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1. Dncriptkui of ProgrcH 

This report summarizes accomplishments of the ISIS project during the period Feb 4,1986 - 

May 4, 1986. We assume that the reader is familiar with the goals of the project and has read 

some of our recent progress reports. Accordingly, the summary will be brief and targeu. to 

specific aooomplishmeDts made during this period, rather than the overall status of the project. 

The first quarter of 1986 represents the beginning of our second year of DARPA funding, 

and we are pleased to report substantial progress in several important areas. Our effort is now 

focusing on making the technology of fault-tolerance easier to use^and stripping as much unessen- 

tial overhead from our approach as we can. We believe that by adopting what is essentially a 

"RISC approach to software fault-tderance, it will be possible to address a broader collection of 

distributed computing problems than we have in the past, making our work useful to practitioners 

whose applications cannot be addressed efficiently using our currant approach (resilient objects). 

Our plan is to develop a new system that wiD continue to provide resilient objects at a high level, 

but wiD also include support for fault-tolerant process groups» described belowpat a lower level. 

This lower level win be directly accessible to programmers, and much of our own software will 

reside within it, including a collection of fault-tolerant services embodying specialized distributed 

algorithms, such asfohe^thared memory mechanism^deseribed below.—^  M^o k^     äM        ^   'M^f 

In the subsections that follow, we first summarize activity on the ISIS prototype, then discuss \ 

the new system, and then describe some of the other activities of Ihe project. ^ 

1.1. ISIS Prototype and Application Softwi« u  . 

Since completing the ISIS prototype, we have been using it to develop application software. 

Uns presently includes a calendar program, described in our previous quarterly status report, and 

a distributed monitoring program that uses ISIS to distribute a task over multiple sites and then to 

monitor the computation while it is underway, reacting dynamically io failures and other events. 

It is interesting to note that both of these programs were developed largely by naive programmers 

with no understanding of fault-tolerance or distributed protocols.  In addition to demonstrating 
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how ISIS can be used, these applications have helped us debug it. because the prototype now 

seems quite stable, a copy has been made available to colleagues at Berkeley, where Prof. Domen- 

ico Ferrari's group is considering using it for ezperimenta! purposes. We will continue to make 

this version of ISIS available to other researchers on a limited basis. 

A new paper on ISIS was completed during the report period [1]. In addition to givinj a 

detailed analysis of the algorithms used in the system, this paper describes the calendar program 

and the techniques used to develop it, and presents new performance data. One unexpected 

insight resulted from this performance work. We discovered that using our concurrent update 

techniques [2] [3], updates of replicated data can actually be cheaper than updates to non- 

replicsted data. This is counterintuitive: one would have expected that a computer system must do 

more work to maintain multiple copies of a data item than to maintain just a single copy, and 

hence perfoimance should degrade as the number of copies increases. In fact, ISIS operates more 

efLdsntly under mederats distribuwd loads, for two reasons. First, our approach divides updates 

to replicated objects into local and remote computational activity, and the remote part is much 

cheaper than the remote part. Thus, when the local work for a collection of operations is distri- 

buted over multiple sites, a given site ends up doing less work than if it had to do everything by 

itself. Moreover, a significant amount of "piggybacking" occurs when the system operates this 

way (that is, a typical communications packet carries multiple messages, not just one message). 

Since I/O overhead is a significant cost factor in ISIS, this means that it becomes less expensive to 

read a typical message, hence efficiency rises until the maximum level of piggybacking is reached. 

The net impact of these two effects is that performance improves when objects a«-e replicated to 

small numbers of sites, for moderate request loads presented randomly at all sites. Specifically, 

we observed improved performance for objects distributed to as many as six sites and subjected to 

request loads of 14) to 10 operations per second - very respectable for SUN 2 workstations run- 

ning UNIX. Improvements in both the average response time and the maximum number of 

operations the object could perform per second were noted. These results supports our belief that 

what we are doing in ISIS will be valuable in a wide range of distributed computing projects in 
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years to come. 

1.2. Fmitt-tolenot procfln sroupt 

The crux of our present effort is to develop a system that will sappon faub-tolertau process 

groups, an idea which we first reported in [4] and elaborate on in [5] (a copy of which is attached). 

