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ABSTRACT

study -of the flight mechanics of a three surfaced
fighter air rift was accomplished using bifurcation and
catastrophe heories. The emphasis of thistresearch was
to find or' evelop nonlinear systems analysis techniques
capable of analyzing and predicting the complex behavior
found in high -angle -of- attack flight. A primary
selection criteria for the method to be used, in the
research was that the method be more bal in nature
than the techniques curen -- Use. The technique
selected was based on th concepts found in bifurcation
and catastrophe theories. .The primary ,4it-4d-.I% research /Ir Ja
involved 'Imiw calculation of equilibrium surfaceswheri _-

the time rate of change of each of the state variables is
set to zero in the aircraft equations of motion, and the
states that will satisfy that condition are found for
various control deflections. The equilibrium surfaces
were calculated numerically through use of continuation
methods.

(i equilibrium trajectory analysis of a fifth order
model of the air aft showed significant adverse yaw
problems at highs -vs -of atte-- as well as the presence
of roll coupling, 'h a. p BIfurcational behavior was
found in the same fifth order model and verified 7_ ,
research* uslya -1.,-- a.,cmp-.l ed,.- A mechanism for . ..
transfer of kinetic energy during the catastrophic
behavior shown is hypothesized. A spin equilibriuim
surface for jhe aircraft was determined from an eighth
order model 4. ,ib .i , and3 from that surface,
possible control deflections for recovery from the spin
were obtained. Numerical simulations of the model were
accomplished, few useful results were obtained due to
the unstable n ture of the aircraft. A number of areas
for improvement of the aircraft design and methods used
as well as pc sible areas for further research are
identified. 2
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LIST OF SYMBOLS AND ABBREVIATIONS

g acceleration of gravity

aoa angle of attack

STOL Short Take Off and Landing

F-15S designation given to the F-15 STOL Demonstrator

CASS Computer Aided Stability System

BACTN Bifurcation and Catastrophe Theory Methodology

potential function

aircraft state vector

aircraft control vector

c single, scalar aircraft control variable

nonlinear function of the aircraft state and
controls used with the time derivative of the
state vector to describe the equations of
motion (dx/dt = Vx, M

k size of the reduced order system containing the
nonlinearities of the system

n order of the system (number of state variables)

m number of control variables

CG center of gravity

F system (n X n) Jacobian matrix

G augmented system (n X n+1) Jacobian matrix

0 augmented system Jacobian matrix with the kth
k

column removed

augmented aircraft state vector, X=(,c )

DAI aileron deflection

DEL stabilator deflection

DRU rudder deflection
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h Newton-Raphson convergence step vector

Ixx mass moment of inertia about the x-axis

Iyy mass moment of inertia about the y-axis

Izz mass moment of inertia about the z-axis

Ixz xz plane product of inertia

BL aircraft butt line

RB rotary balance

omega rotation rate about the aircraft spin axis

CL coefficient of lift (stability axis)

CD coefficient of drag (stability axis)

Cx x direction body axis force coefficient

Cy y direction body axis force coefficient

Cz z direction body axis force coefficient

C1 rolling moment coefficient

Cm pitching moment coefficient

Cn yawing moment coefficient

u x direction body axis velocity

v y direction body axis velocity

w z direction body axis velocity

p roll rate

q pitch rate

r yaw rate

V total velocity

angle of attack

sideslip angle

e pitch angle
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bank angle

Yaw angle (aircraft heading)

4 dynamic pressure

S wing planform surface area

b wing span

a theoretical wing chord

TURNS number of rotations during a spin

K kinetic energy

i rate of change of kinetic energy

En kinetic energy due to spin motion alone

IV moment of inertia about the aircraft spin axis



CHAPTER I

INTRODUCTION

A. Historical Perspective

The prediction of an aircraft's dynamics and

stability behavior has been a topic of interest since

heavier than air flight was first conceived. From the

very beginning, aircraft designers were at odds in their

beliefs of how aircraft should be designed in terms of

stability. For example, the Wright Brothers favored a

slightly unstable design to increase manueverability

while the European aircraft design community opted for

much more stable designs (1]. The Wright Brothers

insistence on maintaining the elevator forward of the

wing in their early designs was motivated by both the

desire to make the aircraft a servant to the controlling

desires of the pilot and the desire to provide a pitch up

moment following a stall to prevent the dive that

typically followed stalls in aircraft of that period.

It was such a stall initiated dive that caused the death

in 1896 of Otto Lilienthal, the most prominent of the

European airplane designers at the time (2].

Being bicycle designers and riders, the Wright

Brothers' concept of controlling an aircraft in flight

wan much the same as that of riding a bicycle.
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The bicycle is inherently unstable but the instability is

easily overcome by the rider through the use of the

handlebars. Unfortunately, as aircraft became more

sophisticated, the large demands placed on a pilot

attempting to control an aircraft with the tail forward

of the wings made the design impractical and often

dangerous. The tail forward design, later known as a

canard due to its resemblance to a duck, was to be

shunned by the worldwide aircraft design community for

many years to come (2]. It was during this period that

the desire for static stability became an unquestioned

design feature for nearly sixty years. As will be

discussed below, the Wright Brothers' understanding of

the relationship between stability and mianueverability

was far ahead of their time. They understood that

stability and manueverabilty are relative terms, and that

they describe positions along the same spectrum with

stability being at one end of the spectrum and

manueverability at the other. Consequently, you can not

enhance one without sacrificing the other. The most

simple definition of stability when applied to an

aircraft is: a characteristic of an aircraft in flight

that causes it to return to a position of steady flight

after being disturbed from that position.
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Nearly all aircraft possess enough stability to recover

their equilibrium after small disturbances; however, none

possess the stability to recover its equilibrium under

all conditions. The need to know the conditions under

which an aircraft will maintain or lose its stability

form the motivation for this study.

B. Aircraft Desigun Consideration.

The capabilities of a combat aircraft are often

measured in terms of performance factors such as: wing

loading, maximum thrust to weight ratio, engine response

time, maximum turn rate and rate of turn build up,

maximum transient and sustained load factor, minimum turn

radius, maximum and minumum specific excess power. In

addition to these there is still one other very important

measu-re of a combat aircraft's worth. This performance

measure is aircraft agility. Agility is the ability to

change the direction and magnitude of the aircraft

velocity vector in three dimensional space and to

accomplish this more rapidly than an opponent (3]. A

measure of agility could be determined, in a sense, by a

formula or set of formula that combines each of the

individual factors listed above.
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Aircraft performance in terms of the factor.

discussed above has been steadily improved with each new

generation of combat aircraft so that today's modern

combat aircraft are much more agile than their

predecessors. This level of increased agility is a

direct result of improvements in the state of the art in

each of the following areas: stability augumentation,

structural technology, power plant capabilities and

aerodynamic. design. A considerable increase in agility

has been made by simply returning to the farsighted

design philosophy of the Wright Brothers. For example,

like the Wright Flyer, modern fighter aircraft now use

statically unstable designs to enhance manueverability.

This concept is demonstrated in the designs of the F-16,

F-17 and F-i8 fighter aircraft. These aircraft are

statically unstable but are kept under control by

computerized flight control systems so that the

manueverability advantages of static instability can be

realised without overburdening the pilot. Modern,

lightweight composite materials and aircraft structural

design improvements have made it possible to decrease

aircraft weight while at the same time increasing

structural strength. This produces relatively light

weight aircraft that have load factor capabilities of up

to 12 g's thereby giving the aircraft distinct increases

in agility.



The powerplants of modern fighter aircraft are now

powerful enough to take advantage of both the computer

aided stability systems (Cass) and the increased load

factor capabilities of our current fighter aircraft.

This makes it possible to sustain very high turn rates

and to sustain flight at very high angles of attack.

The modern powerplants also can achieve thrust to weight

ratios in excess of one thus providing substantial

advantages in air combat situations. In the area or

aerodynamic design, however, progress of the same

magnitude as in the three areas discussed above has not

been made. Some innovative uses of the control surfaces

along with increased use of some of the powerful vortex

interactions around the aircraft have been accomplished,

but for the most part little has been done to enhance our

understanding or our ability to--analyse the extremely

complex aerodynamic behavior of an aircraft in air

combat type situations.

A possible aircraft to fill the need mentioned above

is being designed and tested by McDonnell Douglas and the

Air Force Wright Aeronautical Laboratory at Wrigi,.-

Patterson AFB, Ohio. The aircraft is currently known as

the F-15 STOL Demonstrator. It is, basically, an F-Isb

aircraft with a close coupled canard mounted Just forward

of the wing on the engine inlet shelves.
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Provisions are also being made to implement thrust

vectoring engine noszles (to enhance longitudnal control)

and thrust reversal capabilities. The potential benefits

of such a configuration are well documented [4,5]. A

few will be briefly discussed here for the make of

completeness. The close coupled canard will improve the

aircraft's lift in the high angle of attack, (aoa), range

and increase stalling aoa. This is due primarily to the

vortex interaction between the canard and the wing.

Regarding the canard as an extra lifting surface gives

the capability of direct force manuevering. Direct force

manuevering allows the manuevering modes to be decoupled

from each other so that turns without using bank and

altitude changes without changing pitch etc. are

possible. Another positive effect of the canard is that

it provides the ability to decrease trim drag at all

speeds. The extra lifting surface area of the canard

alone offers some distinct advantages over a similar

aircraft without a canard by decreasing overall

wingloading. The extra control surface also increases the

possibilities for control reconfiguration enabling a

safe return to base following battle damage. The canard

configuration also dramatically increases pitch rates and

turn rates as well as the ability to obtain those high

rates quickly.
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The F-15 STOL Demonstrator project is still in the

testing and development stage. Large amounts of wind

tunnel testing (static and forced oscillation) has been

accomplished. A reasonably accurate model of the aircraft

has been developed through use of the data obtained from

the wind tunnel testing. Full scale computerized

simulations as weil as 'real time' pilot in the loop

simulator testing in a fully motion based simulator are

also currently being accomplished. Actual test flights

of the aircraft are scheduled to occur in March 1988.

C. Enaineerind Analysis Considerations

Originally, aircraft design and testing involved

more trial and error techniques than actual engineering

analysis. Experimental data was not only unreliable but

was also hard to acquire. Therefore, most of the

aircraft development process relied on a 'lets try it out

and see what happens' attitude. As airoraft designs

increased in complexity, it became not only more and more

expensive to design aircraft in that manner but also

quite dangerous. It was apparent that more work had to

be accomplished on the ground before testing the design

in flight. High aoa stability and control studies during

the forties and fifties concentrated mainly on obtaining

a qualitative description and understanding of the flight

dynamic, observed.



A lack of reliable wind tunnel and flight testing

techniques, combined with little or no computational

capabilities stood in the way of any major progress in

the area of high aoa flight dynamics. Conventional

analysis techniques based on several unrealistic

assumptions and linearization were used to analytically

predict aircraft behavior (6,7].

Experimental techniques and facilities as well as

computational methods and capabilities have undergone

major improvements in the past years. Now, quite

accurate aircraft models obtained through modern testing

techniques are used in full six degrees of freedom (dof)

simulations with more accurate results. Aditionally, a

large number of advanced mathmatical techniques have been

developed to deal with specific nonlinear phenomenon.

These techniques when combined with information gained

from various numerical simulations have given some

insight to a fey particular high aoa flight phenomena,

but there is a conspicuous lack of global analysis

technique.. The highly nonlinear and very complex

behavior of an aircraft during high aoa. flight coupled

with poorly understood aerodynamics has created a

tremendous amount of resistance to progress in the area

of developing general or global analysis technique.
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The development of a global analysis technique will

be of great benefit to understanding and possibly

conquering high aoa flight. A global type analysis could

offer specific guidance as to when use of a particular

advanced mathmatical technique would be practical. A

more global picture of the aircraft dynamics arnd behavior

will enable engineers to detect areas where problems are

likely to occur and study those areas more closely. The

heavy use of computer simulations, while accurate within

the area investigated, still tends to give a 'tunnel

vision' picture of the aircraft dynamics. The

possibility of missing some very dangerous or

catastrophic behavior is always present in such an

analysis. The more global the analysis, the less the

possibility of having a very costly surprise during

actual flight testing. In spite of the great

difficulties discussed above, the need for a more global

approach to studying high aoa flight dynamics is stronger

than ever. Modern fighter aircraft currently in the

inventory are able to operate routinely in areas that

were once thought of as outside of the flight envelope.

As the ability to generate extreme pitch rates and to

sustain very high angles of attack continues to improve,

we must also improve our ability to analyze and predict

aircraft behavior in those areas and other areas that

are considered to be at the extreme limits or actually

beyond the conventional flight envelope.
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Even though such high aoa manuevering capabilities exist

in some of our current aircraft, flight manuals often

restrict pilots from operating in this flight regime due

to our inability to adequately control or even understand

aircraft behavior at such high angles of attack. Such

restrictions, while presently necessary for safety

reasons, decrease an aircraft's capabilities in an area

where an increase in capability is vitally needed to

insure air superiority in air combat situations of the

future.

In chapter two the research project will be

described. This chapter will include a detailed

description of the STOL aircraft, a discussion of the

flight regime and types of manuevers to be studied along

with a section covering problems associated with high aca

flight dynamics analysis. Chapter three will cover the

preliminary research taken including a discussion of the

other methods considered and the reasons for selecting

bifurcation and catastrophe theory techniques. Next, the

theoretical concepts will be developed and then discussed

as they apply to the development of the procedure. In

chapter six the specific methods and numerical techniques

used in the computational application of the theroretical

procedure will be outlined. A summary of the results of

the study will be given next followed by a discussion of

those results.
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Conclusions from the study accompanied by recommendations

of how to best utilize the findings of the study will

comprise chapter nine and will conclude the text portion

of the document. Information deemed overly detailed for

the smooth flow of the text will be placed in the

appendix.
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CHAPTER II

PROJECT DESCRIPTION

A. Description of the Aircraft and Data

The F-15 STOL Demonstrator, (F-15S), with three

major exceptions, is nearly identical in appearance and

aerodynamic performance to the current inventory F-15B

model. Those three exceptions are the addition of a two-

dimensional thrust vectoring/reversing nozzle system, the

implementation of a close-coupled-canard and the

integration of flight and propulsion controls by using an

aggressive computer aided stability system (CASS). The

new thrust vectoring nozzle system at the time of this

study has not been integrated into the aircraft, and it

will not be included in this study.

The close-coupled-canard is located just forward of

the wing. This creates very strong vortex coupling

between the canard and the wing and explains the title

given to this configuration. The vortex coupling in much

the same way as leading edge flaps or wing leading edge

extensions enables the aircraft to achieve much higher

coefficients of lift, typically 30% to 60% higher

depending on the Mach number and a stalling angle of

attack that is approximately three times higher than the

unmodified F-15B. When the aircraft does stall, the

canard tends to stall first causing a breakup of the

vortex structure across the wing.
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This in turn causes the wing to stall. At this point a

pitch-down moment results which is in most oases a

desirable effect [8]. The canard is located on the

engine inlet shelves at an average distance of

approximately 2 feet forward of the root of the wing and

is set at a 20 degree dihedral angle. It has a swept

planform with a sweep back angle of 47 degrees and a

symmetrical cross-section. The canard airfoil itself was

originally the horizontal tail of an F/A-iS. Apart from

the canard, all other shapes and dimensions are the same

as the unmodified F-15. Further details on the physical

characteristics of the aircraft are contained in Appendex

A.

The F-l5S flight control system is hydraulically

powered and fully irreversible. Each of the control

surfaces have the capability to not only move

symmetrically but differentially as well. This

significantly enhances the aircraft's flexibility

allowing it to have direct force manuevering

possibilities as well as reconfigured controls

capabilities. Differential control deflections also

enable the aircraft to increase its capabilities in the

combat performance areas discussed in chapter one.

Perhaps the most important contribution of the fully

differential control surfaces, however, is to give the

CASS more flexibility in selecting the correct control

position, to both maintain aircraft stability and follow

the commands of the pilot.
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The CASS is a full state feedback type control system

that takes as inputs all of the state variables in

addition to aircraft altitude, mach number, pilot input.

and the current positions of each of the control

surfaces. From all of this information the CABS selects

the control positions that will result in the performance

desired by the pilot, and it updates the control

positions 40 times a second. Through the use of full

state feedback concepts the CASS is designed to maintain

the system eigenvalues within certain boundaries

selected to create the desired aircraft behavior for the

various situations expected to be encountered. This

means that similar to stable aircraft without stability

augmentation the eigenvalues will have negative real

parts or at least if the real parts are positive their

magnitudes will be small. The system works quite well.

In fact, without the CASS the .F-15S would

catastrophically diverge from straight and level, trimmed

f light in less than ten seconds when left on its own.

Unfortunately, the CABS is not able to completely

maintain stability under all situations. We are

therefore left with the typical situation of an aircraft

that is stable when subjected to a large variety of

disturbances from equilibrium yet unable to maintain its

stability under all possible conditions. The F-16

aircraft is a good example of this situation.
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It too is controlled in a similar fashion and would be

unstable without its CASS. The F-16 is highly

manueverable and under most conditions very stable to

fly. However, at very high angles of attack during

extremely transient air combat manuevering the F-16 has

on several occasions departed controlled flight. This is

due to the CASS's inability to deal with the conditions

created by that type of high aoa manuevering, and

consequently, restrictions have been placed on the F-16's

flight envelope.

The F-15S is projected to be capable of some very

substantial increases in performance over its

conventional F-15B counterpart [9]. The takeoff distance

will be 27X less while the landing distance is projected

to decrease by 82%. These improvements are primarily due

to the two-dimensional thrust vectoring/reversing

nozzles; however, a portion of the improvement in this

area is due to the decreased approach and takeoff speeds

resulting from the decreased wing loading afforded by the

canard. The roll rate is expected to increase by 24%

while the pitch rate is projected to double. These two

major increases in capability will pave the way for large

increases in aircraft agility by allowing the aircraft to

quickly change its attitude and flight path. The

expected increases in coefficient of lift and stalling

angle of attack have already been discussed above.
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The addition of the canard is expected to increase the

positive load factor capability to 9g. The actual role

of the canard in this improvement is somewhat

controversial at the present time, but it can be safely

said that the decreased wing loading provided by the

canard does play a role in this area of increased

capability. Also, by enabling the aircraft to be trimmed

to a more streamlined attitude during cruise, the canard

is expected to increase the cruise range by 13%.

Finally, the F-15S model should be able to decrease its

deceleration time by up to 44% in certain situations

giving it more flexibility in an air combat situation.

The above projected increases in combat manuevering

capabilities are impressive when taken into consideration

that the current F-15 air combat capabilities are perhaps

the best in the world.

The data available on the F-15S for, this research

project are wind tunnel studies accomplished at Wright-

Patterson AFB, the aerodynamic model developed by

McDonnell Douglas, the canard schedule, and the CASS

package also developed by McDonnell Douglas. The wind

tunnel studies include static and forced oscillation

data. No rotary balance tests have been done yet. The

wind tunnel data is in both plot form and tabular form

and is very extensive. In several cases the coefficients

are described as a function of four variables.
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In order to keep calculation costs and time down the data

set was simplified by restricting the configurations to

be investigated and by decreasing the number of variables

to be used in the determination of the coefficients. The

aircraft configuration was restricted to gear up, flaps

up and no stores. After studying the data, it was

determined that the data did not vary appreciably with

changes in altitude. It was also determined that the

data for Mach numbers higher than .6 were not necessary

since a study of high aoa flight dynamics was planned.

Therefore, a data file for a Macb number of .2 and one

for a Mach number of .6 were created. Both of the file.

were for an altitude of 20,000 feet. These two data

files give the ability to accurately look at both spin

type motions and wind-up turn type manuevers. These

simplification. decreased the tabular data sizes so that

there were no four dimensional tables and only a few

three dimensional tables. In order to accurately model

spin type motions the need for rotary balance data was

present. This need was filled by obtaining rotary

balance data for the unmodified F-l5 aircraft and

adjusting the data to account for the addition of the

canard. The data was additionally adjusted to ensure

that the system of aircraft equations of motion did not

receive an impulsive input when the rotary balance

correction factors were added in (aoa=55 deg.) and

removed (aoa=30 deg..
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A complete discussion of the development and application

of the rotary balance data is contained in appendix B.

The aerodynamic model except for the addition of the

rotary balance correction factors is identical to the one

determined and validated in simulations by the Air Force

and McDonnell Douglas. The symmetrical canard position

is independent of the CASS system and inputs from the

pilot; it is a function of aoa and Mach number only. The

differential canard setting is controlled by the CASS and

is applied to the current symmetrical canard position.

When the CASS is activated, the the model used in this

study for the F-15S has six independent control

surfaces. The independent control surfaces are: left and

right rudder, left and right stabilator, differential

canard setting and the ailerons. The CASS package is

implemented with no modifications to keep the aircraft

model as close to the actual aircraft as possible.

B. Discussion of the Flight Regime to be Studied

Ever since the beginning of air combat manuevering,

air battles would invariably progress towards higher and

higher aoa manuevering in attempts to achieve a tighter

turn radius than the opponent so that a favorable

position for weapons delivery could be gained. Achieving

higher turn rates requires in most cases that an aircraft

fly at higher angles of attack.
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Presently, fighter aircraft handling characteristics

at very high angles of attack leave much to be desired.

The problems range in severity from being unable to

accurately track a target due to wing rock and other high

aoa oscillations to total departure from controlled

flight resulting in loss of the aircraft and possibly the

pilot. Some specific high aoa flight problem are

discussed below. At high aoa the rudder controls become

sluggish due to the vertical tail descending into the

wake of the wing and borizontal tail. This reduces

weathercock stability creating a situation ripe for a

nose slice type departure from controlled flight. The

low aspect ratio, swept back wing design of most fighter.

make control with the ailerons not only ineffective at

high aoa due to wing tip washout but actually dangerous

in some cases where adverse yaw characteristics are

severe. Additionally, swept wing aircraft experience a

decrease in static longitudnal stability as a result of

the wings stalling from the tips inward forcing the

center of pressure location forward towards the center of

gravity location. At high angles of attack the induced

drag due to the slender, low aspect ratio wings becomes

extremely high causing engine power to be in many cases

totally inadequate to sustain manuevers or even control

the aircraft.
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At high angles of attack the lateral/directional and

longitudnal modes experience a high degree of coupling

causing an input in one mode to excite very undesirable

behavior in the other. Another interesting problem

peculiar to fighter aircraft results from their 'sleek'

aerodynamic design which tends to concentrate the mass in

the fuselage. This increases the aircraft's

susceptibility to roll coupling which is a combination of

the inertial and kinematic coupling that, occur when

rolling an aircraft. Roll coupling is aggravated by

both high angles of attack and high roll rates (10] This

phenomenon as well as some of the others discussed above

often can occur very abruptly in a manner that can be

termed as catastrophic. The above problems in addition

to a few others currently make high aoa flight an

undesirable flight regime to operate in.

