtn] Babacghi, C, Drummond, R. The streets of Byzantium: Network aictntecrdres for fast reli-
able broadcast. IEEE Trans, on Software Engineering TSE-11, 6 (June 1983).

[Bernstein] Bernstein, P., Goodman, N. Concurrency control algorithms for replicated database systems.
ACM Computing Surveys 13, 2 (June 1981), 185-222.

(Btmum-al Birman, K. Replication and fault-tolerance in the ISIS system. Prac. 10th ACM SIGOPS Sym-
posimn on Operating Systems Principles. Ocas Island, Washington, Dec. 1983, 79-86.

[Btmum-b] Birman, K., Joseph, T. Reliable communication in an unreliable environment. Dept. of Com-
puter Science, Cornell Univ., TP 83-694, Aug. 1983.

[BtrreD] Birrell, A., Nelson, B. Implementing remote procedure calls. ACM Transactions on Computer
Systems 1, 1 (Feb. 1984), 39-39.

(Chang] Chaig, J., Maxsmchuck, M. Reliable broadcast protocols. ACM TOCS ?., 3 (Aug. 1984), 251-
273.

[Cberttan] Oieriton, D. The V Kernel: A software base for distributed systems. IEEE Software 1 12,
(1984), 19-43.

[Caopcr] Cooper, E. Replicated procedure call. Prac. 3rd ACM Sympasiim: at Principles of Distribuied
Conpudng., August 1984, 220-232. (May 1983).

ECrisüan] Cristian, F. el at Atomic broadcast: From simple diffusion to Byzantine agreement IBM
Technical Report RJ 4340 (48668), Oct. 1984.

[Eswaren] Eswaren, K.P., et ai The notion cf consistency and predicate lot»3 in a database system.

ftlt 15

Cam. ACM 19, 11 (Nov. 1976), 624-633.

[Hadzflacoa] Hac&lacos, V. Hadnlacos, V. Byzantine agreement uoder restricted type: cf failurrs (not
telling the truth is different from telling of lies). Tech. ARep. TR-19-S3, Aikcn Ccmp. LÄb.:

Harvard University (June 1983).

Halpem, J., and Moses, Y. Knowledge and common knowledge in a distribuied environment.
Tech. Report RJ-4421, IBM San Jose Research Laboratory, 1984.

[Halpem]

IJoaeph-a]

[Joaeph-b]

[Lamport]

[LBOwska]

[Lfakov]

[Mass]

Joseph, T. Law cost management of replicated data. Ph.D. dissertation, Dept. of Computer
Science, Caradl Univ., Ithaca (Doc. 1985).

Joseph, T , Birman, K- Low cost management of replicated data in fault-tolerant dSstrifauted
systems. ACM TOCS 4, 1 (Fcb 1986), 54-70.

Lamport, L. Tune, clocks, and the ordering of events in a distributed system. CACM 21, 7,
July 1978, 558-565.

Lazowska, E. et ai The architecture of the EDEN system. Proc. 8tk Symposium on Operating
Systems Prineipka, Dec 1981, 148-159.

Liskov, B., Schauer, R. GuarcSans and actions: Linguistic support for robust, distributed pro-
grams. ACM TOPLAS S, 3 (July 1983), 381-404.

Moss, E. Nested transacuons: An approach to reliable, distributed computing.
MTT Dept of EECS, TR 260, April 1981.

Ph.D. thesis,

[PapadimHrouPapadimitrou, C The serializability of concurrent database updates. JACM 26, 4 (Oct. 1979),
631-653.

[Popek] Popek, G. et ai. Locus: A network transparent, high reliability dsuibuted system. Proc. 8th
Symposium an Operating Systems Principles, Dec. 1981, 169-177.

[SchMcting] Schlkting, R, Schneider, F. Fail-stop processors: An approach to dpsigning fault-tolerant ds<
tributed computing systems. ACM TOCS 1,3, August 1983, 222-238.

[Schneider] Schneider, F., Ones, D, Schlicting, R. Reliable broadcast protocols. Science qf computerpro-
Sramming 3, 2 (March 1984).

[Skeen-a] Skeen, D. Determining the last process to fail. ACM TOCS 3, 1, Feb. 1985,15-30.