Such a group consists of a set of processes that cooperate to implement some fault-tolerant distri- 

buted service. In the case of a resilient object, the group members are the components of the 

object, and implement a coordinator-cohort algorithm to provide fault-tolerant proensing of dient 

requests [1]. However, the process group approach also simplifies a wide range of other prob- 

lems, ranging from distributed process control software (i.e. to control critical tasks within a 

power plant or spacecraft) to more conventional distributed computing tasks, such as dynamic 

reconfiguration of a distributed program. We are making rapid progress on an implementation of 

this approach, and will soon complete the lowest levels of a new system providing for fault- 

tolerant inter-site and inter-prooess communication support based on the algorithms given in our 

papers. Once this layer has been completed, we expect to have higher levels, which implement 

the process gioup abstraction, working very rapidly. Our initial work is being dons using UNIX, 

but we are minimizing our dependence on UNIX-spedfic features in the expectation that UNIX 

will eventually be replaced by some new operating system. 

1.3. New forms of bott-tokrant objects 

A forthcoming paper will report some recent work of ours on mechanisms for supporting 

fault-toI*rant objects that provide predictable behavior in the presense of concurrency and failures, 

but without the overhead of a transactional access mechanism. Such an object is best viewed as a 

"shared memory", implemented using message passing in a way that provides predictable behavior 

and eliminates both the need for higher level synchronization and for special code to handle 

failures. Since these are common souron of complexity in distributed software, users of these 

facilities can build fault-tolerant distributed programs without being particularly sophisticated 

mmtm&mimm:^täi&xm^ 



about distributed computing. On the other hand, since access to the shared memory is not tran- 

sactional, much higher performance can be achieved than using resilient objects. Moreover, 

shared memories can be used for interprocess communication in ways that are awkward to express 

using resilient objects. Thus, the approach promises to provide a cheap, easily used, alternative to 

resilient objects. We plaa to include software support for this approach as a component of the 

fault-tolerant process group system we are now building. 

1.4. Other areas of actlvHy 

Research on techniques for applying our work to parallel software and methods for tolerat- 

ing network partitioning continues. In addition, some of the new graduate students who have 

joined the project are starting to explore problems in fault-tolerant process control and high level 

operating systems software besed on the fault-tolerant process group approach. We will have 

more to say about work in all these areas during the next few months. 

2. Project Penonnel 

The ISIS project has be^n successful in attracting some very strong new graduate students, 

largely because of a distributed computing course that Birman taught dining Spring 1986. In fact, 

the department as a whole has become an extremely active research area, and no» includes six 

faculty members with interests in areas relating to ISIS. That have been no changes in the key 

personnel of the project, which continues to be run by Prof. Birman with the help of Dr. T. 

Joseph. 

3. Travel 

Several members of the ISIS project attended the A&lomar workshop on fault-tolerant distri- 

buted computing in Asilomar, California during March 1986. Prof. Birman presented a paper at 

this workshop. Afterwards, he visited the IBM San Jose Research Center, Cheriton's V group at 

Stanford University, and Ferrari's DASH group at Berkeley. Other trips (to the Universities of 

Rochester and Toronto) did not use project funds.  Additionally, graduate student A. El Abbadi 
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presented a paper on techniques for tolerating network partitioning at the March Principles of 

Database Systems conference in Boston. 
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4. Budget Miinniiry 

We conclude with a summary of the fmapdal status of the project, which is dose to projec- 

tions in all categories. 

Expenditures • 2/3/86. 5/4/86 

Secretary support 
Summer faculty 
Research Associate 
Graduate students 
Employee benefits 
Computer maintenance 
Publications 
Supplier 
Computer Supplies 
Travel 
Programmer 
Equipment 

Indirect cost 

Totals 

Planned budget ftior Total 
for period for period to 11/4/85 

544 584 484 1028 
-0- 20,609 20,600 

8,700 8,700 6,444 15,144 
18,633 18,633 77,406 96,039 
2,635 2,635 4,035 6,670 

769 1,000 4,025 5,025 
327 917 1,457 2,374 
253 419 3134 3553 
154 -0- 643 643 

2,000 1,933 11,170 13,103 
1,006 1,006 

67,993 67,993 

10,981 11,468 62,578 74,046 

44,996 46,249 260,984 307,233 
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ABSTRACT 

We describe a collection of communication primitives integrated with a mechanism for han- 
dling process failure and recovery. These primitives facilitate the implementation of fault-tolerant 
process groips, which csn be used to provide distributed services in an envimnment subject to 
non-malidous .rash failures. 