When all of the undesirable side effects of high aoa

flight discuss eve are considered as a whole, the the

high aoa dynamics of a fighter aircraft can be at best

described as unpredictable. This is true regardless of

whether or not the aircraft has been equipped with a

computerized stability system. As an example, consider

the F-16 and the F-5E with the shark nose modification.

The F-16 as mentioned above has demonstrated a great deal

of unpredictability at high angles of attack resulting

in several lost aircraft.
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But, the F-SE/shark aircraft has also been shown to be

very unpredictable due to the complex aerodynamics

brought into play by the shark nose section. It too has

departed controlled flight without warning resulting in a

loss of aircraft. In each of the above cases a lack of

overall understanding of how each of the above high aoa

phenomena might combine to make up the entire high aoa

flight dynamics picture has been directly responsible for

the lost aircraft. Before aircraft agility can be

increased, we must remove a great deal of the

unpredictability from the high aoa dynamics of our

fighter aircraft.

C. High Angle of Attack Analysis Problemni

The primary problem with studying high aoa flight

dynamics is the nonlinear characteristics of high aoa

flight. The great bulk of aircraft dynamics analysis has

been based on several assumptions that become totally

unrealistic when considering an aircraft flying at high

aoa. The most far reaching of those assumptions was the

linearization of both the equations of motion and the

aerodynamics. The linearization of the equations of

motion is based on the assumption of small perturbations

about an operating point through the use of the

Poinoare/Liapunov theorem (Appendix C).
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The assumption of small amplitude disturbances is a

questionable one in our application but can be made to

hold up given a small enough neighborhood around the

point of interest. Unfortunately, the eigenstructure of

the system goes through very large changes when the aoa

is increased to the very large values being investigated

forcing the eigenvalues to cross the imaginary axis in

many cases. This partially invalidates the

Poincare/Liapunov theorem forcing the use of a variation

known as the Center Manifold Theorem (Chapter IV) to be

used in its place. The Center Manifold theorem requires

the use at least in part of the nonlinear representation

of the system. Additionally, linearization of the

equations of motion allows the use of stability

derivatives which necessarily implies a linearization of

the aerodynamic data. This is an extremely unrealistic

assumption when dealing with high aoa aerodynamics. The

next major assumption made to simplify the equations of

motion was to assume that motions in the plane of

symmetry did not create motions out of the plane of

symmetry. This decoupled the equations of motion into a

fourth order set of longitudnal equations and a fourth

order set of lateral/directional equations [6]. For the

reasons discussed above this is also an unrealistic

assumption when dealing with high aoa flight. Wing rock

is amoung the many examples contrary to that assumption.
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The decoupled, linearised set of equations is not

completely without merit though. They have and still

will accurately predict aircraft behavior in low aoa

small amplitude disturbance flight with excellent

accuracy.

Perhaps the greatest underlying cause for the high

aoa analysis problems discussed above is the highly

unsteady, unpredictable, nonlinear aerodynamic flow

fields that surround an aircraft at high aoa. It is

those flow fields that create the nonlinearities in the

data which is primarily responsible for the large

variations in the location of the system eigenvalues.

Consequently, it is the aerodynamic flow fields that

ultimately force the governing equations for the aircraft

to be nonlinear. Some specific aerodynamic flow phenomena

present when flying at high aoa in the F-15S are

assymetrio vortex shedding, canard-wing vortex

interaction and large amounts of separated and reattached

flow fields [4,8,11]. These high aoa aerodynamic flow

phenomenon can have both positive and negative effects on

an aircraft's flight performance. Assymetric vortex

shedding, for instance, is currently a problem because of

its unpredictability, but should the mechanisms behind

the phenomenon become better understood, the use of

vortex shedding could eventually be used in a positive

way to enhance aircraft manueverability.
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The vortex interaction between the canard and the wing

certainly has a positive effect on the aircraft's

performance, but it also complicates the problem by

contributing significantly to the nonlinearity of the

situation as a whole. Although this study will not deal

with the fluid dynamics associated with the problem, it

is recognized that a better understanding of the high aoa

fluid dynamics involved will pave the way for swifter

progress in the understanding of the flight dynamics at

high aoa.

In addition to increasing the nonlinearity and

complexity of the aircraft's flight dynamics, the canard

presents some other problems to be overcome in analyzing

and controlling the aircraft's flight behavior. The

canard by greatly increasing the aircrafts response to

control inputs allows the aircraft to generate extemely

high pitch rates so that the aircraft, can routinely

overshoot its stalling angle of attack. The higher pitch

and roll rates also create increased problems due to

inertial coupling. As is normally the case, the

increased capabilities afforded by a design modification

drastically increases the complexity of the problem for

the engineer.

The single-most difficult problem in effectively

studying a system as complex as this one is the lack of a

practical criteria from an engineering viewpoint to

discern global stability.
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The great bulk of the nonlinear analysis techniques in

use today are very localized, the few that are of a

global nature are very difficult to apply to different or

more complex systems. The specific advantages and

disadvantages of the particular nonlinear analysis

techniques available today will be discussed in detail in

the next chapter. It can be said at this point however

that the best way to handle the analysis will include a

combination of linear and nonlinear methods under the

general guidance of a more global method that will

effectively combine several localized techniques into a

complete analysis package.
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CHAPTER III

PREL IMINARY RESEARCH

A. General Points

A good deal of preliminary research was necessary

to not only ensure that all options were considered but

also to enable me to become more familiar with the

field of nonlinear analysis in general and specifically

as it applies to aircraft dynamics. The types of

research undertaken were quite varied. A literature

search of the nonlinear analysis field including texts,

papers, journals and other periodicals was

accomplished; indepth discussions on the subject with

several people involved in the nonlinear analysis field

were held; and actual tests of the more promising

techniques were made. All of the literary works

studied during the reseach that had any bearing on the

selection of the method of research or the method

itself are cited in the references. Those individuals

who gave of their time and expertise to further this

project are gratefully acknowledged in the foreword.

And the specific techniques tested as well as those

considered are briefly discussed in the remainder of

this chapter.
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B. Method Selection Considerations

most of the considerations that were taken into

account in the selection of the method of analysis

have already been alluded to in one manner or another.

For continuity I will briefly summarize the selection

criteria used. First of all, the metbod must be

applicable to the F-15S; it must be capable of

analyzing high order nonlinear systems of equations;

and the method must be practical. The practicality of

the method will be determined on the basis of whether

it is useful from an engineering point of view, and

whether the concept itself along with the difficulty of

its application is within the scope of a master's

thesis. A fairly important personal desire was that

the concept be relatively unique. One of the most

important considerations is that the method must have

the potential of yielding useful and meaningful

results. Specifically, the technique should be general

enough to be readily applied to other systems, and to

be useful to the fighter aircraft design community, it

must have the capability to handle complex systems.

Finally, in order to satisfy one of the primary goals

of this study, the results must be of a global nature.
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C. Thniques Investigated

A large number of possibilities were studied

before deciding on bifurcation and catastrophe theory

techniques as the best course of action to take in

analyzing the high aoa flight dynamics of the F-15S.

Methods from all of the general areas of engineering

analysis were considered. These general areas included

methods from the following fields: analytical,

assymptotic, topological and numerical. Brief

discussions of the techniques investigated are

presented below.

1. Linearization Methods [6.7.12.131

The major problem with all linearization schemes

studied was the lack of their ability to obtain global

information on the system. The very nature of the

linearization process indicates that the information is

valid only in a local area about a specific operating

point. A major improvement over true linearization is

found in quasi-linearization. In this method the small

signal requirement is removed by repeatedly re-

linearizing the system as the input causes changes in

the nature of the system. This allows an unlimited

variation of input signal, and by changing the linear

characteristics of the approximation the basic

nonlinearites of the system can be modeled.
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Although, quasi-linearization is more global than a

pure linear approximation, two major drawbacks cause

this method to break down. One major problem stems

from the fact that the extreme nonlinearity of high aoa

flight dynamics will force quasi-linearization

techniques to become impractical at some point. This

is due to the inability to isolate operating areas that

are large enough to be useful and still small enough to

give an accurate approximation. Another severe problem

stems from the inability at some operating points for

linear approximations to even be valid. The

theoretical basis for quasi-linearization methods is

found in the Poinare/Liapunav theorem which is

discussed in appendix C. As a primary analysis tool,

the potential for useful results was not present in the

schemes studied. However, this does not mean that all

uses of linearization methods are without merit. There

are a number of instances in a nonlinear problem when

inexpensive, reliable results can be achieved through

linearization techniques. A thorough understanding of

the nonlinearities of the problem is required, however,

before linearised approximations can be safely used.
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2. Liavunov's Second or Direct Method F13,14,151

This technique is certainly global in nature. Its

unusual approach is to study the stability of the

system in the whole without looking at the details.

Without question, it does enable one to discern the

stability of a complex, nonlinear system, but the

method does have some serious drawbacks from a

practical standpoint. One major drawback stems from

the extreme difficulty in nearly all cases except

relatively simple, potential governed systems of

deriving a Liapunov function. Another extreme drawback

to the method from an engineering point of view is the

tremendous lack of generality of the Liapunov functions

themselves. For instance, should a Liapunov function

be found and an analysis developed for one particular

system, the engineer will have made very little

progress towards a solution of a similar problem since

a different Liapunov function must be derived for each

case. Overall, the method is very impractical for use

in this particular study.

3. Phase Plane Trajectory Analysis [16.17,18,11

This technique has some positive points to offer.

Its results are easily interpreted and they are

slightly more global in their nature than some of the

other methods investigated.
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On the other hand, due to its specific topological

nature, it is difficult to apply phase plane type

analysis to large scale, multi-variable systems, nor

does it lend itself readily to systems that have

extreme nonlinearities. The method was used with some

success in the analysis of a nonlinear model of the

lateral/directional mode of an F-111. As a primary

analysis technique, however, phase plane analysis falls

short of the selection criteria established, but it

does have some promise as a technique to compliment a

more global, larger scale method.

4. AssymDtotic Methods r20.21.22.23.241

Assymptotic methods have proven to be very

effective in developing useful, accurate approximations

to systems that are analytically very complex. These

methods have been shown to be effective in analyzing

both nonlinear and nonautonomous systems of equations.

Multiple Scaling which is a specific assymptotic

approach initially showed much promise as a technique

to actually solve the nonlinear equations of motion

with nonlinear coefficients in a quasi-analytical

manner as opposed to numerical integration. This

method is unique in that it has not yet been

extensively applied to aircraft dynamics problems.
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A generalized multiple scaling technique was tested on

the same F-111 lateral/directional model;

unfortunately, only limited success was attained during

the study. I still feel that the method has the

promise to make a breakthrough in this area, but at the

present time the determination of the proper scaling

factors is as much of an art as it is a science making

the method impractical given the time constraints on

the completion of this research.

5. Numerical Simulations-M13

Numerical simulations have and will continue to be

used as a major flight dynamics analysis tool. Several

of the techniques discussed in this chapter are made

possible through numerical simulation techniques, and

many other methods are validated through numerical

simulations. The simulations can be quite accurate

provided that the aerodynamic model correctly models

the actual aircraft, and the numerical techniques are

sound. There are, however, some significant problem.

with using numerical simulation. as the primary

analysis tool in a high aoa flight dynamics study.

When high aca flight is considered, the simulations

become valid only in small area. around the state space

point being simulated due to very complex, nonlinear

aircraft behavior.
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With this in mind the amount of simulations required to

gain an adequate representation of the aircraft

dynamics rises drastically making the method quite

costly. Another serious problem arises from the fact

that as the complexity of the flight dynamics increases

it becomes very possible to miss critical flight

behavior when studying an aircraft through numerical

simulations alone. On the other hand, numerical

simulations are very useful if used in conjunction with

a more global approach. The more global technique

should be able to locate areas where possible stability

problems that require further study exist. A numerical

simulation of the area in question could then be done

thereby. making numerical simulations more cost

effective and more useful in general.

6. Describing~ Functions [13,25?

A quasi-linear function that describes the

transfer properties of the nonlinearity is called a

describing function. The major drawback to this

technique is that the form of the signal must be

calculated or known in advance. The form that is of

most use in this research area is the sinusoidal input

which is useful for determining the existence and

locations of limit cycles. Another more subtle

drawback of this method is that only the specific

questions asked of it are answered.
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This makes the method far too specific to be of great

value in this study, and it is also indicates that the

results will not be global in nature. Therefore, use

of the method should be limited to instances where it

is desired to investigate a limit cycle possibility

predicted by a more global method.

D. Selection of the Actual Technigue to be Used

After all of the preliminary research was

completed, a technique based on bifurcation and

catastrophe theories was selected as the primary

research technique [26,27,28,29]. The following

discussion outlines the reasons for making that

particular choice. The method was very practical from

several viewpoints. First of all, a great deal of

information on the technique was available to me. The

concept of combining bifurcation and catastrophe

theories in the manner used by this method was devised

by Scientific System. Inc. which is a company located

in Cambridge Mda. They were willing to share some of

their knowledge and experience gained during their

research. This factor contributed towards enabling me

to study a realistic engineering problem within the

limited time frame allotted for my master's thesis.

The method is also practical from an engineering

standpoint since it is readily applied to engineering

type situations.
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This is due to the ability to present the results in a

easy to understand graphical format that relays a large

amount of usable information in a short amount of

time. The technique is applicable to fighter type

aircraft, and has already been tested on an older

current inventory fighter. The concept is quite general

and can even be adapted to other uses in addition to

aircraft dynamics. The concept is also very unique

having been applied to just a few aircraft and none

with the degree of sophistication of the F-15S

aircraft. The primary advantage of the method,

however, is its ability to analyze systems from a

global viewpoint. One is able to get a 'Picture' of

the flight dynamics of an aircraft across a full

spectrum of control inputs in a single gaze. Another

important point is that the global nature of this

method is not dimenished by the presence of

nonlinearities. Overall, the general and global nature

of this method make it perfect for use as a primary

research technique that will promote more effective use

of the techniques discussed above.

S. general ADR1ioations for the Results of-the Study

A very important consequence of the results of any

scientific study should be a better understanding of

the Phenomenon behind the driving desire for the

study.
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In this case the phenomenon is high aoa flight, and a

better understanding of the combined effects of the

many high aoa flight dynamics phenomena is expected to

be gained through this area of research. A better

understanding of the nature and the mechanisms behind

high sea flight could make it possible to provide early

warning of impending occurences of the more undesirable

consequences of high aoa flight. This concept can be

likened to stall warning devices in general aviation

aircraft. Another application for the method is model

structure determination and validation. This

particular aspect will not be treated in this study.

The types of application that will be concentrated on

most in this study will be the development of

particular control stategies. One obvious control

strategy area is to develop bifurcation free control

laws for computerized flight control systems that will

avoid the dangerous areas by avoiding the nonlinear

Jump phenomenon that normaly accompanies bifurcations.

Another more immediately useful goal is to determine

specific recovery techniques for certain out of control

situations. And finally, after the aircraft control

problems are better understood, the development of air

combat tactics and techniques can be undertaken so that

full advantage is taken of the newly realized high aoa

manuevering capabilities of our fighter aircraft.
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CHAPTER IV

THEORET ICAL CONCEPTS

Within this chapter the theoretical basis for the

method of research will be discussed in detail. This

will be done by first introducing and discussing the

concepts of bifurcations and catastrophes. The

discussion will include a couple of simple examples that

illustrate the two concepts. Next, the four major

theorems that will be used to extend the concepts of

bifurcation. and catastrophes to 'real world' engineering

applications will be discussed. For clarity and brevity

the abbreviation, BACT4, which denotes Bifurcation and

Catastrophe Theory Methodology will be used to refer to

the general techniques used in this research. The name

is adopted from the title of the research conducted in

this same area by Scientific Systems Inc., Cambridge Ma.

A. Descritioni of the Underlying Concgpts

As a result of the nonlinear nature of high aoa

flight, aircraft dynamics exhibit a wide variety of

bifurcation and catastrophe related behavior.

Bifurcations are not a new concept nor has their study

been limited to recent history.
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They were first studied by Poincare in the late 1800's

and later by Hopf as well as others [38]. Catastrophe

theory on the other hand is a relatively new topic. The

earliest work published on the concept was a paper

written by Rene Thom in 1968 (30,31]. The concept gained

a good deal of popularity initially, but later it became

overused leading to attempts to apply catastrophe

theories to a large number of non-technical systems which

lacked definite mathmatical structure. Examples of such

subjective use of the theorem can be found in [32]. This

has led to some considerable criticism of the theory

itself as a result of its inability to give clear

objective results in those cases [33]. This does not

constitute a problem for the application proposed here

since a definite physical and mathmatical model of the

system exists.

1. Bifurcations

As alluded to above, bifurcations are a nonlinear

phenomenon. They can occur in a number of different

circumstances and in a number of different forms.

Literally speaking, a bifurcation is a point where

something is divided into two parts or branches. This

literal definition is very close to the actual

engineering application of the word. In our case, the

branches are solutions to the equilibrium surface

equations which will be discussed later.
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A simple bifurcation occurs when a system through the

variation of some independent parameter reaches a point

where its behavior can assume one of two different forms

for the same set of system parameters. The point where

the system branches off into one of the two behavior

modes is termed a simple bifurcation point. An important

consequence of such a phenomenon is that the mathmatical

structure of the system itself also undergoes a change at

this point. This gives rise to the concept of structural

stability which should not be confused with stability in

terms of the aircraft motion [16].

An example of a simple bifurcation is shown below.

f(y) y

stable-

Bifurcation Point"a
unstable

2
b 

oz

A stable

a y

Fig. 4.1a Fig.4.1b

Figs. 4.1a and 4.1b Simple Bifurcation Example

Figure 4.1a depicts a simple y and f(y) relationship. The

shape of the curve is due to the nonlinearities in the

system. Let f(y) be a potential governed function such

an gravity where f(y) is height at some point, y.
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Therefore, the system is in equilibrium whenever

df/dy=O. Potential governed systems such as gravity tend

to seek minimum potential energy, and therefore, any

equilibrium point that is also a local minimum will be

locally stable. Point a in figure 4.1a represents a

stable equilibrium since df/dy=0 and d 2f/dy 2 is positive

at that point. Figure 4.1b shows the location of points

of minimum potential energy in the (y,z) space where z is

a variable that runs perpendicular to the paper in

figure 4.1a. When the value of z is increased beyond

point b, the structure of the system changes form. There

are now two local minimums in the area under study and

the total number of possible equilibrium positions in the

area being studied has been increased to three, two

stable and one unstable. The system, as it attempts to

minimize potential energy, must proceed along one branch

or the other as z is increased beyond point b. This is a

simple bifurcation, and point b is a simple bifurcation

point. Physically, this situation could represent a

marble rolling along a channel towards an intersection

created by a smooth ridge. The top of the ridge is a

locus of unstable equilibrium points, and the bottom of

the two valleys created by the ridge are loci of stable

erquilibrium points. Given an exact set of circumstances

the marble could roll up the divider and along the ridge;

however, the most likely path would be down one of the

two valleys to each side of the ridge.
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This is due to the unstable nature of the equilibrium

points along the ridge. The use of terms from topology

is by design since the concepts of differential topology

will be of great assistance in understanding and

analyzing the results of a study using BACTM. If we

assume that figure 4.1a is a global picture of the

locations of stable equilibriums of the system for given

values of z, then it can be said that the system will

behave in a predetermined manner for all y and z up to z

equal to b. Beyond the point where zb the global system

behavior becomes dependent on tqe values of y and z in

addition to several other parameters. This is a common

consequence of nonlinearities in a system. When z is

to the left of point b in figure 4.1b, the single branch

is globally stable while the two stable branches located

to the right of point b are only locally stable. The

domains of attraction of the two locally stable branches

are very well defined. All points above the unstable

equilibrium belong to the domain of attraction of the

upper equilibrium branch while all points below the

unstable equilibrium belong to the domain of attraction

of the lower equilibrium branch.

This simple example can be successfully expanded to

include large scale higher order systems. An important

step to make beforehand, however, is to properly define

the terms global and local.
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For the purposes of this study, the term global will

indicate that the full spectrum of admissible state and

control variable values is to be considered. The term

local will be taken to mean that the properties of the

point or area being considered are valid only within some

region that is smaller than the full spectrum of

admissible control and state variable values.

Normally, bifurcation type behavior occurs in the

manner described above. On occasion, however, the

number of stable branches that intersect at one point are

greater than two. This situation will be described as a

general bifurcation. Another form of bifurcation that

will be refered to in this study is the Hopf

Bifurcation. In the context of aircraft dynamics, a Hopf

Bifurcation may occur when a complex pair of eigenvalues

of the linearised system cross the imaginary axis

(frequency or Laplace domain description). There are two

possible outcomes of this situation. If the system has

the right combination of nonlinear characteristics, the

behavior will grow into a stable limit cycle, or if the

global system is well described by the linearised

representation, it will show unstable growth as is

predicted by linear analysis. Further discussion of Hopf

bifurcations will be given later in this section.
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2. Catastrophes

In many ways catastrophes are similar to

bifurcations. They both occur in nonlinear systems and

they both involve a change in the behavior of the

system. Like bifurcation points, the points where

catastrophes occur mark a change in the structure of the

overall system, and also similar to bifurcations,

catastrophes occur as a result of smoothly varying some

input to the system. Unlike bifurcations, however,

catastrophes result in a sudden and usually large change

in the state of the system, and in most cases

catastrophes also occur without warning. This explains

the name given to the phenomena. Catastrophes are also

described as nonlinear jump phenomena compared to a

bifurcation being a smooth branching of the behavior. An

example of catastrophe behavior in an aircraft would be a

situation where at a certain point a smooth increase in

aileron deflection causes a sudden and large increase in

roll rate.

The following example will serve to give a better

understanding of catastrophes and how they relate to

bifurcations. This example is derived from the cusp

catastrophe which is one of Thom's seven elementary

catastrophes (27, 30,31]. Consider the nonlinear

differential equation below.

dx/dt =x 3  + Clx + C2 (4.1)

Where x denotes the state, and (C1,C2) are control

variables.
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Since the system is a scalar one, the system equilibrium

may be represented as the minima and maxima of the

potential function

4= .25x4 + .SClx2 + C2x. (4.2)

Equilibrium points occur whenever dx/dt:O in equation

4.1. Let CI-3 for this discussion. It can be shown that

there is only one equilibrium point for IC21>2 while

three equilibrium points exist when IC21<2. This is a

consequence of the number of real solutions to equation

4.1 when dx/dt=O. For instance, when C2=0, the

equilibrium solutions to equation 4.1 are easily shown to

be (-VT ,O,VT ); however, when tC21>2 there is only one

real valued equilibrium solution to equation 4.1.