[Skeen-b] Skem, D. A reliable broadcast protocol. Unpublished.

[Spector] Spector, Ai., et ai Distributed transactions for reliable systems. Proc. 10th ACM SIGOPS Sym-
posiim on Operating Systems Principles, Dec. 1985, 127-146.

[Strong] Strong, H.R., Dolsv, D. Byzantine agreement. Digest cf papers. Spring Compcan 83, San Fran-
cisco, CA, March 1983, 77-81.

Page 16

fc ^rur^jt. li ^X^.i't.'CtAj. i". C. rC. 'Cm "TM H^ii t fc £m V"« *'^^"- -it'^ *'..-V^ ^ a-^ .^l_-j^..- « - *^ »1^ ^* MT - t!: ^

S<,VA'>: CLASSIFICATION Oc THIS PAGE"

i V REPORT DOCUMENTATION PAGE
form Approved
0/W8.VO 07W-0J8S
£xp. 0«rt- Jon JO. (986

I*. H REPORT SECURITY CLASSIflCATlOW
J Unclassified

lb RESTRICTIVE MARKINGS

2a SfcCURlTY CLASSirlCATlON AUTHORITY

i 2b DFCLASSIFICATION/DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT.

Approved for Public Release
Distribution Unlimited

i

r

i PERFORMING ORuAMZATiON REDnP,T NuM9Ef»(S)

TR86-753

5 MONITORING ORGANIZATION REPORT MUMBER(S)

I

6a NAME OF PERFORMING ORGANIZATION

Kenneth Birman, Dept. ot CS
Cornell University

6b OFFICE SYMBOL
(If applicable)

7a NAME OF MONITORING ORGANIZATION

Defense /dvanced Research Projects Agency/IPTO

6f ADDRESS (Ofy. State, and ZIP Code)

Dept. of Computer Science, 405 Upson Hall
Cornell University
Ithaca, NY 14853'

7b ADORE! ; (Oty, State, and ZIP Code)
Defense Advanced Research, Project Agency
Attr.: TIO/Admin, 1400 Wilson Blvd.
Arlington, VA 22209

Sa NAME OF FUNDING/SPONSORING
ORGANIZATION
DARPA/IPTO

8b OFFICE SYMBOL
(if applicable)

9, PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ARPA order 5378
Contract MDA-903-85-C-0124

3c. ADDRESS (Ofy, State, and Z/P Code;

Defense Advanced Research, Project Agency
Arlington, .VA 22209

f^r . I f\ P Z' \

10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMFNT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

11 TITLE (Include Security Oauification)

-Communication Support for Reliable Distributed Computing
Approved for Public Releas
Distributed Unlimited

•.2 PERSONAL AUTHOR(S)

Kenneth P. Birman and Thomas A. Joseph
Ha Type OF REPORT jl3b TIME COVERED

Special Technical I FROM TO.

13 DATE OF REPORT {Vpar, Month, Day)

May 1986
15 PAGE COUNT

16
'6 SUPPLEMENTARY NOTATION

17 COSAT. CODES

FIELD
C

E

GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identity by bloc* numoer)

'9 ABSTRACT {Continue on reverse if necessary and identify by block number)
if'/ } •"

We describe a collection of communication primitives integrated with a mechanism
for handling process failure and recovery. These primitives facilitate the implementation
of fault-tolerant process groups, which can be used to provide distributed services in an
environment subiect to non-malicious crash failures. .„/

".

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

E UNCLASSIFIED/UNLIMITED G SAME AS RPT Q DTiC uSERS

21 ABSTRACT SECURITY CLASSIFICATION

22a. NAME OF RESPONSiSLE INDIVIDUAL 22b TELEPHONE (/nc/ude «fed Code; 22c OFFiCE SYMBOL

DD FORM 1473, 84 MAR 83 APR edition may Be used until exhausted
All otner edi ions are obsolete

stciJRiTY CLASSIFICATION O= THIS PAGE

-"• *** »**_>** -'^»'B •'* -'" »*" -"* /" ««*' **' •> - ' /'" »JJM *"" »""^ i' /" -"* .' K'" . * m .' ." - K'- ..' ' "• '■ "•".'■"

■-■.■*■..