1. IntroductioD 

At Ccmell, we recently completed a p-otoiype of tht 7V5 syJem, which transforms abstract 

type specifications into fadt tolerant distributed implementations, wliile insulating users from the 

mechanisms by which iault-tclcrsncs is achieved [Birman-a]. A wide range of reliable communica- 

tion primitives hpve been proposed in the literature, and we became convinced that by using stich 

primitives when building the ISIS system, complexity could be avoided. Uofortunntely, the exist- 

ing protocols, which range from reliable and atomic broadcast [Chang] [Cristian] [Sdmddsr] to 

Byzantine agreement [Strong], either do not satisfy the ordering constraints required for many 

fault-tolerant applications or satisfy a stronger constraint than necessary at too high a cost. In par- 

ticular, these protocols have not attempted to minimize the latency (delay) incurred before mes- 

sage delivery can occur. In ISIS, latency appears to be a major factor that limits performance. 

Fault-tolerant distributed systems also need a way to detect failures and recoveries consistently, 

and we found that this could be integrated into the communication layer in a manner that reduces 

the synchronization burden on higher level algorithms. These observations motivated the dev^op- 

raent of a new collection of primitives, which we present below 

This work was supported by the Defense Advanced Rssearch Projects Agency (DoD) under ARPA Qrd2r 5378, 
Contract MDA903-85-C-0124, and by the National Science Foundation under grant DCR-8412582. The views, opinions 
and findings contained in this report ars those of the authors and should not be construed as an official Dspcrtmsnt of 
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Our broadcast primitives are designed to respect several sorts of ordering constraints, and 

have cost and latency that varies depending on the nature of the constraint required [Birman-b] 

[Joseph-a] [Joseph-bj. Failure and recovery are integrated into the communication subsystem by 

treating these cvsnts as a »pedal sort of broadcast issued on behalf of a process that has failed or 

recovered. Hie primitives are presented in the context of fault tolerant process g jups. groups of 

processes that cooperate to implement some distributed algorithm or service, and which need to 

see consistent orderings of system event: in order to achieve mutually consiitent behavior. Our 

primitives provide flexible, inexpensive support for process groups of this sort. By using these 

primitives, the ISIS system achieved both high levels of concurrency and suprisingly good perfor- 

mance. Equally important, its structure was made suprisingly simple, making it feasible to reason 

about the correctness of our algorithms. 

In the remainder of this paper we sumarize the issues and sitcrnatives that the designer of a 

distributed system is presented with, focusing on two styles of support for fault-tolerant comput- 

ing; remote procedure calls coupled with a transactional executien facility, and the fault-tolerant 

process group mechanism mentioned above. Next, our primitives are described. We conclude by 

speculating on future directions in which this work might be taken. 

2. Goals and assumpdona 

The difficulty of constructing fault-tolerant distributed software can be traced to a number of 

interrelated issues. The list that foüows is not exhaustive, but attempts to touch on the principal 

considerations that must be addressed in any such system: 

1. Synchronization. Distributed systems offer the potential for large amounts of concurrency, 

and it is usually ilesirable tn operate at as high a level of concurrency as possible. However, 

when we move from a sequential execution environment to a concurrent one, it becomes 

necessary to synchronize actions that may conflict in their access to shared data or entail 

communication with overlapping sets of processes. Additional problems that can arise in this 

context iadude deadlock avoidance or detection, livelock avoidance, etc. 

P«g« 2 



2. Fault detection. It is usually necessary for a fault-tolerant application to have a consistent 

picture of which components fail, and in what order. Timeout, the most common mechanism 

for detecting failure, is unsatisfactory, because there are many situations in which a healthy 

component can timeout with respect to one comxneat without this being detected by some 

another. Failure detection under more rigorous requirements requires an agreement proto- 

col that is related to Byzandne agreement [Strong] [Hadälacos]. 