Differentiating equation 4.1 with respect to x will

result in the second derivative of the potential function

and is shown below.

d2  /dx2 = 3x2 + CI (4.3)

Inserting the values of x corresponding to the

equilibrium positions (-Nr ,O,V- ) into equation 4.3 show

that x=O is a local maximum and therefore, an unstable

equilibrium point, and x=+ 3 are both minima and

therefore, are stable equilibrium points. This is very

similar to the marble in a bifurcating channel example

discussed above in that an unstable equilibrium point

separates any two stable equilibrium points.
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Refering back to equation 4.3 and setting d 2 /dx2 to 0,

it can be seen that regardless of the value of C2 there

will be inflection points in the potential function at

x::;± VCl-13 when C1=-3 this corresponds to x= + 1. On the

other hand, the location of the maxima and minima do vary

with changes in C2. When C2 equals +2 or - 2 and C1=-3,

a minimum and maximum will coalesce at one of the

inflection points. When this occurs, if the system was

previously at the stable equilibrium point that is now

an inflection point, the system will be in unstable

equilibrium and ready for a catastrophe or more simply

put, a jump in its state to occur. A small variation of

C2 will cause the jump. This example also shows that a

stable equilibrium cannot coexist with an unstable

equilibrium. The result of any such coexistence is the

loss of stable equilibrium at that point. This situation

is described as an unstable equilibrium annihilating a

stable one [27).

The above discussion is demonstrated graphically in

figure 4.2. Let X1 and X2 be the locations of the two

stable equilibrium points, when they exist. The system

will be a marble seeking a local minimum of its potential

energy. This example varies from the preceding

bifurcation example in that the behavior of this system

is studied in only one variable. In Figure 4.2 the

control variable, C2, is allowed to vary slowly from

C2=-3 to C2=+3.
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After each change in C2, the system is allowed to reach

equilibrium, dx/dt=O. As discussed above, only one

equilibrium point is possible when IC21>2. This is shown

in plots a and g. In plot b X2 is created when an

imaginary pair of roots to equation 4.1 converge on the

real axis. This occurs at the inflection point, x=-1.

Plots c, d and e show the convolution of the potential

function as C2 is varied from -2 to +2. Plot d depicts

the C2=0 example discussed above, and therefore, X1=-V',

X2=+ /- and the unstable equibrium point is located at

x=O. In plot f the local maximum and the local minimum at

X1 coalesce at x=+l. As C2 is increased further, two of

the three real valued solutions to equation 4.1 break

away from the real axis and the equilibrium point at X1

disappears. At that point a jump in the state of the

system occurs. Physically, the jump is demonstrated by

the marble rolling down to X2. If C2 were now varied

from +3 back to -3, the behavior would qualitatively be

the same, but the jump would occur as C2 is decreased

below -2 as shown in plot b revealing a definite

hysteresis effect.

Figure 4.2 follows this page.
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Figur2f:potential Function, 4 (x,c) for
CUBo~s values of 02 with Cl=-3



Figure 4.3 brings the concepts discussed above

together in a three dimensional diagram in the (.C,C2)

space. The diagram shows a surface made up of all of the

solution points satisfying equation 4.1 for various

values of the control parameters, C1 and C2, when

dx/dt=O. The area where three real valued solutions to

equation 4.1 exist is depicted by the equilibrium surface

folding over on itself. A global representation of the

positions where a jump in state may occur is shown by a

projection onto the control space (C1,C2) of all the

locations where inflection points coincide with

equilibrium points. The projection of these catastrophe

point locations onto the (C1, C2) space gives a mapping

of the locations where the number of equilibrium

solutions change. In this example the area within the

cusp show where the equilibrium surface is triple

sheeted, and the area outside of the cusp show where the

equilibrium solutions are single valued. The boundary

between areas with different numbers of equilibrum points

is called a bifurcation surface since the equilibrium

solutions separate or bifurcate from each other along

that surface. The combination of all the bifurcation

surfaces in the control space is known as a catastrophe

map since it gives the locations in the control space

where catastrophes are likely to occur. Catastrophes

often occur when a bifurcation surface is crossed so that

the number of local equilibrium solutions decreases.
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The bifurcation surface shown in figure 4.3 is found

by locating all of the points which are both equilibrium

and inflection points. This is-accomplished by solving

the following pair of simultaneous equations:

f(x,c) = x3 + CIx + C2 = 0 (4.5)

df/dx 3x2 + C1 = 0 (4.6)

Eliminating x from the above equations gives the equation

for the bifurcation surface as

(1/27)C13 + C2((-l/3)Cl)3 /2 + 1/4C22 = 0 (4.7)

The admissible values for the control variable must be

restricted real values. This requires that C1 be

negative for solutions to the bifurcation equation to

exist. The variable, C1 is known as a splitting factor

since for C1>O no catastrophes can occur and for C1<0

catastrophes can occur. This point is shown graphically

in figures 4.4a and 4.4b which are simply two dimensional

cross sections of the equilibrium surface in figure 4.3

for C1 held constant at a positive value and a negative

value. Points a and b in Figure 4.4b are Bifurcation-

limit points.

xx& stable,

a

'1unstable

stable* 
b

stable b

_ _ _ _ C2 ___ C2

Fig. 4.4a C1>0 Fig. 4.4b Cl<O

Figures 4.4a and 4.4b 2-D Equilibrium Plots
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The simple example discussed above combines nearly

all of the concepts to be used in this study. A few

pivotal theorems that will be used to extend the concepts

revealed in this scaler example to higher order, multi-

dimensional systems will be discussed next.

C. Discussion of the Main Theorems

Currently, there are four theorems that are of

primary importance in applying the concepts of BACTM to

real world engineering systems. Each of those theorems

will be discussed briefly here.

1. The Center Manifold Theorem r27.34.35.361

The Center Manifold Theorem is of great use in

determining the extent to which linear techniques can be

applied to a nonlinear system. It is, in a sense, an

extension in the application of the Poinoare/Liapunov

Stability theorem (appendix C). Consider a nonlinear

system described by the nth order differential equation

dx/dt = j(x,.c) (4.8)

where X is a vector composed of n state variables and 2

is a vector composed of m control variables. Suppose

that the eigenvalues for the system are found by using

some suitable linearization technique. Let k be the

number of eigenvalues of the linearised system whose real

parts are zero, i be the number with positive real parts

and j be the number with negative real parts.
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The system can now be separated into three individual

systems by use of appropriate coordinate transformations

so that the original system can be represented as

follows:

du/dt = g(u,c) (4.9)

dv/dt = A(-)v + B(-)c (4.10)

dw/dt = A(+)w + B(+)c (4.11)

where (-) and (+) indicate systems created from the

portions of the original system whose eigenvalues have

negative and positive real parts respectively. The

systems represented by equations 4.10 and 4.11 are of

order j and i respectively and are properly described by

the linear approximations. This is a consequence of the

Poincare/Liapunov theorem (Appendix C). The system

described by equation 4.9"is a kth order system created

from the eigenvalues with zero real parts. The essential

nonlinearities of the original system are described

completely by equation 4.9, and since bifurcations occur

only in nonlinear systems the complete bifurcational

behavior can be studied by analyzing the k dimensional

u-system by itself. This greatly reduces the size of the

system that must be studied. In fact Arnol'd [36,37] has

shown that the maximum value of k is determined entirely

by the dimension m of the control vector. This stems

directly from the concept of structural stability

mentioned earlier.
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Arnol'd states that the number of singularities that

occur in "general position" is a function of the number

of independent parameters in the system. For instance,

if only one control variable were available, a single

eigenvalue could be placed on the imaginary axis in a

structurally stable manner. There are, under some

circumstances, cases where systems with only one control

variable may have more than one sigenvalue on the

imaginary axis at the same time; however, in these cases

a small shift in the parameters within the system will

cause the additional singularities to disappear. In order

to maintain two eigenvalues on the imaginary axis in a

structurally stable way, three independent controls must

be available. When the computer aided stability system

(CASS) is not-operational, the F-15S will have only three

independent control parameters, and therefore, kc will be

two or less in these situations. When the CASS is

operational, however, the number of independent control

parameters is increased to six, and k may now take on a

maximum value of three. Systems with reduced orders

greater than two have not been studied to any great

extent and are not well understood. This is not

necessarily a major problem since, statistically

speaking, the occurances of the proper positioning of the

controls to obtain singularities in "general position"

become increasingly rare as k increases.
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This conjecture is stated without proof by Arnol'd [37],

but it does make considerable physical sense. Given that

this is true, the possibility of having to deal with

lesser understood reduced order systems of three may be

quite small. Arnol'd also states that any information

obtained on the u-system can be generalized to the

original nth order system by "suspending" the linear

systems having the eigenvalues with non zero real parts

to the u-system. Systems with k=1,2 are reasonably well

understood and well documented, and the next two

theorems by Thom and Hopf define the bifurcational

behavior for these systems.

2. Main Theorem of Elementary Catastrophe Theory r27.301

This theorem by Rene Thom [30] provides

classifications of the bifurcational behavior of all

gradient type finite dimensional systems where m < 6 (a

gradient type system is one in which a potential function

exists). The assumption of a potential governed system

means that the Jacobian matrix describing the linearized

system will be symmetrical, and therefore have only real

eigenvalues [27]. For systems with m<6, there can be no

more than two zero eigenvalues. Therefore, through the

Center Manifold Theorem the complete bifurcational

behavior of these systems can be studied by studying

either a one dimensional or two dimensional system.
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The exact form of the one or two dimensional system

depends on the nature of the higher order terms in the

Taylor Series expansion of g(u,c) (ie. how many of the

higher order terms are properly neglected). Thom has

labeled the general form of the catastrophes with k=l as

cuspoids and the ones with k=2 as umbilics. The example

given in the previous section falls in the general group

of cuspoids since its reduced state space dimension, k,

is one. The control space dimension of the example was

two which further classifies the example as a member of

the family of generic catastrophes known as cusps. The

elementary catastrophe models developed by Thom can be of

great use in understanding the behavior of nonlinear

systems. Through the use of the Center Manifold Theorem

and Thorn's classification theorems both model

identification and prediction of aircraft behavior is

possible.

The above discussion has been restricted to reduced

order systems made up entirely of real eigenvalues. The

next theory deals with the bifurcational behavior of

reduced order systems with a complex pair of eigenvalues.

3. Hoof Bifurcation Theorem [27.381

Systems that are of the non gradient type,

occasionally have equilibrium solutions which consist of

closed orbits (limit cycles).
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Hopf has shown that a family of limit cycles can

bifurcate from an equilibrium point when a complex pair

of eigenvalues of the linearized system cross the

imaginary axis with non zero speed. In the study of Hopf

bifurcations the maximum number of eigenvalues with zero

real parts is extended to four in the m<6 aircraft

situation. This is still considered to be a system with

kS2 since complex pairs tend to move together in the same

manner as the single real valued eigenvalues discussed in

the previous section (36,37]. The cases where two complex

pair of eigenvalues or a complex pair and a single real

valued eigenvalue cross the imaginary axis are not well

understood. Consequently, in most circumstances, the

number of independent control surfaces used in the study

of Hopf Bifurcations are limited to two to prevent the

possibility of having more than a single complex pair of

eigenvalues cross the imaginary axis at once.

Additionally, Hopf Bifurcations can only occur if the

remaining eigenvalues with nonzero real parts are well to

the left of the imaginary axis. This is not overly

restrictive, since most aircraft dynamics studies are

concerned with the points where stability is lost for the

first time.
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4. Global Implicit Function Theorem [391

The global implicit function theorem was developed

by Palias and has been successfully used to determine the

uniqueness of equilibrium solutions in nonlinear

networks. The applications for this theorem in nonlinear

aircraft analysis are straight forward. From the

discussions above, it is obvious that it is very

important to know the cases where an aircraft's

equilibrium solutions are not single valued. Consider

the equation f(x, ) = 0. Palais' theorem states that two

conditions must be satisfied for solutions of the above

equation to be unique. First, the determinant of the

system jacobian matrix, F= bL/ax, must be nonvanishing

for all (x,.0 (ie. no inflexion points coincident with

equilibrium points), and second, the growth condition

described below must be satisfied.

H1f(x,c)ll-+o as lxll-.

The importance of the first condition is clear from the

above discussion of bifurcations, and if satisfied, it

implies the absence of bifucations and therefore the

absence of catastrophes of the types studied by Thom.

The second case addresses the situations where Hopf

bifurcations may be present. In general, a system that is

properly described by a linearized representation should

always satisfy the Global Implicit Function Theorem in

the valid range of the linear approximation.
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These theorems are important for a couple of

reasons. First, the theoretical development of the

procedure used in this study which is discussed in the

next chapter is based on the concepts of bifurcations and

catastrophes, and those concepts in turn are applied in

the procedure through the use of these theorems. More

importantly, however, they provide an excellent basis

towards expanding and improving on the methods that will

be brought out in this study.
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CHAPTER V

THEORET ICAL DEVELOPMENT

A. general Ovrve of the Method

The basic method to be used in this research was

originally developed by Scientific Systems Inc. for use

by the Navy [27,28,29). The method, known as BACTM

(Bifurcation &nalysis and Catastrophe Theory

M~ethodology), was developed primarily for use on an

aerodynamic data set representing the McDonnell Douglas

F-4 but was also used on several other more simple

aircraft models during the early stages of its

development. The remainder of this section will cover

the general approach that will be taken during this

study, and then the following sections will discuss

each of the major steps in detail. References will be

made to the theories and examples discussed in chapter

4.

As in any type of scientific research, the first

major step taken during this study was the formulation

of the problem in more specific terms. This included

the identification of the state and control variables,

the development of the aerodynamic and mathmatical

models, and the selection of reasonable assumptions to

simplify the problem. Several different sets of

equations of motion were considered.
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The ones selected as best suited for the study included

a fifth order and two eighth order sets of equations.

The fifth order set uses as its state variables: p

(roll rate), q (pitch rate), r (yaw rate), alpha (angle

of attack) and beta (sideslip angle). One eighth order

set employs the wind axis variables: p, q, r, alpha,

beta, theta (pitch angle), phi (bank angle) and V

(velocity), while the other one uses the body axis

variables: u (x-axis velocity), v (y-axis velocity), w

(z-axis velocity), p, q, r, theta and phi. See Appendix

D for the actual F-15S aircraft models used. The fifth

order set of equations was derived by holding V

constant and assuming gravity to be zero. By letting

gravity be zero theta, and phi decouple from the

remaining equations and thus, have no influence on the

aircraft dynamics. This set of equations is most

accurate in the low angle of attack, trimmed flight

range and was used in the preliminary testing of the

method. Mehra and Carroll (28) found that setting

gravity to zero did not appreciably effect flight

trajectories in the low aca flight range but did create

quantitative errors in ti., high aoa flight range. This

problem was especially prevalent during simulations of

spin motion.. Surprisingly, however, the qualitative

results of simulations of spin motions with and without

the gravity term. did not differ greatly (27).
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The eighth order, wind axis, set of equations was used

for increased accuracy in the higher aoa range during

BACTM computations, and the other eighth order, body

axis set, of equations was used in the numerical

simulations. A number of additional variables were also

calculated during the simulations, and these are listed

and discussed in Appendix E. For further discussion on

the mathmatical models used see Appendix D. The

significant simplifications made in the development of

the aircraft models are listed below:

a. Altitude was held constant during the equili-

brium surface calculataions.

b. The effects of spinning rotors were neglected.

c. The thrust vector was assumed to be in line

with the x body axis.

d. Thrust was assumed constant during individual

computer runs and was set to zero during spin type

motions.

e. The configuration was restricted to gear up,

flaps up and no stores.

f. The CG location was assumed to be constant

during individual computer runs.

g. The data set. was reduced to include only the

data for 20,000 feet and Mach 0.2 or Mach 0.6.

The above simplifications were not overly restrictive

in that they do not restrict the critical

nonlinearities of the problem.

p
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The above restrictions are also quite compatible with

conditions normally encountered in high aon, fight.

After the problem was properly specified and the

aircraft models selected, equilibrium surfaces were

generated for various control inputs. This involves

setting the time derivatives to zero in the equations

of motion and finding the set of solutions across a

spectrum of admissible control inputs. At each solution

point of the equilibrium surface a local stability

analysis is accomplished. The movement and location of

the eigenvalues when correlated with the equilibrium

surface can reveal a wealth of information on the

nonlinear nature of the aircraft model in the area

under study. Some of the information that can be

gained is the location of possible limit cycles,

hysteresis effects, domains of attraction of various

stable branches, locations of bifurcations and jump

phenomenon, areas that are assymptotically stable or

unstable, and steady state flight trajectories. From

the location of the individual bifurcation points which

were the inflection points in the simple potential

example in Chapter IV, bifurcation surfaces are found.

These surfaces are the projections of the equilibrium

surface bifurcation points onto a two dimensional

control space.
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These bifurcation points are also the points where the

eigenvalues of the linearised system cross the

imaginary axis, and it is at these points that the

system either jumps to a new equilibrium position,

grows to a stable limit cycle or simply becomes

unstable (151. The complete set of all bufurcation

surfaces in the control space is referred to as a

catastrophe map, and it depicts the locations of

possible jump behavior. Once the results have been

obtained, predictions of the global aircraft behavior

can be made; stability criteria can be formulated; and

some possible bifurcation free control laws can be

developed. Each of these determinations can be tested

by numerical simulation. Area. requiring further study

as determined by the numerical simulation can then be

studied by repeating the above process.

B. Eguilibrium Surface Calculations

As mentioned above, a large amount of information

can be gained from knowing the complete set of

equilibrium surfaces within the admissible range of

state and control variables. An equilibrium surface

will not reveal information on aircraft behavior during

nonlinear jumps, but it will give the general direction

of the jump, the before and after steady state

trajectories, and the location of the jumps.
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Hysteresis effects can be found by simply reversing the

movement along the equilibrium surface (in a manner

similar to the minimum potential example shown in

figure 4.2). Just as in the examples in Chapter IV,

the domains of attraction of the stable branches are

determined by the locations of the unstable equilibrium

branches (see figure 4.4b). Locating the domains of

attraction for a stable limit cycle is considerably

more complicated, but information towards that end can

be gained by superimposing maximum state variable

oscillation amplitudes which are obtained by numerical

simulation onto the corresponding points of an

equilibrium surface. It also should be noted that

there can be several different equilibrium surfaces

within the admissible range of the state and control

variables. This accounts for the existance of separate

spin and trimmed flight equilibrium surfaces. Strictly

speaking, surfaces considered separate in this

application may not actually be separate since they can

meet at points that are outside of the admissible

control and state range.

The calculation of the equilibrium surface

requires the solution of a nth order nonlinear

algebriac equation for various control inputs. This can

be done either by solving for the control positions

given a set of state variables or vice versa.
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The former of the two is, in most cases, easier due to

the smaller set of equations and the fact that many

aircraft models employ linear control variable

coefficients. In the case of the F-15S, however, the

control variable vector is not only large (6 X 1) but

also has nonlinear coefficients. It is also more

systematic from a research standpoint to select a

control input as the independent parameter and

determine the resulting state variables as the control

input is varied, and therefore, that will be the

approach taken here. The variation of a single

parameter to generate a continuous locus of solutions

from a single known solution point is known as a

continuation technique. This type of technique is well

suited for the computation of both the equilibrium and

the bifurcation surfaces.

Using state space vector notation, the equations

of motion for the aircraft can be represented as

dx/dt = fx).(5.1)

An equilibrium surface by definition requires that

dx/dt 0, and therefore, the equation of an

equilibrium surface is

f(x,.Q) = 0 (5.2)

where x is the state vector and 2 is the control

vector. The F-15S aircraft model used in this study

will require only three control inputs although the

oontrol vector may be as large as (6 X 1).
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If the computer aided stability system (CASS) is

operational then the three control inputs will be

longitudnal stick deflection, lateral stick deflection

and rudder pedal deflection as measured from within the

cockpit. The CASS will take those 'pit' inputs, the

current control positions and the current aircraft

state and select the actual control surface

deflections. The number of independent control inputs

available to the CASS in this study is six. If the CASS

is not operational, the number of independent control

inputs will be decreased to three. In order to

accomplish this. the canard will be scheduled

symmetrically as a function of aoa and Mach number, the

stabilator and rudders will be operated symmetrically

while the aileron surface movements remain unchanged.

Therefore, when computations are accomplished without

the CASS, the control inputs used in the equilibrium

surface calculations and the actual system control

inputs will be equivalent. During the equilibrium

surface calulations, two controls will be held constant

while the third is varied. This makes the control

vector, c, in equation 5.2 a scalar, and therefore,

continuation techniques as described above are easily

applied. The final form of the equilibrium surface

equation is then

f~x~c)=O(5.3)
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The first step in an equilibrium surface

calculation is' to find a single equilibrium point

satisfying equation 5.3 from which to continue the

remaining solutions from. This can be done by any

method which presents the least difficulty. If a 'trim'

equilibrium surface is desired, then setting the

control inputs as well as some of the state variables

to zero will make the ahalytical solution of an

equilibrium point feasible. For a more complicated

equilibrium surface . such. as one involving spin type

motions, a steady state spin condition that Is already

known to exist or that is found through simulation can

be used as a , starting. point. Finally, once an

equilibrium surface is generated, any point on that

surface can be Used as a starting point for another

surface. This makes the method self contained from the

selection of the initial equilibrium point.

There are two primary classes of continuation

methods [28]. The first class is known as :ontinuation-

by-differentiation while the second class is a group of

iterative continuation techniques. The continuation-by-

differentiation technique solves the equation

dI/dc = F(dx/dc) + 6/ac = 0 (5.4)

where as before x is the state vector, c is a scalar

control parameter and I is (X,o), the right-hand-side

of equation 5.3.
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F is the system Jacobian matrix

F ( f(x,c)/bx) (5.5)

which can be thought of as a linearized representation

of the local system. Equation 5.4 indicates that c is

to be varied in such a way so that equation 5.3 will

always be true. The major problem with this method is

the necessity of calculating both the Jacobian, F, and

the vector ) f/I c at every point. This becomes quite

time consuming when n is large. On the other hand,

iterative approachs use a locally convergent, iterative

method such as a Newton-Raphson technique (40,41] which

requires only the computation of the Jacobian matrix at

each point. The solution is converged upon by

iteratively solving an equation of the following form:

X(new) = X(old) - F-1 (old) (5.6)

The convergence of the Newton-Raphson method is

quadratic providing that the original estimate is near

the root [40]. When the estimate is not 'near' the

root, the method will usually fail. Iterative schemes

such as the Newton-Raphson technique fall into a

general class of numerical techniques known as

predictor-corrector methods where the Newton-Raphson

formula shown above is used as the 'corrector' step.

The use of the Newton-Raphson technique alone is

therefore unsuited for computation of the equilibrium

surfaces.
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Current continuation methods use a combination of the

two classes discussed above.

As can be expected, the continuation schemes

discussed above tend to break down in the neighborhood

of bifurcation points. It is at these points where the

slope of the equilibrium surface with respect to the

control variable becomes infinite or two or more

equilibrium surfaces intersect. In a multi-dimensional

system these occurences are indicated by the system

Jacobian matrix becoming singular. If the Jacobian is

non-singular, then the point is a regular point with

.f(X~c), and all of its first partial derivatives being

continuous. The implicit function theorem (Chapter IV)

ensures the existence of a unique regular solution to

equation 5.3 through amy regular point. Which in turn

ensures the success of either class of continuation

techniques at those points. Conversely though, both

types of algorithms break down in the neighborhood of

bifurcation points since F becomes non-invertable at

those points. Before proceeding further it will be of

use to define the three different types of bifurcation

points found during the continuation process. The

first type is called a limit point; the second type

will be called a simple bifurcation point; and the

third type is known as a general bifurcation point. An

example of each of these is shown in figure 5.1 on the

next page.
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c---Simple Bifurcation point

Limit Points

General Bifurcation Point

C

Figure 5.1 Bifurcation and Limit Points

In this study, a predictor-corrector continuation

method developed by Kubicek in 1976 [28] will be

employed. The Kubicek algorithm uses a combination of

the continuation-by-differentiation and iterative

methods discussed above. In dealing with the singular

Jacobian matrix, study of the work in this area by

Keller (42] gives much insight to the nature of the

problem. Keller states that the types of bifurcation

points that occur in the equilibrium surface are

directly related to the co-rank (n-rank) of the system

Jacobian. At regular points their are no bifurcations

and thus, the co-rank:O. At limit points as well as

bifurcation points the system Jacobian is singular, but

the co-rank of the Jacobian varies between each of

these cases. Limit points have a co-rank=1, and simple

bifurcations have a co-rank=2, etc.
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During equilibrium surface calculations, the state

vector is augmented with the control vector selected

to be the continuation parameter so that the state

vector becomes a (n+1 X 1) vector where n is the

dimension of the system. The Jacobian of the augmented

system then becomes an (n X n+1) matrix. At a limit

point the Jacobian of both the original and the

augmented system become singular, but within the

augmented system Jacobian there must be at least one

nonsingular (n X n) matrix. This nonsingular matrix is

found by eliminating the most singular column of the

augmented system Jacobian resulting in a matrix of the

form below

1f xl... ,fl/axk 1' fl/ Xk+l., D4'f1/oXn+i

Gk = ifla x 1

a n/aX1 , ... Pfn/a k_ 1 , fn/ xk+ 1 ....1 n n /aXn+1
where xn+1 c. There are n+1 possible (n X n) Gk

matrices to choose from. The nonsingular matrix Gk is

then substituted in place of the system Jacobian in the

continuation scheme.
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In essence, the roles of the control parameter and the

kth state variable are now reversed so that the state

variable corresponding to the column removed to create

Gk now becomes the continuation parameter, and the

control parameter, c, now acts as a state variable.

This situation remains intact until the limit point is

traversed and the kfth column is no longer the most

singular column. Where bifurcation points are

encountered, as is often the case in bifurcation

surface calculations (due to the compression of a three

dimensional representation onto a two dimensional

surface), the state variable vector must be augmented

with yet another control parameter. This process can

be continued until all possibilities are exhausted.

From the discussion in Chapter IV, Arnold (36,37] has

shown that there will always be more control variables

available than bifurcation points to contend with when

dealing with the number of independent control

variables present in this case (up to six). Kubicek's

algorithm uses a lower order continuation-by-

differentiation model (a variable order Adam-Bashforth

method) as a predictor step and the Newton-Raphson

method as the iterative corrector step. Ferziger (40]

does an excellent job in explaining these two

techniques, and therefore, they will not be discussed

here in any detail.
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Theoretically, the concept is complete at this

point. Unfortunately, there are some practical and

numerical problems that still must be dealt with. First

of all, the actual application of such a procedure

suggested above would be very impractical when higher

order bifurcations occur due to the increased size of

the Jacobian that must be calculated at each step, and

second, some numerical difficulties still exist in the

neighborhood of bifurcation and limit points due to the

behavior of x(c) near those points. This state

variable behavior problem comes into play in the

calculation of b f/ ac in the basic continuation scheme

derived from equation 5.4 and shown below

dx/dc = -F- ( ) I/ a c) (5.7)

Kubicek's method handles this problem by introducing an

arc length parameter, s, to evaluate the dependence of

the state variable, x, on the control parameter, c,

[28]. By letting (Xc) become (W(s),c(s)) and

combining this with the concept developed by Keller

which was described above, the continuation scheme

shown in equation 5.7 becomes

dx./ds = -Gk-1()/ax k)(dxk/ds) j~k, lijin+l (5.8)

where the kth column is the one replaced by the n+l

column containing the control parameter derivatives. A

standard Euclidean arc length relationship is selected

for s. This is shown in equation 5.9 on the next page.
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(dx1 /ds)2 + .... +(dXn/ds)2 + (dc/ds)2 = 0 (5.9)

By using equation 5.8 in equation 5.9, dxk/ds can be

found. The remaining n parametric derivatives are found

by back. substitution into equation 5.8. The sign

ambiguity presented by the solution of (dxk/ds)2 in

equation 5.9 is resolved by the orientation of the arc

length parameter, s, along the solution branch. This

is determined at the beginning of the algorithm when

the initial continuation parameter direction is

selected.

The problem of dealing with higher order

bifurcation points has not specifically been addressed

at this point, but the continuation method discussed so

far is quite adequate for the computation of

equilibrium surfaces with limit points. There are

several possible means to handle the computation of the

equilibrium surfaces at simple and general bifurcation

points. One such method has already been alluded to.

The state vector could be augumented by additional

control parameters so that a non-singular Jacobian

matrix can be found in the same manner described

above. This method would work, but it would also be

quite costly since a larger Gimension system would have

to be dealt with.
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A more comprehensive arc length normalization scheme

such as that suggested by Keller [28,42] would be

better suited for the computation of equilibrium branch

bifurcation points. Unfortunately, that type of arc

length normalization would be overly complicated when

dealing with limit points alone, and experience has

shown that in the computation of equilibrium surfaces

limit points occur far more frequently than bifurcation

points. The approach that will be taken during this

study will be to adapt the Kubicek method with minor

improvements (those improvements will be discussed

further in the next chapter). Bifurcation points,

where two or more equilibrium branches intersect, can

be stepped over by simply using a predictor-corrector

technique that will converge to the other side of the

bifurcation point. In the case of a simple bifurcation

point the procedure for locating the second branch is

discussed below. Study of the two branches eminating

from the simple bifurcation point have shown that they

both are tangent at the simple bifurcation point to the

plane described by the two eigenvectors associated with

the two zero eigenvalues of GTG, which is a square (n+1

X n+1) matrix of co-rank=2 (G is the augmented

Jacobian) (28). The plane can be determined from those

two eigenvectors and a search for all points satisfying

the equilibrium equation, 5.3 can be accomplished.
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Once again, it should be remembered that when the

computer aided stability system is not operational, the

number of zero eigenvalues is limited to two, and

therefore, the equilibrium surface bifurcational

behavior is restricted to simple bifurcations and limit

points. When the computer aided system is operational,

general bifurcations are possible but are limited to

the cases where three branches intersect. As was

discussed in Chapter IV, the situations where the

reduced order system size, k (k=co-rank), is greater

than two are not well understood. Locating the

additional equilibrium branches eminating from a

general bifurcation point, however, can be accomplished

in the same manner described above except that it will

be progressively more difficult due to the increased

dimensions of the space that must be searched for the

points satisfying equation 5.3. For example, one

branch can always be found by the predictor-corrector

technique discussed above. The second branch in the

case of a simple bifurcation point is found by making a

one-dimensional search in circular coordinates about

the bifurcation point in the plane described by the two

critical eigenvectors. In the case of three branches

eminating from a bifurcation point, the eigenvectors

corresponding to the three critical eigenvalues form a

three dimensional space.
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Therefore, a two-dimensional search in spherical

coordinates must be made about the bifurcation point to

find the solutions to equation 5.3.

A considerable amount of detail has been given to

the calculation of equilibrium surfaces and the

development of the continuation algorithm used in

BACTM. This is due to the pivotal importance of the

equilibrium surfaces to the method in general, and it

is also due to the universal applicability of the

continuation method to other areas in this study as

well as possible extensions to this study.

Specifically, the continuation method of Kubicek will

be modified slightly and applied to the bifurcation

surface calculations in section D.

C. Local Stability Calculations

At each solution point of the equilibrium surface

a local stability analysis is accomplished. Since the

system #is an autonomous system (the coefficients are

not time dependent), linearization of the system at

each point is valid and will reflect the local

stability behavior of each state variable provided that

the restrictions of the Poincare/Liapunov theorem

(Appendix C) are followed. More importantly, though,

the local stability analysis will show the movement and

type of eigenvalues present in the linearized system.
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The importance of this information has already been

discussed and will only be mentioned briefly here. The

type of eigenvalues (stable or unstable) determine

whether an equilibrium branch is locally stable or

unstable. Eigenvalues crossing the imaginary axis

constitute bifurcations and the number of those

critical eigenvalues determine the size of the reduced

order, nonlinear system as defined by the center

manifold theorem. The reduced order nonlinear system

can then be studied through the elementary catastrophe

theorem or the Hopf bifurcation theorem. The location

of equilibrium points that have zero eigenvalues also

determine the bifurcation surfaces. The local linear

analysis can also provide a direct link to phase plane

analysis as well as other topological studies of the

system. And finally, the local stability analysis gives

insight to the possible applications and limitations of

linearization and quasi-linearization schemes.

Mathmatically, the local stability analysis is

accomplished by finding the characteristic roots of the

Jacobian matrix, F, for each equilibrium solution

point. The eigenvalues are then characterized by their

location in the imaginary plane. Different

designations are given to each of the different types

of local instabilities.
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In this manner the type and number of eigenvalues that

cross the imaginary axis as the system goes unstable

locally can be determined, and from this information an

understanding of the systems' bifurcational behavior

can be gained.

D. Bifurcation Surface Calculations

As has been thoroughly discussed earlier, the

bifurcation surfaces are intimately related to the

equilibrium surfaces in that they are merely a

projection of the limit and bifurcation points of the

equilibrium surfaces onto a two dimensional control

space. It has also been brought out that the location

of bifurcation points can be found in a number of

ways. The method that is most consistent with the

equilibrium surface calculation method discussed above

is to locate the points that are both equilibrium

points and have a singular Jacobian matrix. Thus, the

equation of a bifurcation surface is [281

9(.,ci)= [f(Y.ci),det(F)]T = 0 (5.10)

where y = [X,cl T and (ci , c.) are two separate control

inputs. Any two control inputs can be chosen to form

the control space and the third is held constant. One

of the selected controls is allowed to vary as a state

variable while the other is varied as the continuation

parameter.
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The solution of equation 5.10 yields a curve c i(C cs). C k

fixed, in the control space that is a locus of the

bifurcation point projections. The complete set of such

bifurcation curves is known as a catastrophe map. The

system described by equation 5.10 is simply the

equilibrium system augmented by the constraint,

det(F)=O, and therefore has the dimension of n+1 where

n is the order of the system. This accounts for the

addition of a control parameter as an extra dependent

variable. From this point the solution of this system

of equations proceeds identically to that of the

equilibrium surface equations with three exceptions.

First of all, the dimension of the system is increased

by one, making the calculation of the surface more

costly. Secondly, the nature of compressing a three

dimensional locus of points into a two dimensional

representation dramatically increases the possibilities

of intersections occuring between the surfaces, which

as discussed above, greatly increases the complexity of

the continuation process. The final exception is

caused by the constraint, det(F)=0. Due to the

dimension of the system, it is impractical to expand

the determinant of F analytically; therefore, numerical

differentiation of a system with a singular or near

singular matrix is required which is not only tricky

but could be quite costly as well.



E. Analysis of the Results

Due to their global nature, the results of an

analysis using BACTM can first be studied from a

qualitative viewpoint with the purpose of better

understanding the nonlinear phenomena in the area under

study. Then, more quantified results can be obtained

in the areas that show unusual or counter-intuitive

behavior. This approach is somewhat unique in that

many approaches reverse the above order of

investigation. Some examples of BACTMd results from two

much simpler aircraft models than the F-15S are

discussed below. Their coefficients are linear and

their data bases are quite small when compared to the

that of the F-15S. The results are therefore much

clearer and more suited to a general discussion of the

analysis techniques used in this study.

1. Roll CoUpling Equilibrium Surface Ex&Mple

One of the better known nonlinear jump phenomena

is roll coupling which was first studied by William

Phillips in 1948. Analytical approaches to studying

roll coupling are fairly complex and cumbersome £43],

and as will be shown below, the criteria obtained

through those traditional techniques are not

necessarily accurate [27). Roll coupling is a

phenomenon that occurs primarily in modern fighter type

aircraft.
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This problem stems directly from the low moment of

inertia about the x axis that is characteristic of

fighter aircraft. It is both a kinematic coupling

(exchange of angle of attack and sideslip during roll)

and inertial coupling phenomenon that occurs during

high roll rates and is aggravated by high angles of

attack. In order to combat this problem many fighter

type aircraft have restrictions that limit the maximum

stick travel and g loading during continuous aileron

rolls [10).

Figures 5.2, 5.3, 5.4 and 5.5 show four different

equilibrium surfaces for aircrafts A and B, the two

fighter type discussed above. The figures were

generated by Scientific Systems Inc. during the early

development of BACTM. Figure 5.2 shows an aileron

deflection equilibrium surface for aircraft A at an

elevator deflection angle of -0.5 degrees and rudder

deflection angle of zero. As should be expected with

this simple model the progression of roll rate, p, with

aileron input is very linear throughout the aileron

range, and the local stability analysis shows that each

point is stable. This is indicated by the S appearing

above the curve; Figure 5.3 again shows aircraft A at

the same conditions as Figure 5.2 except now the

elevator input has been changed to 0.0 degrees.
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At this point the nonlinearities of the aircraft model

are evident and are indicated by the limit points

present in the curve. Figure 5.3 clearly shows the

presence of a jump in roll rate at DA=±8 degrees as

aileron input is increased in either direction.

Although the jump at DA:+8 degrees is not tremendous,

the situation that has developed upon crossing that

jump has the potential to become disasterous. Most

aircraft are protected against this occurence by a

flight manual restriction requiring that a load factor

of one g be maintained during multiple aileron rolls.

Unfortunately however, the difference in aircraft

'feel' between one g (Fig. 5.2) and zero g (Fig. 5.4)

during continuous aileron rolls is not always obvious,

yet the difference in aircraft behavior can be

catastrophic. As an example, refer once again to fig.

5.3, suppose that aileron deflection is decreased from

0 to -30 degrees and back to 0 again. During that

control sequence, the roll rate was increased to about

225 deg/sec, and a jump of about 60 deg/sec occured at

DA=-8. As DA is decreased back to zero the roll rate

will only decrease to about 130 deg/sec. In an attempt

to stop the roll rate the pilot increases aileron

deflection further until at about 15 degrees of aileron

deflection, the roll rate undergoes a catastrophic jump

to -225 deg/sec.
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Closer inspection of thelsituation that has developed

shows that the aircraft cannot return to its original

starting position of zero roll rate by using aileron

alone. This is due to the 'zero roll rate' equilibrium

branch being embedded inside of the hysteretic loop

shown in Figure 5.3. It should be noted that the other

states are also undergoing similar nonlinear jumps at

the jump points shown in these figures. A small

elevator change to -0.5 degrees deflection will enable

the aircraft state to be returned to the starting

point. The much used roll coupling criteria, developed

by Phillips, gives a critical aileron deflection value

of ±15 degrees for this situation which corresponds to

the larger catastrophic jump from +225 to -225 deg/sec.

The BACTM study, on the other hand, reveals a more

useful critical aileron value of +8 degrees. Numerical

simulations have verified the BACTM selected value of

+8 degrees as the critical aileron deflection angle

[27). Figure 5.4 show the second aircraft, B,

undergoing an aileron change during a pitch-up

manuever. The curve has distinct linear and nonlinear

regions. The limits of these regions are marked by the

jumps at +34 degrees. Since the catastrophic jump

occurs at the extreme limits of control deflection and

at a load factor well above one, the nonlinear jump

shown in Figure 5.4 is safely avoided by adhering to

the flight manual restrictions listed above.
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Figure 5.5 again shows aircraft B in the same flight

conditions as Figure 5.4. In this case, however, the

elevator deflection is held at +2 degrees and similar

to Figure 5.3 the 'zero roll rate' equilibrium branch

is again embedded inside of a hysteretic loop.

This example has brought to light some of the

information that can be gained from the study of

equilibrium surfaces. The steady-state trajectory is

shown for a varying aileron input. The nonlinear jumps

or catastrophes are clearly shown, and the effects of

hysteresis are evident. Additional information is

gained by the local stability analysis which is

represented by the letters indicating the local

stability of the individual solution points along the

equilibrium curve. As is shown in the legend on the

figures a U stands for unstable and an S indicates

stable. The U designation also indicates that the

local analysis is unstable as a result of a single real

valued eigenvalue in the right-half-plane while the L

designation indicates that the local stability analysis

is unstable due to a complex pair of eigenvalues in the

right-half-plane. The boundaries between two types of

stability behaviors is indicated by a hash mark, :, on

the curve.
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The type of local stability behavior corresponding to

each section of the curve is indicated by the letter

above or below that section of the curve. Refering

back to Figure 5.5, the topological nature of the

stable and unstable equilibriuim branches is clearly

shown. Between each stable branch there is an unstable

branch, and the unstable branches clearly mark the

domains of attraction of the stable branches. The

local stability analysis in Figure 5.5 also shows that

the limit points do indeed occur when a single

eigenvalue crosses the imaginary axis. Another point

brought to light by the local stability study is that

the bifurcational behavior of the system can be studied

in terms of a single variable which is a direct result

of the center manifold theorem. Wherever a transition

from an S to an L designation is found, a Hopf

bifurcation is present and a limit cycle may exist.

The lower case letters on figures 5.4 and 5.5

correspond to points on the roll rate catastrophe map

discussed in the next section.

Figures 5.2 through 5.5 follow this page.
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2. Roll Coupling Catastroyhe May Example

Figure 5.6 shows a three-dimensional section of

the roll rate equilibrium surface discussed above for

DA (-35, +35), DE (-2, +2), and DR=O. The projection

of the limit points from the equilibrium surface onto

the elevator versus aileron control space will form a

roll rate catastrophe map. This is shown in the lower

portion of Figure 5.6. The shape and behavior of this

particular catastrophe map is very similar to one of

the elementary catastrophes attributed to Thorn known as

the butterfly catastrophe for its distinct shape

(27, 30, 31]. Figure 5.7 shows a more comprehensive view

of the catastrophe map. The numbers represent the

number of equilibrium solutions existing at that

combination of controls. The horizontal lines show the

plane of figures 5.4 and 5.5. Nonlinear jump behavior

may occur anytime a boundary in Figure 5.7 is crossed

so that the number of equilibrium solutions decreases.

High aoa catastrophes can be found by holding aileron

deflection constant and increasing elevator. In this

case departure may be expected at DA=0 and DE=9.3.

This too was verified by simulation as being correct

(273. Finally, the area where bifurcations can not

occur is shown as the region where only one equilibrium

surface solution exists. Control laws can be developed

to remain in this non-bifurcation region by using a

combination of the control surfaces.



100

Bifurcation Surfaces

\DE 0 DA

Pis. 5.61 Equilibrium Surface and Catastrophe Map
for Aircraft B (DR = 0)



101

1t1%

I 0

00

.5 ~ ~ S. : 5 -
DR

Fig. 5.Zi Catastrophe Map in DtD#D 0 ln o

Airraf B.Thenumersin achregon ndiateth
nubr feqiibimouios Thltrscrspn
topit hw n iue . n 5-5.



102

F. Numerical Simulations

Once the results of the study have been analyzed,

numerical simulations are employed to verify the

predictions made and the criteria developed. The

numerical simulations use the eighth order body axis

model am the met of equations being actually

integrated, but a number of other variables and

parameters of interest are calculated as well. Among

those additional values calculated are angle of attack,

sideslip angle and total velocity so that the

bifurcation system can be directly studied. Some

add itional values of interest that are monitored during

the simulations are total vehicle kinetic energy and

rate of change of kinetic energy. These values have

shown some promise as possible quantitative indicators

of impending catastrophes [28]. The complete list of

the additional values monitored during the numerical

simulations and their definitions is contained in

Appendix E. The numerical simulation method has

provisions for allowing altitude to vary and for the

varying of the controls to simulate different control

strategies. The numerical simulation technique also

has provisions for the calculation of phase-plane

trajectories as well as the standard time history

plots.
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CHAPTER VI

N4UMERI CAL APPROACH

The iterative nature of this method makes it a

perfect candidate for evaluation by numerical methods.

In fact the only way that any useful amount of

information can be gained through this method is by the

repeated numerical evaluation of the values discussed

in the preceeding chapter. The numerical steps taken

in this analysis as well as the specific numerical

techniques used to accomplish those steps are discussed

in this chapter. Several of the techniques used are

well known and will not be covered in great detail, but

the manner in which they are combined to create the

complete method will be covered in sufficient detail to

give an understanding of the overall process.

B. Data Preparation

As has been mentioned above, the data set for the

F-15S is extensive which made it necessary to reduce

the number of independent variables contained in the

data. This was accomplished by restricting the

altitude to 20,000 feet and the Mach number to either

Mach 0.2 or Mach 0.6. After these restrictions were

applied, the data met was reduced to tables that were a

function of one, two and three variables.
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In order to ensure a smooth variation of the

aerodynamic coefficients as the aircraft state changes,

a curve fit that is smooth at all points is required.

Cubic spline approximations were selected as the best

approach. Cubic splines represent the data by placing

a third order polynomial between each data point and

then matching the first and second derivatives of the

adjoining curves at each data point. This ensures the

smoothness of the partial derivatives of the

aerodynamic coefficients with respect to the state and

control variables. For the tables that were a funtion

of two variables, bi-cubic spline interpolations were

used. This is similar to the cubic spline method

except that a cubic polynomial in two variables is fit

between the four data points that represent a section

of the two-dimensional data table. Bi-cubic splines

have all of the properties of cubic splines. Since

the nature of the first and second derivatives at the

end points of the tables were not precisely known,

natural cubic splines were selected. A natural cubic

spline forces the second derivative to be zero at the

end points thus minimizing the overall curvature of the

curve. The spline coefficients which represent the

coefficients of the cubic polynomial between each data

point were calculated separately.
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Since the values of the spline coefficients will remain

unchanged so long as the data remains unchanged, the

spline coefficients only need to be evaluated once.

The spl ine curves are then evaluated each time a

variable that is a function of the table approximated

by the spline changes. During a dynamic simulation,

all of the values are evaluated on each call to the

aerodynamic coefficient subroutine, but during the

determination of the partial derivatives for the

Jacobian matrix, only values that are varied during

that call to the subroutine need be calculated. This

is discussed in more detail below. The cubic and

bicubic spline curves are generated and evaluated by

International lMathmatics and Science Library (IMSL)

routines. The remaining tables that are functions of

three variables were interpolated by linear

interpolation. The difficulty and expense of applying

a spl ine curve fit in three variables out weighed the

possible curve continuity problems that could arise.