3. Consistency. When a group of processes cooperate in a distributed system, it is necessary to 

ensure that the operational processes have consistent views of the state of the group as a 

whole. For example, if process p believes that some property P holds, and on the basis of 

this interacts with process q, the state of q should not contradict the fact that p believes P to 

be true. This problem is closely related to notions of knowledge and consistency in distri- 

buted systems [Halpsm] [Lamport]. Is our contest, P will often be the assertion that a 

broadcast has been received by «7, or that q saw some sequence of eveata OCMU m the «üüC 

order as did p. 

4. Sericdüabüity. Many distributed systems are partitioned into data manager processes, which 

implemented shared variables, and transaciion manager processes, which issue series of 

requests to data managers [Bernstein]. If transaction managers can execute concurrendy, it 

is often desirable to ensure that transactions nroduce serializable outcomes [Eswaren] [Papa- 

dimitrou]. Serializability is increasingly viewed as an important property in "object- 

oriented" distributed systems that package services as abstract objects with which clients 

communicate by remote procedure calls (RFC). On the otter hand, there are systems for 

which serializability is dther too strong a constraint, or simply inappropriate. 

Jointly, these problems render the design of fault-tolerant distributed software daunting. 

Hie correctness of any proposed design and of its implementation become serious .iot insur- 

mountable, concerns. We facea this range of problems in rnx work on the ISIS system, and 

rapidly became convinced that in the absence of some systematic 
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ZT:~ bs c^uitrjc*''^   In S??t 6j *« will »how how the primitives of Sec. 5 provide such an 

The failure mode! that one adopts has considerable impact on the structure of the resulting 

system. We adopted the model of fail-stop processors [Schneider]: when failures occur, a proces- 

sor simply stops (crashes), as do all the processes executing en it. We rejected the extremely pes- 

simistic assumptions of the malidous Byzantine failure models because they lead to slower, more 

redundant software, and because the probability that a system failure will be undetectably mali- 

dous seems vanishingly small in practice. Work based en Byzantine assumptions is described in 

[Lamport] and [Scfalicdng]. We also assume that the communication network is reliable but sub- 

ject to unbounded delay. Although network partitioning is an important problem, we do not 

iddress it here. 

Further assumptions are sometimes made about the availability of synchronized realiime 

docks. Here, we adopt the position that although reasonably accurate elapsed-time docks are nor- 

mally available, dosely synchronized docks frequently are not. For example, the 60Hz "line" 

docks commonly used on current workstations are only accurate to 16ms. On the other hand, 4- 

8ms inter-site message transit times are common and l-2ms are reported increasingly often. Thus, 

it is impossible to synchronize docks to better than 32-48ms, enough time for a pair of sites to 

exchange between 4 and 50 messages. Thus, we assume that dock skew is "large" compared to 

inter-site message latency. 

3. Alternativ« 

Two different approaches to reliable distributed computing have become predominant. The 

first approach involves the provision of a communication primitive, such as atomic broadcast, 

which can be used as the framework on which higher level algorithms are designed. Such a primi- 

tive seeks to deliver messages reliably to some set of destinations, despite the possT y that 

failures might occur during the execution of the protocol. We term this the process group 

approach, since it lends itself to the organization of cooperating processes into groups, as 

described in the introduction. Process groups are an extreme1-/ flexible abstraction, and hav been 
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employed in the V Kernel [Cheriton] as well in the /5/5 system. The idea of using process groups 

to address the problems raised in the previous section seems to be new. 

A higher level approach is to provide mechanisms for transactional interactions between 

processes that communicate using remote procedure calls [BirreC]. This has lead to work on 

nested transactions (due to nested RPCs) [Moss], support for transactions at the language level 

[Liäkov], transactions within an operating systems kernel [Spector] [Allchin] [Popek] [Lazowska], 

and transactional access to higher-level replicated scrvicrs, such as resilient objects in ISIS or rela- 

tions in datab&sA systec^. The primitives in a transactional system provide mechanisms for distri- 

buting the request tiiat initiales the transaction, accessing data (which may be replicated), perform- 

ing concurrency control, and implementing commit or abort. Additional mechanisms are normally 

needed for orphan termination, deadlock detection, etc. The issue then arises «"f how these 

mechanisms should themselves be implemented. Our work in ISIS leads us to believe that transac- 

tions are easily implemented on top of fault-tolerant process groups; lacking such a mechanism a 

number of complicated protocols are needed and the associated system support can be substantial. 