Additionally, the number of tables requiring linear

*interpolation and their overall effect as compared to

the other tables on the aerodynamic coefficients was

small. All of the interpolation methods maintain the

values at the boundary of the table when an independent

variable exceeds the bounds of the table (is. no

extrapolation was accomplished).
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Ferziger (40] discusses the origin and application of

splines as well as a possible computer algorithm for

their implementation.

C. Details of the Major Steps

1. Outline of the Algorithm

In this section, I will briefly describe the basic

flow of the algorithm to give some order to the

description of the specific techniques that follow.

The first major step after the initialization of a

number of quantities necessary for the control of the

routine and the calculation of the equations of motion

is to read in the spline fit data and parameters for

the specific Mach number of interest (Mach=0.2 or

Mach=0.6). The system Jacobian is then calculated and

the Newton-Raphson technique is used to converge on the

initial point from the given initial conditions. Then

the Adams-Bashforth method is used to predict the next

point. The Newton-Raphson technique is then used again

to converge to the next solution point. During the

Newton-Raphson process, the augmented system Jacobian

is calculated and Gaussian elimination with controlled

pivoting is used to select the continuation parameter

and solve for F-I. This step is repeated until

convergence occurs. Once convergence is achieved

within a given criteria, the Adams-Bashforth method is

again used to predict the next point.
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This process is continued until a state or control

parameter exceeds the limits set prior to the start of

the program. Then, if desired, the routine returns to

the original starting point and generates a branch in

the opposite direction. The computation of a complete

branch is rarely required in the case of the F-15S

model due to the symmetric nature of its

lateral/directional data.

2. Jacobian Calculation

The calculation of the augmented system Jacobian

is accomplished by finding the partial derivative of f

with respect to each state variable and the control

parameter, c. Due to the complexities of the data,

numerical techniques were used to evaluate the partial

derivatives. This task is accomplished by first

evaluating the aerodynamic coefficients at the initial

state and control value, (x,c), and then using them in

the equations of motion to find f(2;,c). In the same

manner, the value of fis found at four additional

points by varying a state variable twice in each

direction from its original value and then evaluating f

at each of those points. A cubic spline curve fit is

then made to each of the resulting five point curves

(there is one curve for each of the n components of

Vf. This passes a set of n smooth curves through the

original component values of f
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Each curve shows the variation of I as a function of

the state variable that was varied to generate that

curve. The derivatives *of each of the n curves with

respect to the state variable varied to generate them

are then easily found. This process is repeated for

each of the n state variables and the one control

parameter resulting in the (n X n+l) augmented Jacobian

matrix shown in chapter 5. Some checks are made to

ensure that the steps made to each side of the state

variables create a meaningful change in I so that an

accurate partial derivative can be found. The change

in I must be large enough to be representative but not

so large as to lose accuracy.

3. Corrector Phase

As has been mentioned above, the corrector step

used in this algorithm employs the Newton-Raphson

method shown below.

h -G k-1  (6.1)

where b is an (n X 1) vector of corrector steps and Gk

is the Jacobian matrix of the augmented system with the

kth column removed. The kth column represents the most

singular column in the augmented Jaoobian matrix. This

is selected by Gaussian elimination with controlled

pivoting.
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This process involves selecting a pivot element that

has the largest magnitude of all candidate elements.

Then, all elements that share the same row or column

as the pivot element are reduced to zero by matrix row

operations. The above process is repeated until n rows

and columns have only one element. No pivot element

may be used more than once in this process. The

remaining column is the k h column that is removed as

the most singular one. If n non-zero elements cannot be

found in this manner, then the rank of the augmented

Jacobian is less than n and Gk is non-invertable. The

pivoting is controlled in the Kubicek algorithm by

selectively scaling the variables (28). This is

accomplished by weighting each of the n+1 columns in

the augmented Jacobian matrix. The column associated

with the variable selected as the continuation

parameter is given the smallest weighting factor. In

this way the variable selected as the continuation

parameter is ensured to remain as the continuation

parameter unless an actual singularity is encountered.

When G is reduced to cannonical form by the above

process, it is easily inverted, and then equation 6.1

is solved for the Newton-Raphson corrector step. The

Jacobian for the new values of x found through the

corrector step is then calculated. The above process is

repeated until a solution point satisfying a preset

precision criteria is found.
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In order to increase efficiency, an option has been

included in the routine to avoid the recalculation of

the Jacobian on each step as the method approaches the

solution point. The logic behind this option stems

from the fact that the steps made in the Newton-Raphson

method become very small when the solution point is

approached, and therefore, the Jacoblan will not vary

much between those steps. Since thb Jacobian matrix is

totally a function of the state variables and the

controls, the Jacobian is calculated only when X varies

a predetermined amount from the point where the

Jacobian was last calculated. The Jacobian is also

always calculated at the beginning of the search for a

new solution point. Not calculating the Jaoobian at

each step tends to increase the total number of

iterations required to reach the solution point but at

the same time decreases the overall time to reach the

solution point [40). The Gaussian elimination

technique described above is well known. Further

information on the subject can be found in (40,41].

4. Local Stability Analysis

Once convergence to a solution point has been

accomplished, the system Jacobian and state variables

at that point are retained. Through the use of an IMSL

subroutine the eigenvalues and, if desired,

eigenvectors are calculated.



111

The eigenvalues are classified by the type and number

of unstable eigenvalues. The eigenvectors can be of

use when the rank of G is less than n. This occurs in

the higher order bifurcation situations discussed in

chapter 5. Consequently, the eigenvector calculation

option is usually put into effect during the

bifurcation surface calculations.

5. Predictor Step

The inverse of the Jacobian matrix, G, is also

saved from the last iteration of the Newton-Raphson

corrector method. It is then used in equations 5.8 and

5.9 to solve for the n+l parametric derivatives,

dxi/ds. After this information is obtained, the

variable corresponding to the k~h column is stepped a

predetermined amount. The remaining n parametric

derivatives are then used in an Adams-Bashforth method

to predict the next point on the curve. Adams-Bashforth

methods are implicit, multi-step methods whose order

can be varied to achieve the desired accuracy. The

particular method used in this approach is a variable

order algorithm with a maximum order of four. The use

of the Adams-Bashforth method over the simpler Adams-

Moulton, or any other explicit method, ensures that

stability can be unconditionally guaranteed for

whatever order is selected by the routine.
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Due to the popularity of the Adams methods in general,

a good deal of information on them can be found in the

literature [40,41].

The new predicted solution point, found through

use of the Adams integration step, where all n+i values

have been changed is the next starting point for the

Newton-Raphson iterations. The complete process is

repeated until the control surface deflection or one of

the state variables exceeds a preset limit. The routine

will then generate another branch from the starting

point in the opposite direction if desired. As was

mentioned above, this is not usually necessary due to

the symmetrical nature of the F-15S lateral/directional

aerodynamic model.

The bifurcation surface routine is handled in

exactly the same manner except for the addition of the

constraint that the Jacobian be singular at each

solution point. During the computation of the

bifurcation surfaces, the eigenvectors are usually

calculated as well as the eigenvalues. As was

* discussed in Chapter 5, the eigenvectors can be used as

an aid in the location of the additional branches

emanating from simple and general bifurcation points.
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D. Evaluation and Validation of the Results

The procedure described above will yield a locus

of points that describe the variation of the

equilibrium solutions of each of the state variables as

a single control is varied. In order to get a more

complete picture of a particular flight regime several

equilibrium branches must be created by varying the

other controls also. The results of these runs are

best understood when placed in graphical form. Three-

dimensional plotting routines would present the most

information in a single plot but have the draw backs of

being more complicated to generate and more difficult

to obtain specific quantitative information from.

Therefore, the results of this study will be

represented in a series of two-dimensional plots that

are linked together by indi-cating common points between

certain plots. Local stability information and in some

cases maximum oscillation amplitudes are also contained

in these plots.

The numerical simulations are accomplished by

integrating the equations of motion through use of a

fourth order Runge-Kutta method. A fourth order Runge-

Kutta method is a predictor-corrector method that

employs an explicit method as the primary predictor

step followed by two implicit corrector steps and one

implicit predictor step.
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The method is applied through the use of an algorithm

known as DYSYS which stands for DYnamic SYstem

Bimulation. The numerical form used by DYSYS to

integrate the equations of motion is shown below:

Y(t0 + dt) = Y0 + 1/6 (K0 + 2K1 + 2K2 + K 3) (6.2)

where Y0  is a vector of the initial'conditions for Y,

dt is the time step and the K's are defined below:

K0 = F(toY 0 ) * dt

K1 = F(t0 + dt/2, Y0 + 1/ 2 ( Ko)) * dt

K2 = F(t0 + dt/2, Y0 + 1 / 2 ( K I)) * dt

K3 = F(t0 + dt, Y0 + K2) * dt

where F is a vector of the first order time derivatives

of Y. The use of implicit corrector steps gives the

method stability, and the orier of the method gives the

accuracy acceptable for this type of engineering

application. Much has been written about Runge-Kutta

methods, and therefore, I am not going to discuss the

method further here. More information on the subject

can be found in [40,41].

The complete package of numerical techniques used

in this study has been made as efficient and universal

as possible. Most of the subroutines are shared by the

different programs, and little would be required to

expand on the methods currently developed or apply them

to a different aircraft model.

AA
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CHAPTER VII

PRESENTATION AND DISCUSSION OF THE RESULTS

A. Outline of Work Apoonulihed

A large number of equilibrium surface calculations

and numerical simulations were attempted. As a result of

the numerical and aircraft stability problems

encountered during the course of this investigation only

a small portion of those computer runs yielded meaningful

results. The numerical difficulties encountered, among

other thing., resulted in no equilibrium surfaces being

successfully computed with thrust while the unstable

nature of the eighth order aircraft model reduced the

number of meaningful numerical simulations to a small

number. Due to the complexity of the aircraft model and

the method itself, the equilibrium surface calculations

were initially, quite costly. A number of improvements

on the numerical efficiency of the technique have been

made during the course of the study so that the computer

time expended during the equilibrium surface computer

runs has been reduced to a reasonable level. Some

logistical problem as well an certain time constraints

set on the completion of this proJect resulted in little

being accomplished in the area of studying the aircraft

with an operational computer augmented stability system.
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The work that was accomplished in this area was limited

to setting the system up for operation on our computer

facilities and developing the means for it. integration

into the existing algorithm. Therefore, all of the

results reported here are for the aircraft without the

computer aided stability system operational. Given the

high computer run times experienced at the beginning of

this investigation as veil as the lack of substantial

bifurcational behavior in the equilibrium surfaces, it

was felt that calculation of bifuracation surfaces were

not warranted, and therefore, no bifurcation surface runs

were attempted. From a computational point of view, the

greatest amount of success was found during the

calculation of the fifth order equilibrium surfaces.

Consequently, seven fifth order equilibrium surfaces were

successfully computed while only two eighth order

equilibrium surfaces were successfully computed. This

disparity is a direct result of the numerical

difficulties presented by the eighth order model. One of

the eighth order equilibrium surfaces generated was a

kpin surface, and one of the fifth order equilibrium

surfaces showed distinct bifuroational behavior. These

two particular surfaces combined with one of the other

fifth order equilibrium surfaces where roll coupling

effects were noted contain the most interesting findings

of the study.
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The next section describes and discusses the individual

results in detail.

B. Kauilibrium Surface Results

In each of the plots presented in this section the

following symbols are used to annotate the local

stability behavior:

S = all eigenvalues are stable

U = a single real valued eigenvalue is unstable

L = a single complex pair of eigenvalues are

unstable.

Combinations of the letters shown above simply indicate

additional unstable roots in the form indicated. The

plotting routine used to display the results is a simple

'connect the dots with straight lines' type of routine,

and therefore, some roughness in the curves may be noted.

This can easily be oorrected by decreasing the

continuation step size in the equilibrium surface

algorithm. In some oases erratic behavior of the curves

may result from the equilibrium surface convergence

criteria. On the other hand, however, some discontinuous

behavior in the curves can be attributed to the type of

nonlinear Jump behavior sought after in this

investigation. The subtle differences in these cases

will be pointed out below.
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1. Fifth Order Eguilibrium Surfaces

During the fifth order investigation, all of the

equilibrium surfaces were generated with the velocity

set to 500 f/s, altitude set to 10,000 ft and thrust set

to zero. Additionally, the data set for Maoh=0.6 was used

for each of the fifth order equilibrium surface

calculations. With the exception of the first and

seventh fifth order cases the results are presented in a

series of six figures contained on three pages. The first

page shows the pitch rate and angle of attack plots

versus the appropriate control variable; the second page

shows the roll rate and yaw rate plots; and the third

page shows the sideslip angle plot and the yaw rate plot

again. The repeated presentation of the yaw rate plot

here as well as the repeated presentation of a few plots

during the discussion of the eighth order equilibrium

surface results is done to enable easy comparisons to be

made between related plots. Plots that are repeated are

given the same title to avoid confusion.

h.. Came Number One (DAT=DRU=O. DEL=+8 to -301

The first fifth order equilibrium surface generated

was a pitch up and pitch down manuever from DEL=-5

degrees.
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During this run, both the aileron and rudder deflections

were held to zero while the stabilator deflection angle,

DEL, was varied from -5 to +8 and then again varied from -

5 to -30 degrees. The results of this computation are

shown in figures 7.la and 7.lb. Due to the symmetrical

nature of the fifth order model at relatively low angles

of attack the variables p, r and beta were essentially

zero for the entire run and therefore are not presented.

The plots in Figure 7.1 show that angle of attack and

pitch rate are very closely related, and this point is

confirmed by inspecting the mathmatical model used. The

model (Appendix D) shows that pitch rate should have the

dominant effect on the rate of change of angle of attack

during low angle of attack flight conditions. This is

confirmed by Figures 7.la and 7.lb. The local stability

analysis shows a transition to an 'L' instability in the -

15 to -20 degrees stabilator deflection range. This

corresponds to an angle of attack Just below the

stalling angle of attack and quite possibly indicates a

Hopf Bifurcation to wing rook or some other type of high

boa oscillatory phenomenon. This could be confirmed by

numerical simulation; however, a fifth order simulation

package was not developed. The somewhat discontinuous

increase in both aoa and pitch rate at DEL=-22 could be a

small catastrophe whose limit points were stepped over by

the algorithm.
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In terms of comparison to expected aircraft behavior, it

is interesting to note that an aoa of 10 degrees is

generated at 0 degrees stabilator deflection. This

result was not confirmed one way or the other due to the

lack of available data of this type. Three of the fifth

order equilibrium surface calculations reported below

share points from this run as their initial starting

point.

b. Case Number Two (DRU=O. DEL=-10.2. DAI=O to -30)

The second surface calculated was an aileron roll to

the left at approximately 24 degrees angle of attack.

Note that the aileron deflection sign convention for the

F-15S is unconventional with negative aileron deflection

generating a left rolling moment. In this set of figures

rudder deflection is held to zero and stabilator

deflection is held to -10.2 degrees. Figures 7.2a and

7.2b show that at these conditions angle of attack and

pitch rate are not effected by aileron control input.

Figures 7.2c and 7.2d show that a significant amount of

adverse yaw is created by the aileron input. This is

demonstrated by the right yaw rate that is generated by

left aileron input. At this angle of attack the loss of

aileron roll control authority is evident and is

demonstrated by a right roll rate being generated by a

left aileron deflection.
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This effect is present to a certain degree in all high

performance aircraft due to their sweptback, low aspect

ratio wings. The requirement for an aileron rudder

interconnect that blends in pro-rudder as a function of

angle of attack when aileron input is commanded is

verified in Figures 7.2c and 7.2d. During a similar

equilibrium surface calculation at a low angle of attack,

a pro yaw situation was noted during aileron input, and

this was confirmed as being one of the aerodynamic design

stategies employed by McDonnell Douglas to minimize the

effects of adverse yaw. On the next page Figures 7.2e

and 7.2d show that yaw rate and sideslip angle are

related in a manner typical of uncoordinated flight

conditions in that a positive yaw rate creates a negative

sideslip angle. The local stability analysis showed all

points to be stable during this run. This is partially

substantiated by the linearity of the curves shown in

Figures 7.2a through 7.2e.

c. Case Number Three (DAI=O. DEL=-19.6. DRU=O to -30)

Figures 7.3a through 7.3e show the effects of a high

angle of attack (approximately 30 degrees) right rudder

roll. In this set of figures, aileron deflection is held

at zero and stabilator deflection is held to -19.6.
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The initial point of this run corresponds to a stable

point very near the L/S stability boundary shown in case

number two. As can be seen in the figures, the solution

points throughout the rudder defleotion range remained

locally stable. Figures 7.3a and 7.3b indicate that at

these conditions angle of attack and pitch rate are not

effected by rudder control input. Figures 7.3c and 7.3d

reveal a very linear increase in yaw rate and roll rate

with rudder input. Figure. 7.3e and 7.3d on the next

page show that the rudder roll at these conditions is a

coordinated manuever with zero sides lip angle throughout

the rudder control input. This is an indication that the

rolling moment is generated by the velocity differential

seen bo' the left versus the right wing due to the yaw

rate. This is somewhat unusual in that sideslip is

usually the mechanism responsible for the rolling moment

during a rudder roll. This set of results confirm that

rudder should be the primary control surface for

generating rolling moment in the angle of attack range

shown.

d. Came Number Four (DEL=53.DIJ=0.DAI=0 to -30)

This equilibrium surface is also derived from the

first equilibrium surface, and it is a surface for left

aileron roll at a negative angle of attack. In this set

of figures rudder deflection is held to zero while the

stabilator deflection is constant at 5.3 degrees.



123

During this aileron roll manuever, the adverse yaw

effects present in case number two are not present but

evidence of roll coupling is present. This is shown by

the increase in negative pitch rate and negative angle of

attack with aileron input in Figures 7.4a and 7.4b. This

type of behavior is caused by the high roll rate

generated by the aileron deflection combined with the

aircraft inertial axis being offset from the axis that

the aircraft is attempting to roll about. Figure 7.4c

shows that the roll response to the ailerons is good

throughout the aileron deflection range. Figures 7.4d

and 7.4e further confirm the existence of inertial roll

coupling type motion depicting a build up of a positive

yaw rate while sideslip angle remains slightly greater

than zero throughout the manuever. This indicates that

the yaw rate component is about the aircraft velocity

vector. Physically, the situation is very similar to a

spin type motion. This can best be understood by

considering each of the three rotational components as a

single angular velocity vector. At zero angle of attack

and zero sideslip angle (assuming Ixz=O) the aircraft

inertial axis is coincident with the flight path of the

aircraft. The angular velocity vector of a roll about

the flight path would, in this case, be composed entirely

of P, the aircraft x-body axis roll rate.
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At angles of attack or sideslip angles other than zero,

however, an attempted roll about the aircraft x-body axis

using the ailerons will result in a combination of rolls

about each of the body axis with the overall angular

velocity vector still aligned with the flight path

vector. Rotating bodies tend to seek a mass

distribution that is symmetric with respect to its axis

of rotation. Therefore, the heavy mass concentration in

the fuselage of modern fighter aircraft results in the

tendency for the x-body axis to become perpendicular to

the axis of rotation. If this is allowed to happen, a

transformation will occur where the angular velocity

vector is changed from consisting entirely of the body

axis roll rate to consisting entirely of the body axis

yaw rate which, of course, is a flat spin. The direction

of the yaw build up is a function of both the direction

of the roll and whether positive or negative angle of

attack flight conditions are present. Experience has

shown that the transformation will not occur smoothly,

and at some point when the build up of yaw rate exceeds

the amount that can be offset by the inherent directional

stability of the aircraft, the aircraft will become

unstable, and a departure from controlled flight will

result. This is a physical explanation for departures

from controlled flight as a result of inertial roll

coupling.
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The amount of roll coupling shown in Figure 7.4 is not

large, however, and no serious roll coupling problems

should be experienced at those particular flight

conditions.

e. Case Number Five (DAI--29.2. DL=-10.2. DRD=O.-3O)

The initial starting point in Figures 7.5a through

7.5e is the full scale aileron deflection position from

case number two. A cross control input of right rudder

against full left aileron deflection with stabilator

deflection held at -10.2 degrees was accomplished. This

was an attempt to further aggravate the adverse yaw

problem noted in Figure 7.2. The eigenvalus of the

individual solution points were once again all stable. A

slight increase in angle of attack is noted in Figure

7.5b, and this can be attributed to the roll coupling

phenomena discussed above. Figures 7.5o and 7.5d show the

direct relationship between yaw rate and roll rate, and

that the effects of a full scale aileron deflection

against the rudder movement appear to have little effect

on the roll authority of the rudder at these flight

conditions. The sideslip angle and yaw rate plots on the

next page once again show the tendency for the aircraft

to rotate about the flight path vector with sideslip

remaining near zero.
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f. Case Number Six (DAI=-29.2. DEL=5.3 DRU=-30 to 18)

In an attempt to further investigate the roll

coupling phenomenon noted in case number four, an

equilibrium surface for rudder deflection angles of 0 to

-30 and 0 to 18 degrees was generated. The DRU=0

position in Figures 7.6a through 7.6e corresponds to the

full scale aileron deflection point in case number four.

Unlike the positive angle of attack cross control

equilibrium surface discussed in case number five, the

steady state flight trajectories shown in Figure 7.6 are

far more complicated. This is due primarily to the

combined effects of the inertial roll coupling already

present at the starting flight condition and the somewhat

counterintuitive behavior created by rudder deflections

when flying at negative angles of attack. Before

presenting Figures 7.6a through 7.6e, the reader is once

again reminded that the aircraft is already under the

effects of inertial coupling, and therefore, the body

axis rotation rates (p, q, and r) should be considered as

components of angular rotation about the flight path. A

consequence of neglecting gravity effects in this model

allows the flight path to be considered level at all

times without any loss of generality. During moderate to

high angle of attack flight, the blockage effects created

by the horizontal tail make the pitching moment, the

rolling moment and the roll damping due to rudder surface

deflection negligible.
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However, at negative angles attack these effects are not

negligible, and they play an important roll in the

results shown in Figure 7.6. When the rudder is

deflected during negative angle of attack flight, several

interrelated inputs to the aircraft dynamical situation

are made. Given a right rudder deflection (DRU0O to DRU=-

30), the following inputs to the system occur:

a. right yawing moment

b. positive pitching moment (independent of rudder

deflection direction)

a. left rolling moment (considering the tail as a

wing and the rudder as an aileron)

d. left sideslip angle

e. alteration of the flow fields around the tail

section resulting in increased roll damping during

left rolls.

With the rudder deflection input. discussed above in

mind, refer to Figure 7.6. Figure 7.6c depicts the most

counterintuitive result. of this particular run and will

be discussed first. At a negative angle of attack

(provided that C L is also negative), a right rudder

deflection should result in a left rolling moment. This

is due to the rolling moment due to yaw rate, sideslip

and rudder deflection all having the same algebraic sign

as the rudder deflection when flying at negative angles

of attack. This clearly is not the situation indicated

in Figure 7.6c.
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The roll rate magnitude is sharply decreased initially

when the rudder is moved from 0 to -30 degrees. This

occurance can best be explained by the change in the air

flow about the tail that occurs when the rudder is

deflected. During a roll, the horizontal tail provides

some damping effect but it is usually minimized by the

blockage of airflow due to the vertical tail. When a

right rudder deflection is made, the roll damping due the

stabilator is enhanced for rolls to the left only. The

mechanism responsible for this phenomenon is high energy

airflow directed by the rudders onto the right upper

stabilator surface. This dramatically increases the

damping capabilities of the horizontal tail and is

responsible for the counterintuitive behavior seen in

Figure 7.6c. During rudder roll manuevera at positive

angles of attack, however, this is not a problem since a

right rudder deflection will increase the damping of left

rolls only thereby improving the capability of the rudder

to check roll rates while at the same time not decreasing

the roll rate generated by the rudder itself. Figure

7.6e shows that the sideslip angle changes sign at a

rudder deflection of approximately -8 degrees. This

corresponds to the inflection point seen in the roll rate

curve.
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Ultimately, the negative sideslip angle in responsible

for producing a left rolling moment strong enough to

overcome the increased roll damping due to rudder

deflection. When considering the left rudder input in

this situation, the damping effect will not be present

since the aircraft is rolling to the left in this

equilibrium branch. The remaining results are relatively

straight forward. In Figure 7. 6a the right rudder

deflection (DEL=O to DEL-30) clearly shows a smooth

increase in pitch rate. This is due to both the pitching

moment created by the rudder deflection and the decreased

roll rate seen in Figure 7.6o which causes a reduction in

the negative pitching moment due to inertial coupling.

During a left rudder deflection, Figure 7.6c shows the

roll rate to eventually decrease as the rudder deflection

exceeds 10 degrees. The increasing sideslip angle shown

in Figure 7.6e is the driving force behind that

behavior. In Figure 7.6d the yaw rate decreases when

rudder is deflected in either direction. This phenomenon

is more easily understood by breaking the yaw rate up

into two separate components, one component is due to

rudder deflection and the other component is due to

Inertial coupling. At the point where DRU=O, the yaw rate

shown Is made up primarily of yaw rate due to inertial

coupling. A left rudder deflection naturally tends to

decrease the yaw rate.
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In the case of the right rudder deflection, the decrease

in yaw rate due to inertial coupling is greater than the

increase in yaw rate due to rudder input thus, an overall

decrease in yaw rate is demonstrated initially. The two

yaw rate components appear to balance each other out as

the rudder deflection is decreased below -20 degrees.

The changes in stability noted in the DRU=7 to

DRU=18 degrees range shows the possibility for a Hopf

Bifurcation to a limit cycle as DRU is increase past 7

degrees and the possibility of a small nonlinear jump at

DRU=16 degrees. The numerical convergence was excellent

throughout this particular run including at the point in

question. This fact as well as the positions of the

eigenvalue in question before and after the unstable

point indicate that a very small bifurcation whose limit

points were stepped over by the computer algorithm may

exist in that area of the curve.

g. Case Number Seven iDAI=-29.2. DRU=-29.2. DEL=-10.2

oDDEL=-30)

The starting point for this equilibrium surface

comes from case number five and is a pitch up manuever

with full cross controls. The aileron is held at -29.2

degrees and the rudder is held at -29.2 corresponding to

full loft aileron and full right rudder.
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The results indicate a distinct bifurcation in the

equilibrium surface in the -15 to -20 degrees stabilator

range. In this case the figures are shown one per page

to provide a better view of the results. Some step size

and convergence difficulties were encountered in the

computation of the portion of the curve connecting the

two limit points. The curves were generated by initially

varying the utabilator deflection from -10.2 to -30.

The run went very well numerically but a jump in both the

equilibrium surface and the locations of the eigenvalues

was noted at approximately -17 degrees stabilator

deflection. The run was repeated with a smaller step

size and another equilibrium surface was generated in the

other direction by varying stabilator deflection from -20

degrees to -10 degrees. The repeat of the original run

continued to a slightly lower stabilator setting before

making a similar jump and then following the same

trajectory as the original run. The reverse direction

run followed the same trajectory as the original run

except that the jump was made at a significantly higher

itabilator deflection than the point where a jump wan

made during the first run thus showing a definite

hysteretic pattern. These results were confirmed by

subsequent runs, all of which showed good numerical

convergence, but the proper step size to continue around

the limit points was not found.
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This indicates that some problems may exist with the

continuation algorithm. Although an actual calculation of

the eigenvalues of the branch connecting the two limit

points was not computed, the behavior of the trajectory

along that branch indicates that it is probably an

unstable branch. A smooth curve was fit between the last

confirmed point on the upper and lower branches to give a

more realistic view of the equilibrium surface in that

region. The hash marks just proir to the limit points

show the location of the last confirmed solution points

prior to the jump.

Figure 7.7a shows the equilibriuim pitch rate versus

stabilator deflection for the conditions given above. The

pitch rate shows little change up to the limit point

where at that point a small but sharp drop in pitch rate

is predicted. The point dropped to is right on the S/L

stability boundary and further movement of the stabilator

places the aircraft in a Hopf Bifurcation region where

limit cycle motion may be experienced. Given the type of

manuever and the large jump in roll rate that occurs

during the catastrophe (shown in figure 7.7c), a wing

rock type motion is a solid possibility. Comparison of

Figure 7.7a with Figure 7.7b shows that contrary to the

other fifth order surfaces the angle of attack behavior

at the bifurcation point is opposite of the pitch rate

behavior.
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A small but sharp increase in angle of attack is

predicted at DEL=-16.5. Figures 7.7o through 7.7e all

show similar nonlinear jumps with the largest one

occuring in the roll rate equilibrium surface. The sharp

jump in sideslip angle from slightly less than zero to

approximately -4 degrees corresponds closely to the large

increase in roll and raw rates shown in Figures 7.7c and

7.7d. In each of the plots except for the angle of attack

equilibriuim surface, the location of the L instability

corresponds to an area where the state variable shown is

changing sharply with stabilator deflection. Since the

catastropic changes shown in the aircraft states must be

accompanied by a similar change in kinetic energy, I

believe that a limit cycle does exist in the region

where the L instability occurs, and it is through the

limit cycle oscillations that the kinetic energy is built

up or released prior to or after the nonlinear jump.

Whether the energy is increased or decreased during the

limit cycle motion is dependent on the direction from

which the bifurcation region is approached. As an

example, consider the case of increasing stabilator

deflection from DEL=-25 to DEL=-1O. In this situation

the equilibrium roll rate is shown to begin to increase

significantly with increasing stabilator deflection at

DEL=-20 which is also the point where the L instability

is encountered.
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As the aircraft state crosses the stability boundary, a

limit cycle is born. The limit cycle behavior during this

phase imparts energy to the system and roll rate is

increase until the eigenvalues are again all stable.

This corresponds to the level portion of the upper roll

rate branch where the increase in roll rate stops. The

system is now ripe for a catastrophe which does indeed

occur at DEL=-15 The energy previously gained is then

released from the system during the catastrophe so that

the energy level is once again at the level prior to

entering the limit cycle phase. The aircraft behavior

during the catastrophe cannot be predicted by the

equilibrium surface, but it is clear that it will

involve the dissapation of the energy built up as the

catastrophe was approached. A definite hysteresis effect

can be seen in this hypothesis as well as in all of the

equilibrium surface trajectories for this case. If the

bifurcation is approached from the other direction, the

energy increase occurs suddenly in a manner very similar

to a departure from controlled flight. The energy gained

during the catastrophic jump at DEL=-16.5 is dissipated

gradually by the limit cycle motion as the stabilator

deflection angle is decreased until the kinetic energy is

returned to a level approximately equal to the level of

kinetic energy prior to the catastrophe.
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The information contained in these equilibrium

surface plots is physically substantiated in the results

reported in a NASA Technical Memorandum by Graf ton,

et al. [8]. In the document the results of a stability

study on a wind tunnel model very similar to the F-15S

are reported. In that report the canard stalling angle

of attack is shown to be approximately 30 degrees. This

corresponds to the angle of attack where the

bifurcational behavior occurs. At that angle of attack a

sharp stabilizing break in the C m versus angle of attack

curve as well as a very sharp peak in the CL versus angle

of attack curve occurs. This explains in part the

behavior of the angle of attack and pitch rate curves.

The change in sign of the pitching moment stability

derivative at that point can account for the sharp

decrease in pitch rate that is seen across the

catastrophe. The angle of attack in the fifth order

model is a function of both pitch rate and Cz The sharp

loss of lift that occurs as the slope of the lift curve

changes signs will create a plunging effect along the z-

body axis which tends to increase angle of attack and is

most likely responsible for the catastrophe seen in the

angle of attack equilibrium surface. The report also

states that at an angle of attack of 30 degrees the

aircraft "exhibits highly nonlinear characteristics with

a very abrupt unstable variation in rolling moment over a

small sideslip range near 0 sideslip andle."
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These instabilities waro found to bw a~ dapt~t rosut of

the canard configuration and disappeared when the canard

was removed. Additionally, the report states that this

configuration exhibits its minimum Yaw damping at an

angle of attack of 30 degrees and that around 35 degrees

angle of attack there is "an abrupt decrease in roll

damping to very low values." This is precisely the type

of behavior predicted in the Yaw and roll rate

equilibrium surface plots, and the sideslip plot does

confirm that the aircraft is near zero sideslip angle.

And finally, the report also indicates that this

configuration can be expected to be susceptible to wing

rock motion in the angle of attack range corresponding to

the L instability region which adds some credence to the

energy transfer hypothesis stated above. These findings

correlate very closely with the predictions made by the

bifurcation and catastrophe analysis shown in Figures

7.7a through 7.7e. No known simulations of this type of

configuration. in this or any other similar high angle of

attack flight regime have been accomplished. Therefore,

the existence of the limit cycle energy transfer model

hypothesized above can not readily be established. But

there is clear evidence that the bifurcational behavior

exhibited in Figures 7.7a through 7.7b does exist, and

the behavior predicted through their study is correct.
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2. Eighth Order Equilibrium Surfaces

As was discussed above only two eighth order

equilibrium surfaces were calculated. The increased

degrees of freedom offered by the eighth order model not

only increased the complexity of the results but

tremendously increased the numerical difficulty of the

problem. The major factor contributing to the bulk of

the numerical problems appeared to be the extra degree of

freedom allowing velocity to vary. This caused the

equilibrium surface calculations with thrust to be very

difficult since velcity tended towards either zero or a

very small value as the routine searched for the initial

equilibriuim points. The larger the thrust the faster

velocity would tend to zero. This behavior indicated

conditions typical of operating an aircraft 'behind the

power curve. Therefore, initial conditions of level

flight, thrust equal to drag and velocity equal to a

value well above that for minimum drag were selected.

The results were the same and study of the system with

thrust was discontinued. This presented no major

problems since the study of spin type motions was the

main goal of the eighth order investigation.
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Velocity variations did continue to cause some problems,

and although the problems were not as severe as those

present with thrust, the large velocity variations

during the iterations to initial solution points as veill

as new points during the continuation process ultimately

resulted in only one non-spin equilibrium surface being

computed. The one that was found could not be continued

to a stabilator deflection greater than -5 degrees. This

corresponded to an angle of attack of approximately 29

degrees. Grafton et al [8] reports that the canard had

serious detrimental effects on pitch damping at angles of

attack above 25 degrees and this may partially explain

the problems encountered in this area. Another intersting

aspect is that while the fifth order system was mostly

stable, the eighth order system was rarely stable. This

will be discussed more thoroughly in the next section.

a. Cage Number One (DAI=Q. DRU=O. DEL=- Lo-0

Case one was a pitch up manuever with aileron and

rudder deflections held to zero. The results of this run

are presented in Figures 7.8a through 7.8p. Several

plots are duplicated for comparison purposes and those

that are duplicated are given the same title. Some Plots

are repeated in an aplified scale to see the small order

variations that occur in the equilibrium surface.
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Figures 7.8a and 7.8b show the pitch angle and angle of

attack equilibrium surfaces. These plots indicate that

the aircraft has a descent angle that varies from

approximately 2 degrees at DEI..-5 to a descent angle of

6 degrees at DEL=-30. The shape of the two curves is

nearly identical and comparison with the pitch rate plot

in Figure 7.8c on the next page show that including the

gravity coupling terms has decoupled the pitch rate

behavior from the angle of attack behavior and at the

same time has apparently coupled the pitch angle behavior

to the angle of attack. A zero pitch rate is realistic

given the high angle of attack conditions and zero

thrust. Figure 7.8d shows an amplified version of the

pitch rate equilibrium surface which reveals a sharp

change in behavior as DEL is decreased below -25 degrees.

This point corresponds to an angle of attack of 40

degrees and it is at this point where the aerodynamic

model removes the drag input due to ailerons by setting

K2 to zero (see Appendix D). Additionally, two other

impulsive type changes are made to the system. One is

M~ade at 32 degrees angle of attack which corresponds to

the point where the UUU instability transitions to the

UUIJ instabilty and the other is at an angle of attack of

35 degrees which corresponds to the point where the UUL

instability transtions to an L instability.
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Also, the first impulsive change, discussed above, occurs

at the point where transition from the L instability to

the LL instability occurs... Study of the actual

aerodynamic data shows that the term involved in the

impulsive changes were decreased to zero or near zero

values prior to the angles of attack given above to

create a smooth transition; however, it is hard to

believe that these occurances are unrelated, and there

may be a problem with the rate of change of those values

not also being zero at the point where they are included

or removed from the aerodynamic data. Figure 7.6e shows

the aircraft velocity equilibrium surface, and the

behavior of the curve is what should be expected given

the flight conditions. Figures 7.8f and 7.8g show the

roll and yaw rate equilibrium surfaces, and these confirm

the symetrical nature of the aerodynamic model. Amplified

versions of the roll and yaw surfaces are shown on the

next page, and they reveal the same type of behavior seen

in the previous amplified plot as well as a definite

coupling between the two states. The next two pages, show

the sides lip angle and yaw rate plots together in both

the non-amplified and the amplified versions. The

amplified versions, Figures 7.8k end 7.81 show nearly

identical behavior between yaw rate and sideslip.
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The fact that the sideslip angle and yaw rate share the

same algebraic sign is an indication of the increased

complexity introduced in the model by removing the

restriction that gravity be equal to sero. In this

particular case a very slight "dutch roll" type behavior

is noted which is a type of motion suppressed in the

fifth order system. Figures 7.8n, f, o and p show the

relationship between roll rate and bank angle.

b. Case Number Two CDrLL=-21. DRU=-24.5. DAI=-29.2}

This equilibrium surface is the spin surface

discussed earlier. It was found by simply trying various

estimated spin conditions until the Newton-Raphson method

was able to converge to an equlibrium solution. As has

been mentioned before, no spin studies have been done on

this configuration. The trajectory given by the

equilibrium surface routine is quite reasonable and

indicates a strong possibility for recovery at full high

performance aircraft anti-spin controls. In the case of

this particular spin which is a left spin, the anti-spin

controls are full deflection of left aileron, right

rudder and negative stabilator where the aileron is

usually considered the primary spin recovery control

surface. The type of spin trajectory indicated is a flat

spin with very little variation in each of the state

variables except yaw rate with the movement of aileron

deflection.
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The scales used for the Y axis in the plots vary from

plot to plot to provide the 'best' view of the individual

surfaces. Figures 7.9a and 7.9b show the relationship

between pitch angle and angle of attack as aileron is

varied. The curves are nearly identical and the sum of

their angles as measured from the vertical is 90 degrees

indicating a vertical descent condition. As the aileron

deflection nears -30 degrees both of the curves drop off

sharply indicating a possibility for recovery. Figure

7.9o shows the variation of yaw rate with aileron and a

very large increase in spin rate is seen as the left

aileron input is decreased. Figure 7.9d shows the

velocity equilibrium surface and that is compared to the

angle of attack surface. The velocity shows little

variation except when near DAI=-30. Figure 7.9e shows

the sideslip angle equilibrium surface and that too shows

evidence for recovery at full anti-spin aileron input.

The greatest evidence of possible spin recovery is

indicated in Figure 7.9g on the next page. In this figure

the pitch rate curve actually undergoes a large change in

*lope as the anti-spin aileron input is increased.

Figures 7.91 and 7.9j show an enlarged view of the pitch

rate and velocity surfaces taken from an equilibrium

surface run accomplished in an attempt to obtain a

surface for the full left aileron deflection.
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Evidence of numerical difficulties is shown by the poor

convergence of a couple of the points near the end of the

run.

Ideally, obtaining a surface that extends all the

way to DAI=-30 degrees as well as increasing the other

two controls to full anti-spin deflections would help

verify the proper recovery control strategy, but serious

numerical difficulties were encountered when this was

attempted. This problem stems from the sam situation

found during the generation of the fifth order

equilibrium surface in the neighborhood of limit points

for case number seven. Unfortunately, in the case of the

spin surface the jump that probably occurs at

approximately DAI=-29. 5 degrees is quite large and the

algorithm is unable to converge to -this new point.

Overall, the equilibrium spin trajectory depicted in this

case appears to be correct with one exception that will

be discussed below. The plots clearly indicate the

possibility of a limit point ocurring between DAI=-29 and

DAI=-30 degrees. If that is the case, then the standard

anti-spin controls should create a Jump from the spin

equilibrium surface shown to some other surface that is

at least a lover energy spin surface or quite possibly a

full recovery to controlled flight.
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A noteworthy point indicating that this surface may

not predict an actual stabilized spin condition for the

aircraft is given by the local stability analysis being

unstable throughout. This indicates that the surface is

an unstable equilibrium branch, and the likelihood of a

similar stable equilibrium branch that exists nearby is

present. A few solution points were found during the

study indicating that a lower energy stable spin surface

may indeed exist, but numerical problems once again

prevented the complete computation of the branch

associated with those few points.

It should be remembered at this time that the rotary

balance -data used may not be as accurate as is necessary

to give the proper stability indications. The data was

good enough however to allow the calculation of a

reasonable spin equilibrium trajectory. An analysis of

spin data for the F-15 [45] showed that the F-15 should

have stabilized spin rates in the 150 to 170 deg/sec

range, an angle of attack in the 80 to 85 degree range

and velocity in the 230 to 250 f/s range. These values,

are reasonably close to those given by the spin

equilibrim surface in this study. The addition of the

canard can account for a good deal of the difference in

the stabilized spin modes of the two aircraft.
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During high angle of attack spin conditions, the canard

will provide a destabilizing pitch up increment since it

is above its stalling angle of attack and therefore is

operating in the region of negative lift curve slope.

This fact when combined with the fact that the canard

adds additional planform area forward of the center of

gravity indicates that the F-15S should have a flatter

stabilized spin mode when compared to the original F-15.

An aircraft experiencing a relatively flatter spin tends

to have a higher yaw rate since the aircraft center of

gravity is closer to the spin axis and the other rotation

rates are decreased to near zero values. Therefore, as a

result of conservation of angular momentum, the yaw rate

component is increased.

The numerical simulation portion of the study did

not yield a great deal of useful information. The model

simulated was an eighth order model which was shown in

the local stability analysis to be unstable, and it was

indeed shown to be unstable during the simulations that

will be presented in this section.
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The instability of the model was not considered to be a

great draw back initially since it was intended to use

the computer aided stability system during the bulk of

the numerical simulations. Two sets of two different but

related simulations will be presented here. The first

set is at a relatively high angle of attack without

thrust, and the second set is at a lower angle of attack.

One of the two runs in the second set is with thrust.

The scales on the plots are not constant.

1. Cases One and Two (DRU=O. DAI=O. D =-5 to -27 and

DEL=-5 to +.I)

During these two simulations, the initial conditions

were identical and they were taken from the conditions in

the eighth order non-spin equilibrium branch for DEL=-8.7

except that the stabilator was set at -5.0 as the initial

condition for the simulation. In Figure 7.10 the results

of a smooth decrease in stabilator deflection angle is

shown and in Figure 7.11 a smooth increase in stabilator

deflection is shown up to where DEL= .I and then held

constant. Initially, a decrease in angle of attack is

expected due to the pitch up stabilator setting being

less than that required for equilibrium conditions and

that is shown to be the case in both of the runs.
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However, from that point stabilator deflection seems to

have no effect on the aircraft. The control inputs were

double checked and appeared to be correct. The

subroutine that generates the aerodynamic coefficients as

a function of the control surface deflections as well as

a number of other variables is the same one used

successfully in the fifth and eighth order equilibrium

surface calculations. This pointed to the possibility

that the aircraft may actually have very limited

stabilator control authority in the situation shown. The

next obvious step was to determine the canard behavior

during this simulation. The canard is scheduled as a

function of angle of attack alone and the schedule is

shown below:

DC = 2.0 - 1.25 * C(7.1)Th

e canard deflection range is -36 to +18 degrees with

positive deflection being trailing edge down. The canard

schedule is designed to unload the canard at high angles

of attack to delay the adverse effects created by the

canard stall and thus extend the usable angle of attack

range. Therefore, at 25 degrees angle of attack the

oanard is at -29.25 degrees deflection and increases to -

10.5 at an angle of attack of 10 degrees. As a result of

this, the effects of the canard in the case shown in

Figure 7.10a tend to work against the stabilator

deflection.
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The nearly identical angle of attack curves indicate that

the canard may have more control authority than the

stabilator in the situation shown in the two figures.

Figures 7.10b and 7.11b show identical, near sero

behavior for roll rate, sideslip angle and pitch rate.

This verifies the symmetric trajectory behavior predicted

by the non-spin eighth order equilibrium surface. Figure

7.10c shows an enlarged plot of the decrease in angle of

attack plotted against stabilator deflection.

2. Cases Three and Four (DAI=O. DEL=-l. DRU=O

Figures 7.12a through 7.12d show the results of a

five second simulation where the initial state was taken

from the DEL=-5 degrees non-spin equilibrium branch. The

actual stabilator deflection used in this run as well as

case four was DEL=-1. In these plots a large decrease in

velocity with the increase in angle of attack is shown up

to the point where the angle of attack reaches

approximately 70 degrees. At this point it is apparent

that the aircraft is developing a 'sink rate' as the

velocity is again increased due to the increasing

component in the z-body axis direction. Figures 7.12c

and 7.12d show a slow but definite instability in pitch

rate and roll rate.



149

The sideslip angle (not shown) showed a smooth increase

from 0 up to +.77 degrees at 56 degrees angle of attack

and then a smooth decrease at nearly the same rate to

-. 22 degrees where the simulation aborted at 90 degrees

angle of attack. An interesting point to note at this

time is that 55 degrees is the angle of attack where the

rotary balance data is included in the aerodynamic model,

and this may account for the decrease in sideslip angle

seen past that point. The final simulation was similar to

case three except an initial value for velocity that

should have placed the aircraft on. the 'front side' of

the power curve was chosen. The initial velocity was 640

f/s, and the data for Mach=0.6 was used. Roll rate, yaw

rate, pitch rate and sideslip angle were all set to zero

and remained there throughout the simulation.

Additionally, thrust was set to 8500 lbs in this case.