Moreover, transactions represent a relatively heavy-v.Hght solution to the problems surveyed in 

the previous section. We now believe 'hat transactions are inappropriate for casual interactions 

between processes in typical distributed systems. The remainder of this paper is therefore focused 

on the process group approach. 

4. Existisg broadcast primitives 

The considerations outlined above motivated us to examine reliable broadcast primitives. 

Previous work has been reported on this problem, under assumptions comparable with those of 

Sec. 2, and we begin by surveying this research. In [Schneider], an implementation of a reliable 

broadcast primitive is described. Such a primitive ensures that a designated message will be 

transmitted from one site to all other operational sites in a system; if a failure occurs but any site 

has received the message, all will eventually do so. [Chang] and [Cristian] describe implementa- 

tions for atomic broadcast, which is a reliable broadcast with the additional property that messages 
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are delivered in the same order at all overlapping destinations, and this order preserves the 

transmission order if messages originate in a single site. 

Atomic broadcast is a pcvrcrful abstraction, and essentially the same behavior is provided by 

one of the primitives we discuss m the next section. However, it has several drawbacks which 

made us hesitant to adopt it as the only primitive in the system. Most serious is the latency that i» 

incurred in order to satisfy the delivery ordering property. Without delving into the implementa- 

tions, which arc based on a token scheme in [Chang] and an acknowledgement protocol in 

[Schneider], we observe that the delaying of certain messages is fundamental to the establishment 

of a unique global delivery ordering; indeed, it is easy to prove that this must always be the case. 

In [Chang] a primary goal is to minLoize the number of messages sent, and the protocol given 

performs extremely well in this regard. However, a delay occurs while waiting for tokens to 

arrive and the delivery latency that results may be high. [Cristian] assumes that docks are dosely 

syncfarcnized and that message transit times are bounded by well-known constants, and uses this to 

derive atomic broadcast protocols tolerant of increasingly severe dasscs of failures. The protocols 

explidtly delay delivery to achieve the desired global ordering on broadcasts. Hence for poorly 

synchronized docks (which are typical of existing workstations), latency would be high in com- 

parison to inter-site message transit times. 

Another drawback of the atomic broadcast protocols is that no mechanism is provided for 

ensuring that all processes observe the same sequence of failures and recoveries, or for ensuring 

that failures and recoveries are ordered relative to ongoing broadcasts. We deuJed to look more 

dosely at these issues. 

5. Our buwdcast primitives 

We now describe three broadcast protocols - GBCAST, BCAST, and OBCAST - for transmit- 

ting a message reliably from a sender orocess to seme set of destination processes. Details of the 

protocols and their correctness proofs can be found in [Birrnan-b]. The protocols ensure "all or 

nothing" behavior: if any destination receives a message, then unless it fails, all destinations will 
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receive it. 

5.1. The GBCAST primiftrc 

GECAST (group broadcast) is the most constrained, and costly, of the three primitives. It is 

used to transmit information about failures and recoveries to members of a process group. A 

recovering member uses GBCAST to inform the operational ones that it has become available. 

Additionally, when a member fails, the system arranges for a GBCAST to be issued to group 

members on its behalf, informing them of its failure. Arguments to GBCAST are a message and a 

process group identifier, which is translated into a set of destinations as described below (Sec. 

5.6). 

Our GBCAST protocol ensures that if any process receives a broadcast B before receiving a 

GBCAST G, then all overlapping destinations will receive B before G. This is true regardless of 

the type of broadcast involved. Moreover, when a failure occurs, the corresponding GBCAST 

message is delivered after any other broadcasts from the failed process. Each member can there- 

fore maintain a view listing the membership of the process group, updating it when a GBCAST is 

received. Although views are not updated simultaneously in real time, all members observe the 

same sequtnee of view changes. Since, GBCASTs are ordered relative to all other broadcasts, all 

members receiving a given broadcast will have the same value of view when they receive it.1 