Figures 7.12a and 7.12b show the velocity and angle of

attack versus time curves. The curves shown in these

figures are very similar to the ones in Figures 7.12a and

7.12b with the two exceptions that a longer period of

time was required in case four to reach 90 degrees angle

of attack and the velocity range traversed in case four

was higher than case three.
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In the simulations described above, the eighth order

model is shown to be definitely unstable as is predicted

by the local stability analysis in eighth order case

number one. The lack of significant lateral motion

predicted by the equilibrium surface when the rudder and

ailerons are held at zero. degrees deflection is also

verified. The addition of thrust appears to change the

time scale of the instability but not the qualitative

nature of the unstable trajectory. Little more than this

can be said concerning the numerical simulations

themselves or their comparison to the equilibrium

surfaces. As a result of the obvious limits to the

usefulness of numerical simulations without the computer

aided stability system, the time spent on the numerical

simulations during this study was less than the other

areas discussed in this chapter.

D. Comparison of the Fifth and Eighth Order Models

In this section the significant differences and

similarities between the two equilibrium surface models

will be discussed. The main areas of interest in this

portion of the discussion involve comparisons of the

model trajectories, stability and numerical behavior.
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A significant difference between the conditions that

the two investigations were accomplished under involves

the thrust being zero in the case of the eighth order

calculations and the velocity being held constant in the

case of the fifth order calculations. Holding velocity

constant gives the fifth order trajectory a certain

amount of 'implied thrust'. This is seen in the angle of

attack versus stabilator deflection equilibrium surface

plots of the two models shown in Figures 7.1b and 7.8b.

Both of the models show a maximum angle of attack near 40

degrees at full scale stabilator deflection, but the

angle of attack range hat the fifth order equilibrium

surface shows is much larger than the eighth order plot.

For instance, the equilibrium angle of attack at DEL=-5

degrees. is nearly 10 degrees higher in the eighth order

system than the fifth order system. This is a direct

effect of allowing velocity to vary in the eighth order

model. As discussed above the pitch rate and angle of

attack are decoupled in the eighth order model while on

the other hand, the pitch angle and angle of attack

appear to be coupled in the eighth order model. In both

of the models the lack of lateral motions during a pitch

up manuever is shown, and this was confirmed to a certain

extent in the numerical simulations discussed above.
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The increased degrees of freedom allowed in the eighth

order model create a more subtle coupling between the

lateral terms. This is seen in the amplified plots shown

in Figure 7.8 while that type of behavior was not present

in the fifth order pitch up equilibrium surface.

In terms of local stability behavior the differences

are quite significant. The fifth order equilibrium

points tended to be locally stable during most of the

investigation while just the opposite was noted in the

eighth order equilibrium points. The numerical

simulations that were accomplished combined with

discussions with personnel involved with the F-15S

project at Wright-Patterson AFB, Ohio support the eighth

order system as having tbe correct stability

information. The behavior of both the fifth order model

and the equilibrium curves indicate that the fifth order

stability calculations are correct for the model used

(additionally, the same routine was used to calculate the

eigenvalues for both of the equilibrium surface

routines), but it is apparent that the released degrees

of freedom in the eighth order model contain the

critical destabilizing components found in the actual

aircraft. Consequently, it is believed that the fifth

order model is inadequate to make stability predictions

on the F-15S.
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On the other hand, however, the equilibrium trajectories

revealed by the fifth order model seems to be at least

qualitatively correct, and the bifurcational behavior

found in case number seven does explain the existence of

stability problems revealed during earlier research on

the configuration. These seemingly contradictory results

can be reconciled by refering to the theoretical

discussion on the concepts of bifurcations and

catastrophes in Chapter 4. Applying the concept proposed

by the center manifold theorem to the local stability

analysis of the eighth order system shows that there is a

group of three to five eigenvalues that remain in the

neighborhood of the imaginary axis with the other

eigenvalues far removed either to the right or left of

the imaginary axis. Comparison of these eigenvalues with

the ones present in the fifth order case show those three

to five eigenvalues also to be present in the fifth order

system. Therefore, it appears that the reduced order

system as determined by the center manifold theorem is

contained within the fifth order system used in this

investigation, and thus, the complete bifurcational

behavior of the aircraft should be revealed in the

behavior of the fifth order model. The added degrees of

freedom in the eighth order model do tend to make the

aircraft unstable, but this behavior is linear in nature

and is therefore irrelevant to the bifurcational behavior

of the system.
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The complete behavior of the system, according to Arnol'd

[37] can be found from the fifth order system by

'suspending' the linear unstable and stable parts present

only in the eighth order system to the nonlinear fifth

order system. The resulting system will be identical to

the eighth order system in this study except the

bifurcational behivior will have been found by studying

the much simpler fifth order system. This accounts for

the differences in local stability behavior of the two

systems, and at the same time shows the close

relationship between the two models from a bifurcational

behavior point of view. It is clear now that, contrary to

initial indications, the fifth order system can indeed

reveal accurate information regarding the behavior of the

complete aircraft model, and provides a means to at least

partially sidestep the numerical problems encounted in

the eighth order system by studying the bifurcational

behavior of the fifth order system and then generalizing

the results to the eighth order system. This would reduce

the number of eighth order equilibrium surface runs which

as will be shown in the next section could provide a

significant improvement in the efficiency and success of

similar studies.

Numerically speaking, the differences between the

two models is very large.



After fine tuning the algorithm and including a number of

computer time saving steps, some of which are discussed

in chapter six, the fifth order equlibrium surface

calculation routine was working quite weil. By the end

of the study, none of the partial differentiation or

convergence problems found in the eighth order routine

were present in the fifth order routine, and the computer

time per solution point was reduced to under 30 seconds

during some of the fifth order runs. The eighth order

system, on the other hand, was not nearly so easy to work

with. The difficulties were isolated for the most part

to the large variation caused in each of the states by

small changes in velocity. In an attempt to solve this

problem weighting factors that weighted the relative

importance of having the time derivatives of each of the

state variables be zero at the solution point were used.

Both a relatively small value and a relatively large

value for the velocity time derivative weighting factor

were attempted with no real success. Problems were even

encountered during attempts to converge to a previously

established equilibrium point. Finally, both of the

routines appeared to have difficulties continuing the

equilibrium surface around limit points. This problem

may be a result of either improper continuation step size

or improper weighting of the columns in the augmented

system Jacobian matrix (see Chapter 5);
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however, a number of runs vere attempted where these

factors were varied and still little success was found.

This tends to indicate that the method used may need to

be improved to be useful on a more complex or unstable

aerodynamic model.
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CHAPTER VIII

SUMMARY OF SIGNIFICANT FINDINGS

In this chapter the more significant results

discovered during the course of this study are

summarized. The order in which they are presented here

is the same relative order in which they were originally

presented in the above discussion to aid the reader in

locating the more indepth discussions on these findings

located in Chapter 7.

During the fifth order equilibrium surface

investigation, three of the surf aces yielded behavior

that predict notable problem areas for the F-lBS. The

first of these findings is that the aircraft is

susceptible to severe adverse yaw problems in the 25

degree angle of attack range, and this results in rolling

moments being produced that are opposite of the aileron

control deflection direction. This phenomenon is

demonstrated in Figures 7.2a and 7.2d where a left

aileron input is shown to generate a smooth yawing motion

to the right which in turn results in a smooth rolling

motion to the right at a stabilator deflection of -10.2

degrees.

The second area of interest stems from the roll

coupling behavior seen at an angle of attack of

approximately -5 degrees.
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The inertial roll coupling forces on the aircraft when

combined with additional control inputs create highly

nonlinear, counter-intuitive behavior in the equilibrium

trajectories. The first evidence of roll coupling

behavior is shown in Figure 7.4 where pitch rate and

angle of attack are seen to decrease with increasing roll

rate to the left while the yaw rate smoothly increases.

The unusual behavior described above occurs when a rudder

control movement is made after reaching an aileron

deflection of -29.2 degrees (full left position) in

Figure 7.4. The -29.2 degrees aileron position in figure

7.4 and the 0 degrees rudder position in figure 7.6

correspond to the same point on an aileron versus rudder

equilibrium surface. The highly nonlinear,

counterintuitive behavior mentioned above occurs as a

result of an interaction between the inertial roll

coupling forces present prior to the rudder input, the

forces that are a direct result of the control

deflections and the forces created as a result of a

variation in the flow fields about the aircraft. In the

case shown in Figure 7.6 a rudder deflection to the right

is seen to decrease the left roll rate by causing a

variation of the flow field about the aircraft tail

section which in turn causes a large increase in roll

damping. The lower roll rate decreases the effects of

roll coupling which when combined with the other forces

create the nonlinearities seen as well as aircraft state

changes that are opposite of the expected behavior.



159

These interactions and the mechanisms causing them are

more completely discussed in Chapter 7. The discovery of

this unusual behavior does underscore the usefulness of

the equilibrium surfaces in studying aircraft behavior

during unusual control sequences. By studying aircraft

trajectories from an equilibriuim surface, the complex

transient behavior that would normally accompany these

flight conditions is removed so that the underlying

causes of the behavior can be studied in a more direct

manner.

The third and most important finding during the

fifth order equilibrium surface investigation is the

discovery of an area with di.tinct bifurcational

behavior. Figures 7.7a through 7.7e show the evidence

of catastrophic behavior in the aircraft states during

stabilator movements in the -20 to -15 degrees stabilator

deflection range while holding full left aileron and full

right rudder. The nonlinear jump behavior predicted by

this finding is substantiated in a NASA Technical

Memorandum by Grafton et al. [8] in which the stability

of an aircraft very similar to the F-15S is studied

through wind tunnel tests. In the NASA document the

existence of abrupt changes in the aircraft stability

derivatives at the angle of attack where the

bifurcational behavior is seen to occur in Figure 7.7 is

reported but not explained. The occurance of the

behavior reported in the NASA document is accurately

Predicted by catastrophe theory.
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Additionally, a mechanism based on a Hopf Bifurcation to

limit cycle motion is proposed to explain the physical

transfer of kinetic energy that must occur during the

nonlinear jumps. The basis for this mechanism is

partially supported by one of the predictions made in the

NASA Technical Memorandum. According to that document,

the origin of the nonlinear behavior is traced to the

addition of the canard to the original F-15

configuration.

During the eighth order equilibrium surface

investigation a spin trajectory equilibrium surface was

discovered for variations in aileron deflection. The

values of the state variables correspond reasonably close

to known stabilized spin modes for the original F-15

configuration. The spin mode found for the F-15S is

flatter and has a higher rotation rate than that typical

of the F-15, but these differences in spin behavior can

be attributed to the addition of the canard to the basic

F-15 configuration. Additionally, the spin equilibrium

surface indicates a significant possibility for a jump

from the spin surface shown to either a lower energy spin

or possibly to non-spin flight conditions by using a full

anti-spin aileron deflection. One significant detraction

from the reliability of this spin mode prediction is the

locally unstable eigenvalues present at each of the

equilibrium points indicating that the spin surface shown

is a series of unstable equilibrium points. For a more

detailed discussion on this point see Chapter 7.
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Due to the unstable nature of the aircraft without

an operational computer aided stability system, very

little useful information was gained from the numerical

simulations. One significant point that was noted,

however, was that during a power off stall, stabilator

deflection appeared to have little bearing on the

aircraft behavior. This effect is shown in Figures 7.10

and 7.11. The canard behavior was determined to have an

input that opposes pitch up stabilator deflections at the

conditions simulated, and that may explain the behavior

noted.

The comparisons between the eighth and fifth order

local stability results show a large disparity. The

evidence indicates that the fifth order model does not

accurately predict the local stability behavior of the

actual aircraft, but the trajectory and bifurcation

information gained during the fifth order equilibrium

surface investigation was shown to be useful in

predicting aircraft behavior. The discussion on this

topic explains that the large difference in the local

stability of the 'two models is not necessarily

significant in terms of studying the bifurcational

behavior of the aircraft since the additional three roots

in the eighth order model tended to be far removed either

to the left or to the right of the imaginary axis.
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Refering to the center manifold theorem (Chapter 4)

showed that the reduced order system for the F-15S is,

for the most part, contained within the fifth order

system, and therefore, the bifurcational complete

behavior of the aircraft could be studied by studying the

fifth order system. The complete aircraft behavior is

then recovered by generalizing the fifth order nonlinear

behavior to the eighth order system in the manner

discussed by Arnol'd (37]. Once this is done, the

complete behavior of the aircraft including the linear

instabilities seen in the eighth order model as well as

the nonlinear bifurcational behavior found in the fifth

order model will be seen, and of course, the end result

will be locally unstable wherever either model predicts

local instabilities.

In some cases the findings reported above are

primarily of a qualatative nature, however, each of

these as well as those findings based on more

quantitative results are shown to be valid based on the

documentation available and the evidence presented in the

results of this study. Further investigation of the

areas listed above through the use of more specific

techniques such as those discussed in Chapter 3 is

warranted, and additionally, the application of this

technique to this area of flight mechanics research

should be continued so that a better understanding of

this and other high angle of attack flight phenomena can

be gained.
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CHAPTER IX

CONCLUSIONS AND RECOMMENDATAIONS

A. Smmary

During this research, a method for studying aircraft

flight mechanics through the use of bifurcation and

catastrophe theories was studied and implemented into the

computer facilities available at the Massachussetts

Institute of Technology. The study was based primarily

on the generation of equilibrium surfaces for a fifth and

an eighth order aircraft model. The aircraft

configuration studied was an F-15 with a canard mounted

on the engine inlet shelves. The aircraft is known as

the F-15 STOL Demonstrator and is currently being

developed and studied by McDonnell Douglas and the Air

Force Wright Aeronautical Laboratory at Wright-Patterson

AFB. The aircraft is inherently unstable and requires a

computer aided stability system for normal operation. The

results in this study are for the aircraft without the

computer aided stability system. Seven fifth order and

two eighth order equilibrium surfaces were successfully

computed, and those results are all reported in this

document. Numerical simulations were attempted, but due

to the unstable nature of the aircraft little information

was gained from them.
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A summary of the significant findings of this research is

contained in Chapter 8, and a more indepth discussion of

all of the results as well as those significant findings

discussed in Chapter 8 are found in Chapter 7.

Overall, the research was a successful effort, a

good deal of the objectives set were to at least some

degree realized. One major shortcoming of the research

was the inability to determine more tangible results

based on the bifurcational behavior of the aircraft. Time

and logistical limitations were directly responsible for

the second major limitation which was the failure to make

any studies of the aircraft with its computer aided

stability system intact. The amount of work required to

make the software package compatible with the computer

facilities available and to implement it into the

software already developed was much greater than

anticipated. At this point, I would like to thank Julie

Wolf for the ti.me and effort she expended working on the

implementation of the flight control system. It was not

by any means an easy task.
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There are a number of areas in which this research

has led to the identification of suggestions for possible

improvements and further research. A few of these areas

are aircraft design improvements, improvements in the

numerical methods used and areas where further study may

be beneficial. These points, of course, are listed next.

1. Suggestions for General Aircraft Modifications

The adverse yaw problem noted in the fifth order

case number two is not an uncommon occurence, and I am

sure that this aspect of the aircraft behavior has been

taken into account in the aircraft's flight control

system. If this problem has not been taken into account,

then as a minimum, an aileron rudder interconnect system

that is scheduled as a function of angle of attack should

be implemented. The lack of stabilator authority during

the power off post stall situation discussed in the

numerical simulation section of Chapter 7 indicates that

scheduling the symmetrical deflection of the canard as a

function of angle of attack and Mach number alone may be

a bit restrictive in post stall situations. Finally,

since the possibility for spin recovery shown in Figure

7.9 does not occur until near the full scale aileron

deflection, extra aileron control deflection capability

may be a possible means for insuring the control

authority to recover from spin situations.
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This extra capability could be included whenever the

computer aided stability system senses spin type

conditions.

2. Suggestions for ImproveMent of the Numerical Method

The efficiency of the continuation routines was a

major problem during a good deal of the research.

Improvements were made in the algorithms and those are

discussed in the text, but overall the method is still

somewhat time consuming. The key to faster operation is

to decrease the number of derivatives that must be

calculated. This means reducing the Jacobian

calculations or ideally eliminating them altogether. The

technique of only calculating the Jacobian when the

aircraft state travels a specified distance form the last

time the Jacobian was calculated worked very well for the

fifth order system and made some substantial improvements

in the run time of the routine. No real improvement was

noted in the efficiency of the eighth order routine.

Another helpful technique used was to ensure that when

the aerodynamic coefficients are computed during the

Jacobian calculation phase, only the terms that are

varied during that specific call to the aerodynamic

coefficient routine are recalculated. This too was

helpful in decreasing run time.
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These points, however, are merely fine tuning the

efficiency of a method whose cost will eventually become

prohibitive as the order and complexity of the system is

increased. Ultimately, a derivative free algorithm would

give the greatest margin of improvement in this area.

The numerical problems noted in the neighborhood of

the limit points during the study indicates that some

improvement is needed in either the implementation of the

continuation method used or the actual method itself.

C. Suggestions for Further Research

The most obvious research step to take next is to

continue the research on the F-15S with the computer

aided stability system operational. This would

undoubtedly improve the usefulness of the numerical

simulations, but more importantly, the model being

studied will then closely resemble the actual aircraft

being developed and thus the information revealed can be

directly used to further the development of the

aircraft. Another very interesting area to study will be

the role that the computer aided stability system will

play in the generation of the equilibrium surfaces. It

is not clear whether or not the flight control system

will make changes in either the local stability behavior

of the solution points or the bifurcational behavior of

the aircraft.



On the other hand, it can be said with some confidence

that since the flight control system is a linear full

state feedback type control system it should not be able

to effectively deal with most of the types of nonlinear

instabilities that occur as a result of bifurcational

behavior. The comparison of a computer simulated

trajectory where the flight control positions are updated

40 times a second and a similar equilibrium surface where

the flight control system is only updated on each

iteration to a new solution point would be most

interesting. The freedom that the flight control system

has to vary the controls between iterations may make

convergence to an equilbrium solution point very

difficult, or it may actually accelerate the convergence

since it too is seeking an equilibrium for the cockpit

control setting given to it. The soil for research in

this area is quite fertile and is virtually unbroken.

The Hopf Bifurcation energy transfer model

hypothesized in the discussion of case number seven has

the potential to warrant further study by continued

equilibrium surface calculations and numerical

simulations. The end result of this type of research

would be the development of ways to monitor energy build

ups of the type discussed in case number seven so that

impending catastrophes could be predicted and eventually

prevented,
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Refering to the center manifold theorem (Chapter 4)

showed that the reduced order system for the F-15S is,

for the most part, contained within the fifth order

system, and therefore, the bifurcational complete

behavior of the aircraft could be studied by studying the

fifth order system. The complete aircraft behavior is

then recovered by generalizing the fifth order nonlinear

behavior to the eighth order system in the manner

discussed by Arnol'd (37]. Once this is done, the

complete behavior of the aircraft including the linear

instabilities seen in the eighth order model as well as

the nonlinear bifurcational behavior found in the fifth

order model will be seen, and of course, the end result

will be locally unstable wherever either model predicts

local instabilities.

In some cases the findings reported above are

primarily of a qualatative nature, however, each of

these as well as those findings based' on more

quantitative results are shown to be valid based on the

documentation available and the evidence presented in the

results of this study. Further investigation of the

areas listed above through the use of more specific

techniques such as those discussed in Chapter 3 is

warranted, and additionally, the application of this

technique to this area of flight mechanics research

should be continued so that a better understanding of

this and other high angle of attack flight phenomena can

be gained.
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APPENDIX A
F-15S PHYSICAL CHARACTERISTICS

As was explained in chapter two, the F-15S is, in

nearly all aspects, physically identical to the F-15B.

It is an F-15B (serial number 71-0290) modified to

include the canards and the two-dimensional thrust

vectoring nosles. A comprehensive diagram of the

planview of the aircraft is shown in figure A.1. The

following table lists the precise physical charact-

eristics of the aircraft.

TABLE A.1

Takeoff gross weight (clean configuration, 5718 lbs of
internal fuel) 37,794 lbs 2
Ixx 25,938 slug-ft 2
Iyy 185,287 slug-ft 2
Isz 206,359 slug-f"
Ixe -2,543 slug-ft

Area (reference) 608.00 sq ft
Area (actual) 590.39 sq ft
Span 42.808 ft
Aspect Ratio 3.01
Taper Ratio 0.25
Sweep (leading edge) 45 degrees
Dihedral -1 degree
Airfoil & Chord

Root (BL 0) NACA 64A008.6 301.5 in actual
BL 77.0 NACA 64Ax05.9 226.0 in actual
BL 155.0 NACA 64Ax04.6 149.6 in actual
BL 224.73 NACA 64A203.5 94.0 in actual
Tip NACA 64A203.0 68.3 in actual
Incidence None
Twist None
Modified Conical Camber CL/D=0.3
Aileron Area 26.48 sq ft
Aileron Travel ±30 degrees
Flaperon Area (not used) 35.84 sq ft
Flaperon Travel (not used) 0 to 30 deg. down
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Area (reference) 120.00 sq ft total
Area (actual) 111.36 sq ft total
Aspect Ratio 2.05
Taper Ratio 0.34
Sweep (leading edge) 50 degrees
Dihedral 0
Airfoil & Chord

Root (BL 0) NACA 0005.5-64 137.2 in reference
BL 90.0 NACA 0003.5-64 117.9 in reference
Tip NACA 0002.5-64 46.5 in reference

Stabilator Travel +20 to -30 degrees

Vertical Tails
Effective Area 125.2 sq ft total
Aspect Ratio 1.7
Taper Ratio 0.27
Sweep (leading edge) 47.16 degrees
Airfoil & Chord

Root NACA 0005.0-64 115.0 in actual
Tip NACA 0003.5-64 30.6 in actual
Rudder Area 19.94 sq ft total
Rudder Travel ±30 degrees

Area 88.1 sq ft
Aspect Ratio 2.44
Taper Ratio 0.46
Span (exposed) 14.67 ft
Sweep (leading edge) 47.16 degrees
Dihedral +20 degrees
Airfoil & Chord

Root NACA 65A w/sharp LE 6% 98.70 in
Tip NACA 65A w/sharp LE 2% 45.45 in

Canard Travel (Trailing edge) 30 up, 20 dn (deg)

Since nozzle effects and configurations other than

clean were not considered in this study, details

pertaining to those areas have been omitted from table

A.1 and from figure A.1 (shown on the next page).
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APPEN4DIX B

ROTARY BALANCE DATA

B. 1 General Remarks

Standard wind tunnel aerodynamic coefficient data is

normally composed of two different types of data, static

data and forced oscillation data. The fact that these

types of data neglect the complex rotational flows that

develop around an aircraft in spin type motion was not a

factor in the earlier days of aircraft development.