Members of a process group can use this value to pick a strategy for processing an incoming 

request, or to react to failure or recovery without having to run any special protocol first. Since 

die GBCAST ordering is the same everywhere, their actions will all be consistent. Notice that 

when all the members of a process group may have failed, GBCAST also provides an inexpensive 

way to determine the last site that failed: process group members simply log each new view that 

becomes defined on stable storage before using it; a simplified version of the algorithm in [Skeen- 

lA problem arises if a process p fails without receiving some message after that message has already 
been delivered to some other process q: q'i view when it received the message would show p to be operation- 
al; hence, q will assume that p received the message, although p is physically incapable of doing so. Howev- 
er, the state of the syntem is now equivalent to one in whkh p (fid receive the message, but failed before act- 
ing on it.  In effect, there exists an interpretatian of the actual system state that is consistent with ^'s as- 
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a] can then be executed when recovering from failure. 

5.2. The BCAST primitiTe 

The GBCAST primitive is too costly to be used for general communication between process 

group members. This motivates the introduction of weaker (less ordered) primitives, which might 

be used in situations where a total order oc broadcast messages is not necessary. Our second 

primitive, BCAST, satisfies such a weaker constraint. Specifically, it is often desired that if two 

broadcasts are received in some order nt a common destination site, they be received in that order 

at all other common destinations, even if this order was not predetermined. For example, if a 

process group is being used to maintain a replicated queue and BCAST is used to transmit queue 

operations to all copies, the operations will be done in the same order everywhere, hence the 

copies of the queue will remain mutually consistent. The primitive BCAST(msg, label, dests), 

where nag is the message and label is a string of characters, provides this behavior. Two ßCAST's 

having the same label are delivered in the same order at all common destinations. On the other 

hand, BCAST's with different labels can be delivered in arbitrary order, and since BCAST is not 

used to propagate information about failures, no flushing mechanism is needed. The relaxed syn- 

chronization reiults in lower latency. 

5.3. The GBCAST primitive 

Our third primitive, OBCAST (ordered broadcast), is weakest in the sense that the it involves 

less distributed synchronization then GBCAST or BCAST. OBCAST(msg, dests) atomically delivers 

msg to each operational dest. If an OBCAST potentially causai'y dependent on another, then the 

former is delivered after the latter at all overlapping destinations. A broadcast 5: is potentially 

causally dependent on a broadcast fi, if both broadcasts originate from the same process, and 52 is 

sent after fl., or if there exists a chain of message transmissions and receptions or local events by 

which knowledge could have been transferred from the process that issued Bl to the process that 

sumption. 
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issued 52 [Lamport]. For causally independent broadcasts, the deliver ordering is not constrained. 

OBCAST is valuable in systems like ISIS, where concurrency control algorithms are used to 

synchronize concurrent computations. In these systems, if two processes communicate con- 

currently with the same process the nessages are almost always independent ones that can be pro- 

cessed in any order: otherwise, concurrency control would have caused one to pause until the other 

was finished. On the other hand, order is dearly important within a causally linked series of 

broadcasts, and it is precisely this sort of order that OBCAST respects. 

5.4. Other broadcast primÜhes 

A weaker broadcast primitive is reliable broadcast, which provides all-or-nothing delivery, 

but no ordtring properties. The formulation of OBCAST in [Erman-b] actually includes a 

mechanism for performing broadcasts of this sort, hence no special primitive is needed for the 

purpose. Additionally, there may be situations in which BCAST protocols that also satisfy an 

OBCAST ordering property would be valuable. Although our BCAST primitive could be changed 

to respect such a rule, when we considered the likely uses of the primitives it seemed that BCAST 

was better left completely orthogonal to OBCAST. In situations needing hybrid ordering behavior, 

the protocols of [Birman-b] could easily be modified to implement BCAST in terms of OBCAST, 

and the resulting protocol would behave as desired. 

5.5. Synchronous versos asynchroooas broadcast abstractions 

Many systems employ RFC internally, as a lowest level primitive for interaction between 

processes. It should be evident that all of our broadcast primitives can be used to implement 

replicated remote procedure calls [Cooper]: the caller would simply pause until replies have been 

received from all the participants (observation of a failure constitutes a reply in this case). We 

term such a use of the primitives synchronous, to distinguish it from from an asynchronous broad- 

cast in which no replies, or just one reply, svffioes. 
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In our work on ISIS, GBCAST and BCAST are normally invoked synchronou-ly, to imple- 

ment a remote procedure call by one member of an object on all the members of its process 

group. However, OBCAST, which is the most frequently used overall, is almost never invoked 

synchronously. Asynchronous OBCASTs are the source of most concurrency in ISIS: although the 

delivery ordering is assured, transmission can be delayed to enable a message to be piggybacked 

on another, or to schedule 10 within the system as a whole. While the system cannot defer an 

asynchronous broadcast indefinitely, the ability to defer it a little, without delaying some computa- 

tion by doing so, permits load to be smoothed Since OBCAST respects the delivery orderings on 

which a computation might depend, and is ordered with respect to failures, the concurrency intro- 

duced does not complicate higher level algorithms. Moreover, the protocol itself 1% extremely 

cheap. 

A problem is introduced by our decision to allow asynchronous broadcasts: the atomic recep- 

tion property must now be extended to address causally related sequences of asynchronous mes- 

sages. If a failure were to result in some broadcasts being delivered to all their destinations but 

others that precede them not being delivered anywhere, inconsistency might result even if the des- 

tinations do not overlap. We therefore extend the atomicity property as follows. If process t 

receives a message m from process s, and s subsequently fails, then unless t fails as well, m' must 

be delivered to its remaining destinations. This is because the state of r may depend on any mes- 

sage m' received by s before it sent m. The costs of the protocols are not affected by this change. 

A second problem arises when the user-level implications of this atomicity rule are con- 

sidered, hi the event of a failure, any suffix of a sequence of aysnefaroncus broadcasts could be 

lost and the system state would still be internally consistent. A process that is about to take some 

action that may leave an externally visible side-effect will need a way to pause until it is 

guaranteed that surh broadcasts have actually been delivered. For this purpose, a (huh primitive 

is provided. Occasional calls to flush do not eliminate the benefit of using OBCAST asynchro- 

nously. Unless the system has built up a considerable backlog of undelivered broadcast messages, 
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which should be rare, flush will only pause while transmission of the last few broadcasts com- 

pletes. 

5.6. Group addresstog protocol 

Since group membership can change dynamically, it may be difficult for a process to com- 

pute a list of destinations to which a message should be sent, for example, as is needed to perform 

a GBCAST. In [Birman-b] we report on a protocol for ensuring that a given broadcast will be 

delivered to all members of a process group in the same view. This view is either the view that 

was operative when the message transmission was initiated, or a view that was defined subse- 

quently. The algorithm is a simple iterative one that costs nothing unless the group membership 

changes, and permits the caching of possibly inaccurate membership information near processes 

that might want to communicate with a group. Using the protocol, a flexible message addressing 

scheme can readily be supported 

5.7. Example 

Figure 1 illustrates a pair of computations interacting with a process group while its member- 

ship changes dynamically. One client issun a pair of ODCASTy then uses 5CAST to perform a 

third request on the group. A second client interacts only once, using BCAST. Note that unless 

the first client invoked flush before issuing the BCAST, the BCAST might be received before the 

prior OBCAST's at some sites. Arrows showing reply messages have been omitted to simplify the 

figure, but it would normally be the case that one or more group members reply to each request. 

6.  Using the primitives 

The reliable communication primitives described above dramatically simplify the solution of 

the problems dted in Sec. 2: 

1. Synchronization. Many synchronization problems are subsumed into the primitives them- 

selves. For example, consider the use of GBCAST to implement recovery. A recovering 

process would issue a GBCAST to the process group members, requesting that state 
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Figure 1: Client processes interacting with ■ prooes group 

informati m be transferred to it. In addition to sending the current state of the group to the 

recovering process, group members update the process group view at this time. Subsequent 

messages to the group will be delivered tc the recovered process, with all necessary syn- 

chronization being provided by the ordering properdss of CflClST. In situations where 

other forms of synchronization are needed, BCAST provides a simple way to ensure that 

several processes take actions in the same order, and this form of low-level synchronization 

simplifies a number of higher-level synchronization problems. For example, if BCAST is 

used to request wnte-locks from lock-manager processes, two write-lock requests on the 

same item can never deadlock by being granted in different order; by a oair of managers. 