Those earlier combat aircraft, in the same manner as most

general aviation aircraft today, could rapidly enter and

recover from a spin with use of standard aerosurface

controls. This fact when combined with the fact that the

rotary balance, (RB). data for those earlier aircraft

showed little variation with changes in omega, the RB

parameter (to be discussed in detail later), allowed the

earlier fighter aircraft to be successfully modeled

throughout their flight envelope without using rotary

balance data [29J. This is not the case with modern

fighter aircraft. Due to their slender bodies and low

aspect ratio wings, modern fighter aircraft are not

easily recovered from spin type situations, and the

variation of their RB data is much higher than their

predecessors.
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Although currently there is still much debate over the

proper implementation of RB data into the aerodynamic

model, it Is clear that high aoe, spin type conditions can

not be properly modeled without RB data.

B.2 TM2lementation of the RB Data

Rotary Balance wind tunnel tests are conducted by

rotating the wind tunnel model about the relative wind

with the axis of rotation being through the CG. There

are two major points of contention in the RB data

debate. The firut is when to include the RB data in the

aerodynamic model and the second is how the RB parameter,

omega, should be modelled. A consensus has been found,

more or less on the first point by the physical

limitations of the current testing apparatus and

procedures. Due to the nature of the wind tunnel test

setup for rotary balance testing, data is not usually

taken at angles of attack below 55 degrees. This limit

arises from the fact that the sting is connected to the

center of gravity through the top of the aircraft.

Therefore, rotating the aircraft at lower angles of

attack becomes impossible due to geometric and

aerodynamic interference between the tail and the sting.
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Sideslip angles greater than ±10 degrees are also not

normally attempted due to the large hole that must be

made in the top of the aircraft to allow for that

particular degree of freedom and still have the sting

connected to the CG. The size of the hole necesary for

testing at sideslip angles greater than ±10 would distort

the flow fields to the point of destroying the accuracy

of the results. A combination of these circumstances and

observations of actual aircraft spin behavior make an aoa

of 55 degrees the usual RB data input aoa. The RB data is

usually retained in the aerodynamic coefficient models

until the aoa drops below 30 degrees. The removal of the

RB data at an aoa of 30 aegrees is somewhat arbitrary,

but it is based on the fact that the aoa threshold for

spin entry is normally higher than the aoa at which

rotational motion still occurs during a recovery from a

spin. Additionally, some spin test setups allow the

gathering of data at angles of attack as low as 30

degrees by off-setting the aircraft from the axis of

rotation. If this type of data is unavailable, then the

data for aoa=55 degrees is used when the aoa drops below

55 degrees.

The second problem area, selecting the correct

definition for omega, is a much more difficult task. It

is possible to choose several definitions that have merit

at one particular condition but fail at others.
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For instance, omega2 = p2 + q2 + r2 or even omega=r would

adequately describe the stabilized flat spin condition

since p,q<<r during a flat spin, but neither definition

is very adequate in oscillatory type spin conditions.

This is a major drawback of most of the models considered

and arises from the fact that the RB data is composed of

much of the same components as the forced oscillation

data. Therefore, considerable redundancy is introduced

into the aerodynamic coefficients by this method. This

problem is normally dealt with by using adjusted values

for p, q, and r when the RB data is in use. The RB data

also has a static component that is evident by the non-

zero value of the RB coefficients when omega=O. This is

removed by simply subtracting that value from each of the

RB coefficients calculated so that RB=O when omega=O.

R.3 Development of RB data for the F-15S

Since no RB data on the F-15S has been collected at

the present time, a set of RB data for the F-15S was

approximated by adjusting F-15 RB data to account for

the addition of the canard. The F-15 RB data used was

presented in a series of component build-up plots that

represented the various changes the addition of specific

components had on the rotary balance parameter,

(omega*b)/(2*V) (non-dimensional form) [44,45].
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This type of data presentation made it possible to

estimate the effects that an addition of the canard would

have on the RB data by comparison of the-F-15 aerodynamic

RB data for omega=O to the F-15S static aerodynamic data

and using some simple calculations to find the relative

effect the addition of the canard would have on the data

based on the effect created by the addition of the other

aerodynamic surfaces. Due to the complex nature of the

flows, no estimations were made for data other than zero

sideslip. A discussion of the process used to develop

the F-15S RB data is given below.

The Rotary Balance data can be thought of as a

combination of static and forced oscillation data with

the exception that rotational flow fields are allowed to

develop. As a first cut approximation the values for the

changes in static forces are added in as a constant

bias. These are found by comparison of the omega=O RB

data for the F-15 to the corresponding static coefficient

values for the F-15S. The difference is the static bias.

This is a relatively unimportant point for our

application, however, since the static values are removed

from the RB data to avoid duplication of the static force

coefficients.
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In each of the following cases where adjustments beyond

the changes in the static forces are required, the

adjustment is found by using the points discussed below

to determine the relative effectiveness of the canard as

compared to the appropriate tail section surface. The RB

data is then adjusted accordingly based on that

particular tail section's build-up plot. These are plots

that show the effect that the addition of that particular

control surface alone has on the RB data. In the cases

involving the longitudnal coefficients (Cm, Cx and Cz)

few additional adjustments were required. Since the

canard's stalling aoa is equal to approximately 32

degrees, the corrections involved only simple

calculations of the canard volume versus the horizontal

tail volume in the case of the Cm and Cs, and a

comparison of the exposed frontal surface area of the

canard versus the horizontal tail in the case of Cx

(taking into account the blockage and downwash effects of

the wing on the horizontal tail). In the calculation of

Cn the 20 degree dihedral angle of the canard made it

necessary to make some adjustments beyond the simple

static force changes discussed above. These amounted to

recognition of the destabilizing contribution of the

increased vertical surface area forward of the CG due to

the canard, and a comparison of the yawing moment forces

oreated by the canard with those that would be created by

the vertical tails without the stabilator.
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The canard tends to be destabilizing in yaw at zero to

low rotation rates but has a stabilizing influence at

higher rotation rates while the vertical tail is

stabilizing at both zero and high rotation rates. This

points towards the probability of easier spin entries but

lower stabilized spin rates for the F-1B when compared

to the original F-15. In both the yawing moment and the

sideforce coefficient calculations consideration was

given to the effects of blockage due to the fuselage on

the canard's ability to influence of those coefficients.

Finally, although the canard has some significant

influences on Cl, it loses its effectiveness in this area

when placed beyond its stalling angle of attack, and

therefore. only small adjustments to Cl are necessary.

These are due to the increased stability and roll damping

offered by the dihedral angle and the horizontal surface

area of the canard.

Although the above adjustments may appear crude on

the surface, it should be remembered that any data is

better than no data at all when attempting to model high

aoa spin type motions. This data is a first

approximation to the actual RB data and is therefore

qualitatively accurate in that the shift of the data is

in the correct direction, but the amount of the shift may

not be correct.
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B.4 Application of the RB Data to the F-lBS

As discussed above the static components have been

removed from the data that the RB coefficient is zero

when omega=O. The data has also been adjusted so that

the first derivative of each RB coefficient with respect

to alpha and omega is 0 when aoa=55 and 30 degrees. This

prevents an impulsive input to the system at the points

where the data is to be included and removed from the

system of aerodynamic coefficient equations. Since

sideslip effects are not in the data, a rotational

parameter was selected that desoribed the aircraft

rotation as a projection of the total aircraft angular

velocity vector onto the XZ plane. Thus.

omega = p*oos(aoa) + r*sin(aoa). (B.4.1)

and in order to prevent redundancies between the forced

oscillation terms and the RB data the following

substitutions are made while the RB data is being used:

p=p*sin(aoa) (B.4.2)

r=r*cos(aoa) (B.4.3)
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APPENDIX C

POINCARE-LIAPUNOV STABILITY THEOREM

The Poincare-Liapunov Stability Theorem is a very

simple but powerful theorem. It has been the basis for

the successful linearization of nonlinear systems for

many years, and it is also gives major support to the

nonlinear analysis theorems discussed in chapter 4. In

fact, the Center Manifold Theorem is merely an

extension of the Pioncare-Liapunav Theorem. The

Pioncare-Liapunov Theorem is stated below without

proof.

"The local stability of a nonlinear system at a

particular operating point can always be characterized

in the same way as the equi-vlent linear system that is

valid in the neighborhood of that operating point

except in those cases where the linearised system has

eigenvalues with zero real parts."
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APPENDIX D

F-15S AIRCRAFT MODELS

This appendix contains the two aircraft models used

in the BACTM software and the model used in the numerical

simulations. The BACTI models consist of a fifth and an

eighth order model used in equilibrium surface calculations.

A separate eighth order model is used in the numerical

simulation phase.

D.1 Aerodynamic Force Representation

All of the equations of motion use six main aerodynamic

coefficients that are calculated in the exact same manner.

This Is true for cases when the computer aided stability

system is operational and when it is not operational. The

F-15S data is represented in terms of CL, CD, Cy, Cl, Cm

and Cn. The lift and drag coefficients are in stability

axis coordinates while the remaining coefficients are in

fixed body axis coordinates. The lift and drag coefficients

are transformed into body axis coordinates, Cx and Czo for

use in the equations of motion. For clarity, the actual

fortran code for those equations is used in the descriptions

shown here.

CL = CLO + .5*(CLCANL+CLCANR) + CLFLX +
.5*FLX1* (CLSTBL+CLSTBR) + DCLBET (D. 1.1)

CD a CDO + .5* (CDCANL+CDCANR) + .5* (CDSTBL+CDSTBR) +
K2*DCDAIL*AVDA + CDRUD + DCDPCF (D.1.2)
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CY1 = CYO*FLXNY*SBE + (1.-FLXNY)*FLXCYO*BE +
DCYAIL*FLXAI*DA + CYDSTB*DHD*FLX6 +
• 5*(CYRUDL*DRL+CYRUDR*DRR)*FLX5 + CYCAN*SBE +
DCYDC*DCD + CYFLX + K7*DCYASY (D.1.3)

CLLl= CLLO*FLXRM'SBE + DCLLP*P*B2V + DCLLR*R*B2V +
DCLLAI*FLXAI*DA + CLLDST*FLX2*DD +
.5*(CLL1RDL*DRL + CLLRDR*DRR)*FLX4 + CLLCAN*SBE
+ DCLLDC*DCD + CLLFLX (D.1.4)

CM1=CMO + .5 (CMCANL+CMCANR) + CMLX + .5*FLX1* (CMSTBL
+CMSThR) + DCMAIL*AVDA + CRUD + RAMP3*'DDS2
+ DCMQ*Q*C2V + .5*(CMSDCL CMSDCR)*FLX1 +
AVDHD*CMCF (D.1.5)

CN1= CNO*FLXNY*SBE + (1.0-FLXNY)*FLXYM*BE + DCNP*P*B2V +
DDCNP*K6*P*B2V + DCNR*R*B2V + DCNAIL*FLXAI*DA +
CNDSTB*FLX2*DHD + .5* (CNRUDR*DRR+CNRUDL*DRL) *FLX3
+ CNCAN*SBE + DCNDC*DCD + CNFLX + DCNASY*K7 (D.1.6)

The terms used in the above set of equations are defined as
follows:

P, Q and R are roll, pitch and yaw rates respectively.
BE is the sideslip angle, beta.
B2V and C2V are span/(2*VT) and chord/(2*VT) respectively
VT stands for true airspeed
DA is the aileron surface deflection.
DCL and DCR are left and right canard surface deflections.
DHL and DHR are left and right stabilator surface deflections.
DRL and DRR are left and right rudder surface deflections.
DCD and DHD are differential canard and rudder surface

deflections and are defined as:
DCD=DCL-DCR and
DHD=DHR-DHL.

DC, DH and DR are the symmetrical canard, stabilator and
rudder deflections, respectively and are defined as:

DC= (DCL + DCR)/2
DH= (DHL * DHR)/2
DR=(DRL + DRR)/2.

A prefix of AV found in terms such as AVDA indicates absolute
value of the term following the AV.

SBE is +1 whenever beta is 0 or positive and -1 when beta
is negative.

The individual components from the above coefficient

equations are grouped together below into terms as they

appear in the equations and the overall effect of each term

is defined.



188

LIFT TERMS
CLO Basic lift
.5,%(CLCANL CLCANR) Lift due to canard
CLFLX Canard flexibility effects
.5SFLX1*(CLSTBL CLSTBR) Lift due to stabilator
DCLBET Lift due to beta

DRAG TERMS
CDO Basic drag
.5*(CDCANL+CDCANR) Drag due to canards
.5*(CDSTBL+CDSTBR) Drag due to stabilator
K2*DCDAIL*AVDA Drag due to ailerons
CDRUD Drag due to rudder
DCDPCF Performance corr. factor

SIDE FORCE TERMS
CYO'FLXNY*SBE Side force due to beta
(I.-FLXNY) *FLXCYO*BE Flexibility effects
DCYAIL*FLXAI*DA Side force due to ailerons
CYDSTB*DD*FLX6 Side force due to stab.
.5* (CYRUDL*DRL+CYRUDR*DRR)*FLX5 Side force due to rudder
CYCAN*SBE Side force due to sym. can.
DCYDC*DCD Side force due to dif. can.
CYFLX Canard flexibility effects
K7*DCYASY High alpha asymmetry effects

ROLLING MOMENT TERMS
CLLO*FLXRM*SBE Rolling mom. due to beta
DCLLP*P*B2V Rolling mom. due to P
DCLLR*R*B2V Rolling mom. due to R
DCLLAI*FIXAI*DA Rolling mom. due to aileron
CLLDST*FLX2*D1D Rolling mom. due to stab.
.5*(CLLRDL*DRL+CLLRDR*DRR)*FLX4 Rolling mom. due to rudder
CLLCAN*SBE Rolling mom. due to sym. can.
DCLLDC*DCD Rolling mom. due to dif. can.
CLLFLX Canard flexibility effects

PITCHING MOMENT TERMS
CM0 Basic pitching mom.
.5*(CMCANL CMCANR) Pitching mom. due to canard
CMFLX Canard flexibility effects
.5*FLX1*(CMSTBL+CMSTBR) Pitching mom. due to stab.
DCMAIL*AVDA Pitching mom. due to ailerons
CMRUD Pitching mom. due to rudder
RAMP3*DCMDS2 High alpha effects
DCQ*Q*C2V Pitching mom. due to Q
.5*(CMSDCL+CMSDCR)*FLXI Effect of canards on stab.
AVDMD*CMCF Pitching mom. due to dif. stab.
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YAWING MOMENT TERMS
CNO*FLXNY*SBE Yawing mom. due to beta
(1.0-FLXNY) *FLXYM*BE Flexibility effects
(DCNP*P DDCNP*K6)*P*B2V Yawing mom. due to P
DC*R*B2V Yawing mom. due to R
DMNAIL*FLXAI*DA Yawing mom. due to aileron
CNDSTB*FLX2*DHD Yawing mom. due to stab.
.5*(CNRDR*DRR+CNRUDL*DRL)*FLX3 Yawing morn. due to rudder
CNCAN'SBE Yawing mom. due to sym. can.
DCNDC*DCD Yawing mom. due to dif. can.
CNFLX Canard flexibility effects
DCNASY*K7 High alpha asymmetry effects

The following equations show the transformations

made to convert the above stability/body axis set of

equations into a body axis only set of equations.

CX= CL*Sin(Alpha) - CD*Cos(alpha) + IROTCP*DCXRB (D.1.7)

CY= CY1 + IROTGP*DCYRB (D.1.8)

CZ= -D*Sin(alpha) - CL*Cos(Alpha) + IROTGP*DCZRB (D.1.9)

CLL=-CY1*(WLCG-WLREFCL)/(Span*12.) + CLL1 +
IROTGP*DCLLRB (D. 1.10)

CM= CX*(WLCG-WLREFCM)/(Chord*12.) - CZ*(CG-CMCGR) +
CM1 + IROTGP*DCMRB (D.1.11)

CN= CY1* (CG-CNCCR) *CBAR/BB + CN1 + IROTGP*DCNRB (D.1.12)

In the above equations, (D.1.7)-(D.1.12), CC is the Center

of Gravity (measured horizontally in % of chord). WLCG Is

the Water Line Center of Gravity (measured vertically In

inches). The values. WLREFCM, WLREFCL, CMCGR AND CNCGR,

describe the location of the origin of the original axis

system which causes moments about the CG in the new body

axis system. The values, DCXRB, DCYRB, DCZRB. DCLLRB,

DCM4B AND DCNRB, are the rotary balance data additions for

the indicated coefficients.



The term, IROTGP, is a switching parameter that is 0 whenever

alpha is below 30 degrees. It is switched to 1 when alpha

Increasesabove 55 degrees and then is returned to 0 when

alpha decreases below 30 degrees. See appendix B for

complete details on the rotary balance data.

Finally, one last adjustment is made before the

above coefficients are ready to be used in the equations

of motion. If thrust is to be Included, then CX is adjusted

as shown below

CX = CX + Thrust/(.5*rho*VT**2*S) (D.1.13)

where rho is the atmospheric density and S is the wing

planform surface area. Figure D.1 shows the sign conven-

tion used In the aerodynamic model. Note that the aileron

deflection sign convention is non-standard.
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D-2 Eauations of Motion

As discussed above, there are three major versions

of the equations of motion used in this study. The

first of these to be discussed here is the fifth order

set used for equilibrium surface calculations. This

set is most accurate in the non-spin flight regime, and

it is derived by setting gravity to zero and holding

velocity constant. These simplifications reduce the

order of the system by three. Letting gravity be sero

decouples the bank angle and pitch angle variables from

the remaining equations of motion, and therefore, those

terms do not contribute to the dynamics of the system.

It has been shown that neglecting gravity does not

seriously effect the modelling of the flight dynamics

in the low aoa flight regime, but the assumption of g--O

does deteriorate the accuracy when modelling high aoa

spin type behavior [28,29]. Letting velocity be con-

stant implies that the thrust available is always equal

to the thrust required which is, of course, unrealistic

at high angles of attack. The restriction of velocity

to a constant value also has the effect of suppressing

oscillations in the other varibles. This is confirmed

by the fact that wing rock and other oscillatory type

motions are not readily found in simulations where

velocity is not allowed to vary [28,29].
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Below is the fifth order set of equations used in this

study [28].

(I m V r- - ,o.. + 2)

I -I -I

Sq+r sin fsin

a ' snB)cosjseB (D.2.4)

C x Sinl p + r -cos,

WV y V x
x X Zy Icos +-T

- z  sin ]- I ) 5

The other equilibrium surface set of equations

also uses the wind axis variables. alpha and beta, but

it also inolud the velocity2 pitch angle and roll

angle equations that were removed to oreate the fifth

order set of equations.
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It is one of several sets of equations that can fully

describe six degrees of freedom aircraft motion. Using

the wind axis variables does result in relatively

complicated equations for alpha and beta, but these

variables are necessary since they contain the most

meaningful information when studying high aoa spin type

motion. By calculating them directly the time and

effort of repeatedly recalculating their values as

auxilliary equations is saved. The eighth order

equilibrium surface set of equations is shown below

E6,28].

(I ZF(' I + 4&.2)qr + Y-1 x p.

) ~ [. -r_ I ( -rI

+ -  + I r 1" CI z T2]P

+'Sb(c l xz n))/' im z±

-r n Fr (D. 2.6)

I -I Ixz

+1 x pr. +Ixz(r2 . 2 ) (D.2.7)

I" q sino r sin)sino

S s).,
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qC.-2ine n) sine + rCosai

+V
+ LS + Icosesin.)Coss

- z + ? CosOCOS#) sine - ]sine, (D.2.10)

(IV)s (§-Cx -sne)coscoso~~c + (§cooln)sn

+ (~ MLV COSCS)~lCS (D. 2.11)

a q cos# - r sin# (.2.12)

8 P + q tanesin + r taneco" (D.2.13)

The set of equations of motion selected for the

numerical simulations is also an eighth order set, but

in this case the fixed body axis variables (u, v and w)

were chosen over their wind axis counterparts (alpha,

beta and velocity). This sel-ection was motivated by

the clean and simple form of the body axis set of

equations. It was felt that these equations would make

the simulation package more readily adaptable to other

uses in addition to verifi-cation of BACTM results.

Since, regardless of the particular model used, a

number of auxiliary variables were to be calculated

during the simulation, the additional calculation of

alpha and beta presented no increase in effort or

computation time.
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See appendix E for the particular auxiliary variables

calculated during the simulations and their

definitions. Below is the eighth order set of

equations of motion used in the numerical simulation

phase (7].

- -g sine + vr - wq + is Cx  (D.2.14)

V - g cosesin + wp - ur + L (D..-215)

- g COSeCOS# + uq - VP + C* (D.2.16)
!a 2

Ifz + z- Ix\ _xz - h2nx

- q cos+ - r sInp (D.2.20)

S* P + q tanssln( + r qnecos* (.2.21)
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APPENDIX E

AUXILIARY VARIBLES

In order to fully utilize the computational effort

expended during the numerical simulations, a number of

auxiliary variables were calculated in addition to the

trajectories of the state variables. Through these

variables a better understanding of the behavior of the

aircraft can be obtained as well as the chance to

monitor and verify some possible departure or jump

prediction parameters. Table E.1 shows the variables

calculated as auxiliary variables and the formulae used

to calculate the variables. A discussion of the

significance of each of the variables follows table

E. 1.

TABLE E. I

a- tan I (w/u)1

a sin-i(v/V) (2.2)
v • =4-z + 2 w (E. 3)

sa sn4sece * r cossece (E.4)

TURNS • f ; dt (E.S)

t 0

* *TURKSC(21) (2.6)
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WZ a u sine - (v sin# + w cos$)cose, (E.7)

mo tf
0hh0  wI dt (Z.8)

E -MV w1jI-w (E.9)

E - W+ x + IYqA + 1Zri + (r4 .pi)xz (E.1o)

where

• (ui + v; + W)/V (E.11)

if the body-axis velocity set Is used

w - 4 4qz rz  (E.12)

DSPIN = ~ [~ ]z (E. 13)

E " s Iv2 /(jSb) C.14)

where

I v  sin2el x + (sIn
2$1 y + cos 2 1z )COS 2e 9

I xzcos*sin2e

when Ixv=]ys=

The wind axis variables (alpha, beta and total

velocity) are calculated to provide direct verification

of the results of BACTM computer runs. The heading

variable, , is calculated so that an aircraft's

horizontal trajectory during a spin can be calculated.
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It is also used in the calculation of the variable,

Turns, which is the number of rotations that have

occurred during a spin. This value is of interest

since spin recovery techniques are often evaluated by

the number of turns that occur between the setting of

the spin recovery controls and the actual recovery from

the spin. Aircraft vertical velocity, WI, and

altitude, h, are calculated to allow altitude to vary

during the simulation if desired and to determine sink

rates. during stalled and near stall flight. Vehicle

kinetic energy, E, and rate of change of kinetic

energy, E. are calculated to help develop possible

techniques to monitor and predict nonlinear jump

behavior. Dopin is a measurement of the distance that

the current state is from a known spin condition, and

spin energy, Es, is a measurement of the kinetic energy

due to the spin motion of the aircraft alone. These

last two terms are used to measure the relative

effectiveness of different spin recovery control

strategies.
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