Fault detection. Consistent failure (and recovery) detection are trivial using our primitives: a 

process simply waits for the appropriate process group view to cfaangr. This facilitates the 

implementation of algorithms in which one processes monitors the status of another process. 

A process that acts on the basis of a process group view change does so with the assurance 

that other group members will (eventually) observe the same event and will take consistent 

actions. 
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3. Consistency. We believe »hat consistency is generally expressible as a set of atomicity and 

ordering constraint on message delivery, particularly causal ones of the sort provided by 

OBCAST. Our primitives permit a process to specify the communication properties needed 

to achieve a desired form of consistency Continued research will be needed to understand 

precisely how to pick the wskest primitive in a designated situation. 

4. Serkdizability. To achieve serializability, one implements a concurrency control algorithm 

and then forces computations to respect the serializatior vorder 'what this algorithm choses. 

The BCAST primitive, as observed &buve, is a powerful tod for establishing an order 

between concurrent events. Having established such an order, OBCAST can be used to dis- 

tribute information about the computation and also its termination (commit or abort). Any 

process that observes the commit 01 abort of a computation will only be able to interact with 

data managers that have received messages preceding the commit or abort, hence a highly 

asynchronous tronsactional execution results. This problem is discussed in more detail in 

[Birman-a] [Joseph-o] [Joseph-bj. 

7. Implementation 

The communication primitives can be built in layers, starting with a bare network providing 

unreliable datagrams. A site-to-site acknowledgement protocol converts this into a sequenced, 

error-free message abstraction, using timeouts to detect apparent failures. An agreement protocol 

is then used to order the site-failures and recoveries consistently. If timeouts cause a failure to be 

detected erroneoiuiy, ihe wotocol forces the affected site to undergo recovery. 

Built on this is a layer that supports the primitivcä themselves. OBCAST has a very light- 

weight implementation, based on the idea of flooding the system with copies of a message: Each 

process buffers copies of any message* needed to ensure the consistency of its view of the system. 

If message m is delivered to process p, and m is poteiitialiy causally dependent on a message m', 

then a copy of m' is sent to p us well (duplicates are discarded). A garbage collector deletes 

superfluous  copies  after  a message  has  reached  all its destinaüons.    By  using  extensive 
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piggyback] ag and a simple scheduling algorithm to tontrol message transmission, the cost of an 

OBCAST is kept low - often, less than one packet per destination. BCAST employs a two-phase 

protocol based on one suggested to us by Skeen [Skeen-b]. This protocol has higher latency than 

OBCAST because delivery can only occur during the second phase; BCAST is thus inherently syn- 

chronous. In ISIS, however, BCAST is used rarely; we bdieve that this would be the case in other 

systems as well. GBCAST is implemented using a two-phase protocol similar to the one for 

BCAST, but with an additional mechanism that flushes messages from a failed process before 

delivering the GBCAST announcing the failure. Although GBCAST is slow, it is used even less 

often than BCAST. Preliminary performance figures appear in [Birman-b]. 

8. Applications of the approach 

Our work with communication primitives has convinced us that the redlient objects provided 

by the ISIS system exist at too high a level for many sorts of distributed application. For exam- 

ple, consider the cognac still shown in figure 2. If independent, non-identical computer systems 

were used to control distillation, two aspecis would have to be addressed. Fust, it would be 

necessary to design the hardware itself in a way that admits safe actions in all possible system 

states. Second, however, one would need to implement the control software in each processor in a 

way that ensures mutual consistency of the oneiational computing units.  That is, given that the 

1 - pressure/temp 
2 - heater 
i - 1Lquid  source 

6 - bottling unit 

FIgore 2: An antomafed cognac siiH 
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spedficatioii describes a sequence of actions to take in some scenario (for example, detection of 

excessive pressure in the distillation vessel), can we be assured that the operational processors will 

jointly act to avert a disastrous spill of cognac? We believe that fault-tolerant process groups pro* 

vide a simple, elegant way to address problems such as this one. We plan to complete an imple- 

mentation of the protocols by the summer of 1986, and then to develop a collection of software 

subsystems running on top of them. 
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